
How Interaction between Roles Shapes the Communication Structure in
Requirements-Driven Collaboration

Sabrina Marczak
Software Engineering Global interAction Lab - SEGAL
Department of Computer Science, University of Victoria

Victoria, BC, Canada
smarczak@cs.uvic.ca

Daniela Damian
Software Engineering Global interAction Lab - SEGAL
Department of Computer Science, University of Victoria

Victoria, BC, Canada
danielad@cs.uvic.ca

Abstract—Requirements engineering involves collaboration
among many project team members. Driven by coordination
needs, this collaboration relies on communication and knowl-
edge that members have of their colleagues and related activi-
ties. Ineffective coordination with those who work on require-
ments dependencies may result in project failure. In this paper,
we report on a study of roles and communication structures
in the collaboration driven by interdependent requirements
in a software team. Through on-site observations, interviews
with the developers and application of social network analysis,
we found that there was significant communication between
diverse roles in the project, and identified what were the
reasons for communication between the different roles. We
also found that these interactions typically involved a core
of requirements analysts and testers in close communication,
that most often they involved critical members whose ab-
sence, whether temporary or permanent, would disrupt the
information flow if removed from the project, as well as that
new hires were mostly isolated from the team collaboration.
Most interestingly we found that the emergent communication
structure between the different roles in the project did not
conform to the planned communication structure prescribed by
the organization. These findings further our knowledge about
collaboration driven by requirements, and provide some useful
implications for research and development of collaborative
tools to support the effective coordination of cross-functional
teams in software development.

Keywords-requirements-driven collaboration; coordination;
communication structure; communication patterns; interde-
pendent requirements; cross-functional teams; social network
analysis; case study.

I. INTRODUCTION

Requirements engineering (RE) drives the software life-
cycle from the elicitation phase, to analysis and design,
and down to implementation and testing [1]. As such, it
involves continuous collaboration among members from
different functional groups such as requirements analysis
and design, software architecture, development, and testing.
Project members communicate to seek domain knowledge
or to establish a common understanding about the work
to be done. Ongoing coordination is also necessary to
manage dependencies with those working on artifacts related
to requirements. Implementing interdependent requirements

creates a greater need to coordinate across different func-
tional groups in an organization. Project members playing
different roles and holding specialized knowledge about
different parts of the system need to coordinate effectively
to avoid failures. Ineffective coordination with those who
work on dependencies may result in failures [1].

Our early studies of collaboration driven by requirements
[17] introduced the concept of a requirements-centric social
network (RSCN) as the representation of collaboration of
a cross-functional team of people whose work is related
to particular requirements. We characterized RCSNs in
terms of their size and ability to maintain awareness of
work, specially when the project team was geographically
distributed. We continued with a study of collaboration
driven by interdependent requirements [25] in which we
found that technical leaders were brokers of incoming and
outgoing information flow in the social networks formed
around interdependent requirements. This leads us to ask
about the interactions between different roles in the project
and how they affect their communication.

The purpose of the study reported in this paper is to extend
our knowledge of roles in requirements engineering, by ex-
amining the interactions of people playing different roles and
how these interactions shape the communication structure
of collaboration driven by interdependent requirements. Is
there a way to improve the communication between the
different roles in the project to positively affect coordination
driven by requirements? Roles in work teams have been
studied in organizational behavior literature [7], but largely
overlooked in the RE literature. Defining team structures
with clear communication channels among various roles are
typical ways to facilitate collaboration and coordination in
organizations [26].

Our study was guided by the following research questions:
• Are there patterns of communication in collaboration

driven by work on interdependent requirements?
• How do the different roles interact in collaboration

driven by work on interdependent requirements?
We report on a field study of software development

at a large distributed IT organization, and where we had

978-1-4577-0924-1/11/$26.00 © 2011 IEEE

2011 IEEE 19th International Requirements Engineering Conference Research Paper

47

the opportunity to study a team that had a well-defined
team structure and communication structure among the roles
in the project. We identify a number of communication
patterns between different roles in the project, and reasons
for communication between these roles.

Most interestingly we found that the emergent commu-
nication structure between the different roles in the project
did not conform to the anticipated, planned communication
structure prescribed by the organization. We provide some
explanations for the patterns we identify and observations
that we make as well as describe some implications for
future research and development of collaborative tools to
support effective coordination in RE.

II. RELATED WORK

Organizational behavior research has long studied orga-
nizational and communication structures in organizations.
Collaboration and information sharing have been of par-
ticular interest since they are critical elements in effective
performance of technical work in organizations. The or-
ganizational structure is meant to determine not only the
division of labor and modes of operation to achieve a work
outcome but also the ways in which information between
organizational roles should flow. Traditionally, organizations
use hierarchical structures to increase efficiency and control,
and guide employees to specialize in a few tasks in different
functional units or departments [22]. Since Conway’s obser-
vation in 1968 [11] that system structure is bound to reflect
the structure of social interactions in organizations, we have
learned that hierarchical or too rigid organizational structures
often create obstacles to the movement of information by
blocking flows and by promoting overload of information in
certain paths [20]. Organizations can enhance their effective-
ness by promoting communication outside the formal, hier-
archical boundaries [2]. People often find ways to overcome
these obstacles by disregarding the organization structure
and establishing informal relationships across functions to
accomplish tasks fast. These so called ’informal organization
networks’ can cut through formal reporting procedures to
jump start stalled initiatives and meet extraordinary dead-
lines [24]. Interactions among people involved in informal
relationships represent backchannel communication, also
known as ’grapevine’.

Informal structures in organizations have thus been
also researched extensively (e.g. [12]). Studies find that
backchannel communication fulfills a social function in
organizations by helping work groups develop more cohe-
sion [3], and is motivated by a desire to achieve speed in
acquiring information and accuracy of the work done [18].
’Lateral’ communication that disregards hierarchical struc-
tures is used in organizations to cross functional and depart-
mental boundaries [22]. Longitudinal studies of interactions
within informal groups reveal patterns of communication
and what has been referred to as network structures (e.g.

[23], [9]). Social network analysis has become predominant
in studying formal and informal organization networks to
support strategic collaboration in large organizations and
as mechanisms to assess the health of formal or informal
structures following organizational restructuring (e.g. [13]).

In RE, Gotel [21] introduced the concept of ’contribution
structures’ in order to capture the relevant information about
agent participation and the contribution relations that have
been defined for requirement artifacts. Our definition of
requirements-driven collaboration leverages this notion of
’social infrastructure’ underlying RE and intends to provide
focused investigations and insights into the roles played by
these agents and their interactions. In this paper we further
our understanding of communication patterns between roles
in requirements-driven collaboration in an organization with
well-defined organizational and communication structures.

III. RESEARCH METHODOLOGY

Our field study used a mixed-methods approach to data
collection in a software project at a large distributed IT
organization. A three month on-site visit was conducted in
which we observed team members working in their native
environment; as well, as we constructed communication
social networks to identify interdependent requirements-
driven collaboration patterns.

A. Case Study Setting

The project we investigated, named KnowHow, a fictitious
name, is a software maintenance project at a multinational IT
manufacturing company. This company develops software
to support its business processes. Software is developed and
maintained in its development centers located in Brazil and
India, as well as in the headquarters office located in the
United States. The project’s customers are the company’s
employees, business partners, or contractors.

Business area and project goal. KnowHow is a project that
enhances and maintains a group of internal applications
used by product management and sales. With over one
hundred applications within a group organized into four
major groups, the project investigated was the first quarterly
release since transfer of the code ownership to the Brazilian
center. Because the project was new to the center, the
team was under pressure from management to demonstrate
ability to deliver on time and with high quality.

RE process. The team maintains a list of desired im-
provements. These desired improvements address business
process changes that the business partners have identified.
Each of the four main groups has its own business partner
representative, who informs the requirements analysts about
the desired improvements. An additional business person
manages the business partners. By quarter, requirements
analysts select and prioritize the improvements that will form

48

the quarter release scope. The business manager is the focal
point in solving issues and in prioritizing the improvements.
After translation into high-level software requirements, the
selected improvements are added to the existing product
documentation. Each requirement is allocated to one of the
hundreds of applications maintained by the KnowHow team.
The requirements are formally approved and specified within
the first three weeks of the release cycle, and serve as
the project release contract. Either the business partners or
requirements analysts request changes to the requirements,
and requirements analysts conduct impact analysis.

The team acquired knowledge about the product and
its original requirements through a process of reverse
engineering. Formerly conducted by the headquarters office,
the KnowHow project was transferred to Brazil five months
before we started the investigation. Most of the applications
had no documentation about requirements, architecture,
and their mutual interface. The majority of the employees
who had originally developed the applications had already
left the company. To minimize the lack of expertise, since
every member in the KnowHow project was new to the
applications, senior management decided to train the team
on the application domain and technical matters by asking
them to document the applications’ requirements and
architecture using reverse engineering. The development
team spent three months working on this activity.

Team distribution. The KnowHow team consists of 44
members, distributed as follows: 38 in Brazil, 5 in the
United States, and 1 in India. The 5 business partners are
located in the United States and 1 tester is located in India.
Located in Brazil are 2 project managers, 4 requirements
analysts, 1 test leader, 6 testers, 5 development leaders, and
20 developers. One requirements analyst also acts as the
leader of his team, and one of the development leaders is
in charge of managing the development team. All members
work full time on the project and about 30% of them are
contractors or new hires in the company.

Organization structure, roles, and responsibilities. This
project had a well-defined team organization and prescribed
communication channels between the roles, as shown in
Figure 1. This organizational structure demanded that de-
velopers and testers do not communicate directly. They
have to communicate with their leaders to reach someone
in the other functional group, and the leader will discuss
directly the matter with the target person.The project man-
agers supervise the overall work and report progress to
senior management. The business partners are responsible
for identifying the desired improvements and for registering
these improvements. The requirements analysts analyze and
prioritize the improvements with the help of the business
partners and the project managers. The development leaders
discuss the improvements when consensus about scope is not

Requirements
Analyst

Developer

Development
Leader

Tester

Test Leader

Project
Manager

Business
Partner

Business
Partner

Manager

Figure 1. Organizational structure defined for the KnowHow project

reached. Once the scope is agreed, the requirements analysts
translate the selected improvements into high-level software
requirements, which are formally documented.

The testers actively engage in the project after approval of
the requirements. The test leader is responsible for designing
tools to automate test cases and the testers are in charge
of writing them. Developers are responsible for coding the
requirements and performing integration tests of their code
with other developers’ code related to the same requirement.

B. Data Description, Collection and Analysis Methods

The focus of our data collection and analysis was the
collaboration around sets of interdependent requirements.
We use the term cross-functional team to refer to the group
of project members who played different roles and worked
on artifacts related to the interdependent requirements. These
roles included requirements analysts, developers, and testers.
We refer to the interactions among different roles in the
cross-functional team as cross-functional interactions. We
use the RCSN concept (requirements-centric social network)
[17] to represent the collaboration within cross-functional
teams associated with sets of interdependent requirements.
The nodes in the network represent the members in the
cross-functional team and the ties indicate communication
interactions among them. A directional tie is drawn if one
person reported that communication occurred about a certain
requirement of the dependency set with another person.

We spent three months on site collecting data. We used
document inspection, interviews, questionnaires and on-site
observations to collect our data. We describe each of these
methods to explain how we identified the requirements
and their dependencies, and their associated requirements-
centric networks. To identify communication patterns within
these networks and interactions among project roles we
used insights from the observations and questionnaires, and
methods from social network analysis [27].

Document inspection. To identify the requirements and their
dependencies, we inspected requirements documents such

49

as the requirements specification and the requirements-
traceability matrixes. We identified 20 high-level software
requirements and 4 sets of requirements dependencies. These
dependencies are of constraining nature (e.g., requires, and
conflict-with dependencies) as defined by Dahlstedt [15].
An example of ’requires’ type of dependency in our study
involved the two following fictitious requirements: Require-
ment 1 defined that delivery of computer parts requested by
customers after acquiring a computer shall be managed by
the Part Notice Sales Management system, and Requirement
2 defined that the system shall send an e-mail to the
customer to notify when the part has been shipped from
the manufacturing company. The number of requirements
per set varied from 2 to 4, with average 2.5 requirements
per set. We interviewed the requirements analysts to validate
the sets of dependencies identified.

To identify those individuals and the roles assigned to
work in every task related to each requirement listed on
the sets of dependencies, we inspected project planning
documents and built a list of members associated to each
requirement. A total of 10 members (out of 45) were listed,
as follows: 2 requirements analysts, 1 test leader, 4 testers,
2 development leaders, and 2 developers. On average, each
set of dependencies had 4.75 members assigned.

Semi-structured interviews and observations. To develop an
in-depth understanding of the project context and to iden-
tify communication patterns, we conducted semi-structured
interviews and observed the team members working in their
native environment. Each of the 10 team members was inter-
viewed at least once individually. Group interviews followed
to clarify discrepancies about requirements dependencies or
technical information about the project.

Daily for three months, we observed team members
performing their activities to identify who collaborated with
whom and how they related their tasks and interactions back
to requirements. We observed interactions among members
in individual situations or in group meetings and notes
were taken. Each member was individually shadowed at
least three times in distinct phases of the development cycle.

Questionnaire. To refine and corroborate the data about
communication interactions collected through interviews and
observations, we applied a questionnaire. Questions pro-
vided the respondent with a list of names (those assigned
to work on artifacts related to the same dependent require-
ments) and asked the respondent to indicate whom he or she
communicated with and the reason for the communication.
We provided a list of four reasons, identified as relevant
through interviews: requirements negotiation, requirements
clarification, communication of changes, and coordination
of activities. Appendix A presents the questions.

With this information about communication between the
different members in the project we then constructed the

1

7

17

11

16

35

40

9

0

5

10

15

20

25

30

35

40

45

Requirements
Nego8a8on

Requirements
Clarific8on

Communica8on of
Changes

Coordina8on of
Ac8vi8es

Within‐teams

Cross‐teams

Figure 2. Within- and cross-team communication across all networks

RCSNs for each reason for communication. For example, if
team member P 1 reported that he or she communicated with
P 2 about reason requirements negotiation for requirement
R1, then we created a directed tie between P 1 and P 2

in the R1 requirements negotiation RCSN. Out of the
10 participants, 8 responded to the questionnaire. The
available-case analysis technique [28] was used to replace
missing social network data.

IV. INTERDEPENDENT REQUIREMENTS-DRIVEN
COLLABORATION PATTERNS

The analysis of collaboration around the 4 sets of inter-
dependent requirements in this project provided us with 16
requirements-centric networks (4 sets of dependencies times
4 reasons of communication)In this section we describe and
discuss the communication patterns in requirements-driven
collaboration identified in this project. By communication
pattern we mean the recurring repetitions of the same col-
laboration behavior across the social networks of dependent
requirements.

Collaboration driven by interdependent requirements in-
cludes significant cross-functional interactions

Although we expected that project members would speak
more with colleagues in their own functional teams than
with those in other teams, in this project we found the
opposite. The functional teams that we observed were the
requirements analysis, development, and testing teams. In
Figure 2 we plot the amount of within-team vs. cross-
team communication in all the networks we studied. One
can easily see that the cross-team communication of re-
quirements clarifications, negotiation, and communication
of changes far outweighed the within-team communication.
Moreover, communication of changes was the most-often
reported reason for cross-team communication. As expected,
the coordination of activities occurred more often within-
than across-teams.

50

This is an interesting finding when interpreted in the con-
text of the prescribed communication structure in this project
shown in Figure 1. To support a project team becoming
familiar with a new project, the organization prescribes that
the cross-functional communication take place through the
development and testing leaders. We observed, however, a
predominant direct communication between developers and
testers, in what would be termed as backchannel communi-
cation in the organizational behaviour literature (e.g., [20]).
We observed testers talking with requirements analysts more
frequently than talking among themselves. In interviews,
team members reported that physical collocation and weekly
or daily meetings encouraged collaboration with those work-
ing on interdependent requirements in different teams.

This predominant cross-functional interaction pattern sug-
gests that the requirements analysts, development, and test-
ing teams were well integrated and collaborated with each
other to accomplish the project goals despite the fact that
most of the members were new to the project. Because senior
management was aware that acquiring knowledge about
the legacy applications in such a short time was critical,
especially for the newcomers, they constantly encouraged
the team leaders to offer support to their new teammates.
Team leaders often repeated in their weekly team meetings
that no one should feel intimated in asking for help as soon
as a problem was detected or as a need for clarification arose.

Requirements clarification and communication of changes
are the predominant reasons why team members collabo-
rated with colleagues working on dependent requirements

Although the requirements in this project’s scope were
intensively discussed with the business partners and only
a few changes were implemented, in the interviews team
members reported that the main reason for requirements-
related discussions were to clarify the requirements, to
understand the requested changes in the requirements, and
to discuss how to perform the related tasks derived from the
requirements. Our questionnaire data confirm this finding.
Out of 136 reported instances of communication in the
networks we created, 47 were about requirements clarifi-
cations, and most of them initiated by testers. This empiri-
cal finding corroborates with anecdotal knowledge that to
understand the project requirements and to perform their
tasks efficiently testers need support from the remaining
team members. Approaches such as test-driven development
[4], where a tester must clearly understand the project
requirements before the test cases are written, can be adopted
to impose the comprehension of the requirements before the
development cycle starts. This strategy will likely bring the
test team closer to the requirements definition phase where
an early understanding of the requirements may diminish
the need for clarification requests. Studies of teams who
followed the test-driven development approach shown that

these teams were more productive than those who write test
cases after the code has been developed [19]. Similarly, a
study of RE process improvement in a distributed team [16]
found that, when the requirements analysis activities are
conducted in cross-functional teams that involve testers in
close interaction with developers and requirements analysts,
both the communication among project members and the
requirements coverage were improved.

Communication of changes was the other most predom-
inant reason (52 out of 136 instances) for interaction in
the networks we studied. Interestingly enough, however,
most of our respondents indicated that they did not receive
notification of changes in a timely fashion, highlighting the
importance of timely communication of changes. Lack of
awareness of who is working on interdependent require-
ments or of changes that affect other requirements may
affect the team’s coordination ability. For instance, members
may prepare to discuss important topics in group meetings
based on obsolete information, thus disrupting the work
flow. In the absence of details about requirements change-
related conversations, we can only speculate that it is highly
possible that some of this communication was redundant
and the result of change notifications having reached project
members too late. Researchers and tool developers should
pursue improved methods of communication of changes to
increase the effectiveness of notifications of changes to those
working on affected requirements.

Actual communication structure in the project is very
different from the planned communication structure

The data we collected about actual communication in the
project and which we represented in our networks reveal
that, overall, a large number of team members exchanged
information with each other, instead of a few members
controlling the distribution of information as expected based
on the team structure. This behaviour characterizes a more
loose and decentralized structure in the networks in our
study. A test of network centralization [29] in our networks
yielded an average network centralization index of 0.41,
suggesting that the networks were in general characterized
by the decentralization of information exchange among
team members. The network centralization measure is an
expression of how tightly organized the network is around
its most central nodes. Network centralization increases
and approaches a value equal to 1 as one member (or a
few members) has connections to many others while the
remaining of a team is connected to only a few members.
The measure decreases and approaches a value equal to 0
as more members are connected to fewer members, and the
distribution of ties is more equal among the members. The
decentralization we found in these networks suggest that it is
more likely that the team will be less affected or disturbed by
the sudden absence of a colleague who mostly communicates

51

(and presumably holds knowledge) about the project.
An interesting aspect of this finding, however, is that

this rather decentralized structure is very different from the
planned and intended communication structure. As shown
in Figure 1, the senior management in this project has
intentionally created a centralized organizational structure
focused on the leaders (requirements analyst leader, the 5 de-
velopment leaders, and the test leader) to control information
flow and awareness of decisions. An explanation for the fact
that the members coordinated directly, through backchannel
communication [20], and in a more decentralized manner
than expected, relates to the nature of this project. In
this maintenance project, knowledge about the applications
was built through a reverse engineering activity, in which
developers spent time inspecting the applications and docu-
menting their actual requirements and architecture. In addi-
tion, requirements analysts had to master the applications
through the study of recently written documentation and
discussions with business representatives. Therefore, we can
explain the communication links being distributed among the
diverse roles by the flatter distribution of knowledge about
requirements and absence of reliance on key team leaders.

Although the presence of backchannel communication has
long been reported in organizations, with both positive and
negative connotations [20], the identification of roles that
engage in backchannel communication may be useful in
making decisions about the effectiveness of prescribed com-
munication structures in projects. A requirements-centric
network that exhibits high backchannel communication may
also be indicative of requirements interdependencies that are
poorly understood or highly volatile.

Core subgroups of members originally assigned to work
on the requirements closely collaborate with each other

Although we found that, overall, the networks had a
rather decentralized structure, these networks had subsets
of project members more connected with each other than
with others. These were core subgroups formed primarily of
requirements analysts and testers, who closely collaborated
with one another. Interestingly enough, these members were
among those initially assigned to work on these require-
ments. This suggests that the initial project plan was useful
in this project, a finding that is different from other studies
that found that project plans quickly become obsolete [14].

The existence of cores and their membership was cor-
roborated by applying the core-periphery [8] test. This test
indicates the extent to which the structure of a network
consists of two classes of members: the core, in which
members are connected to each other in some maximal
sense; and the periphery, a class of members that are more
loosely connected to the core. The higher and closer to 1 the
index, the closer the network approaches a core-periphery
structure. The core-periphery index of the networks varied

Requirements Analyst 3

Tester 1

Requirements Analyst 1

Tester 2Developer
Test Leader

Dev Leader

Requirements Analyst 2

Figure 3. Example of a core within a RCSN

from 0.67 to 1, except three networks which had indexes
smaller than 0.35, and were often formed by requirements
analysts and testers. For example, Figure 3 shows the core of
the Communication of changes RCSN for the dependency set
D2. This network core is formed by the following members,
highlighted with a red circle in the Figure: Requirements An-
alyst 1, Developer, Tester 1, and Tester 2. The requirements
analyst and tester roles were not directly involved in the
reverse engineering activities phase, which may explain why
they collaborated so closely. They had to somehow acquire
knowledge about the requirements to perform their tasks.
Therefore, these members closely exchanged information
about the project and collaborated with each other.

The cross-functional requirements-centric teams contain
informal cliques that are also cross-functional

By applying the social network measure clique we iden-
tified that, whenever cliques were present, they consisted
of members playing diverse roles in the project. In social
network analysis, a clique [29] is a subset of at least three
members of a network in which every possible pair of
members is directly connected by a tie and this clique is
not contained in any other clique. Although we found no
cliques in the Requirements negotiation and Coordination
of activities networks, there were 2 cliques in each Re-
quirements clarification (8 in total) and 3 cliques in each
Communication of changes networks (12 in total).

The cliques identified within the Requirements clarifica-
tion networks typically consisted of a requirements analyst,
a developer, and a tester. For instance, Figure 4 shows the
RCSN for dependency set D2. Of the two cliques in this
network, the first was composed of Requirements Analyst 1,
Developer 1, and Tester 1; and the second of Developer
1, Tester 1, and Tester 2. These cliques reflect what we
observed while visiting the team on site: testers would walk
to the developer desk to ask for clarification, and they
would walk together to the requirements analyst office to
discuss the requirements. Note that the requirements analyst
involved in this clique is someone who had not been assigned

52

to work on the dependent requirements represented in this
network, implying that somehow these members were aware
that Requirements Analyst 1 could help. Since developers
spent three months working on reverse engineering to docu-
ment the applications, it was natural for the unfamiliar testers
to seek the developers’ help regarding the requirements.
The developers acted as the first source of requirements
information for the testers.

On the other hand, the Communication of changes cliques
were formed by a developer and two testers. One would ask
why a developer’s involvement in a clique about notification
of changes? We would expect that requirements analysts
were involved in these cliques because they were very active
in negotiating requirements changes and communicating
them to the project managers and developers. However, the
organization structure prescribed that the development lead-
ers would notify developers of changes to their teammates. It
is likely that these notifications took place in group meetings
and that the developers then forwarded this information in
person to the testers. In fact we had the chance to observe
repeatedly, when changes happened, this flow of information
exchange about changes to requirements.

The absence of members initially assigned to work on
interdependent requirements is most likely to disrupt
collaboration about these requirements

In our interviews and observation sessions we noticed
that some developers and testers were essential to the
project development. They were critical not only for the
knowledge they had acquired about the requirements, but
also for their ability to point out quickly who was currently
working on something related to one’s work, where to find
certain information, and to whom to go in order to solve
a problem. These members were confirmed by the cutpoint
[29] measure as critical in keeping information flowing (refer
to Table I). A cutpoint is an actor (or a set of actors) in a
network that, if absent for some reason, would cause the

Requirements Analyst 3

Tester 1

Requirements Analyst 1

Tester 2

Developer 1

Requirements Analyst 2

Developer 2

Figure 4. Example of a clique within a RCSN

Table I
MEMBERS WHOSE ABSENCE MAY DISRUPT INFORMATION FLOW

Dep RN RC CC CA

D1

Dev Dev Dev Tester
Tester Tester Test Lead

D2

Dev Dev Dev Tester
Tester Tester Test Lead

D3
Dev Dev Dev Tester

Tester Tester Test Lead

D4
Req An Req An – none – Dev Lead
Dev

network to be divided into unconnected parts. For example,
in Figure 5 the actor labelled as Dev Leader 2 is a cutpoint.
If absent, the network will be then divided in 3 otherwise
unconnected groups, which are: Requirements Analyst 1
and Requirements Analyst 3; Developer 1, Dev Leader 1,
Developer 2, and Developer 3; and Tester 1 and Tester 2.

Each cutpoint is a member initially assigned to work on
these requirements and Table I shows the role distribution.
Similar to brokers in collaboration driven by interdepen-
dent requirements [25] – Dev Leader 1 is also a broker
between Developer 1 and Developer 2 –, cutpoints mediate
communication between other network actors. The absence
of a cutpoint, however, appear to have a greater impact on
the network, since the absence will disrupt communication
between entire groups rather than individuals.

This finding brings implications for human resource man-
agement in a maintenance team, where knowledge about the
legacy application is a precious asset. A cutpoint member
is critical because if he leaves the company or is allo-
cated to work on another project, the network will become
disconnected and information will not flow between its
disconnected parts. Although it is an implicit characteristic
of a working team to find alternative ways to communicate
in the absence of a person to mediate, a cutpoint’s absence
would likely cause disruption of the information flow until

Requirements Analyst 3

Dev Leader 2

Developer 1

Tester 1

Dev Leader 1

Requirements Analyst 1

Developer 2

Developer 3

Tester 2

Figure 5. Example of a cutpoint and of a broker within a RCSN

53

the team could mend the broken flow. Both the presence
of the cutpoints and the awareness of who they are should
be of any manager’s interest in order to minimize the
consequences of dependence on significant members.

New hires are isolated from the rest in the requirements-
driven collaboration

During our on-site visit, we noticed that some members
who were assigned to work on interdependent requirements
were often isolated from others collaborating on the respec-
tive dependent requirements. These isolated members were
new hires to the company and new to the project and, most
often, developers or testers. Their isolation was confirmed
when we graphically plotted the networks. As an example,
the RCSN in Figure 6 contains an isolated developer, the
actor labelled as Developer 2. This network represents the
communication of changes-RCSN for dependency set D1.
Thus, the isolation of Developer 2 suggests that he may
not have been notified that changes took place for the
requirements on which he was working.

Across the 16 networks, we found 17 instances of isolated
members, specifically 5 distinct people playing 4 distinct
roles, as follows: 9 occurrences of isolated developers (1
single person), 6 occurrences of testers (2 persons), 1
occurrence of requirements analyst, and 1 occurrence of
test leader. A single developer was the member most-often
isolated across the networks. Although this suggests that this
developer did not collaborate with his colleagues, during
our on-site visit we attended meetings where he was quietly
sitting in the room.

This finding corroborates the evidence that newcomers
into a software team have difficulties in knowing how and
when to ask questions of others, resulting in communication
problems [5]. As people develop a relationship and trust each
other, it is common for them to contact colleagues and ask
for help or clarification. It is common for members who
know each other to exchange information during informal
meetings, such as a talk in the hallway or in the cafeteria.

Requirements Analyst 1

Tester 1

Requirements Analyst 2

Tester 2

Developer 1

Test Leader

Dev Leader

Requirements Analyst 3

Developer 2

Figure 6. Example of an isolated member within a RCSN

When new members do not know who has expertise on each
area, or what team members are doing in the project, they
may not know who to go to for help or clarification. These
people may feel disconnected from the team or even be left
out of discussions due to lack of attention of more senior
members. Awareness of the isolation of newcomers may flag
managers to develop strategies to insert these recently hired
members in a faster and more effective way in a team.

V. THREATS TO VALIDITY

Internal validity. The communication patterns in our
study were analyzed from observations and self-reported
questionnaire data. Questionnaires are based on the memory
and perceptions of the participants [10]. To minimize
the risk of collecting incomplete or unreliable data, we
deployed the questionnaire in the beginning of the Testing
phase when all team members were still actively working
on the project. We believe that our on-site observations
over the three-month provided us with sufficiently rich data
to cross-validate the questionnaire data and thus allow us
to construct networks of reasonable quality.

External validity. Although the report of a single case study
can constrain the generalizability of the empirical insights,
we believe that the reported patterns may be representative
of other projects with similar characteristics. These include
the (1) roles played by the project members, (2) the presence
of prescribed communication channels between the different
functional groups in the organization, (3) the maintenance
of legacy applications, and (4) the team’s lack of familiarity
with the product.

Another limitation is the small number of requirements
dependency sets investigated. We could not anticipate the
number of dependency sets prior to data collection; oth-
erwise, we would have aimed for a project with a higher
number of sets. A larger number of requirements by set
may also change patterns of collaboration driven by interde-
pendent requirements. An investigation of larger dependency
sets could reveal whether the patterns found would hold.

VI. FINAL CONSIDERATIONS

In this paper we have described patterns of collaboration
driven by interdependent requirements identified in an in-
dustrial case study of a maintenance project. These patterns
involve interaction among different roles in the project. The
patterns presented along with the detailed description of the
roles involved in them answer our research questions. To
study collaboration among those who need to coordinate
due to interdependencies in requirements, we used a mixed-
methods approach to data collection and analysis. We also
used concepts and measures from social network theory to
triangulate the results obtained from interviews and obser-
vations, increasing the reliability of our findings.

54

In this project we found that there was significant commu-
nication between diverse roles in the project, and identified
that the most frequent reason for inter-role communica-
tion was requirements clarification and communication of
changes. We also found that cross-functional interactions
typically involved a core of requirements analysts and testers
in close communication, that most often they involved
critical members whose absence, whether temporary or
permanent, would disrupt the information flow in project, as
well as how new hires were mostly isolated from the team
collaboration. Most interestingly we found that the emergent
communication structure between the different roles in the
project did not conform to the anticipated, planned commu-
nication structure prescribed by the organization. Despite
the fact that senior management intentionally imposed an
organizational structure where members would have to go
to their leaders to communicate with colleagues in other
teams, cross-functional communication was predominant–
suggesting that members go beyond organizational bound-
aries to acquire information necessary to perform their
interdependent requirements-related tasks.

This study has a number of implications for future re-
search and development of collaborative tools to support
effective coordination in RE. Aside from the research im-
plications we discussed in relation to particular patterns
identified in our findings, we include below some directions
worth pursuing in future research and tool development.

For researchers, there is value in investigating more
complex coordination situations. We investigated the coor-
dination in the development of sets of 2-4 interdependent
requirements in a maintenance project with a new team.
Future studies should investigate larger projects that contain
multiple dependent requirements, to obtain insight into the
nature of requirements-driven collaboration over complex
technical dependencies. Similarly, studies of new devel-
opment projects should bring insights into requirements-
driven collaboration patterns when the requirements and the
application are new to the team. In addition, non-functional
requirements should also be examined to broaden the current
knowledge about requirements-driven collaboration. Non-
functional requirements may not have clear boundaries; thus,
it may be not as straightforward to identify who is assigned
to work on them, potentially making necessary the extension
of our methods of identifying RCSNs.

More complex coordination situations are expected when
more roles are involved in the management of requirements
throughout the project life cycle. In this study, we examined
interactions between requirements analysts, developers, and
testers, but properties of inter-role communication should be
studied further in projects that include other roles such as
business analysts, project managers, or software architects.

For tool developers, great potential exists to integrate
support for the collaboration and management of cross-
functional teams into existing requirements management

tools. Tools that automatically generate RCSNs periodically
or at certain points in the project could assist both project
members and managers in identifying communication pat-
terns similar to those found in this study and in making
decisions to adjust RE processes or communication struc-
tures if necessary. Tools to generate RCSNs as described in
this study automatically could use data-mining techniques
[6] [30] as well as automated requirement-traceability tools
[28] to identify who works on which artefacts, and to trace
these artefacts to requirements. Project and artifact data may
be extracted from issue-tracking repositories, requirement
repositories, mailing lists, and chat logs, for example.

Our study of roles and communication structures in
collaboration driven by interdependent requirements should
be complemented by future studies that also benefit from
performance criteria in the project and investigate the rela-
tionship between patterns in communication between the dif-
ferent roles and the project success. With such information
one can design improved RE processes, collaborative tool
support, or communication infrastructure in organizations to
enable effective coordination in software projects.

APPENDIX

Questionnaire Questions Figure 7 shows a generalized
version of the customized communication questions used in
the questionnaire.

Figure 7. Generalized version of the customized questionnaire questions

55

ACKNOWLEDGMENT

We would like to thank the members of the KnowHow
project for finding time to contribute to our research. This
research is sponsored by NSERC of Canada and a University
of Victoria Fellowship. Sabrina Marczak would like to thank
PUCRS University, Brazil, where she is currently working,
for the time granted for her to conclude this work.

REFERENCES

[1] A. Al-Rawas and S. Easterbrook. Communication Problems
in Requirements Engineering: A Field Study. In Proc. of the
Conf. on Professional Awareness in Software Engineering,
pages 46–60, London, England, 1996. Royal Society.

[2] T. Allen. Managing the Flow of Technology. MIT Press,
Crambridge, United States, 1977.

[3] R. Baron and J. Greenberg. Behavior in Organizations. Allyn
and Bacon, Boston, United States, 1990.

[4] K. Beck. Test-Driven Development: By Example. Addison-
Wesley, Boston, United States, November 2002.

[5] A. Begel and B. Simon. Struggles on new college graduates in
their first software development job. In Proc. of the SIGCSE
Technical Symposium on Computer Science Education, pages
226–230, Portland, United States, March 2008.

[6] N. Bettenburg, S. Just, A. Schroter, C. Weiss, R. Premraj,
and T. Zimmermann. What Makes a Good Bug Report?
In Proc. of the Int’l Symposium on Foundations of Software
Engineering, pages 308–318, Atlanta, USA, 2008. ACM.

[7] B. Biddle. Recent Development in Role Theory. Annual
Review of Sociology, 12(1):67–92, 1986.

[8] S. Borgatti and M. Everett. Models of Core/Periphery
Structures. Social Networks, 21(4):375–395, October 1999.

[9] M. Burkhardt and D. Brass. Changing Patterns or Patterns
of Change: The Effects of a Change in Technology on
Social Network Structure and Power. Administrative Science
Quarterly, 35(1):104–127, March 1990.

[10] D. Conrath, C. Higgins, and R. McClean. A Comparison of
the Reliability of Questionnaire Versus Diary Data. Social
Networks, 5(3):315–322, September 1983.

[11] M. Conway. How Do Committees Invent? Datamation,
14(4):28–31, April 1968.

[12] S. Crampton, J. Hodge, and J. Mishra. The Informal Com-
munication Network: Factors Influencing Grapevine Activity.
Public Personnel Management, 27(4):569–584, 1998.

[13] R. Cross, S. Borgatti, and A. Parker. Making Invisible Work
Visible: Using Social Network Analysis to Support Strategic
Collaboration. California Mgmt. Review, 44(2):25–46, 2002.

[14] B. Curtis, H. Krasner, and N. Iscoe. A Field Study of the
Software Design Process for Large Systems. Communications
of the ACM, 31(11):1268–1287, November 1988.

[15] A. Dahlstedt and A. Persson. Engineering and Managing
Software Requirements, chapter Requirements Interdependen-
cies: State of the Art and Future Challenges, pages 95–116.
Number 5. Springer-Verlag, Germany, 2005.

[16] D. Damian and J. Chisan. An empirical study of the complex
relationships between requirements engineering processes and
other processes that lead to payoffs in productivity, quality,
and risk management. IEEE Transactions on Software Engi-
neering, 32(7):433–453, July 2006.

[17] D. Damian, S. Marczak, and I. Kwan. Collaboration Patterns
and the Impact of Distance on Awareness in Requirements-
Centred Social Networks. In Proceedings of the International
Requirements Engineering Conference, pages 59–68, New
Delhi, India, October 2007. IEEE Computer Society.

[18] K. Davis. Where Did That Rumor Come From? Fortune,
page 34, 1979.

[19] H. Erdogmus, M. Morisio, and M. Torchiano. On the
Effectiveness of the Test-First Approach to Programming.
IEEE Trans. on Software Engineering, 31(3):226–237, 2005.

[20] D. Fisher. Communication in Organizations. West Publishing
Company, Minneapolis, United States, January 1993.

[21] O. C. Z. Gotel. Contribution Structures. In Proc. of the IEEE
Int’l Symposium on Requirements Engineering, pages 100–
107, York, England, March 1995. IEEE Computer Society.

[22] P. Hinds and S. Kiesler. Communication Across Boundaries:
Work, Structure, and Use of Communication Technologies in
a Large Organization. Org. Science, 6(4):373–393, 1995.

[23] D. Krackhardt. Organizations and Networks: Structure, Form,
and Action, chapter The Strength of Strong Ties: The Impor-
tance of Philos in Organizations, pages 216–239. Number 8.
Harvard Business School Press, Boston, United States, 1992.

[24] D. Krackhardt and J. Hanson. Informal Networks: The
Company Behind the Chart. Harvard Business Review,
(Reprint no. 93406), July 1993.

[25] S. Marczak, D. Damian, U. Stege, and A. Schroter. Informa-
tion Brokers in Requirement-Dependency Social Networks.
In Proceedings of the International Requirements Engineering
Conference, pages 53–62, Barcelona, Spain, September 2008.
IEEE Computer Society.

[26] D. Pugh, D. Hickson, and C. Hinings. An Empirical Tax-
onomy of Structures of Work Organizations. Administrative
Science Quarterly, 14(1):115–126, March 1969.

[27] J. Scott. Social Network Analysis: A Handbook. Sage
Publications, London, England, 2nd edition, March 2000.

[28] D. Stork and W. Richards. Nonrespondents in Communication
Network Studies: Problems and Possibilities. Group and
Organization Management, 17(2):193–209, 1992.

[29] S. Wasserman and K. Faust. Social Network Analysis:
Methods and Applications. Crambidge University Press,
Crambidge, United Kingdom, 1994.

[30] T. Wolf, A. Schroter, D. Damian, L. Panjer, and T. Nguyen.
Mining Task-Based Social Networks to Explore Collaboration
in Software Teams. IEEE Software, 26(1):58–66, Jan. 2009.

56

