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Abstract. The stream processing domain is present in several real-world appli-
cations that are running on multi-core systems. In this paper, we focus on data
compression applications that are an important sub-set of this domain. Our
main goal is to assess the programmability and efficiency of domain-specific
language called SPar. It was specially designed for expressing stream paral-
lelism and it promises higher-level parallelism abstractions without significant
performance losses. Therefore, we parallelized Lzip and Bzip2 compressors
with SPar and compared with state-of-the-art frameworks. The results revealed
that SPar is able to efficiently exploit stream parallelism as well as provide suit-
able abstractions with less code intrusion and code re-factoring.

1. Introduction
Over the past decade, vendors realized that increasing clock frequency to gain perfor-
mance was no longer possible. Companies were then forced to slow the clock frequency
and start adding multiple processors to their chips. Since that, software started to rely on
parallel programming to increase performance [Sutter 2005]. However, exploiting par-
allelism in such multi-core architectures is a challenging task that is still too low-level
and complex for application programmers. Consequently, parallel programming has been
reserved for specialized people. On the other hand, application programmers are more
concerned with algorithmic strategies and application constraints instead of supporting
multi-core parallelism in their applications [Griebler et al. 2017a].

Data compression applications are one of the most important ways to save storage
space. In fact, twenty years ago it was already reported that streaming applications were
the most computing intensive applications [Rixner et al. 1998]. They are related to a wide
set of application, such as video, big data, deep-learning, and among others. Introduce
parallelism in these applications is necessary for obtaining high-performance on current
multi-core systems. Therefore, combined with the performance needs and high-level par-
allelism abstraction requirement, new frameworks were proposed to reduce programming
effort. However, it is still a challenge to balance abstraction with performance. Most of
the languages are inflexible to model modern stream applications, complex for program-
mers, which has lead them to deal with low-level hardware optimization, or are inefficient
to implement real applications [Benkner et al. 2012, Beard et al. 2015].

The so considered state-of-the-art runtimes and parallel programming interfaces
for expressing the stream parallelism are Thread Building Blocks (TBB) [Reinders 2007]
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and FastFlow (FF) [Aldinucci et al. 2014]. They aim to abstract parallelism through par-
allel patterns with building blocks. Among a set of patterns provided, they also support
the parallelism implementation on streaming applications. In addition, an emergent DSL
(Domain-Specific Language) named SPar that promise to provide suitable and higher-
level abstractions for expressing stream parallelism [Griebler et al. 2017a]. Our goals
are to assess the programmability and performance of SPar on multi-core systems for
real-world data compression applications. Therefore, we extended studies of the Bzip2
parallelization that were focused only on productivity analysis of SPar in our previous
work [Griebler et al. 2017b] and we parallelized Lzip for this paper with SPar, TBB, and
FastFlow. Thus, our main contributions are the following:

• The code parallelization of Lzip with SPar, FastFlow, and TBB.
• A comparative analysis of two important performance metrics (memory usage

and completion times) and programmability (qualitative and quantitative) of SPar,
TBB, FastFlow and POSIX-Threads for Bzip2 and Lzip.

In this paper, Section 2 describes the related works. In Section 3, we intro-
duce SPar DSL. Section 4 discusses two real-world loss-less data compressors (Lzip and
Bzip2), considering programming and specific aspects related to the high-level stream par-
allelism. Then, we detail the experiments evaluating programmability and performance
in Section 5. To finalize, our conclusions will be presented in Section 6.

2. Related Work
As we focus on data compression applications, we will discuss related works whose
frameworks/libraries are able to exploit stream parallelism on multi-core systems and
C++ programs as well as previous works that parallelized Lzip and Bzip2 compressors.
For parallel programming, FastFlow [Aldinucci et al. 2014], RaftLib [Beard et al. 2015],
and TBB [Reinders 2007] are the ones. FastFlow is a framework created in 2009 by re-
searchers at the University of Pisa and the University of Turin in Italy. It provides stream
parallel abstractions adopting an algorithmic skeleton perspective and its implementation
is on top of efficient fine grain lock-free communication mechanisms. We mainly used
FastFlow as the target of our SPar parallelism implementation because it provides ready
to use parallel patterns with high-level C++ templates for stream parallelism.

Another available tool is TBB (Threading Building Blocks), an Intel C++ li-
brary for general purpose parallel programming. It emphasizes scalable and data parallel
programming while completely abstracting the concept of threads by providing a con-
cept of task. TBB builds on C++ templates to offer common parallel patterns (map,
scan, parallel_for, and among others) implemented on top of a work-stealing sched-
uler [Reinders 2007]. More recently, RaftLib [Beard et al. 2015] is a C++ library de-
signed to support pipeline and data parallelism together. The idea is that the programmer
implements sequential code portions as computing kernels, where custom split/reduce
can be implemented when dealing with data parallelism. Moreover, there is a global on-
line scheduler that can use OS scheduler, round-robin, work-stealing, and cache-weighted
work-stealing. Yet, the communication between kernels is performed by using lock-free
queues. FastFlow and TBB, RaftLib are lower-level parallelism abstractions to the final
application programmer with respect to SPar, but they are considered runtimes for SPar.

To the best of our knowledge, there are no previous works that parallelized Lzip
compressor with TBB, FastFlow, or RaftLib. However, the work of [Benkner et al. 2012]
implemented a parallel version of Bzip2 with TBB using a pipeline of three stages. They
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compared performance and lines of code for TBB and the original POSIX-Threads ver-
sion (Pbzip2). Moreover, Bzip2 was also parallelized in [Aldinucci et al. 2011] with
FastFlow framework by using a Farm and software accelerator feature. In contrast, we
provided a completest analysis and comparison of programmability and performance for
Bzip2 and Lzip with SPar, TBB, and FastFlow.

3. SPar
SPar is a C++ embedded DSL designed to provide higher-level parallelism abstractions
for streaming applications without significant performance losses [Griebler et al. 2017a,
Griebler 2016]. SPar uses the standard C++ attribute mechanism [ISO/IEC 2014] for im-
plementing its annotation-based language so that coding productivity is improved. To
express stream parallelism with SPar, it offers five different attributes. These attributes
are used as parameters of annotations that describe key features of a streaming applica-
tion such as stages, data consumption and degree of parallelism. The SPar compiler will
recognize a SPar annotation when at least the first attribute of a double brackets anno-
tation is specified ([[id-attr, aux-attr, ...]]). This first attribute must be
an identifier (ID) attribute, where a list of auxiliary (AUX) attributes may be specified if
necessary. The ToStream and Stage annotations are ID while Input, Output and
Replicate are AUX.

The SPar compiler was developed with the CINCLE (A Compiler Infrastructure
for New C/C++ Language Extensions) support tools [Griebler 2016]. It generates parallel
code with calls to the FastFlow library. SPar uses the Farm and Pipeline interfaces and
customizes them for its particular needs. More details regarding the SPar usage may be
found in [Griebler et al. 2017a, Griebler et al. 2017b]. In addition, SPar also supports
other options through compiler flags that can be activated when desired (individually or
combined) as follows:

• spar_ondemand: generates an on-demand item distribution policy by setting
the queue size to one. Therefore, a new item will only be inserted in the queue
when the next stage has removed the previous one.

• spar_ordered: makes the scheduler preserve the stream items order. FastFlow
provides us a built-in function for this purpose so that SPar compiler can simply
generate it.

• spar_blocking: switches the runtime to behave in passive mode (default is
active) blocking the scheduler when the communication queues are full. FastFlow
offers a pre-processing directive so that the SPar compiler may easily support it.

4. Data Compression Applications
The applications used in our studies are Lzip [Diaz 2017] and Bzip2 [Seward 2017]. Al-
though both are compressors, these applications differ from each other on the encod-
ing/decoding algorithm and details about its parallel implementation. We will extend the
discussion on both of these compressors in the following sections.

4.1. Lzip
Lzip is a C/C++ lossless data compressor based on the Lempel–Ziv–Markov chain algo-
rithm (LZMA) used by the zip family compressors. There is a standard POSIX-Threads
implementation called Plzip that we used to compare to our SPar parallelization con-
cerning efficiency and programmability. The compression mode splits the input file into
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blocks with a fixed number of bytes. Then, it will apply the LZMA algorithm to encode
the blocks, subsequently reassembly them in the resulting compacted file. Similarly, the
decompression mode will perform the same tasks, except that instead of encoding, the
blocks will be decoded. Plzip adopts a different approach when generating the data-flow
for the compression mode. Firstly, Lzip outputs a compressed file of a single large block.
As multiple smaller blocks are required for parallel processing, Plzip must adapt the com-
pression so that it operates in multiple blocks instead of one. This entails on 0.4% to
2% larger files and files compressed with Lzip can not benefit from the parallelism of the
Plzip decompression.

Figure 1 illustrates the parallel activity graphs of Plzip, which can be viewed as
a Pipeline and Farm parallel patterns. Figure 1(a) is arranged in the stream parallelism
fashion and the computation is abstracted into three entities represented by read, comp
and write. In the decompression mode (Figure 1(b)), the decomp entity performs
read, decoding, and write entities. The generate entity, only distributes a unique
data scope to perform the decomp to each thread. The communication between all these
entities is performed through queues with the same direction as the arrows are indicating.

(a) Compression. (b) Decompression.

Figure 1. Parallel activity graph of Plzip.

Listing 1 presents the SPar annotations in the sequential version of Lzip compres-
sion mode, which will generate the activity graph presented in Figure 1(a). As we can see
in line 1, the first annotation uses a ToStream attribute to mark the stream region and an
Input attribute to indicate the data consumed by it. In our example, the other_data
variable is used as a generic representation of the necessary parameters of the region. In
line 4, the second annotation was used to specify the compression computation. In addi-
tion to other_data, this Stage will consume the data variable read in the previous
Stage. At the same time, it will produce the compressed data for the subsequent stage
(see Input and Output). None of the blocks have shared variables, therefore, they
can be safely processed in parallel (see the use of Replicate on line 4). Although it
is possible to fragment the compression stage into two other stages, this diminished the
performance in out tests. Because most of the processing would be executed by one stage,
leaving less work for the other stage. Finally, the last annotation in line 7 will consume
the compressed data from the previous stage and write it to the output file. In parallel pro-
cessing, the order of the queue insertion in the last stage is non-deterministic by default.
As we want the output file to be equivalent to the input one, the stream must maintain its
original order. In SPar, this is achieved by appending the -spar_ordered flag to the
compilation command.

Unlike compression, the decompression function of Plzip adopts a data parallelism
approach that generates the activity graph presented in Figure 1(b). This is why most of
the operations computed in the decompress function involve the file_index class. An
instantiation of this class will read the input file and split it into several blocks. Knowing
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the number of available blocks previously, enables a static partitioning of the the blocks
to be processed by the parallel threads. Moreover, a finer grain is used to balance the
irregular block sizes between threads in the decompression mode. Also, file_index
contains the offset needed to reorder the blocks in the writing stage. After creating the
file_index object, the POSIX-Threads implementation will spawn the parallel threads
that will decompress and write the data assigned to them.

1 [ [ spar : : ToStream , spar : : Input ( o t h e r _ d a t a ) ] ]
2 whi le ( t rue ) {
3 / / Reading s t a g e
4 [ [ spar : : Stage , spar : : Input ( da t a , o t h e r _ d a t a ) ,

spar : : Output ( d a t a ) , spar : : R e p l i c a t e (
num_workers ) ] ] {

5 / / Compress ion s t a g e
6 }
7 [ [ spar : : Stage , spar : : Input ( d a t a ) ] ] {
8 / / W r i t i n g s t a g e
9 }

10 }

Listing 1. SPar annotations for the
compression mode.

1 [ [ spar : : ToStream , spar : : Input ( num_workers ,
o t h e r _ d a t a ) ] ]

2 f o r ( i n t w o r k e r _ i d = 0 ; w o r k e r _ i d <
num_workers ; ++ w o r k e r _ i d ) {

3 [ [ spar : : Stage , spar : : Input ( worker_ id ,
num_workers , o t h e r _ d a t a ) , spar : : R e p l i c a t e (
num_workers ) ] ]

4 f o r ( long i = w o r k e r _ i d ; i < num_blocks ; i
= i +num_workers ) {

5 / / F u l l Decompress ion o f i i n d e x e d b l o c k .
6 }
7 }

Listing 2. SPar annotations for the
decompression mode.

In Listing 2, there is a representation of the SPar annotations for the Lzip de-
compression mode. Although the decompression mode uses a data parallelism approach
instead of stream, it is possible to introduce data parallelism with SPar. The ToStream
is used to indicate the stream region, which in this case, simply forwards the data to the
next stage that is replicated (it has the Replicate attribute). Then, the second annota-
tion in line 3 is used to specify the stage that will perform the decompression computa-
tion over the assigned data. This stage will consume the worker_id, num_workers
(both used to determine the data computed by the stage) and other_data. Following
the execution flow, the available input blocks will be iterated in line 5, and each stage
will process the i indexed data that is statically assigned to it. This mode does not re-
quire -spar_ordered because the stream order is obtained with the support of the
file_index class as previously explained.

4.2. Bzip2

First introduced in 1996, Bzip2 [Seward 2017] is another lossless data compression ap-
plication. It uses the Burrows–Wheeler transform and Huffman coding algorithms. We
adopted the Pbzip2 [Gilchrist 2004] (that is developed with POSIX-Threads) in our stud-
ies to compare with our parallel implementations. Both compression and decompression
modes in Pbzip2 have the same activity graph as illustrated in Figure 1(a). Therefore,
this can be viewed as a pipeline with three stages, where the first stage will split the input
file into independent blocks (100,000 - 900,000 bytes) that are forwarded to the parallel
(de)compression stage. The remaining stage will be sequentially writing the resulting
blocks to the output file.

The original Pbzip2 implementation maintains global queues protected by lock
mechanisms to communicate between stages. Initially, a single thread will start to split
the input file and fill the first queue with the generated blocks. Meanwhile, the spawned
parallel (de)compress threads will query the queue for an available block. Then, the
resulting block of the parallel threads will be inserted in the last queue. Meanwhile, the
final thread will be constantly checking the queue for the next block to be written in the
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resulting file. Furthermore, this last thread will reorder the blocks with the help of an
auxiliary vector used to store the blocks arriving out of order.

SPar’s compression and decompression mode were annotated similarly to List-
ing 1, which performs like the parallel activity graph in Figure 1(a). Consequently, the
SPar’s version will have the first stage sequential for splitting the input file into blocks.
The second stage was annotated with Replicate, performing like a poll of threads
that receive from the previous stage the data blocks to apply the (de)compression and
deliver the resulting block to the to next and last stage. It will write the (de)compressed
blocks to the output file. The order of the stream in SPar is guaranteed by adding the
-spar_ordered flag in the compilation.

5. Experiments
Our experiments aim to evaluate the programmability and performance of SPar com-
pared to FastFlow, TBB and POSIX-threads in the parallel implementations of Lzip and
Bzip2. To measure the programmability we used two different metrics: (i) Cyclomatic
Complexity Number (CCN) [Laird and Brennan 2006], which represents the number of
linearly independent paths within a source code; and (ii) Source Lines Of Code (SLOC).
In our performance evaluations, we used a 704.2 MB ISO file as the workload. The num-
ber of workers represented in the graphs does not actually represent the real number of
threads spawned by the system. However, it represents the degree of parallelism. For
instance, a streaming application developed with a pipeline structure will have a pool of
replicated stages. This degree of parallelism plotted in all performance graphs represents
this pool, which we also refer to as the number of workers. To obtain the results, we ran
each version from 1 up to the max number of threads in the target machine. We executed
each degree of parallelism 10 times and obtained the average execution time. Standard
deviations were plotted in the graphs by using error-bars.The machine in which the tests
were executed was equipped with 24GB of RAM memory and two processors Intel(R)
Xeon(R) CPU E5-2620 v3 2.40GHz, with 6 cores each and support to hyper-threading,
totalling 24 threads. Its operating system was Ubuntu Server 64 bits with kernel 4.4.0-59-
generic. Moreover, we used PBzip2 (1.1.13), Plzip (1.6), GCC 5.4.0 with -O3 compiler
flag, TBB (4.4 20151115), and FastFlow (r13).

5.1. Programmability

Since we have not presented the FastFlow and TBB versions of Bzip2 and Lzip, we will
briefly describe them here:

• Lzip-TBB: In this implementation, we used pipeline pattern, where the stages of
the pipeline are abstracted into virtual functions of a TBB filter subclass. Each
one of these filters is constructed with a parameter provided by the programmer.
In the compression mode, this parameter was set up with serial_in_order
in the first and last stages to maintain the original order of the stream. The middle
stage was set up with parallel to extend the degree of parallelism. Also, we
must give a number of maximum tokens that runs on-the-fly through the pipeline.
We also tested a number of tokens equal to the degree of parallelism, but we opted
to exclude it from our final version since it degrades the performance due to the
writing stage bottleneck. The decompression mode implements a pipeline with
two stages, where the second stage will perform the computation. The activity
graph generated by both versions is the same as the one presented in Figure 1.
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• Lzip-FastFlow: Although other algorithmic skeletons could be employed, we used
FastFlow’s Farm template. For this template, we must map the stages into Fast-
Flow’s ff_node sub-classes that represents emitter, workers and collector elements.
This generates an activity graph similar to the one presented in Figure 1(a). Al-
though FastFlow abstracts the communication between stages and thread creation,
we still had to re-factoring the code and setting up the Farm template. One ad-
vantage of FastFlow is that it supports an optimized Farm template that preserves
the order of the stream. Unlike the compression mode, the decompression Farm
was developed only with the workers node and executed with an offload FastFlow
function. The generated activity graph is the same as presented in Figure 1(b).

• Bzip2-TBB and Bzip2-FastFlow: Both TBB’s and FastFlow’s implementation of
the compression and decompression modes produce an activity graph such as the
one depicted in Figure 1(a). In FastFlow parallelization, we used a Farm template
while for TBB, we used its Pipeline template with a number of tokens equal to ten
times the number of workers.

We can see the code intrusion (SLOC) and complexity (CCN) of each version of
Lzip and Bzip2 in Figures 2(a) and 2(b), respectively. The y axis is the percentage increase
of the metric regarding the sequential code while the x axis represents the application
(Bzip2 or Lzip) followed by the suffix C for compression and D for decompression.
Note that all POSIX-Threads versions and both the compress and decompress of Bzip2
implemented with FastFlow were already available in [Aldinucci et al. 2011].
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Figure 2. SLOC and CCN metrics increase with respect to the sequential version.

When collecting the programmability metrics, we only considered the files that
effectively implement parallelism. Figure 2 shows that Bzip2 decompression mode has
considerably increased the amount of source code needed for all versions. We credit this
to the addition of a more complex decompression function used for the parallel versions.
This change allows Bzip2’s decompression mode to be parallelized since it separates the
reading and decompression stage, which were executed by a single external library called
in the original sequential code. The compression mode however, could be developed over
the original sequential compression function, therefore, the SLOC and CCN increase is
less significant. Still observing Bzip2 in Figure 2, we notice that POSIX-Threads has the
highest programmability metrics when compared to the sequential code. That is because
POSIX-Threads has to manually handle stream reordering, communication protocols, and
threads creation. In Bzip2, FastFlow had the second worst result because it reused most
of the POSIX-Threads structures, which could be further abstracted by FastFlow.

WSCAD 2017 - XVIII Simpósio em Sistemas Computacionais de Alto Desempenho

22



We can observe a similar configuration of SLOC and CCN increase in Figures 2(a)
and 2(b) in Lzip parallel versions. Despite FastFlow presenting a higher amount of code
needed for decompression compared to SPar, it also presents a lower CCN. That is be-
cause FastFlow implements more numerous, smaller, and simpler functions while SPar
implements on a single big function, which impacts the CCN negatively. At the same
time, FastFlow has a SLOC increase more similar to TBB, since now it takes full ad-
vantage of FastFlow’s abstractions. One example of this is the abstraction of the pro-
ducer pipeline stage with a software accelerator that offloads data from the main thread
in the decompression function. Also, we highlight that other high-level solutions could
be employed by TBB as well (use of parallal_for template) for the decompression
function, although the need of a different syntax can make this more difficult. Finally,
all decompression mode versions achieved a smaller CCN and SLOC increase due to the
simpler parallelism strategy employed.

In addition, the fragmentation of the code into read, comp, and write stages is
only obtained using parallel programming. This means that the application programmer
does not have those details in mind when developing an application. Because of that,
when programming FastFlow and TBB over the sequential code, even though low-level
details like communication protocols and scheduling options are abstracted, we end up
returning to the original POSIX-Threads structure of three separate stages, and need to
re-factor the sequential code. SPar on the other hand, does not require the code to be
re-shaped/re-written/re-factored in these studied applications, maintaining the sequential
code structure.

5.2. Performance

We present the performance results in Figures 3 and 4 obtained for the Lzip application
and in Figures 5 and 6 for the Bzip2 application. Our parallelizations were compared with
the related works for the Lzip and Bzip2 POSIX-Threads version, and Bzip2 with Fast-
Flow. We evaluated execution time, and memory usage for all parallel versions with SPar
(spar) combining the spar_ondemand (on) and spar_blocking (blk) compiler
flags. Also, we plotted the POSIX-Threads (Plzip and PBzip2), FastFlow (ff), and
TBB (tbb) versions. As we can observe, the standard deviation was negligible in almost
all the cases because it is not visible through error-bars. In Figure 3, we present the results
obtained for all versions of SPar with the possible combinations of the optimization flags.
We highlight that these optimizations modify memory consumption while having almost
no impact in the total execution time of the Lzip application.

In Figures 3(b) and 3(d), however, the memory usage variation is caused by the
spar_ondemand flag. Here, an on-demand scheduling is generated by setting the
stages queue size to one, meaning that the workload will be distributed dynamically. Each
thread will only receive a new item in its queue once it has already removed the previous
one. This way, we reduce the concurrent number of total active items, and the memory
demand. Figure 4 depicts the comparison of the best SPar version with respect to the
best FastFlow, TBB, and POSIX-Threads implementations. We observe that all versions
presented a similar completion time. Concerning memory usage in Figure 4(b), the Fast-
Flow compression mode presented a slightly higher demand up to the fifteenth number of
workers. That is because FastFlow does not use the on-demand scheduling, which means
that more concurrent items will exist in the queues. This could be improved by enabling
the on-demand scheduling within code. The memory usage of the decompression mode
presented in Figure 4(d) shows that all versions achieved almost identical results, which is

WSCAD 2017 - XVIII Simpósio em Sistemas Computacionais de Alto Desempenho

23



 9

 27

 81

 243

 0  5  10  15  20

S
e
co

n
d
s

Degree of Parallelism

Compress−Lzip (Time)

spar
spar−on

spar−blk
spar−on−blk

(a) Completion time.

59*103

177*103

531*103

2*106

5*106

 0  5  10  15  20

K
B

Degree of Parallelism

Compress−Lzip (Memory)

spar
spar−on

spar−blk
spar−on−blk

(b) Memory usage.

 3

 9

 27

 81

 0  5  10  15  20

S
e
co

n
d
s

Degree of Parallelism

Decompress−Lzip (Time)

spar
spar−on

spar−blk
spar−on−blk

(c) Completion time.

7*103

20*103

59*103

177*103

531*103

 0  5  10  15  20

K
B

Degree of Parallelism

Decompress−Lzip (Memory)

spar
spar−on

spar−blk
spar−on−blk

(d) Memory usage.

Figure 3. Lzip performance with SPar options.

expected since they all use the same class to manage file splitting and block distribution.

Regarding the Bzip2 application, we can visualize the results of the SPar versions
in Figure 5. The completion time achieved a similar result between all SPar versions.
However, for the memory consumption we observed similar behavior in Lzip with the
SPar versions not using the spar_ondemand (on). The same justification of Lzip ap-
plies here, the versions with on generate less concurrent items in the queues. Even so, in
Bzip2 the memory consumption is constant and the disparity between the on and non on
versions is higher. That is because Bzip2 creates larger blocks than Lzip and the whole
input file will be in the queues whereas on the on versions only part of it will be in the
communication queues.

We can compare Bzip2 results in Figure 6. All parallel versions presented very
similar performance between them. Our experiments also revealed a pattern of behavior
between Lzip and Bzip2 relative to the performance for the parallel versions. In the end,
SPar generated efficient FastFlow parallel code, sometimes slightly better than the hand
tuned versions such as for the memory usage metric.

Table 1 presents the best speed-ups (S) and its respective degree of parallelism
need to achieve (Size) for the parallel implementations of Lzip and Bzip2. As expected,
SPar presented a slightly lower performance (6% in the worst case) compared to the orig-
inal Pthreads implementation. Though SPar generates FastFlow code, there small differ-
ences between these two versions for both applications. That is because the FastFlow
and SPar versions are not necessarily the same. FastFlow was hand-coded whereas SPar
generates the code automatically. This indicates that the code generation overhead is
negligible and SPar is able to efficiently abstract stream parallelism for Lzip and Bzip2.
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Figure 4. Lzip performance comparison.
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Figure 5. Bzip2 performance with SPar options.
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Figure 6. Bzip2 performance comparison.

6. Conclusions
In this paper, we assessed the high-level and efficient stream parallelism of SPar for two
real-world data compression applications. Our experiments demonstrated these character-
istics through performance and programmability analysis of different parallelizations for
the Bzip2 and Lzip with SPar compared to POSIX-Threads, FastFlow, and TBB. There-
fore, we concluded that SPar is a suitable alternative for expressing parallelism in these
applications. It provides good results on completion time, and memory usage. Also, it
requires less code intrusion and the qualitative discussion revealed SPar with a simpler
syntax. In the future, we plan to implement parallelism with SPar in other real-world
applications, including other fields such as deep-learning, network monitoring, stream
processing in the fog computing, and network package inspection.
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