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Abstract— - This paper proposes a novel strategy for enabling 
dynamic task mapping on heterogeneous NoC-based MPSoC 
architectures. The solution considers three different platforms 
with different area constraints and applications with distinct 
efficient characteristics. We propose a solution that uses a unified 
model-based framework, which is calibrated according to area 
information obtained from FPGA synthesis. Besides, we present 
the performance of various applications running on different 
processors on FPGAs aiming to obtain application efficiency 
characteristics for calibrating the proposed high-level model. The 
paper also presents three different scenarios and discusses the 
reduction in terms of energy consumption as well as the end-to-
end communication cost for different applications such as MPEG 
and ADPCM, among others multimedia benchmarks. 

Keywords: modeling, NoC-based MPSoCs, design space 
exploration of heterogeneous MPSoCs, dynamic mapping. 

I.  INTRODUCTION 
Heterogeneous MPSoCs are composed of different types 

of processing elements (PEs), dedicated IPs cores (e.g. FIR 
filter) that are interconnected by a network-on-chip (NoC). 
Heterogeneous systems provide different characteristics (e.g. 
floating-point and DSP operations) that can better meet the 
requirements of different nature of applications, providing 
higher performance, power efficiency and lower cost when 
compared to homogeneous MPSoCs [1][2][3]. Therefore, the 
adoption of heterogeneous properties includes new challenges 
to the MPSoC design flow, such as choosing a suitable 
platform configuration (e.g. which kind of PEs must be 
considered?) and organization (e.g. how distribute the PEs in 
the platform?), defining which heterogeneous properties 
(application-platform) should be considered in the mapping 
process.   

To take the advantage of heterogeneous properties, 
designers should be able to explore different application-
mapping-platform alternatives in order to evaluate and to 
optimize different performance metrics of the system (e.g. 
latency, throughput). Based on our own experience and on the 
experiments performed in this paper (Section IV.A and IV.B), 
we claim that to explore the challenges inherent to 
heterogeneous NoC-based MPSoCs using register transfer 
level (RTL) descriptions may be unfeasible due to some 
restrictions, such as: 

• difficulty to integrate different PEs on the NoC-based 
MPSoCs platforms, since the implementation of 
network interfaces (NIs) requires designer knowledge 
(HW/SW implementation and integration, protocols, 
etc.) [4]; 

• the implementation and the analysis of runtime 
techniques (e.g. dynamic mapping and task 
migration) are PE-oriented (e.g. time to understand 
PE architecture is required), for instance, kernel 
modifications are necessary to support it [5]. In 
addition, the limited debugging features (kernel-
oriented) difficult its evaluation, increasing the 
design time;    

• the simulation is very time-consuming due to the 
number of details that are considered in the 
component’s description. Thus, a single simulation 
scenario may easily take several hours, for small 
scenarios (e.g. 4 x 4 NoC-based MPSoCs) and it can 
be unfeasible for larger scenarios (days of simulation) 
[6].  

In this context, this work contributes by proposing to use 
a unified model framework with the objective of exploring 
runtime task mapping onto heterogeneous NoC-based 
platforms. Processing elements are “physically” positioned 
according to a pre-defined area constraint obtained during a 
calibration phase, in an effort to accomplish a trade-off 
between application execution time and manufacturing cost 
(silicon area). Thus, custom physical layout (approximated 
area) can be considered in the initial design process, aiming to 
satisfy the performance requirements (primary goal) and the 
area saving (secondary goal) of the heterogeneous platform.  

 In order to increase the design flexibility, software 
designers can characterize different classes of applications, 
aiming to evaluate the trade-off between platform 
requirements support and their behavior. This work considers 
that a set of heterogeneous tasks can be mapped at runtime 
onto a set of heterogeneous PEs, according to pre-defined 
constraints (e.g. the computation efficiency of running a task 
onto a specific type of PE). Such constraints are 
parameterizable and can be extracted from real 
implementations (as demonstrated in Section IV). These 



constraints were included in a set of dynamic mapping 
heuristics in order to provide more efficient and realistic 
application-heterogeneous platform mapping.  

This paper is organized as follows. Section II describes 
related works in heterogeneous MPSoCs and dynamic task 
mapping. Section III introduces the basic aspects of the 
adopted unified model-based framework, as well as a dynamic 
mapping heuristic used as case of study. Results, including 
energy consumption evaluation and application execution time 
are presented in Section IV. Finally, Section V points out 
conclusions and directions for future work. 

II. STATE OF THE ART 
For heterogeneous MPSoCs static mapping approaches 

are discussed in [7][8]. Both the papers put forward static 
mapping for applications such that some system characteristic 
is improved for example the total power consumption or the 
communication latency. These mappings are evaluated at 
design time keeping constant during the complete execution 
time. Static mapping are considered here as out of scope of 
this work. Due to the simplification of such algorithmic-based 
approaches (application of simple equations), they are usually 
faster than simulated-based RTL implementations, but with 
the penalty of decreasing the range of possible analyses. On 
the other hand, real implementations allow the detailed 
evaluation that produces accurate results but they are time-
consuming. Examples of real heterogeneous MPSoCs 
platforms are described in [9][10][11]. These MPSoC are 
usually small (e.g. 2 RISC, 4 fixed-point DSP, 6 floating-point 
DSP and 3 HW IP [11]) and are developed to a specific 
scenario, thus static mapping are adopted as well.  

Dynamic task mapping on heterogeneous MPSoC 
platforms are investigated in [12][13][14][15][16][17][18] 
[20][21]. Smit et al. [12] present an iterative hierarchical 
strategy to map an application to a parallel heterogeneous 
MPSoC architecture at run-time. Applications are modeled as 
a set of communicating PEs and the optimization objective is 
to minimize the energy consumption of the MPSoC while 
providing Quality of Service (QoS). 

Hölzenspies et al. [13] investigate a run-time spatial 
mapping technique with real-time requirements, considering 
streaming applications mapped onto heterogeneous MPSoCs. 
In the proposed work, the application remapping is determined 
according to a set of information (i.e. latency/throughput) that 
is collected at design time, aiming to satisfy the QoS 
requirements, as well as to optimize the resources usage and 
minimize the energy consumption. 

Faruque et al. [14] propose a distributed agent-based 
mapping scheme. The proposed scheme divides the system 
into virtual clusters. A cluster agent (CA) is responsible for all 
mapping operations within a cluster. Global agents (GAs) 
store information about all the clusters of the NoC and use a 
negotiating policy with CAs in order to define to which cluster 
an application will be mapped. 

In [15] authors investigate the performance of mapping 
algorithms in NoC-based MPSoCs considering dynamic 
workloads. The heuristics targets NoC congestion 

minimization as a key function to optimize the NoC 
performance. The proposed Path Load (PL) mapping heuristic 
reduces the total execution time in 19.3% compared to the 
First Free (FF) heuristic. This work was extended in Singh et 
al. [16], where several communication-aware run-time multi-
task mapping heuristics are proposed.  

Ferrandi et al. [17] introduce an ant colony optimization 
(ACO) heuristic. Starting from a model of the target 
architecture and the application, the heuristic efficiently 
executes both scheduling and mapping in order to optimize the 
application performance. They show that compared to other 
approaches such as simulated annealing, tabu search, and 
genetic algorithms, their approach obtains better results by at 
least 16% on average, despite an overhead in execution time. 
The application scenario is based on JPEG encoder and the 
approach is validated on realistic target architecture. 

Huang et al. [18] present a novel technique that is able to 
minimize the energy consumption of the entire multi-mode 
system while satisfying a given lifetime reliability constraint. 
Experimental results are conducted on several hypothetical 
MPSoC platforms with various applications modeled as task 
graphs. By using both single-mode and multi-mode 
approaches, their technique provides up to 26.3% and 27.8% 
energy reduction when compared with greedy solutions [19], 
respectively. 

Chen et al. [20] investigate a method that explores how 
to synthesize a heterogeneous multiprocessor platform or 
select processing units with the partitioning of real-time tasks 
so that the energy consumption is minimized. By considering 
both static (leakage) power consumption and dynamic power 
consumption, they propose a method that uses a polynomial-
time approximation algorithm to minimize the energy 
consumption by applying the minimum-average-energy-first 
strategy. 

Kim et al. [21] introduce a cosynthesis framework for 
design space exploration that considers heterogeneous 
scheduling while mapping multimedia applications onto such 
MPSoCs. The optimization key is energy, so that a suitable 
scheduling policy is chosen for each IP in the architecture. 
Experimental results on a realistic multimode multimedia 
terminal application demonstrate that the proposed approach 
enables at selecting design points with up to 60.5% reduced 
energy for a given area constraint. 

Table I summarizes the reviewed works. To the best of 
our knowledge, we are presenting the first scheme for 
enabling dynamic task mapping in heterogeneous MPSoCs 
architectures that considers real area occupation in FPGA as 
calibration information to be used in a unified model based 
framework. Besides, we extended a dynamic mapping 
heuristic that consider both area and application efficiency 
constraints, obtained from real implementations on FPGAs 
running onto different processors. Bringing all together into a 
unified model based framework we are able to analyze 
different behaviors and efficiency of the adopted heuristic 
given certain constraints. We also evaluate the energy 
consumption considering three scenarios with different area 
and application efficiency constraints.  



Table I RELATED WORKS ON TASK MAPPING ON HETEROGENEOUS MPSOCS ARCHITECTURES  

Reference Heuristics Mapping Approach Optimization Criterion Abstraction Level 

Hu et al. [7] (i) Greedy incremental algorithm Static mapping Energy consumption Algorithmic 

Marcon et al. [8] 
(i) Largest communication first (LCF) , 

(ii) Greedy incremental (GI), (iii) taboo search (TS), (iv) 
simulated annealing (SA) 

Static mapping Energy consumption Algorithmic 

Smit et al. [12]  (i) Hierarchical iterative approach Dynamic mapping Energy consumption Algorithmic 
Hölzenspies et al. 

[13]  (i) Hierarchical search with iterative refinement Dynamic mapping Energy consumption Algorithmic 

Faruque et al. 
[14]  

(i) Run-time application mapping in a distributed manner 
using agents Dynamic mapping Execution time, mapping 

time Algorithmic 

Carvalho et al. 
[15]  

(i) First Free (FF), (ii) Next Neighbor (NN), (iii) 
Minimum Maximum Channel Load (MMC), (iv) 

Minimum Average Channel Load (MAC) and (v) Path 
Load (PL) 

Dynamic mapping Network contention, 
communication volume TLM 

Singh et al. [16] 

(i) Communication-aware nearest neighbor (CNN), (ii) 
Communication-aware packing-based nearest neighbor 

(CPNN), (iii) Communication-aware best neighbor 
(CBN) and (iv) Communication-aware packing-based 

best neighbor (CPBN) 

Dynamic mapping 
Network contention, 

communication volume 
and energy consumption 

TLM 

Ferrandi et al. 
[17] (i) Ant Colony Optimization (ACO) Dynamic mapping Application execution 

time RTL 

Huang et al. [18] (i) Task allocation and scheduling under lifetime 
reliability constraint Dynamic mapping Energy consumption Algorithmic 

Chen et al. [20]  (i) Algorithm MAEF (Minimum-average-energy-first) Dynamic mapping Energy consumption Algorithmic 

Kim et al. [21] (i) Multiway KLFM (Kernighan–Lin/Fiduccia– 
Mattheyses) Dynamic mapping Energy consumption Algorithmic 

Proposed 
approach 

(i) Lower Energy Consumption based on Dependencies-
neighborhood (LEC-DN) Dynamic mapping 

Energy consumption, 
hotspots and application 

execution time 

RTL (calibration) 
and TLM 

(simulation) 
 

III. UNIFIED  MODEL-BASED FRAMEWORK 
This section presents a unified model-based framework, 

which is organized in three main layers, as illustrated in Fig. 1: 
(i) application, (ii) mapping1, and (iii) platform. The first layer 
comprises application modeling and validation (functionality 
and requirements), while the second layer defines how such 
applications are mapped onto the MPSoC platform (third 
layer).  

The fundamental principle behind the unified model-
based framework is the complete separation between the 
different layers – application, mapping and platform. 
Therefore, new application models, platform templates and 
mapping heuristics can be integrated to the framework as long 
as they follow the pre-defined inter-layer APIs. Thus, the three 
layers are independent but the proposed approach supports the 
joint validation of applications mapped onto the platform 
model to establish a good trade-off between the platform 
characteristics and the requirements of the given application. 

With this framework, both heterogeneous advantage and 
dynamic mapping benefits can be easily evaluated due to the 
modeling and design flexibility of proposed approach. In this 
context, system designers can take advantage of application-
platform heterogeneous properties when mapping tasks to 
specific processor types (e.g. MIPS, DSP, Platform Layer in 

                                                
1 In the context of this work, the mapping layer is a behavioral entity called Mapper that 
is characterized according to a set of operations, which is used to define task mapping 
during the simulation. 

Fig. 1), while optimizing performance metrics such as latency, 
area cost and energy consumption. 
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Fig.  1 - Heterogeneous architecture illustrating particular characteristic of 
each IP core (e.g. PEs). 



A. Application Layer 
Most researchers on MPSoCs use task graphs to model 

applications. This approach does not support the necessary 
flexibility to develop and to validate complex and distributed 
applications used in present MPSoCs. In this context, the 
current approach provides to the software engineer the 
possibility of developing and validating different applications 
regarding only their functionality and requirements by using 
executable models based on UML sequence diagrams and 
actor-orientation, as proposed in [23]. 

UML is a well-known standard modeling language used 
by most part of the software development industry due to its 
flexibility, support to the real time requirements through 
profiles and tool support. On the other hand, actor orientation 
design is a component methodology, which separates the 
functionality concerns (modeled as actors) from the 
component interaction concerns (modeled as frameworks). It 
includes the definition of the execution semantics as a part of 
the model rather than of the underlying simulation engine 
[24]. As a result, the concurrent behavior and the 
interdependencies of the application tasks can be captured 
more accurately. We claim here that the combination of UML 
and actor-orientation provides more design flexibility to 
specify the application tasks, their dependencies, 
synchronization mechanisms, and data exchanges, when 
compared to application modeling approaches based on task 
graphs. 

In this scenario, the Application Layer was extended in 
order to support application characteristics, called here as 
heterogeneous properties (e.g. efficiency), which are 
considered in mapping decision strategies (either initial 
mapping or run-time mapping).  Thus, during the mapping 
process such application properties are considered as cost 
functions, leading to higher overall system performance, since 
the mapper tries to fit these properties to the PE 
characteristics. For instance, the user can define that a task can 
be executed in more than one type of PE by configuring the 
task type. Each task type can be executed onto a certain PE, 
which differs in terms of task execution efficiency (e.g. 
efficiency parameter,  Application Layer in Fig. 1). Such 
parameters can be calibrated from a real implementation, as 
shown in Section IV.A. 

B. Platform Layer 
The present approach provides a set of NoC models that 

differ according to its accuracy and its required simulation 
time. It provides multi-accuracy platforms models (e.g. 
latency, throughput and power estimation), allowing designers 
to choose between faster or more accurate validation, as they 
require. Abstract model of PEs and scheduling algorithms (e.g. 
First-Come-First-Served, FCFS – adopted in the present work) 
are also provided, allowing more realist traffic generation (e.g. 
ON-phase and OFF- phase period). 

The present framework provides adequate possibilities 
for observing and debugging the execution of a set of 
applications running on top of NoC-based platforms. In this 
context, the platform model layer includes Scope actors that 
can be used to check the running status of the system, as well 
as to collect performance figures that can be used for 

application/platform model optimization. Examples of Scopes 
are the LatencyScope and the PowerScope. The 
LatencyScope, provides end-to-end2 communication latency 
figures for each task communication. The PowerScope 
generates power reports based on volume-based [7] and/or 
rate-based  [23] NoC power models.  

C. Mapping Layer 
The mapping layer is the link between the application 

and the platform layer. It provides the necessary support to 
explore the mapping influence in terms of system 
performance, by employing a Mapper Actor that has a set of 
supported mapping heuristics, as well as the MapperScope. 
The MapperScope is used to monitor the mapping layer (e.g. 
capturing each task requesting time) and to generate mapping 
figure, like number of hops among communicating tasks. 

The proposed approach supports static (e.g. taboo search, 
simulated annealing [23]) and dynamic mapping heuristics 
(e.g. LEC-DN [5], adopted in this work). The LEC-DN was 
chosen to be extended to consider heterogeneous properties as 
cost functions due to the following reasons: (i) it was 
implemented and validated in a RTL homogeneous NoC-
based platform; (ii) results show a reduction in term of 
execution time (4.3% in average) and the energy consumption 
(10.8% in average) [5], when compared to well-known 
dynamic mapping heuristics [15].  

The LEC-DN employs two cost functions: (i) proximity, 
in number of hops; (ii) communication volume between tasks 
(which corresponds to the communication energy). The 
second criterion is used when a given task communicates with 
at least two mapped tasks. In this situation, the new task is 
mapped closer to the task with higher communication volume. 
When the requested task has only one communicating task 
already mapped, LEC-DN uses the NN search method (spiral 
search) [15]. In addition to the two previous cost functions, the 
heterogeneous LEC-DN considers task execution efficiency 
before mapping a required task onto a PE. If there is more than 
one communicating task already mapped, the LEC-DN 
searches for a PE inside the bounding box defined by the 
position of such tasks.  

Consider the application illustrated in Fig. 2(a), 
containing 4 tasks, where AB1 and AB2 are initial tasks.  

(a) (b)

AB1 AB2

m1

4AB

m2 AB1(150)

(150)

AB2

m3(120)

AB3

AB3

task execution efficiencyAB3

50 % 100%

 
Fig. 2 - (a) application described as UML diagram; (b) search space to map 

the AB3 task, and one possible mapping for AB3. 

                                                
2 This term is defined here, as is the delay between the time a PE starts its message 
transmission and the time the target PE receives the message. 



The mapping of task AB3 is triggered by the first 
communication with it. The search space to map task AB3 
corresponds to the bounding box defined by the position of 
AB1 and AB2 tasks (Fig. 2 (b)). Thus, AB3 will be mapped 
nearest to task AB1, since according to the application UML 
the task execution efficiency is higher in the PE next to AB1 
than in PE next to AB2 (50% normalized value based on higher 
task execution efficiency, in case, 100%). Note that task AB4 is 
not mapped, since it depends from task AB3. 

IV. STUDY CASES AND RESULTS 

A. Application Performance 
In our experiments, we have used a hardware prototype 

called XScale 270 [23], which is based on ARMv5 processor 
architecture. The ARMv5 is the master node responsible for 
system monitoring and application scheduling. The processor 
is connected to Spartan3-5000 FPGA in which we have a dual 
processor µBlaze implementation with both µBlaze processors 
configured differently. The communication between the 
XScale and the µBlaze processor is done by using a bridge 
directly connected to the PLB bus of one of the µBlaze 
processors. Each µBlaze processor is configured to have a 
small local memory and communication between them is 
allowed by using mailboxes (message passing). For the 
purpose of heterogeneity each processor is configured 
differently based on the presence or absence of hardware 
multiplier and barrel shifter, as presented on Table II. 

Table II DIFFERENT CONFIGURATIONS OF µBLAZE PROCESSORS 

 Hardware Multiplier Barrel Shifter #LUTS 

µBlaze1 Yes Yes 3631 

µBlaze2 Yes No 3404 

µBlaze3 No Yes 3581 

µBlaze4 No No 3357 

 

Fig. 3 depicts the performance of different benchmarks 
applications. Applications performance is evaluated in terms 
of required number of clock cycles for application execution. 
We present four different configurations of µBlaze processors 
(as presented in Table II) and two different configurations of 
the ARM processor: (i) ARM 520 running at 520 MHz and (ii) 
ARM 208 running at 208 MHz, both running a flavor Linux 
kernel. Results show that each application may perform better 
on a particular target depending on both application and 
processor characteristics. It is possible to observe that the 
performance of FIR application is dependent on the presence 
of a hardware multiplier whereas inverse quantization can 
benefit equally from both multiplier and barrel shifter. 
Another interesting point to be observed is that FIR and Iquant 
applications perform better on µBlaze1 and µBlaze2 
processors since it is simple processor with the hardware 
multiplier with only 5 pipeline stages and without MMU and 
Cache, which makes this processor more efficient than ARM. 

Since applications can be executed on different 
processors, they may perform differently and in most cases 
µBlaze processor performs as good as XScale processor. This 

principle is used to map the application on given processing 
element depending on the requirements. 

 

 
Fig.  3 - Normalized performance of benchmarks running on different 

processing nodes. 

B. Area Overhead 
Kranenburg [22] evaluates open source processors, 

considering design quality, performance, available 
documentation and the set of specific features of each one. In 
addition to the Kranenburg approach [22], the Plasma 
Processor, COFFEE processor, and Plasma with Floating 
Point Unit were evaluated in terms of resource utilization. Fig. 
4 presents the area occupation in terms of flip-flops and four-
input LUTs for eight different processors. 
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Fig.  4 - Resource utilization (flip-flops - FFs and Look Up Tables - LUTs) of 
evaluated processors, targeting the xc5vlx110ff1760-3 device, except Plasma-

FPU. Adapted from [22]. 

Fig.  5 ilustrates the area occuppation for both Plasma 
and MB-Lite processors. The PE is composed of a NoC 
(Router), a DMA controller, a Network Interface (NI) and 
peripherals (Others). It is possible to observe that the 
processor is responsible for 80% of the processing element 
area. For this reason we have only considered different 
processors in our high-level model, keeping the same router 
for all of them. 

C. High-Level Modeling 
For the sake of simplicity, three processors type were 

employed: MB-Lite, LEON and the Plasma-FPU (considered 
here as dedicated IP core). Table III describes architectural 
characteristics of the modeled heterogeneous MPSoC system.  



Table III ARCHITECTURAL CHARACTERISTICS OF OUR HETEROGENEOUS MPSOC SYSTEM

NoC 
Dimension 

Number of 
Clusters 

Number of 
PEs per 
cluster 

Total PEs MB-Lite 
(#LUTS) 

Leon 
(#LUTS) 

Plasma-FPU  
(#LUTS) 

7x7 4 12 49 1,000 2,700 5,800 
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Fig.  5 - Area occupation for both Plasma and MB-Lite processors. 

The architecture is split into four clusters, each one 
containing twelve processing elements together with a central 
node (Mapper) responsible for dynamically mapping tasks 
onto PEs. Three different processors are modeled from real 
area occupation values obtained from synthesis process on 
FPGA. It is possible to observe that MB-Lite processor 
occupies only 1,000 LUTs while Plasma-FPU [25] (Plasma 
with floating point unit) is almost six times bigger, occupying 
5,800 LUTs. 

After having obtained area occupation figures for 
different processors, three hyphotetical configurations were 
created according to area constraints. For each configuration 
there is an available area per cluster where twelve processors 
must fit on it.  

1. Configuration 1 (C1): the architecture is built of 
ten MB-Lite processors together with 1 Leon and 
1 Plasma-FPU processors. The resulting occupied 
area is 18,500 LUTs; 

2. Configuration 2 (C2): the architecture is built of 
three MB-Lite processors together with 5 Leon 
and 4 Plasma-FPU processors. The resulting 
occupied area is 39,700 LUTs; 

3. Configuration 3 (C3): the architecture is built of 
one MB-Lite processor together with 2 Leon and 
9 Plasma-FPU processors. The resulting occupied 
area is 58,600 LUTs (Table IV); 

Table IV PROCESSORS CONFIGURATION FOR THREE 
DIFFERENT SCENARIOS 

Configu- 
ration 

Available 
area per 
cluster 

(#LUTS) 

Clusteri Occupied 
area per 
cluster 

(#LUTS) 
  MB L P  

C1 20,000 10 1 1 18,500 

C2 40,000 3 5 4 39,700 

C3 60,000 1 2 9 58,600 
 

Fig. 6 illustrates three heterogeneous platforms 
considering the different configurations previously presented. 
The central node (M) is a MB-Lite based processor which 
hosts the Mapper Actor, responsible for dynamically mapping 
tasks into different PEs in the architecture. 

 
(C1) 

 
(C2) 

 
(C3) 

 
 

Fig.  6 - Representation of three heterogeneous platforms considering different area constraints (available area per cluster):  
C1) 20,000 LUTs; C2) 40,000 LUTs; C3) 60,000 LUTs.  



Table V END-TO-END COMMUNICATION COST REPRESENTATION CONSIDERING THREE SCENARIOS  
WITH DIFFERENT AREA CONSTRAINTS AND FIVE APPLICATIONS

Scenario S1 S2 S3 
Area (#LUTS) 20,000 40,000 60,000 

Energy VB (µJ) 32.89 32.89 32.89 

Applications MAX(EECi,j) AV(EECi,j , N) MAX(EECi,j) AV(EECi,j , N) MAX(EECi,j) AV(EECi,j , N) 

MPEG 885,434 883,904 615,230 613,486 441,870 440,659 

MWD 101,006 100,349 62,618 62,265 42,102 41,469 

SEGIMG 1,012,450 801,152 699,538 545,951 348,824 279,112 

SYNTHETIC 282,709 278,038 181,173 179,018 146,009 142,837 

AAV 1,006,060 782,409 851,484 627,100 487,326 390,101 

Total 3,287,659 2,845,852 2,410,043 2,027,820 1,466,131 1,294,178 

Table VI END-TO-END COMMUNICATION COST REPRESENTATION CONSIDERING THREE SCENARIOS  
WITH DIFFERENT AREA CONSTRAINTS AND FIVE APPLICATIONS WITH DIFFERENT EFFICIENCY CHARACTERISTICS

Scenario S1 S2 S3 
Area (#LUTS) 20,000 40,000 60,000 

Energy VB (µJ) 30.08 33.05 32.89 

Applications MAX(EECi,j) AV(EECi,j , N) MAX(EECi,j) AV(EECi,j , N) MAX(EECi,j) AV(EECi,j , N) 

MPEG 885,434 883,904 550,631 550,187 441,870 440,659 
MWD 99,740 99,069 69,650 69,310 40,818 40,818 

SEGIMG 816,302 796,370 647,721 514,071 348,824 279,112 
SYNTHETIC 252,228 247,545 156,961 153,116 118,431 116,185 

AAV 1,010,440 786,815 788,016 564,357 487,326 390,101 
Total 3,064,144 2,813,703 2,212,979 1,851,041 1,437,269 1,266,875 

 
Note that the all tasks execution efficiency were defined 

as 20% for MB-Lite, 50% for  LEON and 100% for Plasma-
FPU. Table V presents the end-to-end communication cost 
considering three scenarios with different area constratints and 
five applications. For each scenario we have calculated the 
end-to-end cost which is given by Equation 1. 

EECi,j  =  Pi  +  Li,j   (1) 
  

where, 

EECi,j = End-to-end communication cost between source 
node (task i) and destination node (task j); 

Pi = Processing time of task i; 

Li,j = Latency between source node (task i) and 
destination node (task j); 

Besides, a MAX(EECi,j) value is calculated based on one 
single frame execution while AV(EECi,j , N) represents the 
average value for N inter-task communication events of a set 
of applications. 

It is possible to observe that as available area is 
increased, the end-to-end communication cost is reduced and 
the same behavior is noted for all five applications. This is 
explained by the fact that as available area increases (S3), it is 
possible to fit more powerful processors units such as Plasma-
FPU into the cluster. As a result the processing cost and the 

EECi,j are respectively reduced. If we consider the MPEG 
application, we can observe that the average AV(EECi,j , N) is 
reduced in 31% and 50% when comparing S1 against S2 and 
S3 respectively. For SEGIMG application, the EECi,j 
reduction is of 31% and 72% respectively. Considering the 
total average comprising the five applications, we can clearly 
see that there is a reduction of 29% (S2) and 55% (S3) 
compared to S1. 

The energy consumption of the NoC remains the same in 
all scenarios, since the communicaton through the NoC is not 
considelable (less than 12% of the available throughput) and 
only one mapping heuristic is employed.  

Table VI presents the end-to-end communication cost 
considering different area constraints and five applications 
with distinct efficiency characteristics. As explained in 
Section III. A, applications are modeled with different 
efficiency characteristics for different processors. Heach one 
of the three different processors (MB-Lite, LEON and Plasma-
FPU), where it is possible to observe that compared to Table 
V, which application efficiency is not considered, this 
approach performs better in all three scenarios. Concerning 
energy consumption, S3 performs slightly better compared to 
S1 and S2 (30.08µJ and 33.05µJ respectively). 



V. CONCLUSIONS 
High-level models are concrete solutions that are mainly 

powerful due to their capacity of representing real architectures 
and validating scenarios that would might not be possible to 
be explored in a feasible time on, i.e., RTL-based 
architectures. On the other hand, the calibration of such 
models must be done very carefully and the information to fed 
the model should have a high degree of precision. 

In this paper we have proposed a novel solution that uses a 
unified model-based framework in which different 
heterogeneous architectures are modeled and validated. The 
model is calibrated with synthesis information of different 
embedded processors obtained from real implementation on 
FPGA. Different applications run on each processor and 
distinct performance figures area obtained. Thus, we propose a 
novel solution for representing application efficiency 
characteristics according to different processors. The paper 
presents three scenarios that consider clusters with different 
area constraints and  multimedia applications such as MPEG 
and ADPCM are used as benchmarks for the case studies. 

We compare energy consumption efficiency of three 
different architectures as well as the end-to-end communication 
cost for all five applications. We can clearly observe that 
dynamic task mapping performs better when considering 
application efficiency before mapping tasks into processing 
elements. As future work we plan to also consider the energy 
consumption of processors in order to improve the decision-
making when tasks are dynamically mapped onto the 
architecture. 
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