
A Framework for MPSoC Generation and
Distributed Applications Evaluation

Guilherme Castilhos†, Eduardo Wachter∗, Guilherme Madalozzo∗, Augusto Erichsen∗,
Thiago Monteiro∗, Fernando Moraes∗

†Santa Cruz do Sul University (UNISC) – Faculty of Informatics – Brazil
guilhermemcastilhos@unisc.br ∗FACIN – PUCRS – Av. Ipiranga 6681– Porto Alegre – RS – Brazil

{guilherme.madalozzo, eduardo.wachter, thiago.monteiro, augusto.erichsen }@acad.pucrs.br, fernando.moraes@pucrs.br

Abstract – The design of MPSoCs is a complex task. From

the designer side point of view, a new feature inserted into the
system (e.g. a mapping heuristic or a new function in the
operating system) must be validated with a large set of the
MPSoC configurations. From the application developer side
point of view, the performance of a set of applications running
simultaneously in the MPSoC platform must be also evaluated
for different MPSoC configurations. Therefore, for both
designers and application developers a framework enabling the
automatic MPSoCs generation and simulation is mandatory
for design space exploration. This is the goal of the present
work, present a parameterizable MPSoC, including distributed
management, and a framework to generate and simulate
several MPSoCs configurations automatically. Results show
that it is feasible to simulate large platforms, up to 400
processing elements, using a cycle accurate SystemC
description.

Keywords – MPSoC; NoC; framework; distributed
management; reclustering

I. INTRODUCTION
The huge design space to develop the hardware/software

infrastructure of MPSoCs (Multiprocessor System-on-Chip), or to
evaluate the performance of applications requires frameworks able
to generate and to simulate the MPSoC. Examples of such
frameworks are scarce in the literature. Most frameworks are
limited to few PEs (processing elements), use abstract models that
does not enable accurate performance evaluation or evaluate only
one metric (as power estimation [1] or application parallelization
[2]).

To fill this gap, the goal of this work is to present a framework
able to automatically generate and simulate a NoC-based MPSoC.
From a set of scenarios, a RTL SystemC description of the MPSoC
is generated, along with the software, operating systems and
applications. The adoption of RTL SystemC description is due to
the simulation time, two orders of magnitude faster than pure
VHDL, with the same clock-cycle accuracy [3]. The generated
MPSoC may have a centralized or distributed management of
resources. Distributed management is suited for large MPSoCs, and
centralized management for small/medium MPSoCs (up to 64 PEs)
[4].

The contributions of the present work include: (i) the
framework, with results for MPSoCs containing up to 400 PEs; (ii)
the NoC-MPSoC architecture with distributed management; (iii)
regression test, to uncover system bugs after system changes, or to
evaluate the performance of applications for several MPSoC
configurations.

II. FRAMEWORKS FOR MPSOC GENERATION
Angiolini et al. [5] propose a methodology to integrate existing

standalone CAD tools into a virtual platform. They explore state-of-
the-art CAD tools, such as the commercial LISATek suite and the
academic MPARM environment. These tools respectively focus on
the seamless development of ASIPs, and on the analysis of system-
level issues such as multiprocessor performance and
communication support facilities (shared-memory infrastructure).

Then, they integrate LISA custom designed IPs to the
interconnection provided by MPARM. The integration was made
taking into account that both tools adopt a SystemC simulation
backbone. Cycle-accurate simulations of heterogeneous platforms,
where cores interact with the interconnect, compete for shared
resources.

Roth et al. [6] presented a framework for multi-resolution and
multi-device (MultiX-Simulation) of MPSoCs. The framework is
based in the SystemC federate library simulation, which is based on
a generic simulation backbone called High Level Architecture
(HLA). This library implements an event based simulator where the
logical representation of an interconnection of different simulators
is called a Federation and includes multiple modules (Federates)
that communicate via a Runtime Infrastructure (RTI). The RTI
provides different management services, which are relevant for
simulation control, synchronization and data exchange. To
interconnect PEs, a NoC (Network-on-Chip) executes an XY
routing-scheme with dedicated FIFOs, implemented in SystemC.
The MPSoC is partitioned by assigning one PE to each federate, and
splitting the FIFO channels which results in similar workload for
each federate. They shows results comparing four applications
executing in MPSoC sizes of up to 6x6 comparing the speed-up
from the RTL-model to the proposed Mixed-model. Results show a
simulation speedup up to 229 times in a 6x6 MPSoC.

xENoC [7] is an environment for hardware/software automated
design of NoC-based MPSoC architectures. The core of this
environment is an EDA tool, called NoCWizard, which can
generate RTL Verilog NoCs. The whole system is described in an
XML file (NoC features, IPs and mapping), which is used as input
for the automatic generation tools. In addition to the hardware
infrastructure, xNoC also includes an Embedded Message Passing
Interface (eMPI) supporting parallel task communication.

 Lemaire et al. [8] propose a framework for simulating a
MPSoC platform. This framework enables the simulation of each
module (NoC or PE) in different levels, e.g. RTL and TLM. The
NoC is modeled in three different levels: (i) an untimed packet-level
without NoC contention; (ii) an approximately-timed packet-level
mode with contention; (iii) an accurate flit-level mode, very close to
the hardware behavior. For a mixed simulation, they used a wrapper
for co-simulation purposes. The PE is composed by (i) two VLIW
processors; (ii) network interface (NI), (iii) RAM; (iv) one MIPS,
responsible for the PE management. The MIPS is the only module
that is modeled at high-level in an approximate-timed SystemC
TLM and ISS (Instruction Set Simulator) mode. A RTL description
of the other modules is available, interconnected by co-simulation
wrappers. The simulation time results show that the high-level
SystemC TLM models are 40 times faster than the RTL description.
The presented scenario consists in computing a 1K-FFT on the
MIPS core in one PE, taking around 0.35s to execute.

Table I compares relevant features of the reviewed works. As
most proposals, the present work adopts a SystemC modeling. The
differentiation of our proposal includes: (i) accuracy, since the
SystemC model was derived from the synthesizable VHDL model;
(ii) simulation speed, enabling to evaluate platforms with 400 PEs
in few hours; (iii) design space exploration, including system size,
tasks per PE, management techniques, mapping heuristics, among
other parameters.

978-1-4799-3946-6/14/$31.00 ©2014 IEEE 408 15th Int'l Symposium on Quality Electronic Design

Table I - State-of-the-art in MPSoC Frameworks Generation.
Proposal

 Description Language Interconnection Processor Type Debugging Accuracy Model Engine Max network size Simulation time

Angiolini et al. [5] SystemC Shared memory LISA 2.0 processor models Graphical interface Cycle Accurate Event-based Depends on the shared
memory bottleneck N/A

MultiX-Simulation [6] SystemC NoC MIPS N/A Quasi Cycle Accurate
Level (CAL) Event-based N/A

1797s for a 6x6
MPSoC with four tasks

application

 xENoC [7] VHDL/XML NoC NIOSII soft-core N/A N/A Cycle-based
Size parameterized
according to NoC

dimensions
N/A

SMEP [8] SystemC TLM NoC MIPS and 2 VLIW N/A 7% compared to RTL TLM N/A 0.35s for 1 PE
executing a FFT

Proposed Work SystemC RTL NoC MIPS / Microblaze Performance reports Cycle Accurate Event-Based 256x256 (theoretical
maximum size) 286s for a 8x8 MPSoC.

III. MPSOC ARCHITECTURE
The present work adopts a NoC-based MPSoC architecture,

interconnecting PEs through a 2D-mesh topology, using a 32-bit flit
width. Each PE contains a RISC processor, a network interface
(NI), a DMA module, and a private memory (RAM) for code and
data. The PE may support Von Neumann and Harvard memory
organizations. The PE private memory is a true dual port memory.
In processors with a Von Neumann memory organization, as the
Plasma processor [9], the memory can be shared between the
processor and the NoC (through the DMA module). In a Harvard
organization, as the Microblaze processor, one of the memory ports
is shared with the DMA module, resulting in a smaller
communication performance compared to the Von Neumann
memory organization. It is important to remember the advantages of
the Harvard organization for computation, since instructions and
data are accessed in parallel, reducing stalls in the processor
pipeline.

Applications are modeled as task graphs A=<T,C> (example in
Figure 1), where T = {t1, t2, ..., tm} is the set of application tasks
corresponding to the graph vertices, and C= {(ti, tj, wij) | (ti, tj) ∈ T
and wij ∈ ℕ*} denotes the communications between tasks,
corresponding to the graph edges. An external MPSoC memory,
named task repository, contains all applications tasks (set T), which
are loaded into the system at runtime.

Figure 1 - Application modeled as a task graph.

Each PE runs a small operating system, microkernel,
responsible for task scheduling and communication between tasks.
Tasks communicate through message passing, using MPI-like
send/receive primitives, and microkernel services, as “Task
Allocated”, “Location Request”, “Message Request”, “Message
Delivery”. Non-blocking sends insert messages in the
communication queues (Figure 1), while blocking receives read
from the communication queues. Such communication scheme
reduces the overall NoC traffic, since a message is only injected
into the network when it is required. If the communication queues
are placed at the receiver side, messages could block the NoC when
the queues become completed filled.

The memory is organized in equally sized pages, favoring task
mapping and task migration. When a given task is required to be
mapped, it may use any available page in the PE set. In the same
way, if a task is required to be migrated from one PE to another, the
transmission of the page contents and the task context is sufficient
to ensure the correct task migration. All PEs have a parameterized
memory size, enabling to increase the number of tasks running
simultaneously at each processor, as well as the execution of large
applications.

IV. RESOURCE MANAGEMENT
One relevant features of the MPSoC design is how resources are

managed. NoC-based MPSoCs offer scalability at the hardware
level. However, the management of the MPSoC resources requires
scalable methods, to effectively extract the computational power
offered by dozens of processors. State-of-the-art proposals adopt
different approaches to tackle such problem, using the MPSoC

clustering as the most common approach [10][11].
The management of the MPSoC may vary from a centralized

approach (one PE responsible to manage all MPSoC resources) to a
distributed approach. The distributed management architecture
divides the MPSoC in n equally sized regions, named clusters,
defined at design time. At execution time, if a given application
does not fit in a cluster, the cluster may ask resources to adjacent
clusters. Therefore, the cluster size may increase at execution time,
according to the resources required by applications. When resources
became available in a given cluster, tasks belonging to applications
mapped in other clusters may be migrated to the cluster. Therefore,
PEs of the MPSoC may act as:
• LMPs (Local Master PEs): control the cluster, executing

functions such as task mapping, task migration, monitoring,
deadlines verification, and communication with other LMPs
and GMP;

• GMP (Global Master PE): contains all functions of the LMP,
and functions for the overall system management, such as
choose in which cluster a given application will be mapped,
control the available resources in each cluster, receive
debugging and control messages from LMPs, access the
application repository, and receive new applications requests
from an external interface;

• SP (Slave PEs): responsible for task execution. SPs may
execute k simultaneous tasks, being k the number of pages for
tasks.

When the MPSoC is specified with one cluster, the management
is centralized, without LMPs.

LMPs and the GMP do not execute applications tasks, only
system management. Therefore, they represent an overhead, and the
numbers of clusters must be carefully chosen. For example, in a
12x12 MPSoC (144 PEs), with 9 4x4 clusters, 9 PEs execute only
management. This represents a cost of 6.25% of PEs dedicated to
management. Smaller clusters induce a large overhead. Therefore,
distributed management is suited for large MPSoCs, and centralized
management for small/medium MPSoCs (up to 64 PEs) [4].

It is supposed that at least one task does not have dependences
on other tasks, being the initial(s) task(s) (Figure 1). According to
user requests, a new application may be requested to execute in the
system. The GMP executes a “cluster selection” heuristic to choose
the cluster that will receive the new application. The heuristic
choose the cluster that best fit the application in terms of available
resources. Once a given cluster is selected, the GMP sends the
application description to the LMP of the selected cluster. Two
mapping situations may arise: mapping of initial tasks and mapping
of remaining tasks. The initial task mapping searches for the SP
with the highest number of available resources around it. This
increases the probability of the remaining tasks of the application to
be mapped close to each other, reducing the communicating
distance between tasks, and therefore the communication energy.
The mapping of the remaining tasks adopts the PREMAP-DN
multi-task mapping heuristic [12] to select the SP to receive a new
task. This mapping heuristic minimizes the energy consumed in the
NoC, by approximating the tasks with higher communication
volume.

When the mapping heuristic cannot map tasks in the cluster due
to lack of available resources, the LMP of the cluster try to borrow
resources from neighbor clusters. This is a 5-step process:
1) The LMP of a cluster (LMPCL) sends a “loan request” message,

requesting resources to all LMPs in neighbor clusters
(LMPNBO).

2) Each LMPNBO search for available resources in theirs clusters. If
there is only one available resource, this resource is reserved to
be borrowed; otherwise, if there is more than one available
resource, the LMPNBO reserve the one as close as possible, in
number of hops, between the task to be mapped and the source
task in the cluster managed by LMPCL.

3) After the reservation, all LMPNBO send a “loan delivery”
message to the LMPCL, notifying the resource position, if it
exists.

4) The LMPCL chooses the closest resource from the one that
requested the task, sending a “loan release” message to all
LMPNBO that were not selected. If there are no available
resources in neighbor clusters, the search space increases,
extending it to the neighbors of the neighbor clusters, returning
to step 1.

5) Finally, the LMPCL send a “task allocation request” message to
the GMP requesting the task mapping on the borrowed
resource.

Therefore, the cluster size increases at runtime, because the
borrowed resource is now part of this cluster. This process
optimizes the system management, since applications can be
mapped in clusters, even if the cluster has no sufficient resources.
This process is named reclustering, which may expand the cluster
size with the above protocol, and restore the cluster size using task
migration.

V. SCENARIO-BASED VERIFICATION
This Section describes the process to automatically generate the

MPSoC, and to obtain the performance reports. From the designer
side point of view, a new feature inserted into the system (e.g. a
mapping heuristic) must be validated with a large set of MPSoC
configurations. From the application developer side point of view,
the performance of a set of applications running simultaneously in
the platform must be also evaluated for different MPSoC
configurations. The flow presented in Figure 2 enables the
automation of the MPSoC generation, simulation and analysis. The
flow is divided in 5 phases.

The first phase generates the scenarios with different
applications and different configurations of the MPSoC. The in-
house Scenario Generator tool has as inputs: (1) the project name;
(2) MPSoC size; (3) cluster size; (4) memory size; (5) page size; (6)
GMP Address; (7) configuration file containing the application set
that will be inserted at runtime in the MPSoC.

In the second phase, a second in-house tool MPSoC Generation,
is responsible for generating and compiling the hardware and
software of the MPSoC. As input, this phase receives the MPSoC
hardware description, the microkernel files, the applications C
codes, and the MPSoC configuration file for each scenario. The
configuration files contain the parameters defined at the first phase.
The MIPS processor is described with a SystemC instruction set

simulator, while all other modules are modeled in a cycle accurate
SystemC.

The result of the second phase is an executable file for each
scenario. The numbers in the Figure describing the result of the
second phase corresponds to the parameters of the first phase. For
example: (2) is the MPSoC size; (3) cluster size; (4) memory size;
etc.

The third phase simulates each scenario using its respective
executable file. Each simulation can be executed sequentially in the
same workstation, or distributed in a grid. The results of this phase
are performance reports for each SP, identifying the initial and final
time for each task/application. The report of the GMP contains also
the total execution time for the simulated scenario.

In the fourth phase, a script reads the performance reports for
each scenario, illustrating in a graphical view where each task was
mapped, together with its initial and final execution time. This
phase provides to the user an overview of how tasks were mapped
in the MPSoC, and the performance of each application. It is
possible to indicate in the script the simulation time, to obtain a
“picture” of the system in a given moment of the simulation.

In the last phase, another script extracts the performance
information from the reports and verifies if all applications have
finished. This phase also generates reports, charts, and tables used
to compare the simulated scenarios.

The script used in the last phase is able to automatically execute
phases 2, 3 e 4, using as input the configuration files generated
during phase 1. Therefore, this flow enables regression tests, since
it is possible to generate and simulate several MPSoCs
configurations without requiring any user interference. At the end,
analyzing the reports it is possible to verify if all scenarios passed
(enabling to debug the platform, evaluating the test-case with non
finished applications), or to evaluate the performance of a set of
applications using different configurations

VI. RESULTS
The employed benchmark is a MJPEG encoder, with five tasks.

Each SP is able to execute 3 simultaneous tasks. Table II details the
MPSoC configurations, varying the MPSoC size, management
strategy, and 30/60% load (it corresponds to the number of tasks the
MPSoC may execute simultaneously: |SPs|*|pages|). Therefore, 28
test cases were evaluated. The number of SPs per MPSoC size is
obtained subtracting the number of manager PEs from the total
number of PEs. For example, in a 20x20 MPSoC, with 25 4x4
clusters, there are 25 managers PEs (1 GMP and 24 LMPs).
Therefore, the number of SPs is 375. Considering this
configuration, the MPSoC is able to execute up to 1,125
simultaneous tasks (375 SPs * 3 pages per SP). For a load of 60%,
the simulation runs 675 tasks, which is equivalent of 135 instances
of the MJPEG running simultaneously.

Figure 2 – Framework for MPSoC automatic simulation and analysis flow, divided into five main phases.

Table II – MPSoC configurations used to evaluate the execution and
simulation times. In the distributed management the cluster size is 4x4.

MPSoC Size Centralized Management Distributed Management
N# of SPs N# of SPs

8x8 63 60
12x8 95 90
12x12 143 135
16x12 191 180
16x16 255 240
20x16 319 300
20x20 399 375

Figure 3 presents the execution time for all 28 test cases. The

execution time using the distributed management grows linearly
with the number of SPs (R2=0.988 for loads 30% and 60%). On the
other hand, the centralized management has a quadratic increase
(R2=0.999 for loads 30% and 60%). Such difference is due to the
load in the managers. Each LMP in the distributed version is
responsible for mapping, monitoring, and control messages. The
GMP in the centralized approach is overloaded due to execution of
a large number of task mappings (more than 1,000 tasks to be
mapped in the larger scenarios), and to control of the availability of
resources. In addition, in the centralized management scenarios, the
traffic around the GMP generates hot-spot regions, compromising
the communication performance, and in long-term the reliability of
the system. This result is a clear demonstration that distributed
management contributes to the scalability at the application level.

Figure 3 – Total execution time for all applications (in clock cycles), for

different MPSoC sizes, load and management techniques.

Figure 4 presents the simulation time for the 28 test cases. The
simulation time is presented in the y-axis, in seconds. The
simulation time grows exponentially with the number of PEs. Even
if this result shows the limitation to evaluate large MPSoCs with
clock cycle accuracy, it is important to note that the simulation of
375 SPs with 675 simultaneous tasks (60% load) took 4.7 hours
(17,164.28 seconds). Therefore, it is still reasonable to simulate an
MPSoC with a RTL level model, since it enables to evaluate
throughput, latency, jitter, power, and energy. The simulation time
of the centralized management is higher because the execution time
of these scenarios took longer (the simulation time is a function of
the number of events created during simulation).

To conclude this section, it is important to present the cost of
the reclustering process, specifically the migration process. The
total migration time is around 11,000 clock cycles, for a page size
equal to 32 KB. The performance during task migration is reduced,
since the task has to be stopped. After tasks migration, results
shown an average improvement in the applications’ throughput in
order of 18%.

Such results demonstrates the effectiveness of the distributed
management adopted in the MPSoC platform, enabling to have
clusters with variable size at run-time, and when possible restore the
initial cluster shape by migrating tasks. Even if the task migration
cost is some thousands of clock cycles, for the executing software
this amount of time is very small, and the penalty induced during
migration is quickly translated into performance gains.

Figure 4 – Simulation time for all applications (Xeon 64 bits, 4 cores, 32

GB, 3 GHz), for different MPSoC sizes, load and management techniques.

VII. CONCLUSIONS AND FUTURE WORKS
The presented framework for NoC-based MPSoC generation

and simulation enables to evaluate large platforms with an
acceptable simulation time. The MPSoC contains adaptive
techniques for management, enabling to parallelize tasks as
mapping, migration, and monitoring. The distributed management
enabled the addition of a large set of applications in the MPSoC,
with a linear increase in the total execution time. The total execution
time should theoretically be the same, regardless the number of
instances of the applications being executed. However, the
management plays an important role in the total execution time,
since the application must be read from the memory, mapped and
monitored. Therefore, in such large MPSoCs (e.g. 20x20), a
distributed management approach is mandatory.

Future works includes the integration of all tools of the
framework in a unified environment; enrich the performance reports
with communication performance parameters (as latency and
throughput); add QoS techniques in the MPSoC to control
applications deadlines. The use of more abstract models, employing
for example OVP, is research direction to reduce the simulation
time.

ACKNOWLEDGEMENTS
The author Fernando Moraes acknowledge the support granted

by CNPQ, processes 472126/2013-0 and 302625/2012-7; and
CAPES process 708/11.

REFERENCES
[1] Ben Atitallah, R.; et al. An Efficient Framework for Power-Aware

Design of Heterogeneous MPSoC. IEEE Transactions on Industrial
Informatics, v.9(1), pp.487-501, 2013.

[2] Ceng, J.; et al. MAPS: An integrated framework for MPSoC
application parallelization. In: DAC, 2008, pp. 754-759.

[3] Petry, C.; Wachter, E.; Castilhos, G.; Moraes, F.; Calazans, N. A
Spectrum of MPSoC Models for Design and Verification Spaces
Exploration. In: RSP, 2012, pp. 30-35.

[4] Castilhos, G.; Mandelli, M.; Madalozzo, G.; Moraes, F. Distributed
Resource Management in NoC-Based MPSoCs with Dynamic Cluster
Sizes. In: ISVLSI, 2013.

[5] Angiolini, F.; et al. An Integrated Open Framework for
Heterogeneous MPSoC Design Space Exploration. In: DATE, 2006.
6p.

[6] Roth, C.; et al. Modular Framework for Multi-level Multi-device
MPSoC Simulation. In: IPDPSW, 2011, pp.136-142.

[7] Joven, J.; et al. xENOC – An eXperimental Network-on-Chip
Environment for Parallel Distributed Computing on NoC-based
MPSoC Architectures. In: Euromicro, 2008, pp. 141-148.

[8] Lemaire, R.; Thuries, S.; Heiztmann, F. A flexible modeling
environment for a NoC-based multicore architecture. In: High Level
Design Validation and Test Workshop, 2012, pp. 140-147.

[9] Plasma CPI. Available at http://opencores.org/project,plasma
[10] Shabbir, A.; Kumar, A.; Mesman, B.; Corporaal, H. Distributed

Resource Management for Concurrent Execution of Multimedia
Applications on MPSoC Platforms. In: SAMOS, 2011, pp. 132-139.

[11] Fattah, M.; Daneshtalab, M.; Liljeberg, P.; Plosila J. Exploration of
MPSoC Monitoring and Management Systems. In: ReCoSoC, 2011,
3p.

[12] Mandelli, M.; Amory, A.; Ost, L.; Moraes, F. Multi-task dynamic
mapping onto NoC-based MPSoCs. In: SBCCI, 2011, pp. 191-196.

