
Predictive Dynamic Frequency Scaling for
Multi-Processor Systems-on-Chip

Gabriel Marchesan Almeida∗, Rémi Busseuil∗, Everton Alceu Carara†, Nicolas Hébert∗, Sameer Varyani∗,
Gilles Sassatelli∗, Pascal Benoit∗, Lionel Torres∗, Fernando Gehm Moraes†

∗Laboratory of Informatics, Robotics and Microelectronics of Montpellier (LIRMM) - Department of Microelectronics
Email: {firstname.lastname}@lirmm.fr

†Pontifical Catholic University of Rio Grande do Sul (PUCRS) - Faculty of Informatics
Email: {firstname.lastname}@pucrs.br

Abstract—This paper proposes a novel strategy for optimizing

resources in Multi-Processor Systems-on-Chip (MPSoC). The

approach is based on using control-loop feedback mechanism

to maximize the efficiency on exploiting available resources such

as CPU time, operating frequency, etc. Each Processing Element

(PE) in the architecture is equipped with a frequency scaling

module responsible for tuning the frequency of processors at

run-time according to the application requirements. Results show

the system’s capability of adapting to disturbing conditions.

For validation purposes we have implemented a multi-threaded

MJPEG decoder together with an ADPCM audio decoder and a

FIR.

I. INTRODUCTION

Dynamic Frequency Scaling (DFS) is a widely used tech-
nique aimed at adjusting computational power to application
needs. It is often associated to Dynamic Voltage Scaling (DVS)
therefore enabling to achieve significant power reductions
when computing demand is low; some cited benefits also
comprise the reduction of thermal hotspots that participate in
the accelerated aging of the circuits due to the thermal stress.

In multicore systems such as general purpose processors and
high performance embedded processors, the operating system
is responsible of dynamically adjusting the frequency of each
processor to the current workload. This is facilitated by the
presence of dedicated hardware monitors that the OS can
rapidly access. In Linux based systems, two popular policies
are used at kernel-level: on-demand and conservative. The on-
demand governor switches to the highest available frequency
whenever a load is detected whereas the conservative policy in-
crementally increases the frequency in a step-by-step fashion,
yielding to better power savings at the expense of a lesser
reactivity. Such schemes are possible in centralized shared
memory systems only as a unique operating system has an
immediate global observability of the current system state.

In distributed memory multiprocessor systems where com-
munications take place through exchanged messages, such
techniques cannot be applied due to the difficulty of obtaining
an instant snapshot of the system workload due to commu-
nication delays, etc. Consequently, in such systems DFS is
decided at design-time based on a number of possible run-
time scenarios (defined by a task mapping or selection of
algorithms, etc.). This approach, although efficient, is restric-
tive mostly because of its capability of handling a limited

set of scenarios. The growing interest for highly adaptive
multiprocessor systems capable of taking decisions online
(such as task migration for load balancing) based on possibly
time-changing criteria challenge these approaches and demand
for better flexibility.

The work presented in this paper relies on such an MPSoC
system that has been proposed by the authors [1]. It aims
at devising a smart distributed frequency scaling strategy that
makes it possible to meet real-time application requirements in
the presence of perturbations originated from the continuous
adaptation process that the system undergoes, such as task
migrations.

The paper is organized as follows. Next section presents the
related work. Section III describes the proposed architecture.
Section IV discusses the PID controller and presents the
system model. Experimental results are presented in Section
V while conclusions are drawn in Section VI.

II. RELATED WORK

Recently, researchers have put focus on adaptation tech-
niques in order to cope with dynamic and unpredictable be-
haviors that can appear in nowadays embedded systems. This
section presents some work that has been conducted in this
direction using techniques such as task migration mechanisms
and dynamic voltage and frequency scaling.

A. Task Migration Mechanisms

A number of contributions in the literature based on dis-
tributed memory systems have used shared memory as a means
for enabling task migration [2] [3] [4]. In [3] each core runs a
single operating system instance in its logical private memory.
Processor cores execute tasks from their private memory and
explicitly communicate with each other by means of shared
memory. The target platform uses a shared bus as interconnect.

In the case of distributed memory MPSoCs, in [5] we have
proposed an adaptive strategy that is responsible for making
decisions at run-time. Decisions are taken by processors in
a distributed fashion and relate mostly to application perfor-
mance. In [1] authors address both the benefits brought by
task migration mechanisms as well as the associated perfor-
mance penalty in a purely distributed homogeneous MPSoC
architecture. Taking into account the future homogeneous

978-1-4244-9472-9/11/$26.00 ©2011 IEEE 1500

MPSoC systems, scalable architectures with purely distributed
memory system are suitable. To the best of our knowledge,
our architecture is the only one with a purely distributed
memory system which does not rely on shared memory for
enabling task migration [1]. Instead, it uses the NoC as a
communication link where the tasks are transmitted during
the migration process.

B. Dynamic Voltage and Frequency Scaling (DVFS)

DVFS has been a widely applied technique for reducing
power consumption in many domains, especially those con-
cerning micro-architectures such as embedded systems. In [6]
authors show a technique for minimizing the total power con-
sumption of a Chip Multiprocessor (CMP) while maintaining
a target average throughput. The proposed solution relies on
a hierarchical framework, which employs core consolidation,
coarse-grain dynamic voltage and frequency scaling (DVFS).

Adaptability has been explored under a number of aspects
in embedded systems, ranging from adaptive modulation used
in the future 3GPP-LTE standard (SDR for software defined
radio) [7] to adaptive cores instantiation in dynamically recon-
figurable FPGAs [8].

C. Paper Contribution

Most of the proposed strategies are based on a shared
memory scheme. The system elects a master node which is
responsible for controlling the frequency of each processor
in the architecture. Others existing solutions have pre-defined
states in which processors change the frequency whenever
a given condition is respected. Our approach differs of the
others by the following reasons: 1) there is no master in the
architecture, so that decisions are taken in a distributed way.
Each processing element (PE) in the architecture controls its
own frequency; 2) system optimizations are not global since
there is no centralized control of the system, making system
management more difficult.

This paper presents two major contributions:
1) A novel and purely distributed memory architecture with

adaptation capabilities driven by local PID controllers;
2) Analyze and discuss the benefits of using such stra-

tegy on a Homogeneous MPSoC architecture running
audio/video applications;

III. SHOP ARCHITECTURE

The key motivations of our approach are scalability and
adaptability; the system presented in the rest of this paper is
built around a distributed memory/message passing system that
provides efficient support for task migration. For these reasons
the architecture is named SHoP (Self-adaptive Homogeneous

Platform). This system aims at achieving continuous, transpa-
rent, and decentralized run-time Task placement on an array
of processors for optimizing application mapping according
to various potentially time-changing criteria. Fig. 1 presents a
structural view of the SHoP architecture.

The NPU is built of two main layers, the network layer
and the processing layer. The network layer is essentially a

NPU3

R

NPU6

R
NPU7

R
NPU8

R

NPU5

R
NPU4

R

NPU0

R
NPU1

R
NPU2

R

PLASMA
PROCESSOR

FREQUENCY
SCALING

RAM

R
HERMES

NoC

RTOS

TASK 1

TASK 2

…

TASK N

NETWORK PROCESSING UNIT

RAM

FEATURES:
!  32 BITS MIPS R-3000 LIKE CPU
!  HAMILTONNIAN ROUTING ALGORITHM;
!  NO MEMORY MANAGEMENT UNIT (MMU);
!  NO CACHE;
!  FREQUENCY SCALING;
!  GLOBALLY ASYNCHRONOUS
 LOCALLY SYNSCHRONOUS (GALS);

Fig. 1: Structural View of the SHoP Architecture

compact routing engine based on the Hamiltonian Routing
Algorithm [9]. The Network-on-Chip (NoC) used in this work
was proposed in [10].

IV. SYSTEM MODEL

A proportional-integral-derivative controller (PID con-
troller) is a generic control-loop feedback mechanism (con-
troller) widely used in industrial control systems. A PID
controller calculates an error value as the difference between
a measured process variable and a desired setpoint. The
controller attempts to minimize the error by adjusting the
process control inputs. In the absence of knowledge of the
underlying process, a PID controller is a suitable controller
[11]. However, for best performance, the PID parameters used
must be tuned according to the nature of the process to be
regulated.

In this paper we propose the usage of a PID controller for
adjusting the appropriated frequency of the processors at the
same time as deadline miss ratio is reduced. The proportional,
integral, and derivative terms are summed to calculate the
output of the PID controller. Defining u(t) as the controller
output, the final form of the PID algorithm is:

u(t) = MV (t) = Kpe(t) +Ki

� t

0
e(τ)dτ +Kd

d

dt
e(t) (1)

1) Proportional gain, Kp: larger values typically mean faster
response since the larger the error, the larger the proportional
term compensation. 2) Integral gain, Ki: larger values imply
steady state errors are eliminated more quickly. 3) Derivative

gain, Kd: larger values decrease overshoot, but slow down
transient response and may lead to instability due to signal
noise amplification in the differentiation of the error. Fig. 2
summarizes a traditional PID controller.

Most applications in embedded systems are based on soft-
real time constraints. Actual architectures have to be capable
of adapting to avoid situations where deadlines are missed.
In the proposed strategy, applications requirements are taken
into account aiming to provide QoS (Quality-of-Service). As
entry point (setpoint in Fig. 2), the system is fed with the

1501

DESIRED
THROUGHPUT

SETPOINT

 OBTAINED
THROUGHPUT

FREQ

FREQUENCY
SCALING

THROUGHPUT
MONITORING

PID CONTROLLER

Fig. 2: PID Controller

application requirements, e.g. the minimal throughput the
application requires to ensure the functionality of the system
in a reliable way.

The system then calculates an error value which is obtained
by the difference between the desired and obtained throughput.
As output of the PID controller a frequency value is indicated.
This value is sent to the frequency scaling module which will
be responsible for scaling up and down the frequency of the
processor to cope with application requirements. The proce-
dure is then repeated and the obtained throughput gradually
gets closer to the desired throughput. This is explained by
the fact that after each iteration the error value is reduced
assuming that the values of P , I and D have been correctly
chosen. Fig. 3 presents an abstract system model of the
proposed strategy for each Network Processing Element (NPU)

in the architecture.

TASKi

DATA IN DATA OUT

THROUGHPUT
MONITORING

PID
CONTROLLER

FREQUENCY
SCALING FREQ

SYSTEM CLOCK

CONFIGURATION

NETWORK PROCESSING UNIT

Fig. 3: System Model

Basically each running application is composed of one or
multiple tasks. Task are monitored by a throughput monitoring
that is responsible for calculating tasks performance in a non-

intrusive mode. This information is passed to the PID con-
troller which will be responsible for choosing the appropriated
frequency in order to speed up or slow down processing. This
strategy can be suitable for power saving in embedded systems.

Fig. 4 illustrates an overview of the proposed approach.
As previously mentioned, there is one PID controller devoted
to each task in the system that must ensure soft-real time
constraints. In this example there is one task per NPU, so
one PID controller for each processor is required. In the case
that there are multiple tasks in the same NPU, we could build
a system with multiple PID controllers in the same NPU, each
one being responsible for contributing as a factor that will be
added to the final result.

The strategy consists in deciding controller parameters on
a task basis. To this purpose, a simulation of the MPSoC

TASKi

PID CTRL FS

SYSTEM CLOCK

TASKi

PID CTRL FS

SYSTEM CLOCK

TASKi

PID CTRL FS

SYSTEM CLOCK

TASKi

PID CTRL FS

SYSTEM CLOCK

TASKi

PID CTRL FS

SYSTEM CLOCK

TASKi

PID CTRL FS

SYSTEM CLOCK

TASKi

PID CTRL FS

SYSTEM CLOCK

TASKi

PID CTRL FS

SYSTEM CLOCK

TASKi

PID CTRL FS

SYSTEM CLOCK

R R R

R R R

R R R

FS: FREQUENCY SCALING PID CTRL: PID CONTROLLER

Fig. 4: Distributed PID Controllers

system is executed in order to obtain the step response. Fig. 5
shows the cycle-accurate simulation results and the first order
extracted model that is used for the process (Fig. 2). Based on
that high-level model, a number of different configurations of
controllers can be explored, each of which exhibits different
features such as speed, overshoot, static error.

0 1 2 3 4 5 6

140

160

180

200

220

240

260

280

300

TIME (s)

TH
RO

UG
HP

UT
 (K

B/
s)

MEASURED THROUGHPUT
FREQUENCY CHANGING
THEORETICAL THROUGHPUT

Fig. 5: Obtained Throughput vs Theoretical Throughput
The values of P , I and D have been chosen to increase

the reactivity of the system. Fig. 6 presents the PID response
according to P , I and D values.

0 1 2 3 4 5 6 7

120

140

160

180

200

220

240

260

280

300

TIME (s)

TH
R

O
U

G
H

PU
T

(K
B/

s)

K
p
=500 ,K

i
=50, K

d
=0

K
p
=800, K

i
=5, K

d
= 0.8

K
p
=50, K

i
=15, K

d
= 3

Fig. 6: PID Controller Response
Assuming that the setpoint of the system is around 260KB/s

we can observe that in the first case where P = 500, I = 50
and D = 0, the system converges to the setpoint throughput

rapidly. As result we observe an overshoot in terms of per-
formance. In the second scenario where P = 800, I = 5 and
D = −0.8, due the fact that the value of P is much bigger than

1502

I , we can also observe an overshoot in terms of performance.
The system throughput presents a high oscillation due to the
small value of I . At least, when P = 50, I = 15 and
D = −3 we see that system throughput increases slowly. This
is explained by the fact that the value of P is very small and
then the convergence time is longer. Based on this information
we have chosen to use the first controller, because it converges
to a stable system relatively fast.

V. CASE STUDIES AND RESULTS

Fig. 7 illustrates the validation scenario. The system exe-
cutes three applications simultaneously (ADPCM, FIR and
MJPEG decoder). There are also two tasks (Split) and (Join),
responsible for splitting and joining packets respectively. To
analyze the reactiveness of the PID controller, two disturbing
tasks, P1 and P2, are inserted into the system, and executed
simultaneously with the benchmark application.

3

7 8

2

0

CTRL 1

5

R

SPLIT

R

4

R

1

R

ADPCM

FIR

DMJPEG S1

JOIN

6

R R

R

R

R

P1

P2

P2

DMJPEG S2

DMJPEG S3

CTRL 2

PERTURBATION
TASKS

APPLICATION
TASKS

Fig. 7: Task Migration With PID Controller
Three different scenarios (S1, S2 and S3) have been created.

In all three scenarios the application processes 4 images of 804
bytes of size each. Fig. 8 presents the obtained throughput for
such scenarios. In S1 there is no perturbation in the system
the obtained average throughput is around 125KB/s. In S2

one of the two perturbation task (P2) is then migrated to
the NPU where all three tasks of the MJPEG application are
currently running. The task migration occurs at 0.73s. We can
observe that after P2 has been migrated, the throughput of
the system decreases downto 80KB/s. In the third scenario we
use the proposed PID controller in order to try to compensate
the throughput shoot as fast as possible. We can observe
that right after the migration, system throughput starts going
down and then the controller increases the frequency of the
processor to reach the minimal throughput, defined as setpoint.
We can clearly see that by using PID controller the system
is capable of adapting itself to situations where perturbations
might appear. As final result, the system gets stable and in
average the obtained throughput after regulation is around
120KB/s, representing a gain of almost 50% compared to the
scenario without PID controller.

VI. CONCLUSIONS

In this paper we have proposed a strategy for better ex-
ploiting architecture resources in a purely distributed memory

Fig. 8: Task Migration Impact

homogeneous MPSoC architecture. It presents promising re-
sults regarding to the adaptability of the system. We have
demonstrated the efficiency of the proposed PID controller
by presenting three different scenarios. For validating our
approach we have implemented a multi-threaded version of the
MJPEG decoder together with an ADPCM and FIR application
which exchanges message using a message passing interface
(MPI). Results shown that by using the proposed strategy,
obtained throughput is very close to the expected throughput in
scenarios where perturbations are not considered. In scenarios
where perturbations are taken into account, we have shown that
the system is capable of reacting to the throughput change by
means of tuning processor frequency at run-time.

REFERENCES

[1] G. Marchesan Almeida and Rémi Busseuil et al. Evaluating the impact
of task migration in multi-processor systems-on-chip. In SBCCI’10:

Proceedings of the 23rd symposium on Integrated circuits and system

design, pages 73–78, São Paulo, Brazil, 2010. ACM Computer Society.
[2] S. Bertozzi and A Acquaviva. Supporting task migration in multi-

processor systems-on-chip: A feasibility study. In DATE ’06. Proceed-

ings, volume 1, pages 1–6, 2006.
[3] A. Acquaviva, A. Alimonda, S. Carta, and M. Pittau. Assessing task

migration impact on embedded soft real-time streaming multimedia
applications. EURASIP J. Embedded Syst., 2008:1–15, 2008.

[4] M. Pittau, A. Alimonda, and S. Impact of task migration on streaming
multimedia for embedded multiprocessors: A quantitative evaluation. In
ESTImedia, pages 59–64. IEEE, 2007.

[5] G. Marchesan Almeida and G. Sassatelli et al. An adaptive message
passing mpsoc framework. International Journal of Reconfigurable

Computing, Volume October, 2009.
[6] Mohammad G. and Ehsan P. Minimizing the power consumption

of a chip multiprocessor under an average throughput constraint. In
International Symposium on Quality Electronic Design. IEEE, 2010.

[7] F. Clermidy and Lemaire. An open and reconfigurable platform for 4g
telecommunication: Concepts and application. In DSD ’09: Proceedings

of the 2009 12th Euromicro Conference on Digital System Design, pages
449–456, Washington, DC, USA, 2009. IEEE Computer Society.

[8] D. Puschini and F. Clermidy. Dynamic and Distributed Frequency
Assignment for Energy and Latency Constrained MP-SoC. In DATE’09,
pages 1564–1567, Nice, France, 04 2009.

[9] X. Lin, P. K. McKinley, and L. M. Ni. Deadlock-free multicast wormhole
routing in 2-d mesh multicomputers. IEEE Trans. Parallel Distrib. Syst.,
5(8):793–804, 1994.

[10] F. Moraes, N. Calazans, A. Mello, L. Möller, and L. Ost. Hermes: an
infrastructure for low area overhead packet-switching networks on chip.
Integration, the VLSI Journal, 38(1):69–93, 2004.

[11] Stuart Bennett. A History of Control Engineering, 1800-1930. Institution
of Electrical Engineers, Stevenage, UK, UK, 1979.

1503

	MAIN MENU
	Conference Guide
	Table of Contents
	Author Index
	Session Chair Index
	Keyword Index

	Search
	Print
	View Full Page
	Zoom In
	Zoom Out
	Help

