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ABSTRACT 
Task mapping defines the best placement of a given task in the 
MPSoC, according to some criteria, as energy or Manhattan 
distance minimization. The ITRS roadmap forecast in a near 
future MPSoCs with hundreds of processing elements (PEs). 
Therefore, dynamic mapping heuristics are required. An important 
gap is observed in the mapping literature: the lack of proposals 
targeting multi-task dynamic mapping. In this context, the present 
work proposes an energy-aware dynamic task mapping heuristic, 
allowing multiple tasks allocation per PE. Experimental results 
are executed in an actual MPSoC running distributed applications. 
Comparing a single-task to the multi-task mapping, the energy 
spent in the NoC is reduced in average by 51% (best case: 72%), 
with an average execution time overhead of 18%. Besides the 
communication energy reduction, the multi-task mapping enables 
a greater number of applications executing simultaneously, or 
smaller MPSoCs, which reduces the system cost. 

Categories and Subject Descriptors 
C.1.2 [Multiple Data Stream Architectures (Multiprocessors)]: 
Interconnection architectures; C.2.1 [Network Architecture and 
Design]: Packet-switching networks; J.6 [Computer-Aided 
Engineering]: Computer-aided design (CAD) 

General Terms 
Algorithms, Performance, Design, Experimentation. 

Keywords 
MPSoC, NoC, dynamic mapping, energy evaluation. 

1. INTRODUCTION 
NoC-based MPSoCs can execute simultaneously several and 
complex applications. Such applications are composed by tasks, 
with different workloads and deadlines [1]. The workload of such 
systems may vary dynamically at execution time, according to 
various criteria (e.g. user and/or performance requirements) 
[2][3][4]. In this context, the mapping of such tasks onto the NoC-
based platform may drastically influence the system performance 
[5]. This influence is due to the inter-task communication traffic. 
An unoptimized mapping may place communicating tasks far from 
each other, increasing the communication latency and energy 
consumption, as well as increasing network traffic leading to 
congestion inside the NoC. 

Task mapping literature is rich, but a taxonomy classifying the 
mapping approaches is required. We propose a taxonomy for task 
mapping, according to four criteria.  
Considering the moment when tasks are mapped, the following 
approaches may be used: 
• at design time: called static or offline, it may use complex 

heuristics to better explore the MPSoC resources, resulting in 
optimized solutions. However, static mapping is not able to 
handle a dynamic workload.  

• at run-time: called dynamic or online, require simple and fast 
heuristics since it may interfere with the applications 
execution time. Two dynamic mapping approaches are used: 
o with resources reservation: the mapping heuristics verify 

if there are enough resources in the MPSoC before 
mapping the application tasks. 

o without resources reservation: the mapping heuristics map 
one or more initial tasks of the applications (those without 
dependences to another tasks), mapping the remaining 
tasks when they are required. This approach may start 
applications faster, but some tasks may wait for available 
resources if the system usage is high. 

Considering the number of task mapped per PEs, the following 
approaches may be used: 
• single-task: only one task is assigned to each PE. 
• multi-task: more than one task can be assigned to each PE 

This requires a clustering approach to define a group of tasks 
to be mapped onto the same PE. 

The dynamic mapping requires an entity responsible for mapping 
the tasks at runtime. Such control may be: 
• centralized: one PE is responsible to manage the mapping 

process. This approach is not scalable, and may lead to hot-
spots in the NoC and reduce the overall performance. 

• distributed: the MPSoC is divided in regions (clusters), and 
one PE in each region is responsible for executing the 
mapping heuristic inside it.  

Finally, the mapping can be classified according to the system 
architecture model: 
• homogeneous: when all PEs are identical. 
• heterogeneous: when different PEs are used in the same 

system, including RISC, processors, DSPs, dedicated IPs and 
so on. Before the mapping it is necessary a binding process to 
define which PEs can execute a required task 

Our main goal is to present an energy-aware heuristic for dynamic 
multi-task mapping, without resources reservation. The main 
features of the proposed mapping include: (i) execution of the 
mapping heuristics on an RTL NoC-based MPSoC platform, 
leading to accurate results; (ii) use of real applications as 
benchmarks; (iii) a clustering approach considering the 
communication dependence among tasks; (iv) the main cost 
function is the energy consumption in the communication 
infrastructure. 
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The rest of this paper is organized as follows. Section 2 presents 
related works in task mapping, classifying them according to the 
proposed taxonomy. Section 3 details the reference MPSoC 
platform. Section 4 presents the proposed dynamic mapping 
heuristic. Section 5 presents the experimental setup and results. 
Section 7 concludes this paper. 

2. DYNAMIC TASK MAPPING RELATED 
WORK 
Table 1 classifies recent works in dynamic task mapping according 
to the proposed taxonomy. The Table reveals two common 
features: centralized control and single-task mapping.  
Even if centralized control is not scalable, this is the strategy 
adopted in most works. The only work presenting distributed 
control is the Al Faruque [4] proposal, using a 64x64 NoC. Define 
when a centralized control becomes a bottleneck requiring 
distributed control is an open issue in the literature. So far, the 
mapping heuristics are evaluated in NoCs with mesh topology, 
with dimensions inferior to 9x9.  
Most works use a single-task mapping approach, 
assigning only one task for each PE. Such behavior must evolve to 
consider multiple applications running simultaneously, in an 
environment with processors executing multi-task operating 
system. The main challenge of multi-task mapping is how to group 
them, since the clustering approaches requires a global view of the 
application, while in dynamic mapping only a subset of the tasks 
are effectively mapped onto the MPSoC. 
Singh et al. [3][14] extended the dynamic heuristics proposed by 
Carvalho et al. [13] to support multi-task mapping. A clustering 
approach is proposed, which tries to maximize the number of 
communicating tasks in the same PE. This technique verifies the 
previously mapped tasks in a given a PE to map a new ones on it: 
if the required task communicates with some previously mapped 
task, it is mapped; if not, then other PE is verified. The Authors 
mention that some PEs may receive only one task, underusing the 
system resources. The clustering approach, compared to a non-
clustering approach, improve in average 15% the channel load and 
energy consumption, with some improvement in packet latency 
and execution time. The main drawback of Singh’s approach is that 

only master-slave dependences between tasks are considered. 
Other remark concerns the resource reservation. Some works 
reserve resources according to the number of the tasks, defining 
e.g. precomputed mapping templates for each application. 
Considering that not all tasks execute concurrently, reserve 
resources for all application tasks may underutilize the MPSoC, as 
well as require bigger systems. The dynamic mapping without 
reservation uses the system resources when they are effectively 
required. 
Finally, the NoC-based MPSoC modeling limits the evaluation of 
the dynamic mapping heuristics, since designers should be able to 
simulate scenarios for long time in order to allow the occurrence 
and analyses of critical aspects (e.g. application area 
fragmentation). RTL modeling and cycle accurate simulation 
provides accurate results, with long simulation time. On the other 
hand, abstract models as TLM, enables faster simulations, but do 
not enables accurate performance evaluation. Some works, as 
[3][13], adopts a mixed modeling, with PEs described using 
SystemC and the NoC in VHDL. The remaining reviewed works 
employs abstract models (e.g. analytical model employed in [12]). 
Contrary to the other works, the proposed multi-task dynamic 
mapping heuristic is validated using a NoC-based MPSoC platform 
described at the RTL level, with a clock-cycle accurate ISS 
describing processors. The mapping heuristic is executed in a given 
PE, responsible to manage the mapping requests of the remaining 
PEs, which execute a multi-task operating system, enabling multi-
task mapping.  
The present work advances the state-of-the-art for dynamic multi-
task dynamic mapping heuristics, which is the most important gap 
observed in the mapping literature, presenting a new multi-task 
mapping that can be employed by actual NoC-based MPSoCs. 
However, some drawbacks of the present work must be pointed 
out: (i) centralized approach – may be solved using the clustering 
method advanced in [4]; (ii) homogenous architecture – a binding 
process before mapping enables heterogeneous PEs; (iii) small 
NoCs – larger NoCs, as 10x10, require accurate abstract models. 
To have such accurate abstract models, validation at the RTL level 
is required beforehand develop such models. 

Table 1. Related work classified according to the proposed taxonomy for dynamic mapping heuristics. 

Author Resource 
reservation Multi/Single Task Architecture model Control manager Optimization Goal 

Smit [6]  
2005 Yes Single Task Heterogeneous Centralized Energy Consumption, QoS requirements for the 

applications 
Ngouanga [7] 

2006 Yes Single Task Homogeneous Centralized Communication volume, Computation load 

Hölzenspies [8][1]  
2007/2008 Yes Single Task Heterogeneous Centralized Energy Consumption, QoS requirements for the 

applications 
Chou [9][10]  
2007/2008 Yes Single Task Homogeneous Centralized Energy Consumption, Network contention 

Al Faruque [3]  
2008 No Single Task Heterogeneous Distributed Execution time, Mapping time 

Mehran [11] 
2008 Yes Single Task Homogeneous Centralized Mapping Time, Energy Consumption, Mapping 

Complexity 
Wildermann [2] 

2009 No Single Task Homogeneous Centralized Communication Latency, Energy consumption, 
Application deadlines 

Schranzhofer [12] 
2010 Yes Single Task Homogeneous Centralized Energy Consumption 

Carvalho [13] 
2010 No Single Task Heterogeneous Centralized Network contention, Communication volume 

Singh [14][3]  
2009, 2010 No Multi-task Heterogeneous Centralized Network contention, Communication volume, Energy 

Consumption 

Proposed work No Multi-task Homogeneous Centralized inter-task dependence evaluation, energy 
consumption 
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3. MPSOC ARCHITECTURE  
The proposed heuristic was implemented in a homogeneous NoC-
based MPSoC platform called HeMPS [15]. Each PE, named 
Plasma-IP, contains a MIPS-like processor (Plasma), a local 
memory (RAM), a DMA controller and a Network Interface. A 
general view of a 2x2 instance of the MPSoC architecture is 
illustrated in Figure 1. Two types of Plasma-IP are used: slave (SL) 
and master (MP). Plasma-IP slaves are responsible to execute 
application tasks, while the Plasma-IP master is responsible to 
manage task mapping and system debug. The external memory, 
named task repository, contain all application tasks, which can be 
requested during the simulation According to the mapping 
heuristic, the Plasma-IP master maps the tasks onto the Slaves-PEs. 
The Plasma-IP MP can also receive debug messages from Slave-
PEs, transmitting them to an external host through an Ethernet 
interface (not shown in Figure 1). 
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Figure 1. Block diagram of the HeMPS platform. 

Each Plasma-IP SL runs a tiny operating system (named 
microkernel, whose memory footprint is around 20 KB), 
responsible to manage and support task execution and task 
communication. This microkernel is a preemptive operating system 
where each task uses the CPU for a pre-defined period, called 
timeslice.  
All communication among tasks occurs through message passing, 
using a global message vector, named pipe, located in the 
microkernel, and two communication primitives: Send() and 
Receive(). A task executing the communication primitive Send() is 
the source task, and the one executing Receive() is the target task. 
During the execution of the Send() command it is verified if the 
target task is mapped (using a local task table). If the target task is 
not already mapped, the source microkernel sends a RequestTask 
message to the Plasma-IP MP, which selects the task position at 
run-time according to the dynamic task mapping heuristic. When 
the Plasma-IP MP receives the RequestTask message, it configures 
its DMA module, which accesses the task repository and transmits 
the target task code to the target Plasma-IP SL memory. 

4. MAPPING HEURISTICS 
This section describes the mapping heuristics used in this paper. 
Section 4.1 presents the Nearest Neighbor and the Best Neighbor 
mapping heuristics, used as reference for the experiments [13]. 
Section 4.2 details the LEC-DN (Low Energy Consumption – 
Dependences Neighborhood) mapping heuristic for multi-task. 
Section 4.3 presents the Premap clustering method, which try to 
group communicating tasks in the same PE. Section 4.4 presents 
the proposed Premap-DN, which combines Premap with LEC-DN. 

4.1 Reference dynamic mappings heuristics  
The Nearest Neighbor (NN) heuristic considers only the proximity 
of an available resource to execute a given task. NN starts 
searching for a free PE able to execute the target task near the 
source task. The search tests all n-hop neighbors, n varying 
between 1 and the NoC limits in a spiral way, stopping when the 

first PE free is found. The Path Load (PL) heuristic computes the 
load in each channel used in the communication path. PL computes 
the cost of the communication path between the source task and 
each one of the available resources. The selected mapping is the 
one with minimum cost. The Best Neighbor (BN) heuristic 
combines NN search strategy with the PL computation approach. 
The search method of BN is similar to NN, i.e., spiral searches 
from the source node. This avoids computing all feasible mapping 
solutions, as in the PL heuristic, reducing the execution time for 
the mapping. BN selects the best neighbor, according to PL 
equations, instead of the first free neighbor as in NN. 
Note that the BN and PL heuristics require a monitoring 
infrastructure to evaluate at runtime the load at each NoC link. 
Such monitoring processes increases the traffic load inside the 
NoC, as well as the CPU utilization that executes the mapping 
heuristic (Plasma-IP MP), since it must receive the monitoring data 
and fill the data structures responsible to keep the monitoring 
information. 
Singh et al. [14] extended BN and NN heuristics to multi-task 
mapping. Basically, the algorithm starts verifying if the source task 
(0 hops distance) is able to map the target task instead of looking 
for the neighbor PEs at 1 hop distance. Our work adopts a similar 
approach (0 hops), with a new search method (bounding box) and 
cost function (energy consumption). 

4.2 LEC-DN 
Differently from NN and BN heuristics, which map the target task 
as close as possible to its source task, the LEC-DN [16] considers 
the proximity of the target task to all communicating tasks that are 
already mapped. LEC-DN employs two search methods to select 
the PE that receives the target task. When the target task has only 
one communicating task already mapped, LEC-DN uses the NN 
search method (spiral search). If there is more than one 
communicating task already mapped, the LEC-DN searches for a 
PE inside the bounding box defined by the position of such 
communicating tasks. The bounding box search method uses the 
volume-based energy model proposed by Hu et al. [17] to select 
the position of the task to be mapped.  
Consider the application of Figure 2(a), containing 4 tasks, where 
A and B are initial tasks. The mapping of task C is fired by the first 
communication with it. The search space to map task C 
corresponds to the bounding box defined by the position of A and 
B tasks (Figure 2(b)). Task C will be mapped nearest to task A, 
since according to the application task graph the communication 
volume AàC is higher than BàC. Note that task D is not mapped, 
since it depends from task C. 

B

AC
B

C
100150

A

D

120
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Figure 2. (a) application graph G=<T,V> describing an 

application, where T is the task set and V the communication 
volume between tasks; (b) search space to map the C task, and 

one possible mapping for C. 
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The present work extended the original LEC-DN heuristic to 
execute multi-task mapping, extending the search space to start in 
the processor that requested the new task. 

4.3 Premap 
The goal of this method, herein proposed, is to group a set of 
communicating tasks onto the same PE. The idea is not to reserve 
resources for the whole application. The premap heuristic is 
executed when a new task is mapped in a new PE. When a given 
task is premapped, only its placement is reserved. The effective 
mapping of the premapped tasks is executed when the task is 
requested. 
Consider as an example the application of Figure 3(a), with 8 tasks, 
being tA the initial task. A 2x2 MPSoC instances is used, resulting 
in three available Plasma-IP SL, each one able to execute up to 3 
tasks. Figure 3(c) presents the communication task list (CTL), data 
structure contained in the Plasma-IP MP microkernel used by 
premap. Each entry of the CTL is a task ti, containing the set 
C = {t1, t2, …, tn}, corresponding to all tasks connected to ti, sorted 
according to their communication volume with ti.  
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Figure 3. Premap heuristic example. 

When the system execution starts, the initial tasks are mapped, 
according to their position defined at design time. According to the 
example, tA is mapped to PE01 (Figure 3(b)). The premap 
evaluates each task tj in the set C(tA) to be premapped in PE01, 
starting with the one with higher communication volume. In the 
example C(tA)={tB,tC,tD}, and tB will be premapped iff there is no 
task in C(tB) with a higher volume with tA. As tB and tC only 
communicates with tA, both are premapped in PE01. At this 
moment the method stops, since the PE has already 3 tasks 
assigned to it. During system execution, tB and tC are required to be 
mapped. As they were already premapped, it is not necessary to 
use the mapping heuristic, being only necessary to transmit the 
object codes to PE01. Next tD is required to be mapped. The LEC-
DN chooses PE00, which is the nearest PE to tA (it could also be 
PE11). As tD “opened” a new PE, the premap is executed. In this 
case C(tD)={tE,tA,tF}. As the communication volume tE-tG is higher 
than the communication volume tE-tD, tE is not premapped. Next, 
as tA is already mapped, it is not evaluated. Finally, tF is evaluated, 
and it is premapped with tD because the communication volume tF-
tD is higher than tH-tF. 
Figure 4 shows the implementation of the premap heuristic. The 
heuristic begins assigning to the set N(ti) the non-mapped tasks of 
C(ti) (line 2). The next step evaluates each task di from N(ti), to 
choose which tasks will be premapped onto pi. This evaluation 
(line 5-16) happens while pi has less than TASKS_PER_PE (the 
maximum number of tasks supported per PE) mapped/premapped 

tasks onto it, or if all possible tasks in N(ti) were already evaluated. 
For each task di, the first task hi in its CTLC(di) is obtained (line 7). 
So, the task hi is compared to the task ti (line 8) to verify if di has 
the highest communication volume with ti. In an affirmative case, ti 
is premapped onto pi, also increasing the pi number of 
mapped/premapped tasks (line 9-12). Otherwise, if available, other 
task from N(ti) is evaluated.  

Input: The PE pi, the task ti mapped onto pi 
Output: A set of tasks premapped onto pi 
1.  // N(ti) contains all non-mapped tasks which ti communicates with 
2.  N(ti)ß non-mapped_tasks(C(ti)) 
3.  // Get the first task in the N(ti) 
4.     diß first(N(ti)) 
5.  WHILE tasks(pi)<TASKS_PER_PE or !end(N(ti)) DO 
6.   // Get the first task hi (with highest communication volume) in C(di) 
7.      hiß first(C(di)) 
8.   IF hi=ti THEN 
9.    // premap di onto pi 
10.    premap(di,pi) 
11.    // increase the number of mapped/premmaped tasks onto pi 
12.    tasks(pi)++ 
13.   END IF 
14.   // Get the next task in the N(ti) 
15.   di ß next(N(ti)) 
16.  END WHILE 

Figure 4. Premap mapping heuristic pseudocode. 

4.4 Proposed Premap-DN 
The premap-DN optimizes the multi-task mapping by integrating 
the LEC-DN and the premap clustering method. Figure 5 shows 
the integration of LEC-DN and the premap clustering method in 
the Plasma-IP MP microkernel. When a task ti is requested to be 
mapped by a PLASMA-IP SL, it sends a REQUEST_TASK 
message to the PLASMA-IP MP. The PLASMA-IP MP receives 
this message and starts executing the mapping flow. First, it checks 
if there is some available resource in the system. If there is no 
available resource, the task is scheduled to be mapped later. The 
schedule mechanism is out of the scope of this work. In the other 
case, the flow proceeds to the next step.  
The next step verifies if the target task is already premapped. In an 
affirmative case, the task is allocated to the assigned PE; otherwise, 
the LEC-DN mapping heuristic is executed. 
The LEC-DN executes and returns the PE pi where the task ti is 
mapped on. After this, it checks if pi has just one task, which 
means that it contains just the task ti. If it is true, the premap 
method is called to find the tasks communicating with ti to be 
premapped onto pi and the flow is finished. 
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Figure 5. Integration of the heuristics in the microkernel. 

5. RESULTS 
The MPSoC used to evaluate the mapping heuristics is configured 
as follows: 2D-mesh topology, XY routing algorithm, 16-bit flit 
size, packets with 128 flits and credit-based control flow. The 
MPSoC is sized as follows: 7x6 (1 Plasma-IP MP, 41 Plasma-IP 
SL) for single-task mapping and 3x5 (1 Plasma-IP MP, 14 Plasma-
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IP SL) for multi-task mapping. Such configuration was chosen to 
have, if possible, the same number of simultaneous tasks executing 
in the systems. This criterion enables a fair comparison among the 
heuristics, since the MPSoC occupation is the same for both single 
and multi-task mapping. Considering up to 3 tasks mapped per 
processor, the multi-task mapping may map 42 tasks (14 Plasma-IP 
SL * 3 tasks per PE), while the single-task may map up to 41 tasks. 
The energy model was calibrated using the ST/IBM CMOS 65 nm 
technology at 1.0 V, adopting clock gating, and a 100 MHz clock 
frequency. Additionally, in order to evaluate the BN heuristic, a 
monitoring infrastructure is included in MPSoC to obtain the load 
in each NoC link. 
Real and synthetic applications are modeled in C code. The C code 
contains the communication primitives enabling the 
communication among tasks, and the computation time of each 
task. Five application scenarios were evaluated:  

A. MPEG (12 tasks), VOPD (12 tasks), Vehicle (10 tasks) and 
Circuit (4 tasks); 

B. MPEG, VOPD, Segmentation Image (6 tasks) and 
Synthetic (6 tasks); 

C. MPEG and VOPD; 
D. MPEG, Vehicle and Circuit. 
E. MPEG, MWD (12 tasks) and VOPD 

Scenarios A, B and E contains 38, 36 and 36 tasks, respectively. 
Such scenarios correspond to an MPSoC occupation equal to 93% 
(scenario A) and 86% (scenario B and E). The dynamic mapping 
heuristics are stressed in these two scenarios, since the search 
space is drastically reduced when almost all tasks are already 
mapped. Scenarios C and D contain 24 and 26 tasks respectively, 
enabling to evaluate the mapping heuristics when the search space 
is not a constraint. 

5.1 Execution time evaluation 
Table 2 presents the total execution time to execute 10 application 
iterations, for each evaluated scenario, considering up to three 
tasks mapped to the same PE. The average execution time 
overhead compared to the single-task LEC-DN, is 14%, 13%, 16% 
and 19% for the NN, BN, LEC-DN multi-task and Premap-DN 
heuristics respectively. This overhead in the multi-task approach 
can be explained due to the time-sharing between tasks in the same 
processor. The scheduling algorithm shares the processor 
execution in timeslices among tasks. Thus, during a timeslice, a 
task can stay long periods in an idle state, waiting, for example, to 
receive a particular message. This results in a waste of time, 
because when this task becomes idle, a new task could be 
executed. 

Table 2. Execution time, in clock cycles (thousands). 

Scenario 
Single-task Multi-task – up to 3 tasks per processor 

LEC-DN NN BN LEC-DN Premap-DN 
A 4,623 5,419 5,329 5,787 5,755 
B 2,350 2,436 2,555 2,603 2,483 
C 1,700 1,932 1,950 1,912 2,042 
D 4,591 5,465 5,430 5,251 5,454 
E 1,866 2,168 2,027 2,143 2,312 

Multi-task mapping heuristics can influence the total execution 
time if the communicating tasks are not grouped correctly, since 
the network congestion may increase due the lower number of 
available network channels. The execution time overhead of the 
proposed Premap-DN is 4%, 4.9% e 2.7% compared to NN, BN e 
LEC-DN multi-task heuristics. This is a small overhead since the 
energy consumption reduction is considerable better than the other 

heuristics (next subsection). According to this evaluation, the 
mapping of several tasks in the same processor increases the 
processors utilization with a small penalty in the execution time. 

5.2 Energy evaluation 
Table 3 presents the total energy consumption in the NoC (routers 
and links). The multi-task mapping reduces in average 56% the 
communication energy, when compared to single-task heuristics. 
As shown in Figure 6, the Premap-DN heuristic achieves the 
highest reduction in most cases (up to 72% reduction), except for 
the scenario B, where the NN heurist has the highest reduction. 
The reduction in the communication energy is due to the adopted 
premap clustering method. Grouping tasks in the same processor 
reduces the network traffic, and consequently the NoC energy 
consumption. 

Table 3. Total communication energy consumption (in nJ). 

Scenario 
Single-task Multi-task – up to 3 tasks per processor 

LEC-DN NN BN LEC-DN Premap-DN 
A 2,829 2,098 1,332 1,476 1,260 
B 1,929 618 901 678 755 
C 1,189 449 371 462 370 
D 2,022 1,007 888 1,249 559 
E 1,228 599 596 617 521 
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Figure 6. Reduction on the communication energy normalized 

to the LEC-DN single-task mapping. 
Comparing Premap-DN to other heuristics, the communication 
energy reduction is 18.6%, 14.3% and 18.8% for NN, BN and 
LEC-DN-MT, respectively. The BN heuristic obtains the best 
results in total execution time, while increasing the average 
communication energy consumption approximately 19.7%, 
compared to other heuristics. The monitoring infrastructure used to 
obtain NoC data at runtime explains the increased energy 
consumption. Furthermore, this infrastructure also implies the use 
of monitoring packets, which are not taken into account in the 
results and cause higher consumption in communication energy. 
The LEC-DN is the reference heuristic for single-task mapping, 
since in all scenarios it obtained the higher energy reduction 
compared to the other single-task mapping heuristics. However, 
observing the Table 3, the use of this heuristic for multi-task 
mapping does not achieve the expected results. NN and BN 
heuristics have higher energy reduction in some scenarios due to 
their behavior: communicating tasks are always mapped in the 
same PE, as long as possible. On the other side, LEC-DN considers 
all tasks dependences, and may spread the tasks in the MPSoC. 
This behavior induced the development of the Premap-DN 
heuristic that pre-assigns the communicating tasks to the same 
processor. 
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5.3 Spatial Task Distribution 
Figure 7 presents the spatial task distribution for a multi-task 
mapping, where most PEs receives 3 tasks. The MPEG (blue) and 
Circuit (yellow) applications are mapped in continuous regions, 
while a small fragmentation is observed in the application VOPD 
(red) and Vehicle (green). Note also that 3 PEs received tasks from 
2 distinct applications. This Figure illustrate that the proposed 
heuristic effectively reduce the distance among communicating 
tasks, using the energy consumption as cost function, even in 
situation where almost all MPSoC’s resources are allocated to 
other tasks. 
 

BAB 
SRAM2 
RISC 
IDCT 

AU 
VU 
FB2 

ACDC 
IQUANT 

STRIPEM 

SDRAM 
UPSAMP2 

RAST 

MCPU 
ADSP 

SRAM1 
VLD 
RUN 

ISCAN 
Master 

RI 
IP 

FB1 

A 
ARM 

IDCT2 
UPSAMP 

VOPREC 
PAD 
PC 

C 
D 
B 

OD 
PHOTO 

SI 
MC 
DC VOPME 

Figure 7. Spatial task distribution for scenario A, Premap-DN 
multi-task mapping (15 PEs). In blue: MPEG, red: VOPD, 

green: Vehicle, yellow: Circuit, white: Plasma-IP MP. 
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7. CONCLUSION AND FUTURE WORK 
This work improved the quality of the dynamic mapping for NoC-
based MPSoCs platforms, proposing a new heuristic with the 
following features: (i) multi-task mapping; (ii) inclusion of the cost 
of the already mapped tasks connected to the task being mapped, 
previous approaches considers only master-slave connections; (iii) 
use the communication energy as cost function, not only the hop 
number.  
This paper also compares multi-task mapping heuristics with 
single-task ones in NoC-based MPSoC. Results demonstrate that 
the multi-task approach reduces the energy consumption, with a 
small execution time overhead. The communication energy 
consumption is reduced up to 72% since the multi-task approach 
reduces the distance among the tasks. The overall energy 
consumption can also be reduced since a smaller NoC-based 
platform can be used to map the same number of tasks. The time-
sharing among tasks in the same processor inherent to the multi-
task approach causes an execution time overhead of up to 19%. 
However, this overhead can be considered small since the NoC 
size has been reduced from 41 Plasma-IP SL, for single-task 
mapping, to 14 Plasma-IP SL, for multi-task mapping. 

Future works includes the proposition of decentralize mapping, 
evaluation the trade-off of controlling the decentralized method per 
regions or applications.  
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