
Adaptive QoS Techniques for NoC-Based MPSoCs
Marcelo Ruaro1, Everton A. Carara2, Fernando G. Moraes1

I PU CRS - F ACIN - A v. lpiranga 6681 - Porto Alegre - 90619-900 - Brazil
2 UFSM - DELC - Av. Roraima 1000 - Santa Maria - 97105-900 - Brazil

mareelo.ruaro@aead.puers.br, earara@ufsm.br, fernando.moraes@puers.br

Abstract - With the significant increase in the number of

processing elements in NoC-Based MPSoCs, communication

becomes, increasingly, a critical resource for performance gains

and QoS guarantees. The main gap observed in the NoC-Based

MPSoCs literature is the runtime adaptive techniques to meet

QoS. In the absence of such techniques, the system user must

statically define the resource distribution to each real-time task.

The goal of this research is to investigate the runtime adaptation

of the NoC resources, according to the QoS requirements of each

application running in the MPSoC. The adaptive techniques

presented in this work focused in adaptive routing, flow

priorities, and switching mode. The monitoring and adaptation

management is performed at the operating system level, ensuring

QoS to the monitored applications. Monitoring and QoS

adaptation were implemented in software. In the experiments,

applications with latency and throughput deadlines run

concurrently with best-effort applications. Results with real

applications reduced in average 60% the number of latency

violations, ensuring smaller jitter and higher throughput. The

execution time of applications is not penalized applying the
proposed QoS adaptation methods.

Keywords- MPSoC; NoC; QoS; Adaptability

I. INTRODUCTION

With the increased complexity of NoC-based MPSoCs, in terms of
processing elements (PEs), more applications can run simultaneously
on such systems, requiring management techniques able to meet the
applications' constraints. In general purpose MPSoCs, as [1] and [2],
applications may start their execution at any moment, characterizing a
dynamic workload behavior. In addition, the resource sharing among
the running applications may lead to perfonnance degradation. Thus, a
major challenge in the design of such systems is to ensure Quality of
Service (QoS), without perfonnance degradation after a certain period
of execution when several applications were inserted and removed
from the system.

The communication infrastructure strongly influences the QoS.
The higher the number of PEs, higher is the number of simultaneous
transactions among PEs. To meet requirements of real-time
applications, in a dynamic workload scenario, applications must
include in their specifications the QoS constraints (as throughput or
latency). Such constraints are monitored, and the system acts over the
communication infrastructure, adapting it to reach the constraints.

The architectural features of the NoC router directly affect the
ability to offer QoS. Factors such as arbitration, routing algorithm,
buffer depth, flow control, switching mode, virtual channels and the
number of physical channels per port, are widely researched and
optimized to provide some level of QoS [3][4]. However, most
proposals evaluated in the related work Section are restricted to the
physical infrastructure. Such restriction leaves a gap to be exploited in
the context of software management and NoC adaptation.

This is the motivation of the present work. Starting from a NoC
with duplicated physical channels, adaptive routing, support to flow

978-1-4799-1191-2/13/$31.00 ©2013 IEEE

priorities and simultaneous packet switching (PS) and circuit
switching (CS), the objective of this work is to develop a software
monitoring scheme to evaluate the NoC performance, and two runtime
adaptive techniques: (i) flow priority adaptation; (ii) establishment/
release of CS. The developed monitoring scheme targets an MPSoC
hierarchical architecture [5].

The monitoring is the trigger for the adaptation. The runtime
changing of the communication priority as well as the switching mode
increases the support to QoS. The dynamic changes of the
communication priority together with the routing algorithm, allows the
avoidance of congested areas, and better network traffic distribution.
In addition, CS guarantees the reservation of a given path, allowing
communication to occur with maximum throughput, without the
interference of other flows.

The paper is organized as follows. Section II reviews the state-of
the-art. Section III presents an overview of the proposed adaptive
techniques. Section IV and V corresponds to the original contribution
of this paper, the monitoring technique and the adaptive runtime
techniques, respectively. Section VI presents the results, and Section
VII concludes the paper, pointing out directions for future works.

IT. RELATED WORK

This Section reviews recent works that provide some level of QoS
in NoC-based systems. Some of the reviewed works offers runtime
adaptive techniques to meet QoS. The QoS management can be
controlled locally (at the router or PE level), hierarchically using a
clustered approach, or centralized. It is important to observe how
routers are interconnected. When single bi-directional links are used,
VCs (virtual channels) are commonly adopted to ensure QoS. Some
recent works adopts multiple physical channels as an alternative to
VCs.

Wang el al. [3] propose a router able to meet QoS constraints
through arbitration with dynamic congestion control and adaptive
routing. The Authors adopt a NoC with 64-bit bi-directional links,
where each router has 2 horizontal links, 4 vertical links, and 4
diagonal links. VCs are not used in the adopted NoC. For the dynamic
control of QoS it is used an algorithm that evaluates the congestion at
input and output ports. Packets coming from hotspots have high
priority to be arbitrated, reducing congestion. However, this
congestion control is restricted to the router, where local decisions are
made, which may not necessarily eliminate congestion, but just to
transfer it to another point.

Salah and Tourki [6] propose a router architecture for real-time
applications, using PS, QoS support and a priority-based flit scheduler
for BE and GS flows. The scheduler evaluates the deadlines of the
incoming flows, selecting VCs according to the flow class, BE or GS.
According to the Authors, results show that their router achieves an
optimal packets scheduling, increasing channel utilization and
throughput, reduction of the network latency, and avoidance of
resources conflicts.

Fan et al. [4] propose a router combining VCs with duplicated
physical channels. Each physical channel creates a subnet, with a
dynamic number of VCs. The allocation of VCs is executed at

runtime, by an arbiter, reserving VCs and dynamically allocate then at
the demand of each port. Each subnet uses a different routing
algorithm: XY and YX. The NI chooses which subnet a given flow
will use. Once on a subnet, a packet cannot change the subnet. The
VCs for XY only accept packets routed according to the XY
algorithm, and vice versa.

Winter and Fettweis [7] present and evaluate different
implementations of a central hardware unit, name NoCManager,
which allocates at run-time guaranteed service VCs providing OoS in
packet-switched NoCs. The Authors argue that the central
NoCManager is superior to the distributed technique. Besides this
conclusion, the Authors mention scalability issues, and point out a
hierarchical method as future work.

Motakis et al. [8] explores the management of the NoC services to
adapt the hardware resources through techniques implemented in
software, allowing the user to explore the different network services
through an abstract APT. The implementation is based on the
Spidergon STNoC platfonn. Lower-level layers are explored, along
with a library of functions named libstnoc accessible to the user. The
work focuses on dynamic reconfiguration of OoS services through the
libstnoc. The designer can access information services (energy
management, routing, OoS and security), and also enable and change
these parameters through memory-mapped registers. The API can also
perform a diagnostic service of the traffic of the NoC, changing OoS
parameters at run time based in constraints defined by the user.

Cui et al. [9] propose a decentralized heuristic for task mapping.
The proposal adopts a cluster-based method, implemented using the
Tera Scale platfonn NoC. The clusters do not have a fixed size. Their
size can change at runtime according to the characteristics of each
application, and might contain more than one application. The local
managers control the cluster resizing in a decentralized fashion.

Liao and Srikanthan [10] explore OoS through a hierarchical
structure, dividing the MPSoC in clusters. Each cluster contains one
application and a cluster manager. The system also has a global
manager responsible for high-level tasks. The goal of the clustering
heuristic, implemented in software, is to ensure at runtime the
isolation of the traffic between different applications, favoring
composability, an important feature for OoS.

Table I compares the reviewed works. It is noticeable that in
many works the OoS management (2nd column of the Table) is made
at the router level. Such approach takes local decisions, which may be
inefficient at the system level. On the other, a centralized approach [7]
has a global view of the system, but scalability is sacrificed. In [8], a
scheme of runtime OoS adaptation is implemented at the PE level, as
in the present work, where the user informs the constraints. However,
that proposal does not solve the scalability issue, and the work is
tightly dependent to the Spidergon STNoC. A trade-off is achieved
with a hierarchical approach, with several managers distributed in the
system [9][10]. Our work may be applied to centralized or hierarchical

systems. Results are presented for a centralized management, being
possible to extend the architecture to a hierarchical management.

Most NoC designs interconnect routers using single bi-directional
links (3fd column). An alternative to such approach, leading to good
results, in tenns of communication perfonnance and OoS, is to
increase the number of physical channels [3][4]. Such approach
replaces V Cs, with a smaller silicon cost, and may result in disjoint
networks, enabling the use of priorities or simultaneous switching
modes.

As can be observed in the fourth column of the Table, approaches
with OoS management at the router level adopt three main techniques
to meet OoS: flow priorities [6], virtual channels (VCs) [4][6][7], and
circuit switching [7]. The hierarchical management [9][10] meets OoS
favoring composability, i.e., applications are "isolated" in clusters,
without the interference of other flows. The work herein proposed
adopts flow priorities and simultaneous PS and CS, but controlled by a
local or central manager.

The main gap observed in the literature is the adaptive techniques
to meet OoS (5th column). In the absence of such techniques, the
system user must statically define the priority and/or the switching
mode of applications. Systems where OoS management is done locally
may be inefficient, since flows may be sent to congested regions,
moving the problem for other NoC regions. Hierarchical management
is more efficient, since applications may suffer less interference from
other applications. The drawback of hierarchical approaches is to find
continuous regions to map applications, even if available resources
exist. The runtime adaptive techniques proposed uses local
monitoring. The local monitoring sends violation events to a manager,
which selects the adaptive technique to meet the OoS constraints.

TTT. OVERVIEW OF MONITORING AND QoS ADAPT A TION

MODULES

The communication infrastructure adopts a 2D-mesh NoC [II],
composed by duplicated 16-bit physical channels, assigning high
priority to channel 0 and low priority to channel I (high priority
packets may use both channels); detenninistic Hamiltonian routing
[12] in channel I and partially adaptive Hamiltonian routing in
channel 0; input buffering; credit-based flow control; simultaneous PS
and CS. The PE connected to each NoC router contains: (i) a 32-bit
Plasma processor (MIPS-like architecture); (ii) a local memory; (iii) a
DMA (Direct Memory Access) module; (iv) a NI (Network Interface).

The MPSoC contains manager PEs and slave PEs. Manager PEs
executes heuristics to control the MPSoC, task mapping, and task
migration. Slave PEs run a micro kernel, responsible for task
communication (local and remote), and multi-task scheduling; and
user tasks.

Figure I shows an overview of the system, considering a 4x4
MPSoC instance, split into four 2x2 clusters. Monitoring and OoS
adaptation are implemented in both slave and manager microkernels.

Table I - State-of-the-art comparing works targeting OoS support in NoCs.

Proposal

Wang (2012) [3]

Salah (2011) [6]

Fan (2011) [4]

Winter (2011) [7]

Motakis (2011) [8]

Cui (2012) [9]

liao (2011) [10]

This Proposal

QoS Management Physical channel QoS Technique Adaptive technique

Router level
2 horiz., 4 vertic., and 4

diagonal

Router level One per direction

Router level Duplicated channels

Centralized One per direction

PE level One per direction

Hierarchical One per direction

Hierarchical One per direction

Centralized or
Duplicated channels

Hierarchical

Dynamic Arbitration and

Adaptive Routing
Flow Priority

Virtual Channels

Virtual Channels

Virtual Channels / CS

Bandwidth allocation

Composability

Composability

Flow Priority / PS+CS

Congestion Aware

Routing Algorithm

Flit Scheduling

Virtual channel allocation

Central NoC Manager (HW)

Management API

Reclustering

Cluster Allocation

Runtime monitoring and flow

adaptation according to deadlines

Two local monitors, implemented in the slave microkernels, evaluate
latency and throughput. A global monitor is implemented in the
manager microkernel, responsible to evaluate the received monitored
data and select the corresponding adaptive technique. The QoS
adaptation, in the same way that the monitoring, is also hierarchically
implemented, being composed by QoS adaptation modules,
implemented in the slave micro kernel, and QoS control modules,
implemented in the manager microkernel.

Figure I - Overview of the proposed monitoring and QoS adaptation modules.
'S' corresponds to slave PEs, and 'M' to manger PEs. Local/global monitors

and adaptation/control modules are software implemented in each PE
microkemel.

The QoS adaptation corresponds to the change in the
communication flows priority and the switching mode of a given pair
of communicating tasks. The change of priorities alters the physical
channel used for communication, and explores the adaptability of the
Hamiltonian routing algorithm. The establishment of connection
changes the switching mode trom PS to CS, ensuring maximum
throughput to the flow.

All slave PEs ('S' in Figure 1) of a given cluster send monitored
data to the cluster manager PE C'M' in Figure 1). The cluster manager
PE evaluates the received data, selects the adaptive technique (flow
priority or switching mode) and sends the action to be taken to all
slave PEs running tasks belonging to the monitored application.
Cluster managers are able to exchange the global monitored
information. It is important to mention that the cluster size may vary at
runtime. For example, if a given cluster has no available resources, it
may request resources (PEs) to neighbor clusters, modifying the
cluster shape at runtime. For this reason, the communication between
cluster managers is necessary.

A. Profile Configuration

Monitoring and QoS adaptation require the definition of the
application profile. The application developer must execute the target
application in the MPSoC, without disturbing traffic, measuring
throughput and latency values. These results correspond to the best
results the application can achieve in the platform. The throughput and
latency values to be respected are detined as deadlines, and must have
their values smaller than the best results, to be possible to execute the
target application concurrently with other applications.

After the deadline acquisition the user can set these values, in both
microkemels, through system calls to enable the monitoring and
adaptive QoS techniques. The monitoring is executed at the task level,
i.e., each pair of communicating task can be monitored.

IV. MONITORING

This Section details the monitors (local and global). The
monitoring process was designed to be generic, adaptable to other
MPSoCs and other adaptive techniques, as DVFS, scheduling, task
migration. The monitors handle violation and events:

Violations: handled by the local monitors, corresponds to a "fine
grain" treatment of the monitoring information. Violations are
created when a latency or throughput deadline violation occurs.
The local monitors store the number of violations. and when a
parameterizable number of violations is reached, a message is
sent to the global monitor. This message corresponds to an event.

Events: handled by the global monitors, corresponds to a "coarse
grain" treatment of the monitoring information. The event fires
the execution of a heuristic, which selects the appropriate
adaptive technique.

The action to accumulate in local monitors a parameterizable
number of violations, before sending an event, reduces the traffic
induced by the monitoring process, since monitoring packets are not
sent at each violation. We adopt three violations as the default
threshold number of violations to both local monitors. This value
safely estimates an event, because it can suppress random peeks of
latency or throughput, while keeps a high level of contidence in the
local monitors.

A. Throughput Monitor

The throughput monitor counts the number of received bits within
the monitoring period. The monitored period can be configured in the
protile phase. As each processor may execute several simultaneous
tasks, each task is individually monitored. When a given packet is
received, the monitor identities the target task and increments the task
throughput counter according to the packet size. When the period of
the monitoring window expires, the monitor verifies for all tasks with
monitoring enabled if the throughput deadline was violated, i.e. , a
throughput smaller than the specified. After three violations
(parameterizable value), the monitor generates a throughput event to
the global monitor.

B. Latency Monitor

As in the throughput monitor, the latency is computed for all
received packets. This latency corresponds to the task latency, which
considers the task computation and the network latency. The monitor
identities the target task, and computes the time interval between the
last two received packets. Each computed latency is veri tied against its
deadline. If the computed latency is higher than the specified latency,
a latency violation occurs. Again, after three violations
(parameterizable value) a message is sent to global monitor reporting a
latency event.

C. Global Monitor and Control Module

The global monitor and the control module are software
implemented in the manager PEs (MP). The function of the global
monitor is to receive events trom the local monitors, select an adaptive
technique, and notify it to the control module. The control module
evaluates the feasibility of adaptation, and if it is feasible sends a
message to the adaption module of the slave PE holding the task that
should execute the adaptation action.

Figure 2 details the global monitoring process. Initially, all flows
start with LOW priority (using deterministic routing). When the global
monitor receives a latency event for a given flow, it calls the control
module that changes the priority to HIGH (coupled to adaptive
routing). The flow may stay in HIGH priority for a parameterizable
amount of time (Flow Counter timer, FCt). If any event is received
when the tlow is in HIGH priority, the switching mode is moved to
CS.

Throughput events are more severe than latency events, because
real-time applications must have a small jitter during packet reception.
Therefore, when a throughput event is received, the global monitor
calls the control module that changes the flow to circuit switching
mode. The flow stays in CS mode during a fixed amount of time
(Circuit Switching timer, CCt). When CCt expires, the flow returns to
HIGH priority and PS, and if any violation event is received, the flow
returns to CS.

Fe! expired

Control module call:
set flow priority to

HIGH

Reset flow counter
(Fet)
*

Fe! eXPlr:� �� ,-
''' _§l_�Y event receiv�_g

any received en vent

Figure 2 - Global monitoring process, and actions executed by the control
module.

Two reasons justify the adoption of a fixed amount of time for a
given flow to stay in CS mode: (i) CS reserves the entire link
bandwidth, reducing the NoC resources for other flows; (ii) as CS
does not suffer disturbing due to the exclusive link allocation, it is not
possible to determine when the disturbing traffic finish. Thus, after CS
the flows returns to HIGH, and if any event is received the flow goes
to CS.

V. DYNAMIC QoS ADAPTATION

This Section details the dynamic QoS adaptation techniques. The
adaptation module, located at each slave PE may modify the
communication priority or the switching mode according to the
message sent by the manager PE control module.

A. Communication Priority

As illustrated in Figure 2, all flows start using LOW priority, and
deterministic routing. To change the flow priority the following
sequence of actions occurs:

I. The monitored task (local monitor) sends a latency event to its
global monitor;

2. The global monitor receives the message, applies the heuristic
presented in Figure 2, and notifies the control module. The
control module sends a message to the task originating the flow
to increase its priority;

3. Receiving the adaptation message, the adaptation module execute
the following actions: (i) identifies the target task; (ii) modifies
the data structure responsible for control the task to send all new
packets to the target task using HIGH priority (implicitly to our
implementation, HIGH priority packets are transmitted using
partial adaptive routing). The same task may communicate with
other tasks using different priorities, since the priority is defined
between a communicating task pair.

In the absence of latency or throughput events, at the end of the
FCt period, the control module sends to the adaptation module of the
source task a message to reduce the flow priority.

B. Circuit Switching

When the global monitor requires a connection establishment, the
control module checks the feasibility to switch to CS (explained in
next subsection). If the NoC can support CS, the control module sends
a request to the adaptation module to the PE holding the source task
(PEsource) to open a connection with the target task (PEtarget). Before CS
establishment, the adaptation module of the PEsource blocks the MPI
like primitive SendO, waiting the consumption of all messages
generated during the PS mode. After the consumption of all PS
messages, the adaptation module sends a connection establishment
packet to the PEtarge" enabling communication through CS.

The process to release a connection occurs when the global
monitor identifies the timeout in the CCt timer. The control module
sends a management packet to the adaptation module informing that
the communication must return to PS with high priority.

1) Evaluation of the CS feasibility
The control module keeps a matrix with the state of all routers

ports of the cluster. This state matrix is used as input for a procedure
that implements the partially adaptive Hamiltonian routing algorithm.
This algorithm is executed, having as input the addresses of the
communicating tasks that should use CS. If the algorithm finds a path,
the CS may be established. The control module updates the state
matrix and sends a "change to CS" message to the producer task. If it
is not possible, the control module waits new events (throughput or
latency) to search again a new path. The complexity of this procedure
is 0(n), where n is the number of hops+ I between the communicating
tasks.

This process ensures that all attempts to establish a connection by
a given slave PE will succeed. In addition, the MP has a complete
view of all CS connections inside its cluster.

VI. RESULTS

Experiments evaluate the monitoring process, prIOrIty, and CS
adaptation. Results were obtained using real applications together with
best-effort applications. The best-effort applications (disturbing
appl ications) generate traffic that interferes with the evaluated
applications, inducing deadline misses [13]. All applications are
described in C language.

The MPSoC was modeled in VHDL (NoC, NI, DMA) and
SystemC (processors and memory), using an RTL cycle accurate
description, allowing accurate measurement of latency and throughput
values. The MPSoC was simulated with Modelsim (Mentor Graphics).

Two benchmarks are used: MJPEG decoder and Dynamic Time
Warping (DTW). The task graphs of such applications are presented in
Figure 3. The MJPEG application has five tasks, two responsible to
input and output processing (START and PRINT), and the remainder
are responsible for image decoding tasks (IVLC, IQUANT and
mCT). In the DTW application, the main flow occurs between the
task BANK (bank of patterns), and tasks PI, P2, P3 and P4, which
recognize the sample test with the patterns through the DTW
algorithm.

MJPEG

Figure 3 - Task graphs for applications DTW and MJPEG.

I Start Distu�ng APPli��
_

t��
_

n

_

�� Maximum Throughput to MJPEG and DTW �
START � IVLC

" . ,
End of Applications I-

IVLC� IQUANT ���� ���� ����--t

IQUANT� IDCT �Z¥�� .. � .. ���� �����--t

IDCT� PRINT

BANI< � Pi

BANI< � P2

BANK � P3

BANI< � P4

TIME

Oms 380,8 ms

IZZZJ Low Priority Flow � High Priority Flow _ Circuit Switching

Figure 4 - Flow adaptation of MJPEG and DTW applications during execution.

Figure 4 summarizes the communication behavior of the MJPEG
and DTW applications running concurrently. Four disturbing
applications run concurrently with MJPEG and DTW. Some flows are
not presented for sake of simplicity in the Figure. The disturbing
applications start their execution at 10 ms, and stay running
throughout the simulation. The dotted rectangles highlights when the
two applications use the maximum possible number of CS
connections. The vertical lines signalize the end of the execution of
the target applications. Note that the MJPEG application, due to
disturbing traffic, stays most of the time communicating by CS,
ensuring lower jitter and latency. It is also possible to observe a
rotation of CS in tasks P21P31P4 due to this competition for the high
priority channel with the PE holding the BANK task.

The task of the MJPEG application used to evaluate the results is
task PRINT. The profile phase of the PRINT task set the latency
deadline at 48,500 clock cycles. Figure 5 presents the latency values
for the PRINT task. The dotted square rectangles in Figure 5(b)
correspond to the periods where the communication TDCT-7 PRINT is
through CS. These two CS periods can also be seen in Figure 4
(TDCT -7 PRINT).

It is important to observe in the graphs of Figure 5 the number of
violations and the jitter. Violations: after 10 ms (moment when the
disturbing traffic starts), the number of violations without QoS
adaptation was 131 (Figure 5(a)). Using the QoS adaptation, such
number decreases to 50 (Figure 5(b)), representing 61% of reduction.
Jitter: applying QoS adaption only 13 of the 50 violations have a
latency superior to 10% of the deadline. This fact can be easily
observed comparing both graphs. CS: Observe that the latency in the
highlighted dotted square rectangles is inferior to the latency deadline.
This demonstrates the effectiveness of the CS to real-time. If an
application has hard-real time constraints, it is possible to easily
change the protocol, releasing the CS connection only at the end of the
real-time application, instead using the CCt timer.

The monitored task of the DTW application is P4. It was chosen to
be monitored due to the disturbing flows between tasks BANK and
P4. The profile phase of the P4 task set the latency deadline at 76,000
clock cycles (value near to the one obtained during the profile step, to
stress the adaptation techniques). Figure 6 presents the latency values
for the P4 task. The other tasks present similar results.

Without QoS adaptation, the number of latency violations
presented in Figure 6(a) is 300. Using the QoS adaptation such
number decreases to 126 (Figure 6(b)) representing 58% of reduction.

It is also possible to identity the periods where CS is used (highlighted
by a dotted square rectangle), where only 8 latency violations were
identified. Such CS periods can also be seen in Figure 4
(BANK-7P4). It is important to observe in Figure 6(b) the execution
interval 1 Oms-154ms, where most of the latency violations arise (79).
The reason explaining this fact is that the flow BANK -7 P4 cannot use
CS because it concurs with flows IQUANT-7TDTC and
TDTC-7PRINT, which are already using CS. Such result demonstrates
the limitation of the NoC to offer QoS for concurrent applications with
QoS constraints. Other adaptive methods could be employed, as task
migration, moving the task P4 to a position without disturbing traffic.

65000

� 60000

u 'u
ti 55000
0 u
c � 50000
�
...J 45000

40000

�

� 'u

JI.l1 ,I

�'I�IIIWY\ I�I IN'
a 7

I I
14 21 29 36 43 50

li� I� 1
I

I

57 64 71 78 86

Iteration number

I�IIJ
1�'ljl I��'illl���

1111
93 100 107 114 121 128 135 143 150

(a) Latency without adaptation

ti 55000 +--+-If-+---------+------Jt----------+------+--
o u

Iteration number

(b) Latency with QoS adaptation

Figure 5 - Latencies of the PRINT task with disturbing tratllc. Latency
deadline set to 48,500 clock cycles

84000 +----------------------

� 82000 +---,---,------r-t-----.--+----,--------j--r-----;t------;--

� 80000 +-*cf--------j+-ttHIttt---;-;--,-Hr-r---;;:ttt-JIH-----j-t-HlHItt-Htt-H1I:t---;-
o � 78000

g 76000

5 74000
�R-��'fr++-�-�-+�Ir-��_t�����_jI'��1

72000 L-____________________ _

o u � � m u_=���_===_======

Iteration number

(a) latency without adaptation

84000

� j! 82000

.�
" 80000
U

�
C

g
2
�

Iteration number

(b) latency with QoS adaptation

Figure 6 - Latencies of the P4 task with disturbing tramc.

Throughput results were similar in all scenarios (without
disturbing, with disturbing, with disturbing and QoS adaptation). It
was not observed a significant difference, since the tasks are
computation intensive, i.e., the communication volume is small.
Therefore, for such applications latency and jitter are the critical
performance parameters to be monitored.

The adoption of the adaptive techniques did not affect negatively
the total execution time. Without QoS adaptation, the disturbing
applications increased the total execution time of the MJPEG and
DTW applications in 4.0% and 2.7%, respectively. Applying QoS
adaptation, the execution time overhead was 1.2% and 1.0% for
MJPEG and DTW applications, respectively. Therefore, the use of the
adaptive techniques almost restored the baseline execution time
(without disturbing traffic).

VIT. CONCLUSION

This work presented a runtime monitoring infrastructure and QoS
adaptation, using priorities and connection. The generated monitoring
traffic was, in average, 6% of the total traffic of the application, which
can be characterized as a low intrusive monitoring traffic, compatible
with the ones found in the literature [14]. Results demonstrate that the
techniques do not affect the total execution time, allowing applications
to meet latency and throughput constraints. Tn addition, such
techniques are executed at runtime, adapting the application
performance according to the MPSoC state.

As observed in the results, a small number of violations remain
after employing QoS adaptation. A simple modification in the CS

protocol for hard real time application is to disable the CCt timer.
After the first CS establishment, the flow stays in CS until the end of
the task execution, ensuring no interferences from flows belonging to
other applications, maximum throughput, minimal latency and jitter.

Results were presented for small MPSoCs. Such sizes correspond
to a cluster in larger MPSoCs. Future works comprise the extension of
the present work to an MPSoC architecture using cluster-based
management, ensuring scalability.

ACKNOWLEDGMENTS

Fernando Moraes is supported by CNPq project 302625/2012-7,
and CAPES projects CAPES-COFECUB 708/11 and AEX 8418/13-6.

REFERENCES

[I] Tilera Corporation, "Tile-GX Processor Family".
http://www.tilera.com/products/processors/TILE-Gx]amily, 2012.

[2] Howard, J; Dighe, S.; Hoskote, Y. "A 48-Core IA-32 message-passing
processor with DVFS in 45nm CMOS". In: ISSCC, 2010, pp. 108-109.

[3] Wang, C.; Bagherzadeh, N. "Design and Evaluation of a High
Throughput QoS-Aware and Congestion-Aware Router Architecture
for Network-on-Chip". In: Euromicro, 2012, pp. 457-464.

[4] Fan, W.; Xiang, L.; Hui, S. "The QoS mechanism for NoC router by
dynamic virtual channel allocation and dual-net infrastructure". In:
ICCP, 2011, pp. 1-5.

[5] Fattah, M.; Daneshtalab, M.; Liljeberg, P.; Plosila, J. "Exploration of
MPSoC Monitoring and Management Systems". In: ReCoSoC, 2011,
pp. 1-3.

[6] Salah, Y.; Tourki, R. "Design and FPGA Implementation of a QoS
Router for NoC". In: International Conference on Next Generation
Networks and Services, 2011, pp. 84-89.

[7] Winter, M.; Fettweis, G., P. "Guaranteed Service Virtual Channel
Allocation in NoCs for Run-Time Task Scheduling". In: DATE, 20 II,
pp. 1-6.

[8] Motakis, A.; Kornaros, G.; Coppola, Marcello. "Dynamic Resource
Management in Modem Multicore SoCs by Exposing NoC Services".
In: ReCoSoC, 2011, pp. 1-7.

[9] Cui, Y.; Zhang, W.; Yu, H. "Decentralized Agent Based Re
Clustering for Task Mapping of Tera-Scale Network-on-Chip System".
In: ISCAS, 2012, pp. 2437-2440.

[10] Liao, X.; Srikanthan, T. "A Scalable Strategy for Runtime Resource
Management on NoC Based Manycore Systems". In: ISIC, 2011, pp.
297-300.

[II] Carara, E.; Calazans, N. Moraes, F. "Differentiated Communication
Services for NoC-Based MPSoCs". IEEE Transactions on Computers,
early access article, 2012.

[12] Lin, X.; McKinley, P. K.; Ni, L. M. "Deadlock-free Multicast
Wormhole Routing in 2-D Mesh Multicomputers". IEEE Trans. on
Parallel and Distributed Systems, v.5(8), 1994, pp. 793-804.

[13] Tedesco, L.; Mello, A.; Giacomet, L.; Calazans, N.; Moraes, F.
"Application driven traffic modeling for NoCs". In: SBCCI, 2006, pp.
62-67.

[14] AI Faruque, M.A.; Ebi, T.; Henkel, J. "AdNoC: Runtime Adaptive
Network-on-Chip Architecture". IEEE Transactions on Very Large
Scale Integration (VLSI) Systems, v.20(2), 2012, pp. 257 - 269.

