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Abstract—The periodic nature of the global clock in traditional
synchronous designs forces circuits to be margined for the worst
possible case of process, voltage, temperature, and data condi-
tions. This constrains the silicon to operate at worst-case frequen-
cies and at conservative supply voltages. Resilient architectures
promise to remove these margins, by detecting and correcting
timing errors when they occur, thereby creating the potential
to achieve real average-case operation. However, synchronous
resilient schemes previously proposed can suffer from multiple
issues, including being susceptible to metastability and requiring
often complex changes to the architecture to support replay-based
recovery from timing errors. These problems respectively lead to
circuit failures and/or incur high timing penalties when errors
occur. This paper reviews a recently proposed asynchronous
bundled-data resilient template called Blade that is robust to
metastability issues, requires no replay-based logic, and has
low timing error penalties. It also describes some open issues
and new research opportunities this template presents, including
automation problems to target average-case operation, specific
circuit optimizations to minimize resiliency overhead, and the
need for new test procedures to tune delay lines and screen out
bad chips.

Index Terms—Asynchronous circuits, resiliency, bundled-data.

I. INTRODUCTION

Traditional synchronous designs must incorporate timing
margins to ensure correct operation under worst-case delays
caused by process, voltage, and temperature (PVT) variations
as well as data-dependency [1]. This is particularly important
in low-power low-voltage designs, as performance uncertainty
due to PVT variations grows from around 50% at nominal
supply to around 2,000% in the near-threshold domain [2].
To address this problem, many synchronous design techniques
for resilient circuits have been proposed that address delay
variations. For example, canary FFs predict when the design is
close to a timing failure (see e.g., [3]). Designs can then adjust
their supply voltage or clock frequency either statically or
dynamically to ensure correct operation at the edge of failure.
Other resilient design techniques use extra logic to detect
and recover from timing violations [4]–[6]. However, many of
the proposed techniques are susceptible to metastability issues
[7], exacerbate hold time problems [4], and/or require adding
replay-based logic, often at an architectural level, to recover
from these violations. This can be a challenge to implement
in modern processors and often leads to high timing error
penalties, which limit their benefits.

This work focuses on a recently proposed asynchronous de-
sign template that couples the architectural benefits of resilient

techniques with the flexibility of asynchronous bundled-data
pipelines. The template, called Blade, minimizes hold time
issues, requires no replay-based logic, and is supported by an
automatic translation flow from synchronous RTL specifica-
tions. It is not only safe from metastability issues but also
takes advantage of the low average metastability resolution
times, which leads to low timing error penalties compared to
synchronous alternatives. It thus provides significantly higher
potential performance and voltage scaling power benefits.

The paper reviews Blade principles and operation, compar-
ing and contrasting the approach to synchronous alternatives.
Its recent application to the design of a MIPS OpenCore pro-
cessor illustrates techniques to reduce overheads and maximize
performance and power benefits. The paper also discusses
the range of designs for which this technique is likely to
provide the biggest overall benefit, as well as some of the open
problems that must be solved to maximize the opportunity to
use Blade and make the technique commercially attractive.

II. SYNCHRONOUS RESILIENCY AND ITS PITFALLS

It is possible to identify in the literature two ways of
achieving resiliency in synchronous systems: architecturally
dependent, or "replay-based" approaches, and architecturally
independent. The former include works like Razor II [5] and
the Intel approach described in [1]. The problem with these
approaches is that they work much like pulsed latch circuits:
the wider the pulse, the more resiliency is obtained, at the
cost of worsening hold time characteristics [6]. Moreover they
require synchronizers in the control path, incurring long delays
to know an error occurred, and demand complex replay and
recovery mechanisms [1], [5]. Granted, the area overhead of
these can be amortized by reusing existing recovery logic (e.g.,
for resuming after a mispredicted branch), but the techniques
remain architecturally invasive and thus a design challenge. In
contrast, architecturally independent approaches like Bubble
Razor [6] require no architectural changes and can be au-
tomatically generated from standard RTL specifications. The
flow involves replacing FFs with re-timed latches that have
non-overlapping clocks, solving hold time problems. Bubble
Razor avoids replay and recovery by immediately stalling
neighboring stages via clock gating, and solves timing errors
on the fly and locally. However, the template assumes that
metastability can be resolved within one clock period, which is
often unrealistic and leads to poor MTBF figures [7]. Another
issue is that the conversion of flip-flops to error-detecting
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Fig. 1. The Blade architecture typical stage structure.

latches can bring a significant increase in area and power,
reducing the overall benefit.

III. THE BLADE BUNDLED-DATA ARCHITECTURE

As Figure 1 shows, pipeline stages in Blade use single-rail
logic followed by Transition Detector with Time Borrowing
(TDTB) error detecting latches (EDLs) [1], [8], Q-Flops [9],
and two reconfigurable delay lines. The stage-to-stage delay
line is of duration δ and controls when the TDTB goes
transparent and begins to propagate data at the output of the
combinational logic to the next stage. According to the timing
diagram depicted in Figure 2, the asynchronous controller
speculatively assumes data at the output of the TDTB latch
is stable and triggers the request to the next stage via the
standard bundled data request channel consisting of R.req and
R.ack. The second delay line is of duration Δ and defines
a time window during which late transitions that violate this
assumption (i.e. timing errors) are allowed, which is called the
timing resiliency window (TRW). While Δ is elapsing, CLK
is high (i. e. the Data Latch is transparent).

Error detecting latches are responsible for triggering an error
if a timing violation occurs during the TRW. While there are
several EDL implementations (e.g., [1], [4], [6], [8]), Blade
employs a custom design [8] based on TDTB latches [1]. The
basic design requirement is this component triggers an error
on its E output in response to any transition or glitch during
the TRW that is significant enough to also propagate to its
data output [8]. In this way, no timing violation is missed.

In addition to the push data channel L, Blade uses a second
pull error channel formed by signals RE.req and RE.ack
to manage potential timing violations. Near the end of the
TRW, after receiving a request on the RE.req signal, the
controller will trigger a signal that directs the Q-Flop to
sample the E signal, determining whether or not a timing
error occurred during the TRW. If an error did not occur
RE.ack is immediately asserted, else Δ is triggered and only
after that RE.ack is asserted. Because the setup time of the
TDTB Error Latch may be violated, the E signal may be
metastable during sampling. To cope with this, the Q-Flop
has a built-in metastability filter that guarantees metastability
does not propagate to its Err output. In fact, this output is
intentionally made a dual-rail signal that only becomes valid
after the Q-Flop has safely determined if an error occurred
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Fig. 2. Typical timing diagram for the Blade template.

or not. The controller simply waits for this to happen before
acknowledging the error channel request via the RE.ack
signal. This ensures that metastability, while possibly causing
an instantaneous cycle slowdown, does not propagate to the
main control path. This is in stark contrast to synchronous
schemes, which must wait for a fixed, larger metastability
resolution time set to guarantee a sufficiently large mean time
between failures (MTBF).

There are two main delay lines that affect the performance
of Blade, δ and Δ. Compared to a traditional synchronous
circuit, with clock period C, we set C = δ + Δ. The TRW
(defined by Δ) must be large enough to capture even the
worst-case datapath delay. However, a trade off in setting these
values emerges, as increasing Δ allows δ to be smaller and
the system to operate faster if no timing violations (errors)
occur; on the other hand, the shorter stage-to-stage delay
means that more transitions will occur while the latch is
transparent, thereby increasing the frequency of errors that
force subsequent pipeline stages to be delayed by the now
larger Δ value. The optimal Δ depends greatly upon the
amount of total variation (due to data and PVT variations)
that can be expected in the design, and can range from 20%
to over 60% [10] of the stage total delay.

When Δ is sufficiently smaller than δ, the next stage has
time to check whether the previous stage has an error before
it makes its own latch transparent, delaying the transparency
phase if the previous stage had an error. Stage clocks will
thus remain non-overlapping, as illustrated in Figure 2, making
it easy to satisfy hold times. This is again in contrast to
most synchronous resiliency schemes that make meeting hold
time margins harder. Supporting larger values of Δ (w.r.t.
δ) is also possible and is beneficial when data/process yield
high variability. However, the result is that the transparency
phases of neighboring stages clocks will overlap, and this may
cause hold time issues similar to those seen in synchronous
approaches (see [6] for an encompassing analysis). Managing
these hold time issues in synchronous resiliency approaches
is particularly challenging, as they cannot be fixed by slowing
down the clock. Accordingly, hold times need to margined
to a higher degree than setup times. These hold margins are
typically satisfied by adding hold buffers to the datapath,



but the higher margins may make the number of added
buffers impractically large for designs with high variability. In
contrast, an asynchronous solution like Blade can easily add
programmable delays to the backward control path, actively
managing the degree of transparency overlap, which makes
such extra margins unnecessary. In both cases the flexibility
of the asynchronous solution makes managing hold time issues
far more practical.

Lastly, note that Blade also uses programmable delay lines,
because under significant PVT variations it may be difficult
to achieve the optimal TRW, which captures the delay of all
worst-case paths via static design analysis and optimization.
Programmable delay lines allow customizing the actual delay
post-silicon. In particular, the authors expect that during chip
characterization delay lines are analyzed and optimally con-
figured for every chip produced, subject to some quantization
error. In particular, quantization errors in δ may lead to a non-
optimal expected error rate, but the overall performance will
remain close to optimal [10]. Any additional margin needed
to account for worst-case paths under PVT variations can be
added only to the Δ delay line. Given the average frequency of
timing violations can be in the range of 20%-40%, the impact
of the added margin is only experienced 20-40% of the time,
greatly reducing the percentage drop in performance. This is
in contrast to non-resilient bundled-data designs (e.g., [11]) in
which the added margin affects performance 100% of the time.
As an example, a 10% increase in variation due to PVT can
result in up to 30% margin penalty in synchronous designs;
however, even considering a 40% rate of timing violations, the
computed performance impact on Blade is less than 13% [12].

IV. CAD FLOW, CHALLENGES, AND OPPORTUNITIES

The authors’ teams developed a preliminary flow to au-
tomatically convert single CLK domain, synchronous RTL
designs to the Blade template using industry standard synthesis
and P&R tools. The flow consists of various Tcl and shell
scripts that drive the tools and a library of custom cells (e.g.,
the TDTB error latch), needed to make the template efficient.

In addition, to further reduce area and power overheads
of the error detection logic, two microarchitectural optimiza-
tions are used. First, not every pipeline stage need be error-
detecting, and non error-detecting stages can time borrow.
Time-borrowing stages permit data to pass through the latch
during the entire time it is transparent without flagging vi-
olations. The authors found that alternating between error-
detecting and time-borrowing stages can work well as this
effectively halves the overhead of error detection logic while
still providing sufficient resiliency. Secondly, only latches that
terminate near-critical paths [12] need to be error detecting,
further reducing the number of EDLs in the entire design.

As Figure 3 illustrates, the flow has five main steps:

1) Synchronous Synthesis: The synchronous RTL is syn-
thesized to a flip-flop (FF-based) design for given clock.

2) FF to Latch Conversion: FFs are converted to master-
slave latches by synthesizing the design using a fake
library of standardized D flip-flops (DFFs) that can be
easily mapped to standard cell latches.
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Fig. 3. The Blade design flow.

3) Latch Retiming: The latch-based netlist is retimed using
a target TRW, where the combined path delay constraint
of any two stages equals the given clock period. The
purpose is to split the critical path in two parts, which
enables hiding inter-stage Blade handshaking overheads.

4) Resynthesis: The retimed netlist is then resynthesized to
reduce the number of TDTBs and increase performance
of the final resilient netlist. In particular, re-synthesizing
the logic happens such that the delay to a subset of latches
is sufficiently fast to guarantee that data is stable before
the latches go transparent (i.e., is not near-critical). This
means that the latches do not need to be error-detecting,
reducing the EDL overhead, and potentially reduces the
error rate at the expense of increasing the datapath logic
area. Targeting latches that cause the most errors in
typical applications can lead to significant reductions in
error rates with marginal increase in area. In [12] the
authors employ a simple brute-force search, but more
powerful means of identifying which subset of latches
to speed up is an interesting area of future work.

5) Blade Conversion: The resynthesized latch-based netlist
is then converted to the Blade template, by removing
clock trees and replacing these with Blade controllers.
The control logic, delay lines, and error detection logic
are also inserted to create a final Blade netlist. There are
many ways to implement the control logic [13]; using
burst-mode specifications has been explored in [12]. In
addition, there are many ways to design delay lines, as
the authors and others explore in [14]. However, ensuring
these have their proposed delay during P&R, when gate
sizing, wire delay, and cross-couping capacitance play a
role is non-trivial. Some works suggest ways to enable
commercial P&R tools to automate this step [15]. More
generally, however, creating a comprehensive P&R flow
that optimizes the average-case delay of Blade designs is
another interesting area for future work.



The authors’ preliminary pre-P&R flow was tested and eval-
uated on a 3-stage version of Plasma [16], a MIPS OpenCore
CPU, targeting a 28nm FD-SOI technology. The gate-level
Blade design was compared to the equivalent synchronous
design, and post-synthesis results demonstrate that for an area
overhead of 8.4%, the Blade version of Plasma achieves a 19%
average performance boost with a timing resiliency window of
30%. Out of the 8.4% area overhead, 32% is due to the use
of EDLs and to the FF to latch conversion. With the removal
of synchronous PVT margins, it led to an estimated 30%-40%
improvement in performance [12]. Another aspect that requires
additional research is configuration and test. In particular, it
is necessary to develop test methods for optimally tuning the
programmable delay lines based perhaps on in situ error rate
monitoring, as well as find means to identify and discard chips
with delay variations too large to correct.

V. DISCUSSION AND CONCLUSIONS

Asynchronous design has become an increasingly attractive
alternative to synchronous design in several applications for
a variety of reasons. For example, Intel showed that high-
performance quasi-delay-insensitive (QDI) design is suffi-
ciently robust and effective for high performance networking
chips [17]. Moreover, the challenges of managing a global
clock in large neuromorphic chips, have driven IBM [18] and
Stanford [19] to adopt an asynchronous mostly QDI intercon-
nect. Other academic researchers have found that built-in flow-
control in bundled-data network-on-chips lead to significant
benefits in terms of latency and area compared to synchronous
counterparts [15]. However, efforts to commercialize bundled-
data pipelines for processors demonstrated only marginal
performance benefits [11]. We hope that adding resiliency
opens the door for much larger performance advantages for
a broader range of applications.

Generally speaking, the range of architectures and applica-
tions for which resiliency adds value depends on two factors:
the overhead one can expect from the error-detecting latches
and the variance of the data and PVT dependent delays [20].
The benefits of a resilient design are higher when the fraction
of combinational to sequential area is large, because the rela-
tive overheads of the TDTBs is smaller. Thus, resilient design
favors less pipelined designs. Moreover, an architecture where
the difference between average and worst-case delay is large
will likely benefit more than a well balanced architecture and
even more likely if the worst-case paths are rarely executed
[20]. For example, architectures that involve complex logic
with rarely executed long carry chains will benefit more than
balanced designs consisting of many regular structures (e.g.,
memories). Fortunately, there are many architectural decisions
that can be made to favor timing resilient templates [20].

Lastly, it is important to emphasize that the advantages of
asynchronous resilient designs are difficult to approximate in
synchronous architectures. In particular, asynchronous resilient
designs adapt to the quite low average-case time it takes for
metastability to resolve, which in principle can be unbounded.
In contrast, the periodic nature of the clock forces synchronous
alternatives to be designed for a much larger fixed resolution

time, set by an acceptable MTBF. This difference enables our
solution to be architecturally-independent, whereas existing
robust synchronous solutions are forced to be based on recover
and replay logic to obtain reasonable MTBF.

Thus, we believe asynchronous resiliency is a promising
research direction to obtain efficient designs which adapt to the
combination of PVT and data variations - in short providing
a path to achieving average-case silicon.

REFERENCES

[1] K. Bowman, J. Tschanz, N. Kim, J. Lee, C. Wilkerson, S. Lu, T. Karnik,
and V. De, “Energy-Efficient and Metastability-Immune Resilient Cir-
cuits for Dynamic Variation Tolerance,” IEEE JSSC, vol. 44, no. 1, pp.
49–63, Jan. 2009.

[2] R. Dreslinski, M. Wieckowski, D. Blaauw, D. Sylvester, and T. Mudge,
“Near-Threshold Computing: Reclaiming Moore’s Law Through Energy
Efficient Integrated Circuits,” Proceedings of the IEEE, vol. 98, no. 2,
pp. 253–266, Feb. 2010.

[3] J. Tschanz, K. Bowman, S. Walstra, M. Agostinelli, T. Karnik, and
V. De, “Tunable Replica Circuits and Adaptive Voltage-Frequency
Techniques for Dynamic Voltage, Temperature, and Aging Variation
Tolerance,” in VLSI, 2009, pp. 112–113.

[4] M. Choudhury, V. Chandra, K. Mohanram, and R. Aitken, “Timber:
Time borrowing and error relaying for online timing error resilience,”
in DATE, March 2010, pp. 1554–1559.

[5] S. Das, C. Tokunaga, S. Pant, M. Wei-Hsiang, S. Kalaiselvan, K. Lai,
D. Bull, and D. Blaauw, “Razor II: In Situ Error Detection and
Correction for PVT and SER Tolerance,” IEEE JSCC, vol. 44, no. 1,
pp. 32–48, Jan 2009.

[6] M. Fojtik, D. Fick, Y. Kim, N. Pinckney, D. Harris, D. Blaauw,
and D. Sylvester, “Bubble Razor: Eliminating Timing Margins in an
ARM Cortex-M3 Processor in 45 nm CMOS Using Architecturally
Independent Error Detection and Correction,” IEEE JSCC, vol. 48, no. 1,
pp. 66–81, Jan 2013.

[7] S. Beer, M. Cannizzaro, J. Cortadella, R. Ginosar, and L. Lavagno,
“Metastability in better-than-worst-case designs,” in ASYNC, 2014, pp.
101–102.

[8] M. T. Moreira, D. Hand, N. L. V. Calazans, and P. A. Beerel, “TDTB
Error Detecting Latches: Timing Violation Sensitivity Analysis and
Optimization,” in ISQED, 2015, pp. 379–383.

[9] F. Rosenberger, C. Molnar, T. Chaney, and T.-P. Fang, “Q-modules:
internally clocked delay-insensitive modules,” IEEE Transactions on
Computers, vol. 37, no. 9, pp. 1005–1018, Sep. 1988.

[10] D. Hand, H. Huang, B. Cheng, Y. Zhang, M. Moreira, M. Breuer,
N. Calazans, and P. Beerel, “Performance Optimization and Analysis
of Blade Designs under Delay Variability,” in ASYNC, May 2015.

[11] J. Cortadella, A. Kondratyev, L. Lavagno, and C. Sotiriou, “Desyn-
chronization: Synthesis of asynchronous circuits from synchronous
specifications,” IEEE TCAD, vol. 25, no. 10, pp. 1904–1921, Oct. 2006.

[12] D. Hand, M. Moreira, H. Huang, D. Chen, F. Butzke, Z. Li, M. Gibiluka,
B. M., N. Calazans, and P. Beerel, “Blade - A Timing Violation Resilient
Asynchronous Template,” in ASYNC, May 2015.

[13] P. Beerel, R. Ozdag, and M. Ferreti, A Designer’s Guide to Asynchronous
VLSI. Cambridge University Press, 2010.

[14] G. Heck, L. Heck, A. Singhvi, M. Moreira, P. Beerel, and N. Calazans,
“Analysis and Optimization of Programmable Delay Elements for 2-
Phase Bundled-Data Circuits,” in VLSI Design, 2015, pp. 321–326.

[15] A. Ghiribaldi, D. Bertozzi, and S. Nowick, “A transition-signaling
bundled data NoC switch architecture for cost-effective GALS multicore
systems,” in DATE, Mar. 2013, pp. 332–337.

[16] Plasma CPU, 2014. Available: http://opencores.org/project,plasma.
[17] M. Davies, A. Lines, J. Dama, A. Gravel, R. Southworth, G. Dimou, and

P. Beerel, “A 72-Port 10G Ethernet Switch/Router using Quasi-Delay-
Insensitive Asynchronous Design,” in ASYNC, May 2014, pp. 103–104.

[18] P. Merolla et al., “A million spiking-neuron integrated circuit with a
scalable communication network and interface,” Science, vol. 345, no.
6197, pp. 668–673, 2014.

[19] P. Merolla, J. Arthur, R. Alvarez, J.-M. Bussat, and K. Boahen, “A
Multicast Tree Router for Multichip Neuromorphic Systems,” IEEE
TCAS-I, vol. 61, no. 3, pp. 820–833, Mar. 2014.

[20] J. Sartori and R. Kumar, “Exploiting Timing Error Resilience in Pro-
cessor Architecture,” ACM ToECS, vol. 12, no. 2, pp. 89:1–89:25, May
2013.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize false
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /ComicSansMS
    /ComicSansMS-Bold
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /Impact
    /Kartika
    /Latha
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaConsole
    /LucidaSans
    /LucidaSans-Demi
    /LucidaSans-DemiItalic
    /LucidaSans-Italic
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MonotypeCorsiva
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /MVBoli
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Vrinda
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 200
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 200
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 400
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Required"  settings for PDF Specification 4.01)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


