
Exploring Dynamic Mapping Impact on NoC-based
MPSoCs Performance Using a Model-based Framework

Luciano Ost1, Marcelo Mandelli2, Gabriel Marchesan Almeida1, Leandro Soares Indrusiak3,
Leandro Moller4, Manfred Glesner4, Gilles Sassatelli1, Michel Robert1, Fernando Moraes2

1 LIRMM – 161 rue Ada, Cedex 05 - 34095 Montpellier, France
{ost, marchesan, sassatelli, michel.robert}@lirmm.fr

2 FACIN-PUCRS - Av. Ipiranga 6681- 90619-900, Porto Alegre, Brazil
{marcelo.mandelli, fernando.moraes}@pucrs.br

3 Department of Computer Science - University of York YO10 5DD, York, United Kingdom
lsi@cs.york.ac.uk

 4 FG MES – Technische Universität Darmstadt - Karlstr. 15, 64283 Darmstadt, Germany
{moller, glesner}@mes.tu-darmstadt.de

ABSTRACT
The power evaluation of NoC-based MPSoCs is an important and
a time-consuming process. Mapping tasks onto processing
elements (PEs) has a critical impact on system performance, as
well as power dissipation. To cope with complex dynamic
behavior of applications, it is common to perform task mapping at
runtime so that the utilization of processors and interconnect can
be taken into account when deciding the most appropriate PE to
host tasks. On the other hand, the process of accurately comparing
different mapping heuristics can be very costly once each adopted
solution has to be evaluated using simulation that can take hours
or even days in the case of large MPSoCs. In this context, this
paper has two major contributions: (i) evaluation of dynamic
mapping by employing a model-based framework that unifies
abstract models of applications, NoC-based platforms and
mapping heuristics, and (ii) power consumption evaluation of
such heuristics by using a rate-based power model.

Categories and Subject Descriptors
B.7.1 [Integrated Circuits]: Types and Design Styles – advanced
technologies, VLSI (very large scale integration).

General Terms
Design, Experimentation, Performance, Verification.

Keywords
Mapping Heuristics, Power Modeling, NoC-based MPSoCs

1. INTRODUCTION
Portable embedded systems have limited power budget that must
be efficiently used [1]. Due to the large simulation time and
amount of memory required by the power estimation tools, simple
and accurate high level models became necessary to achieve
acceptable power results within the time-to-market frame of future

portable NoC-based MPSoCs. These systems are composed of
multiple PEs, dedicated hardware and software components that
are interconnected by a Network-on-Chip (NoC) [2]. HDTV,
multiple wireless communication standards, and media players are
examples of applications, which can be executed in such systems,
requiring high performance allied to low power consumption.
These applications can have unpredictable behavior, due to the
variability of the inter-task communication patterns (e.g. different
data rates) [3]. Besides, the workload of such systems may vary
during the execution time due to user (e.g. initialization of new
applications at runtime) and/or environmental parameters (e.g.
change the frequency operation for optimizing battery lifetime)
requirements [4][5][6].

A common runtime technique to cope with the unpredictable
behavior of applications is to define the place of each task at the
execution time. The tasks placement is defined based on dynamic
mapping heuristics, which employ different criteria (e.g. distance
between tasks). However, for analyzing the mapping behavior and
its impact on NoC-based MPSoCs performance becomes a critical
issue, since designers should be able to simulate scenarios for long
time where the occurrence and analysis of critical aspects (e.g.
application area fragmentation) would be possible to be observed.
In this context, it is necessary to provide flexible approaches
whereby a designer can set up large scenarios that can be easily
extrapolated in order to predict the impact imposed by different
dynamic mapping heuristics. Furthermore, these approaches must
be able to produce performance metrics (e.g. latency, power
consumption) in a short amount of time, allowing the elimination
of not suitable design alternatives.

In this scenario, this paper covers the integration of a dynamic
mapping heuristics into an unified model of a NoC-based MPSoC,
enabling fast design space exploration, while proving accurate
performance metrics imposed by each design alternative (e.g.
mapping heuristic). Another contribution of this work is the use of
a rate-based power model that allows the evaluation of the
dynamic mapping in terms of hotspots. This term refers to instants
where power dissipation reaches a peak value, which may increase
the temperature at specific regions of the chip that can,
consequently, generate hotspots.

This paper is organized as follows. Section 2 describes related

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
SBCCI’11, August 30–September 2, 2011, João Pessoa, Brazil.
Copyright 2011 ACM 978-1-4503-0828-1/11/08...$10.00.

185

works in high-level model-based frameworks and dynamic task
mapping. Section 3 summarizes the basic aspects of the adopted
unified model-based framework, as well as a set of dynamic
mapping heuristics and their integration into the unified model-
based framework. Results, including model accuracy and hotspots
evaluation are presented in Section 4. Finally, Section 5 points out
conclusions and directions for future work.

2. RELATED WORK
Ha [7] proposes a model-based framework for MPSoC software
development, called HOPES that allows the modelling of
applications by using UML 2.0 and PeaCE model. Once the
application model (based on actor-orientation) is defined, it is
manually partitioned and mapped into the abstract PEs that
compose the hardware platform. This model does not consider the
use of NoCs as interconnect.

Pimentel et al. [8] present the Sesame, which comprises three
model layers: (i) application model using Kahn Process Network
(KPN) to implement the application(s) behavior; (ii) mapping
layer that supports the application events traces mapping onto the
PEs (applying dataflow graphs), and (iii) architecture model that
defines architecture resources (NoCs are not considered) and
captures their performance constraints (power is not considered)
according to the computation and communication events
generated by an application model.

Two other approaches use KPN to model the application
behavioural [9] and [10]. In [9], KPN application model and
abstract platform templates are used to automatically generate
executable and timing TLM descriptions of MPSoCs platforms.
The mapping process is defined at design time and it is limited to
selecting the best fit of KPN-based applications to platform
modules according to the pre-existing UML template information.
In turn, Kangas et al. [10], uses a UML profiles to map KPN-
based applications models onto the platform model. Before the
application mapping, tasks are grouped in blocks that are
manually mapped (or randomly selected) onto the target platform.
Both application and platform models are defined according to an
UML 2.0 extension, targeting embedded real-time system design.

The approaches above are flexible enough for modeling and
validating several applications mapped onto MPSoC platforms
models. Furthermore, such approaches can achieve a good
simulation performance. However, the mapping process
exploration is limited to manual or static decisions, which are
insufficient to handle the dynamic and unpredictable behavior of
future embedded applications. Thus, several dynamic mapping
heuristics have been proposed [3][4][5][10][11][13][14][17]. Such
heuristics aiming to satisfy QoS requirements (e.g. [10][12]), to
optimize resources usage (e.g. network contention [3][13][14]),
and to minimize the energy consumption (e.g. [3][5][11][12]
[13][17]). Each of them has its own parameters and cost functions,
which can have numerous of variations (defined as new heuristics
with different properties and strengths). Thus, choosing the
optimal dynamic heuristic for a set of applications is not trivial;
hence to evaluate different performance metrics is time-
consuming. A common optimization metric is the energy
consumption evaluation based on the volume-based power model,
which does not consider low-level effects (e.g. network
contention), which are essential to verify the occurrence of
hotspots [21]. Hotspots can impact the performance of the whole
system and even reduce its reliability and lifetime [15][16].

To the best of our knowledge, the present work is the first model-
based design flow that covers the NoC-based design phases into
the same flow by employing abstract and accurate application-
mapping-platform models. The fundamental principle behind the
unified model-based framework is the complete separation
between the different layers – application, mapping and platform.
Therefore, new application models, platform templates and
mapping heuristics can be integrated to the framework as long as
they follow the pre-defined inter-layer APIs [21]. In this context, a
set of dynamic mapping heuristics were incorporated to our
approach, allowing exploring the fundamental behavior inherent
to dynamic mapping heuristics, while providing design flexibility
and high debugging capacity. In addition, excluding the work
presented by Singh [3], only mono-task dynamic mapping
heuristics are proposed and evaluated in the literature. In this
context, this work extends two dynamic mapping heuristics to
support multi-task assigned per PE. Finally, the present work is
the first to employ the rate-based instead of using the volume-
based power model (common decision of reviewed works) to
evaluate the impact of different dynamic mapping heuristics on
NoC power dissipation and on occurrence of hotspots.

3. UNIFIED MODEL-BASED
FRAMEWORK
The design space exploration of MPSoCs can be divided into three
main layers: (i) application, (ii) mapping1, and (iii) platform. The
first layer comprises application modeling and validation
(functionality and requirements), while the second layer defines
how such applications are mapped onto the MPSoC platform
(third layer).

3.1 Application Layer
Most researchers on dynamic mapping use task graphs to model
applications. This approach does not support the necessary
flexibility to develop and to validate complex and distributed
applications used in present MPSoCs. In this context, the current
approach provides the software engineer with the possibility of
developing and validating different applications regarding only
their functionality and requirements by using executable models
based on UML sequence diagrams and actor-orientation, as
proposed in [18].

UML is a well-known standard modeling language used by most
part of the software development industry due to its flexibility,
support to the real time requirements through profiles and tool
support. On the other hand, actor oriented design is a component
methodology, which separates the functionality concerns
(modeled as actors) from the component interaction concerns
(modeled as frameworks). It includes the definition of the
execution semantics as a part of the model rather than of the
underlying simulation engine [19]. As a result, the concurrent
behavior and the interdependencies of the application tasks can be
captured more accurately. We claim here that the combination of
UML and actor-orientation provides more design flexibility to
specify the application tasks, their dependencies, synchronization
mechanisms, and data exchanges, when compared to application
modeling approaches based on task graphs. For instance, to model
the communication behavior of a given application by employing
sequence diagrams is more intuitive than using task graphs, since

1
In the context of this work, the mapping layer is a behavior entity called Mapper that is

characterized according to a set of operations, which is used to define task mapping
during the simulation.

186

combined fragments and interaction operators, such as option,
parallel, loop can be used.

3.2 Platform Layer
As the number of PEs grows, the design of NoC-based MPSoCs
becomes increasingly communication centric. In this context, one
of the main challenges in the future MPSoC projects will be the
communication infrastructure, representing up to 30% of the total
power consumption of the whole system. The present approach
provides a set of models that differ according to its accuracy and
its required simulation time. It provides multi-accuracy platforms
models (e.g. latency, throughput and power estimation), allowing
designers to choose between faster or more accurate validation, as
they require.

The present framework provides adequate possibilities for
observing and debugging the execution of a set of applications
running on top of NoC-based platforms. In this context, the
platform model layer includes Scope actors that can be used to
check the running status of the system, as well as to collect
performance figures that can be used for application/platform
model optimization. Examples of Scopes are the LatencyScope
and the PowerScope. The LatencyScope, provides end-to-end2
communication latency figures for each task communication.

The PowerScope generates power reports based on volume-based
[20] and/or rate-based [21] NoC power models. The volume-based
model estimates the average power as a function of the total
transmitted data. This model evaluates the energy consumption in
an end-to-end transmission only. Equation 1 describes the model
energy consumption estimation, for a single data transmission
between two points of the NoC.

 (1)

In the equation above, ESbit is the energy consumption in one
router; ELbit is the energy consumption of the interconnection
wires; and nhops is the number of routers used in the data bit
transmission.

Therefore, the volume-based model does not capture low-level
effects, such as congestion and burstiness; hence, they are simple
but not accurate. On the other hand, models derived from
electrical simulation are accurate but too complex to be integrated
into abstract models. In turn, the rate-based power model
constitutes a trade-off between such approaches: data volume is
considered but computed as a transmission rate inside a given
sample period, and accuracy is guaranteed from a physical
calibration step, which defines the power dissipation for each
router component and transmission rate. Such models are highly
customizable and can easily be applied to different NoC
architectures and technologies. Furthermore, the results produced
by the PowerScope, when employing the rate-based power model,
have in practice, an error of 0% when compared to the RTL
simulation and 5% when compared to a commercial tool [21].

3.3 Mapping Layer
The mapping layer is the link between the application and the
platform layer. It provides the necessary support to explore the
mapping influence in terms of system performance, by employing

2 This term is defined here, as is the delay between the time a PE starts its message
transmission and the time the target PE receives the message.

a Mapper Actor that has a set of supported mapping heuristics, as
well as the MapperScope. The MapperScope, is used to monitor
the mapping layer (e.g. capturing each task requesting time) and to
generate mapping figure, like number of hops among
communicating tasks.

The proposed approach supports static (e.g. taboo search) and
dynamic mapping heuristics, which were incorporated in order to
support the evaluation of dynamic mapping behavior and its
impact on NoC-based MPSoCs performance.

3.3.1 Integrated Dynamic Mapping Heuristics
Three dynamic mapping heuristics were integrated into the
Mapper Actor: (i) nearest neighbor (NN), dependencies-
neighborhood (DN), and (iii) lower energy consumption based on
dependencies-neighborhood (LEC-DN).

Due to its simplicity, the nearest neighbor (NN) is used as
reference mapping heuristics for dynamic single-task. The NN
mapping considers only the proximity of an available resource to
execute the required task. NN starts searching for a free PE able to
execute the task near to the requesting task. The search tests all n-
hop neighbors, n varying from 1 to the NoC size in a spiral way,
stopping when the first PE free is found.

Differing from the NN heuristic, which tries to map the requested
task as closely as possible to the requesting task, the DN heuristic
considers all dependencies between tasks, mapping the requested
task as closely as possible to the already mapped in which it
communicates with, by employing a proximity (in number of
hops) cost function.

The LEC-DN heuristic extends the DN by employing two cost
functions: (i) proximity, in number of hops; (ii) communication
volume among tasks (which corresponds to the communication
energy). The second criterion is used when a given task
communicates with at least two mapped tasks. In this situation, the
new task is mapped closer to the task with higher communication
volume. When the requested task has only one communicating
task already mapped, LEC-DN uses the NN search method (spiral
search). If there is more than one communicating task already
mapped, the LEC-DN searches for a PE inside the bounding box
defined by the position of such tasks [17].

Consider the application illustrated in Figure 1(a), containing 4
tasks, where AB1 and AB2 are initial tasks.

(a) (b)

AB1

m3

m2

m1 (150)

(100)

(100)

AB2 AB3 AB4

AB2

AB1AB3

Figure 1 - (a) application described as UML diagram; (b)
search space to map the AB3 task, and one possible mapping

for AB3.

The mapping of task AB3 is triggered by the first communication
with it. The search space to map task AB3 corresponds to the
bounding box defined by the position of AB1 and AB2 tasks
(Figure 2(b)). Thus, AB3 will be mapped nearest to task AB1, since
according to the application graph the communication volume

bitbit LhopsShops
hops
bit EnEnE ×−+×=)1(

187

AB1àAB3 is higher than AB2àAB3. Note that task AB4 is not
mapped, since it depends from task AB3.

The LEC-DN was implemented and validated in a RTL
homogeneous NoC-based platform [22]. This implementation is
adopted as reference model in this work (as explored in Section
4). In this implementation, the bounding box search method used
in LEC-DN employs the volume-based energy model to select the
requested task position (task to be mapped). This volume-based
search method approach was kept in our implementation, since
our first main goal was to integrate and to verify possible loss of
accuracy, when comparing a real implementation [22] to the
proposed approach.

The diagram illustrated in Figure 2, shows the mapping process
execution implemented into the Mapper Actor. When the Mapper
Actor receives a mapping request of a task ti, it verifies if it task is
already mapped and then starts executing the mapping flow. First,
it checks if there is some available PE in the system. If there is no
available PE, the requested task is scheduled to be mapped later.
On the other hand, the flow proceeds to the next step. The next
step verifies if the required task (ti) is already pre-mapped. In an
affirmative case, the task is allocated to the assigned PE;
otherwise, the LEC-DN mapping heuristic is executed.

Figure 2 - Integration of the LEC-DN into the Mapper Actor.

The DN and LEC-DN heuristics were extended in this work to
multi-task mapping. Basically, the heuristics start verifying if the
requesting task PE (0 hops distance) is able to map the required
task instead of looking for the neighbour PEs at 1 hop distance.
Besides, both heuristics adopt the search method (bounding box).
The LEC-DN differs from the DN because it uses the energy
consumption as cost function.

4. RESULTS
4.1 Comparison between HeMPS and unified-
model
This Section compares three mono-task dynamic heuristics: (i)
NN, (ii) DN, and (iii) LEC-DN, using the HeMPS and unified-
model. Both implementations were compared according to two
metrics: (i) energy consumption (based on Hu’s approach [18]),
and (ii) number of hops. Such metrics were obtained for different
application scenarios:

• Case A: VOPD (Video Object Plan Decoder) and MPEG4
decoder, both containing 12 application blocks and
transmitting 30fps each, and an Image Segmentation,
modelled as 6 application blocks;

• Case B: VOPD, MPEG and a MWD displaying 30fps;

• Case C: MPEG, Image Segmentation, MWD and a synthetic
application composed of 4 application blocks;

Each application has at least one initial task that is manually
mapped to any free PE, excluding the PE in position 33, which
was reserved in this work to the Mapper Actor. In both
implementations all applications execute simultaneously for one
second. The platform setup used to evaluate the dynamic mapping
heuristics is configured as follows: 2D-mesh topology, XY
routing algorithm, 32-bit flit size, packets with 128 flits and a 7x6
(41 Slave-PEs one position reserved to the mapper) MPSoC
dimension. The energy model was calibrated using the ST/IBM
CMOS 65 nm technology at 1.0 V, adopting clock-gating, and a
100 MHz clock frequency.

Table 1 presents the difference in the average energy consumption
and in number of hops between the unified-model (Section 3) and
the RTL HeMPS platform. In average, the energy consumption
difference between both models is 10%. In terms of number of
hops, the results showed an average difference of 12.17%. The
worst-case difference is presented in case B, where the difference
on the average energy consumption to deliver all packets is
19,21%, while the difference in number of hops is 20.22%.

Aspects that are not considered in the unified-model justify the
difference between both models. Such aspects influence the time
that mapping requests arrive at the mapper, which may change the
task mapping order (changing the number of hops and,
consequently the energy consumption). Examples of these aspects
are the OS execution time for each task (e.g. scheduling
algorithm) and the heuristic execution time (altering the initial
execution time of each task). The absence of these aspects do not
invalidate the use of our approach to evaluate dynamic heuristics
mapping, since all heuristics are equally analysed. Besides, the
unified-model can be calibrated with values extracted from (e.g.
task workload,) a target platform (e.g. HeMPS), allowing to
achieve more accurate results. The unified-model, w.r.t the
HeMPS model is approximately 34 times faster than the HeMPS
platform (using ISS - instruction set simulators and C/SystemC
models). For instance, by executing each case (A, B, and C) in the
HeMPS platform with one-second duration, the total execution
time is 17 hours, while the same scenarios by using our unified-
model requires in average 30 minutes for each simulation.
Considering that real embedded system applications may run up to
dozen of seconds, we claim that the adoption of the present
approach increased evaluation speed, since different heuristics and
application’s scenarios can be simulated in less time.

!"!"#!
$%&'$()!
*$++'(,!

"#!-.'&'!
$/)!

0"%$1%'!
+',!

'2'34-'!*$++"/5!
.'4&"#-"3!

*$+!!"#6/-6!-.'!
3.6#'/!+'!7$"%!

#'/(!$!+$38'-!
36/-$"/"/5!!"#%63$-"6/!

#'/(!$!+$38'-!
36/-$"/"/5!!"#
%63$-"6/!

#'%'3-!!"#-6!1'!
*$++'(!%$-'&!

)'#!

/6!

/6!

)'# !!

&'94'#-!-$#8!!"#

188

Table 1 - Energy consumption (EC) and number of hops (#H) difference (Diff.) between HeMPS and unified-model, using NN, DN
and LEC-DN dynamic mapping heuristics considering cases A, B and C.

 NN DN LEC-DN
 HeMPS unified-model Diff. (%) HeMPS unified-model Diff. (%) HeMPS unified-model Diff. (%)

EC
(nJ)

case A 1.638E+04 1.726E+04 5.09% 1.657E+04 1.928E+04 14.08% 1.527E+04 1.699E+04 10.13%
case B 1.344E+04 1.664E+04 19.21% 1.437E+04 1.590E+04 9.66% 1.384E+04 1.590E+04 12.95%
case C 1.122E+04 1.166E+04 3.77% 1.172E+04 1.241E+04 5.58% 1.102E+04 1.241E+04 11.20%

#H
case A 79 81 2.47% 91 95 4.21% 77 84 8.33%
case B 71 89 20.22% 76 93 18.28% 76 93 18.28%
case C 81 88 7.95% 83 94 11.70% 77 94 18.09%

4.2 Hotspots Evaluation
Another feature of the proposed approach is the possibility of
using the rate-based power model to verify the occurrence of
hotspots, which may be produced by not optimized mapping
decisions.	 The rate-based power model was calibrated using the
XFAB XCMOS 0.18 µm (XC018) 1.8V technology, adopting
clock-gating, and a 100 MHz clock frequency. The user can
define an interval of instantaneous power dissipation (IPD)
values (or a set of it) according to the design requirements.

Table 2 presents the relative power distribution (RPD) according
to the NoC APD for a switching activity of 50%. The power
distribution includes five intervals:

• interval 1, instantaneous power dissipation (IPD) between
25% and 50% times the NoC APD;

• interval 2, IPD between 50% and 75% times the NoC APD;

• interval 3, IPD between 75% and 100% times the NoC APD;

• interval 4, IPD between 100% and 200% times the NoC
APD, and

• interval 5, IPD above 200% times the NoC APD.

In this work, intervals 3, 4 and 5 are considered here as hotspots.
Besides, cases A, B and C, the following scenarios were
evaluated:

• Case D: MPEG, Automotive, synthetic, multimedia
applications containing 12, 10, 9 and 8 applications blocks,
respectively.

• Case E: MPEG, MWD, Automotive, multimedia, synthetic
and VOPD.

Due the flexibility of the present approach, scenarios where
different number of application can be loaded during the
execution time (new applications are requested when a number
of pre-defined applications are already executing) could be
evaluated. Thus, in case E, applications are executed during 3
seconds, where MPEG and MWD started at moment 0, one
second later the automotive and the multimedia application are
loaded in the system (emulation of a user request), and finally,
one second further the synthetic and the VOPD applications are
loaded. This scenario employs a 5x5 NoC-based MPSoC
dimension.

Results show that all heuristics produce power dissipation peak
value within RPD intervals 1 and 2. It’s also worth noting that
NN and DN heuristics present similar average power dissipation

compared to LEC-DN, but the mappings produced by them
result in more hotspot. For instance, in case E the power
dissipation values for DN and LEC-DN are 51.05 and 51.31
mW, respectively. However, in the same case, the number of
hotspots is 47,5% smaller when DN is employed. Regarding the
mono-tasks cases (A, B, C, D, and E), the LEC-DN (2018)
obtains the best hotspots results, when comparing to the NN
(2485, reduction of 18,7%) and DN (2075, reduction of 2.8%).
Due the similarity of results between DN and LEC-DN, only
both heuristics were extended to multi-task and compared using
the case E.
Figure 3 shows the number of hotspot occurrences in a 1s
simulation duration. The LEC-DN heuristic produces 2324
hotspots peaks between intervals 4 and 5 (for the sake of
simplicity not all are displayed), with a 168.57 mW peak. In
turn, the DN heuristic produces 2671 hotspots peaks in the same
interval, with a 138.07 mW peak. LEC-DN produces a smaller
number of peaks in the intervals 4 and 5, but in interval 3 (also
considered as hotspot zone) the number of hotspots peaks is
almost 3 times higher than the ones produced when the DN
heuristic is employed.

LEC-DN
peak
168.57

DN
peak
138.07

Figure 3 –Power values in hotspots intervals, after loading
two applications onto a platform that is already running two
other applications, during 1 second of simulation.

It is possible to observe that DN heuristic performs better for
multi-task approach. Considering five different scenarios, it has
been identified 12874 hotspots peaks against 14613 for LEC-DN
heuristic. These results can be explained by the fact that when
using DN heuristics, the mapper tries to map communicating
tasks into the same PE as long as possible. On the other hand,
LEC-DN heuristic considers all tasks’ dependences and may
spread tasks onto the MPSoC.

189

Table 2 - Number of hotspot peaks (# PICK) for different intervals using NN, DN and LEC-DN dynamic mapping heuristics
considering cases A, B, C, D and E.

 NN DN LEC-DN
 25-50% 50-75% 75-100% 100-200% > 200% 25-50% 50-75% 75-100% 100-200% > 200% 25-50% 50-75% 75-100% 100-200% > 200%

PICK

case A 785 944 405 19 4 743 813 280 328 1 880 1000 205 82 0
multi - - - - - 29 83 90 603 83 57 106 76 570 71

case B 599 833 378 414 1 699 858 324 334 0 699 858 324 334 0
multi - - - - - 29 98 89 473 211 36 87 105 512 162

case C 1133 255 33 13 0 1151 270 25 14 0 1153 270 24 10 0
multi - - - - - 169 119 227 240 22 149 228 115 224 28

case D 4352 1481 418 74 0 6119 1248 376 54 0 6127 1436 385 48 0
 multi - - - - - 4491 2919 4808 1979 151 3959 3064 4667 2378 294
 case E 6658 2172 579 145 0 3733 1705 277 72 0 6716 1447 506 110 0
 multi - - - - - 12563 3899 1230 2432 239 14147 3360 3087 2119 205

5. CONCLUSIONS AND FUTURE WORKS
RTL NoC-based MPSoC modeling provides accurate results, while
limits the evaluation of mapping heuristics due to the large
simulation time. Thus, flexible, simple and accurate high-level
frameworks are required in order to accelerate the implementation
and validation of new dynamic mapping heuristics. The proposed
approach supports static (e.g. taboo search) and dynamic mapping
heuristics, which were incorporated in order to support the
evaluation of dynamic mapping behavior and its impact on NoC-
based MPSoCs.

Due the design abstraction and flexibility we clearly see that by
employing the proposed approach designers can simplify the
development and the validation (e.g. more debugging capacity) of
new mapping heuristics, while different scenarios can be simulated
in a shorter time. For instance, to add a new mapping heuristics the
designer should extend the Mapper Actor (a class) instead of
modifying the HeMPS kernel.

Future works include improving the precision of the results by
calibrating our unified-model using values (e.g. heuristic execution
time) extracted from a real platform. In order to improve the
precision of the system not only focusing on the communication but
also in the processing layer, one ongoing research is developing a
high-level model of PEs in order to have more information such as
CPU workload and critical tasks running into the PE, that will be
served as additional information for heuristics that will make
decisions accordingly.

6. REFERENCES
[1] Matsutani, H.; et al. Run-Time Power Gating of On-Chip

Routers Using Look-Ahead Routing. In: ASP-DAC'08, 2008.
[2] Marculescu, R.; et al. Outstanding Research Problems in NoC

Design: System, Microarchitecture, and Circuit Perspectives.
IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, 28(1), 2009.

[3] Singh, A. K.; at al. Communication-aware heuristics for run-
time task mapping on NoC-based MPSoC platforms. Journal of
Systems Architecture, 56(7), 2010.

[4] Faruque, M.A.; et al. ADAM: Run-time Agent-based
Distributed Application Mapping for on-chip Communication.
In: DAC'08, 2008.

[5] Wildermann, S.; et al. Run time Mapping of Adaptive
Applications onto Homogeneous NoC-based Reconfigurable
Architectures. In: FPT'09, 2009.

[6] Molnos, A.; et al. Composable, energy-managed, real-time
MPSOC platform. In: OPTIM'10, 2010.

[7] Ha, S. Model-based Programming Environment of Embedded
Software for MPSoC. In: ASP-DAC'08, 2008.

[8] Pimentel, A. D. ; et. al. Calibration of abstract performance
models for system-level design space exploration. Journal of
Signal Processing Systems, v. 50(2), 2008.

[9] Streubühr, M. ; et al. Efficient Approximately-Timed
Performance Modeling for Architectural Exploration of
MPSoCs. In: (FDL'09), 2009.

[10] Kangas, T.; et. al. UML-based multiprocessor SoC design
framework. ACM Transactions on Embedded Computing
Systems, v. 5(2), 2006.

[11] Hölzenspies, P.K.F.; et al. Run-time Spatial Mapping of
Streaming Applications to a Heterogeneous Multi-Processor
System-on-Chip (MPSoC). In: DATE'08, 2008.

[12] Smit, L.T.; et al. Run-time mapping of applications to a
heterogeneous SoC. In: SoC'05, 2005.

[13] Chou, C-L.; et al. User-Aware Dynamic Task Allocation in
Networks-on-Chip. In: DATE'08, 2008.

[14] Carvalho, E.; et al. Dynamic Task Mapping for MPSoCs.
Design & Test of Computers, v. 27(5), 2010.

[15] Mukherjee, R.; Peak Temperature Control and Leakage
Reduction During Binding in High Level Synthesis. In:
ISLPED'05, 2005.

[16] Coskun, A. K.; Evaluating the Impact of Job Scheduling and
Power Management on Processor Lifetime for Chip
Multiprocessors. In: SIGMETRICS'09, 2009.

[17] Mandelli, M.; Energy-Aware Dynamic Task Mapping for NoC-
based MPSoCs. In: International Symposium on Circuits and
Systems (ISCAS'11), 2011.

[18] Määttä, S.; et. al. Validation of Executable Application Models
Mapped onto Network-on-Chip Platforms. In: SIES'08, 2008.

[19] Lee, E. A.; et. al. Actor-Oriented Design of Embedded
Hardware and Software. Systems, Journal of Circuits,
Systems, and Computers, 12 (3), 2003.

[20] Hu, J.; Marculescu, R. Energy-aware mapping for tile-based
NoC architectures under performance constraints. In: Asia
South Pacific Design Automation Conference (ASP-DAC'03),
2003.

[21] Ost et al. Exploring NoC-Based MPSoC Design Space with
Power Estimation Models. IEEE Design and Test of
Computers, 28(2), 2011.

[22] Carara, E.; et al. HeMPS - A Framework for NoC-Based
MPSoC Generation. In: ISCAS'09, 2009.

190

