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Abstract – The design of MPSoCs is a complex task. From 

the designer side point of view, a new feature inserted into the 
system (e.g. a mapping heuristic or a new function in the 
operating system) must be validated with a large set of the 
MPSoC configurations. From the application developer side 
point of view, the performance of a set of applications running 
simultaneously in the MPSoC platform must be also evaluated 
for different MPSoC configurations. Therefore, for both 
designers and application developers a framework enabling the 
automatic MPSoCs generation and simulation is mandatory 
for design space exploration. This is the goal of the present 
work, present a parameterizable MPSoC, including distributed 
management, and a framework to generate and simulate 
several MPSoCs configurations automatically. Results show 
that it is feasible to simulate large platforms, up to 400 
processing elements, using a cycle accurate SystemC 
description. 
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I. INTRODUCTION 
The huge design space to develop the hardware/software 

infrastructure of MPSoCs (Multiprocessor System-on-Chip), or to 
evaluate the performance of applications requires frameworks able 
to generate and to simulate the MPSoC. Examples of such 
frameworks are scarce in the literature. Most frameworks are 
limited to few PEs (processing elements), use abstract models that 
does not enable accurate performance evaluation or evaluate only 
one metric (as power estimation [1] or application parallelization 
[2]). 

To fill this gap, the goal of this work is to present a framework 
able to automatically generate and simulate a NoC-based MPSoC. 
From a set of scenarios, a RTL SystemC description of the MPSoC 
is generated, along with the software, operating systems and 
applications. The adoption of RTL SystemC description is due to 
the simulation time, two orders of magnitude faster than pure 
VHDL, with the same clock-cycle accuracy [3]. The generated 
MPSoC may have a centralized or distributed management of 
resources. Distributed management is suited for large MPSoCs, and 
centralized management for small/medium MPSoCs (up to 64 PEs) 
[4]. 

The contributions of the present work include: (i) the 
framework, with results for MPSoCs containing up to 400 PEs; (ii) 
the NoC-MPSoC architecture with distributed management; (iii) 
regression test, to uncover system bugs after system changes, or to 
evaluate the performance of applications for several MPSoC 
configurations. 

II. FRAMEWORKS FOR MPSOC GENERATION  
Angiolini et al. [5] propose a methodology to integrate existing 

standalone CAD tools into a virtual platform. They explore state-of-
the-art CAD tools, such as the commercial LISATek suite and the 
academic MPARM environment. These tools respectively focus on 
the seamless development of ASIPs, and on the analysis of system-
level issues such as multiprocessor performance and 
communication support facilities (shared-memory infrastructure). 

Then, they integrate LISA custom designed IPs to the 
interconnection provided by MPARM. The integration was made 
taking into account that both tools adopt a SystemC simulation 
backbone. Cycle-accurate simulations of heterogeneous platforms, 
where cores interact with the interconnect, compete for shared 
resources. 

Roth et al. [6] presented a framework for multi-resolution and 
multi-device (MultiX-Simulation) of MPSoCs. The framework is 
based in the SystemC federate library simulation, which is based on 
a generic simulation backbone called High Level Architecture 
(HLA). This library implements an event based simulator where the 
logical representation of an interconnection of different simulators 
is called a Federation and includes multiple modules (Federates) 
that communicate via a Runtime Infrastructure (RTI). The RTI 
provides different management services, which are relevant for 
simulation control, synchronization and data exchange. To 
interconnect PEs, a NoC (Network-on-Chip) executes an XY 
routing-scheme with dedicated FIFOs, implemented in SystemC. 
The MPSoC is partitioned by assigning one PE to each federate, and 
splitting the FIFO channels which results in similar workload for 
each federate. They shows results comparing four applications 
executing in MPSoC sizes of up to 6x6 comparing the speed-up 
from the RTL-model to the proposed Mixed-model. Results show a 
simulation speedup up to 229 times in a 6x6 MPSoC. 

xENoC [7] is an environment for hardware/software automated 
design of NoC-based MPSoC architectures. The core of this 
environment is an EDA tool, called NoCWizard, which can 
generate RTL Verilog NoCs. The whole system is described in an 
XML file (NoC features, IPs and mapping), which is used as input 
for the automatic generation tools. In addition to the hardware 
infrastructure, xNoC also includes an Embedded Message Passing 
Interface (eMPI) supporting parallel task communication. 

 Lemaire et al. [8] propose a framework for simulating a 
MPSoC platform. This framework enables the simulation of each 
module (NoC or PE) in different levels, e.g. RTL and TLM. The 
NoC is modeled in three different levels: (i) an untimed packet-level 
without NoC contention; (ii) an approximately-timed packet-level 
mode with contention; (iii) an accurate flit-level mode, very close to 
the hardware behavior. For a mixed simulation, they used a wrapper 
for co-simulation purposes. The PE is composed by (i) two VLIW 
processors; (ii) network interface (NI), (iii) RAM; (iv) one MIPS, 
responsible for the PE management. The MIPS is the only module 
that is modeled at high-level in an approximate-timed SystemC 
TLM and ISS (Instruction Set Simulator) mode. A RTL description 
of the other modules is available, interconnected by co-simulation 
wrappers. The simulation time results show that the high-level 
SystemC TLM models are 40 times faster than the RTL description. 
The presented scenario consists in computing a 1K-FFT on the 
MIPS core in one PE, taking around 0.35s to execute. 

Table I compares relevant features of the reviewed works. As 
most proposals, the present work adopts a SystemC modeling. The 
differentiation of our proposal includes: (i) accuracy, since the 
SystemC model was derived from the synthesizable VHDL model; 
(ii) simulation speed, enabling to evaluate platforms with 400 PEs 
in few hours; (iii) design space exploration, including system size, 
tasks per PE, management techniques, mapping heuristics, among 
other parameters. 
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Table I - State-of-the-art in MPSoC Frameworks Generation. 
Proposal 

 Description Language Interconnection Processor Type Debugging Accuracy Model Engine Max network size Simulation time 

Angiolini et al. [5] SystemC Shared memory LISA 2.0 processor models Graphical interface Cycle Accurate Event-based Depends on the shared 
memory bottleneck N/A 

MultiX-Simulation [6] SystemC NoC MIPS N/A Quasi Cycle Accurate 
Level (CAL) Event-based N/A 

1797s for a 6x6 
MPSoC with four tasks 

application 

 xENoC [7] VHDL/XML NoC NIOSII soft-core N/A N/A Cycle-based 
Size parameterized 
according to NoC 

dimensions 
N/A 

SMEP [8] SystemC TLM NoC MIPS and 2 VLIW N/A 7% compared to RTL TLM N/A 0.35s for 1 PE 
executing a FFT

Proposed Work SystemC RTL NoC MIPS / Microblaze Performance reports Cycle Accurate Event-Based 256x256 (theoretical 
maximum size) 286s for a 8x8 MPSoC. 

III. MPSOC ARCHITECTURE 
The present work adopts a NoC-based MPSoC architecture, 

interconnecting PEs through a 2D-mesh topology, using a 32-bit flit 
width. Each PE contains a RISC processor, a network interface 
(NI), a DMA module, and a private memory (RAM) for code and 
data. The PE may support Von Neumann and Harvard memory 
organizations. The PE private memory is a true dual port memory. 
In processors with a Von Neumann memory organization, as the 
Plasma processor [9], the memory can be shared between the 
processor and the NoC (through the DMA module). In a Harvard 
organization, as the Microblaze processor, one of the memory ports 
is shared with the DMA module, resulting in a smaller 
communication performance compared to the Von Neumann 
memory organization. It is important to remember the advantages of 
the Harvard organization for computation, since instructions and 
data are accessed in parallel, reducing stalls in the processor 
pipeline. 

Applications are modeled as task graphs A=<T,C> (example in 
Figure 1), where T = {t1, t2, ..., tm} is the set of application tasks 
corresponding to the graph vertices, and C= {(ti, tj, wij) | (ti, tj) ∈ T 
and wij ∈ ℕ*} denotes the communications between tasks, 
corresponding to the graph edges. An external MPSoC memory, 
named task repository, contains all applications tasks (set T), which 
are loaded into the system at runtime. 

 
Figure 1 - Application modeled as a task graph. 

Each PE runs a small operating system, microkernel, 
responsible for task scheduling and communication between tasks. 
Tasks communicate through message passing, using MPI-like 
send/receive primitives, and microkernel services, as “Task 
Allocated”, “Location Request”, “Message Request”, “Message 
Delivery”. Non-blocking sends insert messages in the 
communication queues (Figure 1), while blocking receives read 
from the communication queues. Such communication scheme 
reduces the overall NoC traffic, since a message is only injected 
into the network when it is required. If the communication queues 
are placed at the receiver side, messages could block the NoC when 
the queues become completed filled. 

The memory is organized in equally sized pages, favoring task 
mapping and task migration. When a given task is required to be 
mapped, it may use any available page in the PE set. In the same 
way, if a task is required to be migrated from one PE to another, the 
transmission of the page contents and the task context is sufficient 
to ensure the correct task migration. All PEs have a parameterized 
memory size, enabling to increase the number of tasks running 
simultaneously at each processor, as well as the execution of large 
applications. 

IV. RESOURCE MANAGEMENT 
One relevant features of the MPSoC design is how resources are 

managed. NoC-based MPSoCs offer scalability at the hardware 
level. However, the management of the MPSoC resources requires 
scalable methods, to effectively extract the computational power 
offered by dozens of processors. State-of-the-art proposals adopt 
different approaches to tackle such problem, using the MPSoC 

clustering as the most common approach [10][11]. 
The management of the MPSoC may vary from a centralized 

approach (one PE responsible to manage all MPSoC resources) to a 
distributed approach. The distributed management architecture 
divides the MPSoC in n equally sized regions, named clusters, 
defined at design time. At execution time, if a given application 
does not fit in a cluster, the cluster may ask resources to adjacent 
clusters. Therefore, the cluster size may increase at execution time, 
according to the resources required by applications. When resources 
became available in a given cluster, tasks belonging to applications 
mapped in other clusters may be migrated to the cluster. Therefore, 
PEs of the MPSoC may act as:  
• LMPs (Local Master PEs): control the cluster, executing 

functions such as task mapping, task migration, monitoring, 
deadlines verification, and communication with other LMPs 
and GMP;  

• GMP (Global Master PE): contains all functions of the LMP, 
and functions for the overall system management, such as 
choose in which cluster a given application will be mapped, 
control the available resources in each cluster, receive 
debugging and control messages from LMPs, access the 
application repository, and receive new applications requests 
from an external interface; 

• SP (Slave PEs): responsible for task execution. SPs may 
execute k simultaneous tasks, being k the number of pages for 
tasks. 

When the MPSoC is specified with one cluster, the management 
is centralized, without LMPs. 

LMPs and the GMP do not execute applications tasks, only 
system management. Therefore, they represent an overhead, and the 
numbers of clusters must be carefully chosen. For example, in a 
12x12 MPSoC (144 PEs), with 9 4x4 clusters, 9 PEs execute only 
management. This represents a cost of 6.25% of PEs dedicated to 
management. Smaller clusters induce a large overhead. Therefore, 
distributed management is suited for large MPSoCs, and centralized 
management for small/medium MPSoCs (up to 64 PEs) [4]. 

It is supposed that at least one task does not have dependences 
on other tasks, being the initial(s) task(s) (Figure 1). According to 
user requests, a new application may be requested to execute in the 
system. The GMP executes a “cluster selection” heuristic to choose 
the cluster that will receive the new application. The heuristic 
choose the cluster that best fit the application in terms of available 
resources. Once a given cluster is selected, the GMP sends the 
application description to the LMP of the selected cluster. Two 
mapping situations may arise: mapping of initial tasks and mapping 
of remaining tasks. The initial task mapping searches for the SP 
with the highest number of available resources around it. This 
increases the probability of the remaining tasks of the application to 
be mapped close to each other, reducing the communicating 
distance between tasks, and therefore the communication energy. 
The mapping of the remaining tasks adopts the PREMAP-DN 
multi-task mapping heuristic [12] to select the SP to receive a new 
task. This mapping heuristic minimizes the energy consumed in the 
NoC, by approximating the tasks with higher communication 
volume. 

When the mapping heuristic cannot map tasks in the cluster due 
to lack of available resources, the LMP of the cluster try to borrow 
resources from neighbor clusters. This is a 5-step process: 
1) The LMP of a cluster (LMPCL) sends a “loan request” message, 

requesting resources to all LMPs in neighbor clusters 
(LMPNBO). 



2) Each LMPNBO search for available resources in theirs clusters. If 
there is only one available resource, this resource is reserved to 
be borrowed; otherwise, if there is more than one available 
resource, the LMPNBO reserve the one as close as possible, in 
number of hops, between the task to be mapped and the source 
task in the cluster managed by LMPCL. 

3) After the reservation, all LMPNBO send a “loan delivery” 
message to the LMPCL, notifying the resource position, if it 
exists. 

4) The LMPCL chooses the closest resource from the one that 
requested the task, sending a “loan release” message to all 
LMPNBO that were not selected. If there are no available 
resources in neighbor clusters, the search space increases, 
extending it to the neighbors of the neighbor clusters, returning 
to step 1. 

5) Finally, the LMPCL send a “task allocation request” message to 
the GMP requesting the task mapping on the borrowed 
resource. 

Therefore, the cluster size increases at runtime, because the 
borrowed resource is now part of this cluster. This process 
optimizes the system management, since applications can be 
mapped in clusters, even if the cluster has no sufficient resources. 
This process is named reclustering, which may expand the cluster 
size with the above protocol, and restore the cluster size using task 
migration. 

V. SCENARIO-BASED VERIFICATION 
This Section describes the process to automatically generate the 

MPSoC, and to obtain the performance reports. From the designer 
side point of view, a new feature inserted into the system (e.g. a 
mapping heuristic) must be validated with a large set of MPSoC 
configurations. From the application developer side point of view, 
the performance of a set of applications running simultaneously in 
the platform must be also evaluated for different MPSoC 
configurations. The flow presented in Figure 2 enables the 
automation of the MPSoC generation, simulation and analysis. The 
flow is divided in 5 phases. 

The first phase generates the scenarios with different 
applications and different configurations of the MPSoC. The in-
house Scenario Generator tool has as inputs: (1) the project name; 
(2) MPSoC size; (3) cluster size; (4) memory size; (5) page size; (6) 
GMP Address; (7) configuration file containing the application set 
that will be inserted at runtime in the MPSoC. 

In the second phase, a second in-house tool MPSoC Generation, 
is responsible for generating and compiling the hardware and 
software of the MPSoC. As input, this phase receives the MPSoC 
hardware description, the microkernel files, the applications C 
codes, and the MPSoC configuration file for each scenario. The 
configuration files contain the parameters defined at the first phase. 
The MIPS processor is described with a SystemC instruction set 

simulator, while all other modules are modeled in a cycle accurate 
SystemC.  

The result of the second phase is an executable file for each 
scenario. The numbers in the Figure describing the result of the 
second phase corresponds to the parameters of the first phase. For 
example: (2) is the MPSoC size; (3) cluster size; (4) memory size; 
etc. 

The third phase simulates each scenario using its respective 
executable file. Each simulation can be executed sequentially in the 
same workstation, or distributed in a grid. The results of this phase 
are performance reports for each SP, identifying the initial and final 
time for each task/application. The report of the GMP contains also 
the total execution time for the simulated scenario. 

In the fourth phase, a script reads the performance reports for 
each scenario, illustrating in a graphical view where each task was 
mapped, together with its initial and final execution time. This 
phase provides to the user an overview of how tasks were mapped 
in the MPSoC, and the performance of each application. It is 
possible to indicate in the script the simulation time, to obtain a 
“picture” of the system in a given moment of the simulation. 

In the last phase, another script extracts the performance 
information from the reports and verifies if all applications have 
finished. This phase also generates reports, charts, and tables used 
to compare the simulated scenarios.  

The script used in the last phase is able to automatically execute 
phases 2, 3 e 4, using as input the configuration files generated 
during phase 1. Therefore, this flow enables regression tests, since 
it is possible to generate and simulate several MPSoCs 
configurations without requiring any user interference. At the end, 
analyzing the reports it is possible to verify if all scenarios passed 
(enabling to debug the platform, evaluating the test-case with non 
finished applications), or to evaluate the performance of a set of 
applications using different configurations 

VI. RESULTS 
The employed benchmark is a MJPEG encoder, with five tasks. 

Each SP is able to execute 3 simultaneous tasks. Table II details the 
MPSoC configurations, varying the MPSoC size, management 
strategy, and 30/60% load (it corresponds to the number of tasks the 
MPSoC may execute simultaneously: |SPs|*|pages|). Therefore, 28 
test cases were evaluated. The number of SPs per MPSoC size is 
obtained subtracting the number of manager PEs from the total 
number of PEs. For example, in a 20x20 MPSoC, with 25 4x4 
clusters, there are 25 managers PEs (1 GMP and 24 LMPs). 
Therefore, the number of SPs is 375. Considering this 
configuration, the MPSoC is able to execute up to 1,125 
simultaneous tasks (375 SPs * 3 pages per SP). For a load of 60%, 
the simulation runs 675 tasks, which is equivalent of 135 instances 
of the MJPEG running simultaneously.  

 
Figure 2 – Framework for MPSoC automatic simulation and analysis flow, divided into five main phases. 



Table II – MPSoC configurations used to evaluate the execution and 
simulation times. In the distributed management the cluster size is 4x4. 

MPSoC Size Centralized Management Distributed Management
N# of SPs N# of SPs

8x8 63 60 
12x8 95 90 
12x12 143 135 
16x12 191 180 
16x16 255 240 
20x16 319 300 
20x20 399 375 

 
Figure 3 presents the execution time for all 28 test cases. The 

execution time using the distributed management grows linearly 
with the number of SPs (R2=0.988 for loads 30% and 60%). On the 
other hand, the centralized management has a quadratic increase 
(R2=0.999 for loads 30% and 60%). Such difference is due to the 
load in the managers. Each LMP in the distributed version is 
responsible for mapping, monitoring, and control messages. The 
GMP in the centralized approach is overloaded due to execution of 
a large number of task mappings (more than 1,000 tasks to be 
mapped in the larger scenarios), and to control of the availability of 
resources. In addition, in the centralized management scenarios, the 
traffic around the GMP generates hot-spot regions, compromising 
the communication performance, and in long-term the reliability of 
the system. This result is a clear demonstration that distributed 
management contributes to the scalability at the application level. 

 
Figure 3 – Total execution time for all applications (in clock cycles), for 

different MPSoC sizes, load and management techniques. 

Figure 4 presents the simulation time for the 28 test cases. The 
simulation time is presented in the y-axis, in seconds. The 
simulation time grows exponentially with the number of PEs. Even 
if this result shows the limitation to evaluate large MPSoCs with 
clock cycle accuracy, it is important to note that the simulation of 
375 SPs with 675 simultaneous tasks (60% load) took 4.7 hours 
(17,164.28 seconds). Therefore, it is still reasonable to simulate an 
MPSoC with a RTL level model, since it enables to evaluate 
throughput, latency, jitter, power, and energy. The simulation time 
of the centralized management is higher because the execution time 
of these scenarios took longer (the simulation time is a function of 
the number of events created during simulation).  

To conclude this section, it is important to present the cost of 
the reclustering process, specifically the migration process. The 
total migration time is around 11,000 clock cycles, for a page size 
equal to 32 KB. The performance during task migration is reduced, 
since the task has to be stopped. After tasks migration, results 
shown an average improvement in the applications’ throughput in 
order of 18%. 

Such results demonstrates the effectiveness of the distributed 
management adopted in the MPSoC platform, enabling to have 
clusters with variable size at run-time, and when possible restore the 
initial cluster shape by migrating tasks. Even if the task migration 
cost is some thousands of clock cycles, for the executing software 
this amount of time is very small, and the penalty induced during 
migration is quickly translated into performance gains. 

 

 
Figure 4 – Simulation time for all applications (Xeon 64 bits, 4 cores, 32 

GB, 3 GHz), for different MPSoC sizes, load and management techniques. 

VII. CONCLUSIONS AND FUTURE WORKS 
The presented framework for NoC-based MPSoC generation 

and simulation enables to evaluate large platforms with an 
acceptable simulation time. The MPSoC contains adaptive 
techniques for management, enabling to parallelize tasks as 
mapping, migration, and monitoring. The distributed management 
enabled the addition of a large set of applications in the MPSoC, 
with a linear increase in the total execution time. The total execution 
time should theoretically be the same, regardless the number of 
instances of the applications being executed. However, the 
management plays an important role in the total execution time, 
since the application must be read from the memory, mapped and 
monitored. Therefore, in such large MPSoCs (e.g. 20x20), a 
distributed management approach is mandatory. 

Future works includes the integration of all tools of the 
framework in a unified environment; enrich the performance reports 
with communication performance parameters (as latency and 
throughput); add QoS techniques in the MPSoC to control 
applications deadlines. The use of more abstract models, employing 
for example OVP, is research direction to reduce the simulation 
time. 
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