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Abstract - With the significant increase in the number of 

processing elements in NoC-Based MPSoCs, communication 

becomes, increasingly, a critical resource for performance gains 

and QoS guarantees. The main gap observed in the NoC-Based 

MPSoCs literature is the runtime adaptive techniques to meet 

QoS. In the absence of such techniques, the system user must 

statically define the resource distribution to each real-time task. 

The goal of this research is to investigate the runtime adaptation 

of the NoC resources, according to the QoS requirements of each 

application running in the MPSoC. The adaptive techniques 

presented in this work focused in adaptive routing, flow 

priorities, and switching mode. The monitoring and adaptation 

management is performed at the operating system level, ensuring 

QoS to the monitored applications. Monitoring and QoS 

adaptation were implemented in software. In the experiments, 

applications with latency and throughput deadlines run 

concurrently with best-effort applications. Results with real 

applications reduced in average 60% the number of latency 

violations, ensuring smaller jitter and higher throughput. The 

execution time of applications is not penalized applying the 
proposed QoS adaptation methods. 
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I. INTRODUCTION 

With the increased complexity of NoC-based MPSoCs, in terms of 
processing elements (PEs), more applications can run simultaneously 
on such systems, requiring management techniques able to meet the 
applications' constraints. In general purpose MPSoCs, as [1] and [2], 
applications may start their execution at any moment, characterizing a 
dynamic workload behavior. In addition, the resource sharing among 
the running applications may lead to perfonnance degradation. Thus, a 
major challenge in the design of such systems is to ensure Quality of 
Service (QoS), without perfonnance degradation after a certain period 
of execution when several applications were inserted and removed 
from the system. 

The communication infrastructure strongly influences the QoS. 
The higher the number of PEs, higher is the number of simultaneous 
transactions among PEs. To meet requirements of real-time 
applications, in a dynamic workload scenario, applications must 
include in their specifications the QoS constraints (as throughput or 
latency). Such constraints are monitored, and the system acts over the 
communication infrastructure, adapting it to reach the constraints. 

The architectural features of the NoC router directly affect the 
ability to offer QoS. Factors such as arbitration, routing algorithm, 
buffer depth, flow control, switching mode, virtual channels and the 
number of physical channels per port, are widely researched and 
optimized to provide some level of QoS [3][4]. However, most 
proposals evaluated in the related work Section are restricted to the 
physical infrastructure. Such restriction leaves a gap to be exploited in 
the context of software management and NoC adaptation. 

This is the motivation of the present work. Starting from a NoC 
with duplicated physical channels, adaptive routing, support to flow 
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priorities and simultaneous packet switching (PS) and circuit 
switching (CS), the objective of this work is to develop a software 
monitoring scheme to evaluate the NoC performance, and two runtime 
adaptive techniques: (i) flow priority adaptation; (ii) establishment/ 
release of CS. The developed monitoring scheme targets an MPSoC 
hierarchical architecture [5]. 

The monitoring is the trigger for the adaptation. The runtime 
changing of the communication priority as well as the switching mode 
increases the support to QoS. The dynamic changes of the 
communication priority together with the routing algorithm, allows the 
avoidance of congested areas, and better network traffic distribution. 
In addition, CS guarantees the reservation of a given path, allowing 
communication to occur with maximum throughput, without the 
interference of other flows. 

The paper is organized as follows. Section II reviews the state-of
the-art. Section III presents an overview of the proposed adaptive 
techniques. Section IV and V corresponds to the original contribution 
of this paper, the monitoring technique and the adaptive runtime 
techniques, respectively. Section VI presents the results, and Section 
VII concludes the paper, pointing out directions for future works. 

IT. RELATED WORK 

This Section reviews recent works that provide some level of QoS 
in NoC-based systems. Some of the reviewed works offers runtime 
adaptive techniques to meet QoS. The QoS management can be 
controlled locally (at the router or PE level), hierarchically using a 
clustered approach, or centralized. It is important to observe how 
routers are interconnected. When single bi-directional links are used, 
VCs (virtual channels) are commonly adopted to ensure QoS. Some 
recent works adopts multiple physical channels as an alternative to 
VCs. 

Wang el al. [3] propose a router able to meet QoS constraints 
through arbitration with dynamic congestion control and adaptive 
routing. The Authors adopt a NoC with 64-bit bi-directional links, 
where each router has 2 horizontal links, 4 vertical links, and 4 
diagonal links. VCs are not used in the adopted NoC. For the dynamic 
control of QoS it is used an algorithm that evaluates the congestion at 
input and output ports. Packets coming from hotspots have high 
priority to be arbitrated, reducing congestion. However, this 
congestion control is restricted to the router, where local decisions are 
made, which may not necessarily eliminate congestion, but just to 
transfer it to another point. 

Salah and Tourki [6] propose a router architecture for real-time 
applications, using PS, QoS support and a priority-based flit scheduler 
for BE and GS flows. The scheduler evaluates the deadlines of the 
incoming flows, selecting VCs according to the flow class, BE or GS. 
According to the Authors, results show that their router achieves an 
optimal packets scheduling, increasing channel utilization and 
throughput, reduction of the network latency, and avoidance of 
resources conflicts. 

Fan et al. [4] propose a router combining VCs with duplicated 
physical channels. Each physical channel creates a subnet, with a 
dynamic number of VCs. The allocation of VCs is executed at 



runtime, by an arbiter, reserving VCs and dynamically allocate then at 
the demand of each port. Each subnet uses a different routing 
algorithm: XY and YX. The NI chooses which subnet a given flow 
will use. Once on a subnet, a packet cannot change the subnet. The 
VCs for XY only accept packets routed according to the XY 
algorithm, and vice versa. 

Winter and Fettweis [7] present and evaluate different 
implementations of a central hardware unit, name NoCManager, 
which allocates at run-time guaranteed service VCs providing OoS in 
packet-switched NoCs. The Authors argue that the central 
NoCManager is superior to the distributed technique. Besides this 
conclusion, the Authors mention scalability issues, and point out a 
hierarchical method as future work. 

Motakis et al. [8] explores the management of the NoC services to 
adapt the hardware resources through techniques implemented in 
software, allowing the user to explore the different network services 
through an abstract APT. The implementation is based on the 
Spidergon STNoC platfonn. Lower-level layers are explored, along 
with a library of functions named libstnoc accessible to the user. The 
work focuses on dynamic reconfiguration of OoS services through the 
libstnoc. The designer can access information services (energy 
management, routing, OoS and security), and also enable and change 
these parameters through memory-mapped registers. The API can also 
perform a diagnostic service of the traffic of the NoC, changing OoS 
parameters at run time based in constraints defined by the user. 

Cui et al. [9] propose a decentralized heuristic for task mapping. 
The proposal adopts a cluster-based method, implemented using the 
Tera Scale platfonn NoC. The clusters do not have a fixed size. Their 
size can change at runtime according to the characteristics of each 
application, and might contain more than one application. The local 
managers control the cluster resizing in a decentralized fashion. 

Liao and Srikanthan [10] explore OoS through a hierarchical 
structure, dividing the MPSoC in clusters. Each cluster contains one 
application and a cluster manager. The system also has a global 
manager responsible for high-level tasks. The goal of the clustering 
heuristic, implemented in software, is to ensure at runtime the 
isolation of the traffic between different applications, favoring 
composability, an important feature for OoS. 

Table I compares the reviewed works. It is noticeable that in 
many works the OoS management (2nd column of the Table) is made 
at the router level. Such approach takes local decisions, which may be 
inefficient at the system level. On the other, a centralized approach [7] 
has a global view of the system, but scalability is sacrificed. In [8], a 
scheme of runtime OoS adaptation is implemented at the PE level, as 
in the present work, where the user informs the constraints. However, 
that proposal does not solve the scalability issue, and the work is 
tightly dependent to the Spidergon STNoC. A trade-off is achieved 
with a hierarchical approach, with several managers distributed in the 
system [9][10]. Our work may be applied to centralized or hierarchical 

systems. Results are presented for a centralized management, being 
possible to extend the architecture to a hierarchical management. 

Most NoC designs interconnect routers using single bi-directional 
links (3fd column). An alternative to such approach, leading to good 
results, in tenns of communication perfonnance and OoS, is to 
increase the number of physical channels [3][4]. Such approach 
replaces V Cs, with a smaller silicon cost, and may result in disjoint 
networks, enabling the use of priorities or simultaneous switching 
modes. 

As can be observed in the fourth column of the Table, approaches 
with OoS management at the router level adopt three main techniques 
to meet OoS: flow priorities [6], virtual channels (VCs) [4][6][7], and 
circuit switching [7]. The hierarchical management [9][10] meets OoS 
favoring composability, i.e., applications are "isolated" in clusters, 
without the interference of other flows. The work herein proposed 
adopts flow priorities and simultaneous PS and CS, but controlled by a 
local or central manager. 

The main gap observed in the literature is the adaptive techniques 
to meet OoS (5th column). In the absence of such techniques, the 
system user must statically define the priority and/or the switching 
mode of applications. Systems where OoS management is done locally 
may be inefficient, since flows may be sent to congested regions, 
moving the problem for other NoC regions. Hierarchical management 
is more efficient, since applications may suffer less interference from 
other applications. The drawback of hierarchical approaches is to find 
continuous regions to map applications, even if available resources 
exist. The runtime adaptive techniques proposed uses local 
monitoring. The local monitoring sends violation events to a manager, 
which selects the adaptive technique to meet the OoS constraints. 

TTT. OVERVIEW OF MONITORING AND QoS ADAPT A TION 

MODULES 

The communication infrastructure adopts a 2D-mesh NoC [II], 
composed by duplicated 16-bit physical channels, assigning high 
priority to channel 0 and low priority to channel I (high priority 
packets may use both channels); detenninistic Hamiltonian routing 
[12] in channel I and partially adaptive Hamiltonian routing in 
channel 0; input buffering; credit-based flow control; simultaneous PS 
and CS. The PE connected to each NoC router contains: (i) a 32-bit 
Plasma processor (MIPS-like architecture); (ii) a local memory; (iii) a 
DMA (Direct Memory Access) module; (iv) a NI (Network Interface). 

The MPSoC contains manager PEs and slave PEs. Manager PEs 
executes heuristics to control the MPSoC, task mapping, and task 
migration. Slave PEs run a micro kernel, responsible for task 
communication (local and remote), and multi-task scheduling; and 
user tasks. 

Figure I shows an overview of the system, considering a 4x4 
MPSoC instance, split into four 2x2 clusters. Monitoring and OoS 
adaptation are implemented in both slave and manager microkernels. 

Table I - State-of-the-art comparing works targeting OoS support in NoCs. 

Proposal 

Wang (2012) [3] 

Salah (2011) [6] 

Fan (2011) [4] 

Winter (2011) [7] 

Motakis (2011) [8] 

Cui (2012) [9] 

liao (2011) [10] 

This Proposal 

QoS Management Physical channel QoS Technique Adaptive technique 

Router level 
2 horiz., 4 vertic., and 4 

diagonal 

Router level One per direction 

Router level Duplicated channels 

Centralized One per direction 

PE level One per direction 

Hierarchical One per direction 

Hierarchical One per direction 

Centralized or 
Duplicated channels 

Hierarchical 

Dynamic Arbitration and 

Adaptive Routing 
Flow Priority 

Virtual Channels 

Virtual Channels 

Virtual Channels / CS 

Bandwidth allocation 

Composability 

Composability 

Flow Priority / PS+CS 

Congestion Aware 

Routing Algorithm 

Flit Scheduling 

Virtual channel allocation 

Central NoC Manager (HW) 

Management API 

Reclustering 

Cluster Allocation 

Runtime monitoring and flow 

adaptation according to deadlines 



Two local monitors, implemented in the slave microkernels, evaluate 
latency and throughput. A global monitor is implemented in the 
manager microkernel, responsible to evaluate the received monitored 
data and select the corresponding adaptive technique. The QoS 
adaptation, in the same way that the monitoring, is also hierarchically 
implemented, being composed by QoS adaptation modules, 
implemented in the slave micro kernel, and QoS control modules, 
implemented in the manager microkernel. 

Figure I - Overview of the proposed monitoring and QoS adaptation modules. 
'S' corresponds to slave PEs, and 'M' to manger PEs. Local/global monitors 

and adaptation/control modules are software implemented in each PE 
microkemel. 

The QoS adaptation corresponds to the change in the 
communication flows priority and the switching mode of a given pair 
of communicating tasks. The change of priorities alters the physical 
channel used for communication, and explores the adaptability of the 
Hamiltonian routing algorithm. The establishment of connection 
changes the switching mode trom PS to CS, ensuring maximum 
throughput to the flow. 

All slave PEs ('S' in Figure 1) of a given cluster send monitored 
data to the cluster manager PE C'M' in Figure 1). The cluster manager 
PE evaluates the received data, selects the adaptive technique (flow 
priority or switching mode) and sends the action to be taken to all 
slave PEs running tasks belonging to the monitored application. 
Cluster managers are able to exchange the global monitored 
information. It is important to mention that the cluster size may vary at 
runtime. For example, if a given cluster has no available resources, it 
may request resources (PEs) to neighbor clusters, modifying the 
cluster shape at runtime. For this reason, the communication between 
cluster managers is necessary. 

A. Profile Configuration 

Monitoring and QoS adaptation require the definition of the 
application profile. The application developer must execute the target 
application in the MPSoC, without disturbing traffic, measuring 
throughput and latency values. These results correspond to the best 
results the application can achieve in the platform. The throughput and 
latency values to be respected are detined as deadlines, and must have 
their values smaller than the best results, to be possible to execute the 
target application concurrently with other applications. 

After the deadline acquisition the user can set these values, in both 
microkemels, through system calls to enable the monitoring and 
adaptive QoS techniques. The monitoring is executed at the task level, 
i.e., each pair of communicating task can be monitored. 

IV. MONITORING 

This Section details the monitors (local and global). The 
monitoring process was designed to be generic, adaptable to other 
MPSoCs and other adaptive techniques, as DVFS, scheduling, task 
migration. The monitors handle violation and events: 

Violations: handled by the local monitors, corresponds to a "fine 
grain" treatment of the monitoring information. Violations are 
created when a latency or throughput deadline violation occurs. 
The local monitors store the number of violations. and when a 
parameterizable number of violations is reached, a message is 
sent to the global monitor. This message corresponds to an event. 

Events: handled by the global monitors, corresponds to a "coarse 
grain" treatment of the monitoring information. The event fires 
the execution of a heuristic, which selects the appropriate 
adaptive technique. 

The action to accumulate in local monitors a parameterizable 
number of violations, before sending an event, reduces the traffic 
induced by the monitoring process, since monitoring packets are not 
sent at each violation. We adopt three violations as the default 
threshold number of violations to both local monitors. This value 
safely estimates an event, because it can suppress random peeks of 
latency or throughput, while keeps a high level of contidence in the 
local monitors. 

A. Throughput Monitor 

The throughput monitor counts the number of received bits within 
the monitoring period. The monitored period can be configured in the 
protile phase. As each processor may execute several simultaneous 
tasks, each task is individually monitored. When a given packet is 
received, the monitor identities the target task and increments the task 
throughput counter according to the packet size. When the period of 
the monitoring window expires, the monitor verifies for all tasks with 
monitoring enabled if the throughput deadline was violated, i.e. , a 
throughput smaller than the specified. After three violations 
(parameterizable value), the monitor generates a throughput event to 
the global monitor. 

B. Latency Monitor 

As in the throughput monitor, the latency is computed for all 
received packets. This latency corresponds to the task latency, which 
considers the task computation and the network latency. The monitor 
identities the target task, and computes the time interval between the 
last two received packets. Each computed latency is veri tied against its 
deadline. If the computed latency is higher than the specified latency, 
a latency violation occurs. Again, after three violations 
(parameterizable value) a message is sent to global monitor reporting a 
latency event. 

C. Global Monitor and Control Module 

The global monitor and the control module are software 
implemented in the manager PEs (MP). The function of the global 
monitor is to receive events trom the local monitors, select an adaptive 
technique, and notify it to the control module. The control module 
evaluates the feasibility of adaptation, and if it is feasible sends a 
message to the adaption module of the slave PE holding the task that 
should execute the adaptation action. 

Figure 2 details the global monitoring process. Initially, all flows 
start with LOW priority (using deterministic routing). When the global 
monitor receives a latency event for a given flow, it calls the control 
module that changes the priority to HIGH (coupled to adaptive 
routing). The flow may stay in HIGH priority for a parameterizable 
amount of time (Flow Counter timer, FCt). If any event is received 
when the tlow is in HIGH priority, the switching mode is moved to 
CS. 



Throughput events are more severe than latency events, because 
real-time applications must have a small jitter during packet reception. 
Therefore, when a throughput event is received, the global monitor 
calls the control module that changes the flow to circuit switching 
mode. The flow stays in CS mode during a fixed amount of time 
(Circuit Switching timer, CCt). When CCt expires, the flow returns to 
HIGH priority and PS, and if any violation event is received, the flow 
returns to CS. 

Fe! expired 

Control module call: 
set flow priority to 

HIGH 

Reset flow counter 
(Fet) 
* 

Fe! eXPlr:� �� ....... . ,-
''' _§l_�Y event receiv�_g 

any received en vent 

Figure 2 - Global monitoring process, and actions executed by the control 
module. 

Two reasons justify the adoption of a fixed amount of time for a 
given flow to stay in CS mode: (i) CS reserves the entire link 
bandwidth, reducing the NoC resources for other flows; (ii) as CS 
does not suffer disturbing due to the exclusive link allocation, it is not 
possible to determine when the disturbing traffic finish. Thus, after CS 
the flows returns to HIGH, and if any event is received the flow goes 
to CS. 

V. DYNAMIC QoS ADAPTATION 

This Section details the dynamic QoS adaptation techniques. The 
adaptation module, located at each slave PE may modify the 
communication priority or the switching mode according to the 
message sent by the manager PE control module. 

A. Communication Priority 

As illustrated in Figure 2, all flows start using LOW priority, and 
deterministic routing. To change the flow priority the following 
sequence of actions occurs: 

I. The monitored task (local monitor) sends a latency event to its 
global monitor; 

2. The global monitor receives the message, applies the heuristic 
presented in Figure 2, and notifies the control module. The 
control module sends a message to the task originating the flow 
to increase its priority; 

3. Receiving the adaptation message, the adaptation module execute 
the following actions: (i) identifies the target task; (ii) modifies 
the data structure responsible for control the task to send all new 
packets to the target task using HIGH priority (implicitly to our 
implementation, HIGH priority packets are transmitted using 
partial adaptive routing). The same task may communicate with 
other tasks using different priorities, since the priority is defined 
between a communicating task pair. 

In the absence of latency or throughput events, at the end of the 
FCt period, the control module sends to the adaptation module of the 
source task a message to reduce the flow priority. 

B. Circuit Switching 

When the global monitor requires a connection establishment, the 
control module checks the feasibility to switch to CS (explained in 
next subsection). If the NoC can support CS, the control module sends 
a request to the adaptation module to the PE holding the source task 
(PEsource) to open a connection with the target task (PEtarget). Before CS 
establishment, the adaptation module of the PEsource blocks the MPI
like primitive SendO, waiting the consumption of all messages 
generated during the PS mode. After the consumption of all PS 
messages, the adaptation module sends a connection establishment 
packet to the PEtarge" enabling communication through CS. 

The process to release a connection occurs when the global 
monitor identifies the timeout in the CCt timer. The control module 
sends a management packet to the adaptation module informing that 
the communication must return to PS with high priority. 

1) Evaluation of the CS feasibility 
The control module keeps a matrix with the state of all routers 

ports of the cluster. This state matrix is used as input for a procedure 
that implements the partially adaptive Hamiltonian routing algorithm. 
This algorithm is executed, having as input the addresses of the 
communicating tasks that should use CS. If the algorithm finds a path, 
the CS may be established. The control module updates the state 
matrix and sends a "change to CS" message to the producer task. If it 
is not possible, the control module waits new events (throughput or 
latency) to search again a new path. The complexity of this procedure 
is 0(n), where n is the number of hops+ I between the communicating 
tasks. 

This process ensures that all attempts to establish a connection by 
a given slave PE will succeed. In addition, the MP has a complete 
view of all CS connections inside its cluster. 

VI. RESULTS 

Experiments evaluate the monitoring process, prIOrIty, and CS 
adaptation. Results were obtained using real applications together with 
best-effort applications. The best-effort applications (disturbing 
appl ications) generate traffic that interferes with the evaluated 
applications, inducing deadline misses [13]. All applications are 
described in C language. 

The MPSoC was modeled in VHDL (NoC, NI, DMA) and 
SystemC (processors and memory), using an RTL cycle accurate 
description, allowing accurate measurement of latency and throughput 
values. The MPSoC was simulated with Modelsim (Mentor Graphics). 

Two benchmarks are used: MJPEG decoder and Dynamic Time 
Warping (DTW). The task graphs of such applications are presented in 
Figure 3. The MJPEG application has five tasks, two responsible to 
input and output processing (START and PRINT), and the remainder 
are responsible for image decoding tasks (IVLC, IQUANT and 
mCT). In the DTW application, the main flow occurs between the 
task BANK (bank of patterns), and tasks PI, P2, P3 and P4, which 
recognize the sample test with the patterns through the DTW 
algorithm. 

MJPEG 

Figure 3 - Task graphs for applications DTW and MJPEG. 
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Figure 4 - Flow adaptation of MJPEG and DTW applications during execution. 

Figure 4 summarizes the communication behavior of the MJPEG 
and DTW applications running concurrently. Four disturbing 
applications run concurrently with MJPEG and DTW. Some flows are 
not presented for sake of simplicity in the Figure. The disturbing 
applications start their execution at 10 ms, and stay running 
throughout the simulation. The dotted rectangles highlights when the 
two applications use the maximum possible number of CS 
connections. The vertical lines signalize the end of the execution of 
the target applications. Note that the MJPEG application, due to 
disturbing traffic, stays most of the time communicating by CS, 
ensuring lower jitter and latency. It is also possible to observe a 
rotation of CS in tasks P21P31P4 due to this competition for the high 
priority channel with the PE holding the BANK task. 

The task of the MJPEG application used to evaluate the results is 
task PRINT. The profile phase of the PRINT task set the latency 
deadline at 48,500 clock cycles. Figure 5 presents the latency values 
for the PRINT task. The dotted square rectangles in Figure 5(b) 
correspond to the periods where the communication TDCT-7 PRINT is 
through CS. These two CS periods can also be seen in Figure 4 
(TDCT -7 PRINT). 

It is important to observe in the graphs of Figure 5 the number of 
violations and the jitter. Violations: after 10 ms (moment when the 
disturbing traffic starts), the number of violations without QoS 
adaptation was 131 (Figure 5(a)). Using the QoS adaptation, such 
number decreases to 50 (Figure 5(b)), representing 61% of reduction. 
Jitter: applying QoS adaption only 13 of the 50 violations have a 
latency superior to 10% of the deadline. This fact can be easily 
observed comparing both graphs. CS: Observe that the latency in the 
highlighted dotted square rectangles is inferior to the latency deadline. 
This demonstrates the effectiveness of the CS to real-time. If an 
application has hard-real time constraints, it is possible to easily 
change the protocol, releasing the CS connection only at the end of the 
real-time application, instead using the CCt timer. 

The monitored task of the DTW application is P4. It was chosen to 
be monitored due to the disturbing flows between tasks BANK and 
P4. The profile phase of the P4 task set the latency deadline at 76,000 
clock cycles (value near to the one obtained during the profile step, to 
stress the adaptation techniques). Figure 6 presents the latency values 
for the P4 task. The other tasks present similar results. 

Without QoS adaptation, the number of latency violations 
presented in Figure 6(a) is 300. Using the QoS adaptation such 
number decreases to 126 (Figure 6(b)) representing 58% of reduction. 

It is also possible to identity the periods where CS is used (highlighted 
by a dotted square rectangle), where only 8 latency violations were 
identified. Such CS periods can also be seen in Figure 4 
(BANK-7P4). It is important to observe in Figure 6(b) the execution 
interval 1 Oms-154ms, where most of the latency violations arise (79). 
The reason explaining this fact is that the flow BANK -7 P4 cannot use 
CS because it concurs with flows IQUANT-7TDTC and 
TDTC-7PRINT, which are already using CS. Such result demonstrates 
the limitation of the NoC to offer QoS for concurrent applications with 
QoS constraints. Other adaptive methods could be employed, as task 
migration, moving the task P4 to a position without disturbing traffic. 
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deadline set to 48,500 clock cycles 
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Figure 6 - Latencies of the P4 task with disturbing tramc. 

Throughput results were similar in all scenarios (without 
disturbing, with disturbing, with disturbing and QoS adaptation). It 
was not observed a significant difference, since the tasks are 
computation intensive, i.e., the communication volume is small. 
Therefore, for such applications latency and jitter are the critical 
performance parameters to be monitored. 

The adoption of the adaptive techniques did not affect negatively 
the total execution time. Without QoS adaptation, the disturbing 
applications increased the total execution time of the MJPEG and 
DTW applications in 4.0% and 2.7%, respectively. Applying QoS 
adaptation, the execution time overhead was 1.2% and 1.0% for 
MJPEG and DTW applications, respectively. Therefore, the use of the 
adaptive techniques almost restored the baseline execution time 
(without disturbing traffic). 

VIT. CONCLUSION 

This work presented a runtime monitoring infrastructure and QoS 
adaptation, using priorities and connection. The generated monitoring 
traffic was, in average, 6% of the total traffic of the application, which 
can be characterized as a low intrusive monitoring traffic, compatible 
with the ones found in the literature [14]. Results demonstrate that the 
techniques do not affect the total execution time, allowing applications 
to meet latency and throughput constraints. Tn addition, such 
techniques are executed at runtime, adapting the application 
performance according to the MPSoC state. 

As observed in the results, a small number of violations remain 
after employing QoS adaptation. A simple modification in the CS 

protocol for hard real time application is to disable the CCt timer. 
After the first CS establishment, the flow stays in CS until the end of 
the task execution, ensuring no interferences from flows belonging to 
other applications, maximum throughput, minimal latency and jitter. 

Results were presented for small MPSoCs. Such sizes correspond 
to a cluster in larger MPSoCs. Future works comprise the extension of 
the present work to an MPSoC architecture using cluster-based 
management, ensuring scalability. 
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