Power Consumption Reduction in MPSoCs
through DFS

Thiago Raupp da Rosa, Vivian Larréa, Ney Calazans, Fernando Gehm Moraes

PUCRS — FACIN — Av. Ipiranga 6681 — Porto Alegre — 90619-900 — Brazil
thiago.raupp@acad.pucrs.br, vivian.larrea@acad.pucrs.br, ney.calazans@pucrs.br, fernando.moraes@pucrs.br

Abstract—The use of power management techniques is
mandatory in embedded devices, which must provide high
performance with low energy consumption. Due to the high
variability present in the applications workload executed by these
devices, this management should be executed dynamically. The
use of traditional dynamic voltage and frequency scaling (DVFS)
techniques proved to be useful in several scenarios to save energy.
Nonetheless, due to technology scaling that limits the voltage
variation and slow response of the DVFS schemes, the use of such
technique may become inadequate. As alternative, the use of
dynamic frequency scaling (DFS) may provide a good trade-off
between power savings and power overhead. This paper proposes
a distributed DFS scheme for NoC-based MPSoCs. Both NoC
and PEs have an individual controlling scheme. The DFS scheme
for PEs takes into account its computation and communication
load to dynamically change the operating frequency. In the NoC,
the DFS controller uses packet information to decide the router
operating frequency. Real and synthetic applications were used to
evaluate the proposed scheme. Results show that the number of
executed instructions is reduced up to 41%, with an execution
time overhead up to 18%. The power dissipation is reduced in
PEs up to 26% and in the NoC up to 76%. (4bstract)

Keywords-DFS, MPSoC, NoC, power management (key words)

I. INTRODUCTION AND RELATED WORK

Controlling the supply voltage and the operating frequency
can reduce the energy consumption in CMOS circuits. The
operating frequency has a linear impact on energy
consumption. On the other hand, voltage has a quadratic
impact, being the most used factor to reduce energy
consumption. Controlling these two variables at runtime is the
basis of DVFS techniques. However, the technology scaling,
coupled with the increasing manufacturing process variability,
may interfere in the design of DVFS techniques. These
variations can result in nominally correct DVFS schemes
failing to meet frequency or power targets [1][2]. Therefore,
DVEFS techniques must cope with design variability in
nanoscale technologies to guarantee correct system behavior.

Related work research showed that the DVFS technique
might be applied in several architectures, from single CPUs to
NoC-based MPSoCs. Architectures targeting single CPUs
present DVFS monitoring parameters in hardware (CPU
temperature [3], power supply current [4]), and software
(application history [5]), being the CPU workload one of the
most used parameter. On the other hand, most works
addressing NoC architectures use the load in the buffers as
monitoring parameter [6][7]. In multi-processed architectures,
the monitoring parameters are mostly implemented in software

978-1-4673-2608-7/12/$31.00 ©2012 IEEE

(tasks deadlines [8], application profile [9]), being [10] a work
that uses the load in the communication queues as monitoring
parameter.

Table 1 summarizes the characteristics of works that
present solutions for DVFS in NoC-Based MPSoCs. All works
present solutions for DVFS only in the processing element.
Apart from Beigné et. al. [14], the controlling algorithm is
related to the task characteristics. Also, most of the works do
not implement the hardware support needed for DVFS.
Puschini [12] uses a platform that already supports DVFS.
Goossens [11] implements a frequency scaling mechanism in
FPGA, but do not use voltage scaling, while [13] use a
simulation platform to generate the results.

Table 1 — DVFS techniques comparison for NoC-Based MPSoCs.

Author Monitoring Implemen- Hardware Memory
Parameter tation Support Architecture
Goossens Task Slack Hardware Partially Shared
[11] Implemented
Puschini Task
[12] Synchronization, Software Native Distributed
Latency, Temperature
Gligor Task Slack Software Not Shared
[13] Implemented
B[cllf]n © Hardware Implemented Distributed
Present | Communication load| Software/ .
work and CPU utilization | Hardware Implemented Distributed

This paper proposes and evaluates a DFS technique with
fixed system voltage. Contrary to the presented works, the DFS
is applied to the PEs (processing elements) and to the NoC. In
the PE, the frequency is adjusted according to each processor
workload and communication load. In the NoC, for each packet
received by the router, the proposed scheme is able to choose
the router operation frequency.

This paper is organized as follows. Section II presents the
reference MPSoC platform, modified to cope with the proposed
DFS scheme. Section III and IV present the DFS scheme at the
processing element and NoC, respectively. Section V presents
experiments and obtained results. Finally, section VI concludes
the paper and draw directions for future works.

II. SYSTEM ARCHITECTURE

The reference MPSoC [15] is a homogeneous NoC-based
MPSoC. Each PE contains the following modules: (i) a 32-bit
Plasma processor (MIPS-like architecture); (if) a local memory
(RAM); (iii) a DMA module, responsible for transferring the
task object code to the memory and messages to/from the NoC
from/to the local memory; (iv) a network interface (NI). The
Hermes NoC is used to interconnect the PEs.

Mauricio Ayala Rincon
978-1-4673-2608-7/12/$31.00 ©2012 IEEE

Mauricio Ayala Rincon

Figure 1 presents the proposed architecture for the PE with
DEFS controller. Initially, the router-PE interface was modified
to work according to the GALS paradigm. This is achieved by
adapting the existing local buffer in the NoC and NI to work as
a bisynchronous FIFO [16], and introducing two-flop
synchronizers in control signals. Besides this hardware
modification, the microkernel (operating system of the
processor) was modified to monitors the CPU utilization and
communication queue occupancy, storing them in memory-
mapped registers. Based on this information, the DFS
controller can take decisions and switch the frequency of the
processor dynamically.

Plasma PE

Router

not_scheduled,
Ppipe_ocup,
req_msg

clock_plasma

DFS Controller

synchronizers

Clock num
Generation den
I

restart

reference
freq

Router-PE GALS interface and the DFS controller responsible for
generating the PE frequencies.

Figure 1.

It is important to highlight that each individual clock
generation module receives the system clock as reference,
generating a new clock from it. The benefit of such approach is
that the global clock has to feed only the clock generation
modules, reducing significantly the global clock load, and
hence simplifying the clock tree generation and its power
consumption, which is responsible for, at least, 40% of the
power consumption in MPSoCs. The global system clock is
defined in the following sections as reference frequency.

A. Clock Generation

The clock generation module is instantiated at each PE and
router. This module uses as input the reference frequency. The
principle of the clock generation process is to achieve clock
division by simply omitting selected cycles of the reference
clock, as Figure 2 illustrates. Initially, inputs num_i and den_i
are natural numbers 3 and 4, respectively. This corresponds to
set the frequency of the clock generator to three-fourths (75%)
of the reference frequency. In other words, for each den i
reference clock cycles, num_i cycles are propagated to the
output clock. When the frequency needs to be changed, the
clock is stopped by asserting the restart signal. Finally,
releasing the restart signal, the new frequency is available at
the output clock.

eec [T U TUTUUUTUUUUTUUUTTUUTUU T
1)

X
X 2)
restart_i
clock_o
Figure 2. Example of the proposed clock generation process. Signal clock i
is the reference frequency and clock o is the output of the clock generator.

num_i 3

den_i 4

The main advantages of this clock generation module are
the low area overhead and a large set of generated frequencies.
For example, for num i and den i being 4-bit values the

module takes 107 cells for a 65 nm standard cell library from
ST Microelectronics. In this same example, 71 different
frequency values can be obtained. In addition, the clock output
is always stable, differently to what happens in standard DFS
methods, where the time required to stabilize a new frequency
can be significant. The proposed module is also glitch free by
construction.

I11. PE DFS CONTROLLER

The PE DFS controller computes the communication load
and CPU utilization level according to values provided by the
microkernel. The key parameter to control the PE frequency is
the communication load. Each PE contains a global vector in
the local memory, named pipe, controlled by the microkernel,
which stores the messages to be sent for the remote PEs. As
applications are modeled as task graphs, monitoring the pipe
occupation enables to adjust the data flows by regulating the
PE frequencies.

Table 2 summarizes the behavior of the PE DFS controller

(Figure 1). The controller evaluates the following parameters:

e Pending message requests from other tasks. This situation
takes place when the processor is not producing data to its
consumer task. When the microkernel receives a request to
deliver a message to a remote PE, and the message is not
in the pipe, the signal req_msg is asserted.

e Occupancy of the communication pipe. If the
communication pipe has a high occupancy, the processor
is producing messages at a higher rate than the consumer
tasks can consume, while the inverse scenario means a
lack of produced messages. Upper and lower
parameterizable thresholds define the high and low
occupancy states, respectively. Occupancy between these
values defines an operational state. This parameter, jointly
with pending message requests, defines the
communication load of the PE. The pipe occupation is
sampled using a parameterizable interval (in the present
implementation it corresponds to 4 time slices).

o CPU utilization. When the utilization is low, the CPU is
not executing any task or tasks are blocked, e.g., waiting
message(s) from other tasks. When the utilization is high,
tasks are using the processor at the maximum rate. Two
parameterizable thresholds define high, low and
operational CPU utilization states.

Table 2. DFS Controller behavior (‘|/1’ mean decrease/increase one
frequency step, ‘11’ means increase two frequency steps, ’=" means keep
frequency unchanged and ‘- denotes don’t care conditions).

Action in

Pending

Current Pipe

Previous Pipe

frequency | Message Occupancy Occupancy CPU Utilization

1- 1 0 high - "
2-] 0 operational low "
3-1 0 low _ Tow

-= 0 operational operational -

o= 0 low - operational
6-= 1 - - low
7-11 L - - operat./high
8-1 0 low - high
9-1 0 operational high .

Frequency decreases in three situations: (i) the pipe is
almost full (action 1 of Table 2); (ii) the pipe occupation is
increasing, i.e. in the previous evaluation its state was low and
the present state is operational (action 2); (iii) the pipe

occupation is almost empty and the CPU usage is low, meaning
that even at a lower frequency the data in the pipe is being
consumed (action 3).

Frequency increases in three situations: (i) existence of
pending messages with operational or high CPU utilization
(action 7) — the clock generator increases the frequency in two
steps; (ii) the pipe is almost empty and the CPU has high
utilization (action 8); (iii) the pipe occupation is dropping, e.g.
in the previous evaluation its state was high and the present
state it is operational (action 9).

Also, the DFS controller implements a communication
mechanism to balance power consumption and performance. It
takes into account that a consumer processor must receive the
data in a frequency that is not inferior to its operating
frequency. Thus, if the producer processor is operating at
higher frequency than the consumer processor, the message can
be sent at a lower frequency to save power. On the other hand,
if the producer is operating at a lower frequency than the
consumer, its frequency should be temporally increased to not
penalize the consumer performance. A set of signals
{msg_transfer, dma_active, rem_freq} are responsible for
accomplishing this action.

The reception of a packet with REQUEST MESSAGE
service (data request from other task mapped in another
processor) asserts the signal msg transfer. This packet
contains, among other fields, the frequency of the PE
requesting data. Such frequency is coded in the signal rem_freq
(remote frequency). According to the rem_freq the following
situations may occur:

e If rem freq is lower than the PE frequency, the PE
frequency does not need to be changed.

e If rem freq is higher than the PE frequency and there is
data in the pipe, the PE frequency is set to the rem freq
during the transmission of the message. The PE frequency
returns to the original frequency monitoring the dma_active
signal. When this signal returns to zero, it means the
DELIVER MESSAGE transmission has finished.

e If rem freq is higher than the PE frequency and there is no
data in the pipe, the rules of the FSM are used. In this case,
it is highly probable that the FSM applies the rule 7,
increasing by two steps the processor frequency, producing
data faster to the consumer.

To conclude the PE DFS controller, all control packets are
injected into the NoC at the reference frequency, making such
packets available to the target processor as soon as possible.

A. Multitask Support

In the work of Goossens et al. [11] the proposed DFS
scheme saves the task context when it is preempted. Later,
when the task is rescheduled, the frequency in which it was
operating before being preempted is set. Thus, for each task
executing in the processor, the controller may change the
operating frequency. However, this approach may present
problems when several tasks with different characteristics are
being executed in the same processor. In this case, at each time
slice, the processor may have its frequency drastically changed,
e.g. from the highest to the lowest available frequency. Thus,
the controlling scheme must adjust the processor to operate in a
frequency that satisfies the requirements of all tasks being

executed, changing the frequency as less as possible.

To avoid such issue, a simple solution in software was
adopted: limitation of the amount of resources that a given task
can use. Regarding to the CPU utilization, no modifications are
needed, since the round robin scheduler provides the same
amount of time for each task to execute, and the tasks are
preempted in case of blockages. On the other hand, the pipe
utilization needs to be controlled. To avoid the use of entire
pipe by a single task, the microkernel scheduler was modified
to also take into account the pipe occupation of the task to be
scheduled. Thus, the task is scheduled only if it is not using
more than a given percentage of the pipe.

Nevertheless, this exception is used only when there is
more than one task running in the processor, i.e. in mono-task
execution the task can use the entire pipe if needed. With this
modification the DFS controller is able to adjust the PE
frequency also in multi task scenarios.

1V. NoOC DFS CONTROLLER

Designing a router that may work at multiple frequencies
and communicate with neighbor routers working at different
frequencies requires adaptations on all input/output buffers. All
buffers (local, east, west, north and south) of the router have
been replaced by bisynchronous FIFOs to synchronize the
communication. In addition, it was necessary to modify the
router arbiter, which is responsible for requesting the frequency
switching.

Two strategies were evaluated for the router architecture
with DFS: (i) decentralized and (i7) centralized. In the
decentralized approach it is necessary to control each input
buffer independently. This approach is more flexible, enabling
different packets to be sent at different frequencies. However, it
requires one frequency controller and one clock generation
module per buffer, increasing area and power overheads. On
the other hand, the centralized approach induces lower power
and area overhead, since only one DFS controller is necessary,
but decreases the flexibility of the DFS approach. Experiments
conducted in the MPSoC favored the centralized approach,
since the packet injection ratio by PEs is frequently small
(below 10%). Therefore, the present work adopted the
centralized approach to control each router frequency.

The router architecture with a centralized DFS controller is
presented in Figure 3. The DFS controller is responsible for
defining the router frequency. It receives the frequency
information from each input buffer and the arbiter control
signals (clk_change, activity, header, selection, ack_header), to
set the correct operation frequency of the router (clk_r).

Each input buffer obtains its frequency from the received
packets, which carries in the header field the frequency value
that it needs to be transmitted (Figure 4). This value is an 8-bit
array, 4 bits for numerator and 4 bits for denominator, of the
required frequency level. This field was designed to cope with
the clock generation scheme presented in section II.A.

When the packet is received, the input buffer extracts the
frequency information and provides it to the DFS controller.
Next, the buffer sends a routing request to the arbiter and starts
waiting the acknowledgement from the arbiter. When the
arbiter receives the routing request, it sends a frequency

switching request to the DFS controller, and starts waiting for
the clock synchronization signal. Then, using the information
provided by all buffers and the frequency switching request, the
controller check from which port the routing request was made,
and stops the provided clock.

clk r clk_r

activ
header
NORTH
GALS FIFO
change 3
der 3

DFS Controller

LOCAL
GALS FIFO

Odi4sWvo [J 73 o
1SIM

T EAST
GALS FIFO

clk_r iookr
O umden i

i
header SOUTH | Sk F
GALS FIFO

Figure 3. Router architecture with DFS controller.

1st Flit 2nd Flit
[4bits__4bits 8 bits | 16 bits ‘
f T T 1

Num | Den Payload...

Target ‘ Size

Figure 4. Packet with frequency information.

The decision of changing the frequency is made comparing
the frequency required by the requesting input buffer with the
current router frequency. If the required frequency is lower
than the current frequency, the controller only informs the
arbiter that the clock is synchronized, without changing the
frequency. If the required frequency is higher than the current
frequency the controller replaces the values of numerator and
denominator of the clock generation module and, after
releasing the restart signal of clock generation module, informs
to the arbiter that the clock is synchronized. Lastly, the arbiter
routes the packet.

Nevertheless, when no traffic is being routed, the router
slow downs its frequency, going to the minimum available
frequency. To implement this mechanism, it is necessary to
monitor the router activity. This is achieved by monitoring the
buffers occupancies and packet receptions. The inactivity
comes from empty buffers and no packet reception in all ports
of the router. Also, after finishing the packet transmission, the
buffer reset the values of numerator and denominator to the
minimum available frequency. This is done to avoid that the
router stalls its operating frequency after finishing the
transmission of high frequency packets.

Thus, the NoC frequency controller is able to switch the
router frequency for each traffic being routed. Also, the
controller can identify the router activity and put the router in a
low power mode in case of inactivity, saving a significant
amount of energy. Yet, when two or more traffic are passing
through router, the controller will always select the higher
frequency between them, avoiding performance loss in the
network.

V.EXPERIMENTAL RESULTS

Several applications were evaluated using the proposed
DFS scheme, being presented results related to synthetic (6
tasks pipeline) and real (VOPD and MPEG) benchmarks. The

MPSoC was described in VHDL and synthesized using
Cadence tools targeting a 65 nm standard cell library. Power
results were obtained using Encounter RTL Compiler from
Cadence. Power estimation is performed using the switching
activity obtained through gate level simulation. Nine levels
compose the set of available frequencies, from 6.67 to 100
MHz (reference frequency). The other 7 frequencies are 90%,
75%, 60%, 50%, 40%, 25% and 10% of the reference
frequency. The parameters num i and den_i to achieve these
frequencies are defined in a table of the PE DFS controller.

A. Six Tasks Pipeline — one task mapped per PE

The six tasks pipeline has 6 tasks, named from T, to Tf.
This is a data flow application, where T, sends data to Ty, Tg
sends data for T¢, and so forth. Two scenarios were evaluated
using a 3x3 MPSoC: (1) all tasks having the same computation
workload; (2) three different computation workloads: low (Tp
and Tg), medium (T4 and Tp) and high (T¢ and Tg).

In scenario 1, with same computation workload, all tasks
except To and Tr had their frequencies increased to the
reference frequency. Since T, and Tr have lower
communication load compared to the other tasks, their
frequency stabilizes around 60% of the reference frequency.

Figure 5 shows the frequency behavior of each task for
scenario 2.

e i
z H
£ w0 — HE) —
o o
Time () A Time () B
10 100
E w e
H H
fo c E o —o
o o
o 0 w© w % o 0 o w0 %
Time () C Time) D
T w0 i
H]
T o fo
o o
Time () E Time () F

Figure 5. Frequency of PEs running the tasks belonging to the six tasks
pipeline application, with different tasks workload.

Tasks with higher computation workload (T¢ and Tg) had
their frequencies increased to the reference frequency. Tg
presented a small variation due to its lower communication
load. Tasks with medium computation workload (T, and Tp)
had their frequencies increased in the beginning of the
simulation. While Tp kept the frequency around 75% of the
reference frequency, T4 presents an oscillation in the beginning
of the simulation. This is explained by the time that T¢ needs to
increase its frequency and start consuming messages from Tg,
which also reflects in T . Later, T4 had its frequency stabilized
around 40% of the reference frequency due to the lower
communication load, compared to Tp. Tasks with low

computation workload (Tg and Tg) had their frequencies
decreased to around 40% of the reference frequency. This is an
expected behavior since these tasks need less time to produce
data. The execution time overhead, compared to the execution
with the whole system executing at the reference frequency is
around 12% in the first scenario and 3% in the second scenario,
as shown in Table 3 (last column). The number of executed
instruction is reduced by 4.4% and 34.5% respectively. The
reduction in the number of executed instructions comes from
processors that reduced their frequency, resulting in a smaller
number of executed instructions by the microkernel when there
is no task to be scheduled.

Table 3. Six Tasks Pipeline Evaluation.
Scenario IAnstrLAlctAions Reduction E?(ecution Overhqad
(in millions) (Instruct.) Time (ms) (Exec. Time)
| Without DFS 20.00 - 41.06 -
With DFS 19.12 4.40% 45.96 11.93%
) Without DFS 36.00 - 70.03 -
With DFS 23.56 34.56% 72.29 3.23%

Table 4 shows the obtained results in terms of power
dissipation for the second scenario. The total power reduction
in the system was around 25% (5.7% by NoC and 19.3% by
PEs). The power reduction in CPUs is similar to the reduction
in number of executed instructions (~32% and ~34%),
however, as the RAM memory had lower power reduction
(~16%) and it is the module that has the highest power
dissipation, the PEs presented a power reduction of 20.85%.
Although the achieved NoC power reduction is around 73%, its
contribution in the total power reduction is only around 5%.

Table 4 — Power dissipation results for six tasks pipeline application.

27.70% and induces 18.33% overhead in execution time.

Table 5 — Number of executed instructions and execution time results.

S . Execution Time Executed Instructions
cenario R

(ms) (in millions)
No DFS 266.30 313.90
With DFS 315.10 226.94
Difference +18,3% 277 %

Similarly to the first benchmark, the reduction in power
dissipation is nearly the same of the number of executed
instructions, especially when only the CPUs are taken into
account (27.7% and 26.6% respectively). The power reduction
in the NoC was around 75%. The relation between NoC
dissipation and PEs dissipation is illustrated in Figure 7. Again,
the reduction of NoC power dissipation reflects in a small
fraction of the total power reduction. In this application, the
total power reduction for the whole system is 29.53%, being
5.54% the NoC contribution and 23.99% the PEs contribution.

Table 6 — Power dissipation results for VOPD application.

Total Power (mW)
RAM CPU DFS Controller PEs NoC
With DFS 83.04 17.97 2.46 105.73 3.15
Without DFS 99.08 26.64 - 133.58 11.48
Reduction 16.19% | 32.53% - 20.85% 72.58%

Figure 6 shows the relation for the power consumption with
and without the proposed DFS scheme. It can be seen that the
contribution of the PEs power dissipation is much larger than
the NoC. Considering only the obtained power reduction, the
contribution of PEs power reduction is more than 90% and the
contribution of the NoC is less than 10 %.

133,58 mwW

140 A—
105 73mwW
120
100
m PEs
60 NoC
0 3,15 mw 11,48 mW
20 '

With DFS

Power (mW)

Without DFS

Figure 6. PEs and NoC power dissipation comparison for six tasks pipeline
application.

B. VOPD — one task mapped per PE

This application was evaluated in an MPSoC of size 4x4,
using 12 processors. The task mapping was performed so that
the initial tasks are the first to be allocated (VLD, ARM), and
the final tasks (PAD, VOP-Rec and VOP-Mem) are the last one
to be mapped. Table 5 presents the results in terms of number
of executed instructions and execution time. The proposed
scheme reduced the number of executed instructions by

Total Power (mW)
RAM CPU DFS Controller PEs NoC
With DFS 163.52 34.55 4.92 206.98 5.48
Without DFS 219.93 45.82 - 279.31 22.18
Reduction 25.31% | 26.60% - 25.89% 75.29%
279,31 mW
300 A—
0 zns 98 mW
S
é e m PEs
a 150
5 100 NoC
2 5,48 mW 22,18 mW
50
¢’
With DFS Without DFS

Figure 7 — PEs and NoC power dissipation comparison for VOPD application.

C. Partial MPEG Filter — multitask execution

This application was evaluated in three different scenarios.
The first scenario evaluates tasks with similar characteristics
mapped in the same processor, while the second scenario
evaluates tasks with different characteristics mapped in the
same processor. The third scenario evaluates the MPEG
execution in the presence of another application in the system
(disturbing application).

The reduction in the number of executed instructions and
execution time overhead are presented in Table 7. The first two
scenarios presented similar reduction in the number of
executed instructions, and the third scenario presents a smaller
reduction due to the concurrent application executing with the
disturbing application. The reduction in the number of executed
instructions ranges from 25% to 41%, while the execution time
overhead ranges from 8.9% to 12%.

Table 7 — Number of executed instructions and execution time results for the
MPEG application in multi task execution.

Scenario IAnstrLAlctAions Reduction E?(ecution Overhqad
(in millions) (Instruct.) Time (ms) (Exec. Time)
1 Without DFS 23.03 - 85.45 -
With DFS 13.56 41.12% 95.63 11.91%
2 Without DFS 22.97 - 85.40 -
With DFS 13.55 40.93% 93.01 8.91%
3 Without DFS 37.99 - 85.54 -
With DFS 28.14 25.93% 95.80 11.99%

Table 8 present results for power dissipation (3rd scenario).
The power reduction in PEs was around 10%, while in the NoC
it was around 65%. Similarly to the previous results,
considering only the savings in the CPUs, the reduction in the
number of executed instructions is similar to the power savings.
However, the small saving in the RAM memory reduces the
average reduction in PEs.

Table 8 — Power dissipation results for the third scenario of MPEG application
in multi task execution, with and without the proposed DFS scheme.

Total Power (mW)
RAM CPU DFS Controller PEs NoC
With DFS 75.64 16.90 2.10 96.77 242
Without DFS 78.50 22.87 - 107.62 7.02
Reduction 3.64% 26.12% - 10.08% | 65.56%

The relation between NoC dissipation and PEs dissipation
is illustrated in Figure 8. As presented before, the reduction in
NoC power dissipation contributes only as a small percentage
of the total power savings. The total power savings for the
whole system was 13.48%, being 9.47% from PEs and 4.01%
from the NoC.

107 62 mwW

= PEs
NoC
7 02 mw

Without DFS

96 77 mW

100

80

60

40

20 2,42 mW

With DFS

Power (mWw)

Figure 8 — PEs and NoC power dissipation comparison for MPEG and 4 tasks
pipeline applications in multitask execution (scenario 3).

VL CONCLUSION

This work proposed a DFS scheme for NoC-Based
MPSoCs and evaluated it through synthetic and real application
scenarios. The DFS scheme is applied in the PE, taking into
account the communication and utilization loads, and in the
NoC, using packet information to adjust the routers frequency
independently. Also, a clock generation scheme was presented
and used to enable the DFS at routers and PEs.

The results for mono task execution show that the proposed
DFS scheme is able to tune the frequency of each processor in
the MPSoC according to the application characteristics.
Decrease the operating frequency of a given processor, leads to
decrease the power dissipation. However, with the induced
execution time overhead, the application performance is
penalized. Thus, the DFS controller scheme must induces as
less as possible execution time overhead, to maximize both
power and energy savings. Considering all conducted
experiments (some not presented due to paper length
limitation), the reduction in the number of executed
instructions ranges from 4.4% to 65.1%, while the execution
time overhead ranges from 3.2% to 18%. It is important to
highlight that the NoC power savings was around 70% for all
applications. This surprisingly result is easily understandable,
since most of the time PEs are computing data and not
transmitting it. In this way, routers are operating at a lower
frequency most of time. So, simple DFS schemes may be
applied to NoCs to achieve important power savings.

The reductions observed for multi task execution are
smaller to the mono task execution, due to the resource sharing

in PEs and higher NoC traffic. The reduction in the number of
executed instructions ranges from 25% to 41%, and the
execution time overhead ranges from 0.63% to 11.99%. The
average NoC power dissipation was 65.5%, against the 70% in
mono task execution. Still, the proposed DFS scheme for the
NoC presents significant power savings.

Future works include: (i) evaluate variable sampling period
for the DFS controller; (i7) implement higher level methods to
evaluate power in PEs and NoC; (iii)) improvement of the
proposed multi task policy; (iv) link the proposed method to
application deadlines, enabling the DFS controller to select the
appropriate PE frequency; (v) evaluate the method with more
complex processors.

ACKNOWLEDGMENTS

The Author Fernando Moraes acknowledge the support of
CNPq and FAPERGS, projects 301599/2009-2 and 10/0814-9,
respectively.

REFERENCES

[1] Herbert, S.; Marculescu, D. "Variation-aware dynamic voltage/
frequency scaling". In: HPCA, pp. 301-312, 2009.

[2] Garg, S.; Marculescu, D.; Marculescu, R.; Ogras, U."Technology-driven
limits on DVFS controllability of multiple voltage-frequency island
designs: A system-level perspective". In: DAC, pp. 818-821, 2009.

[3] Shu, L; Li, X. "Temperature-aware energy minimization technique
through dynamic voltage frequency scaling for embedded systems". In:
ICETC, pp. V2-515-V2-519, 2010.

[4] Pourshaghaghi, H.R.; de Gyvez, J.P. "Dynamic voltage scaling based on
supply current tracking using fuzzy Logic controller". In: ICECS, pp.
779-782, 2009.

[5] Salehi, M. E.; Samadi, M.; Najibi, M.; Afzali-Kusha, A.; Pedram, M.;
Fakhraie, S. M. "Dynamic Voltage and Frequency Scheduling for
Embedded Processors Considering Power/Performance Tradeoffs".
IEEE Transactions on Very Large Scale Integration Systems, vol.19,
no.10, pp. 1931-1935, Oct. 2011.

[6] Garg, S.; Marculescu, D.; Marculescu, R. "Custom Feedback control:
Enabling truly scalable on-chip power management for MPSoCs," In:
ISLPED, pp. 425-430, 2010.

[71 Yin, A. W.; Guang, L.; Nigussie, E.; Liljeberg, P.; Isoaho, J.; Tenhunen,
H. "Architectural Exploration of Per-Core DVFS for Energy-
Constrained On-Chip Networks". In: DSD, pp.141-146, 2009.

[8] Chabloz, J. M.; Hemani, A. "Distributed DVFS using rationally-related
frequencies and discrete voltage levels". In: ISLPED, pp. 247-252, 2010.

[91 Kong, J.; Choi, J.; Choi, L.; Chung, S. "Low-Cost Application-Aware
DVES for Multi-core Architecture". In: ICCIT, pp. 106-111, 2008.

[10] Alimonda, A.; Carta, S.; Acquaviva, A.; Pisano, A.; Benini, L. "A
Feedback-Based Approach to DVFS in Data-Flow Applcations". IEEE
Transactions on Computer-Aided Design of Integrated Circuits and
Systems, vol. 28, no. 11, pp. 1691-1704, Nov. 2009.

[11] Goossens, K.; She, D.; Milutinovic, A.; Molnos, A.; "Composable
Dynamic Voltage and Frequency Scaling and Power Management for
Dataflow Applications." In: DSD, pp. 107-114, 2010.

[12] Puschini, D.; Clermidy, F.; Benoit, P.; Sassatelli, G.; Torres, L.
"Temperature-Aware Distributed Run-Time Optimization on MP-SoC
Using Game Theory". In: ISVLSI, pp.375-380, 2008.

[13] Gligor, M.; Fournel, N.; Petrot, F. "Adaptive Dynamic Voltage and
Frequency Scaling Algorithm for Symmetric Multiprocessor
Architecture”. In: DSD '09, pp. 613-616, 2009.

[14] Beigné, E.; Clermidy, S.; Miermont, P. “Dynamic Voltage and
Frequency Scaling Architecture for Units Integration within a GALS
NoC”. In: NOCS, 2008.

[15] Carara, E.A.; de Oliveira, R.P.; Calazans, N.L.V.; Moraes, F.G.
"HeMPS - a framework for NoC-based MPSoC generation". In: ISCAS,
pp. 1345-1348, 2009.

[16] Chelcea, T.; Nowick, S. "A low latency FIFO for mixed-clock systems".
In: Computer Society Workshop on VLSI, pp. 119-126, 2000.

