
Tradeoffs Between RTO and RTZ in WCHB QDI Asynchronous Design

Matheus T. Moreira¹, Julian J. H. Pontes², Ney L. V. Calazans¹

GAPH – FACIN – PUCRS¹
Porto Alegre – Brazil

matheus.moreira@acad.pucrs.br, ney.calazans@pucrs.br

CEA – LETI²
Grenoble – France

julian.hilgembergpontes@cea.fr

Abstract — Classically, quasi-delay-insensitive asynchronous
circuits based on weak-conditioned half-buffer employ the re-
turn-to-zero, 4-phase handshake protocol. This work scrutinizes
the alternative return-to-one protocol and analyzes the effects of
using it in practical circuits. A pipelined shift and add multi-
plier serves as case study. Return-to-one and return-to-zero
versions of the circuit provide ground for extensive comparison.
Experimental results point to reductions in static power and in
forward propagation delay of up to 35% and 12%, respectively,
when using return-to-one. Also, results indicate that mixing
return-to-zero and return-to-one leads to dynamic power sav-
ings.

Keywords— return-to-one, handshake, quasi-delay-
insensitive, weak-conditioned half-buffer, low power, leakage
reduction.

I. INTRODUCTION AND RELATED WORK

The evolution of silicon technologies needs new ap-
proaches to cope with power problems that are increasingly
constraining synchronous design., asynchronous circuits be-
come thus relevant for an increasing number of applications.
The quasi-delay-insensitive (QDI) design style [1] is attrac-
tive to asynchronous circuits, especially because it allows
wire and gate delays to be ignored, given that isochronic fork
[2] delay assumptions are respected. This reduces design
complexity and eases timing closure and analysis [3]. Defin-
ing a QDI template requires choosing a handshake protocol
and a delay-insensitive (DI) code to represent data. The most
adopted protocol is the 4-phase, because it allows reducing
design complexity when compared to 2-phase [4]. Also, there
are many ways to encode data in a DI manner and, even
though new codes are often suggested, the 1-of-n class is
widespread in asynchronous VLSI design [4]. A key factor
for the success of these codes is the fact that they obviate data
validity tests and completion circuits require little hardware
when compared to other codes.

In 1-of-n codes, data is represented using n wires. Data
validity is identified when exactly one of n wires is at a given
logic value and data absence can be marked by any of the 2n-
n other code words. The value that indicates absence of data
is called spacer, as it always separates two successive 1-of-n
codes in a data channel. Spacers are classically signaled by
setting all wires of a channel to 0 (all-0s) and valid data by
setting a single wire to 1, defining the return-to-zero (RTZ) 4-
phase protocol. RTZ is well accepted in research community,
and alternative manners for representing spacers received
little attention so far. An alternative is the return-to-one
(RTO) 4-phase protocol, where spacers are encoded by all
wires at 1 (all-1s) and valid data by a single wire at 0 [5].

Using alternative representations for spacers is not a nov-
elty itself, but related works that mention the use of all-1s
spacers do not employ these to define an RTO-based protocol.
Sokolov et al. [6] [7] proposed alternating spacers, a tech-

nique that uses all-0s and all-1s spacers successively in com-
putations. They showed their technique is adequate to build
secure cryptographic processors, but it incurs in large area
overhead when compared to the usual RTZ. This comes from
the fact that spacers are temporally distributed in the circuit.
Thus, every latch or combinational block has to deal with
both types of spacers and alternate codes, which increases
complexity and limits usage. Cilio et al. [8] also proposed a
similar protocol, where each data value is between two differ-
ent spacers: all-0s and all-1s. They claim the single spacer
scheme falls short in balancing switching activity between
rails, increasing vulnerability to side-channel attacks (based
on e.g. power and electromagnetic emissions). Albeit the
scheme improves robustness, the drawback is again increased
area and power. Murphy and Yakovlev [9] presented meas-
urements in a prototype AES cryptographic core, which em-
ploys the Sokolov et al. alternating spacers and Moore et al.
[10] used the all-1s encoding as an alarm state to reach bal-
anced implementations. For both works, results are high ro-
bustness to attacks at high area costs.

There is no specific work proposing the exploration of a
protocol based only in the all-1s spacer and its delay and
power tradeoffs. A first work defining an RTO protocol for
exploring design improvement opportunities, such as leakage
power reduction, appeared in [5]. After that, other works [11]
[12] evaluated the advantages of using this protocol in two
different styles for QDI combinational logic design, namely
Delay-Insensitive Minterm Synthesis (DIMS) [11] and Null-
Convention Logic (NCL) [12] [13], respectively. These works
evaluated only simple blocks of combinatory logic and not
the impact of using RTO in the design of sequential and con-
trol blocks for QDI circuits. The main contribution of the pre-
sent article is to evaluate the tradeoffs associated to using
RTO or RTZ in complete QDI circuits, discussing general
system level effects and specific isolated effects in sequential,
control and logic or arithmetic blocks. The discussion
emerges from the design of a shift and add multiplier case
study, based on Weak-Conditioned Half-Buffers (WCHBs)
[14] modeled with Production Rules (PRs) [2] and synthe-
sized targeting a 65nm CMOS technology in both, RTO and
RTZ. Circuits use the pseudo-synchronous automated asyn-
chronous design flow proposed by Thonnart et al. [15]. Post
synthesis timing simulation and power analysis enable inves-
tigating a series of RTO and RTZ tradeoffs.

II. THE RETURN-TO-ONE PROTOCOL

Classically, the RTZ 4-phase protocol is used in 1-of-n DI
codes, where n zeroes represent a spacer and valid code
words are those with a single 1. Figure 1(a) shows the RTZ 1-
of-2 code, which uses two wires, called D.1 and D.0, to carry
a single bit of information. A '0' bit is denoted by D.0 at 1,
and a '1' bit by D.1 at 1. In 1-of-n RTZ conventions, any code
word with more than a wire at 1 represents no valid data.

978-1-4799-3946-6/14/$31.00 ©2014 IEEE 692 15th Int'l Symposium on Quality Electronic Design

Figure 2(a) shows data transmission in a system using the
RTZ protocol. Communication starts with all wires at 0 (all-
0s). Next, the sender puts data in the channel (D.0, D.1)
which is acknowledged by the receiver with the ack signal.
After the sender receives ack, it produces a spacer to end
communication. The receiver then lowers the ack signal, after
which another communication can take place.

The RTO 4-phase protocol [5] is similar to RTZ. One dif-
ference is that valid data values are reversed compared to
RTZ. Figure 1(b) shows conventions for a 1-of-2 code based
on RTO. Spacers are represented by n wires at 1 (all-1s). A '1'
bit is denoted by D.1 at 0 and a '0' bit by D.0 at 0. As Figure
2(b) shows, differently from RTZ, RTO data transmission
starts after the all-1s value is in the data channel. As soon as
the sender puts valid data in channel (D.0, D.1) the receiver
may acknowledge it, by lowering the ack signal. Next, all
data wires must return to 1 to produce a spacer. When the
spacer is detected by the receiver, it raises the ack signal and
new data can follow. The reason for the inverted ack is to
reduce transistor count in RTO systems. Also, RTO-RTZ
domain interfaces for a same code requires only n inverters.
As a generalization, an RTO D.x wire logical value can be
translated from RTZ by Eq. (1).
).().(:10, xDRTZxDRTOnxx   
Here, expressions RTO(D.x) and RTZ(D.x) correspond to
wire logic values in the RTO and RTZ domains, respectively.
In this way, according to Martin [2], the conversion of data
from one domain to another is DI. Throughout this work 1-of-
2 codes will be employed to demonstrate the use of RTO.
However, all presented techniques can be adjusted easily to
any 1-of-n code.

Wire Name Spacer Bit '0' Bit '1'
D.1 0 0 1
D.0 0 1 0

Wire Name Spacer Bit '0' Bit '1'
D.1 1 1 0
D.0 1 0 1

(a) (b)
Figure 1 – 4-phase 1-of-2 data encoding for (a) RTZ and (b) RTO protocols.

(a) (b)
Figure 2 – Example of 4-phase (a) RTZ and (b) RTO 1-of-2 data transmis-
sion, where sp stands for spacers.

III. RTZ AND RTO STANDARD-CELL SYNTHESIS

Several works propose standard-cell based design of RTZ
QDI circuits. This usually requires only C-elements other than
conventional gates. C-elements are basic components in asyn-
chronous circuits used for event synchronization [13]. The
output of a basic C-element will only switch to 1 when all
inputs are at 1. Similarly, it will only switch to 0 if all inputs
are at 0. For any other input combinations, the output keeps
its previous value. As examples, references [16] and [17] pro-
pose techniques for designing such circuits. Throughout this
work we assume the use of the van Berkel C-Element due to
its better power and delay tradeoffs [17]. Figure 3(a) presents
its CMOS schematic. Also, QDI circuits can be implemented
using different templates and buffer types. Some common
templates are: WCHB, pre-charged half buffer (PCHB) [13]
and pre-charged full buffer (PCFB) [13]. This work assumes
the use of WCHB template latches due to their wide adoption

and the availability of an automated synthesis flow based on
them [15]. This template originally requires resettable C-
elements as storage cells. Figure 3(b) presents the schematic
of an active-low resettable C-Element.

Figure 3 – Transistor topologies for van Berkel C-elements: (a) basic; (b)
active-low resettable; (c) active-high settable.

According to Martin in [2], PRs are useful to define the
behavior of each output of a QDI circuit using conjunction,
disjunction and negation operators. Assuming that D are the
inputs, Q are the outputs, req is the active-high request signal
and rst is the active-low reset signal, the PRs for a j-bit RTZ
1-of-2 WCHB appear in Figure 4(a). The first two PRs corre-
spond to the second of fourth phases of the handshake, and
the last two PRs refer to the fourth phase and reset. These can
be mapped to 2j active-low resettable C-elements (Figure
5(a)).

 
  .1.1.

0.0.

1.1.

0.0.

:10,











ii

ii

ii

ii

QreqDrst

QreqDrst

QreqDrst

QreqDrst

jii

.)(1

)(0

1.0.

1.0.

:10,











validVALL

validVALL

VDD

VDD

jii

iii

iii

(a) (b)
Figure 4 –PRs for a j-bit RTZ 1-of-2 WCHB: (a) latch and (b) validity de-
tector. Predicates ALL0 and ALL1 are true when the vector passed as argu-
ment is a binary vector V composed by respectively only 0s/only 1s.

Similarly, assume that the j-bit V signal is the vector of
individual validity bits, D are the latch inputs, and valid is the
active-low global validity output signal. Validity of a j-bit
RTZ data channel D encoded in a 1-of-2 WCHB is then given
by Figure 4(b). Predicates ALL1(x) and ALL0(x) are used to
determine whether all wires of x are respectively at 1 or 0.
These PRs implement the first and third phases of the proto-
col when driving the previous latch req input. Each data wire
pair requires a 2-input NOR gate to compute its validity (the
Vi's). Note that the generation of the intermediate Vi's uses
NOR gates rather than ORs. If all intermediate values are at 0,
data D is valid. This can be computed with a j-input NOR
gate. If all intermediate values are at 1, a spacer is detected.
This function can be computed with a j-input NAND gate.
Conditions where some of the intermediate values are at 1
while others are at 0 cannot determine a new value for valid.
Hence, outputs of the j-input NAND and NOR gates need to
be synchronized with a 2-input C-element.

The resulting validity detector (VD) circuit appears in
Figure 5(b). Another approach to synchronize all intermediate
signals is to use a tree of C-elements. However, experience
showed that these are usually more expensive in terms of sili-
con area, power and delay than using j-input NORs and
NANDs. The latter gates can be built as trees of cells with
less inputs, due to the associative nature of the non-inverted

equivalent functions. Also, partial VDs can be implemented
with 2-input NOR gates inside each single value WCHB and
synchronized at higher hierarchical levels. This can be useful,
depending on the circuit data dependencies. This work as-
sumes that VDs are separated from WCHBs, to analyze the
effects of RTO and RTZ individually in each block.

The RTO implementation of a WCHB is similar to the
RTZ one. The main difference is the all-1s spacer. Because its
initial state must be a spacer, there is a slight modification in
the PRs for this WCHB, active-high set signal replaces the
active-low rst signal of the RTZ WCHB PRs. The PRs for a j-
bit RTO 1-of-2 WCHB are then given by Figure 6(a). As
Figure 5(c) shows, resettable C-elements of Figure 5(a) are
replaced by settable ones, enabling RTO spacers for initializa-
tion. The schematic of these C-Elements appears in Figure
3(c).

The RTO VD block is also similar to the RTZ one. The
difference is that it must detect 0s rather than 1s for data va-
lidity. Resulting PRs are in Figure 6(b). When mapped to
logic gates, the result is that instead of employing a NOR gate
for each pair of wires to detect whether one of them is at 0, a
NAND gate is used to verify if data is valid (if one of the
wires is at 0). The resulting circuit appears in Figure 5(d).
Similarly to what happens in RTZ, each intermediate signal is
synchronized with j-input NAND and NOR gates and a 2-
input C-element.

Figure 5 – WCHB latch and validity detector implementations: (a) RTZ
buffer using resettable, active-low C-elements (lower input); (b) RTZ valid-
ity detector; (c) RTO latch using settable, active-high C-elements (upper
input);
(d) RTO validity detector.

.1.)1.(

0.)0.(

1.1.

0.0.

:10,











ii

ii

ii

ii

QreqDset

QreqDset

QreqDset

QreqDset

jii

.)(1

)(0

1.0.

1.0.

:10,











validVALL

validVALL

vDD

vDD

jii

iii

iii

(a) (b)
Figure 6 – PRs for a j-bit RTO 1-of-2 WCHB (a) and validity detector (b).

As for Boolean and arithmetic operations, the DIMS logic
style [13] is classically employed as it allows the use of stan-
dard-cell based design without losing the DI property. For
RTO, we refer to the equivalent logic style as DIMxS, stand-
ing for Delay-Insensitive Maxterm Synthesis, since RTO is

based on the maxterm-based logic expressions. DIMS and
DIMxS require only C-elements other than conventional
standard cells. In fact, most works report the use of DIMS for
implementing QDI Boolean and arithmetic blocks. Table 1
shows the truth table of an RTZ 1-of-2 half-adder with inputs
Ain and Bin and outputs Cout and Sout.

Table 1 – Truth table for an RTZ 1-of-2 half-adder.

Ain.1 Ain.0 Bin.1 Bin.0 Cout.1 Cout.0 Sout.1 Sout.0
0 0 0 0 0 0 0 0
0 1 0 1 0 1 0 1
0 1 1 0 0 1 1 0
1 0 0 1 0 1 1 0
1 0 1 0 1 0 0 1

The first line of the table occurs when both inputs are

spacers, which sets the outputs to spacers as well. Whenever
one of the inputs is a spacer the outputs do not change. For
that reason, such states are omitted. PRs describing functions
for Cout.0, Cout.1, Sout.0 and Sout.1 appear in Figure 7.

.0.)0.0.()1.1.(

0.)0.0.()1.1.(

1.)0.1.()1.0.(

1.)0.1.()1.0.(

0.)0.1.()1.0.()0.0.(

0.)0.1.()1.0.()0.0.(

1.)1.1.(

1.)1.1.(

















outinininin

outinininin

outinininin

outinininin

outinininininin

outinininininin

outinin

outinin

SBABA

SBABA

SBABA

SBABA

CBABABA

CBABABA

CBA

CBA

Figure 7 – PRs for an RTZ, 1-of-2 half-adder.

When mapping these to DIMS-based components, con-
junctions of the pairs inside parenthesis are mapped to 2-input
C-elements, to guarantee synchronization of both valid data
and spacers. The disjunctions outside parenthesis in the PRs
filter the C-elements that have their outputs set to 1. This
models rising output transitions. The conjunctions outside
parenthesis for falling-transition PRs synchronize spacers in
all C-elements. These functions are mapped directly to OR
gates. The equivalent gate level schematic appears in Figure 8
(a).

Figure 8 –DIMS/DIMxS implementation of (a) RTZ and (b) RTO half-
adders.

The RTO implementation is similar. Table 2 presents the
truth table of an equivalent RTO version of the 1-of-2 DIMxS
half-adder, which derives from Table 1 by Eq. (1).

Table 2 – Truth table for an RTO 1-of-2 half-adder.

Ain.1 Ain.0 Bin.1 Bin.0 Cout.1 Cout.0 Sout.1 Sout.0
1 1 1 1 1 1 1 1
1 0 1 0 1 0 1 0
1 0 0 1 1 0 0 1
0 1 1 0 1 0 0 1
0 1 0 1 0 1 1 0

The equivalent PRs for outputs Cout.0, Cout.1, Sout.0 and
Sout.1 for this implementation of the DIMS half-adder appear
in Figure 9.

















.0.)0.0.()1.1.(

0.)0.0.()1.1.(

1.)0.1.()1.0.(

1.)0.1.()1.0.(

0.)0.1.()1.0.()0.0.(

0.)0.1.()1.0.()0.0.(

1.)1.1.(

1.)1.1.(

outinininin

outinininin

outinininin

outinininin

outinininininin

outinininininin

outinin

outinin

SBABA

SBABA

SBABA

SBABA

CBABABA

CBABABA

CBA

CBA

Figure 9 – PRs for an RTO, 1-of-2 half-adder.

These PRs are similar to those of the RTZ protocol. In-
deed, the disjunctions inside parenthesis to compute minterms
are the same. The difference is that in RTO valid data is given
by 0s. Therefore, instead of computing minterms, the max-
terms are the ones that need to be computed. Thus, disjunc-
tions are used for falling transitions in PRs and conjunctions
indicating when all maxterms are at 1 detect spacers. There-
fore, ORs used in the RTZ classic DIMS are replaced by
ANDs in the RTO version. Figure 8(b) shows the associated
RTO gate level schematic. Using this approach, any RTO
DIMxS logic block can be implemented. Classically,
AND/NAND gates are preferred over OR and NOR gates in
VLSI design. A stack of NMOS transistors is present in these
gates, while ORs and NORs employ a stack of PMOS transis-
tors. Due to the fact that electron mobility is normally three
times that of holes, NAND/AND gates are expected to present
better power and delay tradeoffs than NOR/OR gates for the
same silicon area. As a consequence, RTO DIMxS circuits
are expected to present a better power-delay tradeoff than
equivalent RTZ circuits. Additionally, the use of mixed sys-
tems combining RTO and RTZ for communicating blocks can
be implemented by just inverting outputs, which can lead to
further optimization degrees.

IV. A PIPELINED MULTIPLIER CASE STUDY

To analyze the tradeoffs between RTO and RTZ, a pipe-
lined multiplier was implemented using 1-of-2 data encoding
in the WCHB template based on [15]. This circuit multiplies
two unsigned integer n-bit values A and B, using a shift and
add algorithm. Figure 10 shows the block diagram that maps
the algorithm to handshake components. All dotted lines rep-
resent single wire control signals and full lines represent 1-of-
2 data channels. This circuit computes the product of Ain and
Bin, and writes the result in the (2*n)-bit output Qout. The al-
gorithm was pipelined and the shift and add iteration is un-
rolled into n+2 stages. The case study enables the separate

analysis of RTO and RTZ protocols effects in registers, valid-
ity detectors, control circuits, arithmetic blocks, and yet al-
lows overall circuit analysis. Registers are called REGi, where
i is its number in the pipeline.

All registers employ the WCHB template. Inputs are ini-
tially registered in REG0, with size 2n, and a zero generator is
employed to initialize the value of variable x. This generator
is represented by the box labeled 0, before REG1. The valid-
ity of the registered data is given by the first validity detector
(VD0). Also, before the next register (REG1), the registered
input B0 has its size n extended to 2n through the EXT opera-
tor, to allow shift left operations without any bit loss. Each of
the next n pipeline stages comprises a register REGi, with
size 5n, a validity detector VDi and a shift and add step
STEPi, 1≤i≤n. Finally, stage n+1 has its output registered in
REGn+1, which produces the circuit output Qout and has also
size 5n. Additionally, all Boolean and arithmetic logic blocks
were implemented based on DIMS/DIMxS.

For comparison sake, RTZ- and RTO-based versions of
this circuit were described in structural VHDL by intercon-
necting handshake components of an in-house macro blocks
library. These blocks were initially modeled using PRs, as in
Section II and then the required C-elements were manually
mapped to the description. Boolean logic, such as the
AND/OR operations required by the blocks were extracted
from PRs and mapped in the description, but the synthesis
tool was able to optimize their logic using basic logic gates.
Also, the macro library had only RTZ components. RTO ver-
sions were added by designing new blocks according to the
techniques discussed in Section II.

The STMicroelectronics CMOS 65nm technology was
used for synthesis. Typical gates (such as ANDs, ORs and
buffers) were mapped in the Corelib provided by the vendor
and C-elements were mapped to the ASCEnD-ST65 library
[18] [19]. Design optimization of the circuit was enabled by
the adoption of the flow proposed in [15] coupled to industrial
tools. The specific tools employed were the RTL Compiler
and Encounter from Cadence. Thirteen distinct implementa-
tions of each RTO and RTZ designs were produced, each
with a different maximum operating speed. Different speeds
are obtained in the classical way, using gates with distinct
drive strengths. The generated designs had their internal nets
and gate delays annotated in a standard delay format (SDF)
file, which was the source to simulate the mapped netlist.
Also, similar speed RTO and RTZ circuits presented equiva-
lent silicon area, which suggests that none of the protocols
can be classified as more area efficient.

Figure 10 – Block diagram of the study case pipelined multiplier. Dotted lines are single wire control signals and full lines 1-of-2 encoded data channels.

The simulation scenario employed a producer of random
data and a consumer, both described in SystemC. These were
used to verify correct operation of the circuits and to measure
delay values. Delay measurements considered the designs´
throughput, measured in millions of operations per second
(MOPS), and average acknowledge delays, measured for each
design by simulating it with random data on the inputs, during
1 ms. Internal activity of the nets was annotated and exported
for power analysis.

Simulation results show that RTO fastest versions were
able to compute 236 MOPS and the slowest versions 148,
while for RTZ these values were 237 and 176, respectively.
Figure 11 presents the average acknowledge delays for valid
data and spacers for each design (note that only the intersec-
tion between these intervals is shown in the graphs). The
measured values are very similar. Yet, for slow designs, under
200 MOPS, the RTO protocol presents slightly faster re-
sponses for valid data and slower responses for spacers. For
the other designs, this scenario is reversed. Still, the speed-up
in responses for valid data and spacers is always under 3%.
Thus, neither protocol can be said to be more efficient in ab-
solute terms for acknowledge speed.

Figure 11 – Acknowledge delay of valid data and spacer for RTO and RTZ.

A similar simulation scenario was employed to measure
the forward propagation delay with the same producer and
consumer. However, the producer generates a single pair of
random data and the consumer measures how long it takes to
compute data and to generate a valid output, without consid-
ering the propagation of spacers that would eventually follow
it. Then, the circuit is reset and another pair of data is sent. In
this way, inter-register acknowledge does not interfere while
measuring the forward propagation delay. This process simu-
lates for 1 ms. Figure 12 presents the measured average values.

Figure 12 – Forward propagation delay results for the simulated designs.

Results show that the RTO designs present lower forward
propagation delay in most cases. In the best case, this differ-
ence was around 12%. In the fastest designs, RTZ forward
propagation delay equals that of RTO. In fact, for the fastest
design, the RTZ version presents slightly lower forward

propagation delay. Still, this result displays a clear advantage
of using RTO, as forward propagation delay is a very impor-
tant characteristic of handshake-based circuits. Typically,
given a sender/receiver scenario, the smaller the percentage of
forward propagation delay of the sender in total communica-
tion time, the faster the receiver will acknowledge. This leads
to scenarios where the sender is released faster and may start
a new communication earlier, which leads to overall speed up.

The activity of all internal nets was annotated and used as
the source for five power analysis scenarios: an idle state,
where the circuit was reset and was not fed with any data, and
four dynamic scenarios, where the circuit was fed with data
during 25%, 50%, 75% and 100% of the simulation time.
Figure 13 presents the measured total power for idle states.
The obtained results display a clear advantage of the RTO
protocol concerning idle power, 25% in average and 35% in
the best case. This is important for asynchronous circuits,
since there is no global synchronization and while some parts
of the system are operating, others may be quiescent. Albeit it
was expected a close to linear growth of power in the pre-
sented charts, these are slightly distorted. This is because the
used synthesis method employs tools that are designed for
synchronous systems that end up optimizing the critical path
delay of the circuit rather than its average delay. This explains
the peaks and valleys in the power charts. Nevertheless, the
qualitative aspect of the results is not jeopardized. If tools
adequate for asynchronous synthesis were available, these
peaks and valleys would not appear in the charts, but the cor-
relation between the latter would remain. Experiments from
[5] support this argument.

Figure 13 – Total power of the designs while at reset/set and idle states.

As for the dynamic scenarios, RTO- and RTZ-based de-
signs present similar total power. Figure 14 presents the meas-
ured total power of the circuits for such scenarios. Figure 14(a)
presents the charts for 100% and 75% operating times and
Figure 14(b) does the same for 50% and 25% values. Typi-
cally, RTO and RTZ charts of a same scenario are intertwined
with one another. In general, RTO presents higher total power
for slower designs, (8% higher in worst case). For faster de-
signs the situation is reversed, and in the best case RTO pre-
sents reductions of over 10%. In this way, both protocols are
assumed to have similar power efficiency for dynamic scenar-
ios. In this context, at circuit level, the advantage of RTO-
based systems is the reduced power in idle states. In other
words, a reduction on leakage power is observed.

(a)

(b)

Figure 14 – Total power of the RTO and RTZ designs when: (a) computing
100% and 75% of the time and (b) computing 50% and 25% of the time.

For the case study, effects of this characteristic appear in
the charts of Figure 14(b). The lower the operating time per-
centage is, the lower the RTO chart values become, compared
to RTZ values. This characteristic of RTO can be understood
by analyzing the power distribution of the simulated circuits
as Figure 15 shows. Figure 15(a) and Figure 15(b) present the
average power distribution of the simulated RTZ- and RTO-
based circuits, respectively, for the four dynamic scenarios. In
the presented charts, power is distributed in leakage, internal
and dynamic power. The first is due to subthreshold leakage
currents, which are a major concern for recent technology
nodes [20]. Internal power is due to parasitics and short-
circuit currents when switching standard-cells inputs. Switch-
ing power comes from charge and discharge of capacitances
when switching standard-cells outputs. The charts show leak-
age power represents a smaller portion of the total power in
RTO, when compared to RTZ. These results point to good
potential for RTO to cope with leakage power constraints in
future technologies. Measured power for dynamic scenarios
did not meet expectations at the system level. With the use of
AND/NAND gates, rather than OR/NOR gates, and results
presented in [5], a better power efficiency was expected for
RTO in the dynamic scenarios as well, i.e. RTO-based de-
signs were expected to provide the same throughput as RTZ
designs with lower power.

A more precise circuit power analysis reveals that the total
power of the pipeline is the sum of the power from three
block types (Figure 10): VDs, REGs and STEPs power. It is
possible to measure the isolated effects of RTO and RTZ in
logic arithmetic blocks (steps), sequential blocks and validity
detectors measuring the percentage of total power accountable
for each block. Figure 16 presents the obtained results of this
power analysis for the idle scenario (parts (a), (b) (c)) and for
dynamic scenarios with 100% operation, in (d), (e), (f). The
100% operation scenario represents the worst case dynamic
scenario for RTO justifying its choice. Note that the presented
values are not absolute and, rather, charts show the percentage
of total power for each block of each circuit for both simula-
tion scenarios. Also, note that REGs and VDs portion of
power decreases as designs get faster, while the STEPs por-

tion increases. This is mostly due to critical path optimiza-
tions in synthesis.

As charts in Figure 16(a),(b) and (c) show, the distribution
of RTO and RTZ total power is similar in idle state. This
demonstrates that reduction in leakage power, when using
RTO, reflects at the circuit level. However, for dynamic state
results, RTO and RTZ display significant discrepancies. For
VDs and STEPs power, significant savings occur when em-
ploying RTO. This agrees with expected results from [5] and
[11], since these blocks employ AND/NAND gates rather
than OR/NOR gates, which is classically preferable in VLSI
synthesis. Thus, the obtained results point to design optimiza-
tions when using RTO for arithmetic DIMxS-based circuits
and validity detectors. On the other hand, as Figure 16(e)
shows, the RTZ REGs blocks present a significantly lower
part of the total power, when compared to RTO.

(a) (b)

Figure 15 – Average power distribution of designs: (a) RTZ and (b) RTO.

These blocks are composed exclusively of resettable or
settable C-elements. The former are used in RTZ and the lat-
ter in RTO. Results suggest that, albeit settable C-elements of
RTO present lower static power than resettable C-elements of
RTZ, their dynamic power is bigger. In fact, an accurate
analysis of the characterized timing and power models of the
ASCEnD-ST65 library confirmed these conclusions. One
explanation is the fact that the settable C-element employs a
stack of three PMOS transistors, while in the resettable C-
elements this stack uses NMOS transistors, as Figure 3 details.
This discussion leads to the use of smaller transistors in re-
settable C-elements. The issue is independent of C-element
topology. Thus, results point to power reductions when using
RTZ-based WCHB registers. Case study data suggest the
RTO protocol is more power efficient in dynamic scenarios
for validity detectors and logic arithmetic blocks, while RTZ
is more suited for buffers.

Therefore, a system that employs both protocols is ex-
pected to provide further optimizations. Differently from the
works presented in [6]-[10], which propose the use of two
distinct spacers that are temporally distributed, mixing RTZ
and RTO as described here implies the use of two spacers
spatially distributed. In this way, avoidance of the hardware
complexity and area overheads observed in [6] is possible.
Also, translation of RTZ signals into RTO and vice-versa is
very simple (See Eq. (1)). In the worst case, it requires one
inverter per wire. However, resettable C-elements of RTZ
registers already have inverters in their outputs, required by
their memory scheme (see Figure 3). Then, the output conver-
sion of these blocks to RTO just requires using as output of
resettable C-elements wire O, just before the inverter, which
maintains the DI property. Also, AND gates in arithmetic
RTO blocks right before an RTZ block can be changed to
NAND gates, implying further optimization.

(a) (b) (c)

(d) (e) (f)

Figure 16 – Power distribution in the multiplier components for a scenario where the circuit is computing 100% of the time. VD stands for validity detector.

Such a system is expected to provide much lower total
power, given that, as Figure 16(e) shows, REGs are responsi-
ble for a minimum of 35% (in the worst case, over 40%) of
the total power of RTO-only circuits. Because the portion of
idle power of REGs for both protocols is usually lower than
6.5% (over 10% in a few cases), as Figure 16(b) shows, the use
of RTZ REGs is not expected to cause significant increase in
circuits´ idle power. Moreover, mixed RTO/RTZ circuits can
take advantage of the benefits of each protocol for each dif-
ferent block, leading to an enlarged design optimization
space. For instance, according to Figure 16(d) chart, faster
RTO VDs can be obtained for a same power budget of their
RTZ version. These circuits acknowledge inputs faster, ena-
bling better communication at system level, and potentially
leading to overall circuit speed-up. Finally, as mentioned be-
fore, Equation (1) satisfies the conditions stated in [2] for
maintaining the circuit DI property. In this way, mixing RTO
and RTZ does not jeopardize the functionality of a QDI cir-
cuit.

V. CONCLUSIONS

Classically, the RTZ protocol is employed for 4-phase
communication in WCHB QDI circuits. This work demon-
strates that using the RTO protocol or a mix of the two leads
to better choices. Results showed that RTO-based blocks pre-
sent lower idle power, which is beneficial for asynchronous
circuits. This can be employed in modules like networks-on-
chip, which typically have low average activation rates along
time. Also, DIMS/DIMxS logic blocks and validity detectors
are more power efficient, in terms of idle and dynamic opera-
tion, when implemented using RTO. Future work includes the
analysis of a mixed system, with some blocks implemented
using RTO and others with RTZ, to provide a better under-
standing of protocol choice tradeoffs. To do so, a set of in-
verted C-elements is under design to enhance the ASCEnD-
ST65 library. Also, a study evaluating other schemes for im-
plementing set and reset signals in C-elements is under way,
which may lead to optimizations in RTO registers. Another
future work is an evaluation of the effects of the RTO proto-

col on other logic styles. Finally, analyzing the effects of the
RTO protocol in additional DI codes is also an interesting
future work.

ACKNOWLEDGEMENTS

This work was partially supported by the CAPES-
PROSUP (under grant 11/0455-5) and FAPERGS (under
grant 11/1445-0). Authors acknowledge the support of CNPq
under grants 310864/2011-9 (N. Calazans) and 142079/2013-
8 (M. Moreira).

REFERENCES
[1] R. Manohar and A. J. Martin. Quasi-delay-insensitive circuits are

turing-complete. In: International Symposium on Advanced Research
in Asynchronous Circuits and Systems, 1996.

[2] A. J. Martin. The limitations to delay-insensitivity in asynchronous
circuits. In: Proceedings of the sixth MIT conference on Advanced
research in VLSI, 1990, pp. 263-278.

[3] W. J. Bainbridge, W. B. Toms, D. A. Edwards and S. B. Furber.
Delay-insensitive, point-to-point interconnect using m-of-n codes. In:
International Symposium on Advanced Research in Asynchronous
Circuits and Systems, 2003, pp. 132-140.

[4] A. J. Martin and M. Nyström. Asynchronous Techniques for System-
on-Chip Design. In: Proceedings of the IEEE, 94(6), June 2006, pp.
1089-1020.

[5] M. T. Moreira, R. A. Guazzelli and N. L. V. Calazans. Return-to-One
Protocol for Reducing Static Power in C-elements of QDI Circuits
Employing m-of-n Codes. In: Symposium on Integrated Circuits and
Systems Design, 2012. 6p.

[6] D. Sokolov. Automated synthesis of asynchronous circuits using direct
mapping for control and data paths. PhD Thesis, SEECE, Univeristy of
Newcastle upon Tyne, NCL-EECE-MSD-TR-2006-111, 2006.

[7] D. Sokolov, J. Murphy, A. Bystrov and A. Yakovlev. Design and
analysis of dual-rail circuits for security applications. In: IEEE
Transactions on Computets, vol. 54(4), April 2005, pp. 449–460.

[8] W. Cilio, M. Linder, C. Porter, J. Di S. Smith and D. Thompson. Side-
channel attack mitigation using dual-spacer dual-rail delay-insensitive
logic (D3L). In: SoutheastCon, 2010, pp. 471-474.

[9] J. Murphy and A. Yakovlev. An alternating spacer AES crypto-
processor. In: European Solid-State Circuits Conference, 2006, pp.
126-129.

[10] S. Moore, R. Anderson, R. Mullins, G. Taylor and J. J. A. Fournier.
Balanced self-checking asynchronous logic for smart card applications.
In: Microprocessors and Microsystems 27, 2003, pp. 421-430.

[11] M. Moreira, R. Guazzelli and N. L. V. Calazans. Return-to-One DIMS
Logic on 4-phase m-of-n Asynchronous Circuits. In: International
Conference on Electronics, Circuits and Systems, 2012, pp. 669-672.

[12] M. Moreira and N. L. V. Calazans. NCL+: Return-to-One Null
Convention Logic. In: International Midwest Symposium on Circuits
and Systems, 2013, 4p.

[13] K. M. Fant and S. A. Brandt. NULL convention logic: a complete and
consistent logic for asynchronous digital circuit synthesis. In:
International Conference on Application Specific Systems,
Architectures and Processors, 1996, pp. 261-273.

[14] P. A. Beerel, R. O. Ozdag and M. Ferretti. A Designer’s Guide to
Asynchronous VLSI. Cambridge University Press, 2010, 337 p.

[15] Y. Thonnart, E. Beigné and P. Vivet. A Pseudo-Synchronous
Implementation Flow for WCHB QDI Asynchronous Circuits. In:
International Symposium on Advanced Research in Asynchronous
Circuits and Systems, 2012, pp. 73-80.

[16] E. Yahya and M. Renaudin. QDI Latches Characteristics and
Asynchronous Linear-Pipeline Performance Analysis. TIMA
Technical Report TR 06/06-03, 2006, 11 p.

[17] M. T. Moreira, B. S. Oliveira, F. G. Moraes and N. L. V. Calazans.
Impact of C-Elements in Asynchronous Circuits. In: International
Symposium on Quality Electronics Design, 2012, pp. 438-444.

[18] M. T. Moreira, B. S. Oliveira, J. J. H. Pontes and N. L. V. Calazans. A
65nm Standard Cell Set and Flow Dedicated to Automated
Asynchronous Circuits Design. In: International SOC Conference,
2011, pp. 99-104.

[19] M. T. Moreira, B. Oliveira, J. Pontes, F. Moraes and N. L. V.
Calazans. Adapting a C-Element Design Flow for Low Power. In:
International Conference on Electronics, Circuits and Systems, 2011.

[20] N. Ekekwe. Power dissipation and interconnect noise challenges in
nanometer CMOS technologies. In: IEEE Potentials 29(3), 2010, pp.
26-31.

