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ABSTRACT

Ontology matching consists of generating an alignment (set of correspondences) from
a pair of ontologies. This process has been seen as a mainstream solution to the semantic
heterogeneity problem in ontology-based systems. A wide diversity of matching solutions
has been proposed, which exploit different features within an ontology. Matching systems
usually differ in their results and an important issue is to combine different matching results
and deal with potential conflicts that arise from the different views. Our approach exploits
argumentation theory as a way for dealing with that issue. Here, arguments are as positions
that support or reject correspondences and argumentation frameworks support the creation
and exchange of arguments, followed by the reasoning on their acceptability. First, match-
ers generate their correspondences and represent them as arguments. Next, they share
their arguments and interpret them on the basis of argumentation frameworks and individ-
ual preferences. As a result, each matcher has a subset of acceptable arguments, from the
set of arguments initially shared. The subset of globally acceptable arguments (consensus)
is computed from the individual. In this paper, we exploit the notion of majority, where argu-
ments being acceptable by the majority of matchers are considered as a consensus on the
initial alignments. We evaluate our proposal on a standard set of alignments. Considering
the correspondences represented as arguments acceptable for the majority of individual
subsets, both precision and recall are improved, specially when compared with the subsets
acceptable for every matcher or for some matchers.

Keywords: ontology matching, argumentation frameworks, evaluation.

Mathematics Subject Classification: 68T01.

1 Introduction

An ontology defines the set of concepts (by specifying the vocabulary) that represent the knowl-
edge in a domain. In this way, ontologies aim at specifying a shared understanding of a domain
that can be communicated between applications (Fensel, 2003). Although ontologies have
been seen as a way for sharing knowledge in the Web, the existing ontologies might be them-
selves sources of heterogeneity. They may differ in granularity, representation and the way in

International Journal of Artificial Intelligence, 
ISSN 0974-0635; Int. J. Artif. Intell. 
Spring (March) 2012, Volume 8, Number S12 
Copyright © 2012 by IJAI (CESER Publications)

www.ceserp.com/cp-jour 
www.ceser.in/ijai.html 
www.ceserpublications.com



which they model the concepts, properties and axioms. Ontology matching has been seen as
a mainstream solution to the semantic heterogeneity problem in ontology-based systems.

Ontology matching is the process of finding correspondences between two ontologies. Many
different techniques to the matching problem in found in the literature (Euzenat and Shvaiko,
2007). The distinction between them is accentuated by the manner in which they exploit the
features within an ontology. Whereas lexical techniques consider measures of string similarity;
semantic ones consider semantic relations usually on the basis of lexical oriented linguistic
resources; while structural techniques consider entity locations in the ontology hierarchy. Each
category offers a wide diversity of options.

Due to that diverse way of exploring the problem, matching systems generally differ in the
alignments proposed for two ontologies. Some approaches will perform better than others for
specific ontologies, depending on how well the technique fits the material available. Further-
more, approaches that perform well for some ontology or task may not be successful in others.
A way to combine the different matching approaches and solve the potential conflicts in the
alignments provided by them is via an agreement process. This process can be carried out by
using argumentation theory.

Our approach exploits argumentation as a way for supporting the creation and exchange of
arguments that represent positions in favour or against correspondences between entities of
ontologies, as well as for supporting the reasoning on the acceptability of these correspon-
dences. Different matchers, working on different approaches, generate their set of correspon-
dences. Next, they share their arguments and interpret them on basis of argumentation and
individual preferences. The subset of globally acceptable arguments (consensus) is com-
puted from the individual subsets of acceptable arguments. The underlying argumentation
theory we apply here is the strength-based argumentation framework (Trojahn, Quaresma,
Vieira and Moraes, 2008), (Trojahn, Quaresma and Vieira, 2008a), (Trojahn, Quaresma and
Vieira, 2008b) (SVAF), which has been specified for associating arguments to the confidence
that matchers have in the similarity between the entities of the ontologies being matched. This
confidence is usually derived from similarity assessments made during the matching process.

In this paper, we exploit the notion of majority in combining the individual subsets of accept-
able arguments. Arguments being acceptable by the majority of matchers are considered as
the consensus on the alignments generated by the different matchers. According to (Coste-
Marquis, Devred, Konieczny, Lagasquie-Schiex and Marquis, 2007), this kind of voting mecha-
nism is inadequate to characterise the notion of acceptable arguments at a group level. How-
ever, this is only true when the different agents do not share the same initial set of arguments.
In our case, voting makes sense because all matchers share their arguments with each others
and have the same set of arguments at the start.

We focus on the practical evaluation of our proposal on a standard set of alignments. Con-
sidering the subset of arguments being acceptable for the majority of matchers we improve
both precision and recall, when compared with the subsets being acceptable for every matcher
(called objectively acceptable) and for some matcher (called subjectively acceptable). For this
problem we give special attention to precision because usually task operations, processes or
problem-solving issues are based on ontologies, thus higher precisions allow systems operate
more on the safe side when interoperability is treated through ontology matching.

The rest of the paper is organised as follows. First, we introduce some definitions on ontology
matching and present argumentation frameworks upon which our model is defined (Section 2).
We then present the argumentation approach for combining different matching approaches
(Section 3), detailing the notions of argument for the context of ontology matching and our ar-
gumentation model based on confidence of correspondences. Next, we present the evaluation
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Figure 1: Fragments of ontologies o and o′ with alignment A.

of our model (Section 4), which is carried out on standard alignments and a set of different
matchers. Finally, we present the main related work (Section 5) and discuss the strengths and
weaknesses of our approach (Section 6).

2 Foundations

2.1 Ontology matching

An ontology typically provides a vocabulary describing a domain of interest and a specification
of the meaning of terms in that vocabulary (Euzenat and Shvaiko, 2007) usually identifying
elements such as classes, individuals, relations, attributes and axioms. Ontology matching
consists of generating an alignment (A) from a pair of ontologies (o and o′). An alignment A is
a set of correspondences between vocabulary items representing entities of the same type:

Definition 2.1 (Correspondence). Given two ontologies, o and o′, a correspondence is a
quadruple:

〈e, e′, r, n〉

where e ∈ o, e′ ∈ o′ are the entities (e.g., formulas, terms, classes, individuals) of the on-
tologies; r is the relation between e and e′, taken from the set of alignment relations (e.g., ≡,
�, or �); and n ∈ [0 1] is a confidence level (e.g., measure of confidence in the fact that the
correspondence holds).

Definition 2.2 (Alignment). Given two ontologies, o and o′, an alignment A is a set of corre-
spondences.

Figure 1 illustrates an example of alignment A between two ontologies, o and o′. In A we have,
for instance, the correspondences:

〈Electronico, P roducto′ ,≡, 1.0〉 (2.1)
〈CameraPhotoo, DigitalCamerao′ ,�, 0.9〉 (2.2)

Many different approaches to the problem of ontology matching have been proposed in the
literature (Euzenat and Shvaiko, 2007). The distinction between them is reinforced by the
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manner in which they exploit the features within an ontology. The matching techniques can
be grouped into broad categories: lexical (detecting string similarities usually between labels
of concepts and properties), semantic (the terms can be evaluated semantically, usually on
the basis of semantic-oriented linguistic resources1, structural (using the structure of the on-
tologies), and instance-based matching (using instance data to detect the similarity between
concepts). However, each category offers a wide diversity of options as well as different classi-
fications for the approaches have been proposed in the literature. Furthermore, many ontology
matching systems rely not on a single approach, but combine several approaches.

2.2 Argumentation frameworks

Argumentation can be seen as a process based on the construction and comparison of ar-
guments, followed by the reasoning on their acceptability. The central notion in argumenta-
tion systems is the notion of acceptability. Two kinds of acceptability have been considered
(Amgoud and Cayrol, 2002):

• Individual acceptability : where a level is assigned to each argument depending on the
existence of direct defeaters (or counter-arguments). In this case, the acceptability of an
argument depends only on its properties.

• Joint acceptability (or collective): which relies on a notion of defense. The set of all
arguments that a rational agent may accept must defend itself against any defeater.

Following the joint acceptability, an argument can be defended by other arguments. Such
notion was introduced by (Dung, 1995). In Dung’s model, the acceptability of an argument
is based on a reasonable view: an argument should be accepted only if every attack on it is
attacked by an accepted argument. An argument is an abstract entity whose role is determined
by its relation to other arguments.

Dung defines an argumentation framework as follows.

Definition 2.3 (Argumentation Framework (AF) (Dung, 1995)). An AF is a pair 〈A, �〉, where
A is a set of arguments and � is a binary relation on A, i.e., � ⊆ A × A. a � b means that
the argument a attacks the argument b. A set of arguments S attacks an argument b iff b is
attacked by an argument in S.

One argument is acceptable if every attack on it is attacked by an accepted argument. This
notion produces the following definitions:

Definition 2.4 (Acceptable argument (Dung, 1995)). An argument a ∈ A is acceptable with
respect to a set of arguments S (noted acceptable(a, S)), iff (∀x ∈ A∧x�a) −→ (∃y ∈ S∧y�x).

An argument is acceptable with respect to a set S of arguments if it is defended by that S
against all its defeaters.

Definition 2.5 (Preferred extension (Dung, 1995)). A set of arguments S is conflict-free iff
(∀a ∈ S ∧ ∀b ∈ S)(¬a � b). A conflict-free set of arguments S is admissible iff (∀a ∈ S) −→
acceptable(a, S) A set of arguments S is a preferred extension if it is a maximal (with respect to
inclusion set) admissible set of A.

A preferred extension represents a consistent position within AF, which can defend itself against
all attacks and which cannot be further extended without introducing a conflict.

1In some classifications, semantic approaches consider model-theoretic semantics to determine whether or not
a correspondence exists between two entities
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In Dung’s model, all arguments have equal strength and an attack always succeeds. (Amgoud
and Cayrol, 1998) has introduced the notion of preference between arguments, where an argu-
ment can defend itself against weaker arguments. This model defines a global preference be-
tween arguments. In order to relate preferences to different audiences, (Bench-Capon, 2003)
has proposed to associate arguments to the values which support them. Different audiences
can have different preferences over these values. This leads to the notion of successful attacks,
i.e., those which defeat the attacked argument, with respect to an ordering on the preferences
that are associated with the arguments. It allows for accommodating different audiences with
different interests and preferences:

Definition 2.6 (Value-based Argumentation Framework (VAF) (Bench-Capon, 2003)). A VAF
is a 5-tuple 〈A, �,V, v,〉, where 〈A, �〉 is a AF; V is a nonempty set of values; v : A → V , 
is the preference relation over V (v1  v2 means that v1 is preferred over v2).

Definition 2.7 (Successful attack). An argument a ∈ A successfully attacks (or defeats) an
argument b ∈ A for the audience α (noted a†αb) iff a � b ∧ ¬v(b) α v(a).

Definition 2.8 (Acceptable argument). An argument a ∈ A is acceptable to the audience α
with respect to set of arguments S (noted acceptableα(a, S)) iff (∀x ∈ Ax†αa) −→ (∃y ∈ S)
∧y†αx.

The notion of audience introduces the following definition of preferred extension in the VAF:

Definition 2.9 (Preferred extension). A set S of arguments is conflict-free for an audience α iff
∀a, b ∈ S,¬(a � b) ∨ a†αb. A conflict-free set of arguments S is admissible for an audience α
iff ∀a ∈ S, acceptableα(a, S). A set of arguments S in the VAF is a preferred extension for an
audience α iff it is a maximal admissible set (with respect to set inclusion) for α.

For determining the status of the VAF with respect to a value ordering promoted by distinct
audiences, the arguments will have one of the three statuses (Bench-Capon, 2003):

• Some arguments will be in the preferred extension, irrespective of value ordering. Such
arguments will either have no attacker or have their inclusion forced by the argumentation
process. These will be objectively acceptable.

• Some arguments will be in the preferred extension for some ordering of values. These
will be subjectively acceptable.

• Some arguments will not be included in the preferred extension whatever the ordering on
values. Such arguments are indefensible.

3 Argumentation for Ontology Matching

Our approach exploits argumentation theory as a way for supporting the creation and exchange
of arguments, followed by the reasoning on their acceptability, where arguments can be seen
as positions that support or reject correspondences. The arguments interact following the
notion of attack and are selected according to the notion of acceptability. We have proposed
an argumentation framework (Trojahn, Quaresma, Vieira and Moraes, 2008) that redefines the
notion of acceptability from VAF, taking into account the confidence of the correspondences. In
this section, firstly, we introduce the definition of argument in the context of ontology matching
and next we detail our argumentation framework.
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3.1 Arguments on correspondences

An argument represents a position in favour or against a correspondence. According to the
degree of confidence associated to a correspondence (Section 2.1), we can provide means
to indicate that an argument is stronger or weaker than other arguments. The confidence is a
measure of the trust in the fact that the correspondence is appropriate and is usually derived
from the similarity assessment made during the ontology matching process, e.g. from an edit
distance measure between labels or an overlap measure between instance sets.

We define an argument as follows:

Definition 3.1 (Argument). An argument a ∈ AF is a tuple a = 〈c, v, s, h〉, such that c is a
correspondence 〈e, e′, r, n〉; v ∈ V is the value of the argument (associated with the matching
approach, as we will detail in the next section); s is the strength of the arguments (from n); and
h is one of {+,−} depending on whether the argument is that c does or does not hold.

Arguments interact based on the notion of attack, which has been initially defined by (Laera,
Tamma, Euzenat, Bench-Capon and Payne, 2006a):

Definition 3.2 (Attack). An argument 〈c, v, s, h〉 ∈ A attacks an argument 〈c′, v′, s′, h′〉 ∈ A iff
c = c′ and h �= h′.

For instance, if a = 〈c, v1, 1.0, +〉 and b = 〈c, v2, 0.8,−〉, a � b and vice-versa (b is the counter-
argument of a, and a is the counter-argument of b).

However, (Laera et al., 2006a) do not consider the strength of the arguments as an element in
the arguments, as we present in the next section.

3.2 Argumentation model

We have extended the VAF model in order to consider the confidence of the correspondences
in the notion of successful attack. The values in V correspond to the different matching ap-
proaches and each matcher has a preference ordering  over V such that its preferred values
are those it associates to its arguments. We then aggregate both confidence of arguments and
matcher preferences in our model.

We define SVAF as follows:

Definition 3.3 (Strength-based argumentation framework (SVAF) (Trojahn, Quaresma, Vieira
and Moraes, 2008)). A SVAF is a sextuple 〈A, �,V, v,, s〉 such that 〈A, �〉 is an AF, V is a
nonempty set of values, v : A → V ,  is the preference relation over V (v1  v2 means that,
in this framework, v1 is preferred over v2), and s : A → [0, 1] represents a function that maps
strengths to arguments.

Each audience α is associated with its own argumentation framework in which only the pref-
erence relation α differs. In order to accommodate the notion of strength, the notion of suc-
cessful attack has been extended:

Definition 3.4 (Successful attack (Trojahn, Quaresma, Vieira and Moraes, 2008)). An argu-
ment a ∈ A successfully attacks (or defeats, noted a†αb) an argument b ∈ A for an audience α
iff

a � b ∧ (s(a) > s(b) ∨ (s(a) = s(b) ∧ ¬v(b) α v(a)))

An AF can be represented as a directed graph where the arguments are vertices and edges
represent the attacks between arguments. The plurality of preferred extensions is associated
with cycles in the graph. An AF (here VAF or SVAF), where cycles contain arguments with
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different associated values (polychromatic cycle), has a unique, non-empty preferred exten-
sion, given an ordering on values (Bench-Capon, 2003). Each value ordering represents an
audience. In our model, each argument in a cycle has a different value and the algorithm from
(Bench-Capon and Dunne, 2002) is used to compute the unique preferred extension for each
audience.

From a preferred extension (as defined above), we define the alignment associated with it:

Definition 3.5 (Alignment associated with an extension). Given an extension S in a SVAF, the
alignment associated with this extensions is:

A(S) = {c;∃〈c, v, s,+〉 ∈ S}

In this paper, we assume that arguments being acceptable by the majority of matchers can be
considered as the consensus on the alignments generated by them:

Definition 3.6. Considering n audiences, α1, ..., αn, an argument a ∈ A(S) is in the set of
majority acceptable arguments iff a appears in n′ subsets A(S), A(S)1, ..., A(S)n′ , where n′ >
n/2.

Our approach is based on the idea of voting. According to (Coste-Marquis et al., 2007), this
mechanism is inadequate to characterise the notion of acceptable arguments at a group level
and can potentially result in a conflicting set. However, this inadequateness is only true when
the different agents do not share the same initial set of arguments. In our setting, all matchers
share their arguments with each others and have the same set of arguments at the start. Thus,
voting can be applied for generating the final set.

Although, in the general case, the set of majority acceptable arguments may contain conflicts,
this does not happen in the context of this work because there are only positive arguments in
the individual sets, i.e., from each preferred extension, only arguments with h = + are taken
into account. Furthermore, ontologies do not have definitions of negative information and do
not allow the inference of contradictions.

In addition, in the general situation this potential problem could be solved through the calculus
of the preferred extension of the majority acceptable arguments.

Finally, the arguments selected by voting are ”theoretical” defensible because they appear in
at least the majority of preferred extensions.

3.3 Arguing on correspondences

The way arguments are generated differs from different applications and scenarios. In other
terms, arguments are generated following different strategies. For instance, in ontology align-
ment agreement for agent communication (Laera, Blacoe, Tamma, Payne, Euzenat and Bench-
Capon, 2007), arguments for and against correspondences between two ontologies are gen-
erated. A correspondence from an alignment service is accepted by an agent if the justifica-
tion for this correspondence (why the correspondence was found) corresponds to the highest
agent’s preference (i.e, an argument in favour to the correspondence is generated, with h = +,
otherwise an argument against the correspondence is generated, h = −).

Contrary to the Laeras’s strategy, the strategy we adopt in this paper, negative arguments as
failure, relies on the assumption that matchers return complete results. Each possible pair of
ontology entities which is not returned by the matcher is considered to be a risk, and a negative
argument is generated (h = −).

In our specific scenario, different matchers argue with each other in order to obtain an agree-
ment on their alignments. To do this, each matcher represents a different audience. The values
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Table 1: Correspondences and arguments generated by ml and ms.
id correspondence argument matcher
A cl,1 = 〈zoomo, zoomo′ ,≡, 1.0〉 〈cl,1, l, 1.0, +〉 ml

B cl,2 = 〈Batteryo, Batteryo′ ,≡, 1.0〉 〈cl,2, l, 1.0+〉 ml

C cl,3 = 〈MemoryCardoMemoryo′ ,≡, 0.33〉 〈cl,3, l, 0.33, +〉 ml

D cl,4 = 〈brando, brandNameo′ ,≡, 0.22〉 〈cl,4, l, 0.22, +〉 ml

E cl,5 = 〈priceo, priceo′ ,≡, 1.0〉 〈cl,5, l, 1.0, +〉 ml

F cs,1 = 〈CameraPhotoo, DigitalCamerao′ ,≡, 1.0〉 〈cs,1, s, 1.0, +〉 ms

G cs,2 = 〈zoomo, zoomo′ ,≡, 1.0〉 〈cs,2, s, 1.0, +〉 ms

H cs,3 = 〈brando, brandNameo′ ,≡, 1.0〉 〈cs,3, s, 1.0, +〉 ms

I cs,4 = 〈resolutiono, pixelso′ ,≡, 1.0〉 〈cs,4, s, 1.0, +〉 ms

J cs,5 = 〈priceo, priceo′ ,≡, 1.0〉 〈cs,5, s, 1.0, +〉 ms

Table 2: Counter-arguments (attacks) for the arguments in Table 1.
id correspondence counter-argument matcher
L cl,6 = 〈CameraPhotoo, DigitalCamerao′ ,≡, 0.5〉 〈cl,6, l, 0.5,−〉 ml

M cl,7 = 〈resolutiono, pixelso′ ,≡, 0.5〉 〈cl,7, l, 0.5,−〉 ml

N cs,6 = 〈Batteryo, Batteryo′ ,≡, 0.5〉 〈cs,6, s, 0.5,−〉 ms

O cs,7 = 〈MemoryCardo, Memoryo′ ,≡, 0.5〉 〈cs,7, s, 0.5,−〉 ms

in V correspond to the different matching approaches and each matcher m has a preference
ordering m over V such that its preferred values are those it associates to its arguments. For
instance, consider V= {l, s, w}, i.e., lexical, structural and wordnet-based approaches, respec-
tively, and three matchersml,ms andmw, using such approaches. The matcherml could have
as preference order l ml

s ml
w.

In order to illustrate the argumentation process, consider two matchers, ml (lexical) and ms

(structural), trying to reach a consensus on the alignment between the ontologies in Figure 1.
ml uses an edit distance measure to compute the similarity between labels of concepts and
properties of the ontologies, while ms is based on the comparison of the direct super-classes
of the classes or classes of properties. Table 1 shows the correspondences and arguments
generated by each matcher. The matchers generate complete alignments, i.e., if a correspon-
dence is not found, an argument with value of h = − is generated. It includes correspondences
that are not relevant to the task at hand. For the sake of brevity, we show only the arguments
with h = + and the corresponding counter-arguments (Table 2). We consider 0.5 as the con-
fidence level c for negative arguments (h = −). Considering V = {l, v}, ml associates to its
arguments the value l, while ms generates arguments with value s. ml has as preference
ordering: l �ml

s, while ms has the preference: s �ms l.

Having their arguments A, the matchers exchange them. ml sends to ms its set of arguments
Al and vice-versa. Next, based on the attack notion, each matcher mi generates its attack
relation �i and then instantiates its SVAFi. The arguments A, D, E, G, H and J (Table 1)
are acceptable in both SVAFs (they are not attacked by counter-arguments with h = −). F , I,
and B (h = +) successfully attack their counter-arguments (h = −) L, M and N , respectively,
because they have highest confidence in their correspondences. C (h = +) is successfully
attacked by its counter-argument O.

The arguments in the preferred extension of both matchers ml and ms are: A, D, E, F ,
G, H, J , F , I, B and O. While 〈resolutiono, pixelso′ ,≡, 1.0〉, 〈Batteryo, Batteryo′ ,≡, 1.0〉 and
〈CameraPhotoo, DigitalCamerao′ ,≡, 1.0〉 have been accepted, 〈MemoryCardo, Memoryo′ ,≡
, 0.33〉 has been discarded.
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4 Evaluation

We have experimented the proposed notion of set of majority acceptable arguments on basis
of our argumentation model and a group of twelve matchers. With this methodology we are
able to compare our approach with existent top-level state of the art ontology matchers. The
individual results will be used as baseline to evaluate if the proposed system is able to perform
as good as the best individual ontology matchers.

4.1 Dataset and matchers

We evaluate our argumentation model on basis of the benchmark (bibliography domain) pro-
vided by the OAEI community2. Each test is based on one particular (reference) ontology,
which contains 33 named classes, 24 object properties, 40 data properties, 56 named individ-
uals and 20 anonymous individuals. Basically, the reference ontology is matched with different
alterations of itself. The test cases involving such alterations are grouped into three categories:
(a) concept test (tests 101, 102, 103 and 104); (b) systematic (tests 201 – 266); and (c) real
ontologies (tests 301–304).

We use a group of matchers, which has participated of the OAEI Benchmark Track 20073:
ASMOV (Jean-Mary and Kabuka, 2007a), (Jean-Mary and Kabuka, 2007b), DSSim (Nagy,
Vargas-Vera and Motta, 2007), Falcon (Qu, Hu and Cheng, 2006), (Hu and Qu, 2008), Lily
(Wang and Xu, 2007), Ola (Euzenat and Valtchev, 2004), OntoDNA (Kiu and Lee, 2006), (Kiu
and Lee, 2007), PriorPlus (Mao and Peng, 2007), RiMON (Tang, Liang, Li and Wang, 2004),
Sambo (Lambrix and Tan, 2006), (Tan and Lambrix, 2007), SEMA (Spiliopoulos, Valarakos,
Vouros and Karkaletsis, 2007), TaxoMap (Zargayouna, Safar and Reynaud, 2007) and XSOM
(Curino, Orsi and Tanca, 2007a), (Curino, Orsi and Tanca, 2007b).

DSSim, OntoDNA, PriorPlus, TaxoMap, and XSOM are based on the use of ontology-level
information, such as labels of classes and properties, and ontology hierarchy, while ASMOV,
Falcon, Lily, Ola, RiMON, Sambo, SEMA use both ontology-level and data-level (instances)
information. When considering the techniques used in the matching process, DSSim, Prior-
Plus, and XSOM are based on edit-distance similarity, where DSSim, and X-SOM combine the
string-based approaches with the synonymous relations provided by a thesaurus (WordNet).
Regarding the structural approaches, several heuristics are used, such as number of com-
mon descendants, or number of similar nodes in the path between the root and the element
(PriorPlus).

Most of the systems execute different matchers in parallel and combine their results: simple
weighted formula (PriorPlus), Dempster’s rule of combination (DSSim), feed-forward neural
network (XSOM), systems of equations (OLA), linear interpolation (RiMON), weighted sum
(SAMBO) and experimental weighted (Lily). Falcon executes sequentially a TFIDF linguis-
tic matcher that combines concepts and instances, and a graph-based matcher. Moreover,
ASMOV iteratively combines several matchers using a single weighted sum. Instance-based
matchers are commonly based on Naive-Bayes classifiers (RiMON), statistics (Falcon and
SEMA) or probabilistic methods (SAMBO).

4.2 Argumentation frameworks and arguments

Each matcher has a SVAF and a private preference order, which is based on the f–measure
ordering for all matchers (as detailed in Section 4.4). For that, we consider a scenario where

2Ontology Alignment Evaluation Initiative (OAEI: http://oaei.ontologymatching.org/
3in http://oaei.ontologymatching.org/2007/results/
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available matchers performance is known in advance for specific tasks, assuming that web
matchers, available for contract, advertise themselves with performance results.

The highest preferred value of each matcher is the value that it associates to its arguments4.
For instance, ASMOV and Lily have as preference ordering:

• v(ASMOV ) �ASMOV v(Lily) �ASMOV v(RiMON) �ASMOV v(Falcon) �ASMOV v(Ola) �ASMOV

v(PriorP lus) �ASMOV v(Sema) �ASMOV v(DSSim) �ASMOV v(XSom) �ASMOV v(Sambo) �ASMOV

v(OntoDNA);

• v(Lily) �Lily v(ASMOV ) �Lily v(RiMON) �Lily v(Falcon) �Lily v(Ola) �Lily v(PriorP lus) �Lily

v(Sema) �Lily v(DSSim) �Lily v(XSom) �Lily v(Sambo) �ASMOV v(OntoDNA).

For negative arguments (h = −), we use str=1.0 and str=0.5, assuming that matchers strongly
reject correspondences that they do not find (it could be the case when the information about
the matcher quality is not available), or slightly reject them, respectively.

The number of arguments generated by each matcher depends on the size of the ontologies
(here, the number of concepts and properties). As matchers are supposed to generate com-
plete alignments (arguments for and against correspondences), the number of arguments, nm,
for the matcher m is:

nm = |o| × |o′|

4.3 Evaluation measures

As quality measures, the classical precision, recall and f–measure are used. Such measures
are derived from a contingency table (Table 3).

Table 3: Contingency table for binary classification.
manual h = + manual h = -

output h = + m++ m+−

output h = - m−+ m−−

Precision (P) is defined by the number of correct automated correspondences (m++) divided
by the number of correspondences returned by the system (m++ + m+−). It measures the
system’s correctness (for instance, we measure the correctness of the set of correspondences
extracted from the set of majority acceptable arguments, with respect to a reference align-
ment). Recall (R) indicates the number of correct correspondences returned by the system
divided by the number of manual correspondences (m++ + m−+). It measures how complete
or comprehensive the system is in its extraction of relevant correspondences. F–measure (F)
is a harmonic mean of precision and recall.

P =
m++

(m++ + m+−)
, R =

m++

(m++ + m−+)
, F =

(2 ∗ P ∗ R)

(P + R)

To measure the global performance of the system, macro-averaging and micro-averaging
(Joachims, 2002) are applied. Such measures are often useful to compute the average per-
formance of a system over multiple test sets, where the results of n binary tasks can be av-
eraged to get a single performance value. Macro-averaging corresponds to the standard way
of computing an (arithmetic) average. The performance (i.e. precision or recall) is computed

4Here, we use the name of the matcher to indicate the value it promotes. However, in a more comprehensive
way, we could have values representing the different matching approaches (i.e., lexical, structural, etc.) and then
different matchers using such approaches could promote such values.
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separately for each of the n tests. The average is computed as the arithmetic mean of the
performance measure over all tests. Micro-averaging averages the contingency tables of the
various tests. For each cell of the table, the arithmetic mean is computed – mavg

++, m
avg
+−
, mavg

−+,
mavg

−−
– and the performance is computed from this averaged contingency table. For the preci-

sion, macro-averaging and micro-averaging imply:

Pmacro =
1

n

n∑

i=1

Pi, Pmicro =
mavg

++

(mavg
++ + mavg

+−
)

Macro-averaging gives equal weight to each test whereas micro-averaging gives equal weight
to each correspondence (example). For all comparative results, a significance test is applied,
considering a confidence degree of 95%. Such comparison is indicated in bold face in the
tables below.

4.4 Results and discussion

In this section we first present the individual results for each matcher and next we present the
results of our argumentation model. We discuss the use of different values of strength for the
arguments rejecting correspondences (h = -) and then the argumentation results are compared
with the baseline – which is composed of the union of all individual matcher results – and in-
dividual matcher results. When evaluating our argumentation model itself, we consider three
sets of alignments: the alignments in every preferred extensions for every matcher (here we
call “objectively acceptable”), the alignments in the preferred extension of some matcher (“sub-
jectively acceptable”) and the arguments in the majority of preferred extensions (“majority”).
Note that we take into account only the positive arguments (correspondences) in the preferred
extensions (Section 3.2).

Firstly, table 4 shows the results for each matcher. These results out a group of systems,
ASMOV, Lily, Falcon, OLA, PriorPlus and RiMOM which perform the tests at the highest level
of quality (Euzenat, Isaac, Meilicke, Shvaiko, Stuckenschmidt, Sváb, Svátek, van Hage and
Yatskevich, 2007). Of these, ASMOV, Lily and RiMOM have slightly better results than the
three others.

Table 4: Individual matcher results
ASMOV DSSim Falcon Lily Ola OntoDNA

Pmacro 0.93 0.97 0.93 0.94 0.88 0.54
Pmicro 0.95 0.98 0.92 0.96 0.89 0.83
Rmacro 0.84 0.64 0.81 0.85 0.81 0.42
Rmicro 0.90 0.64 0.86 0.89 0.87 0.49
Fmacro 0.87 0.71 0.84 0.88 0.83 0.54
Fmicro 0.92 0.77 0.89 0.92 0.88 0.62

PriorPlus RiMON Sambo SEMA TaxoMap XSom
Pmacro 0.89 0.95 0.89 0.89 0.93 0.72
Pmicro 0.93 0.95 0.98 0.90 0.92 0.76
Rmacro 0.79 0.83 0.55 0.72 0.27 0.66
Rmicro 0.81 0.86 0.56 0.74 0.21 0.70
Fmacro 0.82 0.86 0.69 0.76 0.58 0.73
Fmicro 0.86 0.91 0.71 0.81 0.34 0.73

Second, we have used these matchers to evaluate our argumentation model. Our model aims
at reaching a consensus between the matchers, improving or balancing the individual results.
Table 5 shows the results of the three sets of alignments. Using str = 0.5 or str = 1.0 for the
strength of arguments rejecting correspondences is a trade-off between precision and recall.
We have the same behaviour for both strengths (str = 0.5 and str = 1.0), for all sets of selected
arguments (“subjectively”, “objectively” and “majority” sets).
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Basically, the matchers produce arguments supporting correspondences (positive arguments)
with confidence between 0.80 and 1.0. Considering str = 0.5 for arguments rejecting such
correspondences, good values of recall are achieved, while precision is lower. It is due to the
fact that the arguments with such strength do not represent attacks for the arguments repre-
senting true and false positive correspondences. As the matchers have good performance,
this results in average better values of recall (the majority of the true positive correspondences
are selected).

On the other hand, for str = 1.0, good values of precision are obtained, while recall is lower. It
happens because the false positive correspondences and some true positive correspondences
are successfully attacked. In such a way, the precision is better.

Looking for each set, they are more or less selective, depending on the selected strength.
For 0.5 (Table 5), as expected, the sets of objectively and majority alignments are the most
selective in terms of precision, while subjectively and majority sets are more selective in terms
of recall.

Specifically, using 1.0 objectively sets have a low recall because one argument rejecting a cor-
respondence can attack a number of arguments accepting the correspondence, while subjec-
tively sets output low precision because they include the correspondences from the preferred
extensions of all matchers. The majority sets represent a compromise between the two other
sets of alignments, selecting the set of correspondences being defensible by the majority of
matchers.

For 0.5, objectively sets improve the results because the lack of information of one matcher is
not enough to attack the false positive correspondences. In this way, the behaviour of objec-
tively sets are similar to the subjectively ones. Majority sets decrease their performance for the
same reasons: lack of counter-arguments to attack false positive correspondences and then
the majority of them are acceptable (similar behaviour with subjectively sets).

Table 5: Subjectively, objectively and majority sets – all cases.
Subjectively Objectively Majority
0.5 1.0 0.5 1.0 0.5 1.0

Pmacro 0.69 0.73 0.75 1.0 0.70 0.98
Pmicro 0.67 0.74 0.73 1.0 0.67 1.0
Rmacro 0.89 0.87 0.92 0.13 0.89 0.78
Rmicro 0.93 0.91 0.95 0.13 0.93 0.83
Fmacro 0.77 0.79 0.82 0.40 0.77 0.84
Fmicro 0.78 0.81 0.82 0.22 0.78 0.90

Looking for the most interesting subset of the benchmark – real cases – majority sets outper-
form significantly subjectively and objectively sets in terms of f–measure (Table 6).

Table 6: Objectively, subjectively, majority – real cases.
Subjectively Objectively Majority
0.5 1.0 0.5 1.0 0.5 1.0

Pmacro 0.53 0.60 0.55 1.0 0.53 0.96
Pmicro 0.53 0.61 0.55 1.0 0.54 0.97
Rmacro 0.84 0.84 0.86 0.16 0.84 0.73
Rmicro 0.86 0.85 0.87 0.18 0.86 0.76
Fmacro 0.64 0.70 0.66 0.35 0.65 0.82
Fmicro 0.66 0.71 0.68 0.30 0.66 0.85

Third, comparing argumentation and baseline (Tables 5 and 7, respectively), as expected,
baseline has results closer to the less selective configuration of argumentation – subjectively
and majority sets with str = 0.5 for arguments rejecting correspondences – specially in terms
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of recall. In terms of precision, all argumentation sets are able to filter out false positive corre-
spondences, resulting in better values of precision than the baseline. We give special attention
to precision because usually task operations, processes or problem-solving issues are based
on ontologies, thus higher precision allow for systems to operate more on the safe side when
interoperability is treated through ontology matching.

Table 7: Baseline and best matchers.
Baseline Best Matchers

Pmacro 0.61 ASMOV (0.93), Lily (0.94), RiMON (0.95)
Pmicro 0.57 ASMOV (0.95), Lily (0.96), RiMON (0.95)
Rmacro 0.90 ASMOV (0.84), Lily (0.85), RiMON (0.83)
Rmicro 0.94 ASMOV (0.90), Lily (0.89), RiMON (0.86)
Fmacro 0.71 ASMOV (0.87), Lily (0.88), RiMON (0.86)
Fmicro 0.71 ASMOV (0.92), Lily (0.92), RiMON (0.91)

Fourth, when comparing the results of each matcher (Table 4) with the results of argumenta-
tion (Table 5), specially for the best matchers (Table 7), the most selective sets (objectively and
majority with str = 1.0) improve the precision of all matchers. The best f–measure for argu-
mentation (majority with str = 1.0) is similar to the best matchers (ASMOV, Lily, and RiMON). In
this way, consensus achieved by argumentation is a balancing between the individual results.
By consensus there is not exactly an improvement of all individual results, but intermediary
values near the best matchers and an improvement of the matchers with low performance.
Finally, regarding the subset of real cases, PriorPlus, Falcon, ASMOV, Lily, OntoDNA and
XSOM are in the group of the best matchers in terms of f–measure: PriorPlus (0.84), Falcon
(0.82), ASMOV (0.81), Lily (0.79), OntoDNA and XSOM (0.77). In terms of f–measuremicro

(Table 6) majority set (str = 1) slightly outperforms all the best matchers, while f–measuremacro

is similar to the best results. Moreover, best matchers vary depending on specific differences
of multiple data sets. For instance, OntoDNA is the best matcher for the test 303, while it is the
last one for the test 304. In such a way, argumentation approaches are an advantage.

5 Related Work

Most of the ontology negotiation-based systems aim at arriving to a common ontology which
agents can use in their interactions, as proposed by (Bailin and Truszkowski, 2002), (Beun,
van Eijk and Prust, 2004) and (van Diggelen, Beun, Dignum, van Eijk and Meyer, 2006). Dif-
ferently from these proposals, (Tamma, Wooldridge, Blacoe and Dickinson, 2002) present an
ontology that describes the basic concepts of a negotiation process. Such ontology is not the
object being negotiated. While (Bailin and Truszkowski, 2002) propose a protocol where incre-
mental interpretation, clarification and explanation steps are used to establish a common basis
for communication between the agent, (Beun et al., 2004) define sets of discrepancies and
feedbacks to solve ontological discrepancies and (van Diggelen et al., 2006) present a layered
communication protocol, where each layer is able to solve a kind of ontological mismatch. In
such systems, the ontologies that agents use are incrementally modified during the negotiation
step.
On other perspective, (Silva, Maio and Rocha, 2005) describe a protocol for negotiating ontol-
ogy correspondences, which is based on a utility function. Agents are able to achieve consen-
sus about correspondence rules defined between two different ontologies. Each agent keep
its ontologies unaltered. However, the correspondences are specified by services outside the
negotiation framework, the system is highly dependent on the MAFRA framework and cannot
be flexibly applied in other environments.
The use of argumentation in ontology matching was initially proposed by (Laera, Tamma, Eu-
zenat, Bench-Capon and Payne, 2006b) and (Laera et al., 2007), where two agents argue on
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the correspondences provided by an ontology correspondence repository (OMR). The value-
based argumentation framework (VAF) is used, where audiences represent different agent’s
preference (Pref1 and Pref2) and are chosen on the basis of the ontological information. The
argumentation process takes four main steps: (i) for each agent, an argumentation framework
is constructed, by specifying the set of arguments (according agents’s preferences and thresh-
olds); (ii) the individual frameworks are merged, by forming the union of the individual argument
sets of the multiple agents, and then the attack relations are computed; (iii) for each VAF, the
set of arguments that are undefeated by attacks is determined, given a value ordering – the
global view is considered by taking the union of these preferred extensions for each audience;
and (iv) the arguments in every preferred extension of every audience are considered – the
correspondences that have only arguments supporting a correspondence are included in the
a set called agreed alignments, the correspondences that have only arguments against are
rejected, and the correspondences which are in some preferred extension of every audience
are part of the set called agreeable alignments.

In (Morge and Routier, 2007), the authors propose an argumentation framework for agents
to reach an agreement on their terminologies. The framework formalises a debate between
the agents, where the conflicting representations (claims) are discussed. Agents exchanges
claims with each other and argumentation is used for internal reasoning on the acceptability
of that claims. The argumentation framework is build on description logics, where (conflicting)
claims (concept definitions and assertions) can have different relevance according to different
audiences. Arguments are formed by two elements, a claim (conclusion) and a set of claims
(from which the conclusion can be inferred). Each audience is associated with a particular
priority relation and individually evaluates the relevance of arguments (i.e., the most important
value promoted by one claim in the premise). What the authors define as ‘relevance’ in their
work is similar to what Bench-Capon defines as ‘value’. Moreover, they share a similar defi-
nition of ‘successful attack’: an argument defeats another argument if they attack each other
and the second argument is not more relevant than the first one. However, it is not clear how
audiences and their preferences on arguments are defined and applied during the debate.

The closer proposal to ours is that of Laera and colleagues. However, we can outline many
differences from our work and Laera’s approach: (i) the way the arguments are generated dif-
fers (Section 3.3); (ii) in this paper, the correspondences are computed by several specialised
matchers (the evaluation of Laera’s model is carried out using only two agents that argue in
the argumentation process), which argument to solve conflicts between their individual results;
(iii) in Laera’s model, if the agents select directly opposing preferences, it leads to an inabil-
ity to reach agreement on many of the correspondences (specifically for tests 205 and 206
of benchmark, where the argumentation produces F-measure of 0). This situation is avoided
in the proposed argumentation model, through relations with strength (S-VAF); (iv) different
argumentation frameworks are used (VAF in Laera vs. S-VAF); (iv) Laeras’s model considers
agreeable alignments while we exploit different sets of acceptable arguments, namely subjec-
tively, objectively and majority sets.

Regarding our previous work (Trojahn, Quaresma, Vieira and Moraes, 2008) and (Trojahn,
Quaresma and Vieira, 2008a), we can outline the main differences and improvements in rela-
tion to this paper. First, different matchers were used in those works, i.e., representing different
matcher approaches (namely syntactic, semantic, and structural). Second, the argumentation
models considered only discrete values of strength (i.e., certainty and uncertainty ) for argu-
ments. Third, only objectively acceptable arguments have been considered to evaluate the
quality of the correspondences generated by the argumentation process. Fourth, the evalua-
tion was carried out using few examples of matching between ontologies5 or subsets of OAEI
benchmark. Furthermore, in this paper, we have significantly improved the evaluation of our

5Examples obtained from http://dit.unitn.it/ accord/Experimentaldesign.html
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approach with more complete sets of alignments as well as we have introduced and evaluated
the notion of majority acceptable arguments.

6 Final Remarks and Future Work

In this paper, the problem of combining different matching approaches was formalised using
an argumentation model based on strengths. We have focused on the evaluation of the notion
of majority acceptable arguments, where arguments in the majority of preferred extensions,
from a group of matchers, are considered as consensus on the different alignments. Such
evaluation has shown that such notion seems to be promising, specially when compared with
the subsets being acceptable for every matcher or for some matcher. The notion of majority is
based on the fact that the more often a correspondence is agreed on, the more chances for it to
be valid, as outlined by (Euzenat, Mochol, Shvaiko, Stuckenschmidt, Sváb, Svátek, van Hage
and Yatskevich, 2006). For combining argumentation frameworks that do not share the same
set of arguments, this notion is not valuable. However, in our specific setting, all matchers have
the same set of arguments, what makes the notion of majority acceptable.
In a more general setting, where the performances of matchers are known before hand, a
complete preference order can be defined (i.e., A > B > C). When this information is not
available, a partial preference order may be specified (i.e., A > B; and A > C). The possibility
of adjusting preferences between matchers, what can be done in order to fit ontologies and
scenarios, relates a potential advantage of our argumentation model.
Together with preference ordering, our model takes into account the strengths of arguments
and the performance of argumentation is directly related with the strength associated to argu-
ments rejecting a correspondence.
The importance of using arguments with strengths is recognised, reflecting the confidence a
matcher has in the similarity between the two entities (the matching tools actually output cor-
respondences with a confidence measure). Such confidence levels are usually derived from
similarity assessments made during the matching process, e.g., from edit distance measures
between labels, or overlap measures between instance sets. However, there is no objective
theory nor even informal guidelines for determining such confidence levels. Using them to com-
pare results from different matchers is therefore questionable especially because of potential
scale mismatches. For example, a same strength of 0.8 may not correspond to the same level
of confidence for two different matchers.
According to our evaluation, using different values to represent the strength of arguments re-
jecting a correspondence is a trade-off between precision and recall. Such evidence points to
the necessity of a more comprehensive study in order to specify strengths that could balance
the results.
A potential weakness of our argumentation model is associated to the fact that an argument
against a correspondence can successfully attack all the arguments in favour of it, even if there
are dozens of these, if the strength of counter-arguments for true positive correspondences is
higher. For example, three arguments in favour of a true positive correspondence may be
successfully attacked by one argument representing a false negative correspondence.
Another potential weakness of our model is related to the generation of complete alignments.
At first sight it seems to be quite unrealistic, but it can nevertheless be supported by the ob-
servation that most matchers try to provide as much correspondences as possible. However,
dealing with a large number of arguments can become costly. The number of arguments de-
pends on the size of the ontologies.
Regarding the different sets of alignments, sets containing the majority of acceptable argu-
ments perform, in average, better than the other sets (regarding F–measure values for both
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settings of strength). The majority sets represent a compromise between the two other kinds
of sets, selecting the correspondences from the majority of matchers. The arguments selected
by voting are ”theoretical” defensible because they appear in at least the majority of preferred
extensions.

Finally, it is hard to improve the best matcher, specially when there is a great intersection in
the individual sets. In this case, the performance of argumentation is similar to the individual
matchers. On the other hand, as best matchers vary depending on specific differences of
multiple data sets, argumentation approaches are an advantage.

As future work we plan to compare the results reported in this paper with the negotiation model
based on voting we have proposed in previous work; introduce weighted strength based on the
individual performance of matchers; and analyse the impact of using an instantiation of SVAF
without complete preference order, considering situations where individual performances of
matchers are not available for computing a complete order.
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