
 

Effects of the NoC Architecture in the Performance of 
NoC-based MPSoCs 

 
Douglas R. G. Silva, Bruno S. Oliveira, Fernando G. Moraes 

 PUCRS University, Computer Science Department, Porto Alegre, Brazil 
douglas.roberto@acad.pucrs.br, bruno.scherer@acad.pucrs.br, fernando.moraes@pucrs.br 

 
Abstract—The goal of this work is to evaluate the impact of 

multiple  Network-on-Chip (NoC) architectural parameters over 
the performance of applications running on Multiprocessors 
Systems-on-Chip (MPSoCs) using message passing as 
communication protocol. Nowadays, MPSoCs have so many 
constraints of performance that bus-based communications are 
not able to achieve the full potential of MPSoCs, therefore, the 
adoption of NoCs is a trend for the communication infrastructure 
in MPSoCs due to their performance compared to bus-based 
architectures and scalability compared to crossbar-based 
architectures. However, there is an important gap in the 
literature with works evaluating the impact of NoC parameters in 
the performance of applications running in MPSoCs. This work 
proposes the evaluation of how different NoC parameters affect 
applications running in a real MPSoC, trying to answer the 
following question: how does a given NoC parameter affect the 
performance of the MPSoC?  

 
Keywords—NoC-based MPSoC; NoCs; routing; topology; 

performance evaluation. 

I.  INTRODUCTION 
MPSoCs may be designed as general-purpose platforms, being 

able to run a set of different applications with different performance 
constraints, or designed to execute a given application, with its 
architecture optimized at design time [1]. The interconnection 
architecture used in MPSoCs varies. Some Authors have foreseen 
that bus-based and point-to-point connections would not fulfill the 
communication requirements of today’s integrated circuits. NoCs are 
an alternative, due to their efficient power usage and reliability [2], 
scalability of bandwidth (compared to buses) [3] and reusability. 

State-of-the-art of NoC research presents many works evaluating 
application specific NoC designs [4]. However, a gap in the literature 
was identified: how real applications running in an MPSoC based on 
message passing are affected by different NoC architectural 
parameters? The goal of this work is to generate these missing 
metrics, and thus to evaluate how different NoC parameters influence 
the performance of applications executing in NoC-based MPSoCs. 

An MPSoC consists of a set of processing elements (PEs) 
interconnected by a given network topology. This work adopts 
common features found in MPSoCs [5]:  
(i)  each PE contains at least one processor with a private memory;  

(ii)  applications are modeled as task graphs;  
(iii)  communication model is message passing;  
(iv)  there is no shared memory between the PEs; 
(v)  a multi-tasking operating (OS) system runs at each PE;  

(vi)  a mapping function maps tasks onto PEs, being possible to have 
more than one task per PE.  

The communication API adopts two MPI-like primitives: a non-
blocking Send() and blocking Receive(). To implement a non-
blocking Send(), a dedicated memory space in the OS, named pipe, 
stores each message written by tasks. Using such communication 
method, a packet is injected into the NoC only when it is requested, 
in burst mode. This feature reduces the NoC congestion, because a 

given PE is waiting the packet for consumption, and the burst mode 
avoid idle time between flits. 

Two different PEs instances are used: manager PE (PEM), and 
slave PEs (PESL). The PEM is responsible for the management of 
system resources. For small MPSoCs (e.g. 5x5 PEs), one PEM may be 
sufficient, characterizing a centralized approach. For large MPSoCs, 
distributed management is adopted, partitioning the MPSoC in 
clusters, with one per PEM cluster [6]. Slave PEs execute 
applications’ tasks. Regardless the PE instance, all PEs contains the 
following components, as illustrated in Fig. 1: 
(i) a Plasma processor [7], a 32-bit RISC processor with a subset 

of the instructions from the MIPS2000 architecture;  
(ii) a dual-port private memory (RAM), which stores the OS, 

named microkernel, and applications’ tasks (the memory is 
organized in equally sized pages);  

(iii) a direct Memory Access (DMA) module enabling to 
send/receive data to/from the NoC, without interrupting the 
processor; 

(iv) a network interface (NI), which connects the NoC to the 
processor and to the DMA, responsible for implementing the 
communication protocol with the NoC.  

(v) Message passing is the communication mode. There is no 
shared memory in the system. 

MPSoC
NoC

Slave PERouter

Router

Router

Router

Router

Router

Slave PE

Slave PE

Slave PE

Manager 
PE

N
et

w
or

k 
In

te
rfa

ce

Slave

PLASMA

DMA R
A

M

Ta
sk

R
ep

os
ito

ry

 
Fig. 1.   An instance of the MPSOC with 6 PEs. 

An external memory, named task repository, contains the object 
code for all tasks that possibly run on the system. The PEM is the only 
PE accessing such memory, being responsible for transmitting the 
tasks’ object code to the slave PEs, according to some dynamic 
mapping heuristic [8].  

II. NOC ARCHITECTURAL PARAMETERS 

A. Buffer Depth 
Buffers are an integral part of the network router. In most NoC 

architectures, the buffers are responsible for the largest portion of 
router silicon area and dissipated power. Therefore, it is an advantage 
to reduce the buffer depth. 

B. Routing Algorithms 
The present work evaluates the performance of five routing 

algorithms: XY, West-First, Negative-First, Odd-Even and the Torus 
Routing Algorithm for Network on Chip (TRANC). 

The XY routing algorithm is deterministic, meaning that packets 
always follow the same path, even when there are congestions. The 

978-1-4799-4242-8/14/$31.00 c©2014 IEEE 431



 

XY algorithm compares the target packet address to the current router 
address. When they are the same, the algorithm redirects the packet to 
the local port. If not, the packet is first sent in the horizontal direction 
until it reaches the target router column. Then, the packet is sent in 
the vertical direction, until it reaches its destination. 

The West-First (WF) algorithm [9] is partially adaptive. When 
the target router address is in the same column of the packet or in the 
West of the current router, packets are routed deterministically, simi-
larly to the XY algorithm. When the target router is located to the 
East of the source router, adaptive routing is used. The Negative-First 
(NF) [9] algorithm is similar to the WF algorithm, being also partially 
adaptive. It considers North and West directions as “negative” direc-
tions and South and East as “positive” ones. The algorithm forbids 
that packets take curves from positive directions to a negative one. 

The Odd-Even (OE) is an adaptive routing algorithm [10]. The 
OE does not impose a limitation to packet directions. It allows 
packets to route adaptively in every direction. To avoid deadlocks, 
two particular rules limit the turns in specific columns. It 
interchangeably calls a column as odd or even, according to the 
coordinates of the specific columns. The turning model follows two 
rules: (i) a packet cannot execute a turn from East to North when in 
an even column and it cannot perform a turn from North to West 
when in an odd column; (ii) a packet cannot execute a turn from East 
to South when in an even column and it cannot perform a turn from 
South to West in an odd column. Applying these two rules, packets 
can take any other turns to avoid congestions. 

The TRANC algorithm is a deterministic routing algorithm 
designed for torus networks [11]. It is evaluated to another available 
routing algorithm for torus, an adapted WF algorithm. 

C. Arbitration 
In particular cases, multiple packets arriving in different input 

ports may require the same output port. Therefore, it is necessary to 
schedule the output port aiming to provide a fair usage of the output 
channel by the input channels. This scheduling must be done ensuring 
that no packet waits indefinitely to be directed to its target. The act of 
scheduling the usage of the output port is the responsibility of router 
arbiters. This work evaluates two implementations of the arbitration: 
centralized and distributed round robin. Note that both 
implementations are at the router level, not implying a centralized 
knowledge of the entire NoC status. 

The centralized arbitration consists in a single module for each 
router, managing the use of all output ports in this specific router 
(Fig. 2(a)). This implementation may induce a small performance 
penalty because the arbiter cannot schedule more than one packet 
simultaneously. 

A
R

 
(a) Centralized control (b) Distributed control 

Fig. 2.  Router architectures (B: input buffer, A: arbitration, R: routing logic). 

In the distributed arbitration, each router port controls 
independently the routing and the arbitration (Fig. 2(b)). Each input 
port has a routing module associated to it, and each output port has an 
arbiter. The routing module requests a specific output port and the 
arbiter selects one specific input port if it has received multiple 
requisitions. This implementation is faster, because multiples packets 
can be allocated to their output port simultaneously, however, it 
requires more area, since it is necessary to replicate the routing and 
arbitration logic for each port. 

D. Topology 
The present work evaluates the 2D-mesh and the 2D-torus 

topologies. Both are known for their advantages, as scalability for the 
mesh and the smaller diameter for the Torus. When the topologies are 
compared, both use the same routing algorithm, with the purpose to 
quantify the impact of the topology in the performance. 

In the mesh architecture, except the routers at the edges, all other 
routers have four neighboring routers, and a PE connected to a local 
port. Its major advantage is scalability, being possible to connect a 
large amount of PEs in a regular-shape structure.  

The torus topology is also based on an m x n mesh, but it is 
characterized by connecting all edges to their equivalent on the 
opposite side. The folded torus topology is a topology where the 
physical placement of the routers are made in such a way that the 
wires always have the same length (2 hops), thus, minimizing the 
problem of long links connecting edge routers. 

III. EXPERIMENTAL SETUP  
The MPSoC is modeled in VHDL (NoC, NI, DMA) and SystemC 

(processors and memory), using an RTL description. Such model is 
clock-cycle accurate. This model allows accurate measurement of 
performance values. Results are obtained from the evaluation of two 
scenarios, corresponding to a real use of the MPSoC (the applications 
are managed by a small multi-task operating system). In both 
simulated applications, data packets have in average 128 flits. Small 
flits (6 to 8 flits) are typically control packets (e.g. read request, 
mapping request, end of a task, etc.).  

The first scenario uses an mpeg decoder as the application under 
evaluation (described in C language), with a set of 
producer/consumer applications generating disturbing traffic. The 
mpeg application contains 5 tasks: start, ivlc, idct, iquant, print. The 
start task sends frames to the ivlc task. Tasks ivlc, idct, iquant are 
responsible for executing the decoding algorithm. The last task, print, 
receives the decoded frames. A 4x4 MPSoC instance is used. Fig. 3 
presents the application task graph and its mapping, as well as the 
disturbing flows (A B, C D, etc.).  

start ivlc

iquant

idctprint
 

T3

T4
T5

T1

T2
AB

D

C

E

G

F

H

J

L

I

K

M
 

(a) Application Graph (b) Application Mapping 
Fig. 3.  First evaluated scenario (T1: start.c; T2: ivlc.c; T3: idct.c; T4: 
iquant.c, T5: print.c). M is the manager processor. 

The PEM (M) is mapped in the bottom-left PE. Each 
producer/consumer (PC) application contains 2 tasks, generating 
traffic at the maximum processor rate (on average 15% of the 
available link bandwidth). The producer generates dummy packets, 
with a payload containing 200 flits, addressed to the consumer task. 
The goal of this application is to disturb the application under 
evaluation. 

The second scenario uses the DTW (dynamic time warping) as the 
application under evaluation, also with a set of producer/consumer 
applications generating disturbing traffic. The DTW application 
contains seven tasks. Fig. 4 presents the application task graph and its 
mapping. Differently from the MPEG application, which has a 
pipeline behavior, in this application several tasks communicate with 
the same task (e.g. P1 to P2 read from task bank). Therefore, much 
more interferences between flows are expected. 

432



 

bank

P1

P4

recog
P2

P3

M

R

B

P2 P3

P1 P4

A B

D

C

K L

E

H

G

F

J

I

 
(a) Application Graph (b) Application Mapping 

Fig. 4. Second evaluated scenario. M is the manager processor. Only the 
disturbing flows are illustrated. 

Both task mapping scenarios benefits the torus topology and 
adaptive routing, since a deterministic algorithm would be affected 
by the disturbing traffic. Thus, these mapping scenarios can highlight 
the advantages of these techniques. 

Three performance metrics were evaluated: (1) Network latency: 
the amount of clock cycles between the injection of the header flit 
into the network and the reception of the last flit; (2) Jitter: standard 
deviation of the network latency; (3) Execution time: time to execute 
a given application. The obtained results are derived from the entire 
simulation time, including the beginning of the simulation where the 
object code of the tasks is transmitted to the slave processors. The 
warm-up time is not considered, due to the long simulation time. 

The applications chosen by the Authors, as an MPEG decoder 
and the DTW, are representative applications for MPSoCs. Even with 
a heavy disturbing traffic, the execution time was not affected 
varying the NoC architectural parameters. The reason is that the 
bandwidth offered at each NoC link (1.6 Gbps – 16 bits@100 MHz) 
is enough to support the traffic of these applications, together with 
disturbing flows.  

IV. RESULTS 

A. Buffer Depth 
Four different buffers depths were evaluated: 4, 8, 16 and 32 flits. 

Results are extracted from a network with a mesh topology, XY 
routing algorithm, and centralized arbitration (Fig. 2(a)). When no 
disturbing traffic is added, the average latency is practically the same 
for different buffers configurations, and consequently no jitter is 
observed.  

Adding the disturbing traffic in the MPEG scenario, the average 
latency is almost the same for different buffers configuration, as 
shown in Table I. In this specific example, for flow T2 T3 the 
smaller latency is observed with a buffer depth equal to 4, while in 
flow T4 T5 with a buffer depth equal to 32. The observed 
differences, for each flow, are not greater than 5%. 

TABLE I. AVERAGE LATENCY AND JITTER (CLOCK CYCLES) FOR DIFFERENT 
BUFFER DEPTHS, WITH DISTURBING TRAFFIC, FOR THE MPEG APPLICATION. 

 Flow T2  T3 Flow T4 T5
4 8 16 32 4 8 16 32

Min 416 410 410 410 404 400 400 400
Avg 447 450 455 468 549 549 543 538
Max 883 1323 1455 1227 1169 1235 1118 1236
Jitter 98 120 152 138 175 174 174 176

Table II present latency and jitter values for two flows of the 
DTW application. The same behavior is observed: there is not a 
buffer size ensuring smallest latency. In this scenario, DTW 
application, larger variations are observed (up to 20%), due to the 
competition among the flows of the DTW application. 

Similarly to the latency evaluation, the buffer depth is not 
correlated to the jitter, as shown in the last lines of Table I and Table 
II. In some specific cases, there is an important jitter reduction, as in 
flows T2 T3 and bank P1, due to the mapping of the tasks. 

TABLE II. LATENCY AND JITTER (IN CLOCK CYCLES) FOR DIFFERENT BUFFER 
DEPTHS, WITH DISTURBING TRAFFIC, FOR THE DTW APPLICATION. 

Flow Bank P4 (DTW) Flow Bank P1 (DTW)
4 8 16 32 4 8 16 32

Min 536 529 529 529 524 519 519 519
Avg 655 645 749 706 672 666 733 589
Max 1808 2090 2186 1842 1721 1722 1792 1630
Jitter 276 284 367 331 305 295 351 170

The impact on the overall execution time when changing the 
buffer depth was minimal. For the MPEG application the execution 
time of the tasks was in average 57.5 ±0.2 ms, and for the DTW the 
execution time of task varied between 77.8 and 78.1 ms. 

Table III presents the router area and the estimated power 
consumption for a 5-port router, XY routing, centralized arbitration, 
in a 65 nm technology. Each added buffer slot increases the area by 
130 μm2 in average for each buffer. In the same way, the average 
router power consumption is proportional to the buffer depth. 
TABLE III. ROUTER AREA AND ESTIMATED POWER (5-PORT ROUTER) FOR A 65 

NM TECHNOLOGY (LIBRARY CORE65GPSVT). 
Buffer depth 4 8 16 32

Cell area 
in μm2 

tech 65 nm 

Router 7,628 10,241 15,468 24,671
Buffer 1,153 1,675 2,727 4,568

Crossbar 1009 1009 1009 1009
Control 862 862 862 862

Total Power (mW) 0.839 0.912 1.130 1.480

The buffer depth is the first NoC parameter evaluated. The NoC 
buffer is used to compensate the amount of time required by 
arbitration and routing. In an MPSoC environment, injection rates are 
small (bellow to 10%), not requiring in this way a buffer to amortize 
the performance penalty induced by the router neither to store packets 
due to congestion. Therefore, this work proposes the use of small 
buffers, 4 or 8 flits depth, to reduce the NoC area and power. 

B. Mesh Routing Algorithms 
Table IV present latency and jitter values for 4 different routing 

algorithms. The XY-D uses distributed control (Fig. 2(b)). With no 
disturbing traffic, latency values are similar, presenting a small 
variation of 2.2%. A different scenario is observed when disturbing 
traffic is added. Using XY as reference, the adoption of WF or NF 
reduced 5% the latency in flow T3 T4, and the adoption of OE 14% 
reduction in the flow bank P4. 
TABLE IV. LATENCY AND JITTER (IN CLOCK CYCLES) FOR DIFFERENT ROUTING 

ALGORITHMS, WITH DISTURBING TRAFFIC. 

 
MPEG, flow T3  T4 DTW, flow Bank  P3 

NF OE WF XY XY-D NF OE WF XY XY-D 
Min 409 405 410 405 400 547 539 548 539 530 
Avg 410 435 410 432 437 675 581 676 706 673 
Max 417 838 411 865 856 2438 980 1936 1936 1955 
Jitter 0.7 92 0.5 85 102 310 110 305 305 291 

In addition, the routing adaption enabled to reduce the maximum 
latency. As can be observed in Table IV, for flow T3 T4 NF and 
WF presented the smaller latency variation, while in flow bank P3 
the OE routing algorithm. 

The adoption of distributed routing and distributed arbitration 
(XY-D) does not bring gains in the evaluated scenarios. The reason 
explaining such behavior is the small contention observed in the 
MPSoC. Therefore, simple NoCs, with routers having centralized 
arbitration and routing are recommended.  

The impact on the overall execution time when changing the 
routing algorithm was also minimal. 

The routing algorithm in mesh networks is the second NoC 
parameter evaluated. The net effect of the routing algorithm seems to 
be small. However, it may strongly reduce the jitter, an important 
parameter for applications with QoS.  The Authors recommend 
adopting MPSoCs with adaptive routing algorithms, since they 
potentially may benefit applications. 

433



 

C. Topology Comparison 
The major weakness of the torus topology is the wraparound 

wires, which may be mitigated using a folded torus topology, 
increasing the wire length twice compared to the mesh topology. The 
torus architecture should present a smaller latency and jitter when 
packets travel from one edge to the other of the mesh. To highlight 
the advantage of the torus topology it was chosen as observed flows 
the communication T4 T5 (MPEG) and bank P4 (DTW). To 
evaluate just the effect of the topology we used the same routing 
algorithm for both simulations, the WF routing algorithm.  

Flow T4 T5 presents 1 hop in the torus topology and 3 hops in 
the mesh topology. In the scenario with no disturbing traffic, the 
latency is constant, being 404 and 394 clock cycles for the mesh and 
torus topologies respectively. The mesh topology, in this scenario, 
has disturbing flows E-F and H-G in the path T4 T5 (MPEG), 
presenting higher latency variation - Table V. The torus topology 
presents an average latency 16.8% smaller, with a smaller jitter. The 
observed variation comes from the PE sharing, between tasks print 
(T5) and D.  The same behavior is observed with flow bank P4, 
which used the wraparound link to reduce the latency. An overall 
observation is that in all scenarios the torus topology reduced the 
latency values (remember that the mapping of the simulated 
scenarios, Fig. 3 and Fig. 4, favors the torus topology). 

The jitter with disturbing traffic, last row of Table V, is 27.3% 
and 28.0% smaller with the torus topology for flows T4 T5 and 
bank P4, respectively.  

TABLE V. LATENCIES AND JITTER VALUES OF FOR MESH AND TORUS 
TOPOLOGIES, WITH DISTURBING TRAFFIC, IN CLOCK CYCLES. 

 Flow T4  T5 (MPEG) Flow bank P4 (DTW)
Mesh Torus Mesh Torus

Min 404 394 536 522
Avg 566 489 664 594
Max 1188 1026 1803 1623
Jitter 191 139 303 218

The impact on the overall execution time when changing the 
routing algorithm was minimal.   

The topology is the third NoC parameter evaluated. In a 
homogeneous MPSoC, applications hardly could benefit from a torus 
topology, since mapping heuristics have as cost function to place 
communicating tasks as close as possible (obviously it is possible to 
create dedicated mapping heuristics for torus topologies). However, 
the torus is a choice if IPs have fixed mapping at the edges of the 
mesh, as shared memory controllers. In such a case, the access time 
for such memories would benefit from a torus topology. 

D. Torus Routing Algorithms 
This section evaluates how the routing algorithm affects the 

network latency and jitter in torus networks. Two routing algorithms 
are evaluated: TRANC and WF. Results presented in Table VI are 
extracted with 16-flit buffers depth. 
TABLE VI. LATENCY AND JITTER VALUES FOR DIFFERENT MPEG FLOWS, FOR 

DIFFERENT TORUS ROUTING ALGORITHM IN CLOCK CYCLES. 
 MPEG, flow T2  T3  MPEG, flow T4  T5  DTW, flow bank P4

TRANC WF TRANC WF TRANC WF
Min 408 408 394 394 522 522
Avg 408 435 510 489 522 594
Max 408 855 1026 1026 525 1623
Jitter 0 85 166 138 0.5 218

With disturbing traffic, the TRANC algorithm shows an 
advantage of 6.6% when compared to the WF routing algorithm for 
flow T2 T3 (avg row in Table VI). The WF takes the horizontal 
path first, thus being affected by the disturbing CD. The TRANC 
takes the vertical path first, being not affected by the disturbing 
traffic. Using another flow, T4 T5, the WF algorithm had an 
advantage of 4.4% compared to the TRANC algorithm. In this 
situation, the WF used the wraparound link, while the TRANC not. 

The flow bank PW (DTW) is another example where TRANC 
performance is better, with an almost zero jitter. 

The last line of Table VI compares the jitter of the flows, with 
disturbing traffic, demonstrating that the jitter is a function of the task 
mapping coupled to the adaptation strategy of the routing algorithm. 
Therefore, there is not a general rule to select the best routing 
algorithm.  

V. CONCLUSION 
The NoC literature contains many works evaluating the NoC 

performance according to various NoC parameters. However, in the 
Authors’ knowledge, this is the first work exploring how the NoC 
parameters affect the performance of NoC-based MPSoCs. Some 
important guidelines may be advanced: (1) buffers: keep them as 
small as possible; (2) router architecture: adopt centralized control, 
avoiding the replication of the arbiter and the routing logic; (3) 
routing algorithm: adopt adaptive routing, as WF/OE, since they may 
reduce latency and jitter; (4) topology: adopt 2D-mesh topology for 
homogeneous MPSoCs, and folded tours for heterogeneous MPSoCs. 

Results point out that in MPSoCs using message passing, real 
applications (as MPEG and DTW) does not generate enough traffic to 
stress the NoC. A naïve explanation could be: the NoC is idle most of 
the time, because processors are executing theirs tasks. In fact, the 
reduction of the injection rate was obtained by buffering messages by 
the OS, and them transmitting them in a burst. Without burst 
transmission, flits would be injected in the NoC as they would be 
generated by the software, resulting in idle intervals between flits, 
increasing the overall usage of the NoC links. This does not apply to 
MPSoCs using shared memory, since there is an overhead in the NoC 
due do the cache coherence protocol. 

Therefore, the design of the NoC router may be the simplest one, 
reducing the area and power overhead due to the communication 
infrastructure. It is important to remember NoCs offer parallels 
transactions and scalability, features not supported by bus-based 
infrastructures. 

ACKNOWLEDGEMENTS 
The author Fernando Moraes acknowledges the support granted 

by CNPQ, processes 472126/2013-0, 550118/2013-6 and 
302625/2012-7; and CAPES process 708/11. 

REFERENCES 
[1] Singh, A.K.; Kumar, A.; Srikanthan, T. A Design Space Exploration 

Methodology for Application Specific MPSoC Design. In: ISVLSI, 2011, 
pp. 339 - 340. 

[2] Yong Z.; Pasricha, S. Reliability-aware and energy-efficient synthesis of 
NoC based MPSoCs. In: ISQED, 2013, pp. 643-650. 

[3] Kumar, R.; Deshpande, H.; Choi, G.; Sprintson, A.; Gratz, P. 
Bidirectional interconnect design for low latency high bandwidth NoC. 
In: ICICDT, 2013, pp. 215-218. 

[4] Modarressi, M.; Tavakkol, A.; Sarbazi-Azad, H. Application-Aware 
Topology Reconfiguration for On-Chip Networks. IEEE Transactions on 
Very Large Scale Integration Systems, v.19(11), 2011, pp. 2010-2022. 

[5] Garibotti, R., et al. Simultaneous Multithreading Support in Embedded 
Distributed Memory MPSoCs. In: DAC, 2013, 6p. 

[6] Castilhos, G.; Mandelli, M.; Madalozzo, G.; Moraes, F. Distributed 
resource management in NoC-based MPSoCs with dynamic cluster 
sizes. In: ISVLSI, 2013, pp 153-158. 

[7] Plasma CPU. Available at: http://plasmacpu.no-ip.org. 
[8] Singh, A.K.; Shafique, M.; Kumar, A.; Henkel, J. Mapping on 

multi/many-core systems: Survey of current and emerging trends. In: 
DAC, 2013, 10p. 

[9] Glass, C.J.; Ni, L.M. The Turn Model for Adaptive Routing. In: ISCA, 
1992, pp. 278-287. 

[10] Ge-Ming Chiu. The odd-even turn model for adaptive routing.  IEEE 
Transactions on Parallel and Distributed Systems, v.11(7), 2000, pp. 
729-738.  

[11] Rahmatia, D.; Sarbazi-Azada, H.; Hessabia, S.; Kiasarib, A. Power-
efficient deterministic and adaptive routing in torus networks-on-chip. 
Microprocessors and Microsystems, v.36(7), 2012, pp. 571–585. 

434


