
Improving the Network Performance of a
Container-based Cloud Environment for

Hadoop Systems
Cassiano Rista

Pontifical University Catholic of
Rio Grande do Sul (PUCRS),

GMAP Research Group,
Porto Alegre – RS – Brazil

Email: luis.rista@acad.pucrs.br

Dalvan Griebler, Carlos A. F. Maron
Três de Maio Faculty (SETREM),

LARCC Research Group,
Pontifical University Catholic of

Rio Grande do Sul (PUCRS),
GMAP Research Group,

Porto Alegre – RS – Brazil
Email: {dalvan.griebler, carlos.maron}@acad.pucrs.br

Luiz Gustavo Fernandes
Pontifical University Catholic of

Rio Grande do Sul (PUCRS),
GMAP Research Group,

Porto Alegre – RS – Brazil
Email: luiz.fernandes@acad.pucrs.br

Abstract—Cloud computing has emerged as an important
paradigm to improve resource utilization, efficiency, flexibility,
and the pay-per-use billing structure. However, cloud platforms
cause performance degradations due to their virtualization layer
and may not be appropriate for the requirements of high-
performance applications, such as big data. This paper tackles
the problem of improving network performance in container-
based cloud instances to create a viable alternative to run
network intensive Hadoop applications. Our approach consists
of deploying link aggregation via the IEEE 802.3ad standard
to increase the available bandwidth and using LXC (Linux
Container) cloud instances to create a Hadoop cluster. In order
to evaluate the efficiency of our approach and the overhead
added by the container-based cloud environment, we ran a
set of experiments to measure throughput, latency, bandwidth
utilization, and completion times. The results prove that our
approach adds minimal overhead in cloud environment as well
as increases throughput and reduces latency. Moreover, our
approach demonstrates a suitable alternative for running Hadoop
applications, reducing completion times up to 33.73%.

Index Terms—Cloud Computing; Network Performance; Big
Data; Link Aggregation; Container-Based Cloud.

I. INTRODUCTION

Big data is still considered one of the greatest computational
challenges and has been intensively studied over recent years.
This challenge becomes even greater due to the large amount
of data generated daily by different corporations, web-based
services and systems, social media, and others. According to
White [1], the term big data refers to large amounts of data
that usually transcend the ability of software tools to collect,
manage, and process data in acceptable polynomial time.

The Hadoop framework enables distributed processing on
computer clusters using simple programming models. It was
designed to work with a single server or set of a thousand ma-
chines, offering local processing and storage. The framework
itself is designed to detect and address application layer fail-
ures to provide high availability services, using Commercial
Off-The-Shelf (COTS) hardware.

Cloud computing infrastructures support rapid resource
provisioning, which in turn is a suitable option to deploy
a Hadoop environment. Primarily due to the advances of
cloud platforms, there are possibilities to develop new busi-
ness models based on the pay-per-use billing structure. Also,
there are cloud computing technologies (specifically those
focused on network and storage) that provide lower perfor-
mance degradation [2], [3], [4], [5]. However, the use of
cloud environments for processing big data applications has
traditionally been avoided when it requires high bandwidth
and throughput as well as low latency [6], [7]. Traditional
cloud providers, which use virtualization technologies that are
not optimized for the execution of big data applications, add
significant overheads [8]. Our main challenge in this paper is
to improve network performance in the container-based cloud
environment for Hadoop applications.

We chose to increase the network bandwidth by using
the IEEE 802.3ad link aggregation standard [9]. It defines
a standard method to combine multiple physical links that
can be used as a single logical link. The standard is a layer
2 control protocol that can be used to automatically detect,
configure, and manage a single logical link with multiple
physical links between two adjacent enabled devices. Thus,
link aggregation provides higher availability and capacity
while network performance improvements are obtained using
existing hardware (IEEE 802.3ad requires support in a network
switch).

Also, our goal is to target a high-performance cloud environ-
ment by deploying container-based instances, where Hadoop
applications may run. We chose container-based technolo-
gies to enable multiple isolated Linux systems to run on
a single host through Namespaces (providing isolated user
environments in the form of containers) and cgroups (pro-
viding resource management and accounting). LXC (Linux
Container) [10] technology is an important part of this cloud
infrastructure, because it is a free software that provides a

2017 International Conference on High Performance Computing & Simulation

978-1-5386-3250-5/17 $31.00 © 2017 IEEE

DOI 10.1109/HPCS.2017.97

619

powerful set of userspace tools and utilities to manage Linux
containers. It combines an easy-to-use interface with easy-to-
construct image files. Therefore, it is a piece of software in
a complete file system that contains everything needed to run
code, runtime, system tools, and system libraries.

Figure 1 presents the container technology architecture.
Technically, it is a lightweight alternative to a hypervisor
that runs at the operating system level, providing abstractions
directly for guest applications. For this reason, all containers
share a single operating system kernel and they are supposed to
have weaker isolation compared to hypervisor-based systems.
However, from the customer’s point of view, each container
executes exactly the same as a stand-alone operating system.

Fig. 1. High-level representation of container architecture.

This paper aims at provide a suitable approach to deploy
dynamic link configuration and network link aggregation by
using IEEE 802.3ad. Also, our goal is to evaluate how real-
world Hadoop applications perform in such a container-based
cloud environment to demonstrate applicability, feasibility, and
efficiency. Therefore, we are making the following contribu-
tions:

• A deployment approach that increases the network band-
width in container-based cloud platforms. Our approach
can be deployed without attaching extra hardware, since
it can be simply deployed when there is more than
one network board available on the data-center server
machines. We do so that throughput and latency are
improved in container-based cloud instances.

• A solution to reduce the completion time for big data
applications in Hadoop Systems. Although a specific
Hadoop application has been used, we demonstrated that
our deployment approach reduces the execution time
significantly for a network intensive workload.

• A set of experiments demonstrating the feasibility and
efficiency of our approach. Our set of experiments are
representative to demonstrate the feasibility for real-
world cloud data-center scenarios. Also, network inten-
sive workloads will efficiently perform the applications,
concerning latency, throughput, and execution time.

This paper is organized as follows: Section II discusses re-
lated research contributions. Section III describes the proposed
approach in detail, focusing on the network enhancement
strategy for big data applications. Section IV presents the
experiments and performance analysis. Finally, Section V
concludes the paper and presents ideas for future work.

II. RELATED WORK

This section describes the primary related works aimed at
improving the network in big data applications.

For instance, Yazdanov et al. [11] propose a network-
sensitive I/O scheduler called EHadoop for an elastic MapRe-
duce cluster. Their study observed that during load peaks more
computing nodes are added to maintain the performance of the
cluster. However, the throughput does not improve because
of network saturation (bottlenecks). Thus, EHadoop performs
task scheduling based on the available bandwidth. The eval-
uation results show that EHadoop avoids network contention
but does not increase the completion time of the MapReduce
tasks and even causes network bandwidth degradation.

The approach in [12] shows a distributed control method to
allocate computing resources to distributed parallel software
components according to a model-driven predictive approach.
The approach supposes a static deployment of the components,
and it is only throughput-oriented (latency is not addressed).

Renner et al. [13] presented an approach based on containers
that takes into account the topology of the network in order
to avoid congestion. Containers were arranged to be close
to data entries to improve data locality and reduce the need
to read remote disks in a distributed file system. The study
also presents the development of a prototype for effectively
allocating these containers and analysis of scalable data in a
shared cluster with hierarchical networks. The prototype was
implemented in Hadoop Yarn and evaluated with workloads
consisting of different applications and data sets using Apache
Flink. The evaluation showed a reduction of up to 67% in the
execution times of jobs with intensive network workloads.

Furthermore, an algorithm for bandwidth scheduling with
SDN (Software-Defined Network) for Hadoop called BASS
(Bandwidth-Aware Scheduling with SDN in Hadoop) was
proposed by Qin et al. [14]. The Hadoop scheduler assigns
tasks based on the location of data. BASS takes into account
the bandwidth of the links (at a given instant) to assign tasks.
This feature allows the scheduler to move data from one node
to another when necessary for better scheduling.

In addition to minimizing end-to-end communication la-
tency by using local data, Prabhavat et al. [15] proposed
a load distribution model, called E-DCLD (Effective Delay
Controlled Load Distribution). It can reduce packet latency
variation, thereby minimizing the risk of packet reordering
without incurring additional network overhead. When fewer
packets must be reordered, recovery time is decreased. In other
words, the model both reduces the end-to-end communication
latency as well as recovery time for packet reordering. Per-
formance was verified by comparing E-DCLD with existing
models through analysis and experiments simulating different
traffic conditions.

A comparative study between applications with different
communication needs and complexity, was carried out by
Ekanayake et al. [16]. This study concluded that latency-
sensitive applications have higher performance degradation
than bandwidth-sensitive applications. Moreover, this study
also took into account different implementations of MapRe-
duce, presenting a performance analysis of high performance
parallel applications in virtualized environments.

Desai et al. [17] present an architecture called ACDPA

620

(Advanced Control Distributed Processing Architecture) that is
designed to efficiently process and control network traffic. This
study considered the use of Hadoop for distributed processing
and OpenDaylight as the SDN controller. The basic principle
consists of collecting network traffic from the SDN data plane
and classifying the entire Hadoop flow. This information is
then used as feedback for the SDN controller to define the
quality of service (QoS) requirements for each flow category.
In general, the information collected is used to determine
characteristics and define the priority of flows based on QoS.

A model was presented by Wang et al. [18] to merge
GPU computing with the MPTCP (Multipath TCP) protocol
to improve the performance of Hadoop distributed computing.
In order to do so, GPU computing was used to accelerate
the mapping phase, while MPTCP was used to reduce the
data transfer time during the reduction phase. The experiments
show that the model can accelerate the performance of Hadoop
applications with robustness and aggregation of bandwidth, as
well as reduce latency for distributed computing.

Radhakrishnan et al. [2] proposed V-Hadoop (Virtualized
Hadoop Using Containers), a framework that leverages Linux
containers to run Hadoop jobs efficiently without requiring
large physical machine clusters. Users can manage a clus-
ter across multiple physical machines and perform simple
resource-based scheduling of Linux containers by adding or
removing containers dynamically based on resource usage
and availability. Also, their experiments demonstrated that V-
Hadoop is comparable to a fully-distributed Hadoop cluster.

The previous related works presented different approaches
aimed to enhance performance and data location in the net-
work. Some strategies are focused on task scheduling based on
the available bandwidth [11] [14] while others tried to reduce
communication latency [15] [16]. Some were concerned with
providing high-performance for big data applications [2] and
others presented solutions to define the data flows based on
quality of service (QoS) [17] and select the most appropriate
network topology to avoid traffic jams. Finally, [18] addressed
mixed GPU hardware with the MPTCP (Multipath TCP)
protocol to accelerate big data applications.

Note that the literature does not present any work focused
on demonstrating the advantages of link aggregation for net-
work bandwidth, latency, throughput, or execution time in big
data applications as our work does. In fact, we have also
targeted the container-based cloud computing environment,
which presents lower abstraction overhead and performance
degradation. In contrast to previous works, our research studies
and proposes a low-level network performance-aware deploy-
ment model for Hadoop applications in the cloud scenario.
Our approach is evaluated through a set of experiments to
demonstrate its benefits and overheads, using a consolidated
network benchmark and Hadoop application.

III. IMPROVING HADOOP PERFORMANCE

This section presents the proposed approach enhancing
Hadoop’s distributed computing performance in a cloud en-
vironment. Our approach takes advantage of technologies

such as IEEE 802.3ad and LXC. First, we discuss how the
LXC strategy is applied to Hadoop. Second, we present an
overview of the architecture. Finally, the main characteristics
and benefits of MapReduce IEEE 802.3ad stage are described.

A. Hadoop on LXC Cloud Instances

One of the main advantages of integrating Hadoop into a
cloud computing environment is that it provides the opportu-
nity to manage the trade-offs between scale-up and scale-out.
For instance, in the bare-metal scenario, the size of each cluster
node is defined by the available hardware. Consequently, the
system administrator has to adjust the application to fit this
size. On the other hand, when system administrators are in a
cloud scenario, they may reconfigure the amount of resources
based on the needs of the application. This feature allows
the administrator to optimize resource usage while delivering
better completion times.

In addition to the advantages of the cloud computing
environment, we are also interested in reducing performance
degradation, which is commonly caused by using virtual-
ization technologies. Due to this, we chose to use LXC in
our proposed model and also deployed the Hadoop cluster
environment. According to Rizki et al. [19], container-based
instances provide almost the same performance as the native
environment (bare-metal). Moreover, using LXC allowed us to
still take advantage of elasticity, multi-tenancy, and resource
management.

The main goal of our container-based strategy is to allow
Hadoop system administrators to create clusters and take
advantage of the cloud computing environment while offering
the best performance.

B. Introducing IEEE 802.3ad on Hadoop Architecture

Hadoop was originally created for MapReduce distributed
processing on Distributed File System (DFS) with a dedicated
cluster of servers [1]. In such a cluster, each server is used as
node. The master node coordinates the daemon processes such
as Job Tracker and Name Node (see Figure [1]). On the other
side of the Hadoop cluster, the slave nodes store data blocks
where the Task Tracker and Data Node eventually compute
the data.

Fig. 2. High-level representation of IEEE 802.3ad on Hadoop.

621

Figure 2 illustrates where the link aggregation via IEEE
802.3ad [9] is introduced to improve performance in the
Hadoop architecture. Note that the Job Tracker supervises and
coordinates the data parallel processing using the MapReduce
pattern while the Name Node is responsible for coordinating
the data storage (called HDFS - Hadoop Distributed File
System) through the master node. Also, each slave node runs a
Data Node daemon and Task Tracker which communicate and
receive master node instructions. We can easily identify where
link aggregation will be helpful to improve Hadoop application
performance, especially for communication between master
and slave nodes.

Therefore, the distributed computing mechanism of Hadoop
(including HDFS and MapReduce) will take advantage of
two physical network interfaces working in the bridge mode
of each cluster node. This allows network packages to use
multiple paths when establishing simultaneous connections.
Our goal of improving bandwidth with IEEE 802.3ad is to
reduce the transmission time and increase network throughput
when delivering computing results between Map and Reduce
stages, which will be explained in detail in the next section.

C. Hadoop MapReduce Taking Advantage of IEEE 802.3ad

This section discusses how big data applications imple-
mented with the MapReduce framework (which runs on top of
Hadoop architecture, previously highlighted in Section III-B)
may take advantage of IEEE 802.3ad. Firstly, the basic concept
of MapReduce is to process big data in parallel, performing
Map and Reduce operations in stages. However, there is an in-
termediate stage that is called Shuffle. It collects mapped data
from the Map operation to merge and deliver computations
to the Reduce operation. Because there are many communica-
tions that take place between many processes and nodes in the
Shuffle stage, a great deal of data is being transferred through
the network. Figure 3 represents how communication occurs
in high-level manner when using MapReduce on Hadoop.

Fig. 3. High-level representation of MapReduce stages.

Once the location of the network intensive communication
stage was identified, we proposed IEEE 802.3ad to aggregate
physical network interface, since it allows us to increase net-
work bandwidth. We hoped to reduce the transferring data time
when performing the Shuffle stage as highlighted in Figure
3. Therefore, our hypothesis that taking advantage of IEEE
802.3ad should provide better network latency and throughput,

allowing Hadoop MapReduce applications to achieve better
completion times.

The IEEE 802.3ad enables dynamic link aggregation and
dis-aggregation by exchanging the packets with the clus-
ter nodes. In this case, the switch equipment dynamically
groups similar ports into a single logical link, increasing the
bandwidth and balancing the load for the Shuffle stage of
MapReduce.

In addition, link aggregation increases availability for
Hadoop cluster, providing limited degradation when failure
occurs. It provides network redundancy by load-balancing
traffic across all available links. If one of the links fails, the
system automatically load-balances traffic across all remaining
links. In the next section, we present the results of our
experiments to show the efficiency of our approach.

IV. EXPERIMENTS AND EVALUATIONS

This section presents experiments that were conducted to
evaluate our proposed approach. Our main goal was to im-
prove the network performance in a cloud environment for
Hadoop distributed computing by using link aggregation and
container- based cloud instances. First, we describe the design
and methodology of our experiment. Second, we present the
results of the network performance evaluation, which evaluated
throughput and latency in different scenarios. Finally, we
present the results in Hadoop, comparing network usage rates
and execution times.

A. Experimental Setup and Methodology

The hardware setup consisted of two ProLiant DL385 G6
servers. Each server had two six-core AMD Opteron processor
2425 HE and 32GB of RAM. These servers ran the operating
system Ubuntu Server 14.04 64-bit, Hadoop 2.7.3, Ethernet
channel bonding driver 3.7.1, and LXC container 1.0.8 release.
A Gigabit Ethernet Switch with IEEE 802.3ad connected
the servers through two Gigabit Ethernet controllers on each
server. All tests were run 15 times for each experiment
and considering a confidence interval of 95%. The following
experiments were supported by two benchmarks:

• Netpipe [20] is a protocol independent performance
benchmark that visually represents the network perfor-
mance under a variety of conditions. It uses a simple
series of ping-pong tests over a range of message sizes
to provide a complete measurement of network perfor-
mance. Message sizes are chosen at regular intervals with
slight differences to provide a complete evaluation of the
communication system. Each data point includes many
ping-pong tests to provide accurate timing. Latencies are
calculated by dividing the round trip time in half for small
messages (less than 64 Bytes).

• TestDFSIO [21] is a benchmark that performs intensive
read and write computations on HDFS. It writes or reads
many files in the HDFS, where there is one map task
per file. The size and number of files are specified as
command-line arguments. In the following experiments,
48 files of size 512 MB are specified. Thus, the main use

622

of TestDFSIO is for stressing HDFS system to discover
performance bottlenecks (particularly in the NameNode
and DataNodes) of the Hadoop cluster.

Based on the conceptual deployment model presented in
Figure 4, the two scenarios used in our experiments are
described as follows:

• Scenario 1: verifies throughput and latency as well as
compares the overhead added by using container-based
cloud instances. We used the NetPipe benchmark in
two bare-metal configurations (Regular TCP and IEEE
802.3ad) and a cloud instance configuration with LXC
and IEEE 802.3ad deployed. These settings are related
to the experiments conducted in Section IV-B.

• Scenario 2: aims to evaluate the bandwidth utilization
rate and execution time in big data applications. We
therefore used the TestDFSIO benchmark, running on
a container-based cloud with LXC and supporting both
Regular TCP and IEEE 802.3ad configurations. Also,
TestDFSIO was instantiated to run up to three concurrent
instances in order to generate different loads and network
stresses. These settings are related to the experiments in
Section IV-C.

Unlike what is illustrated in Figure 4, the Regular TCP set-
tings will only have a single communication channel between
servers. Meanwhile, Figure 4 clearly demonstrates that IEEE
802.3ad is able to aggregate two communication channels,
whereas for the LXC instance there is only a single network
interface lxc-br0.

It is important to highlight that for the LXC instances
there are no limitations based on CPU, memory, disk or
network bandwidth. Moreover, when running the TestDFSIO
benchmark in concurrently, our goal was to simulate a situation
closer to the real world where multiple clients are simultane-
ously accessing the environment, thereby generating greater
concurrency in the network.

Fig. 4. The conceptual deployment model shows the configuration of
processing nodes of the cloud, the communication links between them, and
the component instances and objects that reside in them.

B. Evaluating the Network Performance

Our first scenario consists of evaluating network perfor-
mance. Therefore, we performed these experiments using

the NetPipe benchmark to measure latency and throughput,
considering different deployment environments. Also, we com-
pared network performance in bare-metal and LXC instances.

Figure 5 presents the results of the throughput measurement.
The first environment is the Regular TCP which is not included
in our approach and was run on bare-metal instances. Then,
the results of IEEE 802.3ad were achieved on the bare-
metal instances while IEEE 802.3ad-LXC were achieved on
container-based cloud instances.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

100kB 200kB 300kB 400kB 500kB 600kB 700kB 800kB

M
e

g
a

b
it
s
/S

e
c
o

n
d

s

Message Size

NetPipe (Throughput)

Regular TCP IEEE 802.3ad IEEE 802.3ad−LXC

Fig. 5. Comparative evaluation of the throughput.

Note that IEEE 802.3ad (our approach) significantly in-
creases the throughput compared to the two bare-metal ver-
sions in Figure 5. This improves even more when there are
larger message sizes. The throughput of our approach running
in bare-metal is not significantly different than running it
in container-based instances. These results confirm that our
approach does not add significant overhead in the cloud
environment, but it is still able to increase the application’s
throughput.

The same environments in Figure 5 were used to evaluate
the latency performance in Figure 6. We can observe that when
not using our approach, the latency may be greater as the
message size increases. The latency of our approach running
in bare-metal is not significantly different than when running
it in container-based instances.

With these results, we were able to demonstrate that link
aggregation via IEEE 802.3ad increases the throughput and
reduces the latency in the network application. Also, container-
based instances add only very small overheads in the network
performance when the link aggregation is introduced via
IEEE 802.3ad. Consequently, our experiments indicate that our
approach may provide good results for other network intensive
applications. The next section will confirm whether this is
actually true for big data applications.

C. Evaluating Hadoop’s Performance

Our second scenario consists of evaluating a Hadoop
MapReduce application, which is called TestDFSIO. As we
confirmed no significant overhead by introducing our approach

623

 0

 0.001

 0.002

 0.003

 0.004

 0.005

 0.006

 0.007

100kB 200kB 300kB 400kB 500kB 600kB 700kB 800kB

M
ill

is
e

c
o

n
d

s

Message Size

NetPipe (Latency)

Regular TCP IEEE 802.3ad IEEE 802.3ad−LXC

Fig. 6. Comparative evaluation of the latency.

in container-based cloud instance, we deployed a Hadoop
cluster on LXC cloud instances and only ran the tests there
to compare our approach to Regular TCP (which does not
perform link aggregation). However, we varied the number
of concurrent TestDFSIO applications running during the test.
We collected the upload and download rates monitoring the
network interface (lxc-br0 as can be seen in 4) of the master
cloud instance with the “dstat” tool.

As in the master cloud instance, the greatest network traffic
is during the upload, therefore we will only discuss upload re-
sults in Figures 7, 8, and 9. Further details regarding download
rate results are discussed in Appendix. Figure 7 illustrates that
running a single TestDFSIO execution will already demand
the nominal capacity of 1 Gbps of a single physical network
interface. In this case, the TestDFSIO demonstrated to have
upload peaks when looking at the results of our approach,
which nominally should have 2 Gbps capacity due to the link
aggregation deployed.

These upload peaks are confirmed with the results presented
in Figure 8, where they are more pronounced. Although there
is enough bandwidth in our approach because of the link
aggregation, in Figure 7 we can see that Regular TCP uses
the network less when running a single TestDFSIO. This was
directly reflected in the execution times, which are shown in
Table I. Therefore, we observed an unexpected result because
our approach should nominally have more network bandwidth
available, but a higher completion time.

The overhead presented in our approach in Figure 7 occurs
due to the administrative overhead on the network packets
and the connection that our approach uses (IEEE 802.3ad).
Consequently, it becomes more visible when the application
does not requires higher network bandwidth than the physical
network supports, as reported by other authors [22] [23].

In Figure 8, we can explicitly identify that two TestDF-
SIO running concurrently will saturate the bandwidth in the
Regular TCP approach unlike our approach. As expected, the
completion times are even better using our approach (see in
Table I), because it provides more bandwidth.

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 0 50 100 150 200 250 300 350

M
e

g
a

b
it
s
/s

e
c
o

n
d

s

Time Line (seconds)

Single TestDFSIO (upload rate)

Regular TCP−LXC IEEE 802.3ad−LXC

Fig. 7. Running single instance of TestDFSIO.

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 0 50 100 150 200 250 300 350 400 450 500

M
e

g
a

b
it
s
/s

e
c
o

n
d

s

Time Line (seconds)

Two Concurrent TestDFSIO (upload rate)

Regular TCP−LXC IEEE 802.3ad−LXC

Fig. 8. Running two concurrent instances of TestDFSIO.

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 0 100 200 300 400 500 600 700 800

M
e

g
a

b
it
s
/s

e
c
o

n
d

s

Time Line (seconds)

Three Concurrent TestDFSIO (upload rate)

Regular TCP−LXC IEEE 802.3ad−LXC

Fig. 9. Running three concurrent instances of TestDFSIO.

The results of running three concurrent TestDFSIO are
presented in Figure 9. In this case, the upload rate significantly
increases, reaching about 1.7 Gbps. As we have seen in the

624

results, these three TestDFSIO running concurrently demands
high bandwidth that Regular TCP cannot sustain. Also, the
completion time in our approach were reduced about 33%
with respect to the ones in Regular TCP deployment. The
absolute numbers of the completion times on all TestDFSIO
environments are reported in Table I.

TABLE I
COMPLETION TIMES OF TESTDFSIO ON TCP REGULAR AND IEEE

802.3AD CLOUD INSTANCES.

Number of Concurrent TestDFSIO
Environment 1 (seconds) 2 (seconds) 3 (seconds)
IEEE 802.3ad (LXC) 338 375 501
Regular TCP (LXC) 315 507 756

Finally, the results presented in this section provided us
with fruitful insights, demonstrating when our approach will
improve Hadoop’s network performance. We can highlight that
NetPipe benchmark results on our approach have shown good
results concerning latency and throughput (in Section IV-B).
However, the application will only take advantage of our
approach when there is a need for higher network bandwidth
than what is provided in the Regular TCP environment.

V. CONCLUSIONS

In this paper, we proposed a deployment approach to im-
prove network performance in container-based cloud instances
for Hadoop-based big data applications. This approach uses
LXC and IEEE 802.3ad link aggregation solutions. The main
goal was to increase the network bandwidth. Consequently,
we achieved better throughput and latency as Section IV-B
presented, and we reduced the completion time in Hadoop
applications as discussed in Section IV-C. Therefore, we have
concluded that other network intensive applications can take
advantage of our approach.

Experiments were performed to evaluate traditional Regular
TCP and then compare it with the our approach through a
set of experiments to measure throughput, latency, bandwidth
utilization, and completion times focusing on the use of
big data applications. Our experiments indicate that in the
best case (running three concurrent instances of TestDFSIO),
completion times were reduced up to 33.73%. The results
also showed a higher completion time in the worst case
(running single instance of TestDFSIO). This occurred due
to the administrative overhead on the network packets and the
connection that our approach uses (IEEE 802.3ad).

Another important improvement is the use of a container-
based environment. In this sense, we found that LXC has near-
native network performance. Traditional hypervisors in turn
present limitations in dynamic resources allocation, where a
range of resizing is limited to that slice. Yet this limitation does
not exist in container-based environments, where it is possible
to expand particular containers to cover all the resources of
the physical node.

In future work, we aim to investigate the possibility of
increasing network bandwidth by using MultiPath TCP [24]

instead of IEEE 802.3ad link aggregation and compare the
performance with our current approach. Secondly, we intend
to evaluate our approach in other cloud instance types (e.g.,
KVM, VMWare, XenServer). Lastly, we hope to provide a
framework that can be easily integrated with cloud platforms
(e.g., OpenStack and OpenNebula) to enhance network band-
width in an elastic way.

ACKNOWLEDGMENT

The authors would like to thank CAPES, FAPERGS, PU-
CRS, FACIN, SETREM, LARCC, and HiPerfCloud project
for their partial financial support.

APPENDIX

In this section, we present additional results regarding
our experiments for the Hadoop environment (Scenario-2).
We highlight the download rates for Regular TCP and our
approach implemented with IEEE 802.3ad. The samples were
taken from the master node of the deployed Hadoop cluster. In
Figure 10, we can observe that the Regular TCP environment
was faster than our approach when the TestDFSIO workload
did not stress the network bandwidth limits. In this case,
there was a single TestDFSIO application running. We did not
expect these results. However, we suspect that this occurred
due to the combination of the Hadoop scheduler and overhead
caused by the package management in the IEEE 802.3ad,
which is not ideal when there is weak network traffic. Note
that this was also highlighted in Figure 7, where upload rates
were similar.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 0 50 100 150 200 250 300 350

M
e
g
a
b
it
s
/s

e
c
o
n
d
s

Time Line (seconds)

Single TestDFSIO (download rate)

Regular TCP IEEE 802.3ad

Fig. 10. Running single instance of TestDFSIO.

Figure 11 presents the results achieved when running with
two instances of the TestDFSIO application. In this case, our
approach demonstrates its efficiency compared to the Regular
TCP environment. It becomes evident when comparing the
completion times and traffic behavior. The utilization peaks
that vary throughout the execution are even more interesting.
With our approach, the application may take advantage of the
greater bandwidth available, which in turn compensates for
the overheads added by the IEEE 802.3ad implementation to
manage network packages.

Moreover, Figure 12 illustrates the results achieved with
three concurrent instances running the TestDFSIO. There is

625

 0

 5

 10

 15

 20

 25

 0 50 100 150 200 250 300 350 400 450 500

M
e
g
a
b
it
s
/s

e
c
o
n
d
s

Time Line (seconds)

Two Concurrent TestDFSIO (download rate)

Regular TCP IEEE 802.3ad

Fig. 11. Running two concurrent instances of TestDFSIO.

now a bigger difference among the tested approaches, with
ours demonstrating superior in completion times due to the
greater bandwidth available. This behavior coincides with the
results achieved in the upload rate results (Figure 9). Finally,
note that the download rates are lower than in the upload in
the master node. This is primarily because the master receives
a large amount of data during the Shuffle stage of Hadoop.
However, we have concluded that TestDFSIO was able to
perform better in the download and upload rates when there
was higher network traffic.

 0

 5

 10

 15

 20

 25

 30

 0 100 200 300 400 500 600 700 800

M
e
g
a
b
it
s
/s

e
c
o
n
d
s

Time Line (seconds)

Three Concurrent TestDFSIO (download rate)

Regular TCP IEEE 802.3ad

Fig. 12. Running three concurrent instances of TestDFSIO.

REFERENCES

[1] T. White, Hadoop: The Definitive Guide, 4th ed. O’Reilly Media, Inc.,
2015.

[2] S. Radhakrishnan, B. J. Muscedere, and K. Daudjee, “V-Hadoop:
Virtualized Hadoop Using Containers,” in 15th International Symposium
on Network Computing and Applications (NCA), Oct 2016, pp. 237–241.

[3] M. G. Xavier, M. V. Neves, and C. A. F. D. Rose, “A Performance
Comparison of Container-Based Virtualization Systems for MapReduce
Clusters,” in 22nd Euromicro International Conference on Parallel,
Distributed, and Network-Based Processing, Feb 2014, pp. 299–306.

[4] A. Vogel, D. Griebler, C. A. F. Maron, C. Schepke, and L. G. L.
Fernandes, “Private IaaS Clouds: A Comparative Analysis of Open-
Nebula, CloudStack and OpenStack,” in 24rd Euromicro International
Conference on Parallel, Distributed and Network-Based Processing
(PDP). Heraklion Crete, Greece: IEEE, Febuary 2016, pp. 672–679.

[5] A. Vogel, D. Griebler, C. Schepke, and L. G. Fernandes, “An Intra-Cloud
Networking Performance Evaluation on CloudStack Environment,” in
25th Euromicro International Conference on Parallel, Distributed and
Network-Based Processing (PDP). St. Petersburg, Russia: IEEE, March
2017, pp. 468–472.

[6] M. V. Neves, C. A. F. D. Rose, K. Katrinis, and H. Franke, “Pythia:
Faster Big Data in Motion Through Predictive Software-Defined Net-
work Optimization at Runtime,” in 28th International Parallel and Dis-
tributed Processing Symposium (IPDPS), ser. IPDPS ’14. Washington,
DC, USA: IEEE Computer Society, 2014, pp. 82–90.

[7] R. F. E. Silva and P. M. Carpenter, “Controlling Network Latency in
Mixed Hadoop Clusters: Do We Need Active Queue Management?” in
41st Conf. on Local Computer Networks, Nov 2016, pp. 415–423.

[8] A. Li, X. Yang, S. Kandula, and M. Zhang, “CloudCmp: Comparing
Public Cloud Providers,” in Proceedings of the 10th ACM SIGCOMM
Conf. on Internet Measurement, ser. IMC ’10. New York, NY, USA:
ACM, 2010, pp. 1–14.

[9] “Amendment to carrier sense multiple access with collision detection
(csma/cd) access method and physical layer specifications-aggregation
of multiple link segments,” IEEE Std 802.3ad-2000, pp. i–173, 2000.

[10] LXC, “Linux containers project (lxc),” 2016. [Online]. Available:
https://linuxcontainers.org

[11] L. Yazdanov, M. Gorbunov, and C. Fetzer, “EHadoop: Network I/O
Aware Scheduler for Elastic MapReduce Cluster,” in 8th Inter. Confer-
ence on Cloud Computing (CLOUD), June 2015, pp. 821–828.

[12] G. Mencagli, M. Vanneschi, and E. Vespa, “A Cooperative Predictive
Control Approach to Improve the Reconfiguration Stability of
Adaptive Distributed Parallel Applications,” ACM Trans. Auton. Adapt.
Syst., vol. 9, no. 1, pp. 2:1–2:27, Mar. 2014. [Online]. Available:
http://doi.acm.org/10.1145/2567929

[13] Renner, Thomas and Thamsen, Lauritz and Kao, Odej, “Network-aware
Resource Management for Scalable Data Analytics Frameworks,” in
Inter. Conference on Big Data (Big Data), Oct 2015, pp. 2793–2800.

[14] P. Qin, B. Dai, B. Huang, and G. Xu, “Bandwidth-Aware Scheduling
with SDN in Hadoop: A New Trend for Big Data,” arXiv preprint
arXiv:1403.2800, 2014.

[15] S. Prabhavat, H. Nishiyama, N. Ansari, and N. Kato, “Effective Delay-
Controlled Load Distribution over Multipath Networks,” IEEE Transac-
tions on Parallel and Distributed Systems, vol. 22, no. 10, pp. 1730–
1741, Oct 2011.

[16] J. Ekanayake and G. Fox, High Performance Parallel Computing with
Clouds and Cloud Technologies. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2010, pp. 20–38.

[17] A. Desai and K. Nagegowda, “Advanced Control Distributed Processing
Architecture (ACDPA) Using SDN and Hadoop for Identifying the Flow
Characteristics and Setting the Quality of Service(QoS) in the Network,”
in Inter. Advance Computing Conference (IACC), June 2015, pp. 784–
788.

[18] C. H. Wang, C. K. Yang, W. C. Liao, R. I. Chang, and T. T. Wei, “Cou-
pling GPU and MPTCP to Improve Hadoop/MapReduce Performance,”
in 2nd International Conference on Intelligent Green Building and Smart
Grid (IGBSG), June 2016, pp. 1–6.

[19] R. Rizki, A. Rakhmatsyah, and M. A. Nugroho, “Performance Analysis
of Container-Based Hadoop Cluster: OpenVZ and LXC,” in 4th In-
ternational Conference on Information and Communication Technology
(ICoICT), May 2016, pp. 1–4.

[20] NetPipe, “A network protocol independent performance evaluator
(netpipe),” 2016. [Online]. Available: http://bitspjoule.org/netpipe

[21] D. Eadline, Hadoop 2 Quick-Start Guide: Learn the Essentials of Big
Data Computing in the Apache Hadoop 2 Ecosystem, 1st ed. Addison-
Wesley Professional, 2015.

[22] J. Long, Storage Networking Protocol Fundamentals. Pearson Educa-
tion, 2013.

[23] G. Tomar, R. Chang, O. Gervasi, T. Kim, and S. Bandyopadhyay,
Advanced Computer Science and Information Technology: Second In-
ternational Conference, AST 2010, Miyazaki, Japan, June 23-25, 2010.
Proceedings, ser. Communications in Computer and Information Sci-
ence. Springer Berlin Heidelberg, 2010.

[24] A. Ford, C. Raiciu, M. J. Handley, and O. Bonaventure, “TCP
Extensions for Multipath Operation with Multiple Addresses,” RFC
6824, Jan. 2013. [Online]. Available: https://rfc-editor.org/rfc/rfc6824.txt

626

