
Exploring Heterogeneous NoC-based MPSoCs: from
FPGA to High-Level Modeling

Luciano Ost1, Gabriel Marchesan Almeida1, Marcelo Mandelli2, Eduardo Wachter2; Sameer Varyani1,
Gilles Sassatelli1, Leandro Soares Indrusiak3, Michel Robert1, Fernando Moraes2

1 LIRMM – 161 rue Ada, Cedex 05 34095 Montpellier, France
{ost, marchesan, sassatelli, michel.robert}@lirmm.fr

2 FACIN-PUCRS - Av. Ipiranga 6681- 90619-900, Porto Alegre, Brazil
{marcelo.mandelli, eduardo.wachter, fernando.moraes}@pucrs.br

3 Department of Computer Science - University of York YO10 5DD, York, United Kingdom
lsi@cs.york.ac.uk

Abstract— - This paper proposes a novel strategy for enabling
dynamic task mapping on heterogeneous NoC-based MPSoC
architectures. The solution considers three different platforms
with different area constraints and applications with distinct
efficient characteristics. We propose a solution that uses a unified
model-based framework, which is calibrated according to area
information obtained from FPGA synthesis. Besides, we present
the performance of various applications running on different
processors on FPGAs aiming to obtain application efficiency
characteristics for calibrating the proposed high-level model. The
paper also presents three different scenarios and discusses the
reduction in terms of energy consumption as well as the end-to-
end communication cost for different applications such as MPEG
and ADPCM, among others multimedia benchmarks.

Keywords: modeling, NoC-based MPSoCs, design space
exploration of heterogeneous MPSoCs, dynamic mapping.

I. INTRODUCTION
Heterogeneous MPSoCs are composed of different types

of processing elements (PEs), dedicated IPs cores (e.g. FIR
filter) that are interconnected by a network-on-chip (NoC).
Heterogeneous systems provide different characteristics (e.g.
floating-point and DSP operations) that can better meet the
requirements of different nature of applications, providing
higher performance, power efficiency and lower cost when
compared to homogeneous MPSoCs [1][2][3]. Therefore, the
adoption of heterogeneous properties includes new challenges
to the MPSoC design flow, such as choosing a suitable
platform configuration (e.g. which kind of PEs must be
considered?) and organization (e.g. how distribute the PEs in
the platform?), defining which heterogeneous properties
(application-platform) should be considered in the mapping
process.

To take the advantage of heterogeneous properties,
designers should be able to explore different application-
mapping-platform alternatives in order to evaluate and to
optimize different performance metrics of the system (e.g.
latency, throughput). Based on our own experience and on the
experiments performed in this paper (Section IV.A and IV.B),
we claim that to explore the challenges inherent to
heterogeneous NoC-based MPSoCs using register transfer
level (RTL) descriptions may be unfeasible due to some
restrictions, such as:

• difficulty to integrate different PEs on the NoC-based
MPSoCs platforms, since the implementation of
network interfaces (NIs) requires designer knowledge
(HW/SW implementation and integration, protocols,
etc.) [4];

• the implementation and the analysis of runtime
techniques (e.g. dynamic mapping and task
migration) are PE-oriented (e.g. time to understand
PE architecture is required), for instance, kernel
modifications are necessary to support it [5]. In
addition, the limited debugging features (kernel-
oriented) difficult its evaluation, increasing the
design time;

• the simulation is very time-consuming due to the
number of details that are considered in the
component’s description. Thus, a single simulation
scenario may easily take several hours, for small
scenarios (e.g. 4 x 4 NoC-based MPSoCs) and it can
be unfeasible for larger scenarios (days of simulation)
[6].

In this context, this work contributes by proposing to use
a unified model framework with the objective of exploring
runtime task mapping onto heterogeneous NoC-based
platforms. Processing elements are “physically” positioned
according to a pre-defined area constraint obtained during a
calibration phase, in an effort to accomplish a trade-off
between application execution time and manufacturing cost
(silicon area). Thus, custom physical layout (approximated
area) can be considered in the initial design process, aiming to
satisfy the performance requirements (primary goal) and the
area saving (secondary goal) of the heterogeneous platform.

 In order to increase the design flexibility, software
designers can characterize different classes of applications,
aiming to evaluate the trade-off between platform
requirements support and their behavior. This work considers
that a set of heterogeneous tasks can be mapped at runtime
onto a set of heterogeneous PEs, according to pre-defined
constraints (e.g. the computation efficiency of running a task
onto a specific type of PE). Such constraints are
parameterizable and can be extracted from real
implementations (as demonstrated in Section IV). These

constraints were included in a set of dynamic mapping
heuristics in order to provide more efficient and realistic
application-heterogeneous platform mapping.

This paper is organized as follows. Section II describes
related works in heterogeneous MPSoCs and dynamic task
mapping. Section III introduces the basic aspects of the
adopted unified model-based framework, as well as a dynamic
mapping heuristic used as case of study. Results, including
energy consumption evaluation and application execution time
are presented in Section IV. Finally, Section V points out
conclusions and directions for future work.

II. STATE OF THE ART
For heterogeneous MPSoCs static mapping approaches

are discussed in [7][8]. Both the papers put forward static
mapping for applications such that some system characteristic
is improved for example the total power consumption or the
communication latency. These mappings are evaluated at
design time keeping constant during the complete execution
time. Static mapping are considered here as out of scope of
this work. Due to the simplification of such algorithmic-based
approaches (application of simple equations), they are usually
faster than simulated-based RTL implementations, but with
the penalty of decreasing the range of possible analyses. On
the other hand, real implementations allow the detailed
evaluation that produces accurate results but they are time-
consuming. Examples of real heterogeneous MPSoCs
platforms are described in [9][10][11]. These MPSoC are
usually small (e.g. 2 RISC, 4 fixed-point DSP, 6 floating-point
DSP and 3 HW IP [11]) and are developed to a specific
scenario, thus static mapping are adopted as well.

Dynamic task mapping on heterogeneous MPSoC
platforms are investigated in [12][13][14][15][16][17][18]
[20][21]. Smit et al. [12] present an iterative hierarchical
strategy to map an application to a parallel heterogeneous
MPSoC architecture at run-time. Applications are modeled as
a set of communicating PEs and the optimization objective is
to minimize the energy consumption of the MPSoC while
providing Quality of Service (QoS).

Hölzenspies et al. [13] investigate a run-time spatial
mapping technique with real-time requirements, considering
streaming applications mapped onto heterogeneous MPSoCs.
In the proposed work, the application remapping is determined
according to a set of information (i.e. latency/throughput) that
is collected at design time, aiming to satisfy the QoS
requirements, as well as to optimize the resources usage and
minimize the energy consumption.

Faruque et al. [14] propose a distributed agent-based
mapping scheme. The proposed scheme divides the system
into virtual clusters. A cluster agent (CA) is responsible for all
mapping operations within a cluster. Global agents (GAs)
store information about all the clusters of the NoC and use a
negotiating policy with CAs in order to define to which cluster
an application will be mapped.

In [15] authors investigate the performance of mapping
algorithms in NoC-based MPSoCs considering dynamic
workloads. The heuristics targets NoC congestion

minimization as a key function to optimize the NoC
performance. The proposed Path Load (PL) mapping heuristic
reduces the total execution time in 19.3% compared to the
First Free (FF) heuristic. This work was extended in Singh et
al. [16], where several communication-aware run-time multi-
task mapping heuristics are proposed.

Ferrandi et al. [17] introduce an ant colony optimization
(ACO) heuristic. Starting from a model of the target
architecture and the application, the heuristic efficiently
executes both scheduling and mapping in order to optimize the
application performance. They show that compared to other
approaches such as simulated annealing, tabu search, and
genetic algorithms, their approach obtains better results by at
least 16% on average, despite an overhead in execution time.
The application scenario is based on JPEG encoder and the
approach is validated on realistic target architecture.

Huang et al. [18] present a novel technique that is able to
minimize the energy consumption of the entire multi-mode
system while satisfying a given lifetime reliability constraint.
Experimental results are conducted on several hypothetical
MPSoC platforms with various applications modeled as task
graphs. By using both single-mode and multi-mode
approaches, their technique provides up to 26.3% and 27.8%
energy reduction when compared with greedy solutions [19],
respectively.

Chen et al. [20] investigate a method that explores how
to synthesize a heterogeneous multiprocessor platform or
select processing units with the partitioning of real-time tasks
so that the energy consumption is minimized. By considering
both static (leakage) power consumption and dynamic power
consumption, they propose a method that uses a polynomial-
time approximation algorithm to minimize the energy
consumption by applying the minimum-average-energy-first
strategy.

Kim et al. [21] introduce a cosynthesis framework for
design space exploration that considers heterogeneous
scheduling while mapping multimedia applications onto such
MPSoCs. The optimization key is energy, so that a suitable
scheduling policy is chosen for each IP in the architecture.
Experimental results on a realistic multimode multimedia
terminal application demonstrate that the proposed approach
enables at selecting design points with up to 60.5% reduced
energy for a given area constraint.

Table I summarizes the reviewed works. To the best of
our knowledge, we are presenting the first scheme for
enabling dynamic task mapping in heterogeneous MPSoCs
architectures that considers real area occupation in FPGA as
calibration information to be used in a unified model based
framework. Besides, we extended a dynamic mapping
heuristic that consider both area and application efficiency
constraints, obtained from real implementations on FPGAs
running onto different processors. Bringing all together into a
unified model based framework we are able to analyze
different behaviors and efficiency of the adopted heuristic
given certain constraints. We also evaluate the energy
consumption considering three scenarios with different area
and application efficiency constraints.

Table I RELATED WORKS ON TASK MAPPING ON HETEROGENEOUS MPSOCS ARCHITECTURES

Reference Heuristics Mapping Approach Optimization Criterion Abstraction Level

Hu et al. [7] (i) Greedy incremental algorithm Static mapping Energy consumption Algorithmic

Marcon et al. [8]
(i) Largest communication first (LCF) ,

(ii) Greedy incremental (GI), (iii) taboo search (TS), (iv)
simulated annealing (SA)

Static mapping Energy consumption Algorithmic

Smit et al. [12] (i) Hierarchical iterative approach Dynamic mapping Energy consumption Algorithmic
Hölzenspies et al.

[13] (i) Hierarchical search with iterative refinement Dynamic mapping Energy consumption Algorithmic

Faruque et al.
[14]

(i) Run-time application mapping in a distributed manner
using agents Dynamic mapping Execution time, mapping

time Algorithmic

Carvalho et al.
[15]

(i) First Free (FF), (ii) Next Neighbor (NN), (iii)
Minimum Maximum Channel Load (MMC), (iv)

Minimum Average Channel Load (MAC) and (v) Path
Load (PL)

Dynamic mapping Network contention,
communication volume TLM

Singh et al. [16]

(i) Communication-aware nearest neighbor (CNN), (ii)
Communication-aware packing-based nearest neighbor

(CPNN), (iii) Communication-aware best neighbor
(CBN) and (iv) Communication-aware packing-based

best neighbor (CPBN)

Dynamic mapping
Network contention,

communication volume
and energy consumption

TLM

Ferrandi et al.
[17] (i) Ant Colony Optimization (ACO) Dynamic mapping Application execution

time RTL

Huang et al. [18] (i) Task allocation and scheduling under lifetime
reliability constraint Dynamic mapping Energy consumption Algorithmic

Chen et al. [20] (i) Algorithm MAEF (Minimum-average-energy-first) Dynamic mapping Energy consumption Algorithmic

Kim et al. [21] (i) Multiway KLFM (Kernighan–Lin/Fiduccia–
Mattheyses) Dynamic mapping Energy consumption Algorithmic

Proposed
approach

(i) Lower Energy Consumption based on Dependencies-
neighborhood (LEC-DN) Dynamic mapping

Energy consumption,
hotspots and application

execution time

RTL (calibration)
and TLM

(simulation)

III. UNIFIED MODEL-BASED FRAMEWORK
This section presents a unified model-based framework,

which is organized in three main layers, as illustrated in Fig. 1:
(i) application, (ii) mapping1, and (iii) platform. The first layer
comprises application modeling and validation (functionality
and requirements), while the second layer defines how such
applications are mapped onto the MPSoC platform (third
layer).

The fundamental principle behind the unified model-
based framework is the complete separation between the
different layers – application, mapping and platform.
Therefore, new application models, platform templates and
mapping heuristics can be integrated to the framework as long
as they follow the pre-defined inter-layer APIs. Thus, the three
layers are independent but the proposed approach supports the
joint validation of applications mapped onto the platform
model to establish a good trade-off between the platform
characteristics and the requirements of the given application.

With this framework, both heterogeneous advantage and
dynamic mapping benefits can be easily evaluated due to the
modeling and design flexibility of proposed approach. In this
context, system designers can take advantage of application-
platform heterogeneous properties when mapping tasks to
specific processor types (e.g. MIPS, DSP, Platform Layer in

1 In the context of this work, the mapping layer is a behavioral entity called Mapper that
is characterized according to a set of operations, which is used to define task mapping
during the simulation.

Fig. 1), while optimizing performance metrics such as latency,
area cost and energy consumption.

U
MLSeque
nceDiagr
am

T4T1 T2 T3
m1

m3
m2

m 4

T6T5

m9

m5
m6

m7
m8

m10
m 11
m 12m13

m14
m 15

m16
m17
m18
m19
m 20

par

par

Constraints:
data size
workload
efficiency

Application Layer

PE 1
Performance ++

Power +
Area +

PE 2
Performance +++

Power +
Area +

PE 3
Performance +++

Power ++
Area +++

PE 4
Performance +

Power +
Area +++

PE 5
Performance ++++

Power ++
Area ++

MIPS µBlaze DSP ASIP ARM

Platform Layer

Type 1 Type 2 Type 3 Type 4 Type 5

Mapper Layer

Sending of m1

Reception of m20

1
ite

ra
tio

n

Fig. 1 - Heterogeneous architecture illustrating particular characteristic of
each IP core (e.g. PEs).

A. Application Layer
Most researchers on MPSoCs use task graphs to model

applications. This approach does not support the necessary
flexibility to develop and to validate complex and distributed
applications used in present MPSoCs. In this context, the
current approach provides to the software engineer the
possibility of developing and validating different applications
regarding only their functionality and requirements by using
executable models based on UML sequence diagrams and
actor-orientation, as proposed in [23].

UML is a well-known standard modeling language used
by most part of the software development industry due to its
flexibility, support to the real time requirements through
profiles and tool support. On the other hand, actor orientation
design is a component methodology, which separates the
functionality concerns (modeled as actors) from the
component interaction concerns (modeled as frameworks). It
includes the definition of the execution semantics as a part of
the model rather than of the underlying simulation engine
[24]. As a result, the concurrent behavior and the
interdependencies of the application tasks can be captured
more accurately. We claim here that the combination of UML
and actor-orientation provides more design flexibility to
specify the application tasks, their dependencies,
synchronization mechanisms, and data exchanges, when
compared to application modeling approaches based on task
graphs.

In this scenario, the Application Layer was extended in
order to support application characteristics, called here as
heterogeneous properties (e.g. efficiency), which are
considered in mapping decision strategies (either initial
mapping or run-time mapping). Thus, during the mapping
process such application properties are considered as cost
functions, leading to higher overall system performance, since
the mapper tries to fit these properties to the PE
characteristics. For instance, the user can define that a task can
be executed in more than one type of PE by configuring the
task type. Each task type can be executed onto a certain PE,
which differs in terms of task execution efficiency (e.g.
efficiency parameter, Application Layer in Fig. 1). Such
parameters can be calibrated from a real implementation, as
shown in Section IV.A.

B. Platform Layer
The present approach provides a set of NoC models that

differ according to its accuracy and its required simulation
time. It provides multi-accuracy platforms models (e.g.
latency, throughput and power estimation), allowing designers
to choose between faster or more accurate validation, as they
require. Abstract model of PEs and scheduling algorithms (e.g.
First-Come-First-Served, FCFS – adopted in the present work)
are also provided, allowing more realist traffic generation (e.g.
ON-phase and OFF- phase period).

The present framework provides adequate possibilities
for observing and debugging the execution of a set of
applications running on top of NoC-based platforms. In this
context, the platform model layer includes Scope actors that
can be used to check the running status of the system, as well
as to collect performance figures that can be used for

application/platform model optimization. Examples of Scopes
are the LatencyScope and the PowerScope. The
LatencyScope, provides end-to-end2 communication latency
figures for each task communication. The PowerScope
generates power reports based on volume-based [7] and/or
rate-based [23] NoC power models.

C. Mapping Layer
The mapping layer is the link between the application

and the platform layer. It provides the necessary support to
explore the mapping influence in terms of system
performance, by employing a Mapper Actor that has a set of
supported mapping heuristics, as well as the MapperScope.
The MapperScope is used to monitor the mapping layer (e.g.
capturing each task requesting time) and to generate mapping
figure, like number of hops among communicating tasks.

The proposed approach supports static (e.g. taboo search,
simulated annealing [23]) and dynamic mapping heuristics
(e.g. LEC-DN [5], adopted in this work). The LEC-DN was
chosen to be extended to consider heterogeneous properties as
cost functions due to the following reasons: (i) it was
implemented and validated in a RTL homogeneous NoC-
based platform; (ii) results show a reduction in term of
execution time (4.3% in average) and the energy consumption
(10.8% in average) [5], when compared to well-known
dynamic mapping heuristics [15].

The LEC-DN employs two cost functions: (i) proximity,
in number of hops; (ii) communication volume between tasks
(which corresponds to the communication energy). The
second criterion is used when a given task communicates with
at least two mapped tasks. In this situation, the new task is
mapped closer to the task with higher communication volume.
When the requested task has only one communicating task
already mapped, LEC-DN uses the NN search method (spiral
search) [15]. In addition to the two previous cost functions, the
heterogeneous LEC-DN considers task execution efficiency
before mapping a required task onto a PE. If there is more than
one communicating task already mapped, the LEC-DN
searches for a PE inside the bounding box defined by the
position of such tasks.

Consider the application illustrated in Fig. 2(a),
containing 4 tasks, where AB1 and AB2 are initial tasks.

(a) (b)

AB1 AB2

m1

4AB

m2 AB1(150)

(150)

AB2

m3(120)

AB3

AB3

task execution efficiencyAB3

50 % 100%

Fig. 2 - (a) application described as UML diagram; (b) search space to map

the AB3 task, and one possible mapping for AB3.

2 This term is defined here, as is the delay between the time a PE starts its message
transmission and the time the target PE receives the message.

The mapping of task AB3 is triggered by the first
communication with it. The search space to map task AB3
corresponds to the bounding box defined by the position of
AB1 and AB2 tasks (Fig. 2 (b)). Thus, AB3 will be mapped
nearest to task AB1, since according to the application UML
the task execution efficiency is higher in the PE next to AB1
than in PE next to AB2 (50% normalized value based on higher
task execution efficiency, in case, 100%). Note that task AB4 is
not mapped, since it depends from task AB3.

IV. STUDY CASES AND RESULTS

A. Application Performance
In our experiments, we have used a hardware prototype

called XScale 270 [23], which is based on ARMv5 processor
architecture. The ARMv5 is the master node responsible for
system monitoring and application scheduling. The processor
is connected to Spartan3-5000 FPGA in which we have a dual
processor µBlaze implementation with both µBlaze processors
configured differently. The communication between the
XScale and the µBlaze processor is done by using a bridge
directly connected to the PLB bus of one of the µBlaze
processors. Each µBlaze processor is configured to have a
small local memory and communication between them is
allowed by using mailboxes (message passing). For the
purpose of heterogeneity each processor is configured
differently based on the presence or absence of hardware
multiplier and barrel shifter, as presented on Table II.

Table II DIFFERENT CONFIGURATIONS OF µBLAZE PROCESSORS

 Hardware Multiplier Barrel Shifter #LUTS

µBlaze1 Yes Yes 3631

µBlaze2 Yes No 3404

µBlaze3 No Yes 3581

µBlaze4 No No 3357

Fig. 3 depicts the performance of different benchmarks
applications. Applications performance is evaluated in terms
of required number of clock cycles for application execution.
We present four different configurations of µBlaze processors
(as presented in Table II) and two different configurations of
the ARM processor: (i) ARM 520 running at 520 MHz and (ii)
ARM 208 running at 208 MHz, both running a flavor Linux
kernel. Results show that each application may perform better
on a particular target depending on both application and
processor characteristics. It is possible to observe that the
performance of FIR application is dependent on the presence
of a hardware multiplier whereas inverse quantization can
benefit equally from both multiplier and barrel shifter.
Another interesting point to be observed is that FIR and Iquant
applications perform better on µBlaze1 and µBlaze2
processors since it is simple processor with the hardware
multiplier with only 5 pipeline stages and without MMU and
Cache, which makes this processor more efficient than ARM.

Since applications can be executed on different
processors, they may perform differently and in most cases
µBlaze processor performs as good as XScale processor. This

principle is used to map the application on given processing
element depending on the requirements.

Fig. 3 - Normalized performance of benchmarks running on different

processing nodes.

B. Area Overhead
Kranenburg [22] evaluates open source processors,

considering design quality, performance, available
documentation and the set of specific features of each one. In
addition to the Kranenburg approach [22], the Plasma
Processor, COFFEE processor, and Plasma with Floating
Point Unit were evaluated in terms of resource utilization. Fig.
4 presents the area occupation in terms of flip-flops and four-
input LUTs for eight different processors.

AEMB LEON3 OPENFIRE OPENRISC PLASMA COFFEE PLASMA FPU MB LITE
0

1000

2000

3000

4000

5000

6000

7000

8000

9000
AREA OCCUPATION

PROCESSOR

#U
N
IT
S

FLIP FLOPS
#4 INPUT LUTS

Fig. 4 - Resource utilization (flip-flops - FFs and Look Up Tables - LUTs) of
evaluated processors, targeting the xc5vlx110ff1760-3 device, except Plasma-

FPU. Adapted from [22].

Fig. 5 ilustrates the area occuppation for both Plasma
and MB-Lite processors. The PE is composed of a NoC
(Router), a DMA controller, a Network Interface (NI) and
peripherals (Others). It is possible to observe that the
processor is responsible for 80% of the processing element
area. For this reason we have only considered different
processors in our high-level model, keeping the same router
for all of them.

C. High-Level Modeling
For the sake of simplicity, three processors type were

employed: MB-Lite, LEON and the Plasma-FPU (considered
here as dedicated IP core). Table III describes architectural
characteristics of the modeled heterogeneous MPSoC system.

Table III ARCHITECTURAL CHARACTERISTICS OF OUR HETEROGENEOUS MPSOC SYSTEM

NoC
Dimension

Number of
Clusters

Number of
PEs per
cluster

Total PEs MB-Lite
(#LUTS)

Leon
(#LUTS)

Plasma-FPU
(#LUTS)

7x7 4 12 49 1,000 2,700 5,800

ROUTER
20%

PLASMA
59%

NI
6%

DMA
5%

OTHERS
10%

PLASMA-IP
80%

LUTs

ROUTER
19%

PLASMA
45%

NI
10%

DMA
10%

OTHERS
16%

PLASMA-IP
81%

FLIP FLOPs

ROUTER
20%

MB-LITE
57%

NI
6% DMA

4%

OTHERS
13%

MB-LITE-IP
80%

LUTs

ROUTER
14%

MB-LITE
56%

NI
6% DMA

9%

OTHERS
15%

MB-LITE-IP
85%

FLIP FLOPs

Fig. 5 - Area occupation for both Plasma and MB-Lite processors.

The architecture is split into four clusters, each one
containing twelve processing elements together with a central
node (Mapper) responsible for dynamically mapping tasks
onto PEs. Three different processors are modeled from real
area occupation values obtained from synthesis process on
FPGA. It is possible to observe that MB-Lite processor
occupies only 1,000 LUTs while Plasma-FPU [25] (Plasma
with floating point unit) is almost six times bigger, occupying
5,800 LUTs.

After having obtained area occupation figures for
different processors, three hyphotetical configurations were
created according to area constraints. For each configuration
there is an available area per cluster where twelve processors
must fit on it.

1. Configuration 1 (C1): the architecture is built of
ten MB-Lite processors together with 1 Leon and
1 Plasma-FPU processors. The resulting occupied
area is 18,500 LUTs;

2. Configuration 2 (C2): the architecture is built of
three MB-Lite processors together with 5 Leon
and 4 Plasma-FPU processors. The resulting
occupied area is 39,700 LUTs;

3. Configuration 3 (C3): the architecture is built of
one MB-Lite processor together with 2 Leon and
9 Plasma-FPU processors. The resulting occupied
area is 58,600 LUTs (Table IV);

Table IV PROCESSORS CONFIGURATION FOR THREE
DIFFERENT SCENARIOS

Configu-
ration

Available
area per
cluster

(#LUTS)

Clusteri Occupied
area per
cluster

(#LUTS)
 MB L P

C1 20,000 10 1 1 18,500

C2 40,000 3 5 4 39,700

C3 60,000 1 2 9 58,600

Fig. 6 illustrates three heterogeneous platforms
considering the different configurations previously presented.
The central node (M) is a MB-Lite based processor which
hosts the Mapper Actor, responsible for dynamically mapping
tasks into different PEs in the architecture.

(C1)

(C2)

(C3)

Fig. 6 - Representation of three heterogeneous platforms considering different area constraints (available area per cluster):
C1) 20,000 LUTs; C2) 40,000 LUTs; C3) 60,000 LUTs.

Table V END-TO-END COMMUNICATION COST REPRESENTATION CONSIDERING THREE SCENARIOS
WITH DIFFERENT AREA CONSTRAINTS AND FIVE APPLICATIONS

Scenario S1 S2 S3
Area (#LUTS) 20,000 40,000 60,000

Energy VB (µJ) 32.89 32.89 32.89

Applications MAX(EECi,j) AV(EECi,j , N) MAX(EECi,j) AV(EECi,j , N) MAX(EECi,j) AV(EECi,j , N)

MPEG 885,434 883,904 615,230 613,486 441,870 440,659

MWD 101,006 100,349 62,618 62,265 42,102 41,469

SEGIMG 1,012,450 801,152 699,538 545,951 348,824 279,112

SYNTHETIC 282,709 278,038 181,173 179,018 146,009 142,837

AAV 1,006,060 782,409 851,484 627,100 487,326 390,101

Total 3,287,659 2,845,852 2,410,043 2,027,820 1,466,131 1,294,178

Table VI END-TO-END COMMUNICATION COST REPRESENTATION CONSIDERING THREE SCENARIOS
WITH DIFFERENT AREA CONSTRAINTS AND FIVE APPLICATIONS WITH DIFFERENT EFFICIENCY CHARACTERISTICS

Scenario S1 S2 S3
Area (#LUTS) 20,000 40,000 60,000

Energy VB (µJ) 30.08 33.05 32.89

Applications MAX(EECi,j) AV(EECi,j , N) MAX(EECi,j) AV(EECi,j , N) MAX(EECi,j) AV(EECi,j , N)

MPEG 885,434 883,904 550,631 550,187 441,870 440,659
MWD 99,740 99,069 69,650 69,310 40,818 40,818

SEGIMG 816,302 796,370 647,721 514,071 348,824 279,112
SYNTHETIC 252,228 247,545 156,961 153,116 118,431 116,185

AAV 1,010,440 786,815 788,016 564,357 487,326 390,101
Total 3,064,144 2,813,703 2,212,979 1,851,041 1,437,269 1,266,875

Note that the all tasks execution efficiency were defined

as 20% for MB-Lite, 50% for LEON and 100% for Plasma-
FPU. Table V presents the end-to-end communication cost
considering three scenarios with different area constratints and
five applications. For each scenario we have calculated the
end-to-end cost which is given by Equation 1.

EECi,j = Pi + Li,j (1)

where,

EECi,j = End-to-end communication cost between source
node (task i) and destination node (task j);

Pi = Processing time of task i;

Li,j = Latency between source node (task i) and
destination node (task j);

Besides, a MAX(EECi,j) value is calculated based on one
single frame execution while AV(EECi,j , N) represents the
average value for N inter-task communication events of a set
of applications.

It is possible to observe that as available area is
increased, the end-to-end communication cost is reduced and
the same behavior is noted for all five applications. This is
explained by the fact that as available area increases (S3), it is
possible to fit more powerful processors units such as Plasma-
FPU into the cluster. As a result the processing cost and the

EECi,j are respectively reduced. If we consider the MPEG
application, we can observe that the average AV(EECi,j , N) is
reduced in 31% and 50% when comparing S1 against S2 and
S3 respectively. For SEGIMG application, the EECi,j
reduction is of 31% and 72% respectively. Considering the
total average comprising the five applications, we can clearly
see that there is a reduction of 29% (S2) and 55% (S3)
compared to S1.

The energy consumption of the NoC remains the same in
all scenarios, since the communicaton through the NoC is not
considelable (less than 12% of the available throughput) and
only one mapping heuristic is employed.

Table VI presents the end-to-end communication cost
considering different area constraints and five applications
with distinct efficiency characteristics. As explained in
Section III. A, applications are modeled with different
efficiency characteristics for different processors. Heach one
of the three different processors (MB-Lite, LEON and Plasma-
FPU), where it is possible to observe that compared to Table
V, which application efficiency is not considered, this
approach performs better in all three scenarios. Concerning
energy consumption, S3 performs slightly better compared to
S1 and S2 (30.08µJ and 33.05µJ respectively).

V. CONCLUSIONS
High-level models are concrete solutions that are mainly

powerful due to their capacity of representing real architectures
and validating scenarios that would might not be possible to
be explored in a feasible time on, i.e., RTL-based
architectures. On the other hand, the calibration of such
models must be done very carefully and the information to fed
the model should have a high degree of precision.

In this paper we have proposed a novel solution that uses a
unified model-based framework in which different
heterogeneous architectures are modeled and validated. The
model is calibrated with synthesis information of different
embedded processors obtained from real implementation on
FPGA. Different applications run on each processor and
distinct performance figures area obtained. Thus, we propose a
novel solution for representing application efficiency
characteristics according to different processors. The paper
presents three scenarios that consider clusters with different
area constraints and multimedia applications such as MPEG
and ADPCM are used as benchmarks for the case studies.

We compare energy consumption efficiency of three
different architectures as well as the end-to-end communication
cost for all five applications. We can clearly observe that
dynamic task mapping performs better when considering
application efficiency before mapping tasks into processing
elements. As future work we plan to also consider the energy
consumption of processors in order to improve the decision-
making when tasks are dynamically mapped onto the
architecture.

REFERENCES
[1] Sharifi, S.; et al. “Hybrid Dynamic Energy and Thermal Management in

Heterogeneous Embedded Multiprocessor SoCs”. In: Asia South Pacific
Design Automation Conference (ASP-DAC'10), 2010.

[2] Jerraya, A.; A.; Wolf, W. “Multiprocessor Systems-on-Chips”. Morgan
Kaufmann, 2005, 602p.Leupers, R. et al. “Cool MPSoC programming”.
In: (DATE'10), 2010.

[3] Shen, H. "Novel Task Migration Framework on Configurable
Heterogeneous MPSoC Platforms". In: Asia South Pacific Design
Automation Conference (ASP-DAC'09), 2009.

[4] Grasset, A.; “Network interface generation for MPSOC: from
communication service requirements to RTL implementation”. In: Rapid
System Prototyping (RSP'04), 2004.

[5] Mandelli, M.; "Energy-Aware Dynamic Task Mapping for NoC-based
MPSoCs". In: International Symposium on Circuits and Systems
(ISCAS'11), 2011.

[6] Roth, C.; et al. “Modular Framework for Multi-level Multi-device
MPSoC Simulation”. In: Reconfigurable Architectures Workshop
(RAW'11), 2011.

[7] Hu, J. and Marculescu, R. “Energy-aware mapping for tile-based NoC
architectures under performance constraints.” In: Asia South Pacific
Design Automation Conference (ASP-DAC'03), 2003.

[8] Marcon, C.; et al. “Comparison of network-on-chip mapping algorithms
targeting low energy consumption”. IET Computers and Digital
Techniques, vol. 2(6), 2008.

[9] Zhang, W; et al. “Design of heterogeneous MPSoC on FPGA”. In:
International Conference on ASIC (ASICON’07), 2007.

[10] Jalier, C.; et al. “Heterogeneous vs Homogeneous MPSoC Approaches
for a Mobile LTE Modem”. In: Design, Automation & Test in Europe
Conference & Exhibition, 2010.

[11] Limberg T.; et. al. “A Heterogeneous MPSoC with Hardware Supported
Dynamic Task Scheduling for Software Defined Radio”. In: Design
Automation Conference (DAC'09), 2009.

[12] Smit, L.T.; et al. “Run-time mapping of applications to a heterogeneous
SoC”. In: International Symposium on System-on-Chip (SoC'05), 2005.

[13] Hölzenspies, P.K.F.; et al. “Run-time Spatial Mapping of Streaming
Applications to a Heterogeneous Multi-Processor System-on-Chip
(MPSoC)”. In: Design, Automation and Test in Europe (DATE'08),
2008.

[14] Faruque, M.A.; et al. “ADAM: Run-time Agent-based Distributed
Application Mapping for on-chip Communication”. In: Design
Automation Conference (DAC'08), 2008.

[15] Carvalho, E.; et al., “Heuristics for Dynamic Task Mapping in NoC-
based Heterogeneous MPSoCs”. In: International Workshop on Rapid
System Prototyping (RSP'07), 2007.

[16] Singh, A. K.; at al. “Communication-aware heuristics for run-time task
mapping on NoC-based MPSoC platforms”. Journal of Systems
Architecture, 56(7), 2010.

[17] Ferrandi, F.; et al. “Ant colony heuristic for mapping and scheduling
tasks and communications on heterogeneous embedded systems”. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and
Systems, vol. 29(6), 2010.

[18] Huang. L.; et al. “Energy-efficient task allocation and scheduling for
multi-mode MPSoCs under lifetime reliability constraint”. In: Design,
Automation and Test in Europe (DATE'10), 2010.

[19] Bjorn-Jorgensen and J. Madsen, “Critical Path Driven Cosynthesis for
Heterogeneous Target Architectures”. In: International Conference on
Hardware/Software Codesign (CODES’97).

[20] Chen, J. J.; et al. “Platform synthesis and partitioning of real-time tasks
for energy efficiency”. Journal of Systems Architecture, ISSN: 1383-
7621, 2010.

[21] Kim, M.; et al. “Energy-aware cosynthesis of real-time multimedia
applications on MPSoCs using heterogeneous scheduling policies”,
ACM Transactions on Embeded Computer Systems, vol. 7(2), 2008.

[22] Kranenburg,T.; “Reference design of a portable and customizable
microprocessor for rapid system prototyping,” Master’s thesis, Delft
University, 2009.

[23] Ost, L.; et al. “Exploring NoC-Based MPSoC Design Space with Power
Estimation Models”. IEEE Design and Test of Computers, 28(2), 2011.

[24] Lee, E. A.; et. al. “Actor-Oriented Design of Embedded Hardware and
Software”. Systems, Journal of Circuits, Systems, and Computers, 12
(3), 2003.

[25] Rodolfo, T.A.; et al. "Floating Point Hardware for Embedded Processors
in FPGAs: Design Space Exploration for Performance and Area". In:
International Conference on Reconfigurable Computing and FPGAs
(ReConFig’09), 2009.

