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Abstract — Classically, quasi-delay-insensitive asynchronous 
circuits based on weak-conditioned half-buffer employ the re-
turn-to-zero, 4-phase handshake protocol. This work scrutinizes 
the alternative return-to-one protocol and analyzes the effects of 
using it in practical circuits. A pipelined shift and add multi-
plier serves as case study. Return-to-one and return-to-zero 
versions of the circuit provide ground for extensive comparison. 
Experimental results point to reductions in static power and in 
forward propagation delay of up to 35% and 12%, respectively, 
when using return-to-one. Also, results indicate that mixing 
return-to-zero and return-to-one leads to dynamic power sav-
ings. 

Keywords— return-to-one, handshake, quasi-delay-
insensitive, weak-conditioned half-buffer, low power, leakage 
reduction. 

I.  INTRODUCTION AND RELATED WORK 

The evolution of silicon technologies needs new ap-
proaches to cope with power problems that are increasingly 
constraining synchronous design., asynchronous circuits be-
come thus relevant for an increasing number of applications. 
The quasi-delay-insensitive (QDI) design style [1] is attrac-
tive to asynchronous circuits, especially because it allows 
wire and gate delays to be ignored, given that isochronic fork 
[2] delay assumptions are respected. This reduces design 
complexity and eases timing closure and analysis [3]. Defin-
ing a QDI template requires choosing a handshake protocol 
and a delay-insensitive (DI) code to represent data. The most 
adopted protocol is the 4-phase, because it allows reducing 
design complexity when compared to 2-phase [4]. Also, there 
are many ways to encode data in a DI manner and, even 
though new codes are often suggested, the 1-of-n class is 
widespread in asynchronous VLSI design [4]. A key factor 
for the success of these codes is the fact that they obviate data 
validity tests and completion circuits require little hardware 
when compared to other codes. 

In 1-of-n codes, data is represented using n wires. Data 
validity is identified when exactly one of n wires is at a given 
logic value and data absence can be marked by any of the 2n-
n other code words. The value that indicates absence of data 
is called spacer, as it always separates two successive 1-of-n 
codes in a data channel. Spacers are classically signaled by 
setting all wires of a channel to 0 (all-0s) and valid data by 
setting a single wire to 1, defining the return-to-zero (RTZ) 4-
phase protocol. RTZ is well accepted in research community, 
and alternative manners for representing spacers received 
little attention so far. An alternative is the return-to-one 
(RTO) 4-phase protocol, where spacers are encoded by all 
wires at 1 (all-1s) and valid data by a single wire at 0 [5].  

Using alternative representations for spacers is not a nov-
elty itself, but related works that mention the use of all-1s 
spacers do not employ these to define an RTO-based protocol. 
Sokolov et al. [6] [7] proposed alternating spacers, a tech-

nique that uses all-0s and all-1s spacers successively in com-
putations. They showed their technique is adequate to build 
secure cryptographic processors, but it incurs in large area 
overhead when compared to the usual RTZ. This comes from 
the fact that spacers are temporally distributed in the  circuit. 
Thus, every latch or combinational block has to deal with 
both types of spacers and alternate codes, which increases  
complexity and limits usage. Cilio et al. [8] also proposed a 
similar protocol, where each data value is between two differ-
ent spacers: all-0s and all-1s. They claim the single spacer 
scheme falls short in balancing switching activity between 
rails, increasing vulnerability to side-channel attacks (based 
on e.g. power and electromagnetic emissions). Albeit the 
scheme improves robustness, the drawback is again increased 
area and power. Murphy and Yakovlev [9] presented meas-
urements in a prototype AES cryptographic core, which em-
ploys the Sokolov et al. alternating spacers and Moore et al. 
[10] used the all-1s encoding as an alarm state to reach bal-
anced implementations. For both works, results are high ro-
bustness to attacks at high area costs. 

There is no specific work proposing the exploration of a 
protocol based only in the all-1s spacer and its delay and 
power tradeoffs. A first work defining an RTO protocol for 
exploring design improvement opportunities, such as leakage 
power reduction, appeared in [5]. After that, other works [11] 
[12] evaluated the advantages of using this protocol in two 
different styles for QDI combinational logic design, namely 
Delay-Insensitive Minterm Synthesis (DIMS) [11] and Null-
Convention Logic (NCL) [12] [13], respectively. These works 
evaluated only simple blocks of combinatory logic and not 
the impact of using RTO in the design of sequential and con-
trol blocks for QDI circuits. The main contribution of the pre-
sent article is to evaluate the tradeoffs associated to using 
RTO or RTZ in complete QDI circuits, discussing general 
system level effects and specific isolated effects in sequential, 
control and logic or arithmetic blocks. The discussion 
emerges from the design of a shift and add multiplier case 
study, based on Weak-Conditioned Half-Buffers (WCHBs) 
[14] modeled with Production Rules (PRs) [2] and synthe-
sized targeting a 65nm CMOS technology in both, RTO and 
RTZ. Circuits use the pseudo-synchronous automated asyn-
chronous design flow proposed by Thonnart et al. [15]. Post 
synthesis timing simulation and power analysis enable inves-
tigating a series of RTO and RTZ tradeoffs. 

II. THE RETURN-TO-ONE PROTOCOL 

Classically, the RTZ 4-phase protocol is used in 1-of-n DI 
codes, where n zeroes represent a spacer and valid code 
words are those with a single 1. Figure 1(a) shows the RTZ 1-
of-2 code, which uses two wires, called D.1 and D.0, to carry 
a single bit of information. A '0' bit is denoted by D.0 at 1, 
and a '1' bit by D.1 at 1. In 1-of-n RTZ conventions, any code 
word with more than a wire at 1 represents no valid data. 
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Figure 2(a) shows data transmission in a system using the 
RTZ protocol. Communication starts with all wires at 0 (all-
0s). Next, the sender puts data in the channel (D.0, D.1) 
which is acknowledged by the receiver with the ack signal. 
After the sender receives ack, it produces a spacer to end 
communication. The receiver then lowers the ack signal, after 
which another communication can take place. 

The RTO 4-phase protocol [5] is similar to RTZ. One dif-
ference is that valid data values are reversed compared to 
RTZ. Figure 1(b) shows conventions for a 1-of-2 code based 
on RTO. Spacers are represented by n wires at 1 (all-1s). A '1' 
bit is denoted by D.1 at 0 and a '0' bit by D.0 at 0. As Figure 
2(b) shows, differently from RTZ, RTO data transmission 
starts after the all-1s value is in the data channel. As soon as 
the sender puts valid data in channel (D.0, D.1) the receiver 
may acknowledge it, by lowering the ack signal. Next, all 
data wires must return to 1 to produce a spacer. When the 
spacer is detected by the receiver, it raises the ack signal and 
new data can follow. The reason for the inverted ack is to 
reduce transistor count in RTO systems. Also, RTO-RTZ 
domain interfaces for a same code requires only n inverters. 
As a generalization, an RTO D.x wire logical value can be 
translated from RTZ by Eq. (1). 
 ).().(:10, xDRTZxDRTOnxx   
Here, expressions RTO(D.x) and RTZ(D.x) correspond to 
wire logic values in the RTO and RTZ domains, respectively. 
In this way, according to Martin [2], the conversion of data 
from one domain to another is DI. Throughout this work 1-of-
2 codes will be employed to demonstrate the use of RTO. 
However, all presented techniques can be adjusted easily to 
any 1-of-n code. 

Wire Name Spacer Bit '0' Bit '1' 
D.1 0 0 1 
D.0 0 1 0  

Wire Name Spacer Bit '0' Bit '1'
D.1 1 1 0 
D.0 1 0 1  

(a) (b) 
Figure 1 – 4-phase 1-of-2 data encoding for (a) RTZ and (b) RTO protocols. 

(a) (b) 
Figure 2 – Example of 4-phase (a) RTZ and (b) RTO 1-of-2 data transmis-
sion, where sp stands for spacers. 

III. RTZ AND RTO STANDARD-CELL SYNTHESIS 

Several works propose standard-cell based design of RTZ 
QDI circuits. This usually requires only C-elements other than 
conventional gates. C-elements are basic components in asyn-
chronous circuits used for event synchronization [13]. The 
output of a basic C-element will only switch to 1 when all 
inputs are at 1. Similarly, it will only switch to 0 if all inputs 
are at 0. For any other input combinations, the output keeps 
its previous value. As examples, references [16] and [17] pro-
pose techniques for designing such circuits. Throughout this 
work we assume the use of the van Berkel C-Element due to 
its better power and delay tradeoffs [17]. Figure 3(a) presents 
its CMOS schematic. Also, QDI circuits can be implemented 
using different templates and buffer types. Some common 
templates are: WCHB, pre-charged half buffer (PCHB) [13] 
and pre-charged full buffer (PCFB) [13]. This work assumes 
the use of WCHB template latches due to their wide adoption 

and the availability of an automated synthesis flow based on 
them [15]. This template originally requires resettable C-
elements as storage cells. Figure 3(b) presents the schematic 
of an active-low resettable C-Element. 

 
Figure 3 – Transistor topologies for van Berkel C-elements: (a) basic; (b) 
active-low resettable; (c) active-high settable. 

According to Martin in [2], PRs are useful to define the 
behavior of each output of a QDI circuit using conjunction, 
disjunction and negation operators. Assuming that D are the 
inputs, Q are the outputs, req is the active-high request signal 
and rst is the active-low reset signal, the PRs for a j-bit RTZ 
1-of-2 WCHB appear in Figure 4(a). The first two PRs corre-
spond to the second of fourth phases of the handshake, and 
the last two PRs refer to the fourth phase and reset. These can 
be mapped to 2j active-low resettable C-elements (Figure 
5(a)). 
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(a) (b) 
Figure 4 –PRs for a j-bit RTZ 1-of-2 WCHB: (a) latch and (b) validity de-
tector. Predicates ALL0 and ALL1 are true when the vector passed as argu-
ment is a binary vector V composed by respectively only 0s/only 1s. 

Similarly, assume that the j-bit V signal is the vector of 
individual validity bits, D are the latch inputs, and valid is the 
active-low global validity output signal. Validity of a j-bit 
RTZ data channel D encoded in a 1-of-2 WCHB is then given 
by Figure 4(b). Predicates ALL1(x) and ALL0(x) are used to 
determine whether all wires of x are respectively at 1 or 0. 
These PRs implement the first and third phases of the proto-
col when driving the previous latch req input. Each data wire 
pair requires a 2-input NOR gate to compute its validity (the 
Vi's). Note that the generation of the intermediate Vi's uses 
NOR gates rather than ORs. If all intermediate values are at 0, 
data D is valid. This can be computed with a j-input NOR 
gate. If all intermediate values are at 1, a spacer is detected. 
This function can be computed with a j-input NAND gate. 
Conditions where some of the intermediate values are at 1 
while others are at 0 cannot determine a new value for valid. 
Hence, outputs of the j-input NAND and NOR gates need to 
be synchronized with a 2-input C-element. 

The resulting validity detector (VD) circuit appears in 
Figure 5(b). Another approach to synchronize all intermediate 
signals is to use a tree of C-elements. However, experience 
showed that these are usually more expensive in terms of sili-
con area, power and delay than using j-input NORs and 
NANDs. The latter gates can be built as trees of cells with 
less inputs, due to the associative nature of the non-inverted 



equivalent functions. Also, partial VDs can be implemented 
with 2-input NOR gates inside each single value WCHB and 
synchronized at higher hierarchical levels. This can be useful, 
depending on the circuit data dependencies. This work as-
sumes that VDs are separated from WCHBs, to analyze the 
effects of RTO and RTZ individually in each block. 

The RTO implementation of a WCHB is similar to the 
RTZ one. The main difference is the all-1s spacer. Because its 
initial state must be a spacer, there is a slight modification in 
the PRs for this WCHB, active-high set signal replaces the 
active-low rst signal of the RTZ WCHB PRs. The PRs for a j-
bit RTO 1-of-2 WCHB are then given by Figure 6(a). As 
Figure 5(c) shows, resettable C-elements of Figure 5(a) are 
replaced by settable ones, enabling RTO spacers for initializa-
tion. The schematic of these C-Elements appears in Figure 
3(c). 

The RTO VD block is also similar to the RTZ one. The 
difference is that it must detect 0s rather than 1s for data va-
lidity. Resulting PRs are in Figure 6(b). When mapped to 
logic gates, the result is that instead of employing a NOR gate 
for each pair of wires to detect whether one of them is at 0, a 
NAND gate is used to verify if data is valid (if one of the 
wires is at 0). The resulting circuit appears in Figure 5(d). 
Similarly to what happens in RTZ, each intermediate signal is 
synchronized with j-input NAND and NOR gates and a 2-
input C-element. 

 

 
Figure 5 – WCHB latch and validity detector implementations: (a) RTZ 
buffer using resettable, active-low C-elements (lower input); (b) RTZ valid-
ity detector; (c) RTO latch using settable, active-high C-elements (upper 
input); 
(d) RTO validity detector. 
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(a) (b) 
Figure 6 – PRs for a j-bit RTO 1-of-2 WCHB (a) and validity detector (b). 

As for Boolean and arithmetic operations, the DIMS logic 
style [13] is classically employed as it allows the use of stan-
dard-cell based design without losing the DI property. For 
RTO, we refer to the equivalent logic style as DIMxS, stand-
ing for Delay-Insensitive Maxterm Synthesis, since RTO is 

based on the maxterm-based logic expressions. DIMS and 
DIMxS require only C-elements other than conventional 
standard cells. In fact, most works report the use of DIMS for 
implementing QDI Boolean and arithmetic blocks. Table 1 
shows the truth table of an RTZ 1-of-2 half-adder with inputs 
Ain and Bin and outputs Cout and Sout. 

Table 1 – Truth table for an RTZ 1-of-2 half-adder. 

Ain.1 Ain.0 Bin.1 Bin.0 Cout.1 Cout.0 Sout.1 Sout.0 
0 0 0 0 0 0 0 0 
0 1 0 1 0 1 0 1 
0 1 1 0 0 1 1 0 
1 0 0 1 0 1 1 0 
1 0 1 0 1 0 0 1 

 
The first line of the table occurs when both inputs are 

spacers, which sets the outputs to spacers as well. Whenever 
one of the inputs is a spacer the outputs do not change. For 
that reason, such states are omitted. PRs describing functions 
for Cout.0, Cout.1, Sout.0 and Sout.1 appear in Figure 7. 
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Figure 7 – PRs for an RTZ, 1-of-2 half-adder. 

When mapping these to DIMS-based components, con-
junctions of the pairs inside parenthesis are mapped to 2-input 
C-elements, to guarantee synchronization of both valid data 
and spacers. The disjunctions outside parenthesis in the PRs 
filter the C-elements that have their outputs set to 1. This 
models rising output transitions. The conjunctions outside 
parenthesis for falling-transition PRs synchronize spacers in 
all C-elements. These functions are mapped directly to OR 
gates. The equivalent gate level schematic appears in Figure 8 
(a). 

 
Figure 8 –DIMS/DIMxS implementation of (a) RTZ and (b) RTO half-
adders. 

The RTO implementation is similar. Table 2 presents the 
truth table of an equivalent RTO version of the 1-of-2 DIMxS 
half-adder, which derives from Table 1 by Eq. (1).  

Table 2 – Truth table for an RTO 1-of-2 half-adder. 

Ain.1 Ain.0 Bin.1 Bin.0 Cout.1 Cout.0 Sout.1 Sout.0 
1 1 1 1 1 1 1 1 
1 0 1 0 1 0 1 0 
1 0 0 1 1 0 0 1 
0 1 1 0 1 0 0 1 
0 1 0 1 0 1 1 0 

 



The equivalent PRs for outputs Cout.0, Cout.1, Sout.0 and 
Sout.1 for this implementation of the DIMS half-adder appear 
in Figure 9. 
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Figure 9 – PRs for an RTO, 1-of-2 half-adder. 

These PRs are similar to those of the RTZ protocol. In-
deed, the disjunctions inside parenthesis to compute minterms 
are the same. The difference is that in RTO valid data is given 
by 0s. Therefore, instead of computing minterms, the max-
terms are the ones that need to be computed. Thus, disjunc-
tions are used for falling transitions in PRs and conjunctions 
indicating when all maxterms are at 1 detect spacers. There-
fore, ORs used in the RTZ classic DIMS are replaced by 
ANDs in the RTO version. Figure 8(b) shows the associated 
RTO gate level schematic. Using this approach, any RTO 
DIMxS logic block can be implemented. Classically, 
AND/NAND gates are preferred over OR and NOR gates in 
VLSI design. A stack of NMOS transistors is present in these 
gates, while ORs and NORs employ a stack of PMOS transis-
tors. Due to the fact that electron mobility is normally three 
times that of holes, NAND/AND gates are expected to present 
better power and delay tradeoffs than NOR/OR gates for the 
same silicon area. As a consequence, RTO DIMxS circuits 
are expected to present a better power-delay tradeoff than 
equivalent RTZ circuits. Additionally, the use of mixed sys-
tems combining RTO and RTZ for communicating blocks can 
be implemented by just inverting outputs, which can lead to 
further optimization degrees. 

IV. A PIPELINED MULTIPLIER CASE STUDY  

To analyze the tradeoffs between RTO and RTZ, a pipe-
lined multiplier was implemented using 1-of-2 data encoding 
in the WCHB template based on [15]. This circuit multiplies 
two unsigned integer n-bit values A and B, using a shift and 
add algorithm. Figure 10 shows the block diagram that maps 
the algorithm to handshake components. All dotted lines rep-
resent single wire control signals and full lines represent 1-of-
2 data channels. This circuit computes the product of Ain and 
Bin, and writes the result in the (2*n)-bit output Qout. The al-
gorithm was pipelined and the shift and add iteration is un-
rolled into n+2 stages. The case study enables the separate 

analysis of RTO and RTZ protocols effects in registers, valid-
ity detectors, control circuits, arithmetic blocks, and yet al-
lows overall circuit analysis. Registers are called REGi, where 
i is its number in the pipeline.  

All registers employ the WCHB template. Inputs are ini-
tially registered in REG0, with size 2n, and a zero generator is 
employed to initialize the value of variable x. This generator 
is represented by the box labeled 0, before REG1. The valid-
ity of the registered data is given by the first validity detector 
(VD0). Also, before the next register (REG1), the registered 
input B0 has its size n extended to 2n through the EXT opera-
tor, to allow shift left operations without any bit loss. Each of 
the next n pipeline stages comprises a register REGi, with 
size 5n, a validity detector VDi and a shift and add step 
STEPi, 1≤i≤n. Finally, stage n+1 has its output registered in 
REGn+1, which produces the circuit output Qout and has also 
size 5n. Additionally, all Boolean and arithmetic logic blocks 
were implemented based on DIMS/DIMxS. 

For comparison sake, RTZ- and RTO-based versions of 
this circuit were described in structural VHDL by intercon-
necting handshake components of an in-house macro blocks 
library. These blocks were initially modeled using PRs, as in 
Section II and then the required C-elements were manually 
mapped to the description. Boolean logic, such as the 
AND/OR operations required by the blocks were extracted 
from PRs and mapped in the description, but the synthesis 
tool was able to optimize their logic using basic logic gates. 
Also, the macro library had only RTZ components. RTO ver-
sions were added by designing new blocks according to the 
techniques discussed in Section II.  

The STMicroelectronics CMOS 65nm technology was 
used for synthesis. Typical gates (such as ANDs, ORs and 
buffers) were mapped in the Corelib provided by the vendor 
and C-elements were mapped to the ASCEnD-ST65 library 
[18] [19]. Design optimization of the circuit was enabled by 
the adoption of the flow proposed in [15] coupled to industrial 
tools. The specific tools employed were the RTL Compiler 
and Encounter from Cadence. Thirteen distinct implementa-
tions of each RTO and RTZ designs were produced, each 
with a different maximum operating speed. Different speeds 
are obtained in the classical way, using gates with distinct 
drive strengths. The generated designs had their internal nets 
and gate delays annotated in a standard delay format (SDF) 
file, which was the source to simulate the mapped netlist. 
Also, similar speed RTO and RTZ circuits presented equiva-
lent silicon area, which suggests that none of the protocols 
can be classified as more area efficient.  

 

 
Figure 10 – Block diagram of the study case pipelined multiplier. Dotted lines are single wire control signals and full lines 1-of-2 encoded data channels.



The simulation scenario employed a producer of random 
data and a consumer, both described in SystemC. These were 
used to verify correct operation of the circuits and to measure 
delay values. Delay measurements considered the designs´ 
throughput, measured in millions of operations per second 
(MOPS), and average acknowledge delays, measured for each 
design by simulating it with random data on the inputs, during 
1 ms. Internal activity of the nets was annotated and exported 
for power analysis. 

Simulation results show that RTO fastest versions were 
able to compute 236 MOPS and the slowest versions 148, 
while for RTZ these values were 237 and 176, respectively. 
Figure 11 presents the average acknowledge delays for valid 
data and spacers for each design (note that only the intersec-
tion between these intervals is shown in the graphs). The 
measured values are very similar. Yet, for slow designs, under 
200 MOPS, the RTO protocol presents slightly faster re-
sponses for valid data and slower responses for spacers. For 
the other designs, this scenario is reversed. Still, the speed-up 
in responses for valid data and spacers is always under 3%. 
Thus, neither protocol can be said to be more efficient in ab-
solute terms for acknowledge speed. 

 

Figure 11 – Acknowledge delay of valid data and spacer for RTO and RTZ. 

A similar simulation scenario was employed to measure 
the forward propagation delay with the same producer and 
consumer. However, the producer generates a single pair of 
random data and the consumer measures how long it takes to 
compute data and to generate a valid output, without consid-
ering the propagation of spacers that would eventually follow 
it. Then, the circuit is reset and another pair of data is sent. In 
this way, inter-register acknowledge does not interfere while 
measuring the forward propagation delay. This process simu-
lates for 1 ms. Figure 12 presents the measured average values.  

 

Figure 12 – Forward propagation delay results for the simulated designs. 

Results show that the RTO designs present lower forward 
propagation delay in most cases. In the best case, this differ-
ence was around 12%. In the fastest designs, RTZ forward 
propagation delay equals that of RTO. In fact, for the fastest 
design, the RTZ version presents slightly lower forward 

propagation delay. Still, this result displays a clear advantage 
of using RTO, as forward propagation delay is a very impor-
tant characteristic of handshake-based circuits. Typically, 
given a sender/receiver scenario, the smaller the percentage of 
forward propagation delay of the sender in total communica-
tion time, the faster the receiver will acknowledge. This leads 
to scenarios where the sender is released faster and may start 
a new communication earlier, which leads to overall speed up. 

The activity of all internal nets was annotated and used as 
the source for five power analysis scenarios: an idle state, 
where the circuit was reset and was not fed with any data, and 
four dynamic scenarios, where the circuit was fed with data 
during 25%, 50%, 75% and 100% of the simulation time. 
Figure 13 presents the measured total power for idle states. 
The obtained results display a clear advantage of the RTO 
protocol concerning idle power, 25% in average and 35% in 
the best case. This is important for asynchronous circuits, 
since there is no global synchronization and while some parts 
of the system are operating, others may be quiescent. Albeit it 
was expected a close to linear growth of power in the pre-
sented charts, these are slightly distorted. This is because the 
used synthesis method employs tools that are designed for 
synchronous systems that end up optimizing the critical path 
delay of the circuit rather than its average delay. This explains 
the peaks and valleys in the power charts. Nevertheless, the 
qualitative aspect of the results is not jeopardized. If tools 
adequate for asynchronous synthesis were available, these 
peaks and valleys would not appear in the charts, but the cor-
relation between the latter would remain. Experiments from 
[5] support this argument. 

 

Figure 13 – Total power of the designs while at reset/set and idle states. 

As for the dynamic scenarios, RTO- and RTZ-based de-
signs present similar total power. Figure 14 presents the meas-
ured total power of the circuits for such scenarios. Figure 14(a) 
presents the charts for 100% and 75% operating times and 
Figure 14(b) does the same for 50% and 25% values. Typi-
cally, RTO and RTZ charts of a same scenario are intertwined 
with one another. In general, RTO presents higher total power 
for slower designs, (8% higher in worst case). For faster de-
signs the situation is reversed, and in the best case RTO pre-
sents reductions of over 10%. In this way, both protocols are 
assumed to have similar power efficiency for dynamic scenar-
ios. In this context, at circuit level, the advantage of RTO-
based systems is the reduced power in idle states. In other 
words, a reduction on leakage power is observed. 



 

(a)

(b)

Figure 14 – Total power of the RTO and RTZ designs when: (a) computing 
100% and 75% of the time and (b) computing 50% and 25% of the time. 

For the case study, effects of this characteristic appear in 
the charts of Figure 14(b). The lower the operating time per-
centage is, the lower the RTO chart values become, compared 
to RTZ values. This characteristic of RTO can be understood 
by analyzing the power distribution of the simulated circuits 
as Figure 15 shows. Figure 15(a) and Figure 15(b) present the 
average power distribution of the simulated RTZ- and RTO-
based circuits, respectively, for the four dynamic scenarios. In 
the presented charts, power is distributed in leakage, internal 
and dynamic power. The first is due to subthreshold leakage 
currents, which are a major concern for recent technology 
nodes [20]. Internal power is due to parasitics and short-
circuit currents when switching standard-cells inputs. Switch-
ing power comes from charge and discharge of capacitances 
when switching standard-cells outputs. The charts show leak-
age power represents a smaller portion of the total power in 
RTO, when compared to RTZ. These results point to good 
potential for RTO to cope with leakage power constraints in 
future technologies. Measured power for dynamic scenarios 
did not meet expectations at the system level. With the use of 
AND/NAND gates, rather than OR/NOR gates, and results 
presented in [5], a better power efficiency was expected for 
RTO in the dynamic scenarios as well, i.e. RTO-based de-
signs were expected to provide the same throughput as RTZ 
designs with lower power. 

A more precise circuit power analysis reveals that the total 
power of the pipeline is the sum of the power from three 
block types (Figure 10): VDs, REGs and STEPs power. It is 
possible to measure the isolated effects of RTO and RTZ in 
logic arithmetic blocks (steps), sequential blocks and validity 
detectors measuring the percentage of total power accountable 
for each block. Figure 16 presents the obtained results of this 
power analysis for the idle scenario (parts (a), (b) (c)) and for 
dynamic scenarios with 100% operation, in (d), (e), (f). The 
100% operation scenario represents the worst case dynamic 
scenario for RTO justifying its choice. Note that the presented 
values are not absolute and, rather, charts show the percentage 
of total power for each block of each circuit for both simula-
tion scenarios. Also, note that REGs and VDs portion of 
power decreases as designs get faster, while the STEPs por-

tion increases. This is mostly due to critical path optimiza-
tions in synthesis. 

As charts in Figure 16(a),(b) and (c) show, the distribution 
of RTO and RTZ total power is similar in idle state. This 
demonstrates that reduction in leakage power, when using 
RTO, reflects at the circuit level. However, for dynamic state 
results, RTO and RTZ display significant discrepancies. For 
VDs and STEPs power, significant savings occur when em-
ploying RTO. This agrees with expected results from [5] and 
[11], since these blocks employ AND/NAND gates rather 
than OR/NOR gates, which is classically preferable in VLSI 
synthesis. Thus, the obtained results point to design optimiza-
tions when using RTO for arithmetic DIMxS-based circuits 
and validity detectors. On the other hand, as Figure 16(e) 
shows, the RTZ REGs blocks present a significantly lower 
part of the total power, when compared to RTO. 

 
(a) (b) 

Figure 15 – Average power distribution of designs: (a) RTZ and (b) RTO. 

These blocks are composed exclusively of resettable or 
settable C-elements. The former are used in RTZ and the lat-
ter in RTO. Results suggest that, albeit settable C-elements of 
RTO present lower static power than resettable C-elements of 
RTZ, their dynamic power is bigger. In fact, an accurate 
analysis of the characterized timing and power models of the 
ASCEnD-ST65 library confirmed these conclusions. One 
explanation is the fact that the settable C-element employs a 
stack of three PMOS transistors, while in the resettable C-
elements this stack uses NMOS transistors, as Figure 3 details. 
This discussion leads to the use of smaller transistors in re-
settable C-elements. The issue is independent of C-element 
topology. Thus, results point to power reductions when using 
RTZ-based WCHB registers. Case study data suggest the 
RTO protocol is more power efficient in dynamic scenarios 
for validity detectors and logic arithmetic blocks, while RTZ 
is more suited for buffers. 

Therefore, a system that employs both protocols is ex-
pected to provide further optimizations. Differently from the 
works presented in [6]-[10], which propose the use of two 
distinct spacers that are temporally distributed, mixing RTZ 
and RTO as described here implies the use of two spacers 
spatially distributed. In this way, avoidance of the hardware 
complexity and area overheads observed in [6] is possible. 
Also, translation of RTZ signals into RTO and vice-versa is 
very simple (See Eq. (1)). In the worst case, it requires one 
inverter per wire. However, resettable C-elements of RTZ 
registers already have inverters in their outputs, required by 
their memory scheme (see Figure 3). Then, the output conver-
sion of these blocks to RTO just requires using as output of 
resettable C-elements wire O, just before the inverter, which 
maintains the DI property. Also, AND gates in arithmetic 
RTO blocks right before an RTZ block can be changed to 
NAND gates, implying further optimization. 
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Figure 16 – Power distribution in the multiplier components for a scenario where the circuit is computing 100% of the time. VD stands for validity detector. 

Such a system is expected to provide much lower total 
power, given that, as Figure 16(e) shows, REGs are responsi-
ble for a minimum of 35% (in the worst case, over 40%) of 
the total power of RTO-only circuits. Because the portion of 
idle power of REGs for both protocols is usually lower than 
6.5% (over 10% in a few cases), as Figure 16(b) shows, the use 
of RTZ REGs is not expected to cause significant increase in 
circuits´ idle power. Moreover, mixed RTO/RTZ circuits can 
take advantage of the benefits of each protocol for each dif-
ferent block, leading to an enlarged design optimization 
space. For instance, according to Figure 16(d) chart, faster 
RTO VDs can be obtained for a same power budget of their 
RTZ version. These circuits acknowledge inputs faster, ena-
bling better communication at system level, and potentially 
leading to overall circuit speed-up. Finally, as mentioned be-
fore, Equation (1) satisfies the conditions stated in [2] for 
maintaining the circuit DI property. In this way, mixing RTO 
and RTZ does not jeopardize the functionality of a QDI cir-
cuit. 

V. CONCLUSIONS 

Classically, the RTZ protocol is employed for 4-phase 
communication in WCHB QDI circuits. This work demon-
strates that using the RTO protocol or a mix of the two leads 
to better choices. Results showed that RTO-based blocks pre-
sent lower idle power, which is beneficial for asynchronous 
circuits. This can be employed in modules like networks-on-
chip, which typically have low average activation rates along 
time. Also, DIMS/DIMxS logic blocks and validity detectors 
are more power efficient, in terms of idle and dynamic opera-
tion, when implemented using RTO. Future work includes the 
analysis of a mixed system, with some blocks implemented 
using RTO and others with RTZ, to provide a better under-
standing of protocol choice tradeoffs. To do so, a set of in-
verted C-elements is under design to enhance the ASCEnD-
ST65 library. Also, a study evaluating other schemes for im-
plementing set and reset signals in C-elements is under way, 
which may lead to optimizations in RTO registers. Another 
future work is an evaluation of the effects of the RTO proto-

col on other logic styles. Finally, analyzing the effects of the 
RTO protocol in additional DI codes is also an interesting 
future work. 
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