
Hierarchical Classification of Gene Ontology-based
Protein Functions with Neural Networks

Ricardo Cerri
Department of Computing

Federal University of Silo Carlos

Rodovia Washington Lufs, km 235

Sao Carlos, SP, Brazil

Email: cerri@dc.ufscar.br

Rodrigo C. Barros
Faculdade de Informatica

Pontificia Universidade Cat6lica do RS

Av. Ipiranga, 6681

Andre C. P. L. F. de Carvalho
Departamento de Ciencia da Computa<;:ao

U niversidade de Silo Paulo

Av. Trabalhador Sao-Carlense, 400

Sao Carlos, SP, Brazil

Email: andre@icmc.usp.br

Porto Alegre, RS, Brazil

Email: rodrigo.barros@pucrs.br

Abstract-Hierarchical Multi-label Classification (HMC) is a
classification task where classes are organized in a hierarchical
taxonomy, and instances can be simultaneously classified in more
than one class. This paper investigates the HMC problem of
classifying proteins in functions organized according to the Gene
Ontology hierarchical taxonomy. This is a complex task, since
the Gene Ontology hierarchy is organized as a Directed Acyclic
Graph with thousands of classes hierarchically represented. We
propose a neural network-based method to incorporate label­
dependency during learning. The experimental results show that
the proposed method achieves competitive results when compared
to the state-of-the-art methods from the literature.

I. INTRODUCTION

In traditional classification problems, an instance Xi E X
can be classified in only one class Cj E C. Nonetheless, there
are more complex classification tasks where an instance can be
simultaneously classified into a set of classes Cj E C. One of
this tasks is Hierarchical Multi-Label Classification (HMC),
in which an instance can be classified into a set of classes
that are previously organized as a hierarchy, with subclasses
and superclasses. In this hierarchy, superclass relationships are
represented by a partial order -<h, i. e. , for all Cl, C2 E C, Cl -<h
C2 if and only if Cl is a superclass of C2.

Protein Function Prediction (PFP) is a conunon HMC
application, once proteins perform many important functions
within an organism. Proteins are related to biochemical reac­
tions, cell signaling, structural, and mechanical functions [1],
to name a few. Given that protein functions are hierarchically
related, PFP can be considered a typical HMC problem.

This study uses the Gene Ontology (GO) hierarchy to in­
vestigate the PFP problem. In the GO, classes are organized as
a Directed Acyclic Graph (DAG) hierarchy of terms, in which
each term corresponds to a protein function. The hierarchy
comprises three ontologies covering different domains, each
one with thousands of classes: cellular components, biological
processes, and molecular functions [2]. Figure 1 illustrates a
small part of the GO taxonomy.

The PFP task using the GO taxonomy is a very challenging
problem. As we traverse the hierarchy down to the leaves,
making accurate predictions becomes more difficult since
terms have fewer and fewer positive instances. In addition,
instances can be classified simultaneously into two or more
paths of the hierarchy, and a term can have more than one

978-1-4799-1959-8/15/$31.00 @2015 IEEE

parent node. We work with the "is-a" relation, which forms
the basic structure of the GO. Thus, A is a B means that term
A is a sUbtype of term B. Also, classifying an instance into
class Cj means that we are classifying it into all superclasses of
class Cj. This is the multiple inheritance interpretation, which
is the correct interpretation when working with the GO [2].

This paper has the following original contributions.
First, it proposes a method called Hierarchical Multi-Label
Classification with Local Multi-Layer Perceptron (HMC­
LMLP), which associates an MLP network to each level of the
hierarchy, where each MLP is responsible for the predictions in
its associated level. HMC-LMLP employs the Local Classifier
per Level (LCL) [3] strategy to use local information within
each level of the hierarchy. By using one classifier per level, the
classification problem is not decomposed into a large number
of sub-problems. The use of many classifiers per level may
result in the application of over-specific local information,
loss of important information, and loss of label dependency
during training [3]. A preliminary version of HMC-LMLP
was reported in [4]. Second, differently from the preliminary
version, the labels of the training instances are used here as
part of the input to train each MLP. Therefore, when training an
MLP for levell, the feature vector of an instance is augmented
with its classes for the level l - 1. This modification aims to
enforce the use of label dependencies between classes. We also
propose a second version which ignores the labels associated
with the classes to augment the size of the feature vectors, a
baseline version that allows us to examine whether the use of
the labels to augment the feature vectors results in performance
improvement. Finally, we analyze the application of the LCL
strategy to DAG-structured class hierarchies, adapting the DAG
structure datasets for these experiments.

The remainder of this paper is organized as follows. Sec­
tion 11 presents related work regarding HMC for PFP. The pro­
posed HMC-LMLP method is detailed in Section Ill, whereas
a thorough empirical analysis is carried out in Section IV. A
deeper discussion on the results is performed in Section V,
and the final considerations and future research directions are
presented in Section VI.

n. RELATED WORK

This section discusses recent HMC methods reported in the
literature that employ machine learning for protein and gene
function prediction.

Fig. 1: Part of the Gene Ontology Hierarchical Taxonomy. (Adapted from Ashburner et. al. [2])

In Yens et al. [5], three methods based on the concept
of Predictive Clustering Trees (PCT) were investigated. The
authors proposed the Clus-HMC method that induces a single
decision tree to cope with the entire classification problem.
They compared its performance with two methods. The first
one, Clus-SC, induces an independent decision tree for each
class, ignoring the relationships between classes. The second
one, Clus-HSC, explores the hierarchical relationships between
the classes to induce a decision tree for each class.

Alves et al. [6] proposed a global method using Artificial
Itmnune Systems (AIS) for the generation of HMC rules.
The method is divided into two basic procedures: Sequential
Covering (SC) and Rule Evolution (RE). The SC procedure
iteratively calls the RE procedure until every (or almost every)
training instance (antigens) is covered by the discovered rules.
The RE procedure evolves classification rules (antibodies) that
are employed to classify the instances. The best antibody is
added to the set of discovered rules.

In the work of Otero et al. [7], the authors proposed a
method using Ant Colony Optimization (ACO). The method
discovers classification rules, where an ACO algorithm is
employed to optimize the antecedents of the rules. A sequential
covering procedure is applied to create classification rules that
cover most of the training instances. The method is initialized
with an empty set of rules, and a new rule is added to the
set while the number of instances not covered by any rule is
higher than a given threshold.

Cesa-Bianchi and Valentini [8] investigated the synergy be­
tween different LCN-based strategies related to gene function
prediction task in FunCat annotated genes. They integrated
kernel-based data fusion tools and ensemble algorithms with

cost sensItIve HMC methods [9], [10]. The authors defined
synergy as the improvement in the prediction accuracy, con­
sidering any evaluation measure, due to the use of concurrent
learning strategies. The synergy is detected when the combined
action of two strategies achieves better correct classification
rates than the average of the correct classification of the two
strategies used separately [8].

Kordmahalleh et. al. [i1] proposed CAM-HMC, an evolu­
tionary algorithm which applies evolutionary crowding niching
and adaptive mutation to evolve antecedentes of HMC rules.
During the evolutionary process, the authors defined a new
distance measure d for the competition between parents P and
offspring c. If Id(Pl,cd +d(P2,C2)1:S; Id(Pl,C2) +d(P2,Cl)1
the competition is between (PI, cd and (P2, C2). Otherwise, the
competition is between (PI, C2) and (P2, cd. The individuals
with highest fitness are kept in the population.

The work of Stojanova et. al. [12] proposed a method
which considers autocorrelation in HMC, i. e. , the statistical
relationships between the same variable on different but related
instances. The method is called Network Hierarchical Multi­
label Classification (NHMC), and builds a generalized form
of decision trees using the PCT framework, just like C1us­
HMC. During training, NHMC uses both the features of the
instances, and the autocorrelations between instances. The
autocorrelations were modeled as a network, which is exploited
by the method during the learning phase.

A genetic algorithm was proposed by Cerri et. al. [13].
The method, called HMC-GA, evolves the antecedents of
HMC rules, containing both propositional and relational tests.
The consequents of the rules are deterministic ally obtained
based on the classes of the training instances covered by the

antecedents. Each generated rule is able to classify instances
into two or more paths of the GO taxonomy.

Bi and Kwok [14] proposed a method that uses the Manda­
tory Leaf Node Prediction strategy (MLNP) [3]. The method
uses hierarchy information, and the problem is formulated as
finding the multiple labels with the largest posterior probability
over all the labels. The authors extended the nested approxi­
mation property [15] to deal with HMC problems structured
as DAG, which was solved using a greedy algorithm (MAS).

In this paper, we make use of four methods reviewed in
this section: Clus-HMC (which is considered to be the state-of­
the-art method in the literature), Clus-HSC and Clus-SC. We
also make use of the Ant Colony Optimization-based method
hmAnt-Miner, which obtained competitive results with Clus­
HMC. We chose these methods because they were all applied
to the same datasets used in our experiments. In addition, they
produce the same type of output provided by our proposed
approach, and they have their code available for downloading,
providing a fair base for comparison.

Ill. HMC-LMLP

HMC-LMLP divides the learning process into a number
of steps, combining MLPs individually trained for each level
of the class hierarchy. The rationale is that each MLP learns
something different from each other, breaking down the com­
plex learning process into simpler processes.

In HMC-LMLP, the MLPs extract local information from
the instances at each level, which can be useful in the classifi­
cation of unlabeled instances. Our hypothesis is that different
patterns can be extracted from instances in different hierar­
chical levels. Note that, whereas many different classifiers
could be employed, we decided to choose neural networks
because of the simplicity in associating a class per output
neuron. Therefore, generating a multi-label prediction for a
given instance is done in a straightforward fashion.

In this section, we present the proposed HMC-LMLP
version, called HMC-LMLP-Comp. This version employs, at
each level, the true labels of the instances from the previous
level to augment the feature vectors. The baseline version is
named HMC-LMLP-NoComp, since it only uses the original
feature vectors to train an MLP at each level. For simplicity,
all networks used in this study have a single hidden layer.

A. HMC-LMLP-Comp

Figure 2a illustrates the architecture of HMC-LMLP-Comp
and its training process for a hierarchy with three levels. Level
1 is the first level below the root, having two classes. Also in
the figure, TI are the true class labels associated to the instances
at the level l; Xl represents the instances assigned to classes
from the level l; hi and 01 are, respectively, the hidden layer
and output layer of the MLP network associated with level l.
The matrices W 11 and W 21 represent, respectively, the weights
connecting the input attributes and the neurons in the hidden
layer, and the neurons in the hidden and output layers of the
MLP associated with level I.

The neural network associated with the first level is trained
with all training instances (Xl), since all instances are assigned
to the classes from the first hierarchical level. At the second

level, the MLP input is now the trammg instances that are
assigned to the classes belonging to level 2 (X2), combined
with their true assigned classes in the first level. The advantage
of using the augmented feature vector for training each MLP is
the incorporation of label dependency. This process is repeated
for each level of the hierarchy.

As can be observed in the figure, the training process
of HMC-LMLP-Comp, for each hierarchical level, can be
performed in parallel, which can speed up the training process.

B. HMC-LMLP-NoComp

In HMC-LMLP-NoComp, an individual MLP is trained
for each hierarchical level without employing the class labels
to augment the feature vectors of the training instances.
Figure 2b illustrates the HMC-LMLP-NoLabels architecture
and the training process. Similarly to HMC-LMLP-Comp, the
training process in each level can be performed in parallel.

C. Obtaining final predictions

In the test phase of HMC-LMLP-Comp (i.e., when predict­
ing a test instance), the true labels are not available. Thus, a
top-down strategy is employed, in which the feature vectors
that are used for training the MLP at level l are augmented
with the output provided by the MLP in the level l - 1.
Due to this network dependency, the testing process of HMC­
LMLP-Comp cannot be performed in parallel. Instead, the
predictions for each level have to be obtained sequentially.
In HMC-LMLP-NoComp, the testing phase is performed by
feeding all instances into all MLPs at every level. Each MLP
then provides independent predictions for the instances at each
level. Thus, both training and testing phases, for each level, can
be performed in parallel.

After obtaining the MLP outputs values, they are tested
against thresholds in order to define the predictions for each
level. If the output of a given neuron j is greater than or equal
to a given threshold, the instance that is being classified is
assigned to class Cj. The final classification from HMC-LMLP
is given by a binary vector v of size ICI, where C is the set
of all classes in the hierarchy. If the output value of neuron
j is greater than or equal to a given threshold, the value 1 is
assigned to position Vj. Otherwise, the position is set to O.
Since the activation function that is used in the neurons is the
logistic sigmoid function, the output values range between 0
and 1. Thus, we can make use of threshold values also ranging
from 0 to 1. The larger the threshold, the lower the number
of predicted classes. Conversely, the lower the threshold, the
larger the number of predicted classes.

After testing the predictions against the thresholds, there
could be classification inconsistencies, i. e. , when a subclass is
predicted but its superclass is not. This problem is intrinsic
to the LCL strategy [3], and for addressing this matter we
employ a post-processing phase that removes all predicted
classes whose superclasses were not predicted as well.

D. Computational complexity

Each MLP used in HMC-LMLP-Comp has a complexity of
O(WI)' with WI being the number of weights and biases of the
MLP associated with levell. Let A be the number of attributes

/)(2··· ..
:0
:0
:0

Level 2

.........................
L e: .. v .. e ... I ... 1...................... ... i 0
� X' 0

'0 0 o 0 0, o W" 0 W21 r01
?f-gf-lg
o

o
(1)

, 0
:0 0 0
:T, 0 0
:�W12 0 W22 0
:0 0 0
: . 0 , .

0
o 0

0/
(2)

Level 3

(3)
(a) Example of the HMC-LMLP-Comp architecture. (1) Training an
MLP at the first level; (2) Using the true classes of the training
instances in level I to augment the feature vector of the instances
responsible for training the MLP at the second level; (3) Using the
true classes of the training instances in level 2 to augment the feature
vectors which are used for training the MLP at the third level.

Level 3

Level 1 Level 2 h3 � 0
� O2 d 0

x' 0 X2 h2 '0 x3 0 0
'0 0 '0 '0 0 '0 0 0
0 0 0, 0 0 0 0 0 0
0 W" 0 W21 (8J 0 W,2 0 W22 0 0 W,3 0 W23 0
0 f-0 f-1o 0 -- 0 -- 0 0 -- 0 f- 0

0 0 0 0
0 0 0

0 0 Q 0 0 0
0 Q 0

0 0
(1) (2) g

(3)
(b) Example of the HMC-LMLP-NoComp architecture. (1) Training
an MLP at the first level; (2) Training an MLP at the second level;
(3) Training an MLP at the third level.

Fig. 2: Example of HMC-LMLP-Comp and HMC-LMLP-NoComp architectures for a three-level hierarchy.

in the dataset, Hl be the number of hidden neurons of the MLP
associated with levell, and Ol be the number of output neurons
of the MLP associated with levell. We can thus define Wl as
(A+ 1) x HI + (HI + 1) X 01. From the second level onwards,
Wl is defined as (Ol-l + A + 1) X Hl + (Hl + 1) X Ol. The
training cost of each MLP associated with level l in HMC­
LMLP-Comp is then O(Wl x ml x n) , with ml being the
number of training instances assigned to classes belonging to
levell, and n the number of training epochs. In HMC-LMLP­
NoComp, the computational cost is smaller, since the class
labels are not used to augment the feature vectors.

IV. EXPERIMENTS

In this section, we present the experiments that were carried
out to compare the prediction performance achieved by HMC­
LMLP's versions and the state-of-the-art HMC algorithms.
We also present the datasets, parameters, and the evaluation
measure that were employed in the experiments.

A. Datasets

We make use of ten freely available I datasets related
to protein function prediction. These datasets are related to
issues like phenotype data and gene expression levels. Table I
presents the main characteristics of the training, validation, and
test datasets. A description of each dataset can be found in [5].

Considering that there is no level definition in DAG struc­
tures (a class can be located at different levels depending on
which hierarchical path is chosen from the root node to the

I http://www.cs.kuleuven.be/�dtai/clus/hmcdatasets.html

class), we defined the depth of a class in a DAG structure
as the deepest path from the class to the root node. This is
necessary for the application of HMC-LMLP, since the method
requires a clear separation of classes in levels. We chose the
deepest path as the definition of depth because it guarantees
that when a class is located in a levell, all its superclasses will
be located in levels shallower than l. With this depth definition,
each hierarchy ended up with 13 levels.

We performed a pre-processing step before running HMC­
LMLP over these datasets, in which all nominal attribute
values were transformed into numeric values using the one­
attribute-per-value approach. In this paper, instead of using
Os and Is, the nominal attributes were assigned -1 (absence)
and 1 (presence), which are better suited for training neural
networks [16]. The attributes were then standardized (mean 0
and variance 1). Additionally, all missing values for nominal
and numeric attributes were replaced, respectively, by their
mode and mean values.

B. Evaluation Measure

The outputs of HMC-LMLP, for each class, are real values
between 0 and 1. The same is true for the literature methods.
Thus, in order to obtain the final predictions, a threshold value
was further employed. When classifying an instance, if the
corresponding output value for a given class is greater than or
equal to the threshold, the instance is assigned to the class,
otherwise it is not.

The choice of the "optimal" threshold value is a difficult
task, since low threshold values lead to many classes being
assigned to each instance, resulting in high recall and low

TABLE I: Summary of the datasets: number of attributes (IAI), number of classes (ICI), number of classes per level (Classes
per level), total number of instances (Total) and number of multi-label instances (Multi).

Dataset IAI ICI Classes per level

CeJlcycle 77 4122 33/1 55/394/597/929/779/63 I /335/1 7 1/63/21/5/9
Church 27 4122 33/1 55/394/597/9291779/631/335/1 7 I /63/2 I /5/9
Derisi 63 4116 33/1 55/394/596/9271778/630/334/171/63/2 I /5/9
Eisen 79 3570 33/1 49/360/5241786/679/539/27 I / 14 I /55/ 19/5/9
Expr 551 4128 33/1 55/394/599/9321780/63 1/335/1 7 1/63/21/5/9
Gaschl 173 4122 33/1 55/394/597/929/779/63 I /335/1 7 1/63/21/5/9
Gasch2 52 4128 33/1 55/394/599/9321780/631/335/1 7 I /63/2 I /5/9
Pheno 69 3124 33/1 45/332/489/670/568/460/236/ 114/49/ 18/4/6
Seq 478 4130 33/1 55/394/599/9321780/633/335/1 7 1/63/2 I /5/9
Spo 80 4116 33/1 55/394/596/927/778/630/334/1 7 1/63/2 I /5/9

precIsIon. On the other hand, large threshold values lead to
very few instances being classified, resulting in high precision
and low recall. To deal with this problem, we make use of
precision-recall curves (PR-curves) as the evaluation measure
for the experiments. To obtain a PR-curve, different thresholds
between [0,1] are applied to the outputs of the methods, and
thus different values of precision and recall are obtained, one
for each threshold value. Each threshold then represents a point
within the PR-space. The union of these points form a PR­
curve, and the area under the curve is calculated. All methods
are thus compared based on their areas under the PR-curves.

More specifically, we employed the area under the average
PR-curve (AU(PRC)). Given a threshold value, a precision­
recall point (Prec, Rec) in the PR-space can be obtained
through Equations (1) and (2). They correspond to the micro­
average of precision and recall.

To verify the significance of the results, we employed the
Friedman and Nemenyi statistical tests, recommended for com­
parisons involving many classifiers and several datasets [17].
We adopted a confidence level of 95% in the statistical tests.
As in [5] and [7], 2/3 of each dataset were used for inducing
the classification models and 1/3 for test. We used the same
data partitions suggested in [5].

C. Parameters

We investigate the performance of HMC-LMLP using the
conventional Back-propagation algorithm (Bp) [18], and the
Resilient Back-propagation (Rprop) [19].

The HMC-LMLP parameters were optimized using the
Eisen validation dataset. This dataset was selected because it
was one of the data sets where Clus-HMC obtained its best
performance (0.380), and also because it has a relatively small
number of attributes, which allows to run several experiments
in a reasonable amount of time. The following parameters
were optimized: (i) number of neurons in each hidden layer
(beginning with the hidden layer of the MLP network associ­
ated with the first hierarchical level, and finishing with the
hidden layer of the MLP network associated with the last

Training Valid Test
Total Multi Total Multi Total Multi

1625 1625 848 848 1278 1278
1627 1627 844 844 1278 1278
1605 1605 842 842 1272 1272
1055 1055 528 528 835 835
1636 1636 849 849 1288 1288
1631 1631 846 846 1281 1281
1636 1636 849 849 1288 1288
653 653 352 352 581 581

1692 1692 876 876 1332 1332
1597 1597 837 837 1263 1263

level), (ii) the learning rate and momentum constant used in
the Back-propagation algorithm, and (iii) the range of values
used to initialize the neural network's weights. We executed
HMC-LMLP over the validation dataset using different sets of
parameter values. We employed different initial weight values,
number of hidden neurons, learning rates, and momentum
constants. We did not use all possible sets of values due to
the large number of possibilities.

For the initial weights, we noticed that the larger their
values, the more likely the occurrence of overfitting. We varied
the initial weights by randomly selecting them initially from [-
0.1,0.1], but gradually increasing the range to [-1,1]. We tested
a limited number of neurons for each hidden layer, beginning
with 1.0/ 1.0/0.95/0.9/0.85/0.8/0.75/0.7/0.65/0.6/0.55/0.5/0.45
neurons in each layer and gradually decreasing these values.
These numbers represent the fraction of the total number of
network inputs. Thus, if a neural network has 100 inputs, the
value 0.6 means 60 hidden neurons. Considering the learning
rate and momentum, we started our experiments with the same
default values used in the Weka toolkit [20] (learning rate equal
to 0.3 and momentum equal to 0.2). We gradually decreased
these values and noticed that the neural networks became
less prone to overfitting as these values decreased. The final
parameters obtained for HMC-LMLP after the preliminary
experiments are listed next.

• Number of hidden neurons per level (fraction
of the total number of network inputs):
0.65/0.65/0.6/0.55/0.5/0.45/0.4/0.35/0.3/0.25/0.2/0.15/
0.1;

• Learning rate and momentum constant used in Back­
propagation for hidden and output layers: {0.05,0.03}
and {0.03, 0.01}, respectively;

• Initial weights of the neural networks: within [-
0.1,0.1];

• Parameter values of the Rprop algorithm: initial Delta
(�o) = 0.1, maximum Delta (�max) = 50.0, minimum
Delta (�min) = le-6, increase factor (1]+) = l.2, and
decrease factor (1]-) = 0.5.

We would like to point out that we decreased the number of
hidden neurons of the neural networks as the hierarchical levels
became deeper. Our intention was to avoid overfitting, since
the number of training instances is smaller for the networks
associated with deeper hierarchical levels. The first two values

(0.65/0.65) are the same because all instances are classified
in classes belonging to the first and second levels. The Rprop
parameter values were the ones suggested in [19].

D. Results

Table 11 presents the PR-curves for the HMC-LMLP's ver­
sions and the literature methods. We refer to the HMC-LMLP
versions as Bp-Comp (Back-propagation with classes augment­
ing the feature vectors), Bp-NoComp (Back-propagation with
no augmentation), Rprop-Comp (Resilient Back-propagation
with classes augmenting the feature vectors), and Rprop­
NoComp (Resilient Back-propagation with no augmentation).

The results for HMC-LMLP and hmAnt-Miner are the
mean and standard deviation over 10 executions. Each HMC­
LMLP execution was performed with randomly initialized
weights. Clus-HMC, Clus-HSC, and Clus-SC are deterministic
algorithms, and thus require a single execution. We highlight
the best absolute values. We also compared the HMC methods
considering specific classes with the goal of examining their
behavior when predicting classes in different hierarchical lev­
els. Since Clus-HMC is considered to be the state-of-the-art
method, we performed the comparisons in the Seq dataset, in
which Clus-HMC showed the best results according to Table 11.

We selected, for each level, the three classes where Clus­
HMC obtained its best results. We went down until the seventh
hierarchical level. Results are shown in Table Ill. The best
absolute values are highlighted.

V. DISCUSSION

According to Table 11, the best results were obtained
by Rprop-NoComp, Clus-HMC and Clus-HSC. We can see
that using the true classes to augment the feature vectors
did not improve the classification results when compared to
the HMC-LMLP version that does not use the augmentation
process. We believe there are two reasons that may have
harmed Bp(Rprop)-Comp's performance: (i) adapting the DAG
hierarchy, and (ii) using different values to augment the feature
vectors during the training and test phases.

Regarding the adaptation made in the DAG hierarchies,
Bp-Comp and Rprop-Comp could have achieved better perfor­
mance if all relationships between classes had been available
during training. Recall we had to adapt the DAG hierarchy
to define the depth of a class as being the number of edges
in the longest path between class and root node. For that
reason, many hierarchical relationships between classes were
not considered during the training phase. Figure 3 illustrates a
scenario that explains this rationale.

Following the scenario presented in Figure 3, consider that
a training instance is assigned to paths A.C and A.B.C, and
that class C is a direct subclass of both classes A and B. In
this scenario, there are two possible depths for class C: 2 (A.C)
and 3 (A.B.C). In the adaptation process we have proposed,
class C is defined as belonging to the third level. In this case,
when training an MLP for the third level, we consider class
C as subclass of class B alone. Thus, when training a neural
network to predict class C (third level), we are not using the
information related to all its superclasses (classes A and B) as
inputs. Only class B is considered.

Fig. 3: Illustrative example of different depths for the same
class.

The different values that are used when augmenting the
feature vectors may also have harmed the performance of Bp­
Comp and Rprop-Comp. Recall that when training an MLP for
level I, we make use of the true labels of the training instances
(values 0 or 1) at level l - 1 to augment their feature vectors.
However, the true labels are not available during test. Thus, the
predictions made by the neural network at level I - 1 (values
[0,1]) were used instead. Therefore, each MLP was trained
using 0 or 1 values for augmenting the feature vectors during
training, but were tested with real values in the interval [0,1].

Comparing the Bp and Rprop algorithms, note that the
Rprop versions of HMC-LMLP provided better predictive
performance than the Bp versions. These results suggest that
Rprop copped better with the greater number of attributes,
which increased considerably due to the augmentation process.

Fig. 4: Critical diagram presenting results of the 4 HMC­
LMLP's versions.

Figure 4 shows the results of the statistical tests regarding
the four HMC-LMLP's versions. Note that Rprop-NoComp
outperforms most versions of HMC-LMLP with statistical
significance. The difference for BP-NoComp is within the limit
of the critical difference. The tests confirm that Rprop was the
best learning algorithm in both scenarios (with and without
augmentation).

Figure 5 presents the results of the statistical tests regarding
the best version of HMC-LMLP (Rprop-NoComp) and the
four baseline methods (Clus-HMC, Clus-HSC, Clus-SC, and
hmAnt-Miner). Clus-HMC provides the lowest average rank
(2.0), whereas Rprop-NoComp provides the second lowest
(2.15) followed by Clus-HSC (2.25). Note that the difference
in average rank among these three methods is very small, and
indeed it is deemed as insignificant by the statistical tests.
The performance achieved by hmAnt-Miner (average rank of
3.6) and Clus-SC (average rank of 5.0) is considerably lower
than the best ranked methods. Even though hmAnt-Miner is
within the limit of the critical difference, Clus-SC is out of

TABLE 11: AU(PRC) values obtained

Dataset Bp-Comp Bp-NoComp Rprop-Comp Rprop-NoComp Clus-HMC Clus-HSC Clus-SC hmAnt-Miner

Cellcycle 0.352 ± 0.0025 0.359 ± 0.0007 0.357 ± 0.001 0.365 ± 0.001 0.357 0.371 0.252 0.325 ± 0.0079
Church 0.336 ± 0.0015 0.340 ± 0.0011 0.341 ± 0.003 0.347 ± 0.001 0.348 0.397 0.289 0.334 ± 0.0010
Derisi 0.336 ± 0.0013 0.345 ± 0.0006 0.336 ± 0.002 0.349 ± 0.00 I 0.355 0.349 0.218 0.321 ± 0.0068
Eisen 0.393 ± 0.0014 0.395 ± 0.0012 0.396 ± 0.003 0.403 ± 0.001 0.380 0.365 0.270 0.373 ± 0.0110
Gaschl 0.373 ± 0.0029 0.378 ± 0.0012 0.372 ± 0.004 0.384 ± 0.001 0.371 0.351 0.239 0.352 ± 0.0082
Gasch2 0.359 ± 0.0019 0.362 ± 0.0012 0.359 ± 0.003 0.369 ± 0.001 0.365 0.378 0.267 0.334 ± 0.0165
Pheno 0.315 ± 0.0025 0.322 ± 0.0011 0.316 ± 0.002 0.325 ± 0.002 0.337 0.416 0.316 0.336 ± 0.0017
Spo 0.334 ± 0.0021 0.340 ± 0.0007 0.332 ± 0.003 0.345 ± 0.00 I 0.352 0.371 0.213 0.329 ± 0.0078
Expr 0.369 ± 0.0031 0.371 ± 0.0014 0.373 ± 0.003 0.384 ± 0.002 0.368 0.351 0.249 0.343 ± 0.0066
Seq 0.368 ± 0.0034 0.368 ± 0.0018 0.375 ± 0.003 0.384 ± 0.002 0.386 0.282 0.197 0.371 ± 0.0069

Average 0.355 0.358 0.356 0.365 0.362 0.363 0.251 0.342

TABLE Ill: Best AU (P RC) obtained in specific classes for the Seq dataset.

Level Classes Bp-Comp Bp-NoComp Rprop-Comp

GO:0044464 0.963 ± 0.006 0.966 ± 0.002 0.965 ± 0.002
I GO:0009987 0.869 ± 0.005 0.868 ± 0.004 0.870 ± 0.004
I GO:0008152 0.791 ± 0.010 0.790 ± 0.008 0.797 ± 0.007
2 GO:0044424 0.934 ± 0.002 0.937 ± 0.003 0.936 ± 0.003
2 GO:0044237 0.723 ± O.D I I 0.734 ± 0.009 0.734 ± 0.007
2 GO:0044238 0.690 ± 0.012 0.691 ± 0.010 0.702 ± 0.009
3 GO:0044446 0.691 ± 0.007 0.687 ± 0.007 0.677 ± 0.011
3 GO:0044444 0.648 ± 0.014 0.652 ± 0.009 0.630 ± 0.014
3 GO:0043229 0.591 ± 0.008 0.597 ± 0.007 0.601 ± 0.007
4 GO:004323I 0.558 ± 0.009 0.562 ± 0.008 0.567 ± 0.008
4 GO:0044428 0.491 ± 0.019 0.495 ± 0.015 0.496 ± 0.013
4 GO:0044267 0.428 ± 0.015 0.460 ± 0.010 0.450 ± 0.011
5 GO:0006412 0.684 ± 0.014 0.684 ± 0.012 0.664 ± 0.018
5 GO:0005634 0.321 ± 0.013 0.323 ± 0.017 0.317 ± 0.009
5 GO:0005739 0.395 ± 0.016 0.403 ± 0.007 0.390 ± 0.012
6 GO:0045449 0.239 ± 0.020 0.226 ± 0.016 0.191 ± 0.013
6 GO:0017111 0.115 ± 0.024 0.122 ± 0.028 0.301 ± 0.033
6 GO:0043687 0.227 ± 0.027 0.218 ± 0.026 0.236 ± 0.026
7 GO:0006355 0.233 ± 0.017 0.225 ± 0.016 0.183 ± 0.010
7 GO:0016568 0.099 ± 0.014 0.092 ± 0.012 0.093 ± 0.006
7 GO:0000723 0.081 ± 0.008 0.086 ± 0.011 0.082 ± 0.012

Average 0.513 0.515 0.518

the significance margin, which means it is outperformed by
the first three methods with statistical significance.

Clus-HMC
Rprop-NoComp

I I I I

� CIUS-SC

� I � hmAnt-Mmer

'-------------Clus-HSC

Fig. 5: Critical diagram presenting results of the best HMC­
LMLP network and the baseline algorithms.

Considering the results in specific classes (Table Ill),
HMC-LMLP provided the best results for most of the classes.
These results were unexpected, given that Clus-HMC achieved
a better overall performance than Bp-Comp, Bp-NoComp and
Rprop-Comp (Table 11). Notwithstanding, we verified that from
the 2849 classes that belong to the test dataset, Clus-HMC
provided the best results for 2192, whereas the HMC-LMLP's
versions achieved the best results in a much smaller number
of classes. Hence the results of Clus-HMC in Table 11.

The PR-curves obtained for datasets Eisen and Seq are
depicted in Figure 6. These data sets are the ones where Clus­
HMC obtained its best results. We compared the PR-curves of

Rprop-NoComp Clus-HMC Clus-HSC Clus-SC hmAnt-Miner

0.964 ± 0.006 0.960 0.951 0.951 0.953 ± 0.0054
0.873 ± 0.006 0.872 0.844 0.844 0.870 ± 0.0072
0.796 ± 0.006 0.774 0.700 0.700 0.730 ± 0.0098
0.935 ± 0.003 0.922 0.897 0.894 0.916 ± 0.0051
0.742 ± 0.009 0.714 0.694 0.686 0.685 ± 0.0123
0.701 ± 0.006 0.664 0.632 0.634 0.651 ± 0.0142
0.674 ± 0.005 0.649 0.610 0.564 0.615 ± 0.0162
0.636 ± 0.008 0.629 0.546 0.530 0.570 ± 0.0083
0.595 ± 0.006 0.584 0.554 0.547 0.561 ± 0.0109
0.561 ± 0.004 0.535 0.500 0.485 0.514 ± 0.0081
0.497 ± 0.019 0.446 0.353 0.346 0.409 ± 0.0256
0.458 ± 0.012 0.383 0.337 0.329 0.376 ± 0.0240
0.678 ± 0.012 0.491 0.440 0.501 0.435 ± 0.0279
0.320 ± 0.011 0.327 0.241 0.283 0.322 ± 0.0192
0.386 ± 0.014 0.308 0.284 0.310 0.244 ± 0.0096
0.218 ± 0.023 0.167 0.106 0.127 0.188 ± 0.0267
0.304 ± 0.030 0.134 0.190 0.200 0.071 ± 0.0053
0.235 ± 0.026 0.105 0.096 0.120 0.115 ± 0.0136
0.209 ± 0.021 0.173 0.100 0.117 0.174 ± 0.0217
0.121 ± 0.011 0.094 0.051 0.058 0.079 ± 0.0128
0.081 ± 0.009 0.085 0.064 0.056 0.082 ± 0.0 I 04

0.523 0.477 0.438 0.442 0.455

the literature methods with the PR-curve obtained by Rprop­
NoComp, since it was the best among the HMC-LMLP's
versions. The PR-curves shown for HMC-LMLP and hmAnt­
Miner are those from the executions in which they obtained the
best results in the validation data. We can see that Clus-HMC,
Clus-HSC and HMC-LMLP are quite even performance-wise.

VI. CONCLUSION

In this paper, we presented Hierarchical Multi-Label
Classification with Local Multi-Layer Perceptron (HMC­
LMLP), which associates an MLP to each level of a DAG­
structure class hierarchy. HMC-LMLP employs the Local
Classifier per Level (LCL) [3] strategy, complementing the
feature vectors of the instances with their true classes, in order
to make use of local information within each level of the
hierarchy. With this, we try to avoid problems such as the
loss of label dependency during training.

We tested HMC-LMLP on ten datasets related to protein
function prediction, in which the protein functions were or­
ganized following the Gene Ontology. We compared its per­
formance against state-of-the-art methods from the literature
of HMC, and the empirical analysis indicated that HMC­
LMLP matches the predictive performance of the state-of­
the-art methods, often presenting better results in specific

AU(PRC)
1.0 r-�--r�---r===-;:R:-p -ro -p--';";N-oC:=o-m---' p i ,�, ___ . Clus-HMC

0.8 - -\ �, _. _ _ . _ _ .- Cl us-HSC

\ \' _._. Clus-SC

c
00.6
VI
u
(j) 6: 0.4

0.2

\ \' - - hmAnt-Miner

\ �\. '\ � \ , .�\
\ \\

0.2

"\ V�\
" \

"I "

��,��,
0.4 0.6

Recall
(a) Eisen data set

0.8 1.0

AU(PRC)
1.0 .---�--r�---r===-;:R:-p -ro -p--';";N-oC:=o-m---' p

0.8

c
00.6
VI
u
(j) 6: 0.4

0.2

- - - . Clus-HMC
_ ... _._._.- Clus-HSC
.. Clus-SC

- hmAnt-Miner

0.0 L�,--�...l..-::::::::=���..I
0.0 0.2 0.4 0.6

Recall
(b) Seq dataset

0.8 1.0

Fig. 6: PR-curves of Rprop-NoComp, Clus-HMC, CLus-HSC, Clus-SC, and hmAnt-Miner.

classes of the DAG hierarchy. According to the results, true
labels to complement the feature vectors did not improve the
classification performance. We showed this may be due to the
adaptation performed in the DAG taxonomies, which resulted
in no use of the complete information regarding parent-child
class relationship.

As future work, we plan to investigate other neural net­
works training algorithms. We will also investigate alternatives
to adapt the DAG taxonomies to be used with HMC-LMLP,
trying to overcome the disadvantages of the currently used
adaptation. Other strategies for correct inconsistencies in the
prediction will also be tried. Finally, we plan to incorporate
other knowledge source in the training process, such as protein­
protein interactions networks, and also use HMC-LMLP in
other application domains, such as text classification.

ACKNOWLEDGMENT

The authors would like to thank the Brazilian research
agencies FAPESP and CNPq.

REFERENCES

[1] E. P. Costa, A. C. Lorena, A. C. P. L. F. Carvalho, and A. A.
Freitas, "Top-down hierarchical ensembles of classifiers for predict­
ing g-protein-coupled-receptor functions," in Brazilian Symposium on
Bioinformatics, ser. LNBI, vol. 5167. Springer-Verlag, 2008, pp. 35-
46.

[2] M. Ashburner et al., "Gene ontology: tool for the unification of biology.
The Gene Ontology Consortium." Nature Genetics, vol. 25, pp. 25-29,
2000.

[3] C. Silla and A. Freitas, "A survey of hierarchical classification across
different application domains," Data Mining and Knowledge Discovery,
vol. 22, pp. 31-72,2010.

[4] R. Cerri, R. Barros, and A. C. P. L. F. Carvalho, "Hierarchical multi­
label classification using local neural networks," Journal of Computer
and System Sciences, vol. 80, no. 1, pp. 39-56, 2013.

[5] c. Yens, 1. Struyf, L. Schietgat, S. Dzeroski, and H. Blockeel, "Decision
trees for hierarchical multi-label classification," Machine Learning,
vol. 73, pp. 185-214, 2008.

[6] R. Alves, M. Delgado, and A. Freitas, "Knowledge discovery with
artificial immune systems for hierarchical multi-label classification of
protein functions," in International Conference on F uzzy Systems, 2010,
pp. 2097-2104.

[7] F. Otero, A. Freitas, and C. Johnson, "A hierarchical multi-label
classification ant colony algorithm for protein function prediction,"
Memetic Computing, vol. 2, pp. 165-181,2010.

[8] N. Cesa-Bianchi, M. Re, and G. Valentini, "Synergy of multi-label
hierarchical ensembles, data fusion, and cost-sensitive methods for gene
functional inference," Machine Learning, pp. 1-33, 2011.

[9] N. Cesa-Bianchi and G. Valentini, "Hierarchical cost-sensitive algo­
rithms for genome-wide gene function prediction," Journal of Machine
Learning Research, vol. 8, pp. 14-29, 2010.

[10] G. Valentini, "True path rule hierarchical ensembles for genome-wide
gene function prediction," IEEEIACM Transactions on Computational
Biology and Bioinformatics, vol. 8, no. 3, pp. 832-847, May 2011.

[11] M. Kordmahalleh, A. Homaifar, and B. Dukka, "Hierarchical multi­
label gene function prediction using adaptive mutation in crowding
niching," in Bioinformatics and Bioengineering (BIBEJ, 2013 IEEE 13th
1nternational Conference on, Nov 2013, pp. 1-6.

[l2] D. Stojanova, M. Ceci, D. Malerba, and S. Dzeroski, "Using ppi
network autocorrelation in hierarchical multi-label classification trees
for gene function prediction," BMC Bioinformatics, vol. 14, no. 1, p.
285,2013.

[13] R. Cerri, R. C. Barros, A. A. Freitas, and A. C. de Carvalho, "Evolving
relational hierarchical classification rules for predicting gene ontology­
based protein functions," in P roceedings of the 2014 Conference Com­
panion on Genetic and Evolutionary Computation Companion, ser.
GECCO Comp '14. New York, NY, USA: ACM, 2014, pp. 1279-
1286.

[14] W. Bi and J. Kwok, "Mandatory leaf node prediction in hierarchical
multilabel classification," IEEE Transactions on Neural Networks and
Learning Systems, vol. 25, no. 12, pp. 2275-2287, Dec 2014.

[l5] R. Baraniuk, V. Cevher, M. Duarte, and C. Hegde, "Model-based com­
pressive sensing," IEEE Transactions on Information Theory, vol. 56,
no. 4, pp. 1982-2001, April 2010.

[16] S. Haykin, Neural Networks: A Comprehensive Foundation, 2nd ed.
Upper Saddle River, NJ, USA: Prentice Hall PTR, 1999.

[17] J. Demsar, "Statistical comparisons of classifiers over multiple data
sets," Journal of Machine Learning Research, vol. 7, pp. 1-30, 2006.

[18] D. E. Rumelhart and J. L. McClelland, Parallel distributed processing:
explorations in the microstructure of cognition, D. E. Rumelhart and
J. L. McClelland, Eds. Cambridge, MA: MIT Press, 1986, vol. 1.

[l9] M. Riedmiller and H. Braun, "A Direct adaptive method for faster
backpropagation learning: The RPROP algorithm," in International

Conference on Neural Networks, 1993, pp. 586-59l.
[20] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and

l. H. Witten, "The WEKA data mining software: an update," SIGKDD
Explor. Newsl., vol. 11, no. 1, pp. 10-18, 2009.

