
Multi-Task Dynamic Mapping onto NoC-based MPSoCs

Marcelo Mandelli1, Alexandre Amory1, Luciano Ost2, Fernando G. Moraes1
1PUCRS – FACIN – Av. Ipiranga 6681 – Porto Alegre – 90619-900 – Brazil

2LIRMM – 161 rue Ada, Cedex 05 – Montpellier – 34095 – France
marcelo.mandelli@acad.pucrs.br, alexandre.amory@pucrs.br, ost@lirmm.fr, fernando.moraes@pucrs.br

ABSTRACT
Task mapping defines the best placement of a given task in the
MPSoC, according to some criteria, as energy or Manhattan
distance minimization. The ITRS roadmap forecast in a near
future MPSoCs with hundreds of processing elements (PEs).
Therefore, dynamic mapping heuristics are required. An important
gap is observed in the mapping literature: the lack of proposals
targeting multi-task dynamic mapping. In this context, the present
work proposes an energy-aware dynamic task mapping heuristic,
allowing multiple tasks allocation per PE. Experimental results
are executed in an actual MPSoC running distributed applications.
Comparing a single-task to the multi-task mapping, the energy
spent in the NoC is reduced in average by 51% (best case: 72%),
with an average execution time overhead of 18%. Besides the
communication energy reduction, the multi-task mapping enables
a greater number of applications executing simultaneously, or
smaller MPSoCs, which reduces the system cost.

Categories and Subject Descriptors
C.1.2 [Multiple Data Stream Architectures (Multiprocessors)]:
Interconnection architectures; C.2.1 [Network Architecture and
Design]: Packet-switching networks; J.6 [Computer-Aided
Engineering]: Computer-aided design (CAD)

General Terms
Algorithms, Performance, Design, Experimentation.

Keywords
MPSoC, NoC, dynamic mapping, energy evaluation.

1. INTRODUCTION
NoC-based MPSoCs can execute simultaneously several and
complex applications. Such applications are composed by tasks,
with different workloads and deadlines [1]. The workload of such
systems may vary dynamically at execution time, according to
various criteria (e.g. user and/or performance requirements)
[2][3][4]. In this context, the mapping of such tasks onto the NoC-
based platform may drastically influence the system performance
[5]. This influence is due to the inter-task communication traffic.
An unoptimized mapping may place communicating tasks far from
each other, increasing the communication latency and energy
consumption, as well as increasing network traffic leading to
congestion inside the NoC.

Task mapping literature is rich, but a taxonomy classifying the
mapping approaches is required. We propose a taxonomy for task
mapping, according to four criteria.
Considering the moment when tasks are mapped, the following
approaches may be used:
• at design time: called static or offline, it may use complex

heuristics to better explore the MPSoC resources, resulting in
optimized solutions. However, static mapping is not able to
handle a dynamic workload.

• at run-time: called dynamic or online, require simple and fast
heuristics since it may interfere with the applications
execution time. Two dynamic mapping approaches are used:
o with resources reservation: the mapping heuristics verify

if there are enough resources in the MPSoC before
mapping the application tasks.

o without resources reservation: the mapping heuristics map
one or more initial tasks of the applications (those without
dependences to another tasks), mapping the remaining
tasks when they are required. This approach may start
applications faster, but some tasks may wait for available
resources if the system usage is high.

Considering the number of task mapped per PEs, the following
approaches may be used:
• single-task: only one task is assigned to each PE.
• multi-task: more than one task can be assigned to each PE

This requires a clustering approach to define a group of tasks
to be mapped onto the same PE.

The dynamic mapping requires an entity responsible for mapping
the tasks at runtime. Such control may be:
• centralized: one PE is responsible to manage the mapping

process. This approach is not scalable, and may lead to hot-
spots in the NoC and reduce the overall performance.

• distributed: the MPSoC is divided in regions (clusters), and
one PE in each region is responsible for executing the
mapping heuristic inside it.

Finally, the mapping can be classified according to the system
architecture model:
• homogeneous: when all PEs are identical.
• heterogeneous: when different PEs are used in the same

system, including RISC, processors, DSPs, dedicated IPs and
so on. Before the mapping it is necessary a binding process to
define which PEs can execute a required task

Our main goal is to present an energy-aware heuristic for dynamic
multi-task mapping, without resources reservation. The main
features of the proposed mapping include: (i) execution of the
mapping heuristics on an RTL NoC-based MPSoC platform,
leading to accurate results; (ii) use of real applications as
benchmarks; (iii) a clustering approach considering the
communication dependence among tasks; (iv) the main cost
function is the energy consumption in the communication
infrastructure.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
SBCCI’11, August 30-September 2, 2011, João Pessoa, Brazil.
Copyright 2011 ACM 978-1-4503-0828-1/11/08 ...$10.00

.

191

The rest of this paper is organized as follows. Section 2 presents
related works in task mapping, classifying them according to the
proposed taxonomy. Section 3 details the reference MPSoC
platform. Section 4 presents the proposed dynamic mapping
heuristic. Section 5 presents the experimental setup and results.
Section 7 concludes this paper.

2. DYNAMIC TASK MAPPING RELATED
WORK
Table 1 classifies recent works in dynamic task mapping according
to the proposed taxonomy. The Table reveals two common
features: centralized control and single-task mapping.
Even if centralized control is not scalable, this is the strategy
adopted in most works. The only work presenting distributed
control is the Al Faruque [4] proposal, using a 64x64 NoC. Define
when a centralized control becomes a bottleneck requiring
distributed control is an open issue in the literature. So far, the
mapping heuristics are evaluated in NoCs with mesh topology,
with dimensions inferior to 9x9.
Most works use a single-task mapping approach,
assigning only one task for each PE. Such behavior must evolve to
consider multiple applications running simultaneously, in an
environment with processors executing multi-task operating
system. The main challenge of multi-task mapping is how to group
them, since the clustering approaches requires a global view of the
application, while in dynamic mapping only a subset of the tasks
are effectively mapped onto the MPSoC.
Singh et al. [3][14] extended the dynamic heuristics proposed by
Carvalho et al. [13] to support multi-task mapping. A clustering
approach is proposed, which tries to maximize the number of
communicating tasks in the same PE. This technique verifies the
previously mapped tasks in a given a PE to map a new ones on it:
if the required task communicates with some previously mapped
task, it is mapped; if not, then other PE is verified. The Authors
mention that some PEs may receive only one task, underusing the
system resources. The clustering approach, compared to a non-
clustering approach, improve in average 15% the channel load and
energy consumption, with some improvement in packet latency
and execution time. The main drawback of Singh’s approach is that

only master-slave dependences between tasks are considered.
Other remark concerns the resource reservation. Some works
reserve resources according to the number of the tasks, defining
e.g. precomputed mapping templates for each application.
Considering that not all tasks execute concurrently, reserve
resources for all application tasks may underutilize the MPSoC, as
well as require bigger systems. The dynamic mapping without
reservation uses the system resources when they are effectively
required.
Finally, the NoC-based MPSoC modeling limits the evaluation of
the dynamic mapping heuristics, since designers should be able to
simulate scenarios for long time in order to allow the occurrence
and analyses of critical aspects (e.g. application area
fragmentation). RTL modeling and cycle accurate simulation
provides accurate results, with long simulation time. On the other
hand, abstract models as TLM, enables faster simulations, but do
not enables accurate performance evaluation. Some works, as
[3][13], adopts a mixed modeling, with PEs described using
SystemC and the NoC in VHDL. The remaining reviewed works
employs abstract models (e.g. analytical model employed in [12]).
Contrary to the other works, the proposed multi-task dynamic
mapping heuristic is validated using a NoC-based MPSoC platform
described at the RTL level, with a clock-cycle accurate ISS
describing processors. The mapping heuristic is executed in a given
PE, responsible to manage the mapping requests of the remaining
PEs, which execute a multi-task operating system, enabling multi-
task mapping.
The present work advances the state-of-the-art for dynamic multi-
task dynamic mapping heuristics, which is the most important gap
observed in the mapping literature, presenting a new multi-task
mapping that can be employed by actual NoC-based MPSoCs.
However, some drawbacks of the present work must be pointed
out: (i) centralized approach – may be solved using the clustering
method advanced in [4]; (ii) homogenous architecture – a binding
process before mapping enables heterogeneous PEs; (iii) small
NoCs – larger NoCs, as 10x10, require accurate abstract models.
To have such accurate abstract models, validation at the RTL level
is required beforehand develop such models.

Table 1. Related work classified according to the proposed taxonomy for dynamic mapping heuristics.

Author Resource
reservation Multi/Single Task Architecture model Control manager Optimization Goal

Smit [6]
2005 Yes Single Task Heterogeneous Centralized Energy Consumption, QoS requirements for the

applications
Ngouanga [7]

2006 Yes Single Task Homogeneous Centralized Communication volume, Computation load

Hölzenspies [8][1]
2007/2008 Yes Single Task Heterogeneous Centralized Energy Consumption, QoS requirements for the

applications
Chou [9][10]
2007/2008 Yes Single Task Homogeneous Centralized Energy Consumption, Network contention

Al Faruque [3]
2008 No Single Task Heterogeneous Distributed Execution time, Mapping time

Mehran [11]
2008 Yes Single Task Homogeneous Centralized Mapping Time, Energy Consumption, Mapping

Complexity
Wildermann [2]

2009 No Single Task Homogeneous Centralized Communication Latency, Energy consumption,
Application deadlines

Schranzhofer [12]
2010 Yes Single Task Homogeneous Centralized Energy Consumption

Carvalho [13]
2010 No Single Task Heterogeneous Centralized Network contention, Communication volume

Singh [14][3]
2009, 2010 No Multi-task Heterogeneous Centralized Network contention, Communication volume, Energy

Consumption

Proposed work No Multi-task Homogeneous Centralized inter-task dependence evaluation, energy
consumption

192

3. MPSOC ARCHITECTURE
The proposed heuristic was implemented in a homogeneous NoC-
based MPSoC platform called HeMPS [15]. Each PE, named
Plasma-IP, contains a MIPS-like processor (Plasma), a local
memory (RAM), a DMA controller and a Network Interface. A
general view of a 2x2 instance of the MPSoC architecture is
illustrated in Figure 1. Two types of Plasma-IP are used: slave (SL)
and master (MP). Plasma-IP slaves are responsible to execute
application tasks, while the Plasma-IP master is responsible to
manage task mapping and system debug. The external memory,
named task repository, contain all application tasks, which can be
requested during the simulation According to the mapping
heuristic, the Plasma-IP master maps the tasks onto the Slaves-PEs.
The Plasma-IP MP can also receive debug messages from Slave-
PEs, transmitting them to an external host through an Ethernet
interface (not shown in Figure 1).

MPSoC

Slave-PESlave-PE

Master-PE

N
et

w
or

k
In

te
rfa

ce

Slave-PE

PLASMA

DMA R
A

M

Ta
sk

R
ep

os
ito

ry

NoC

Router

Router

Router

Router

Figure 1. Block diagram of the HeMPS platform.

Each Plasma-IP SL runs a tiny operating system (named
microkernel, whose memory footprint is around 20 KB),
responsible to manage and support task execution and task
communication. This microkernel is a preemptive operating system
where each task uses the CPU for a pre-defined period, called
timeslice.
All communication among tasks occurs through message passing,
using a global message vector, named pipe, located in the
microkernel, and two communication primitives: Send() and
Receive(). A task executing the communication primitive Send() is
the source task, and the one executing Receive() is the target task.
During the execution of the Send() command it is verified if the
target task is mapped (using a local task table). If the target task is
not already mapped, the source microkernel sends a RequestTask
message to the Plasma-IP MP, which selects the task position at
run-time according to the dynamic task mapping heuristic. When
the Plasma-IP MP receives the RequestTask message, it configures
its DMA module, which accesses the task repository and transmits
the target task code to the target Plasma-IP SL memory.

4. MAPPING HEURISTICS
This section describes the mapping heuristics used in this paper.
Section 4.1 presents the Nearest Neighbor and the Best Neighbor
mapping heuristics, used as reference for the experiments [13].
Section 4.2 details the LEC-DN (Low Energy Consumption –
Dependences Neighborhood) mapping heuristic for multi-task.
Section 4.3 presents the Premap clustering method, which try to
group communicating tasks in the same PE. Section 4.4 presents
the proposed Premap-DN, which combines Premap with LEC-DN.

4.1 Reference dynamic mappings heuristics
The Nearest Neighbor (NN) heuristic considers only the proximity
of an available resource to execute a given task. NN starts
searching for a free PE able to execute the target task near the
source task. The search tests all n-hop neighbors, n varying
between 1 and the NoC limits in a spiral way, stopping when the

first PE free is found. The Path Load (PL) heuristic computes the
load in each channel used in the communication path. PL computes
the cost of the communication path between the source task and
each one of the available resources. The selected mapping is the
one with minimum cost. The Best Neighbor (BN) heuristic
combines NN search strategy with the PL computation approach.
The search method of BN is similar to NN, i.e., spiral searches
from the source node. This avoids computing all feasible mapping
solutions, as in the PL heuristic, reducing the execution time for
the mapping. BN selects the best neighbor, according to PL
equations, instead of the first free neighbor as in NN.
Note that the BN and PL heuristics require a monitoring
infrastructure to evaluate at runtime the load at each NoC link.
Such monitoring processes increases the traffic load inside the
NoC, as well as the CPU utilization that executes the mapping
heuristic (Plasma-IP MP), since it must receive the monitoring data
and fill the data structures responsible to keep the monitoring
information.
Singh et al. [14] extended BN and NN heuristics to multi-task
mapping. Basically, the algorithm starts verifying if the source task
(0 hops distance) is able to map the target task instead of looking
for the neighbor PEs at 1 hop distance. Our work adopts a similar
approach (0 hops), with a new search method (bounding box) and
cost function (energy consumption).

4.2 LEC-DN
Differently from NN and BN heuristics, which map the target task
as close as possible to its source task, the LEC-DN [16] considers
the proximity of the target task to all communicating tasks that are
already mapped. LEC-DN employs two search methods to select
the PE that receives the target task. When the target task has only
one communicating task already mapped, LEC-DN uses the NN
search method (spiral search). If there is more than one
communicating task already mapped, the LEC-DN searches for a
PE inside the bounding box defined by the position of such
communicating tasks. The bounding box search method uses the
volume-based energy model proposed by Hu et al. [17] to select
the position of the task to be mapped.
Consider the application of Figure 2(a), containing 4 tasks, where
A and B are initial tasks. The mapping of task C is fired by the first
communication with it. The search space to map task C
corresponds to the bounding box defined by the position of A and
B tasks (Figure 2(b)). Task C will be mapped nearest to task A,
since according to the application task graph the communication
volume AàC is higher than BàC. Note that task D is not mapped,
since it depends from task C.

B

AC
B

C
100150

A

D

120

(a) (b)
Figure 2. (a) application graph G=<T,V> describing an

application, where T is the task set and V the communication
volume between tasks; (b) search space to map the C task, and

one possible mapping for C.

193

The present work extended the original LEC-DN heuristic to
execute multi-task mapping, extending the search space to start in
the processor that requested the new task.

4.3 Premap
The goal of this method, herein proposed, is to group a set of
communicating tasks onto the same PE. The idea is not to reserve
resources for the whole application. The premap heuristic is
executed when a new task is mapped in a new PE. When a given
task is premapped, only its placement is reserved. The effective
mapping of the premapped tasks is executed when the task is
requested.
Consider as an example the application of Figure 3(a), with 8 tasks,
being tA the initial task. A 2x2 MPSoC instances is used, resulting
in three available Plasma-IP SL, each one able to execute up to 3
tasks. Figure 3(c) presents the communication task list (CTL), data
structure contained in the Plasma-IP MP microkernel used by
premap. Each entry of the CTL is a task ti, containing the set
C = {t1, t2, …, tn}, corresponding to all tasks connected to ti, sorted
according to their communication volume with ti.

500500
100

200 50

TASK

D
E
F

E200 F50

G300 D200

D50

Comm. task list

(a)

(c)

(b)

A B500 C500 D100

A100

C A500

B A500
25

G E300

H25

A

D CB

E F

H

A
B
C

D
F

01

00 10

11

G

300

H F25

Figure 3. Premap heuristic example.

When the system execution starts, the initial tasks are mapped,
according to their position defined at design time. According to the
example, tA is mapped to PE01 (Figure 3(b)). The premap
evaluates each task tj in the set C(tA) to be premapped in PE01,
starting with the one with higher communication volume. In the
example C(tA)={tB,tC,tD}, and tB will be premapped iff there is no
task in C(tB) with a higher volume with tA. As tB and tC only
communicates with tA, both are premapped in PE01. At this
moment the method stops, since the PE has already 3 tasks
assigned to it. During system execution, tB and tC are required to be
mapped. As they were already premapped, it is not necessary to
use the mapping heuristic, being only necessary to transmit the
object codes to PE01. Next tD is required to be mapped. The LEC-
DN chooses PE00, which is the nearest PE to tA (it could also be
PE11). As tD “opened” a new PE, the premap is executed. In this
case C(tD)={tE,tA,tF}. As the communication volume tE-tG is higher
than the communication volume tE-tD, tE is not premapped. Next,
as tA is already mapped, it is not evaluated. Finally, tF is evaluated,
and it is premapped with tD because the communication volume tF-
tD is higher than tH-tF.
Figure 4 shows the implementation of the premap heuristic. The
heuristic begins assigning to the set N(ti) the non-mapped tasks of
C(ti) (line 2). The next step evaluates each task di from N(ti), to
choose which tasks will be premapped onto pi. This evaluation
(line 5-16) happens while pi has less than TASKS_PER_PE (the
maximum number of tasks supported per PE) mapped/premapped

tasks onto it, or if all possible tasks in N(ti) were already evaluated.
For each task di, the first task hi in its CTLC(di) is obtained (line 7).
So, the task hi is compared to the task ti (line 8) to verify if di has
the highest communication volume with ti. In an affirmative case, ti
is premapped onto pi, also increasing the pi number of
mapped/premapped tasks (line 9-12). Otherwise, if available, other
task from N(ti) is evaluated.

Input: The PE pi, the task ti mapped onto pi
Output: A set of tasks premapped onto pi
1. // N(ti) contains all non-mapped tasks which ti communicates with
2. N(ti)ß non-mapped_tasks(C(ti))
3. // Get the first task in the N(ti)
4. diß first(N(ti))
5. WHILE tasks(pi)<TASKS_PER_PE or !end(N(ti)) DO
6. // Get the first task hi (with highest communication volume) in C(di)
7. hiß first(C(di))
8. IF hi=ti THEN
9. // premap di onto pi
10. premap(di,pi)
11. // increase the number of mapped/premmaped tasks onto pi
12. tasks(pi)++
13. END IF
14. // Get the next task in the N(ti)
15. di ß next(N(ti))
16. END WHILE

Figure 4. Premap mapping heuristic pseudocode.

4.4 Proposed Premap-DN
The premap-DN optimizes the multi-task mapping by integrating
the LEC-DN and the premap clustering method. Figure 5 shows
the integration of LEC-DN and the premap clustering method in
the Plasma-IP MP microkernel. When a task ti is requested to be
mapped by a PLASMA-IP SL, it sends a REQUEST_TASK
message to the PLASMA-IP MP. The PLASMA-IP MP receives
this message and starts executing the mapping flow. First, it checks
if there is some available resource in the system. If there is no
available resource, the task is scheduled to be mapped later. The
schedule mechanism is out of the scope of this work. In the other
case, the flow proceeds to the next step.
The next step verifies if the target task is already premapped. In an
affirmative case, the task is allocated to the assigned PE; otherwise,
the LEC-DN mapping heuristic is executed.
The LEC-DN executes and returns the PE pi where the task ti is
mapped on. After this, it checks if pi has just one task, which
means that it contains just the task ti. If it is true, the premap
method is called to find the tasks communicating with ti to be
premapped onto pi and the flow is finished.

Request task ti

Schedule the
task to be

mapped later

No

Yes

Map ti onto the
PE where it is
premmaped

Yes

No

No

Task ti is
premapped onto

a PE?

available
resource in the

system ?

Execute LEC-
DN

Map ti onto the
PE pi chosen

by
 LEC-DN

pi has
just ti mapped

on it?

Call PREMAP
method

Yes

Figure 5. Integration of the heuristics in the microkernel.

5. RESULTS
The MPSoC used to evaluate the mapping heuristics is configured
as follows: 2D-mesh topology, XY routing algorithm, 16-bit flit
size, packets with 128 flits and credit-based control flow. The
MPSoC is sized as follows: 7x6 (1 Plasma-IP MP, 41 Plasma-IP
SL) for single-task mapping and 3x5 (1 Plasma-IP MP, 14 Plasma-

194

IP SL) for multi-task mapping. Such configuration was chosen to
have, if possible, the same number of simultaneous tasks executing
in the systems. This criterion enables a fair comparison among the
heuristics, since the MPSoC occupation is the same for both single
and multi-task mapping. Considering up to 3 tasks mapped per
processor, the multi-task mapping may map 42 tasks (14 Plasma-IP
SL * 3 tasks per PE), while the single-task may map up to 41 tasks.
The energy model was calibrated using the ST/IBM CMOS 65 nm
technology at 1.0 V, adopting clock gating, and a 100 MHz clock
frequency. Additionally, in order to evaluate the BN heuristic, a
monitoring infrastructure is included in MPSoC to obtain the load
in each NoC link.
Real and synthetic applications are modeled in C code. The C code
contains the communication primitives enabling the
communication among tasks, and the computation time of each
task. Five application scenarios were evaluated:

A. MPEG (12 tasks), VOPD (12 tasks), Vehicle (10 tasks) and
Circuit (4 tasks);

B. MPEG, VOPD, Segmentation Image (6 tasks) and
Synthetic (6 tasks);

C. MPEG and VOPD;
D. MPEG, Vehicle and Circuit.
E. MPEG, MWD (12 tasks) and VOPD

Scenarios A, B and E contains 38, 36 and 36 tasks, respectively.
Such scenarios correspond to an MPSoC occupation equal to 93%
(scenario A) and 86% (scenario B and E). The dynamic mapping
heuristics are stressed in these two scenarios, since the search
space is drastically reduced when almost all tasks are already
mapped. Scenarios C and D contain 24 and 26 tasks respectively,
enabling to evaluate the mapping heuristics when the search space
is not a constraint.

5.1 Execution time evaluation
Table 2 presents the total execution time to execute 10 application
iterations, for each evaluated scenario, considering up to three
tasks mapped to the same PE. The average execution time
overhead compared to the single-task LEC-DN, is 14%, 13%, 16%
and 19% for the NN, BN, LEC-DN multi-task and Premap-DN
heuristics respectively. This overhead in the multi-task approach
can be explained due to the time-sharing between tasks in the same
processor. The scheduling algorithm shares the processor
execution in timeslices among tasks. Thus, during a timeslice, a
task can stay long periods in an idle state, waiting, for example, to
receive a particular message. This results in a waste of time,
because when this task becomes idle, a new task could be
executed.

Table 2. Execution time, in clock cycles (thousands).

Scenario
Single-task Multi-task – up to 3 tasks per processor

LEC-DN NN BN LEC-DN Premap-DN
A 4,623 5,419 5,329 5,787 5,755
B 2,350 2,436 2,555 2,603 2,483
C 1,700 1,932 1,950 1,912 2,042
D 4,591 5,465 5,430 5,251 5,454
E 1,866 2,168 2,027 2,143 2,312

Multi-task mapping heuristics can influence the total execution
time if the communicating tasks are not grouped correctly, since
the network congestion may increase due the lower number of
available network channels. The execution time overhead of the
proposed Premap-DN is 4%, 4.9% e 2.7% compared to NN, BN e
LEC-DN multi-task heuristics. This is a small overhead since the
energy consumption reduction is considerable better than the other

heuristics (next subsection). According to this evaluation, the
mapping of several tasks in the same processor increases the
processors utilization with a small penalty in the execution time.

5.2 Energy evaluation
Table 3 presents the total energy consumption in the NoC (routers
and links). The multi-task mapping reduces in average 56% the
communication energy, when compared to single-task heuristics.
As shown in Figure 6, the Premap-DN heuristic achieves the
highest reduction in most cases (up to 72% reduction), except for
the scenario B, where the NN heurist has the highest reduction.
The reduction in the communication energy is due to the adopted
premap clustering method. Grouping tasks in the same processor
reduces the network traffic, and consequently the NoC energy
consumption.

Table 3. Total communication energy consumption (in nJ).

Scenario
Single-task Multi-task – up to 3 tasks per processor

LEC-DN NN BN LEC-DN Premap-DN
A 2,829 2,098 1,332 1,476 1,260
B 1,929 618 901 678 755
C 1,189 449 371 462 370
D 2,022 1,007 888 1,249 559
E 1,228 599 596 617 521

0%

10%

20%

30%

40%

50%

60%

70%

80%

A B C D E

NN BN ODN-‐E ODN-‐E	 PREMAP

Figure 6. Reduction on the communication energy normalized

to the LEC-DN single-task mapping.
Comparing Premap-DN to other heuristics, the communication
energy reduction is 18.6%, 14.3% and 18.8% for NN, BN and
LEC-DN-MT, respectively. The BN heuristic obtains the best
results in total execution time, while increasing the average
communication energy consumption approximately 19.7%,
compared to other heuristics. The monitoring infrastructure used to
obtain NoC data at runtime explains the increased energy
consumption. Furthermore, this infrastructure also implies the use
of monitoring packets, which are not taken into account in the
results and cause higher consumption in communication energy.
The LEC-DN is the reference heuristic for single-task mapping,
since in all scenarios it obtained the higher energy reduction
compared to the other single-task mapping heuristics. However,
observing the Table 3, the use of this heuristic for multi-task
mapping does not achieve the expected results. NN and BN
heuristics have higher energy reduction in some scenarios due to
their behavior: communicating tasks are always mapped in the
same PE, as long as possible. On the other side, LEC-DN considers
all tasks dependences, and may spread the tasks in the MPSoC.
This behavior induced the development of the Premap-DN
heuristic that pre-assigns the communicating tasks to the same
processor.

195

5.3 Spatial Task Distribution
Figure 7 presents the spatial task distribution for a multi-task
mapping, where most PEs receives 3 tasks. The MPEG (blue) and
Circuit (yellow) applications are mapped in continuous regions,
while a small fragmentation is observed in the application VOPD
(red) and Vehicle (green). Note also that 3 PEs received tasks from
2 distinct applications. This Figure illustrate that the proposed
heuristic effectively reduce the distance among communicating
tasks, using the energy consumption as cost function, even in
situation where almost all MPSoC’s resources are allocated to
other tasks.

BAB
SRAM2
RISC
IDCT

AU
VU
FB2

ACDC
IQUANT

STRIPEM

SDRAM
UPSAMP2

RAST

MCPU
ADSP

SRAM1
VLD
RUN

ISCAN
Master

RI
IP

FB1

A
ARM

IDCT2
UPSAMP

VOPREC
PAD
PC

C
D
B

OD
PHOTO

SI
MC
DC VOPME

Figure 7. Spatial task distribution for scenario A, Premap-DN
multi-task mapping (15 PEs). In blue: MPEG, red: VOPD,

green: Vehicle, yellow: Circuit, white: Plasma-IP MP.

6. ACKNOWLEDGMENTS
The Authors acknowledge the support of CNPq and FAPERGS,
projects 301599/2009-2 and 10/0814-9, respectively.

7. CONCLUSION AND FUTURE WORK
This work improved the quality of the dynamic mapping for NoC-
based MPSoCs platforms, proposing a new heuristic with the
following features: (i) multi-task mapping; (ii) inclusion of the cost
of the already mapped tasks connected to the task being mapped,
previous approaches considers only master-slave connections; (iii)
use the communication energy as cost function, not only the hop
number.
This paper also compares multi-task mapping heuristics with
single-task ones in NoC-based MPSoC. Results demonstrate that
the multi-task approach reduces the energy consumption, with a
small execution time overhead. The communication energy
consumption is reduced up to 72% since the multi-task approach
reduces the distance among the tasks. The overall energy
consumption can also be reduced since a smaller NoC-based
platform can be used to map the same number of tasks. The time-
sharing among tasks in the same processor inherent to the multi-
task approach causes an execution time overhead of up to 19%.
However, this overhead can be considered small since the NoC
size has been reduced from 41 Plasma-IP SL, for single-task
mapping, to 14 Plasma-IP SL, for multi-task mapping.

Future works includes the proposition of decentralize mapping,
evaluation the trade-off of controlling the decentralized method per
regions or applications.

8. REFERENCES
[1] Hölzenspies, P.K.F.; et al. “Run-time Spatial Mapping of

Streaming Applications to a Heterogeneous Multi-Processor
System-on-Chip (MPSOC)”. In: DATE, 2008, pp.212-217.

[2] Wildermann, S.; et al. “Run time Mapping of Adaptive
Applications onto Homogeneous NoC-based Reconfigurable
Architectures”. In: FPT', pp. 514 - 517.

[3] Singh, A. K.; et al. "Communication-aware heuristics for
run-time task mapping on NoC-based MPSoC platforms".
Journal of Systems Architecture, vol. 56(7), 2010, pp. 242 -
255.

[4] Faruque, M.A.; et al. “ADAM: Run-time Agent-based
Distributed Application Mapping for on-chip
Communication”. In: DAC, 2008, pp. 760-765.

[5] Carvalho, E.; et al. "Evaluation of Static and Dynamic Task
Mapping Algorithms in NoC-Based MPSoCs". In: SOC,
2009, pp. 87-90.

[6] Smit, L.T.; Hurink, J.L.; Smit, G.J.M. “Run-time mapping of
applications to a heterogeneous SoC”. In: SoCC, 2005,
pp.78-81.

[7] Ngouanga, A.; et al. “A contextual re-sources use: a proof of
concept through the APACHES platform”. In: DDECS,
2006, pp.42-47.

[8] Holzenspies, P.K.F.; Smit, G.J.M.; Kuper, J. “Mapping
streaming applications on a reconfigurable MPSoC platform
at run-time”. In: SoCC, 2007. pp. 1-4.

[9] Chou, C-L.; Marculescu, R. “Incremental Run-time
Application Mapping for Homogeneous NoCs with Multiple
Voltage Levels”. In: CODES+ISSS, 2007. pp. 161-166.

[10] Chou, C-L.; Marculescu, R. “User-Aware Dynamic Task
Allocation in Networks-on-Chip”. In: DATE, 2008, pp.
1232-1237.

[11] Mehran, A.; Khademzadeh, A.; Saeidi, S. “DSM: A Heuristic
Dynamic Spiral Mapping algorithm for network on chip”.
IEICE Electronics Express, vol. 5-13, 2008, pp. 464-471.

[12] Schranzhofer, A.; et al. “Dynamic and adaptive allocation of
applications on MPSoC platforms”. In: ASP-DAC, 2010, pp.
885-890.

[13] Carvalho, E.; Calazans, N.; Moraes, F.. “Dynamic Task
Mapping for MPSoCs”. In: IEEE Design and Test of
Computers, vol. 27(5), 2010, pp. 26-35.

[14] Singh, A.K.; et al. “Efficient heuristics for minimizing
communication overhead in NoC-based heterogeneous
MPSoC platforms”. In: RSP, 2009, pp. 55 - 60.

[15] Carara, E.; et al. "HeMPS - a Framework for NoC-based
MPSoC Generation". In: ISCAS’09, 2009, pp. 1345 - 1348.

[16] Mandelli, M.; et al. “Energy-Aware Dynamic Task Mapping
for NoC-based MPSoCs”. In: ISCAS, 2011, pp. 1676-1679.

[17] Hu, J.; Marculescu, R. “Energy-aware mapping for tile-based
NoC architectures under performance constraints”. In: ASP-
DAC, 2003, pp. 233-239.

196

