
A Method for NoC-based MPSoC Energy
Consumption Estimation

André L. M. Martins, Douglas R. G. Silva, Guilherme M. Castilhos, Thiago M. Monteiro, Fernando G. Moraes
PUCRS University, Computer Science Department, Porto Alegre, Brazil

{andre.del, douglas.roberto, guilherme.castilhos, thiago.monteiro}@acad.pucrs.br, fernando.moraes@pucrs.br

Abstract— NoC-based MPSoCs are well suited for applications

requiring high performance while maintaining a low-power
profile. Therefore, it is important to estimate the energy
consumption at early stages of the design flow due to the limited
power budget imposed by the batteries. State-of-the-art proposals
estimate the energy due to the NoC or the processing elements.
Few works address the energy modeling and estimation for a
NoC-based MPSoCs. This paper presents a method to estimate the
energy/power for NoCs and processors from an RTL description,
applying the proposed method to an MPSoC (36 processing
elements interconnected by a 2D-mesh NoC) executing 4 real
applications controlled by a multi-task operating system. The
paper presents a set of results, identifying the energy due to the
applications, to each element of the system, as well as the effect of
two low power strategies.

Keywords—MPSoC; NoC; modeling; low power; energy
estimation

I. INTRODUCTION
NoC-based MPSoCs provide massive computing power,

presenting a high flexibility and high power efficiency compared to
other distinct platforms. NoC-based MPSoCs are well suited for
applications requiring high performance, such as multimedia and
network architectures while maintaining a low-power profile. For such
applications, it is important to estimate the energy consumption at
early stages of the design flow due to the limited power budget
imposed by the batteries.

It is possible to estimate the energy of the applications running in
the MPSoC at the transistor or gate level. However, as precise as this
technique can be, this is a very time consuming task due to the number
of components and the system complexity. The natural trend points
out to the use of high-level models, since they abstract the platform
low-level characteristics, accelerating the platform design, with a
simulation speedup at least two orders of magnitude faster compared
to VHDL [1].

To enable the energy estimation at high-level models it is
necessary to determine the energy consumption for each MPSoC
element, and the main parameters playing a role in the energy
consumption. This calibration process allows inserting the low-level
energy parameters into the high-level models, enabling an accurate
energy estimation. The power dissipation in NoCs is a function of its
communication load. The volume-based estimation model [2]
computes the energy and power to transmit each packet from the
source router to the target router, passing through n hops. This flow-
based method is fast and simple to implement, however it does not
consider the energy consumed by the routers when there is no packet
transmission. The number of instructions executed at each processor
defines the power dissipation in the processing elements.

The goal of this work is to present a general method to estimate
the energy consumption of NoC-based MPSoCs from an RTL
description, to be inserted at high-level models. Such method enables

not only to execute design space exploration, but also estimates the
energy cost of embedded applications. Contrary to most NoC energy
estimation methods that consider the communication volume per flow,
the method herein presented considers the communication volume per
router, taking into account active and idle times. The processor energy
estimation considers the consumption per instruction class (e.g.
arithmetic, branch, load-store), leading to an accurate estimation. The
model also accounts the energy spent in the wires (links between
routers).

This paper is organized as follows. Section II reviews works
related to energy estimation. Section III presents the MPSoC
architectural model, to set the constraints to be applied to the energy
model. Section IV corresponds to the main contribution of this work,
presenting the energy model of the NoC routers and processors,
evaluation the error induced by the model against the power evaluation
at the gate level. In Section V the energy model is used in a 6x6
MPSoC, applying two low power strategies, enabling to estimate the
energy consumption for a set of real benchmarks. Finally, section VI
concludes this paper and points out directions for future works.

II. STATE-OF-THE-ART
Several works propose different models to estimate power and

energy consumption in a NoC. Ye et al. [3] introduce a framework to
estimate the power dissipated considering the energy cost to transmit a
bit from an input port to an output port of a router. Chan et al. [4] use
linear regression to establish a relationship between events occurring
at each router component with the energy consumption. Meloni et al.
[5] show a flow to formulate the power dissipation based on
architectural components, implementation and traffic parameters.
Guindani et al. [6] propose a model to estimate the power based on the
average reception rates at each router buffer, constituted by a
calibration step followed by its application. The purpose of these
works is to provide methods for design space exploring, targeting
energy minimization.

At the processor level, Tiwari et al. [7] describe a methodology to
estimate a processor power dissipation according to the energy
consumed by each instruction. Gupta et al. [8] extracted the instruction
power values from a characterization done at gate level and integrated
it in Instruction Set Simulator (ISS). Both works establish the
processor power dissipation as a function of the energy consumed by
each instruction.

Atilallah et al. [9] provides a generic model to estimate the power
dissipation early in the design flow for MPSoCs. The Authors couple
the power models into an architectural simulator. The processor
modeling considers two states, running and waiting, being the power
dissipation for these two states different. The Authors also models the
cache memory, and a crossbar as the interconnection infrastructure.
Experiments are presented using a H.263 coder application with
systems having 4 up to 16 processors. The goal of their experiment is
to evaluate the trade-off between cache sizes, execution time and total
power dissipation.

To the best of our knowledge, there is a gap in the literature
concerning energy models for NoC-based MPSoCs, using message

978-1-4799-4242-8/14/$31.00 c©2014 IEEE 427

passing as the communication mode between applications. The present
work fulfills this gap, modeling the energy consumption for the NoC
and processing elements.

III. MPSOC ARCHITECTURAL MODEL
An MPSoC consists of a set of processing elements (PEs)

interconnected by a given network topology. This work adopts
common features found in MPSoCs [10]:
a) each PE contains at least one processor with a private memory

(scratch-pad memory);
b) communication model is message passing;
c) there is no shared memory in the system;
d) applications are modeled as task graphs;
e) a multi-tasking operating system (OS) runs at each PE;
f) a mapping function maps tasks onto PEs, being possible to have

more than one task per PE.
The NoC adopted in the present work adopts 2D-mesh topology,

input buffering with parameterizable depth, credit-based flow control,
round-robin arbitration, and XY routing algorithm.

The method presented in the sequel may be applied to different
PEs and NoCs architectures. The method to estimate power and
energy is general, because it is based in a calibration process to define
the energy/power values, followed by the use of the obtained values.

IV. ENERGY MODEL
This section corresponds to the main contribution of this work, the

energy model for the NoC and the PE, with the evaluation of the
estimation model error.

A. NoC and Links Energy Model
The process to characterize the NoC comprises four steps: (i)

traffic generation; (ii) logic synthesis; (iii) simulation with different
injection rates; (iv) power analysis.

The router main internal components include input buffers,
crossbar, and control logic (responsible for arbitration and routing). To
characterize a given component, it is necessary to have the maximum
switching activity in the internal gates. Therefore, to characterize the
power profile of a given router it is necessary to excite all internal
components, and provide a payload with an important hamming
distance between flits to induce a large switching activity in the router
logic gates. Fig. 1 presents the traffic flows used to characterize router
11 (central router), in a 3x3 NoC. This router has five input buffers,
each one receiving flits from a given flow.

10

11

00

02

01

12 22

21

20

Fig. 1. Traffic flows to characterize the router consumption.

Each traffic flow source injects 1,000 32-flit packets, with a
hamming distance between flits superior to 80%. The power
dissipation of the router is a function of the reception rate in its buffers
[6]. The method herein proposed creates 6 simulation test cases, with
injection rates varying from 0% (idle) to 50% of the link bandwidth.
For example, for an injection rate equal to 50%, for a 32-flit packet,
each packet is injected at 64 clock cycles.

The central router is synthesized (rc from Cadence), for a given
technology applying as constraints automatic clock gating insertion
and power optimization. It is also important to consider in the logic
synthesis the wire model, to obtain a correct estimation of the parasitic

capacitances due to the routing. The result of the synthesis is the netlist
of the central router, which replaces the original VHDL RTL router
description.

The third step of the method is to simulate the NoC (incisive from
Cadence), with the netlist of the central router and the SDF file
(annotated delay data and timing checks file obtained after logic
synthesis). Each simulated test case generates a TCF (Toggle Count
Format) file, with the switching activity of the central router.

The fourth step corresponds to evaluating the power dissipation
(rc from Cadence), using the TCF files. The power evaluation reports
97.35% of activity in the nets, demonstrating a correct traffic
generation. The power report contains detailed power dissipation for
each NoC internal component. An example of the power evaluation is
summarized in Table I, with the power dissipation for the router
internal components, and total average power dissipation for a 5-port
router.

TABLE I. AVERAGE POWER IN MW@100MHZ, FOR EACH NOC COMPONENT,
LIBRARY CORE65LPLVT (65NM), 1.2V, 25OC.

To complete the characterization process, a linear regression is
made using the above results, resulting in one equation for each
column of Table I (buffers, control logic, crossbar, 5 port router). The
power equation for the router resulted in an r2=0,99995, validating the
linear dependency of the average power with the injection rate. Note
that the buffer is the component responsible for the most power
dissipation in the router. For a 5-port router, the buffers dissipate up to
80% of the total power.

In the context of MPSoCs, the following assumption is made:
when a packet is injected into the network, it is transmitted in a burst,
with an injection rate equal to 100%, otherwise the link is idle, using a
rate equal to 0%. This is a correct assumption since PEs will inject
packets into the NoC using a DMA module, resulting in one flit inject
per clock cycle. This assumption may introduce an error at high-level
estimations (e.g. TLM models) since congestion is not taking into
account. This error may be neglected because the actual injection rate
in MPSoCs is small (below 10%). For example, in [11] the traffic load
observed by simulating the SPLASH-2 benchmarks was 0.55%.

This assumption results in two energy values: Equation (1) is
active energy corresponding to a flit being transmitted through 1
buffer, while the other ones remains idle. Equation (2) is idle energy
corresponding to a buffer in an idle state.
Eactive = n _ ports −1() * Pbuffer 0() + Pbuffer 1() + Pcrossbar 1() + Pcontrol _log ic (1)⎡⎣ ⎤⎦*T (1)

Eidle = n _ ports()* Pbuffer 0() + Pcrossbar 0() + Pcontrol _log ic (0)⎡⎣ ⎤⎦*T (2)

where: n_port is the number of ports of the router, Pcomponent(0) the
average power without traffic, Pcomponent(1) the average power with an
injection rate equal to 100%, T the clock period.

Applying (1) and (2), using data from Table I, for a 5-port router: ܧ௧௩ ൌ ௗܧ (3) ܬ 4.610 ൌ (4) ܬ 1.786

Therefore, to obtain the energy consumed at each router it is
necessary to determine the amount of clock cycles the router is
transmitting data (active), and the amount of clock cycles the router is
idle. Note that (1) and (2) computes the energy per clock cycle.
Therefore, the time is computed as a function of the number of clock
cycles. Volume-based models, as [2], account only the flit
transmission. The model herein proposed considers the whole router
power dissipation, in active and idle modes. As presented next, this

Rate (%) Buffer Crossbar Control
Logic

5 port
router

0 30.25 0.31 27.08 205.28
10 49.33 4.51 32.49 322.03
20 68.27 8.57 37.85 437.93
30 87.32 12.63 43.19 554.39
40 106.02 16.62 48.44 668.76
50 124.45 20.46 53.56 781.16

428

parcel of the energy may be higher than the active energy.
Equation (5) computes the number of clock cycles used by a given

router transmitting flits. The amount of cycles is proportional to the
amount of flits traversing the given router, plus the number of packets
multiplied by a constant k, representing the number of cycles
consumed to route and arbitrate a packet entering in a router, being in
our NoC equal to 5 clock cycles. The remaining period is the idle time,
equation 6, where Cyclessim is the total number of clock periods of the
simulation. ݏ݈݁ܿݕܥ௧௩ ൌ ݏݐ݈݂݅ ሺ ሻݏݐ݁݇ܿܽ כ ௗݏ݈݁ܿݕܥ (5) ݇ ൌ ௦ݏ݈݁ܿݕܥ െ ௧௩ (6)ݏ݈݁ܿݕܥ

Finally, equations (7) and (8) give the total energy consumption
and power dissipation for a router k, respectively. ܧ௧ೖ ൌ ሺܧ௧௩ כ ௧௩ݏ݈݁ܿݕܥ ܧௗ כ ௗ ሻݏ݈݁ܿݕܥ (7)

ܲ௧ೖതതതതതത ൌ ݏ݈݁ܿݕܿ_݀݁ݐ݈ܽݑ݉݅ݏ_௧ೖܾ݊ܧ כ ܶ (8)

To validate the estimation method ((7) and (8)), a traffic scenario
with the following features was injected in the synthesized router:
Pareto On-Off temporal distribution (burst times and idle times taken
from Pareto distributions), 1.000 bursts with 34-flit packets. The
Pareto On-Off was chosen since it corresponds to the behavior
expected in an MPSoC, i.e., burst transmissions. The number of
simulated cycles was 178,733 cycles, resulting in Cyclesactive=39,000
and Cyclesidle= 139,733. According to (7), and values from (3) and (4),
the estimated energy is 429,393.75 pJ (58.13% corresponding to the
idle consumption). From (8) the estimated average power is 240.2431
μW. The measured average power, obtained from rc, was 240.26 μW,
demonstrating the accuracy of the proposed method.

To compute the energy consumed in the links (wires) it is
necessary to determine the wire capacitance between two routers.
Using the same technology, the layout of an entire PE was
synthesized. Roughly, each wire has 1 mm, corresponding to a
capacitance equal to 219,4 fF. With a supply voltage equal to 1.2V and
a 16-bit flit, each link consumes 4.21248 pJ (Elink) to be fully charged
or discharged. To compute the energy at each links of a given router it
is necessary to multiply Elink by the number of flits transmitted at each
output port (except the local one, since it has shorter wires), and by the
average estimated switching activity at the links (α) – equation (9).
The α is assumed 0.4 (worst-case measured in real traffics). ܧ௪ೖ ൌ ܧ כ ሺ ௧,௦௨௧,௦௧,௪௦௧ݏݐ݈݂݅_݂_ܾ݊ ሻ כ (9) ߙ

B. Processor Energy Model
The process to characterize the processor energy also relies on

calibration. Initially, the instruction set is divided into classes [7], and
a program is written (in assembly language) to each class in such a
manner to excite all instructions of the class, the internal registers,
keeping an important hamming distance among the produced results to
switch the internal processor modules.

The processor energy model starts with an RTL simulation, with a
testbench able to count the type and number of executed instructions,
as well as to count the number of clock cycles to execute the program
being simulated.

Table II presents the results obtained from the RTL simulation for
a Plasma processor (MIPS ISA). The testbench generates the results
for the second and third columns of the Table. The fourth column of
Table II corresponds to the average CPI for each instruction class,
enabling to estimate the execution time at higher abstraction layers.
The fifth column is a measure of the quality of the program to estimate
the power/energy for a given instruction class. The branch and jump
classes have a smaller percentage of instructions in the programs due
to the insertion of NOP instructions.

TABLE II. INSTRUCTION SET CLASSES, AND THE RESULTS OBTAINED FROM THE
RTL SIMULATION.

Class number of
instructions

simulation
cycles CPI % of inst.

per class
arithmetic 73,643 73,657 1.0002 98.90
logical 108,643 108,657 1.0001 99.41
shift 46,417 46,431 1.0003 99.53
move 60,025 60,039 1.0002 98.96
load_store 70,745 137,259 1.9402 94.99
mult_div 159,757 160,021 1.0017 94.52
nop 25,457 25,471 1.0005 99.58
branch 220,017 220,031 1.0001 47.72
jump 220,030 220,031 1.0000 45.45

The processor is then synthetized (rc from Cadence), followed by
timing simulation (incisive from Cadence) and power estimation (rc
from Cadence), as in the NoC calibration process. Table III presents
for each instruction class the measured average power, the total energy
(10) and the energy per instruction (obtained by dividing the energy by
the number of simulated instructions). For the branch and jump classes
the energy is computed considering the energy of the NOP
instructions. ܧ௦௦ ൌ ܲ௦௦ כ כ ݏ݈݁ܿݕܿ ܶ (10)
where: Pclass is the average power for a given instruction class (second
column of Table III), cycles the simulated cycles (third column of
Table II), T the clock period.

TABLE III. AVERAGE POWER IN MW@100MHZ, FOR EACH INSTRUCTION
CLASS, LIBRARY CORE65LPLVT (65NM), 1.2V, 25OC.

Class Average
power (mW)

Total
Energy (nJ)

Energy per
inst. (pJ)

Arithmetic 2.605 1,918.76 26.05
Logical 2.269 2,465.43 22.69
shift 2.175 1,009.87 21.76
move 2.110 1,266.82 21.10
load_store 2.293 3,147.35 44.49
mult_div 2.263 3,621.28 22.67
nop 1.467 373.70 14.68
branches 3.114 6,851.77 31.24
jumps 1.851 4,072.77 20.30

Equations (11) and (12) give the total energy consumption and
power dissipation for a processor, respectively. ܧ௦௦ ൌ _௦௦௦ݎݐݏ݊݅_ܾ݊

ୀ כ ௦௦ (11)ܧ

ܲ௦௦തതതതതതതതതതതത ൌ ∑௦௦ܧ _௦௦௦ୀݎݐݏ݊݅_ܾ݊ כ ௦௦ܫܲܥ (12)

where: nb_instri is the number of executed instructions for a given
class, Eclass is the energy per instruction for a given class, CPIclass is the
CPI for a given class.

To validate the estimation method different benchmarks are
simulated (Table IV), and the measured power is compared to the
estimation model using (11) and (12). The execution time estimation,
based on the CPI per instruction class, resulted in an error inferior to
3%. Table IV shows that the energy estimation model is accurate, with
an error smaller to 10%. The observed differences come from: (i)
switching activity used to model the energy per instruction is not the
same of the real applications; (ii) in real applications there are data
dependencies, inducing pipeline stalls (affecting the execution time
and the energy consumption).

TABLE IV. PROCESSOR ENERGY ESTIMATION ERROR.
Becnhmark Measured avg

power (mW)
Estimated
energy(nJ)

Estimated
power (mW) Error (%)

insert sort 2.236 4,185,267 2.39 6.98
bubble sort 2.548 1,716,722 2.42 -5.14
fft 2.327 838,921 2.25 -3.36
matrix 2.214 6,734,430 2.25 1.77
binary search 2.218 1,712,422 2.34 5.71
compress 2.218 4,398,619 2.29 3.27
usqrt 2.407 2,013,805 2.40 -0.11
factorial 2.093 7,404,168 2.24 6.83
switch-case 2.236 5,626,256 2.26 0.96

429

V. MPSOC CASE STUDY
A clock-cycle accurate SystemC RTL model describes the MPSoC

[12]. The simulation speed is ten times faster than an RTL VHDL,
enabling to evaluate a large set of real benchmarks. Four real
applications execute simultaneously in a 6x6 instance of the MPSoC
MPEG (5 tasks), DTW (6 tasks), Dijkstra (6 tasks), multispectral
image analysis (14 tasks). The execution time of this scenario is 10.5
minutes, in an 8-core Intel Xeon 2.93 GHz CPU, with 32 GB RAM.

The MPSoC design adopts two low power strategies. At the PE
level, the clock of the processor is disabled when there is no task to
execute. When a given processor receives a task execute, the network
interface detects the mapping request and the processor clock is
activated. When the task finishes its execution, the clock tree of the
processor is again disabled. Using this approach, the only power
dissipated by the processor in idle mode is due to the leakage current,
equal to 0.02 mW. At the NoC router, two frequencies are used, 100
MHz when there are flits to be transmitted, and 10 MHz when the
router is in idle mode. The frequency switching is controlled at the
input buffers, by signaling incoming flits to raise the router frequency.
Such approach enables to reduce the consumed energy in idle mode.

Table V presents the energy spent by each processor of the
MPSoC (each element of the table corresponds to a PE). Yellow PEs
correspond to manager processors, responsible to map applications
and monitoring functions. Their clock is not stopped. White PEs
contain processors that did not receive any task to execute. They
execute the boot process by the OS, and their clock tree is disabled.
Green PEs contain processors executing applications’ tasks. With such
results, it becomes possible to estimate the energy (and power) due to
each application executing in the MPSoC. Applications consumed
respectively: DTW (label A) 149.5 μJ, MPEG (B) 193.16 μJ,
multispectral image analysis (C) 25.02 μJ, Dijkstra (D) 259.26 μJ.

TABLE V. ENERGY SPENT IN THE 36 PES, IN UJ (100MHZ). LABELS A TO D
CORRESPONDS TO THE PES EXECUTING THE APPLICATIONS.

X Y 0 1 2 3 4 5
5 1.41 1.41 1.41 150.15 B 1.41 1.41
4 35.01 A 1.41 1.41 35.03 B 7.98 B 1.41
3 171.66 79.53 A 34.96 A 171.69 1.41 1.41
2 3.89 C 9.80 C 2.88 C 82.72 D 1.41 1.41
1 3.69 C 2.96 C 1.41 93.32 D 1.41 1.41
0 163.48 1.80 C 1.41 171.69 83.22 D 1.41

Table VI presents the energy spent by the NoC routers (each
element of the table corresponds to a router). This table shows that:
i. The energy spent by each router is a function of the number of

buffers: white routers have 3 buffers, consuming 1.24 μJ, except
the lower-left router which transmit flits to other routers; blue
routers have 4 buffers (1.57 to 1.67 μJ); green routers have 5
buffers (1.89 to 2.01 μJ).

ii. The injection rate is small, typically 5%, explaining the small
variation observed in the routers’ consumption. Such small
injection rate is due to the behavior of the benchmarks since most
part of the time PEs are executing and not communication. A
second reason explaining such small traffic comes from the
absence of shared memories.

iii. The PEs consumes up to 100 times compared to the routers. In
such experiment, the energy consumed by the NoC corresponds
to 4.6% of the total energy consumption.
TABLE VI. ENERGY SPENT IN THE 36 NOC ROUTERS. IN UJ (100MHZ).

X Y 0 1 2 3 4 5
5 1.24 1.57 1.57 1.62 1.57 1.24
4 1.61 1.90 1.89 2.01 1.94 1.57
3 1.61 1.98 1.94 1.92 1.90 1.57
2 1.60 1.91 1.91 1.95 1.90 1.57
1 1.61 1.92 1.91 1.98 1.90 1.57
0 1.38 1.67 1.64 1.63 1.60 1.24

The energy consumption in the NoC links (wires) was small, being

the worst-case consumption equal to 0.0402μJ. Despite the small
consumption observed in the wires, it is important to evaluate the links
with the highest loads since these links will be more susceptible to
aging effects as electromigration.

Table VII evaluates the impact of the adopted low power (LP)
strategies. At the processor level, the total energy consumption had a
reduction of 65% and at the NoC level a reduction of 90%. Without
the LP techniques, all processors execute almost the same number of
instructions (small value of std dev), while with the low power
techniques only the processors with tasks execute instructions (higher
value of std dev, Table VII). The non-LP NoC consumed ten times
more compared to the LP NoC, due to relationship between the active
and idle frequencies (10 and 100 MHz respectively).

TABLE VII. ENERGY REDUCTION (UJ) USING THE LOW POWER TECHNIQUES.
Processors NoC

Total Average Std. dev. Total Average Std. dev.
Without LP tech. 3,777.2 128.3 18.0 604.7 16.8 2.2
With LP tech. 1,329.4 36.9 58.9 61.5 1.7 0.2

VI. CONCLUSIONS AND FUTURE WORKS
This paper presented a general method to define the energy/power

parameters for the NoC and processors, applying these to a high-level
model. The obtained results showed that: (i) it is possible to estimate
the energy per application; (ii) simple low power strategies brings
important energy savings; (iii) most of the consumed energy comes
from the processors (roughly 90%); (iv) even if the NoC is underused
(typically the link loads are below 5%), the NoC allows parallel
transactions, short wires (1 mm), being scalable compared to busses;
(v) the energy consumed in the wires is small (around 1%).

Nonetheless, several directions for future works are identified: (i)
model the consumed energy due to local memories, DMA and NI
modules; (ii) model the effect of congestion in the NoC when two PEs
tries to communicate with the same target PE; (iii) compare the
MPSoC estimated energy at higher abstraction levels to a gate-level
estimation (feasible only for small MPSoC instances); (iv) extend the
method by including the back-end step of the synthesis.

ACKNOWLEDGMENT
The author Fernando Moraes acknowledges the support granted by

CNPQ, processes 472126/2013-0 and 302625/2012-7; and CAPES
process 708/11.

REFERENCES
[1] Petry. C.; et al. A Spectrum of MPSoC Models for Design and

Verification Spaces Exploration. In: RSP, 2012, pp. 30-35.
[2] Hu. J.; Marculescu. R. Energy-aware mapping for tile-based NoC

architectures under performance constraints. In: ASP-DAC, 2003, pp.
233-239.

[3] Ye. T.; Benini. L.; De Micheli. G. Analysis of power consumption on
switch fabrics in network routers. In: DAC, 2002, pp. 524–529.

[4] Chan. J.; Parameswaran. S. NoCEE: energy macro-model extraction
methodology for network on chip routers. In: ICCAD, 2005, pp. 254-
259.

[5] Meloni. P.; et al. Area and power modeling for networks-on-chip with
layout awareness. In: VLSI Design. Article ID 50285. 2007. 12 pages.

[6] Guindani. G.; et al. NoC power estimation at the RTL abstraction level.
In: ISVLSI, 2008, pp. 475–478.

[7] Tiwari. V.; Malik. S.; Wolfe. A. Power analysis of embedded software:
a first step towards software power minimization. IEEE Transactions
Very Large Scale Integration Systems, v.2(4), 1994, pp. 437–445.

[8] Gupta. T.; et al. High level power and energy exploration using ArchC.
In: SBAC-PAD. 2010. pp. 25–32.

[9] Atitallah. R.; Niar. S.; Dekeyser. J. MPSoC power estimation framework
at transaction level modeling. In: ICM, 2007, pp. 245–248.

[10] Garibotti. R.. et al. Simultaneous Multithreading Support in Embedded
Distributed Memory MPSoCs. In: DAC, 2013, 6p.

[11] Kao. Y.; Yang. M.; Artan. S.; Chao. H. CNoC: High-Radix Clos
Network-on-Chip. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, v.30(12), 2011, pp. 1897 - 1910.

[12] Carara, E.; Oliveira, R.; Calazans, N.; Moraes, F. HeMPS - a Framework
for NoC-based MPSoC Generation. In: ISCAS, 2009, pp. 1345 - 1348.

430

