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Abstract-Hierarchical Multi-label Classification (HMC) is a 
classification task where classes are organized in a hierarchical 
taxonomy, and instances can be simultaneously classified in more 
than one class. This paper investigates the HMC problem of 
classifying proteins in functions organized according to the Gene 
Ontology hierarchical taxonomy. This is a complex task, since 
the Gene Ontology hierarchy is organized as a Directed Acyclic 
Graph with thousands of classes hierarchically represented. We 
propose a neural network-based method to incorporate label­
dependency during learning. The experimental results show that 
the proposed method achieves competitive results when compared 
to the state-of-the-art methods from the literature. 

I. INTRODUCTION 

In traditional classification problems, an instance Xi E X 
can be classified in only one class Cj E C. Nonetheless, there 
are more complex classification tasks where an instance can be 
simultaneously classified into a set of classes Cj E C. One of 
this tasks is Hierarchical Multi-Label Classification (HMC), 
in which an instance can be classified into a set of classes 
that are previously organized as a hierarchy, with subclasses 
and superclasses. In this hierarchy, superclass relationships are 
represented by a partial order -<h, i. e. , for all Cl, C2 E C, Cl -<h 
C2 if and only if Cl is a superclass of C2. 

Protein Function Prediction (PFP) is a conunon HMC 
application, once proteins perform many important functions 
within an organism. Proteins are related to biochemical reac­
tions, cell signaling, structural, and mechanical functions [1], 
to name a few. Given that protein functions are hierarchically 
related, PFP can be considered a typical HMC problem. 

This study uses the Gene Ontology (GO) hierarchy to in­
vestigate the PFP problem. In the GO, classes are organized as 
a Directed Acyclic Graph (DAG) hierarchy of terms, in which 
each term corresponds to a protein function. The hierarchy 
comprises three ontologies covering different domains, each 
one with thousands of classes: cellular components, biological 
processes, and molecular functions [2]. Figure 1 illustrates a 
small part of the GO taxonomy. 

The PFP task using the GO taxonomy is a very challenging 
problem. As we traverse the hierarchy down to the leaves, 
making accurate predictions becomes more difficult since 
terms have fewer and fewer positive instances. In addition, 
instances can be classified simultaneously into two or more 
paths of the hierarchy, and a term can have more than one 
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parent node. We work with the "is-a" relation, which forms 
the basic structure of the GO. Thus, A is a B means that term 
A is a sUbtype of term B. Also, classifying an instance into 
class Cj means that we are classifying it into all superclasses of 
class Cj. This is the multiple inheritance interpretation, which 
is the correct interpretation when working with the GO [2]. 

This paper has the following original contributions. 
First, it proposes a method called Hierarchical Multi-Label 
Classification with Local Multi-Layer Perceptron (HMC­
LMLP), which associates an MLP network to each level of the 
hierarchy, where each MLP is responsible for the predictions in 
its associated level. HMC-LMLP employs the Local Classifier 
per Level (LCL) [3] strategy to use local information within 
each level of the hierarchy. By using one classifier per level, the 
classification problem is not decomposed into a large number 
of sub-problems. The use of many classifiers per level may 
result in the application of over-specific local information, 
loss of important information, and loss of label dependency 
during training [3]. A preliminary version of HMC-LMLP 
was reported in [4]. Second, differently from the preliminary 
version, the labels of the training instances are used here as 
part of the input to train each MLP. Therefore, when training an 
MLP for levell, the feature vector of an instance is augmented 
with its classes for the level l - 1. This modification aims to 
enforce the use of label dependencies between classes. We also 
propose a second version which ignores the labels associated 
with the classes to augment the size of the feature vectors, a 
baseline version that allows us to examine whether the use of 
the labels to augment the feature vectors results in performance 
improvement. Finally, we analyze the application of the LCL 
strategy to DAG-structured class hierarchies, adapting the DAG 
structure datasets for these experiments. 

The remainder of this paper is organized as follows. Sec­
tion 11 presents related work regarding HMC for PFP. The pro­
posed HMC-LMLP method is detailed in Section Ill, whereas 
a thorough empirical analysis is carried out in Section IV. A 
deeper discussion on the results is performed in Section V, 
and the final considerations and future research directions are 
presented in Section VI. 

n. RELATED WORK 

This section discusses recent HMC methods reported in the 
literature that employ machine learning for protein and gene 
function prediction. 



Fig. 1: Part of the Gene Ontology Hierarchical Taxonomy. (Adapted from Ashburner et. al. [2]) 

In Yens et al. [5], three methods based on the concept 
of Predictive Clustering Trees (PCT) were investigated. The 
authors proposed the Clus-HMC method that induces a single 
decision tree to cope with the entire classification problem. 
They compared its performance with two methods. The first 
one, Clus-SC, induces an independent decision tree for each 
class, ignoring the relationships between classes. The second 
one, Clus-HSC, explores the hierarchical relationships between 
the classes to induce a decision tree for each class. 

Alves et al. [6] proposed a global method using Artificial 
Itmnune Systems (AIS) for the generation of HMC rules. 
The method is divided into two basic procedures: Sequential 
Covering (SC) and Rule Evolution (RE). The SC procedure 
iteratively calls the RE procedure until every (or almost every) 
training instance (antigens) is covered by the discovered rules. 
The RE procedure evolves classification rules (antibodies) that 
are employed to classify the instances. The best antibody is 
added to the set of discovered rules. 

In the work of Otero et al. [7], the authors proposed a 
method using Ant Colony Optimization (ACO). The method 
discovers classification rules, where an ACO algorithm is 
employed to optimize the antecedents of the rules. A sequential 
covering procedure is applied to create classification rules that 
cover most of the training instances. The method is initialized 
with an empty set of rules, and a new rule is added to the 
set while the number of instances not covered by any rule is 
higher than a given threshold. 

Cesa-Bianchi and Valentini [8] investigated the synergy be­
tween different LCN-based strategies related to gene function 
prediction task in FunCat annotated genes. They integrated 
kernel-based data fusion tools and ensemble algorithms with 

cost sensItIve HMC methods [9], [10]. The authors defined 
synergy as the improvement in the prediction accuracy, con­
sidering any evaluation measure, due to the use of concurrent 
learning strategies. The synergy is detected when the combined 
action of two strategies achieves better correct classification 
rates than the average of the correct classification of the two 
strategies used separately [8]. 

Kordmahalleh et. al. [i1] proposed CAM-HMC, an evolu­
tionary algorithm which applies evolutionary crowding niching 
and adaptive mutation to evolve antecedentes of HMC rules. 
During the evolutionary process, the authors defined a new 
distance measure d for the competition between parents P and 
offspring c. If Id(Pl,cd +d(P2,C2)1:S; Id(Pl,C2) +d(P2,Cl)1 
the competition is between (PI, cd and (P2, C2). Otherwise, the 
competition is between (PI, C2) and (P2, cd. The individuals 
with highest fitness are kept in the population. 

The work of Stojanova et. al. [12] proposed a method 
which considers autocorrelation in HMC, i. e. , the statistical 
relationships between the same variable on different but related 
instances. The method is called Network Hierarchical Multi­
label Classification (NHMC), and builds a generalized form 
of decision trees using the PCT framework, just like C1us­
HMC. During training, NHMC uses both the features of the 
instances, and the autocorrelations between instances. The 
autocorrelations were modeled as a network, which is exploited 
by the method during the learning phase. 

A genetic algorithm was proposed by Cerri et. al. [13]. 
The method, called HMC-GA, evolves the antecedents of 
HMC rules, containing both propositional and relational tests. 
The consequents of the rules are deterministic ally obtained 
based on the classes of the training instances covered by the 



antecedents. Each generated rule is able to classify instances 
into two or more paths of the GO taxonomy. 

Bi and Kwok [14] proposed a method that uses the Manda­
tory Leaf Node Prediction strategy (MLNP) [3]. The method 
uses hierarchy information, and the problem is formulated as 
finding the multiple labels with the largest posterior probability 
over all the labels. The authors extended the nested approxi­
mation property [15] to deal with HMC problems structured 
as DAG, which was solved using a greedy algorithm (MAS). 

In this paper, we make use of four methods reviewed in 
this section: Clus-HMC (which is considered to be the state-of­
the-art method in the literature), Clus-HSC and Clus-SC. We 
also make use of the Ant Colony Optimization-based method 
hmAnt-Miner, which obtained competitive results with Clus­
HMC. We chose these methods because they were all applied 
to the same datasets used in our experiments. In addition, they 
produce the same type of output provided by our proposed 
approach, and they have their code available for downloading, 
providing a fair base for comparison. 

Ill. HMC-LMLP 

HMC-LMLP divides the learning process into a number 
of steps, combining MLPs individually trained for each level 
of the class hierarchy. The rationale is that each MLP learns 
something different from each other, breaking down the com­
plex learning process into simpler processes. 

In HMC-LMLP, the MLPs extract local information from 
the instances at each level, which can be useful in the classifi­
cation of unlabeled instances. Our hypothesis is that different 
patterns can be extracted from instances in different hierar­
chical levels. Note that, whereas many different classifiers 
could be employed, we decided to choose neural networks 
because of the simplicity in associating a class per output 
neuron. Therefore, generating a multi-label prediction for a 
given instance is done in a straightforward fashion. 

In this section, we present the proposed HMC-LMLP 
version, called HMC-LMLP-Comp. This version employs, at 
each level, the true labels of the instances from the previous 
level to augment the feature vectors. The baseline version is 
named HMC-LMLP-NoComp, since it only uses the original 
feature vectors to train an MLP at each level. For simplicity, 
all networks used in this study have a single hidden layer. 

A. HMC-LMLP-Comp 

Figure 2a illustrates the architecture of HMC-LMLP-Comp 
and its training process for a hierarchy with three levels. Level 
1 is the first level below the root, having two classes. Also in 
the figure, TI are the true class labels associated to the instances 
at the level l; Xl represents the instances assigned to classes 
from the level l; hi and 01 are, respectively, the hidden layer 
and output layer of the MLP network associated with level l. 
The matrices W 11 and W 21 represent, respectively, the weights 
connecting the input attributes and the neurons in the hidden 
layer, and the neurons in the hidden and output layers of the 
MLP associated with level I. 

The neural network associated with the first level is trained 
with all training instances (Xl), since all instances are assigned 
to the classes from the first hierarchical level. At the second 

level, the MLP input is now the trammg instances that are 
assigned to the classes belonging to level 2 (X2), combined 
with their true assigned classes in the first level. The advantage 
of using the augmented feature vector for training each MLP is 
the incorporation of label dependency. This process is repeated 
for each level of the hierarchy. 

As can be observed in the figure, the training process 
of HMC-LMLP-Comp, for each hierarchical level, can be 
performed in parallel, which can speed up the training process. 

B. HMC-LMLP-NoComp 

In HMC-LMLP-NoComp, an individual MLP is trained 
for each hierarchical level without employing the class labels 
to augment the feature vectors of the training instances. 
Figure 2b illustrates the HMC-LMLP-NoLabels architecture 
and the training process. Similarly to HMC-LMLP-Comp, the 
training process in each level can be performed in parallel. 

C. Obtaining final predictions 

In the test phase of HMC-LMLP-Comp (i.e., when predict­
ing a test instance), the true labels are not available. Thus, a 
top-down strategy is employed, in which the feature vectors 
that are used for training the MLP at level l are augmented 
with the output provided by the MLP in the level l - 1. 
Due to this network dependency, the testing process of HMC­
LMLP-Comp cannot be performed in parallel. Instead, the 
predictions for each level have to be obtained sequentially. 
In HMC-LMLP-NoComp, the testing phase is performed by 
feeding all instances into all MLPs at every level. Each MLP 
then provides independent predictions for the instances at each 
level. Thus, both training and testing phases, for each level, can 
be performed in parallel. 

After obtaining the MLP outputs values, they are tested 
against thresholds in order to define the predictions for each 
level. If the output of a given neuron j is greater than or equal 
to a given threshold, the instance that is being classified is 
assigned to class Cj. The final classification from HMC-LMLP 
is given by a binary vector v of size ICI, where C is the set 
of all classes in the hierarchy. If the output value of neuron 
j is greater than or equal to a given threshold, the value 1 is 
assigned to position Vj. Otherwise, the position is set to O. 
Since the activation function that is used in the neurons is the 
logistic sigmoid function, the output values range between 0 
and 1. Thus, we can make use of threshold values also ranging 
from 0 to 1. The larger the threshold, the lower the number 
of predicted classes. Conversely, the lower the threshold, the 
larger the number of predicted classes. 

After testing the predictions against the thresholds, there 
could be classification inconsistencies, i. e. , when a subclass is 
predicted but its superclass is not. This problem is intrinsic 
to the LCL strategy [3], and for addressing this matter we 
employ a post-processing phase that removes all predicted 
classes whose superclasses were not predicted as well. 

D. Computational complexity 

Each MLP used in HMC-LMLP-Comp has a complexity of 
O(WI)' with WI being the number of weights and biases of the 
MLP associated with levell. Let A be the number of attributes 
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(b) Example of the HMC-LMLP-NoComp architecture. (1) Training 
an MLP at the first level; (2) Training an MLP at the second level; 
(3) Training an MLP at the third level. 

Fig. 2: Example of HMC-LMLP-Comp and HMC-LMLP-NoComp architectures for a three-level hierarchy. 

in the dataset, Hl be the number of hidden neurons of the MLP 
associated with levell, and Ol be the number of output neurons 
of the MLP associated with levell. We can thus define Wl as 
(A+ 1) x HI + (HI + 1) X 01. From the second level onwards, 
Wl is defined as (Ol-l + A + 1) X Hl + (Hl + 1) X Ol. The 
training cost of each MLP associated with level l in HMC­
LMLP-Comp is then O(Wl x ml x n) , with ml being the 
number of training instances assigned to classes belonging to 
levell, and n the number of training epochs. In HMC-LMLP­
NoComp, the computational cost is smaller, since the class 
labels are not used to augment the feature vectors. 

IV. EXPERIMENTS 

In this section, we present the experiments that were carried 
out to compare the prediction performance achieved by HMC­
LMLP's versions and the state-of-the-art HMC algorithms. 
We also present the datasets, parameters, and the evaluation 
measure that were employed in the experiments. 

A. Datasets 

We make use of ten freely available I datasets related 
to protein function prediction. These datasets are related to 
issues like phenotype data and gene expression levels. Table I 
presents the main characteristics of the training, validation, and 
test datasets. A description of each dataset can be found in [5]. 

Considering that there is no level definition in DAG struc­
tures (a class can be located at different levels depending on 
which hierarchical path is chosen from the root node to the 
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class), we defined the depth of a class in a DAG structure 
as the deepest path from the class to the root node. This is 
necessary for the application of HMC-LMLP, since the method 
requires a clear separation of classes in levels. We chose the 
deepest path as the definition of depth because it guarantees 
that when a class is located in a levell, all its superclasses will 
be located in levels shallower than l. With this depth definition, 
each hierarchy ended up with 13 levels. 

We performed a pre-processing step before running HMC­
LMLP over these datasets, in which all nominal attribute 
values were transformed into numeric values using the one­
attribute-per-value approach. In this paper, instead of using 
Os and Is, the nominal attributes were assigned -1 (absence) 
and 1 (presence), which are better suited for training neural 
networks [16]. The attributes were then standardized (mean 0 
and variance 1). Additionally, all missing values for nominal 
and numeric attributes were replaced, respectively, by their 
mode and mean values. 

B. Evaluation Measure 

The outputs of HMC-LMLP, for each class, are real values 
between 0 and 1. The same is true for the literature methods. 
Thus, in order to obtain the final predictions, a threshold value 
was further employed. When classifying an instance, if the 
corresponding output value for a given class is greater than or 
equal to the threshold, the instance is assigned to the class, 
otherwise it is not. 

The choice of the "optimal" threshold value is a difficult 
task, since low threshold values lead to many classes being 
assigned to each instance, resulting in high recall and low 



TABLE I: Summary of the datasets: number of attributes (IAI), number of classes (ICI), number of classes per level (Classes 
per level), total number of instances (Total) and number of multi-label instances (Multi). 

Dataset IAI ICI Classes per level 

CeJlcycle 77 4122 33/1 55/394/597/929/779/63 I /335/1 7 1/63/21/5/9 
Church 27 4122 33/1 55/394/597/9291779/631/335/1 7 I /63/2 I /5/9 
Derisi 63 4116 33/1 55/394/596/9271778/630/334/171/63/2 I /5/9 
Eisen 79 3570 33/1 49/360/5241786/679/539/27 I / 14 I /55/ 19/5/9 
Expr 551 4128 33/1 55/394/599/9321780/63 1/335/1 7 1/63/21/5/9 
Gaschl 173 4122 33/1 55/394/597/929/779/63 I /335/1 7 1/63/21/5/9 
Gasch2 52 4128 33/1 55/394/599/9321780/631/335/1 7 I /63/2 I /5/9 
Pheno 69 3124 33/1 45/332/489/670/568/460/236/ 114/49/ 18/4/6 
Seq 478 4130 33/1 55/394/599/9321780/633/335/1 7 1/63/2 I /5/9 
Spo 80 4116 33/1 55/394/596/927/778/630/334/1 7 1/63/2 I /5/9 

precIsIon. On the other hand, large threshold values lead to 
very few instances being classified, resulting in high precision 
and low recall. To deal with this problem, we make use of 
precision-recall curves (PR-curves) as the evaluation measure 
for the experiments. To obtain a PR-curve, different thresholds 
between [0,1] are applied to the outputs of the methods, and 
thus different values of precision and recall are obtained, one 
for each threshold value. Each threshold then represents a point 
within the PR-space. The union of these points form a PR­
curve, and the area under the curve is calculated. All methods 
are thus compared based on their areas under the PR-curves. 

More specifically, we employed the area under the average 
PR-curve (AU(PRC)). Given a threshold value, a precision­
recall point (Prec, Rec) in the PR-space can be obtained 
through Equations (1) and (2). They correspond to the micro­
average of precision and recall. 

To verify the significance of the results, we employed the 
Friedman and Nemenyi statistical tests, recommended for com­
parisons involving many classifiers and several datasets [17]. 
We adopted a confidence level of 95% in the statistical tests. 
As in [5] and [7], 2/3 of each dataset were used for inducing 
the classification models and 1/3 for test. We used the same 
data partitions suggested in [5]. 

C. Parameters 

We investigate the performance of HMC-LMLP using the 
conventional Back-propagation algorithm (Bp) [18], and the 
Resilient Back-propagation (Rprop) [19]. 

The HMC-LMLP parameters were optimized using the 
Eisen validation dataset. This dataset was selected because it 
was one of the data sets where Clus-HMC obtained its best 
performance (0.380), and also because it has a relatively small 
number of attributes, which allows to run several experiments 
in a reasonable amount of time. The following parameters 
were optimized: (i) number of neurons in each hidden layer 
(beginning with the hidden layer of the MLP network associ­
ated with the first hierarchical level, and finishing with the 
hidden layer of the MLP network associated with the last 

Training Valid Test 
Total Multi Total Multi Total Multi 

1625 1625 848 848 1278 1278 
1627 1627 844 844 1278 1278 
1605 1605 842 842 1272 1272 
1055 1055 528 528 835 835 
1636 1636 849 849 1288 1288 
1631 1631 846 846 1281 1281 
1636 1636 849 849 1288 1288 
653 653 352 352 581 581 

1692 1692 876 876 1332 1332 
1597 1597 837 837 1263 1263 

level), (ii) the learning rate and momentum constant used in 
the Back-propagation algorithm, and (iii) the range of values 
used to initialize the neural network's weights. We executed 
HMC-LMLP over the validation dataset using different sets of 
parameter values. We employed different initial weight values, 
number of hidden neurons, learning rates, and momentum 
constants. We did not use all possible sets of values due to 
the large number of possibilities. 

For the initial weights, we noticed that the larger their 
values, the more likely the occurrence of overfitting. We varied 
the initial weights by randomly selecting them initially from [-
0.1,0.1], but gradually increasing the range to [-1,1]. We tested 
a limited number of neurons for each hidden layer, beginning 
with 1.0/ 1.0/0.95/0.9/0.85/0.8/0.75/0.7/0.65/0.6/0.55/0.5/0.45 
neurons in each layer and gradually decreasing these values. 
These numbers represent the fraction of the total number of 
network inputs. Thus, if a neural network has 100 inputs, the 
value 0.6 means 60 hidden neurons. Considering the learning 
rate and momentum, we started our experiments with the same 
default values used in the Weka toolkit [20] (learning rate equal 
to 0.3 and momentum equal to 0.2). We gradually decreased 
these values and noticed that the neural networks became 
less prone to overfitting as these values decreased. The final 
parameters obtained for HMC-LMLP after the preliminary 
experiments are listed next. 

• Number of hidden neurons per level (fraction 
of the total number of network inputs): 
0.65/0.65/0.6/0.55/0.5/0.45/0.4/0.35/0.3/0.25/0.2/0.15/ 
0.1; 

• Learning rate and momentum constant used in Back­
propagation for hidden and output layers: {0.05,0.03} 
and {0.03, 0.01}, respectively; 

• Initial weights of the neural networks: within [-
0.1,0.1]; 

• Parameter values of the Rprop algorithm: initial Delta 
(�o) = 0.1, maximum Delta (�max) = 50.0, minimum 
Delta (�min) = le-6, increase factor (1]+) = l.2, and 
decrease factor (1]-) = 0.5. 

We would like to point out that we decreased the number of 
hidden neurons of the neural networks as the hierarchical levels 
became deeper. Our intention was to avoid overfitting, since 
the number of training instances is smaller for the networks 
associated with deeper hierarchical levels. The first two values 



(0.65/0.65) are the same because all instances are classified 
in classes belonging to the first and second levels. The Rprop 
parameter values were the ones suggested in [19]. 

D. Results 

Table 11 presents the PR-curves for the HMC-LMLP's ver­
sions and the literature methods. We refer to the HMC-LMLP 
versions as Bp-Comp (Back-propagation with classes augment­
ing the feature vectors), Bp-NoComp (Back-propagation with 
no augmentation), Rprop-Comp (Resilient Back-propagation 
with classes augmenting the feature vectors), and Rprop­
NoComp (Resilient Back-propagation with no augmentation). 

The results for HMC-LMLP and hmAnt-Miner are the 
mean and standard deviation over 10 executions. Each HMC­
LMLP execution was performed with randomly initialized 
weights. Clus-HMC, Clus-HSC, and Clus-SC are deterministic 
algorithms, and thus require a single execution. We highlight 
the best absolute values. We also compared the HMC methods 
considering specific classes with the goal of examining their 
behavior when predicting classes in different hierarchical lev­
els. Since Clus-HMC is considered to be the state-of-the-art 
method, we performed the comparisons in the Seq dataset, in 
which Clus-HMC showed the best results according to Table 11. 

We selected, for each level, the three classes where Clus­
HMC obtained its best results. We went down until the seventh 
hierarchical level. Results are shown in Table Ill. The best 
absolute values are highlighted. 

V. DISCUSSION 

According to Table 11, the best results were obtained 
by Rprop-NoComp, Clus-HMC and Clus-HSC. We can see 
that using the true classes to augment the feature vectors 
did not improve the classification results when compared to 
the HMC-LMLP version that does not use the augmentation 
process. We believe there are two reasons that may have 
harmed Bp(Rprop)-Comp's performance: (i) adapting the DAG 
hierarchy, and (ii) using different values to augment the feature 
vectors during the training and test phases. 

Regarding the adaptation made in the DAG hierarchies, 
Bp-Comp and Rprop-Comp could have achieved better perfor­
mance if all relationships between classes had been available 
during training. Recall we had to adapt the DAG hierarchy 
to define the depth of a class as being the number of edges 
in the longest path between class and root node. For that 
reason, many hierarchical relationships between classes were 
not considered during the training phase. Figure 3 illustrates a 
scenario that explains this rationale. 

Following the scenario presented in Figure 3, consider that 
a training instance is assigned to paths A.C and A.B.C, and 
that class C is a direct subclass of both classes A and B. In 
this scenario, there are two possible depths for class C: 2 (A.C) 
and 3 (A.B.C). In the adaptation process we have proposed, 
class C is defined as belonging to the third level. In this case, 
when training an MLP for the third level, we consider class 
C as subclass of class B alone. Thus, when training a neural 
network to predict class C (third level), we are not using the 
information related to all its superclasses (classes A and B) as 
inputs. Only class B is considered. 

Fig. 3: Illustrative example of different depths for the same 
class. 

The different values that are used when augmenting the 
feature vectors may also have harmed the performance of Bp­
Comp and Rprop-Comp. Recall that when training an MLP for 
level I, we make use of the true labels of the training instances 
(values 0 or 1) at level l - 1 to augment their feature vectors. 
However, the true labels are not available during test. Thus, the 
predictions made by the neural network at level I - 1 (values 
[0,1]) were used instead. Therefore, each MLP was trained 
using 0 or 1 values for augmenting the feature vectors during 
training, but were tested with real values in the interval [0,1]. 

Comparing the Bp and Rprop algorithms, note that the 
Rprop versions of HMC-LMLP provided better predictive 
performance than the Bp versions. These results suggest that 
Rprop copped better with the greater number of attributes, 
which increased considerably due to the augmentation process. 

Fig. 4: Critical diagram presenting results of the 4 HMC­
LMLP's versions. 

Figure 4 shows the results of the statistical tests regarding 
the four HMC-LMLP's versions. Note that Rprop-NoComp 
outperforms most versions of HMC-LMLP with statistical 
significance. The difference for BP-NoComp is within the limit 
of the critical difference. The tests confirm that Rprop was the 
best learning algorithm in both scenarios (with and without 
augmentation). 

Figure 5 presents the results of the statistical tests regarding 
the best version of HMC-LMLP (Rprop-NoComp) and the 
four baseline methods (Clus-HMC, Clus-HSC, Clus-SC, and 
hmAnt-Miner). Clus-HMC provides the lowest average rank 
(2.0), whereas Rprop-NoComp provides the second lowest 
(2.15) followed by Clus-HSC (2.25). Note that the difference 
in average rank among these three methods is very small, and 
indeed it is deemed as insignificant by the statistical tests. 
The performance achieved by hmAnt-Miner (average rank of 
3.6) and Clus-SC (average rank of 5.0) is considerably lower 
than the best ranked methods. Even though hmAnt-Miner is 
within the limit of the critical difference, Clus-SC is out of 



TABLE 11: AU(PRC) values obtained 

Dataset Bp-Comp Bp-NoComp Rprop-Comp Rprop-NoComp Clus-HMC Clus-HSC Clus-SC hmAnt-Miner 

Cellcycle 0.352 ± 0.0025 0.359 ± 0.0007 0.357 ± 0.001 0.365 ± 0.001 0.357 0.371 0.252 0.325 ± 0.0079 
Church 0.336 ± 0.0015 0.340 ± 0.0011 0.341 ± 0.003 0.347 ± 0.001 0.348 0.397 0.289 0.334 ± 0.0010 
Derisi 0.336 ± 0.0013 0.345 ± 0.0006 0.336 ± 0.002 0.349 ± 0.00 I 0.355 0.349 0.218 0.321 ± 0.0068 
Eisen 0.393 ± 0.0014 0.395 ± 0.0012 0.396 ± 0.003 0.403 ± 0.001 0.380 0.365 0.270 0.373 ± 0.0110 
Gaschl 0.373 ± 0.0029 0.378 ± 0.0012 0.372 ± 0.004 0.384 ± 0.001 0.371 0.351 0.239 0.352 ± 0.0082 
Gasch2 0.359 ± 0.0019 0.362 ± 0.0012 0.359 ± 0.003 0.369 ± 0.001 0.365 0.378 0.267 0.334 ± 0.0165 
Pheno 0.315 ± 0.0025 0.322 ± 0.0011 0.316 ± 0.002 0.325 ± 0.002 0.337 0.416 0.316 0.336 ± 0.0017 
Spo 0.334 ± 0.0021 0.340 ± 0.0007 0.332 ± 0.003 0.345 ± 0.00 I 0.352 0.371 0.213 0.329 ± 0.0078 
Expr 0.369 ± 0.0031 0.371 ± 0.0014 0.373 ± 0.003 0.384 ± 0.002 0.368 0.351 0.249 0.343 ± 0.0066 
Seq 0.368 ± 0.0034 0.368 ± 0.0018 0.375 ± 0.003 0.384 ± 0.002 0.386 0.282 0.197 0.371 ± 0.0069 

Average 0.355 0.358 0.356 0.365 0.362 0.363 0.251 0.342 

TABLE Ill: Best AU (P RC) obtained in specific classes for the Seq dataset. 

Level Classes Bp-Comp Bp-NoComp Rprop-Comp 

GO:0044464 0.963 ± 0.006 0.966 ± 0.002 0.965 ± 0.002 
I GO:0009987 0.869 ± 0.005 0.868 ± 0.004 0.870 ± 0.004 
I GO:0008152 0.791 ± 0.010 0.790 ± 0.008 0.797 ± 0.007 
2 GO:0044424 0.934 ± 0.002 0.937 ± 0.003 0.936 ± 0.003 
2 GO:0044237 0.723 ± O.D I I  0.734 ± 0.009 0.734 ± 0.007 
2 GO:0044238 0.690 ± 0.012 0.691 ± 0.010 0.702 ± 0.009 
3 GO:0044446 0.691 ± 0.007 0.687 ± 0.007 0.677 ± 0.011 
3 GO:0044444 0.648 ± 0.014 0.652 ± 0.009 0.630 ± 0.014 
3 GO:0043229 0.591 ± 0.008 0.597 ± 0.007 0.601 ± 0.007 
4 GO:004323I 0.558 ± 0.009 0.562 ± 0.008 0.567 ± 0.008 
4 GO:0044428 0.491 ± 0.019 0.495 ± 0.015 0.496 ± 0.013 
4 GO:0044267 0.428 ± 0.015 0.460 ± 0.010 0.450 ± 0.011 
5 GO:0006412 0.684 ± 0.014 0.684 ± 0.012 0.664 ± 0.018 
5 GO:0005634 0.321 ± 0.013 0.323 ± 0.017 0.317 ± 0.009 
5 GO:0005739 0.395 ± 0.016 0.403 ± 0.007 0.390 ± 0.012 
6 GO:0045449 0.239 ± 0.020 0.226 ± 0.016 0.191 ± 0.013 
6 GO:0017111 0.115 ± 0.024 0.122 ± 0.028 0.301 ± 0.033 
6 GO:0043687 0.227 ± 0.027 0.218 ± 0.026 0.236 ± 0.026 
7 GO:0006355 0.233 ± 0.017 0.225 ± 0.016 0.183 ± 0.010 
7 GO:0016568 0.099 ± 0.014 0.092 ± 0.012 0.093 ± 0.006 
7 GO:0000723 0.081 ± 0.008 0.086 ± 0.011 0.082 ± 0.012 

Average 0.513 0.515 0.518 

the significance margin, which means it is outperformed by 
the first three methods with statistical significance. 

Clus-HMC 
Rprop-NoComp 

I I I I 

� CIUS-SC 

� I � hmAnt-Mmer 

'-------------Clus-HSC 

Fig. 5: Critical diagram presenting results of the best HMC­
LMLP network and the baseline algorithms. 

Considering the results in specific classes (Table Ill), 
HMC-LMLP provided the best results for most of the classes. 
These results were unexpected, given that Clus-HMC achieved 
a better overall performance than Bp-Comp, Bp-NoComp and 
Rprop-Comp (Table 11). Notwithstanding, we verified that from 
the 2849 classes that belong to the test dataset, Clus-HMC 
provided the best results for 2192, whereas the HMC-LMLP's 
versions achieved the best results in a much smaller number 
of classes. Hence the results of Clus-HMC in Table 11. 

The PR-curves obtained for datasets Eisen and Seq are 
depicted in Figure 6. These data sets are the ones where Clus­
HMC obtained its best results. We compared the PR-curves of 

Rprop-NoComp Clus-HMC Clus-HSC Clus-SC hmAnt-Miner 

0.964 ± 0.006 0.960 0.951 0.951 0.953 ± 0.0054 
0.873 ± 0.006 0.872 0.844 0.844 0.870 ± 0.0072 
0.796 ± 0.006 0.774 0.700 0.700 0.730 ± 0.0098 
0.935 ± 0.003 0.922 0.897 0.894 0.916 ± 0.0051 
0.742 ± 0.009 0.714 0.694 0.686 0.685 ± 0.0123 
0.701 ± 0.006 0.664 0.632 0.634 0.651 ± 0.0142 
0.674 ± 0.005 0.649 0.610 0.564 0.615 ± 0.0162 
0.636 ± 0.008 0.629 0.546 0.530 0.570 ± 0.0083 
0.595 ± 0.006 0.584 0.554 0.547 0.561 ± 0.0109 
0.561 ± 0.004 0.535 0.500 0.485 0.514 ± 0.0081 
0.497 ± 0.019 0.446 0.353 0.346 0.409 ± 0.0256 
0.458 ± 0.012 0.383 0.337 0.329 0.376 ± 0.0240 
0.678 ± 0.012 0.491 0.440 0.501 0.435 ± 0.0279 
0.320 ± 0.011 0.327 0.241 0.283 0.322 ± 0.0192 
0.386 ± 0.014 0.308 0.284 0.310 0.244 ± 0.0096 
0.218 ± 0.023 0.167 0.106 0.127 0.188 ± 0.0267 
0.304 ± 0.030 0.134 0.190 0.200 0.071 ± 0.0053 
0.235 ± 0.026 0.105 0.096 0.120 0.115 ± 0.0136 
0.209 ± 0.021 0.173 0.100 0.117 0.174 ± 0.0217 
0.121 ± 0.011 0.094 0.051 0.058 0.079 ± 0.0128 
0.081 ± 0.009 0.085 0.064 0.056 0.082 ± 0.0 I 04 

0.523 0.477 0.438 0.442 0.455 

the literature methods with the PR-curve obtained by Rprop­
NoComp, since it was the best among the HMC-LMLP's 
versions. The PR-curves shown for HMC-LMLP and hmAnt­
Miner are those from the executions in which they obtained the 
best results in the validation data. We can see that Clus-HMC, 
Clus-HSC and HMC-LMLP are quite even performance-wise. 

VI. CONCLUSION 

In this paper, we presented Hierarchical Multi-Label 
Classification with Local Multi-Layer Perceptron (HMC­
LMLP), which associates an MLP to each level of a DAG­
structure class hierarchy. HMC-LMLP employs the Local 
Classifier per Level (LCL) [3] strategy, complementing the 
feature vectors of the instances with their true classes, in order 
to make use of local information within each level of the 
hierarchy. With this, we try to avoid problems such as the 
loss of label dependency during training. 

We tested HMC-LMLP on ten datasets related to protein 
function prediction, in which the protein functions were or­
ganized following the Gene Ontology. We compared its per­
formance against state-of-the-art methods from the literature 
of HMC, and the empirical analysis indicated that HMC­
LMLP matches the predictive performance of the state-of­
the-art methods, often presenting better results in specific 



AU(PRC) 
1.0 r-�--r�---r===-;:R:-p -ro -p--';";N-oC:=o-m---' p i ,�, ___ . Clus-HMC 

0.8 - -\ �, _. _ _  . _ _  .- Cl us-HSC 

\ \' _._. Clus-SC 

c 
00.6 
VI 
u 
(j) 6: 0.4 

0.2 

\ \' - - hmAnt-Miner 

\ �\. '\ � \ , .�\ 
\ \\ 

0.2 

"\ V�\ 
" \ 

"I " 

��,��, 
0.4 0.6 

Recall 
(a) Eisen data set 

0.8 1.0 

AU(PRC) 
1.0 .---�--r�---r===-;:R:-p -ro -p--';";N-oC:=o-m---' p 

0.8 

c 
00.6 
VI 
u 
(j) 6: 0.4 

0.2 

- - - . Clus-HMC 
_ ... _._._.- Clus-HSC 
_._. Clus-SC 

- hmAnt-Miner 

0.0 L�,--�...l..-::::::::=���..I 
0.0 0.2 0.4 0.6 

Recall 
(b) Seq dataset 

0.8 1.0 

Fig. 6: PR-curves of Rprop-NoComp, Clus-HMC, CLus-HSC, Clus-SC, and hmAnt-Miner. 

classes of the DAG hierarchy. According to the results, true 
labels to complement the feature vectors did not improve the 
classification performance. We showed this may be due to the 
adaptation performed in the DAG taxonomies, which resulted 
in no use of the complete information regarding parent-child 
class relationship. 

As future work, we plan to investigate other neural net­
works training algorithms. We will also investigate alternatives 
to adapt the DAG taxonomies to be used with HMC-LMLP, 
trying to overcome the disadvantages of the currently used 
adaptation. Other strategies for correct inconsistencies in the 
prediction will also be tried. Finally, we plan to incorporate 
other knowledge source in the training process, such as protein­
protein interactions networks, and also use HMC-LMLP in 
other application domains, such as text classification. 
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