
Efficient NAS Benchmark Kernels with C++
Parallel Programming

Dalvan Griebler, Junior Loff, Luiz G. Fernandes
Pontifical Catholic University of Rio Grande do Sul (PUCRS),

Parallel Application Modeling Group (GMAP),

Porto Alegre – Brazil

Email: {dalvan.griebler,junior.loff}@acad.pucrs.br, luiz.fernandes@pucrs.br

Gabriele Mencagli, Marco Danelutto
University of Pisa (UNIPI),

Computer Science Department,

Pisa – Italy

Email: {mencagli,marcod}@di.unipi.it

Abstract—Benchmarking is a way to study the performance of
new architectures and parallel programming frameworks. Well-
established benchmark suites such as the NAS Parallel Bench-
marks (NPB) comprise legacy codes that still lack portability to
C++ language. As a consequence, a set of high-level and easy-to-
use C++ parallel programming frameworks cannot be tested in
NPB. Our goal is to describe a C++ porting of the NPB kernels
and to analyze the performance achieved by different parallel
implementations written using the Intel TBB, OpenMP and
FastFlow frameworks for Multi-Cores. The experiments show
an efficient code porting from Fortran to C++ and an efficient
parallelization on average.

Index Terms—Parallel Programming, NAS Benchmark, Perfor-
mance Evaluation, Data Parallelism, FastFlow, OpenMP, TBB.

I. INTRODUCTION

The heterogeneous landscape of parallel architectures and
parallel programming frameworks motivates the use of rep-
resentative benchmarking suites to characterize their per-
formance and efficiency. Well-established suites like PAR-
SEC [1], NAS Parallel Benchmarks (NPB) [2], SPLASH [3]
and Rodinia [4] include micro computational kernels and real-
world applications. They are for measuring the performance
achieved by different machines, using different run-time envi-
ronments for parallel computing.

In this paper, we focus on the five micro-kernels of NPB,
which are behind of the implementation of three pseudo-
applications taken from the computational aerodynamics do-
main [5], [2]. For many years, NPB has been considered
an important suite to evaluate the behavior of massively
parallel systems with realistic workloads. Originally, most of
the kernels in the suite (four out of five) are available as Fortran
legacy code. The parallel implementations are available for
shared-memory and distributed-nothing machines, supporting
the parallelism with OpenMP and MPI.

These benchmarks are also essential to evaluate parallel
programming libraries, frameworks, API, and tools. Every
software that aims to exploit the parallelism of the new land-
scape of parallel architecture requires parallel programming.
In C++, for instance, there are libraries used to develop
parallel software easily [6], [7]. Since they provide higher-level
abstractions to the application programmer, their performance
must be evaluated and checked. Therefore, it is relevant porting
this consolidated benchmarks to other languages so that many
of these languages’ parallel programming abstractions can be
tested and evaluated along with the new architectures. Thus,
developers can decide when and which framework to use.

Our goal is to describe, in a comprehensive way, the
porting of the five kernels from the NAS benchmark suite
to C++ code as well as the kernels’ parallelization with Intel
TBB [8], OpenMP (translation only) [9], and FastFlow [10].
After, we aim at evaluating and comparing the performance
of our implementations with the C++ parallel programming
frameworks. Besides the implementation issues, this work has
a valuable impact regarding research for the following reasons
that also represent our major contributions:

• according to Sec. II, NPB has been ported in different
languages. However, their porting are not made for C++
and for the purpose of evaluating parallel programming
frameworks. In our paper, a complete porting for C++ of
the NPB kernels is provided and evaluated.

• the performance reliability of our porting in C++ is
discussed by showing that our sequential code has com-
parable performance with the original Fortran code;

• owing to our C++ porting, different C++ parallel pro-
gramming frameworks and libraries (e.g., Intel TBB,
OpenMP, and FastFlow) are used to provide parallel im-
plementations of the kernels. Such versions are analyzed
and their performance compared.

The rest of this paper is organized as follows. Sect. II gives
a brief overview of the literature. Sect III describes the basic
features of the NPB kernels. Sect. IV introduces our C++
porting and parallelization using various frameworks. Finally,
Sect. V is devoted to the experimental part, and Sect. VI gives
the conclusion of this work.

II. RELATED WORK

Over the years, the NPB kernels have been widely utilized
for testing hardware-level strategies or compiler-level opti-
mization. However, there are a set of parallel programming
interfaces written over the C/C++ language [10], [8], [11] that
could be used in NPB.

In the literature, different domains utilized the NPB to
evaluate its solutions. It emphasizes the NPB importance and
comprehensiveness in the modern high-performance comput-
ing landscape. In [12], the authors evaluated the performance
of their CUDA/C porting of the FT and MG kernels, compar-
ing the results with the original implementations. The authors
in [13] used the MPI-Fortran version of seven NPB to propose
a dynamic frequency scaling for energy consumption reduction
in distributed applications. The paper in [14] uses NPB for

733

26th Euromicro International Conference on Parallel, Distributed, and Network-Based Processing

0-7695-6380-5/18/$31.00 ©2018 IEEE
DOI 10.1109/PDP2018.2018.00120

automatic parallelization and vectorization techniques included
in the LLVM compiler as well as compares the performance
of different compilers in a large set of applications including
some kernels presented in the NPB suite. In contrast, we
are porting to C++ the five NPB kernels and implementing
the parallelism for multi-cores with three different parallel
programming frameworks.

Authors from [15] proposed a tool to predict the best
speed-up situation and thus reducing the cost of performance
scalability evaluation. They utilized an unofficial C version of
the NPB from the Omni Compiler Project [16] implemented
over NPB 2.3 to evaluate their tool. That NPB version was
implemented with a huge parallel region to reuse threads
already spawned. The authors mentioned that it was a poor
choice to evaluate their tool. So, they modified the NPB-C to
attend to their needs. In the following research works from the
same authors [17], [18], they continue using the same NPB-C
obtained from the earlier work, which was never fully tested
and evaluated the correctness of its computation. Concerning
the work from [19], they characterized the performance of an
OpenCL implementation over the NPB for a heterogeneous
parallel platform that consists of general-purpose CPUs and a
GPU. Thus, a version in C was needed of the NPB. No details
were given about the NPB porting to C and its validation.
Differently, from these studies, we are porting the NPB kernels
based on the original Fortran code as well as fully test-
ing and evaluating our implementations. Consequently, other
researchers may use the sequential version and implement
parallelism by using other parallel programming interfaces.

III. AN OVERVIEW OF NPB KERNELS

In this section, we briefly describe each one of the five
basic computational kernels to discuss our C++ porting and
parallelization further.

A. Embarrassingly Parallel (EP)

The EP kernel generates a large number of Gaussian random
pairs according to a specific scheme. Its intensive computation
is concentrated in the main loop, which independently pro-
cesses each group of random number pairs. Considering that
some iterations of the loop have more numbers to generate
than others, each iteration calculates its offset to balance the
load. Then, uniform pseudo-random numbers are enumerated
for each group to compute the Gaussian deviation by the
acceptance-rejection method. After this, its computed solution
is verified using previous results already validated in this ker-
nel. This considers the number of Gaussian pairs generated and
the independent total sum of X and Y Gaussian deviations [2],
[5]. In sequence, we present the EP program steps:

1) Generates floating point values rj in the interval (0, 1)
2) Set xj = 2r2j−1 − 1 and yj = 2r2j − 1
3) Test if tj = x2

j + y2j ≤ 1
4) If false, reject the current pair. If true: k = k+1, where

Xk = xj

√
(−2logtj)

tj
and Yk = yj

√
(−2logtj)

tj
5) Xk and Yk are independent Gaussian deviates with mean

zero and variance one
6) Ql for 0 ≤ l ≤ 9 are the pairs (Xk, Yk) counting that

belong to the square annulus l ≤ max(|Xk| ,|Yk|) ≤ l+1

B. Conjugate Gradient (CG)

The CG kernel computes an approximation with tolerance
10−10 of the smallest eigenvalue of a large, sparse, and un-
structured matrix, exploiting the conjugate gradient method. Its
intensive computation is indeed the conjugate gradient method
that is represented by a partition submatrix multiply. The core
computation remains in nested loops, which characterizes this
kernel as a fine-grained one [2], [5], [20]. The following steps
provide an overall idea of this kernel code and its operation
sequence:

1) Generation of a sparse matrix x[1, 1, ..., 1] with a random
pattern of nonzeros

2) Utilization of the inverse power method which solves the
system Az = x and returns ‖r‖ through the conjugate
gradient method (described in 3). Then, it calculates ζ =
λ+ 1

xz , where λ is the shift for different problem sizes,
and performs x = z

‖z‖
3) CG method, where Az represents the solution z to the

linear system of equations Az = x:
z = 0, r = x, ρ = rT r, p = r
do i = 1 to max

q = Ap
delta = ρ

pT q
z = z + δp
ρ0 = ρ
r = r − δq
ρ = rT r
β = ρ

ρ0

p = r + βp
enddo
‖r‖ =‖x−Az‖

C. Integer Sort (IS)

IS performs an integer sort among a sparse set of numbers,
which can be compared with particle-in-cell applications. By
default, the sorting method is based on the bucket sorting
approach. Accordingly, the number of keys for each bucket
is determined, and the total count is distributed among each
bucket. When completed, each bucket receives sorted numbers
and points to the final accumulated sizes. Finally, the keys
within each bucket are sorted, and a partial test is performed
to verify the results [2] [20]. The steps are as follows:

1) Generation of the initial sequence of keys uniformly
distributed in memory

2) Load all N keys into the memory system through the
appropriate memory mapping

3) Computation of the sorting operation:
do i = 1 to max

a) Modify the sequence of keys:
Ki = i and Ki+max = (Bmax − i)

b) Computes each key rank
c) For every iteration, performs the partial verification

enddo
4) Execution of the full verification to evaluate the sorting

operation.

734

D. MultiGrid (MG)
MG utilizes the multigrid method to compute a 3D Poisson

equation. It also represents a V-Cycle algorithm with a residual
performing n times to obtain an approximate solution to the
discrete Poisson problem. Its routine consists in restricting
the residual from fine to coarse grain to give an approximate
solution by calculating the coarsest grid. Consequently, it
extends the solution from a coarse grid to a fine grid. For
each level, a residual is computed, and a smoothing operation
is applied. After that, the final and more intensive computation
perform the last k level, and a final residual is calculated [2],
[5], [21]. The MG program steps are listed below:

1) Generation of a 3D matrix v = 0 in exception of n
points that receive v = ±1

2) Each iteration evaluates the residual in r = v−Au and
applies a correction with u = u+Mkr

3) Mk represents the V cycle multigrid operator (described
in 4)

4) zk = Mkrk where:

a) if k ≤ 1 then z1 = Sr1 (apply smoother) where S
is the smoother operator

b) else
rk−1 = Prk
zk−1 = Mk−1rk−1

zk = Qzk−1

rk = rk −Azk
zk = zk + Srk

Here, A denotes the trilinear finite element discretization
of the Laplacian ∇2 normalized. Also, P is the trilinear
projection operator of finite element theory and represents the
half value of the operator Q.

E. Fourier Transform (FT)
This kernel performs a Fast Fourier Transform (FFT) of a

3D partial differential equation using spectra method. The core
computation of FT is the inverse cfftz method, performed
niter times for each dimension. Also, a copy is made from
the 3D matrix to a 1D matrix in each dimension. Then, the
Fast Fourier Transform is computed, and the result is copied
back. In the beginning, a function (evolve) performs the
exponent factors for the inverse method. Finally, in the end,
a checksum is computed to validate the result [2], [21]. The
operations sequence is described as follows:

1) Generation of 2n1n2n3 random floating points and the
Uj,k,l 3D matrix is filled with those data

2) Computation of the forward 3D discrete Fourier trans-
form (DFT) of U : V = DFT (U)

3) Computation Wj,k,l = e−4Π210−6(�j2+�k2+�l2)Vj,k,l, where
�j is j when 0 ≤ j < n1

2 and j−n1 when n1
2 ≤ j < n1.

This repeats for k and l to n2 and n3
4) Calculation X = inv(W), where inv represents the

inverse 3D DFT
5) Computation of the checksum

∑1023
j=0 X

IV. C++ PORTING AND PARALLELIZATION

This section is devoted to present our C++ porting of
the NPB kernels and the parallelization using C++ parallel
programming frameworks.

A. C++ Porting

To implement parallelism in NPB with C++ parallel pro-
gramming frameworks, we must port the original Kernels’
Fortran code to C++. Our goal was to avoid significant
differences when porting the code. For instance, maintain the
same algorithmic structure, preserve the function definitions
with the same procedure computation, and follow the same
steps and order of the operations described before.

We could refer numerical algorithms to these benchmark
kernels since they are composed by basic math operators, such
as sums, subtractions, multiplications, divisions, powers, and
roots. However, we needed to apply some modifications to
avoid changing the original programming logic when porting
the code from Fortran to C++. This is due the fact that each
language has its own syntax to express the logic of the program
(e.g., the power operation is described as ** in Fortran which
is replaced by pow() in C++, and mod() in Fortran is
represented by the % in C++).

Although we did much work for porting the original code,
few differences remained in four out of the five kernels. The
challenging kernel was FT. We restructured almost the entire
code because Fortran has a primitive variable type to represent
complex numbers and C++ has not. In our C++ version, we
did not use the STL (Standard Template Library) to represent
complex numbers. We preferred to implement a struct with
two double variables to support the real and the imaginary part
of a complex number. In this code porting, we also had to
rewrite all functions that operate with the complex matrices.
This includes operations such as addition, matrix initialization
with sines and cosines, the Stockham Fast Fourier Transform,
and others similar situations like this ones.

B. Parallelization

This section is about the parallel implementation of the five
kernels. The instruments of our study include two important
parallel programming frameworks. FastFlow is from research,
and Intel Thread Building Blocks (TBB) is from the industry.
Our OpenMP version is based on the original parallel Fortran
code that is OpenMP too. TBB and FastFlow were designed
with C++ STL to support parallel programmers with a high-
level library interface.

NPB kernels are classified as data-parallel computations.
The expected parallel patterns to be applied are Map, Reduce,
and MapReduce operations. For expressing the parallelism
with OpenMP, FastFlow, and TBB, we used the abstracted
Map and Reduce interface, which has its way to express
parallelism in each framework. For the kernels with a sequence
of parallel regions inside a loop, we managed to reuse threads
already spawned by the system in all the frameworks. Also,
TBB and FastFlow can provide these patterns through lambda
function.

1) EP: This kernel is composed by the main loop with
minor communications between operations. Thus, we applied a
Map pattern by using the parallel for loop of each framework.
Following the original Fortran parallel version, we keep the
static scheduler for OpenMP and FastFlow. In contrast, TBB
uses the work-stealing scheduling and has a non-deterministic
thread creation, always performing as a dynamic scheduler.

735

The parallel region starts right before the Gaussian deviates
computation. Inside this region, the MapReduce parallel loop
is annotated, which will reduce two variables (sx and sy).
These variables contain the independent total sum of Gaussian
deviations. A different Reduce must be performed with lock
mechanisms to concatenate all partial count values from the
computation of the Gaussian deviates. This was necessary
since OpenMP only accepts variables as reduction parameters.
Listing 1 exemplifies our OpenMP version. The parallel loop
is depicted in line 2. OpenMP’s reduction directive reduces
the partial computation in lines 7 and 8 declared in the line 1.
Also, line 10 shows where the critical directive is annotated
which represents the step 6 described in Section III-A.

1 #pragma omp f o r r e d u c t i o n (+ : sx , sy)
2 f o r (k = 1 ; k <= np ; k ++) {
3 /∗ a b s t r a c t e d code ∗ /
4 f o r (i = 0 ; i <= NK; i ++) {
5 /∗ a b s t r a c t e d code ∗ /
6 qq [l] += 1 . 0 ;
7 sx = sx + t 3 ;
8 sy = sy + t 4 ;
9 }

10 #pragma omp c r i t i c a l
11 f o r (i = 0 ; i <= NQ − 1 ; i ++) q [i] += qq [i] ;
12 }

Listing 1. Representation of the parallelism in EP with OpenMP.

TBB’s version extends the same OpenMP’s approach to
express the parallelism. The only difference is that our TBB
version does not use the reduction as OpenMP does. We made
use of the structure already implemented to reduce the total
sum of Gaussian deviations of sx, and sy in addition to
the count of the Gaussian deviates. In this implementation,
we used the tbb::mutex mechanism provided by the TBB
library to safely perform the Reduce operation.

In the FastFlow version, we also implemented the
MapReduce pattern. However, differently, we used the
parallel_for_thid method from the FastFlow library
that provides the thread identifier number. Such low-level
access allowed us to avoid the critical section and implement
the reduction pattern as observed in Listing 2. This code
represents the same piece of code previously presented for
OpenMP in Listing 1. We selected this specific part of code
from FastFlow to represent the contrast of the nonuse of
lock mechanisms as in OpenMP and TBB. Lines 5, 6 and
7 represents the partial computation. The reduction inside the
loop is depicted in line 10. We represent through SCHED the
static scheduling in which we divided the maximum iteration
size by the number of threads plus one.

1 pf . p a r a l l e l f o r t h i d (1 , np +1 , 1 , SCHED, [&] (i n t k ,
i n t i d) {

2 /∗ a b s t r a c t e d code ∗ /
3 f o r (i = 0 ; i <= NK; i ++) {
4 /∗ a b s t r a c t e d code ∗ /
5 qq [i d] [l] . qq += 1 . 0 ;
6 sxx [i d] . qq = sxx [i d] . qq + t 3 ;
7 syy [i d] . qq = syy [i d] . qq + t 4 ;
8 }
9 }) ;

10 f o r (i =0 ; i<num workers ; i ++) {
11 sx += sxx [i] . qq ;
12 sy += syy [i] . qq ;
13 f o r (i n t j =0 ; j<=NQ−1; j ++) q [j] += qq [i] [j] . qq ;
14 }

Listing 2. Representation of the parallelism in EP with FastFlow.

We faced the false sharing problem when expressing paral-
lelism with FastFlow. To solve it, we implemented a struct
to complete the default cache line size. In addition to that, we
added to each position of the default queue, a blank character
with size equal to the remaining proportion to fill the 64 bytes,
which represents the default cache line size. This problem
was avoided in OpenMP and TBB because each framework
creates its thread private variables. In general, each framework
tries to deal with low-level parallel programming issues to
prevent the user from these details. Additionally, except for
OpenMP, it is important to emphasize that the reduction could
be implemented by the default MapReduce abstraction in
TBB and FastFlow. However, it requires an implementation
of all partial variables into a single struct or class. This
is because their Reduce routine is implemented to manipulate
one parameter at the time. Thus, the entire kernel would
require modifications in regions that use these variables.

2) CG: Concerning EP, CG has a larger amount of code and
more regions to look for parallelism. In the original code, this
kernel contains several OpenMP pragma annotations during
the code. We manage to maintain all pragma annotations
for our C++ version. Thus, every loop inside the conjugate
gradient method is a map pattern. Additionally, this kernel has
two more intensive computations after the conjugate gradient
method, which are represented by a Map and a MapReduce
operation.

When parallelizing with FastFlow and TBB, we reduced
the parallelism to three single regions containing the most
intensive computation. These regions are inside the conjugate
gradient method, in which the most intensive is represented
by the q = Ap operation that was described in Section III-B
(a submatrix multiplication). The other two parallel regions
represent the residual norm, which computes ||r|| = ||x−Az||.
Listing 3 depicts two out of the three intensive computations.
The first loop inside line 1 and 6 represents the submatrix
multiplication and the second loop inside 7 and 10 represents
the part of the residual norm.

The submatrix multiplication is represented by the loop of
the line 1 which performs the matrix iteration. In this case,
dependencies are not the issue since the computation performs
a local sum and saves the result for each index position into
the vector w[] of the line 5. Therefore, we managed to use
the Map pattern. For the other loop of the line 7, again a sum
is performed. In this case, if executed in parallel, each thread
will contain a partial result of the sum operation. Thus, we
implemented a MapReduce pattern to perform this operation.

1 f o r (j = 1 ; j <= l a s t r o w−f i r s t r o w +1; j ++) {
2 sum = 0 . 0 ;
3 f o r (k = r o w s t r [j] ; k < r o w s t r [j + 1] ; k ++)
4 sum = sum + a [k]∗ p [c o l i d x [k]] ;
5 w[j] = sum ;
6 }
7 f o r (j = 1 ; j <= l a s t c o l− f i r s t c o l +1; j ++) {
8 d = x [j] − r [j] ;
9 sum = sum + d∗d ;

10 }
Listing 3. CG’s submatrix (1 to 6) and residual norm (7 to 10).

For OpenMP and TBB, we utilized both abstracted patterns
of each framework to introduce the parallelism. In FastFlow,
we expressed the MapReduce parallelism not by its ab-

736

stracted form. We used its parallel_for_thid routine to
access each thread’s identifier and perform a custom Reduce.

3) IS: Once the original kernel code was already in C,
minor modifications were needed. We observed that in its orig-
inal implementation, the parallel version contains additional
code concerning the serial. This was required to guarantee the
communication between buckets, which were used as auxiliary
structures to perform the sorting operation. In OpenMP, they
made use of the thread identifier number to divide the work-
load statically. Additionally, we included a significant parallel
region to retain the sorting operation’s intensive computation
for OpenMP. This way each thread has its data to pre-compute
and to communicate. Thus, the intensive computation can
safely be performed in parallel.

In Listing 4, we present a piece of code representing the
computation described in item 3 from Section III-C, which per-
forms the sorting operation. As can be observed, the pragma
annotation in line 1 delimits a region of intensive computation
that performs in parallel. Consequently, the subsequent loop
in line 4 is the communication represented by a sequential
computation, where each thread executes this routine once.
This code between lines 4 and 10 is additional to the sequential
IS kernel version and represents each thread sharing the results
computed in line 3.

1 #pragma omp f o r s c h e d u l e (s t a t i c)
2 f o r (i =0 ; i<NUM KEYS; i ++)
3 work buf f [k e y a r r a y [i] >> s h i f t] + + ;
4 f o r (i =1 ; i< NUM BUCKETS; i ++) {
5 b u c k e t p t r s [i] = b u c k e t p t r s [i −1];
6 f o r (k =0; k< omp get thread num () ; k++)
7 b u c k e t p t r s [i] += b u c k e t s i z e [k] [i] ;
8 f o r (k=omp get thread num () ; k<omp get num threads

() ; k++)
9 b u c k e t p t r s [i] += b u c k e t s i z e [k] [i −1];

10 }
Listing 4. Representation of the parallelism in IS with OpenMP.

We were able to extend this strategy with the use of the
parallel_for_thid routine in the FastFlow version. We
had to introduce intermediate structures to perform the buckets
communication and allocate a unique Map pattern for each
intensive computation. In Listing 5 is depicted the code that
follows the one presented in Listing 4. This piece of code is
already implemented in FastFlow. The loop depicted in line
1 is where the parallelism is implemented for the intensive
computation of line 3. Additionally, the next loop (line 5)
is equivalent to the one described in the previous Listing 4
between lines 4 and 10 used for data synchronization. Note
that the loop in line 5 represents a Map pattern, iterating
from zero to num_workers-1. This structure mimics
the parallel region of the OpenMP library where the thread
executes a routine once.

1 pf−>p a r a l l e l f o r t h i d (0 , NUM KEYS, 1 , SCHED, [&] (
i n t i , i n t i d) {

2 INT TYPE k = k e y a r r a y [i] ;
3 k e y b u f f 2 [b u c k e t p t r s 2 [i d] [k >> s h i f t]++] = k ;
4 }) ;
5 pf−>p a r a l l e l f o r (0 , num workers −1 ,1 , [&](i n t myid) {
6 f o r (INT TYPE i =0; i< NUM BUCKETS; i ++) {
7 f o r (INT TYPE k=myid +1; k< num workers ; k++)
8 b u c k e t p t r s 2 [myid] [i] += b u c k e t s i z e [k] [i] ;
9 }

10 }) ;

Listing 5. Representation of the parallelism in IS with FastFlow.

In TBB, we could not implement this kernel following the
original strategy because thread manipulation is not accessible
to the application programmer. Also, the threads are created in
a non-deterministic way due to its work-stealing scheduling,
which makes it even more difficult to reproduce in TBB.

4) MG: This intensive kernel computation remains inside
the multigrid V-cycle routine. This is replication to the V-cycle
multigrid operator described in Section III-D. Therefore, each
V-cycle routine contains an internal loop in which k levels are
performed, as depicted in Listing 6. The V-cycle iteration loop
described in the line 1 would iterate the levels from the initial
parameter until lt-1. Note that the last iteration is disengaged
from the loop and is performed separately at the end (line
6). This iteration represents the most intensive computations,
more than all the others together.

1 f o r (k = l b +1; k <= l t −1; k ++) {
2 j = k−1;
3 z e r o 3 () ; i n t e r p () ; r e s i d () ; p s i n v () ;
4 }
5 j = l t − 1 ;
6 k = l t ;
7 i n t e r p () ; r e s i d () ; p s i n v () ;

Listing 6. Representation of the V-cycle multigrid routine.

The most of the OpenMP annotations were introduced
inside the routines described in Listing 6, which contains
several pragma omp for annotations. The interp func-
tion adds the trilinear interpolation of the correction, the
resid computes the residual and the psinv applies the
smoother. Each of those functions contains a part of the
intensive computation, and to each of them, we express the
parallelism independently. This segregation is because each
operation needs a communication at the end (data updates).
The reuse of threads already spawned plays an important
role to achieve good performance in this kernel. In TBB and
FastFlow, we also added the simple parallel_for lambda
function inside these routines to express the parallelism.

5) FT: This kernel was modified to meet the complex data
type defined in Fortran. Such modifications also changed the
way to express parallelism in some functions with respect
to the original version. All the parallel regions remain in
the same scope, but we had to substitute some MapReduce
by Maps with auxiliary structures to enable parallelism. In
Listing 7, we selected the function which performs the FFT
in one dimension. In this code, a copy of the 3D matrix
is made to auxiliary structures, and at the end, it is copied
back to the matrix. Inside this region, it performs the FFT
method in the single dimension of data copied. As can be
noted, we managed to represent the complex data type in C++
by implementing a struct with real (lines 5 and 10) and
imaginary number (lines 6 and 11). In this example, the nested
loop depicted in line 2 iterates with an offset of fftblock.
We implemented the parallelism in this loop to try a better
load balance. However, we obtained worst results than when
paralyzing the external loop in line 1.

1 f o r (k = 0 ; k < d [2] ; k ++) {
2 f o r (j j = 0 ; j j <= d[1]− f f t b l o c k ; j j += f f t b l o c k)

{

737

3 f o r (j = 0 ; j < f f t b l o c k ; j ++)
4 f o r (i = 0 ; i < d [0] ; i ++)
5 y0 [i] [j] . r e a l = x [k] [j + j j] [i] . r e a l ;
6 y0 [i] [j] . imag = x [k] [j + j j] [i] . imag ;
7 c f f t z (i s , l ogd [0] , d [0] , y0 , y1) ;
8 f o r (j = 0 ; j < f f t b l o c k ; j ++)
9 f o r (i = 0 ; i < d [0] ; i ++)

10 xou t [k] [j + j j] [i] . r e a l = y0 [i] [j] . r e a l ;
11 xou t [k] [j + j j] [i] . imag = y0 [i] [j] . imag ;

Listing 7. FFT method in a single dimension.

We expressed the parallelism similarly for all three parallel
versions using the Map pattern. In the FT kernel, for all
three dimensions of the matrix, it performs the FFT method
described in the item 3 from Section III-E. After each iteration,
a checksum is performed to partially evaluate the correctness
of the result. For the OpenMP version, the checksum operation
uses the critical directive to bypass OpenMP’s reduction
syntax. That is because OpenMP reduction directive does not
support a struct data type as an entry argument.

For FastFlow and TBB, excluding the checksum operation
that demands a Reduce, we applied the Map pattern to add
parallelism for the most intensive computations, represented
by the FFT method and some additional independent com-
putations. Since the FFT method was decomposed into three
independent operations performing one dimension at the time,
we parallelized each dimension separately. Finally, we imple-
mented the reduction in TBB (using parallel_reduce)
and FastFlow (using parallel_for_thid) without intro-
ducing lock synchronizations.

V. EXPERIMENTS

The experiments were executed in a machine equipped with
24GB of RAM and two processors Intel(R) Xeon(R) CPU
E5-2620 v3 2.40GHz, with 6 cores each and support to hyper-
threading, totaling 24 threads. Its operating system was Ubuntu
Server 64 bits with kernel 4.4.0-59-generic. Moreover, we used
GCC 5.4.0 with -O3 compiler flag and the libraries: Thread
Building Blocks (4.4 20151115) and FastFlow (r13).

In our tests, we used NPB’s B class as parameters to compile
the benchmarks1. This means that the kernels will assume:
(1) 230 random-number pairs for EP; (2) a grid with size of
512x256x256 and 20 iteration for FT; (3) IS will sort 225

number of keys with maximum value of 221; (4) a grid with
size of 256x256x256 and 20 iterations for MG; (5) and CG
will have 75000 number of rows with 13 values non-zero and
75 iterations to perform with an eigenvalue shift of 60. Also,
we ran each benchmark from 1 to the maximum degree of
parallelism in the target machine. The execution was repeated
10 times for each degree of parallelism. With that, the obtained
results represent the average execution time with properly
standard deviations plotted in the graphs through error-bars.

A. Sequential Versions

Once the original kernels in Fortran were ported to C++, we
measured the sequential version execution times to evaluate
the efficiency of our code porting. Figure 1 presents the
comparison between the C++ porting and the Fortran legacy

1The source codes for the serial and parallel versions are available at
https://github.com/dalvangriebler/NPB-CPP

code. Note that we achieved very similar results concerning
the Fortran code, with less than 1% difference for all kernels.
We can conclude that our C++ porting is similar to the original
Fortran.

 0

 20

 40

 60

 80

 100

 120

 140

 160

IS FT EP CG MG

S
ec

on
ds

NPB kernels

Sequential Version

Converted
Original

Fig. 1. Results of the porting to C++.

B. Parallel Versions
In the parallel versions, we used the serial C++ code

to express the parallelism. The performance evaluation and
comparison were made through the execution times plotted in
the next graphs. The X-axis presents the degree of parallelism
and Y-axis presents the time in seconds. Although we tried
several ways to express the parallelism in each one of the
frameworks and kernels, we will discuss the versions with
the best performance. We considered the original parallel
version with OpenMP (label Original), the C++ version
with OpenMP (label OMP), the C++ version with FastFlow
(FF), and the C++ version with TBB (label TBB). Also, we
plotted the standard deviations through error bars.

Figure 2 shows the results of the parallelization for EP.
These results reveled that the performance and scalability
are similar in our OpenMP implementation with respect to
the Original version. In FastFlow, the results were very
similar too. However, TBB outperforms all other versions.
We attribute this performance gain to the TBB work-stealing
scheduler, which provides a better load balancing. We tested

 0

 10

 20

 30

 40

 50

 60

 70

 80

2 4 6 8 10 12 14 16 18 20 22 24

S
ec

on
ds

Number of Threads

EP

FF
OMP
TBB

Original

Fig. 2. EP with C++ parallel programming frameworks.

738

 10

 20

 30

 40

 50

 60

 70

 80

 90

2 4 6 8 10 12 14 16 18 20 22 24

S
ec

on
ds

Number of Threads

CG

FF
OMP
TBB

Original

Fig. 3. CG with C++ parallel programming frameworks.

another scheduler in OpenMP and FastFlow, but no improve-
ment was observed.

The CG kernel presented performance contrasts in Figure 3.
There were also high standard deviations in the OpenMP
versions (Original and OMP), which tends to be particular
of the runtime. Note that the C++ parallel version achieved
a slightly better performance than compared with the original
Fortran parallelization. Except for the degree of parallelism 2,
TBB and FastFlow had similar performance results. This was
expected because both of them followed the same parallelism
strategy although runtimes are working differently. Moreover,
our C++ version of OpenMP achieved the best performance
when using hyper-threading resources. This is related to the
load balancing. Noted that OpenMP reaches better perfor-
mance when there are more threads.

Concerning the IS kernel, results are shown in Figure 4.
TBB does not appear in the graph because of the issues
reported previously (Section IV-B3). There were small per-
formance differences between the OMP and Original ver-
sions as it was for the serial version. On the other hand,
FastFlow had performance degradation in the most of the
degree of parallelism tested. That is because it has overhead
when creating/waking-up threads frequently. This becomes
evident when there is a small workload such as in IS (about
milliseconds). Also, note that FastFlow results become worst
when reaching hyperthreading. This indicates that its load
balancing for a small workload is not as efficient as OpenMP.

The execution times of the parallel versions for MG are
presented in Figure 5. The first impression is that this kernel
has limited scalability. With more in-depth investigations, we
discovered that the compiler could vectorize the most of the
codes. In a certain point, the granularity becomes too small that
the program stops to scale. This occurs even with the original
version. However, it presented fewer overheads when increas-
ing the degree of parallelism. FastFlow was able to achieve a
similar performance concerning the original version, and also
better than OpenMP and TBB. The poorest performance of
TBB is related to the combination of its dynamic scheduler
and computation small granularity.

Finally, FT results can be view at Figure 6. OpenMP in
Fortran can take advantage of the complex number data type.

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

2 4 6 8 10 12 14 16 18 20 22 24

S
ec

on
ds

Number of Threads

IS

FF
OMP

Original

Fig. 4. IS with C++ parallel programming frameworks.

 2

 3

 4

 5

 6

 7

2 4 6 8 10 12 14 16 18 20 22 24

S
ec

on
ds

Number of Threads

MG

FF
OMP
TBB

Original

Fig. 5. MG with C++ parallel programming frameworks.

In C++, this is perceptibly worst when using OpenMP. That
is because we must to introduce a critical directive to avoid
race conditions. FastFlow achieved a similar performance with
respect to the original version up to 12 threads. However, with
more threads, it loses against the original version due to the
load unbalancing that was the same problem for TBB and
OpenMP.

 5

 10

 15

 20

 25

 30

2 4 6 8 10 12 14 16 18 20 22 24

S
ec

on
ds

Number of Threads

FT

FF
OMP
TBB

Original

Fig. 6. FT with C++ parallel programming frameworks.

739

C. Final Remarks
In this paper, we were able to provide an efficient C++

version of the NAS benchmark kernels with a similar Fortran
performance. In addition to OpenMP, we were able to express
parallelism with C++ parallel programming frameworks such
as TBB and FastFlow. Table I summarizes our performance
results. By porting the kernel to C++, we identified how well
the frameworks are optimized to exploit parallelism in the
shared memory architecture. For EP, these results revealed that
TBB’s best speed-up is able to outperform (35 percent) the
best speed-up of the original parallel Fortran code. In CG,
OpenMP and FastFlow’s best speed-ups also achieved better
performance (18 and 9 percent respectively) than the original
parallel Fortran code. As expected in IS, the C++ version
of OpenMP’s best speed-up has similar results concerning
the C version of OpenMP’s best speed-up. Finally, the C++
parallel versions for FT had worst (between 15 and 25 percent)
performance than the original parallel Fortran code. In MG,
FastFlow achieved the best speed-up although not performing
very good.

TABLE I
A SUMMARY OF THE RESULTS.

Version Metrics FF OMP TBB Original

EP
Threads 24 24 24 24

Speed-up 17.53 17.59 23.84 17.67
Time (s) 8.53 8.50 6.27 8.46

CG
Threads 20 22 16 20

Speed-up 5.98 6.46 5.08 5.47
Time (s) 17.97 16.64 21.17 19.66

IS
Threads 23 24 - 24

Speed-up 6.70 9.47 - 9.42
Time (s) 0.51 0.36 - 0.36

MG
Threads 8 5 3 5

Speed-up 1.94 1.69 1.50 1.87
Time (s) 2.52 2.90 3.25 2.61

FT
Threads 24 22 24 23

Speed-up 6.74 6.25 6.16 8.10
Time (s) 7.13 7.70 7.80 5.93

VI. CONCLUSIONS

This paper presented a performance evaluation of the NAS
benchmark kernels using C++ parallel programming frame-
works. We ported the legacy Fortran code to C++, provid-
ing comparable performance. Our parallelization in the C++
converted code achieved better performance than the parallel
Fortran code from the original version for the EP, CG, IS,
and MG kernels. These results highlight the main contribution
of our work, where we allow other frameworks to be tested
with a well-established benchmark (NPB) in the modern
computer architectures. As future work, we plan to run these
kernels in different machine architectures, parallelize these
kernels for accelerators, include in the parallelization other
C++ frameworks, port to C++ the NPB’s pseudo-applications,
and test the performance with other workloads.

ACKNOWLEDGMENT

The authors would like to thank the partial financial support
of CAPES, FAPERGS, PUCRS and of the EU H2020 project
RePhrase (EC-RIA, ICT-2014-1). We also thank Massimo
Torquati for the fruitful discussion about FastFlow.

REFERENCES

[1] C. Bienia, S. Kumar, J. P. Singh, and K. Li, “The parsec benchmark suite:
Characterization and architectural implications,” in Proceedings of the
17 International Conference on Parallel Architectures and Compilation
Techniques, ser. PACT ’08. NY, USA: ACM, 2008, pp. 72–81.

[2] D. Bailey, E. Barszcz, J. Barton, D. Browning, R. Carter, L. Dagum,
R. Fatoohi, S. Fineberg, P. Frederickson, T. Lasinski, R. Schreiber,
H. Simon, V. Venkatakrishnan, and S. Weeratunga, “The NAS Parallel
Benchmarks,” NASA Ames Research Center, Moffett Field, CA - USA,
Tech. Rep., March 1994.

[3] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta, “The
splash-2 programs: Characterization and methodological considera-
tions,” SIGARCH Comput. Archit. News, vol. 23, no. 2, pp. 24–36, 1995.

[4] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, S.-H. Lee, and
K. Skadron, “Rodinia: A benchmark suite for heterogeneous computing,”
in Proceedings of the 2009 IEEE International Symposium on Workload
Characterization (IISWC), ser. IISWC ’09. Washington, DC, USA:
IEEE Computer Society, 2009, pp. 44–54.

[5] H. Jin, M. Frumkin, and J. Yan, “The OpenMP Implementation of
NAS Parallel Benchmarks and its Performance,” NASA Ames Research
Center, Moffett Field, CA - USA, Tech. Rep., October 1999.

[6] D. De Sensi, T. De Matteis, M. Torquati, G. Mencagli, and M. Dane-
lutto, “Bringing Parallel Patterns Out of the Corner: The P3ARSEC
Benchmark Suite,” ACM Trans. Archit. Code Optim., vol. 14, no. 4, pp.
33:1–33:26, Oct. 2017.

[7] M. Danelutto, T. De Matteis, D. De Sensi, G. Mencagli, and
M. Torquati, “P3arsec: Towards parallel patterns benchmarking,” in
Proceedings of the Symposium on Applied Computing, ser. SAC ’17.
New York, NY, USA: ACM, 2017, pp. 1582–1589. [Online]. Available:
http://doi.acm.org/10.1145/3019612.3019745

[8] J. Reinders, Intel Threading Building Blocks. USA: O’Reilly, 2007.
[9] B. Chapman, G. Jost, and R. van der Pas, Using OpenMP: Portable

Shared Memory Parallel Programming (Scientific and Engineering Com-
putation). London, UK: MIT Press, 2007.

[10] M. Aldinucci, M. Danelutto, P. Kilpatrick, and M. Torquati, “FastFlow:
High-Level and Efficient Streaming on Multi-core,” in Programming
Multi-core and Many-core Computing Systems, ser. PDC, vol. 1. Wiley,
March 2014, p. 14.

[11] D. Griebler, M. Danelutto, M. Torquati, and L. G. Fernandes, “SPar:
A DSL for High-Level and Productive Stream Parallelism,” Parallel
Processing Letters, vol. 27, no. 01, p. 20, March 2017.

[12] L. Wang, M. Huang, V. K. Narayana, and T. El-Ghazawi, “Scaling
scientific applications on clusters of hybrid multicore/gpu nodes,” in
Proceedings of the 8th ACM International Conference on Computing
Frontiers, ser. CF ’11. New York, USA: ACM, 2011, pp. 6:1–6:10.

[13] J. C. Charr, R. Couturier, A. Fanfakh, and A. Giersch, “Dynamic
frequency scaling for energy consumption reduction in synchronous
distributed applications,” in IEEE International Symposium on Parallel
and Distributed Processing with Applications, Aug 2014, pp. 225–230.

[14] A. Y. Drozdov, S. V. Novikov, V. E. Vladislavlev, E. L. Kochetkov,
and P. V. Il’in, “Program auto parallelizer and vectorizer implemented
on the basis of the universal translation library and llvm technology,”
Programming and Computer Software, vol. 40, no. 3, pp. 128–138, 2014.

[15] M. Popov, C. Akel, F. Conti, W. Jalby, and P. de Oliveira Castro, “Pcere:
Fine-grained parallel benchmark decomposition for scalability predic-
tion,” in 2015 IEEE International Parallel and Distributed Processing
Symposium, May 2015, pp. 1151–1160.

[16] “Omni compiler project,” Nov 2017. [Online]. Available:
http://www.hpcs.cs.tsukuba.ac.jp/omni-compiler/

[17] M. Popov, C. Akel, W. Jalby, and P. de Oliveira Castro, “Piecewise
holistic autotuning of compiler and runtime parameters,” in Euro-Par
2016: Parallel Processing: 22nd International Conference on Parallel
and Distributed Computing, Aug 2016, pp. 238–250.

[18] M. Popov, C. Akel, Y. Chatelain, W. Jalby, and P. de Oliveira Castro,
“Piecewise holistic autotuning of parallel programs with cere,” Concur-
rency and Computation: Practice and Experience, vol. 29, Aug 2017.

[19] S. Seo, G. Jo, and J. Lee, “Performance characterization of the nas
parallel benchmarks in opencl,” in 2011 IEEE International Symposium
on Workload Characterization (IISWC), Nov 2011, pp. 137–148.

[20] S. Saini and D. H. Bailey, “NAS Parallel Benchmark (Version 1.0)
Results 11-96,” NASA Ames Research Center, Moffett Field, CA - USA,
Tech. Rep., November 1996.

[21] D. Bailey, T. Harris, W. Saphir, R. van der Wijngaart, A. Woo, and
M. Yarrow, “The NAS Parallel Benchmakrs 2.0,” NASA Ames Research
Center, Moffett Field, CA - USA, Tech. Rep., December 1995.

740

