
H2A: A Hardened Asynchronous Network on Chip

Julian Pontes1,2, Ney Calazans1, Pascal Vivet2

Faculty of Informatics - FACIN, - PUCRS1
Porto Alegre, RS, Brazil
ney.calazans@pucrs.br

CEA-LETI2
Grenoble, France

{julian.hilgembergpontes, pascal.vivet}@cea.fr

Abstract— One of the next challenges for asynchronous com-
munication architectures is reliability, in the form of robustness
to single event effects, when under the impact of particles gener-
ated by ionizing radiation. This occurs because technology down-
scaling continuously increases the logic sensitivity of silicon de-
vices to such effects. Contrary to what happens in synchronous
circuits, delay variations induced by radiation usually have no
impact on asynchronous quasi-delay insensitive (QDI) combina-
tional logic blocks, but in case of storage logic, bit flips may cor-
rupt the circuit state with no recovery solution, even when using
asynchronous circuits. This work proposes a new set of harden-
ing techniques against single event effects applicable to asyn-
chronous networks-on-chip. It presents practical case studies of
use for these techniques and evaluates them in close to real life
situations. Obtained results show that the achieved increase in
asynchronous network-on-chip robustness has the potential to
leverage this communication architecture solution as the main
choice for the next generations of complex silicon devices on
advanced nodes technologies such as 32 nm, 28 nm and below.

Keywords—asynchronous circuits; networks on chip; soft
error; single event effect

I.

An energetic particle crossing a semiconductor junction
generates a track of electron/holes pairs. When the victim
node is in reverse bias, the electrical field present in the junc-
tion can collect the ions generated by the particle strike. De-
pending on the energy of the particle and electrical field
strength, the particle strike can cause different Single Event
Effects (SEEs). SEEs can be divided in two main categories:
hard errors and soft errors [8]. Hard errors may cause perma-
nent damage to the MOS device. A soft error can be a pulse
transient at some combinational logic device (a Single Event
Transient or SET) or a bit-flip in some storage element (a
Single Event Upset, SEU). Technology downscaling continu-
ously increases logic sensitivity of devices to such effects [6].

Asynchronous circuits have shown better response under
SEEs than their synchronous counterparts [12]. Contrary to
what happens in synchronous circuits, delay variations in-
duced by radiation usually have no impact on asynchronous
quasi-delay insensitive (QDI) circuits. However, bit flips may
corrupt data transmissions and stall the circuit with no recov-
ery solution. Due to this delay immunity, asynchronous cir-
cuits are gathering attention, particularly for Networks on
Chip (NoCs) implementation [4]. Asynchronous NoCs can
provide a high performance communication architecture well
suited for Globally Asynchronous Locally Synchronous
(GALS) SoCs [4]. In these, synchronous IPs communicate
asynchronously [3]. This removes the need of a global clock

tree, reducing synchronization problems and power associated
to clock distribution. By providing both, delay variation im-
munity and robustness to SEEs, asynchronous NoCs can reach
the status of most promising communication architecture for
SoCs in deep submicron technologies.

This work proposes a new asynchronous network on chip
architecture robust to SEEs. Hardening techniques are applied
at the handshake and packet protocol levels, to guarantee the
control robustness, thus reducing the NoC stall probability.

The rest of this work is organized as follows. Section II
presents some basic concepts about asynchronous circuits, to
help the understanding of this work. Section III discusses
previous work. Section IV presents the asynchronous NoC
used here as base architecture. Section V presents the hard-
ened version of the asynchronous NoC. Section VI presents
some experimental results and their discussion. Finally, Sec-
tion VII brings a set of conclusions and ideas for future work.

II.

Asynchronous circuits are a class of circuits that do not use
clocks to implement sequencing. The absence of a global or
some local clock signals is in fact the only characteristic
shared by all asynchronous circuits. This class of circuits is
indeed a vast territory containing a large number of design
choices [14]. Delay Insensitive (DI) circuits are the most ro-
bust asynchronous sub-class. In this sub-class, the delay in the
wires and/or gates do not affect the circuit behaviour. This
sub-class however, is very limited [14]. By assuming the use
of isochronic forks, i.e. forks where all branches have delays
within a given time interval, the DI circuits class can be ex-
panded to the encompassing Quasi Delay Insensitive (QDI)
class. Using QDI, complex data processing circuits can be
implemented. Data flow QDI circuits operation is based on the
combined use of handshake protocols and DI data codes. Sec-
tion II-A explains details these two mechanisms.

A. Handshake Protocol

Local handshake is the widest adopted protocol in asyn-
chronous circuits. In fact, this protocol is not exclusive for
asynchronous circuits. Synchronous and GALS circuits em-
ploy such communication protocol. A basic handshake proto-
col employs two wires, Request and Acknowledge, and can be
implemented in several different ways [14]. A commonly used
version in QDI circuits is the four-phase handshake protocol,
also called Return to Zero. Here, a Request initiates communi-
cation. Acknowledge informs that the Request signal was
received and the required operation was, or will be, per-
formed. Request is then removed and in response, Acknowl-

978-1-4799-1132-5/13/$31.00 © IEEE

978-1-4799-1132-5/13/$31.00 ©2013 IEEE

edge is also removed. Data signals, when present, are enclosed
by the control signals, and are free to switch before activating
the control signals of the protocol. To guarantee correct opera-
tion, events in control signals must be signalled just when the
data interface is in a stable state.

B. Delay Insensitive Codes

To remove the timing constraint between Request and
Data signals in a handshake protocol, data can be encoded
using a DI code. In this class of codes, validity of data is em-
bedded within the data itself. In this way, the Request signal is
no longer necessary since the data validity can be extracted by
inspecting the Data signals. A Completion Detector is a circuit
that detects data validity in QDI circuits.

The delay insensitivity of a code is guaranteed when the
code is unordered [1]. A binary code C is unordered when
none of its codewords is contained in another one in the same
code [15]. This work assumes the use of m-of-n DI codes. This
is a class of unordered codes which uses n wires. A valid m-
of-n codeword has exactly m wires equal to the logic value
‘1’. Table 1 shows an example, the one-of-four DI code. This
code uses four wires to carry two data bits of information.

Table 1 – The one-of-four code definition, and its spacer.
Value A3 A2 A1 A0

Spacer 0 0 0 0
0 0 0 0 1
1 0 0 1 0
2 0 1 0 0
3 1 0 0 0

When a DI Code is associated to the four-phase handshake
protocol, it is necessary the definition of a special codeword to
represent the absence of data, referred here as a spacer (see
Table 1). In four-phase protocols, a spacer is necessary be-
tween every two data to complete the protocol. Figure 1 shows
a DI data transmission using the one-of-four code and a four-
phase handshake protocol.

Figure 1 – Four-phase handshake protocol.

C. The C-element

The C-element is one important component for most, if not
all asynchronous design styles. It is used in practically all such
design styles as well as in some hardened synchronous designs
 [7]. This component enables to implement event synchroniza-
tion, by producing an event at its output only when a set of
input events occur at its inputs. In practice, a basic C-element
copies its inputs to the output when all inputs are either 0 or 1,
otherwise it keeps its prior output value. Figure 2 shows a
state graph for a 2-input C-element. In the Figure, states are
labelled according to the sequence Input-Input-Output. Solid
lines represent the normal C-element behaviour. Dashed lines
represent its behaviour when an SEE occurs in each particular
state. Depending on the value of its inputs a C-element can act
as a combinational cell (in states 000 and 111) or as a memory
element (in the remaining states). In a combinational state, the

C-element can be victim of a SET while when in memory
states it can be an SEU victim, as Figure 2 shows.

Figure 2 – SEEs C-element state transition graph.

III.

Most works about hardening techniques against soft error
in NoCs limit application to error correction or detection
schemes in the data links. The work of Murali et al. [9] pre-
sents retransmission schemes that can be applied between
routers (switch-to-switch), or at Sender/Receiver (end-to-end).
Another way to prevent data errors in NoC links is using For-
ward Error Correction (FEC) as proposed in [17]. The work of
Rossi et al. [13] presents different levels of data error protec-
tion, enabling correction and/or detection. Depending on the
requirements, errors can be detected, corrected by single error
correction (SEC), single error correction double-error detec-
tion (SECDED) or even symbol error correction. The work of
Yu and Ampadu [17] also proposes data correction at switch-
to-switch and end-to-end levels. None of these implementa-
tions proposes hardening techniques for the control circuits in
routers. In this way, errors can easily cause the NoC to stall
even when data correction is applied.

The work of Frantz et al. [5] presents a synchronous NoC
evaluation under the presence of faults generated by SEU
and/or crosstalk. Authors evaluate hardware and software
mitigation techniques for a NoC with 8-bit data flits. They
applied hardening techniques to data and control logic. At the
data level, techniques use Hamming codes or Cyclic Redun-
dancy Check. At the control level, triple modular redundancy
(TMR) combines with a triple sampling scheme, where the
TMR employs a combinational voter inside the circuit. Since
the authors overlooked SETs, they consider the voter fault
free, which leads to optimistic soft error rates.

All works mentioned above assume synchronous NoC im-
plementations. Just a few works propose hardening techniques
for asynchronous NoCs implementations. Agyekum and
Nowick [1] propose an unordered DI code that enables two
bits error detection and one bit error correction capabilities.
However, this code is difficult to implement in a fully QDI
way and becomes complex for large words, due to the comple-
tion detection complexity. Bainbridge and Salisbury [2] pro-
pose a set of techniques applicable to QDI NoC links, particu-
larly for links based on m-of-n codes, to reduce glitch sensitiv-
ity due to crosstalk. The techniques they propose are mostly
sample filtering techniques, to reduce glitches in data signals
and in some cases in acknowledge signals. However, none of
these is adequate for SEEs. The work of Yebin et al. [16]
presents hardening techniques to the inter-chip communication
using the SpiNNaker NoC. The results show a reduction in
NoC deadlocks due to glitches in the inter-chip link. However,
none technique is proposed in this work to problems likes

SEEs and glitches arriving inside the chip. This work proposes
new techniques to deal with errors in the NoC control and
reduce the probability of stalls and packet errors.

IV.

The HermesA NoC [11] is used as the base communication
architecture in this work. HermesA routers comprise up to five
input and output ports. Ports are named North, South, East,
West and Local, as Figure 3 shows. The Local port enables
communication between the router and its IP Core. Remaining
ports provide neighbour routers´ communication.

Figure 3 – The HermesA router basic architecture.

Packets in HermesA are delimited by two special sideband
signals, Begin of Packet (BOP) and End of Packet (EOP), as
Figure 3 details. In the HermesA one-of-four NoC implemen-
tation, these signals are encoded in a single one-of-four code-
word, called Flit Type. These signals are responsible for indi-
cating the first and last flits of a packet. Source routing is
employed in this work, differently of the implementation de-
scribed in [11], which used distributed routing. The first flit
contains routing information and is signalled by the BOP
signal. The last flit is delivered together with the EOP signal
and is important to release NoC allocated resources. Using
these side band signals, it is possible to have packet sizes with
any positive size (>1). The Input Port in HermesA consists in
two modules: Path Definition and Packet Dispatcher/Section
Closing. The Input Port in this work has one data input and
four possible data outputs. A North Input Port for example,
can send incoming packets to the South, East, West or Local
ports. The routing of a packet to the opposite direction usually
does not make sense. The Input Port is responsible for deter-
mining the appropriate Output Port for the incoming packet.
The Path Definition Module does this when the Input Port
receives the first flit. In the source routing implementation,
each two bits (a single 1-of-4 codeword) carry a routing deci-
sion. The HermesA Input Port extracts the most significant 1-
of-4 codeword from the flit as the routing decision and rotates
the flit. Only the Flit Type, at the least significant 1-of-4
codeword, is left untouched by the flit rotation in the Path
Definition module. In this way, the next router will find in the
most significant 1-of-4 codeword the next routing decision.

The first flit creates a Communication Section, i.e. allo-
cates some NoC resources (Input/Output ports). The use of
wormhole requires resource allocation that creates a reserved
path, similar to what happens when using circuit switching.
The main difference is that here small pieces of information

(the so-called flits) are assumed. Thus, the virtual circuit cre-
ated by the first flit usually do not hold the resources for very
long times. The last flit must release the components for other
packets inside the NoC. The Packet Dispatcher/Section Clos-
ing module performs the task of resource releasing.

The HermesA Output Port is responsible for controlling
the access to shared resources. In this case, the resource is the
next router Input Port or the access to the NI. To perform this
control action, it is necessary to implement arbitration mecha-
nisms that decide which incoming traffic to serve at each spe-
cific moment. The first flit generates a request to the arbiter.
The arbiter chooses one among incoming requests to grant.
The last flit releases the arbiter and ends packet transmission.

V.

The construction of a circuit robust to SEEs is a complex
task, due to the number of considerations needed to ensure that
the module behaviour can resist to the many possible distinct
effects. A coarse classification of such effects splits them into
effects on data and control parts of the module, because each
of these are amenable to treatment by distinct robustness en-
hancement techniques. Both type of errors are important and
must be treated. This work focuses on the control part of asyn-
chronous NoCs since this issue is less explored than data error
correction and the traditional synchronous hardening tech-
niques cannot be explored in asynchronous circuits. An error
in the control can make an Input or Output port to stall. When
using wormhole switching this local error can easily propagate
and cause a full NoC stall. Then, the only recovering method
is reset the full NoC and possibly all network interfaces. In
HermesA, control is split in two distinct protocols levels: the
four-phase handshake protocol and the packet protocol.

• Handshake protocol level – Most asynchronous hand-
shake protocols employ sequential components may corrupt
the protocol operation when subject to SEEs. Specific tech-
niques may be designed to guarantee reliability to the protocol
under the effect of SEEs;

• Packet protocol level – Specifically in NoCs, the reliabil-
ity of the first flit containing the routing information and the
sideband signals BOP/EOP is crucial. Devising techniques to
enhance link reliability is thus important.

A. Handshake Protocol Level Hardening

This work proposes a modification of the asynchronous
weak conditioned half buffer (WCHB) [14] to change timing
windows, thus increasing four-phase protocol robustness. The
name of the proposed technique is Normal Open Asynchro-
nous Pipeline (NOAP). The main idea is to synchronize data
and acknowledge at each buffer stage.

Figure 4 shows a 3-stage pipeline implementation using
the NOAP technique.

Figure 4 – Normal open asynchronous pipeline implementation.

The only difference of this implementation with regard to
the classical asynchronous WCHB is the addition of a C-
element (emphasized in the Figure) to synchronize data and
acknowledge signals. In the initial state, the Input Data=0000;
all WCHB C-elements have their inputs equal to 00 and out-
put=0; in all stages the additional C-element (referred here as
NOAP C-element) has inputs at 01 (0 from the pre-buffer
detection and 1 from the acknowledge signal). Since the
NOAP C-element was initialized (the global reset signal is
omitted in the Figure), the output is equal to 0. In this state,
the WCHB C-elements are transparent to the spacer. No data
can cross the buffer before the data/acknowledge synchroniza-
tion. During the initial state, just a SET can happen in the
buffer C-elements but this SET is filtered by the next stages of
the pipeline that are in the same state.

Once new data arrives, these must be detected by the com-
pletion detector (the OR gate) and the result of the detection
will enable the NOAP C-element. The NOAP C-element then
changes the buffer state. The later becomes transparent to data
like a normal buffer implementation. The main difference is
that when the acknowledge arrives, the NOAP C-element do
not close the asynchronous buffer. This buffer stays open until
the synchronization between data and acknowledge takes
place. Thus, under normal operation the C-element is open.
The main advantage of the NOAP implementation is its filter-
ing property, mainly in the empty state. This protocol modifi-
cation brings two main advantages to pipeline robustness:

1. Circuit electrical filtering increase: In the NOAP hand-
shake protocol, C-elements that are part of the WCHB
stay in states 111 and 000. In a conventional asynchro-
nous pipeline implementation, C-elements inputs remain
mostly in 01 and 10 states. The states where the C-
element has inputs at the same logic level have higher
critical charge. In this way, the NOAP technique increases
the critical charge of asynchronous as well.

2. Circuit logic filtering increase: The main characteristic of
NOAP is the change in timing windows of the four-phase
handshake protocol. NOAP timing windows reduce the
handshake stall probability. It also reduces the probability
that an SEU occur in the asynchronous buffer, since the
most probable C-element state is 000 (state susceptible to
SETs). This removes dormant errors inside the input and
output ports, mainly in the idle state, consequently pro-
tecting the first flit which contains the routing informa-

tion. Since C-elements of the asynchronous buffer are en-
abled just when both data and acknowledge arrive, NOAP
has the ability to logically filter SET transients in the data
signals as well as in the acknowledge wire.

The main drawback of NOAP is the additional propagation
delay in the forward and backward paths. The consequences
are an increase in pipeline cycle time and a consequent reduc-
tion in throughput, as well as an increase in latency.

B. Packet Level Hardening

Just as the handshake protocol, the packet protocol se-
quence can also suffer with SEEs. This protocol is controlled
by two sideband signals (BOP and EOP) that designate the flit
type in the HermesA NoC. In addition, the packet protocol
depends on the routing information contained in the first flit.
To increase packet protocol robustness, this work suggests
applying the double check technique [7] to BOP/EOP, as well
as to the routing decision.

1) Double Check

Double check is a spatial redundancy technique proposed
by Jang and Martin [7] to filter SEEs mostly in combinational
logic. This technique consists in duplicating the logic and
performing a logic check using the event synchronization
property of C-elements. Figure 5 shows an example of the
Double Check technique applied to a 3-input logic. In the
Figure, Logic A and Logic B are two instances of a circuit.
Inputs of both circuits are also the same, i.e. (XA=XB,
YA=YB and ZA=ZB). The C-elements with outputs QA and
QB synchronize the results of the logic. Updates in outputs
QA and QB only occur when the C-element inputs are equal.
In this way, the C-elements filter any SET in Logic A or in
Logic B. Since during normal operation each C-element input
pair has always the same value, C-elements may only present
SETs. The problem of using double check is the area over-
head. Since this technique can filter SET it is well suited to
work combined with NOAP, where the handshake behaviour
increases the SET and shrinks the SEU window.

Figure 5 - Example of the double check technique applied to a 3-

input single output logic.

Inside the Input and Output ports, BOP and EOP signals
are responsible for packet control and by the flit flow, as dis-
cussed earlier. An SEE in these signals may alter the correct
data path inside the NoC. An SEE in the BOP signal may, for
example, propagate a regular flit to the Path Definition module
and thus forward part of a packet to the wrong target. A wrong
indication on the EOP signal may release the arbitration
mechanism. Therefore, a packet can be interrupted and reach
the correct target incomplete.

In this work, the flit type (BOP/EOP) information is dupli-
cated to increase the robustness of the packet control. Figure 6

shows the double check scheme adopted for the flit type and
routing information. In the Figure, there are two incoming 1-
of-4 codewords. Both codewords represent the same data since
data were duplicated (A0 = B0; A1 = B1; A2 = B2; A3 = B3).
The demux decision is extracted after the double check, where
the two codewords related to the flit decision are then restored.
Thus, if an SEE occurs, the double check circuit filters it.

The routing decision is part of the first flit in each packet.
It controls the path that the packet must cross inside the NoC.
In this way, an SEE that changes the routing decision may
forward the packet to a wrong target. The hardening of the
routing decision also employs double check. This is applied to
the source routing mechanism, as Figure 6 details. In this way,
in the H2A NoC, each Input Port extracts the two most signifi-
cant 1-of-4 codewords and performs a double check on them.
The result controls the output multiplexer of the Input Port and
is kept in the routing register until the end of packet transmis-
sion. The routing register is also duplicated to increase packet
robustness. The main drawback is that the duplication of each
routing decision reduces the number routers that a packet can
cross inside the NoC, due to the duplication of the routing
information. A HermesA 32-bit flit, composed of 16 1-of-4
codewords, can carry up to 16 routing decision and conse-
quently it can cross up to 16 routers before reaching the final
target. In H2A, a 32-bit flit is composed also by 16 1-of-4
codewords. But because the routing information is duplicated,
the packet can cross at most 8 routers.

Figure 6 – Double check scheme adopted for the BOP/EOP and

routing information.

VI.

This Section presents the results of SEE evaluation com-
paring HermesA to three different H2A NoC versions: one
using just Flit Type double check (Flt Type DC), one using
just the NOAP technique (NOAP) and one combining both
techniques (Flit Type+NOAP). SEE evaluation follows the
method proposed by the authors in [10]. In this method, the
SEE victim cell is randomly chosen during timing annotated
simulation. The simulation is done after place and route of one
router using timing annotation. The entire standard cell library
was characterized to extract the electrical response to SEEs as
[10] suggests. A 65nm bulk technology was used in this work.
The SEE evaluation assumes conditions of 1 Volt, 25°C, and
typical process parameters. These operating conditions apply
to the timing cell description as well as to the SEE standard
cell characterization process.

Traffic was injected at one of the input ports. The injected
packet rate is 10x106 packets/second, with all packets having

16 flits. One SEE injection was performed at each packet. For
this evaluation, 100x103 packets and 100x103 SEEs were in-
jected. Figure 7 shows the relation between the Number of
Data Errors and the Injected Charge for four different imple-
mentations.

Data Error x Injected Charge

0

1

2

3

4

5

6

7

8

9

10

0 200 400 600 800 1000

Injected Charge (fC)

N
um

be
r o

f E
rr

or
s

(K
)

HermesA
Flit Type DC
NOAP
Flit Type DC + NOAP

Figure 7 - Relation between the injected charge and the Soft Error

Rate for different implementations.

In the graph, it is possible to note that the use of the NOAP
combined with the flit type double check (Flit Type DC in the
graph) technique displays the best results for all levels of in-
jected charge. All implementations present similar curves,
where it is possible to distinguish a point where the increase in
the injected charge does not increase the error rate. This point
is close to the C-element critical charge level. This means that
the injected charge level has less impact in the soft error after
exceeding the critical charge of the C-elements. The benefits
of the proposed NoC hardening solutions are clearer when
looking to the number of errors during packet transmission.
Figure 8 shows these packet errors. Packet errors are errors in
the packet reception like incomplete packets, wrongly routed
packets, wrong flit indication and unexpected packets. Again,
the combined use of Double Check in control and the NOAP
technique reduced about 45 times the error rate.

Packet Error x Injected Charge

0
0,5

1
1,5

2
2,5

3

0 200 400 600 800 1000

Injected Charge (fC)

N
um

be
r o

f E
rr

or
s(

K
)

HermesA
Flit Type DC
NOAP
Flit Type + NOAP

Figure 8 - Relation between the number of packet errors and the

injected charge

Figure 9 shows the classification of the errors as a function
of the victim flit. In this Figure, it is possible to note the ca-
pacity of the NOAP technique to filter errors when Ports are in
the idle state. This observation relies on the number of errors
in the first flit. The first flit carries faults that are dormant in
the circuit during the idle state of the NoC. The NOAP tech-
nique filters this type of errors by enabling SETs rather than
SEUs. Since the first flit carries the routing information, the
use of NOAP increases the robustness of this control informa-
tion, reducing the number of packet errors as well.

0
0,5

1
1,5

2
2,5

3
3,5

4

N
um

be
r o

f
Er

ro
rs

(k
)

First Flit Last Flit Payload

Flit Error Type

Flit Error Classification HermesA
Flit Type DC
NOAP
Flit Type DC + NOAP

Figure 9 - Flit corruption evaluation.

Figure 10 shows the stall occurrences. The best technique
to reduce stall, as predicted, is the double check. However, it
is interesting to note that even without redundancy, the NOAP
technique displays good results. Stall reduction results from
the filtering property during the idle state. This in turn reduces
the number of faults in the flit type signals and therefore re-
duces the number of errors in the packet control flow. NOAP
also protects the four-phase handshake protocol and from
SETs in the acknowledge signal.

Number of Stalls x Injected Charge

0

200

400

600

800

1000

0 200 400 600 800 1000

Injected Charge(fC)

N
um

be
r o

f S
ta

lls

HermesA
Flit Type DC
NOAP
Flit Type + DC

Figure 10 - Evaluation of the stall errors as a function of the injected
charge.

Table 2 shows an overview of each technique and the area
overhead for a router when compared to the HermesA router.
The area overhead of both techniques is negligible when com-
pared to traditional redundancy techniques like the full double
check.

Table 2 – Area comparison and hardening overview.
Design Level Technique Hardening Target Error Area

Overhead
Handshake

Level
Protocol Adap-

tion
Timing Filter-

ing
Data and
Packet 4.9%

Packet Level Double Check Logic Filtering Packet and
Stall 6.7%

The duplication of the routing information has impact on
the number of routers that a packet can cross. For example, a
32-bit flit can carry 16 routing decisions and consequently
cross up to 16 routers. Using the routing double check the
packet can cross up to 8 routers, since the routing information
was duplicated. Performance, latency and throughput are af-
fected by both techniques. For the NOAP an additional C-
element is part of the forward (data) and backward (acknowl-
edge) path. Double check also adds one C-element in the for-
ward path of the Demux control signal.

VII.

The timing robustness of QDI circuits gives asynchronous
NoCs the robustness needed to help SoC designers to tackle
problems that arise in modern deep submicron technologies.
By studying the radiation effects over asynchronous NoCs,
this work helps increasing the robustness of these communica-
tion architectures against Soft Errors as well. Results show
that the H2A reduces about 10 times the probability of stall in
the NoC when compared to HermesA. Results also show a
small area and consequently static power overhead associated
with the proposed techniques. Future works include the per-
formance evaluation and full characterization of entire H2A
NoCs.

VIII.
[1] Agyekum, M. Y.; Nowick, S. M. “An error-correcting unordered code

and hardware support for robust asynchronous global communication.”
In: DATE’11, pp. 765-770, 2011.

[2] Bainbridge, W. J.; Salisbury, S. J. “Glitch sensitivity and defense of
quasi delay insensitive network-on-chip links.” In: ASYNC’09, pp. 35-
44, 2009.

[3] Chapiro, D. “Globally-Asynchronous Locally Synchronous Systems.”
PhD Thesis, Stanford University, Oct. 1984, 134 p.

[4] Clermidy, F.; Cassiau, N.; Coste, N.; Dutoit, D.; Fantini, M.; Ktenas, D.;
Lemaire, R.; Stefanizzi, L. “Reconfiguration of a 3GPP-LTE
telecommunication application on a 22-core NoC-based system-on-
chip.” In: NoCS’11, pp. 261-262, 2011.

[5] Frantz, A. P.; Cassel, M.; Kastensmidt, F. L.; Cota, E.; Carro, L.
“Crosstalk and SEU-Aware Networks on Chips.” IEEE Design & Test
of Computers, 24(4), pp. 340-350, Jul.-Aug. 2007.

[6] International Technology Roadmap for Semiconductors,
http://www.itrs.net/, 2011.

[7] Jang, W.; Martin, A. “SEU-tolerant QDI circuits”. In: Async’05, pp.
156-165, 2005.

[8] Mukherjee, S. “Architecture Design for Software Errors.” Morgan
Kaufmann Publishers, Burlington, 2008. 337p.

[9] Murali, S.; Theocharides, T.; Vijaykrishnan, N.; Irwin, M.J.; Benini, L.;
De Micheli, G. “Analysis of error recovery schemes for networks on
chips.” IEEE Design & Test of Computers, 22(5), pp. 434- 442, Sept.-
Oct. 2005.

[10] Pontes, J.; Vivet, P.; Calazans, N. “An Accurate Single Event Upset
Digital Design Flow for Reliable System Level Design”. In: DATE’12,
pp. 224-229, 2012.

[11] Pontes, J. J. H.; Moreira, M. T.; Moraes, F. G.; Calazans, N. L. V.:
“Hermes-AA: A 65nm Asynchronous NoC Router with Adaptive
Routing”. In: SOCC’10, pp. 493-498, 2010.

[12] Rahbaran, B.; Steininger, A. “Is asynchronous logic more robust than
synchronous logic?” IEEE Transactions on Dependable and Secure
Computing, 6(4), pp. 282-294, Dec. 2009.

[13] Rossi, D.; Angelini, P.; Metra, C. “Configurable Error Control Scheme
for NoC Signal Integrity.” In: IOLTS’07, pp. 43-48, July 2007.

[14] Sparsø, J.; Furber, S. “Principles of Asynchronous Circuit Design – A
Systems Perspective.” Kluwer Academic Publishers, Boston, 2001.
354p.

[15] Bose, B. “On Unordered Codes.” IEEE Transaction on Computers,
40(2), pp. 125-131, Feb. 1991.

[16] Yebin Shi; Furber, S.B.; Garside, J.; Plana, L.A. “Fault Tolerant Delay
Insensitive Inter-chip Communication”. In: Asyn’09, pp.77-84, 2009.

[17] Yu, Q.; Ampadu, P. “Dual-Layer Adaptive Error Control for Network-
on-Chip Links.” IEEE Transactions on Very Large Scale Integration
(VLSI) Systems, 20(7), pp. 1304-1317, Jul. 2012

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.7
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

