
ESCOLA POLITÉCNICA

PROGRAMA DE PÓS-GRADUAÇÃO EM CIÊNCIA DA COMPUTAÇÃO
DOUTORADO EM CIÊNCIA DA COMPUTAÇÃO

MAURO STRELOW STORCH

FULL-STACK CONFIDENTIALITY COST MODELING FOR CLOUD COMPUTING

Porto Alegre

2017

PONTIFICAL CATHOLIC UNIVERSITY OF RIO GRANDE DO SUL
FACULTY OF INFORMATICS

COMPUTER SCIENCE GRADUATE PROGRAM

FULL-STACK CONFIDENTIALITY
COST MODELING FOR CLOUD

COMPUTING

MAURO STRELOW STORCH

Thesis submitted to the Pontifical Catholic
University of Rio Grande do Sul in partial
fulfillment of the requirements for the
degree of Ph. D. in Computer Science.

Advisor: Prof. César Augusto Fonticielha De Rose
Co-Advisor: Prof. Avelino Francisco Zorzo

Porto Alegre
2017

 Mauro Strelow Storch

Full-Stack Confidentiality Cost Modeling for Cloud Computing

This Thesis has been submitted in partial fulfillment

of the requirements for the degree of Doctor/Master

of Computer Science, of the Graduate Program in

Computer Science, School of Technology of the

Pontifícia Universidade Católica do Rio Grande do

Sul.

Sanctioned on August 10th, 2017.

COMMITTEE MEMBERS:

Prof. Dr. Antônio Tadeu Azevedo Gomes (LNCC)

Prof. Dr. Marinho Pilla Barcellos (PPGC/UFRGS)

Prof Dr. Tiago Coelho Ferreto (PPGCC/PUCRS)

Prof. Dr. Avelino Francisco Zorzo (PPGCC/PUCRS – Co-Advisor)

Prof. Dr. César Augusto Fonticielha De Rose (PPGCC/PUCRS - ADVISOR)

To my wife and my family.

“The present is theirs; the future, for which I

really worked, is mine.”

(Nikola Tesla)

ACKNOWLEDGMENTS

This Ph.D. thesis is a result of the work developed in the last four years, and it was

concluded with the support of mentors, colleagues, friends, and family. Many thanks for

all the people who in some manner were part of the development of this work, especially

to my advisor Professor César A. F. De Rose, for the opportunity to develop my Ph.D. and

for sharing his priceless knowledge and guidance. I would also like to thank my co-advisor

Professor Avelino F. Zorzo, who encouraged me and supported my work in new topics and

perspectives, which added robust and valuable aspects to my research. A special thanks,

too, to co-authors and colleagues Alex Orozco and Régio Michelin, who helped me improve

important topics of research and also produce scientific content.

Thanks in advance to all Ph.D. committee members that who accepted being part

of the thesis evaluation - Prof. Antônio Tadeu Azevedo Gomes, Prof. Marinho Barcellos, and

Prof. Tiago Ferreto.

Many thanks to Ph.D. colleagues and LAD/PUC-RS members Endrigo D’Agostini

Conte, Fábio Rossi, Kassiano José Matteussi, Miguel Xavier, Marcelo Neves, Rafael Lorenzo

Belle, and Uillian Ludwig for sharing their experiences and thoughts about the subject and

the processes to build this thesis. Thanks to all employees and professors of the Post-

Graduate Program in Computer Science at PUC-RS, as well as HP Labs, CAPES, and CNPQ

for the financial support during my studies. I have to mention and thank UCS and IFSul

for the teaching opportunities as a lecturer where I reviewed and developed important

concepts of computer science.

Finally, thanks to my family, in particular to my wife Grasi, for their patience and

acceptance of my many unavailable moments, and for their inspiration to always do good.

Also, many thanks to friends who shared encouragement throughout this work, and to God

for the conscious freedom that encourages people to achieve a better life in this world.

MODELAGEM DO CUSTO DE CONFIDENCIALIDADE FULL-STACK

PARA COMPUTAÇÃO EM NUVEM

RESUMO

A adoção de princípios de segurança em sistemas computacionais de nuvem é

uma demanda crescente para diversas instituições, incluindo empresas e mesmo agên-

cias governamentais. A confidencialidade é o princípio de segurança que visa garantir

acesso restrito à informações sensíveis. Esse princípio utiliza protocolos, métodos de

autenticação e algoritmos de criptografia que demandam recursos computacionais, im-

pactando tanto de usuários quanto de provedores. Pela natureza de precificação sob

demanda dos provedores de nuvem, adicionar mecanismos de segurança para aplicações

altera os custos totais dos serviços podendo até inviabilizar a adoção de computação em

nuvem por algumas aplicações. Na intenção de mapear a adoção de confidencialidade

em ambientes computacionais de nuvem, deve-se considerar a utilização de criptografia

nos seus três principais eixos: (a) na comunicação em redes públicas; (b) no armazena-

mento de dados em serviços terceirizados; e (c) no processamento de dados em ambi-

entes virtualizados e compartilhados. Quando aplicado nesses três eixos, o princípio de

confidencialidade promove um ambiente com um maior nível de segurança permitindo

que usuários usufruam dos benefícios da computação em nuvem, mesmo que possuam

estritos requisitos de confidencialidade. No entanto, o custo de se adicionar confidenci-

alidade nos serviços dos usuários em um ambiente de computação em nuvem deve ser

estimado para dar suporte aos administradores tomarem decisões sobre suas aplicações.

Considerando esse cenário, este trabalho propõe (i) um projeto de níveis de confidentiali-

dade para computação em nuvem; e (ii) uma modelagem do custo do princípio de confi-

dencialidade para os eixos comunicação, armazenamento e processamento. Considera-se

também que esses eixos podem ser combinados para aumentar os níveis de segurança da

aplicação do usuário. Os resultados preditos pela modelagem podem ser utilizados para

redimensionar os recursos na nuvem, recalcular os custos da aplicação ou mesmo ajudar

na tomada de decisão na escolha de provedores. Na avaliação do modelo feita neste tra-

balho, utilizou-se um benchmark para simulação de um ambiente de e-commerce onde foi

possível predizer a sobrecarga dos mecanismos de segurança, por exemplo criptografia

AES e busca em banco de dados encriptados, com uma precisão próxima a 95%.

Palavras-Chave: Segurança da Informação, Criptografia, Modelagem de Custos, Com-

putação em Nuvem.

FULL-STACK CONFIDENTIALITY COST MODELING FOR CLOUD

COMPUTING

ABSTRACT

Institutes, companies, and governments have increased the adoption of secu-

rity principles when using cloud computing environments. From protocols and authen-

tication methods to cryptography algorithms, confidentiality has gained attention from

both cloud users and cloud providers for, on one hand, preventing data leakage, but,

on the other hand, demanding extra computational resources. Due to the nature of the

on-demand billing process applied by public cloud providers, considering the pay-as-you-

go model, adding security mechanisms may impact the rented resources, increasing the

overall costs and minimizing the feasibility for some applications. To better understand

the adoption of confidentiality in a cloud environment, users and providers have to con-

sider applying cryptography algorithms in its three main axes: (a) communication on pub-

lic networks; (b) data storage on third-party services; and (c) data processing in shared

virtual environment. A full-stack confidentiality solution, considering these three axes, al-

lows users to have the benefits of cloud computing even if they have strict confidentiality

concerns. However, the costs of adding such privacy for assets in a cloud environment

should be estimated, giving support to the manager making decisions about the appli-

cation’s availability and performance. This Ph.D. research presents (i) an architecture of

full-stack confidentiality for cloud computing; and (ii) a model to estimate cryptography

costs for communicating, storing, and processing in cloud computing environments. The

axes can be combined to estimate users’ overheads according to their security needs.

The predicted values can be used for resizing cloud resources or even recalculating rental

costs of cloud services. The model’s evaluation presented an accuracy close to 95%. In

the evaluation, we used a database-based benchmark in a cloud environment including

standard cryptography algorithms, such as AES, and Querying over Encrypted Databases.

Keywords: Security, Cryptography, Cost Modeling, Cloud Computing.

LIST OF FIGURES

Figure 2.1 – A Hybrid Cloud instance is a combination of a Private Cloud, where

computational resources are under companies’ rules, and a Public Cloud

through the Internet. 25

Figure 2.2 – Reviewed Taxonomy of Security applied to Cloud Computing, based

on [HA12]. 29

Figure 3.1 – Confidentiality for Clouds is often applied to three axes of the compu-

tational architecture: Communication (i.e. using VPNs), Storage (i.e. using

Cryptographic File Systems), and Processing (i.e. using Homomorphic En-

cryption). Some of the mechanisms override each other in terms of data

confidentiality, but can coexist depending on user’s demands. 38

Figure 3.2 – Confidentiality applied for hybrid cloud context composed by multi-

ples cloud instances. 39

Figure 3.3 – Full-stack security architecture for cloud computing environments. . . 40

Figure 3.4 – Secure interconnection of two cloud instances in a Full-stack design. 43

Figure 4.1 – VPN stack layers. 48

Figure 4.2 – IPSec stack layers. 49

Figure 4.3 – Bandwidth and CPU overhead of different symmetric cryptography

algorithms . 53

Figure 4.4 – Model Validation for AES Algorithm: comparison between real and

modeled overhead by using cryptography in data communication among

Cloud instances. 56

Figure 4.5 – Model Validation for CAMELLIA Algorithm: comparison between real

andmodeled overhead by using cryptography in data communication among

Cloud instances. 58

Figure 4.6 – CPU overhead demonstration for increasing demand and data volume. 59

Figure 4.7 – Predicted values for different VM’s memory size based onmulti-linear

regression. 60

Figure 5.1 – OpenStack Swift architecture. 64

Figure 5.2 – I/O stack in Unix-like systems over a virtualized environment. 65

Figure 5.3 – I/O stack in Unix-like systems with Cryptography read/write applied

directly the block storage unit. 66

Figure 5.4 – I/O stack in Unix-like systems with Cryptography module read/write

in a File System. 68

Figure 5.5 – Memory size effect in overall CPU load during CFS persistence 71

Figure 5.6 – CPU overhead comparison for AES with different key lengths 72

Figure 5.7 – CPU load variation for an OLTP benchmark with and without CFS 73

Figure 5.8 – Predicted CPU overhead for different memory sizes, based on multi-

linear regression. 74

Figure 6.1 – CPU Load overhead recalculated in function of CryptDB overhead. . . 81

Figure 7.1 – Security responsibility in cloud computing deployment models. 83

Figure 7.2 – Service level of requests, for a non-safe cloud environment. 84

Figure 7.3 – Service level of requests, for a VPN-based cloud environment. 85

Figure 7.4 – Service level of requests, for CFS-based cloud environment. 86

Figure 7.5 – Service level of requests, for VPN-CFS-based cloud environment. . . . 86

Figure 7.6 – Environment overhead comparison in terms of CPU allocation. Bars

represent a scenario only with network and storage security. The line rep-

resent the estimated CPU overhead including the Processing axis. 89

Figure 7.7 – Disk encryption comparison between Cloud encryption and user en-

cryption. 90

LIST OF TABLES

Table 4.1 – Formula weights algorithms baselines. 54

Table 4.2 – Algorithm CPU load prediction comparison. (* baseline values are not

predicted.) . 57

Table 6.1 – Calculated overhead based on SQL operations demanded by each

TPC-C phase [PZB11]. 80

Table 7.1 – Measured values for data volume and CPU overhead, used for fitting

prediction formulas. 1Data volumes are expressed in KBytes. 87

Table 7.2 – Model application considering the trained formulas for a scenario with

confidentiality guarantees in communication and storage, and a prospec-

tion of Full-Stack confidentiality costs using CryptDB. 1Data volumes are

expressed in KBytes. 88

LIST OF ACRONYMS

CRM – Customer Relationship Management

DBMS – Database Management Systems

EBS – Elastic Block Store

ECC – Elliptic Curve Cryptography

FHE – Full Homomorphic Encryption

HE – Homomorphic Encryption

IAAS – Infrastructure-as-a-Service

IDS – Intrusion Detection Systems

LAN – Local Area Network

LVM – Logical Volume Management

MCC – Mobile Cloud Computing

PAAS – Platform-as-a-Service

PLA – Privacy Level Agreement

SAAS – Software-as-a-Service

SGX – Software Guard Extension

SSE – Searchable Symmetric Encryption Schemes

URL – Uniform Resource Location

VM – Virtual Machine

CONTENTS

1 INTRODUCTION . 16

1.1 Scenario and Motivation . 17

1.2 Hypotheses and Research Questions . 18

1.3 Thesis Contributions . 19

1.4 Thesis Structure . 20

2 STATE OF THE ART AND BACKGROUND . 22

2.1 Background . 22

2.1.1 Security Principles . 22

2.1.2 Cloud Computing Security . 24

2.2 State of the art . 29

2.2.1 Security Cloud Architectures and Designs 29

2.2.2 Security Cost Modeling . 32

2.3 Summary . 35

3 FULL-STACK CONFIDENTIALITY FOR CLOUD COMPUTING 37

3.1 Confidentiality and Cloud Computing . 37

3.2 Full-Stack Confidentiality Architecture . 39

3.2.1 Network Confidentiality . 39

3.2.2 Storage Confidentiality . 41

3.2.3 Processing Confidentiality. 41

3.3 Real Scenarios Implications . 43

3.4 Summary . 45

4 NETWORK CONFIDENTIALITY MODEL . 47

4.1 Network Security in the Cloud . 47

4.2 Cost Modeling . 50

4.3 Evaluation and Validation . 51

4.3.1 Security Overhead Measuring . 51

4.3.2 Model Validation . 55

4.3.3 Mathematical Validation . 58

4.4 Summary . 60

5 STORAGE CONFIDENTIALITY MODEL . 62

5.1 Storage Security in the Cloud . 62

5.1.1 Object Storage . 63

5.1.2 Cryptography File Systems . 64

5.2 Cost Modeling . 67

5.3 Evaluation and Validation . 70

5.3.1 Environment Description . 70

5.3.2 Validation . 70

5.3.3 Mathematical Evaluation . 72

5.4 Summary . 73

6 PROCESSING CONFIDENTIALITY MODEL . 76

6.1 Secure Processing in the Cloud . 76

6.2 Cost Model . 78

6.3 Applying the Cost Model . 79

6.4 Summary . 81

7 COST MODEL USE CASES . 83

7.1 Scenario Description and Measurements . 84

7.2 Applying the Confidentiality Costs Model . 86

7.3 Applying the Model in Public Cloud Providers . 89

7.4 Summary . 91

8 CONCLUSION . 93

8.1 Concluding Remarks . 93

8.2 Hypotheses Validation . 95

8.3 Future Work . 96

REFERENCES . 98

16

1. INTRODUCTION

Cloud computing security demands are increasing due to users moving their sen-

sitive digital assets to public cloud providers. In order to take advantage of the vast num-

ber of benefits of Cloud Computing [Raj11], both users and providers have beenmotivated

to add security strategies which guarantee confidentiality, integrity, and availability prin-

ciples [Sta11]. Those principles, when adopted, are part of a software solution stack,

and the techniques to yield these principles consist of strategies such as cryptography

algorithms, secure protocols, and advanced computational solutions that combine several

concepts.

The computational stack supporting Cloud Computing can be read as a complex

combination of abstraction layers with the main objectives based on server consolidation,

scalability, availability, easy management, and many others. Another perspective to con-

sider is Cloud Computing as a "hardware-based service offering computing, network, and

storage capacity where: Hardware management is highly abstracted from the buyers,

buyers incur infrastructure costs as variable OPEX, and infrastructure capacity is highly

elastic" [McK09].

Computational environments intending to achieve levels of protection from ex-

ternal risks and threats adopt security principles. The confidentiality principle [GR95]

aims to guarantee data access and disclosure only by authorized entities and with strict

modes. If a computational system lacks confidentiality, it may cause unauthorized data

access of private information. This principle has also gained attention because its software

solutions include complex password generation, authentication tokens, n-factor authenti-

cation, digital signatures, and cryptography algorithms. Solutions for confidentiality have

been introduced in the software development process because Internet and cloud com-

puting are important players for many applications, and they have a single characteristic

allowing risks covered by the confidentiality principle: they are public environments. De-

spite its guarantees, users and providers should consider understanding the impact of

confidentiality adoption in the overall system to understand the allocation costs of the

user’s applications, especially in public cloud providers where applications are billed by

resource usage.

Cryptography algorithms are important confidentiality mechanisms present in

authentication protocols, online purchases, and digital currencies. Their implementations

include symmetric algorithms, where a single key is used for ciphering and deciphering

data, and asymmetric algorithms, where a key-pair is defined considering one to be used

for ciphering and the second for deciphering data; it is also called the public-key schema.

Some advances in cryptography have been made to manipulate ciphered data through

Homomorphic Encryption (HE) operations, where data do not need to be deciphered even

during their processing phase [Gen09]. Most of the public cloud computing providers have

17

started to support security agreements through the adoption of these algorithms, since

the architecture of a cloud environment introduced the sharing of network, storage, and

processing that change security adoption, especially when the confidentiality principle is

evaluated. However, although the benefits of cryptography algorithms are consolidated,

one may consider calculating the costs of using such intermediate mechanisms layers to

support security principles. This consideration has also challenged researchers to improve

performance of new hardware and software solutions, from embedded cryptography in-

structions [Int06] and dedicated cryptography chips [Tru], to mathematics-based cryptog-

raphy algorithms, including the so-called Elliptic Curve Cryptography (ECC) [Mil86].

There is a common sense in security adoption that makes managers follow stan-

dard market solutions. There is also a misconception about the costs of adding security

principles, not only in the software development phase but, in the case of this work, in

the execution environment, especially when hosted in public cloud environments where

software usage is priced on-demand. In doing so, this thesis presents research focused

on the confidentiality principle adoption in cloud computing environments with the aim of

producing both a full-stack secure architecture for cloud environments and a modeling to

estimate the costs of this security.

1.1 Scenario and Motivation

Security components composing standard solutions for cloud computing environ-

ments include the Virtual Private Networks [Amac, Gooc] and Web-based secure com-

munication using HTTPS [FR14, NFL+14]. Besides communication, cloud providers have

started to offer confidentiality for the user’s data at rest through Disk Encryption [Amab,

Gooa] and Object Storage Encryption [Amad] services. In addition, research on security

processing has been developed using standard hash cryptography functions, homomor-

phic encryption techniques [DGBL+16, LWW+10, PZB11], and embedded processor instruc-

tions [Int06, Int14]. Besides these solutions deployed in the cloud computing environment,

a few architectures explore assembling these security components, as well as, measuring

their impact in cloud’s resources.

Regarding the resulting overhead, adding security layers in a software stack im-

pacts both resource allocation and software performance, especially for the demands of

the confidentiality principle. If users aim to store data ciphered in the cloud, it is neces-

sary to adopt cryptography in the persistence flow, adding overhead for encrypting and

decrypting when accessing them. Similarly, overhead is observed when adding confiden-

tiality in data transmission over shared networks. In this case, all transmitted data need

to be encrypted before being sent and decrypted after being received at the destination

host. Even if data is confidential during communication and persistence, computing over

18

the cloud’s data needs also to be confidential in order to increase privacy levels avoid-

ing data leakage, as in Cross-VM attacks that exploit in-memory data leakage in shared

tenancies [RGVM13]. In this sense, techniques such as cryptographic-based confidential

processing, querying over encrypted databases, and homomorphic encryption have been

developed in order to process data without disclosing them. Such techniques also add

overhead in overall cloud allocation.

Based on these three main axes and their security solution implementations, one

may consider creating a full-stack confidential environment where data is protected dur-

ing their entire life-cycle. To adhere to the usage of any combination of those axes, it

is important to understand the security component placement and the different security

levels impacting system performance in diverse ways, including data volumes, cryptogra-

phy key sizes, and application behaviors. In this context, estimating overheads can help

users calculate extra computational resources when adopting confidentiality in a compu-

tational environment, especially when they are using public cloud providers, where virtual

resources are placed in shared tenancies.

The main motivations of this research are to design this architecture and to pro-

duce a modeling on which it is possible to predict the security overhead. The study and

development of formulations considering the interference variables aim to help both users

and providers to better allocate computational resources following the security establish-

ment of markets, from the standard privacy recommendations of institutes to the complex

security demands of governments and businesses.

1.2 Hypotheses and Research Questions

This Ph.D. research aims to investigate the following hypotheses (i) it is possible

to support confidentiality in all data’s life-cycle in cloud computing environments and (ii)

confidentiality costs can be modeled and used in the sizing of cloud computing environ-

ment. The following are four research questions to be answered throughout this document

and used to support the hypotheses:

1. What are the confidentiality risks and solutions in cloud computing environments,

and how is a confidential cloud created? This question aims to leverage the study

of both security risks and components present in cloud computing environments.

This study will drive the placement of the confidentiality components in the cloud

software stack for the creation of a full-stack confidentiality architecture for cloud

computing.

2. What is the overhead for adding confidentiality mechanisms in the cloud comput-

ing stack? Answering this question will help to understand the overhead added by

19

confidentiality in the software stack when its mechanisms are placed in a cloud com-

puting environment. It is important to evaluate the overhead and produce a detailed

modeling, including the communication, storage, and processing axes.

3. How can the overhead of combined security mechanisms for communicating, stor-

ing, and processing data in a cloud environment be estimated? Once the security

overhead is identified and measured, the answer to this question should produce a

cost model to estimate the additional resources needed to apply security in cloud

computing instances.

4. How can security overhead modeling help users and providers to create confidential

cloud environments? Finally, the answer to this question will leverage the creation

of full-stack cloud computing environments with the support of a cost model, which

should help managers decide better allocation of sensitive applications considering

cloud resource costs and performance.

1.3 Thesis Contributions

After introducing the research questions, this work will present a literature re-

view of the security risks and solutions in cloud computing environments. In addition to

that, the thesis will describe a cloud architecture, used in this work, to present the se-

curity mechanisms placement for confidentiality support in communication, storage, and

processing axes. Furthermore, keeping focus on performance and security, the third con-

tribution of the thesis is the modeling of confidentiality overhead variables that impact

system performance. To the best of our knowledge there is no cost model for cloud com-

puting environments that helps users and providers estimate confidentiality overhead.

Based on this modeling and the architecture design, both the validation of formulas and

their application for security overhead prediction support the hypotheses of this Ph.D.

work.

The development process of this work has also produced scientific papers, some

of them already published:

• Multi-channel Secure Interconnection Design for Hybrid Clouds [SDRZM15] is an ini-

tial instrumentation of the overhead evaluation, considering the CPU load impact

added by security in the communication among cloud nodes. The contributions of

this paper are a demonstration of CPU utilization by the VPN’s cryptography mecha-

nisms and an architecture for communication performance improvement.

• Cloud Storage Cost Modeling for Cryptographic File Systems [SDR17] presents a cost

modeling for Cryptography File Systems used as a confidential persistent layer in

20

cloud-based environments. The modeling was validated using a Map-Reduce frame-

work, where the confidentiality costs could be predicted using the data volumes and

the persistence capacity overheads.

• Full-Stack Confidentiality Design and Modeling for Cloud Computing1 presents the

main work developed in this Ph.D. research, where the confidentiality principle is

designed and modeled to produce a Full-Stack confidential architecture for cloud

computing environments. The mathematical modeling for confidentiality overheads

presented an accuracy close to 95% for the test cases.

1.4 Thesis Structure

This thesis document is organized as follow:

• Chapter 2 presents a review of the main areas of this research. It considers the

identification of security principles and its implications on cloud computing environ-

ments. It also presents a taxonomy of the security threats and solutions of the cloud.

It ends with the state of the art in both the secure architectures of cloud computing

and the previous work in cloud security costs estimation and modeling.

• Chapter 3 presents the Full-Stack confidentiality architecture for cloud computing,

where cryptographic components placement is discussed, considering all three pha-

ses of data life-cycle in the communication, storage, and processing axes.

• Chapter 4 is about the first axis considered in this research: the communication

among cloud nodes and its security implications. The confidentiality costs of this axis

are modeled and validated, considering different cryptography algorithms adopted

in tunneled communication through VPNs.

• Chapter 5 presents the aspects of confidentiality in the data persistence flow for

cloud environments. It is the second axis considered in the research, where the

modeling of security overhead is designed and validated based on cryptography al-

gorithms, data volumes, and the IO sub-system impact.

• Chapter 6 is dedicated to describing an overview of the novel methodologies of pro-

cessing data under the confidentiality premises for public clouds. By considering

both Homomorphic Encryption and Querying over Encrypted Databases techniques,

this chapter proposes a high-level cost modeling of confidentiality, applied in the

processing axis.

1Submitted to a Journal and currently under review

21

• Chapter 7 will then present a use case of the cost modeling proposed in this work.

The use case considers an estimation of the extra computational resources deman-

ded by the addition of the confidentiality principle, and the result will be used for the

Full-Stack confidentiality evaluation.

• Chapter 8 finally presents the main conclusions and an overall summary of the re-

search, which includes the validation of the hypotheses based on research contribu-

tions, the answers to the research questions, and, as future works, the open issues

to be explored within new scenarios and use cases.

22

2. STATE OF THE ART AND BACKGROUND

The increased demand for security in computer environments resulted in many

new research topics over the years, especially in the last decades, considering the in-

creased Internet adoption in many sectors, from financial institutions to personal health

data processing. Computer security has been studied since the beginning of the digital

age, and the security principles considered for present-day solutions are still based on

consolidated themes of studies in Information Security, Communication Security, Cryp-

tography, and many other fields. Historically speaking, from Alan Turing’s1 discoveries

in breaking Enigma codes to recent information leakage and espionage facts revealed by

Eduard Snowden [Tox14], information protection has been a de facto differential in organi-

zations, and the security concepts are a relevant topic in almost all institutions’ decisions.

In some cases, the information is so important that security features are a basic require-

ment of software development, like in banks and health information systems [McG06].

To guide this thesis, this chapter presents a literature review of the concepts,

tools, architectures, and models related to confidentiality in cloud computing. The chap-

ter starts with a review of Security Principles, especially related to Confidentiality. Next,

Cloud Computing Security aspects are described, and a taxonomy of security risks and

issues is presented. This chapter ends with the state of the art of both the cloud secu-

rity architectures proposed in the literature and the cost models used in estimations of

security impacts in computational environments.

2.1 Background

2.1.1 Security Principles

Computer Security, according to the NIST definition, is "the protection afforded to

an automated information system in order to attain the applicable objectives of preserving

the integrity, availability, and confidentiality of information system resources" [GR95].

Those three principles of computer security drive the development of solutions in the

computing field within several perspectives, which also consider the already-consolidated

cloud computing environment.

The integrity principle regards the avoidance of improper data modification, de-

struction, or fabrication, which includes intentional or unintentional data modification, as

well as logical and physical data corruption [Sta10]. This principle aims to ensure infor-

mation non-repudiation and authenticity at any time owners request them. By proper

1http://www.turing.org.uk/publications/dnb.html

23

authorization of data access, and with the support of mechanisms for data verification,

such as Hash Algorithms, it is possible to offer this principle in most computing systems.

Besides integrity, whenever data are requested, they should be delivered prop-

erly without any interruption at any time; otherwise, this would lead to a loss of availability.

In the cloud computing context, this principle is related to data, software, and hardware

being available to authorized users anytime these resources are demanded, even if a

security breach is identified or an authority misbehaves. Once the user or service is ac-

knowledged and authorized by the system, they should be able to access the resources

they demanded, or else the availability principle would fail.

These two principles are complemented by the confidentiality principle, which

gained particular attention due to both its support of hiding sensitive information and the

popularity of its solutions, which include the cryptography algorithms [Sta01, RSA78]. This

principle aims to guarantee data access and disclosure under an authorized and restricted

mode. An unauthorized information disclosure may lead to a loss of confidentiality [Sta11].

The confidentiality principle is also part of the privacy concept. Data privacy

should be present during sensitive data manipulation, including its creation, transforma-

tion, storage, and deletion. The loss of confidentiality allows unauthorized people to pos-

sibly read or modify private information. This principle has also gained attention due to

the development of modern mechanisms, which include biometric instruments, n-factor

passwords, authentication tokens, digital signatures, and many others. Concomitantly to

integrity and availability, this principle also supports security adoption in a computational

system, since there is no significant success of confidentiality adoption if data are not

available or integral for authorized users, who should decipher them using proper keys

and algorithms.

Computer security is also based on a combination of the presented principles,

according to the environment and requirements. In the cloud computing stack, these

principles are also present, and they support the Privacy Level Agreement (PLA) demands

of users and companies of any size [Clo]. Such agreement documents, as described by

the Cloud Security Alliance, intend to support cloud providers and companies in defining

both the baseline of mandatory data protection achievements and the structure of data

protection levels. Besides the application of those three security principles, PLAs also

define the Transparency aspect, which describes how cloud providers can review security

structure. The mechanisms adopted for supporting the security principles may vary, but in

some situations, their effectiveness is questioned, especially in public cloud environments.

The Section 2.1.2 will explore such security details for the clouds.

24

2.1.2 Cloud Computing Security

Cloud Computing

Cloud computing has been a business model for many companies, from startups

to global corporations. The root technologies involved in the cloud computing instantia-

tion are mainly based on hardware virtualization, distributed systems (Cluster and Grid

Computing), web-based technologies, and system management [Raj11]. The instances

of a cloud can be exposed as public clouds, private clouds, community clouds, or hybrid

clouds.

A public cloud consists of instances in which the computational infrastructure is

provisioned by a public cloud provider [MG11]. The main advantage is their lower cost

since the hardware can be shared by different users. Public cloud providers play an im-

portant role in business, information systems, social communication, scientific research,

and many others fields. Some players such as Amazon AWS [Amaa], RackSpace [Rac],

and Google Cloud Platform [Goob] follow common public cloud patterns to offer Infrastru-

cture-as-a-Service (IaaS), Platform-as-a-Service (PaaS) and Software-as-a-Service (SaaS)

for customers, all of them using virtualization concepts [BDF+03]. This technology sup-

ports hardware consolidation to reduce power consumption and also provides network

optimization, including low impact management and high availability [BBE+13]. However,

one of its disadvantages is related to the infrastructure sharing that could raise some

security concerns in organizations. This will be discussed later in this chapter.

In contrast, a private cloud environment consists of an instance in which the

cloud infrastructure is provisioned for an exclusive use of a single organization [MG11]. It

is a controlled environment under companies’ security rules using internal networks and

well-known features such as in standard data centers. Cloud concepts are here related

to the way resources are managed. As in a public cloud scenario, hardware and software

resources are available as a service model. In most cases, the company’s private cloud is

offered as an IaaS. It is possible to identify the advantages of applying cloud technologies

(such as virtualization) even into small environments [MW11]. However, the private cloud

have a disadvantage, which is related to instantiation costs, since the company has an

exclusive cloud.

Since both cloud instances types bring some advantages and disadvantages, a

company could have a solution that would use a hybrid cloud instance, which would in-

tegrate public and private clouds in a single point of view in order to get the best from

each of them. For instance, in a hybrid scenario, the company can take advantage of

processing its sensitive data in a private cloud and use the public cloud scalability and

cost-effectiveness to process other data according to its demand. Figure 2.1 presents an

overview of a hybrid cloud instantiation. According to the NIST definition [MG11], a hy-

25

Organization

Private Cloud

Hypervisor Images

Manager

Public Cloud

Images

Manager
StorageHypervisor

Internet-based

Communication

Figure 2.1 – A Hybrid Cloud instance is a combination of a Private Cloud, where computa-
tional resources are under companies’ rules, and a Public Cloud through the Internet.

brid cloud is a composition of two or more instance types (Public, Community2, Private)

that remain unique entities but are bound together by technology that enables data and

application portability.

In most hybrid cloud instances, external communication is commonly made thro-

ugh the Internet, since it is the cheaper platform for long-distance communication. Nowa-

days, fewer alternatives for communication solutions, such as direct links, are economi-

cally feasible. Although some companies have invested in undersea Internet cables

[Bur], it is not a standard solution for most companies or business models. Commonly,

the cloud communication follows the Internet-standard model.All features of a cloud in-

stance are named ”as-a-Service” and the access to each service, including their creation

and management, is fully through communication over the Internet.

On one hand, the connection among cloud types is commonly offered based on

either a Virtual Private Network (VPN) through a gateway [JZ11] or IPSec-based commu-

nication [KA98]. These features are used to build an interconnection in the IaaS design,

running all connections of an application in the same manner as in a LAN network, which is

supported by the tunnel-mode of VPNs. This model easily adheres to software deployment

for its transparency, avoiding software modification. In the other hand, the interconnec-

tion between private and public scenarios is made through direct application communica-

tion or over WebServices [ACKM04]. This model does also support security through HTTPS

implementations [FR14, NFL+14]. In this scenario, private instances of an application know

the URL of the public ones, and the communication is made in the SaaS design. Although

this avoids a low-level network instantiation, since no extra services are needed for the

interconnection, developers need to open applications’ ports for the public Internet, which

could turn the application vulnerable and require application-level security implementa-

tions.

Once the application is deployed in the public cloud, files, data, and other assets

should be persisted in its storage system. The storage system used by cloud computing

2The cloud infrastructure is provisioned for exclusive use by a specific community of consumers from
organizations that have shared concerns.

26

is often based on virtualization storing technologies [Cla05]. Although there is overhead

added by this kind of storage system in cloud environments, currently many studies have

been made to improve data access performance [FK09, GFC14]. Following the sharing

ideas of cloud computing, virtualized storage systems are also deployed in shared central

units with a management abstraction layer, such as Logical Volume Management (LVM).

In order to keep the persisted data secret, some cryptography techniques are also applied

to the data, using mechanisms such as the Cryptography File Systems [WDZ03] or a cloud

storage tool that supports confidentiality [KL10, Amab, Gooa].

In addition to communication and storage systems, the processing axis gained at-

tention from cloud users due to its high fragmentation capacity, which also draws a rupture

in cloud pricing. The pay-as-you-go fashion, often adopted by public cloud providers, sells

CPU time according to its model (i.e., considering chip frequency or graphic instructions in

GPUs) and allocation, often based on time periods such as per hour. The term “sharing”,

in this context, has a deeper abstraction compared with traditional Operating Systems. In

this new layer, supported by hardware virtualization, the CPU is shared with multiple vir-

tual machines at the same time, following rules of the virtualization scheduler [BDF+03].

Although most virtualization systems offer isolation of virtual machines [WZL15, GA03],

some security issues have already been explored by attackers. This topic drives our re-

search in the next section.

Security Taxonomy for Clouds

Once information is digital, some security mechanisms are needed to keep it safe.

For offline systems, such as in private clouds, a few techniques, such as keys and pass-

words, could make them secure. For online systems, as in public clouds, it is reasonable

to adopt cryptography, digital certificates, or even complex authentication mechanisms.

Considering software deployment on cloud environments, security techniques have been

revisited in the past few years to support companies’ requirements.

The principles of cloud computingmove security studies to consider multi-tenancy

scenarios, where different users could share the same virtualization stack to run their VMs.

This scenario could enable inter-VM attacks or even information leakage [IHG10]. In addi-

tion to this, many other threats make managers consider cloud environments an unsafe

solution, demanding the adoption of extra components.

Gonzales et.al. [GMR+12] present a taxonomy where security is the key and

should be implemented for a safer environment. The Network Security category con-

siders that all security principles applied into a company’s network should be extended

to the cloud and be constantly synchronized to cover all local or remote resources or pro-

cesses. The Data Security category considers the protection of data in terms of confiden-

tiality, availability, and integrity, using cryptography and redundancy techniques during

27

the data’s entire life cycle. Subsequently, the Virtualization category explores the vul-

nerabilities of virtual machines, where companies’ software processes are run. The main

threats to be considered are related to isolation of virtual machines, in which malicious

entities could exploit data leakage and cross-VM attacks. Although those threats could be

avoided by security updates of the virtualization platform, issues related to VM identifica-

tion or VM access could also open backdoors, if they were not properly configured.

Regarding network communication, most threats have already been covered, by

both the solutions of a non-virtualized environment (i.e. network firewall and file system

encryption) and the specialized security solutions for environments based on virtualization

technology. In [RCM09], the authors present the requirements to adopt Intrusion Detec-

tion Systems (IDS) in a cloud environment. IDSs normally use common network filters,

such as firewall and access control systems applied in standard data centers, to detect

malicious behavior; these filters also have been tested and validated in virtualization-

based scenarios. In this case, no extra features are needed for a cloud environment.

Regarding the adoption of confidentiality, IPSec and other VPN implementations (such as

OpenVPN [Yon]) apply cryptography algorithms for ciphering the payload of the protocol

stack [HKH+10, LS11]. The cryptography used for this process is based on symmetric

algorithms, which use a single key for encrypting and decrypting data when in transit.

Similarly, the security solution for data storage in cloud environments could also

follow standard patterns, such as cryptography. The solution should provide confidential-

ity (where the provider does not learn any information about users’ data), integrity (any

unauthorized modification of stored data should be detected by the customer), availability

(customers’ data should be available from anywhere at any time), reliability (customers’

data should be backed up), efficient retrieval (data retrieval should be comparable to that

of a public cloud), and data sharing (customers could share their data with trusted par-

ties) [KL10]. Some cryptography techniques also provide auditing support for a cloud

environment using a public key design for third-party auditing with no local data damage

and adding minimal overhead [WWRL10].

These privacy-preserving techniques may be applied in different layers of the

storage stack, and each of them has their own specific pros and cons [DW10]. In the Ap-

plication layer, although it could be easy to deploy and adopt several kinds of encryption

algorithms, performance is clearly affected compared to lower layers (which is critical in

storage systems). Meanwhile, if privacy is applied in the File System layer, there are still

several algorithms, and it is possible to offer privacy to the upper layer in a transparent

manner; however, once the file structure is created, it becomes difficult to modify or re-

voke keys since it would be necessary to modify the entire list of files and directories.

One layer bellow, Block structure is responsible for storing raw data, and it is possible

to apply several different algorithms with higher performance compared to upper layers;

however, nothing, not even the metadata, is kept in plain text in the File System, which

28

requires longer operations for key revocation or modification. The lower layer in this stack

is the hardware-embedded cryptography. Although this layer offers higher performance

than above layers, the cryptography characteristics, such as keys and algorithms, are pre-

defined, reducing the security and privacy aspects. As a main conclusion, presented by

the survey of Diesburg [DW10], the File System layer offers transparency and flexibility

for the application layer; however, performance should be carefully analyzed in order to

reduce overall impacts in the user’s software execution [MJ15, RK14].

The most distinct aspect to be considered in a cloud concerns the execution of

sensitive processes in a shared environment. For threats related to this execution, a spe-

cialized solution should fundamentally consider the virtualization layers. The Virtual Ma-

chine Introspection (VMI) technique considers monitoring a VM’s memory and storage

without intrusively injecting agents from outside [WTM+14]. With the monitor’s informa-

tion, it is possible to take some actions to protect the VM by migrating, pausing, or even

shutting it down, mitigating a possible attack. A virtualization-aware solution should not

consider only memory and storage but also the CPU allocation. Some vulnerabilities, such

as Kernel rootkits are transparent in computational systems since they run in a privileged

mode – the kernel mode. However, in a VMM-based environment, it is possible to inter-

cept noticed rootkits, due to the running of virtualization in a lower level, and offer security

in a transparent manner [RJX08]. Regarding isolation security, researchers tried to solve

cross-VM attacks that exploit side-channel attacks with novel cache architectures, allowing

per-VM cache allocation [WL08]. From a different perspective, the possibility of processing

encrypted data, such as searching over encrypted data, comes as a solution discarding

any other security mechanism. This is possible through systems such as the Fully Ho-

momorphic Encryption [Gen09] and Querying over Encrypted Databases [KKTM11]. Such

implementations are explained in detail in Chapter 6.

Based on the Security Principles, Cloud Computing definitions, taxonomies, tech-

niques, and implementations presented in this chapter, Figure 2.2 shows a summary of

the security concepts and their implementations, organized as a dependence from Cloud

Security and classified according to the three computational system axes. It is possible

to observe the presence of the confidentiality principle in all axes, each one with its own

implementations. From this analysis, one can consider the creation of a cloud comput-

ing environment with confidentiality in those three axes by choosing the implementations

properly.

Although functional, the solutions to build a secure cloud environment do add

some overhead in computational systems or even extra costs on the public cloud, such as

renting VPN gateways.

In order to support the execution of applications in a fully secure manner, either

the rented public environment should be dedicated to companies’ processes (adding extra

costs), or it is necessary to add encrypted processing techniques in accomplishment with

29

Cloud Security

Network

Storage

Processing

Authentication
Con dentiality

Authorization
Con dentiality
Redundancy

Isolation
Data Leakage

VPN
IPSec

CFS
Object Storage

Virtualization
Homomorphic Cryptography
Encrypted Databases

Figure 2.2 – Reviewed Taxonomy of Security applied to Cloud Computing, based on [HA12].

company’s PLA. In addition to that, the data stored or transferred through the public cloud

should be encrypted, giving support to privacy principles. From these requirements, one

can consider building a cloud instance and applying the tools and techniques to support

higher security levels. However, the impact of those privacy principles should be mapped

in order to achieve a better estimation of resources allocation in the public cloud instance,

from performance and services’ response time to costs. These aspects drive the main line

of this research, and the state of the art for both cloud security architectures and cloud

security cost models are presented in next section.

2.2 State of the art

2.2.1 Security Cloud Architectures and Designs

The nature of the cloud computing environment incurs several benefits, from

the infinite scalability of resources, to the efficient business model, through the pay-as-

you-go fashion. These features are mainly supported by the resource-sharing approach

that allows cloud providers to cut dedicated expenditures, improving the cloud feasibility

for both users and providers [ZCB10]. Nevertheless, this computational model opens is-

sues covered by researchers in several areas, including information security. By sharing

30

physical resources among different users, it is possible to explore confidential information

leakage in several ways [RC11], as discussed in Section 2.1.2. The issues and challenges

of cloud computing security [SC17, NSMZ16] have been mapped and constantly updated

by researchers, considering security for communication, storage, and processing of users’

data.

Regarding data confidentiality, solutions for achieving users’ privacy-level agree-

ments have been developed for different scenarios, considering mobile applications, in-

hardware security, and authorization-based frameworks. Their deployment in the cloud

environment has produced different architectures according to each software require-

ment.

Cloud mobile frameworks are solutions deployed in the cloud computing environ-

ment, used as processing and storage resources for mobile application. For instance, a

mobile app used as an interface of an email service delivers the search operations to a

cloud service that processes it over a mail account. The result is then returned to the mo-

bile app, reducing the CPU usage in the mobile phone and, consequently, cutting battery

consumption. Although efficient, most of the Mobile Cloud Computing frameworks (MCC)

have security issues. This kind of framework has faced some barriers to its adoption due

to such problems, and some surveys in the industry show that 74% of IT managers would

avoid cloud environments to support their mobile solutions [KKKM13]. Following those

demands, researchers have produced solutions for solving security and privacy issues in

cloud environments.

The work produced by Huang D. et.al. [HZKL10] presents a solution where a mo-

bile application can relay some processing phases to a cloud environment. The proposed

framework covers the privacy aspects related to identity management, data access con-

trol, and risk management. Similarly, the work presented by Chadwick et.al. [CF12] aims

to support the privacy principles by protecting users’ information through an authorization

mechanism in IaaS models, where every access would be controlled by polices defined by

the user. Both solutions do not adopt any cryptography to protect data or processing

handled in the cloud environment , which is a demand from the companies behind these

applications.

To increase the privacy in a computational environment, including clouds, some

solutions are considering hardware-based security. The authors Itani W. et.al. [IKC09]

present a solution called Privacy as a Service, and they define it as a set of security pro-

tocols for ensuring the privacy and legal compliance of customer data in cloud computing

architectures. The solution adopts cryptographic co-processors for ensuring tamper-proof

capabilities where undefined accesses to sensitive data are alerted to users. By also modi-

fying the hardware structure, the authors Seol J. et.al. [SJL+16] present a cloud architecture

with a hardware security module that supports a Virtual Machine Monitor to verify the au-

thenticity of sensitive data access only by trusted Virtual Machines. The solution considers

31

adding a trust platform module, which is a commercially available hardware-based root of

trust that cannot be modified by software layers [Tru]. This hardware-based component

is also presented by Santos N. et.al [SGR09], where a cloud environment also has a trust

coordinator, which is responsible for managing the allocation of sensitive user demands.

Although hardware-based solutions are stronger against software attacks and risks, it is

not a standard solution offered by cloud providers, and it would increase the total cost of

services.

To create solutions for clouds using only standard hardware (without any addi-

tional processors), some works consider applying security algorithms and protocols to

avoid information leakage. The authors Waqar A. et.al. [WRAK13] present a framework

to increase users’ privacy by protecting the database structure using cryptography and

privacy preservation operations. The framework modifies the database metadata before

storing it in the cloud environment, and the reconstruction is made dynamically, only when

data access is requested. Such implementation is deployed as a PaaS model, where the

developer replaces regular databases with a solution with higher privacy levels. Similar

to end users in the SaaS model, the authors Fahl S. et.al. [FHMS12] present a solution

where a third party component is responsible for ensuring privacy mechanisms for cloud

applications such as Facebook, Dropbox, and Googlemail. The authors named the solution

Confidentiality as a Service, and its main focus is allowing final users to use cryptography

in a usable fashion, integrating security in a familiar Internet context. The addition of a

security mechanism always increases resource usage in the cloud, especially when data

is modified, such as in the ciphering process. To reduce the overall impact of security, the

authors Chuang I. et.al. [CLHK11] present the Effective Privacy Protection Scheme, where

the security requirements are mapped, and a security solution is deployed to fit such re-

quirements, trying to reduce the CPU overhead added by cryptography algorithms.

The solutions applied in an upper layer in the cloud software stack are often de-

veloped to cover some specific demands. Concerning the cloud deployment model IaaS,

the solutions for security could cover a wide set of services, since they are applied to lower

components such communication and storage.

The authors Puttaswamy K. et.al. [PKZ11] discuss the adoption of confidentiality

for data stored in public cloud environments. The main features covered by the solution,

named Silverline, consist of identifying the sensitive application’s data that can be en-

crypted, managing the key distribution associating them to subsets of data, and allowing

a transparent access to encrypted data but preventing inappropriate access by malicious

parties. Although protecting the stored data with low overhead, this solution does not

hide the database structure, and some attacks could exploit the data relationship learning

where sensitive data are stored, allowing information leakage in some manner.

Seeking a solution to cover more features in terms of confidentiality, some works

consider not only to protect the stored data but also protect the processing phase on them.

32

The authors Paladi N. et.al. [PGM17] present a solution where data are stored in a trusted

manner, encrypting before persistence, and processing on virtual machines created with

a trusted launch technique. This technique consists of applying a digital signature in the

VM’s images that guarantees their content is not modified, and the software will handle

data appropriately and with confidence. This technique covers one of the attacks in the

cloud environment that injects malicious software in VM’s images, trying to leak data

externally.

Besides the efforts in adding a security mechanism to support privacy principles

in cloud environments, there are a few works presenting solutions supporting privacy in

a fully trusted fashion, especially in a lower and wider level such as in IaaS cloud deploy-

ment. The authors Wei L. et.al. [WZC+14] present a solution for guaranteeing data privacy

during the storing and processing phases. This solution presents an auditing protocol and

a cheating-discouragement strategy where data access and processing are monitored,

and operations performed in such an environment are verified. Still, data confidential-

ity could not be guaranteed if an attacker exploits the virtualization breaches, since in-

memory data is in plain text during their processing. Recently, Haimbala J. [Hai16] pub-

lished a thesis where data is stored and processed using a cryptographic mechanism for

ensuring data confidentiality during the entire data’s life cycle. Besides the adoption of

symmetric cryptography algorithms in the storing module, the author uses Searchable

Symmetric Encryption Schemes (SSE) for processing encrypted data without disclosing it.

Moving toward the creation of a confidential cloud environment, the proposed approach

follows the main concepts we expose in this thesis’ motivation and objectives; however,

by using and validating only SSE the author does not consider the possibility of using other

secure processing mechanisms, such as the Homomorphic Encryption and solutions based

on Intel’s SGX [Int14] instructions like Haven [BPH14] and VC3 [SCF+15]. This mechanism

is then applied by Makkaoui E. et.al [EMEBHM16, MEH15] in a similar perspective, where

a layered confidentiality design is presented, considering hardware-based cryptography

for encrypting data during persistence, and digital signature verification. However, the

authors do not explore the alternatives for the processing and communication layers, and

do not even consider the cost evaluation of the cryptography mechanisms.

2.2.2 Security Cost Modeling

The challenges to building a secure public cloud environment have demanded

researchers’ attention over the years. However, the impact of supporting companies’

security requirements is rarely mentioned or even computed in providers’ costs.

Earlier in the data center era, a security risk estimation was given by calculating

the frequency of attacks versus the possible loss amount for each data file. Another model,

33

which follows the one previously mentioned, was called Cost-Benefit Analysis (CBA), which

could be applied to any application, was based on identification and measurement of all

related costs and benefits. It includes ”lost opportunity” costs, needed to account for

shared costs and uses, and must consider and address risks, qualitative factors, and as-

sumptions. Those variables, if not carefully taken into account, may produce grossly over-

or underestimations. However, the result is very important since most managers and di-

rectors know little about computers and computer security, but they do understand risks

and cost-benefit analysis [Mer03].

During the emerging of cloud computing some years ago, Grid Computing tech-

nology was mature and in use for some companies. However, in that time, companies

hosted their own infrastructure, and the security of the system was supported only by

firewalls since computers were not shared with third parties. In addition to this, costs

were not measured in terms of CPU time, storage space, or even financial values. InWhat

Does Grid Computing Cost? [OKS08], the authors make an evaluation of a real Grid in-

stance and measure the financial costs of the environment. However, the study does not

consider the impact of security once the infrastructure is under a company’s control.

Later, during the dissemination of SOA (Service Oriented Architecture), resear-

chers and developers started to adopt security mechanisms to build SOA-based software.

Since the cloud resources were still high priced at that time, it was important to measure

the impact of adding those mechanisms. In [YYA09], the authors present a trade-off model

which considers balancing the performance axis and the security axis. The performance

metric was a function of traffic amount and communication delay, considering the security

of a system (which is composed by the security functionality, the cryptography algorithm,

the key length, and the protection percentage). The security metrics, although hard to be

accurate, are defined as the product of the cryptography key’s size, the attacker’s capa-

bility of breaking the cipher, and the percentage of protection (i.e. the number of packets

encrypted during the communication). Both the performance and security metrics were

used to build a trade-off objective function on which it was possible to define weight factors

to balance the preferences of the security system. Although the model could estimate the

impact when applying security requirements, the work only considers the communication

mechanism. Likewise, when applying the model in a cloud environment, the performance

measurement should consider new variables, such as the virtualization overhead as well

as a higher protection percentage.

On the other hand, from cloud providers’ side, it is important to manage the

variability of resources usage over time to achieve better profit results. In [GGT12], the

authors present a cost estimation model for federated clouds. The model, on one hand,

considers allocating resources in external cloud instances, when local resources are fully

loaded. On the other hand, when local resources are empty (or partially empty), the model

34

estimates the costs of keeping the infrastructure online, as well as the revenue of renting

it to a third party. Both scenarios are modeled as a function of variables such as:

• Price_VM_Hour : price per hour of renting a VM;

• VM_Node: the number of VMs hosted in a single bare metal machine;

• Nodes: the amount of bare metal machines in the data center;

• Cost_Node_Hour : maintenance costs of a single bare metal machine;

• Up: the utilization of resources in a provider p.

to achieve the results:

• Costs{p,o}: costs of the resources of a provider p and its outsourced o resources;

• Revenue{p,o,i}: revenue of the provider considering its own resources, the

out-sourced, and the in-sourced;

• Profitp: the provider’s profit, given as the result of allocating resources locally, out-

sourcing part of the demand, and renting some extra sub-utilized resources.

The model was evaluated considering a real scenario of a federated cloud envi-

ronment. The environment was managed by a resource scheduler which considers balanc-

ing the virtual machine allocation over the public cloud instances and the local-virtualized

hosts. However, the model was applied only for CPU utilization, and neither the communi-

cation nor storage was considered. Security factors were not considered too.

Similarly, in [STT+12] the authors present a pricing model based on the BSM

(Black Scholes model, used for option pricing in financial market) and Moore’s Law (which

considers the computational power each 18 months to be doubled). When these two

formulas are combined, it is possible to calculate the depreciation of a computational re-

source as:

ResourceValt=T = ResourceValt=0 ∗ (1 + r)T/2 (2.1)

where r is the rate of interest and T is the resource’s life time. The result, in its turn, will

be used as one of the five variables considered in the BSM model, which considers

• Initial_Investment: the amount of money a cloud provider will spend per year;

• Contract_Time: the time for which a user will lease the resources;

• Rate_of _Depreciation: the rate at which the hardware is expected to lose its financial

value;

• Quality_of _Service: the quality assurance to the client;

35

• Age_of _resources: the age of a resource leased to the client.

The application of the BSM model has produced as results the effect of the follow-

ing axis on the resource price: initial investment, contract period, resources’ depreciation,

and quality of service. Although the application of BSM in this research is related to the

infrastructure of a cloud, the results have shown that combining financial models and

computing theories promotes the creation of new formulas for cost models. Some recent

papers [STTB15, TVRB15] improved the cloud financial value model and proposed tools to

simulate the costs in a cloud environment [ABF+16].

Some feasibility models have also been developed to support cloud providers’

decisions through scheduling of Virtual Machines according to economic features [KLM16,

LLLZ16, MNGV16]. These models produce resource allocation answers for cloud managers

with the aim of including more variables, such as pricing market and commodities alloca-

tion (energy, network). Recently, Jouini et al. [JR16] present a cost modeling driven by

a multiple analysis of security breaches in cloud computing environments and using a

quantitative approach to create an assessment model for security risks.

Regarding security, another approach that should be considered is identifying

the sensitive part of applications to deploy the security mechanism properly. Watson

P. et.al. [Wat12] present a multi-level security strategy, selecting sensitive applications’

workflows and running them in a safe location. This safe location can be related to either

a security-aware cloud environment, which would be penalized by cryptography process-

ing, or a private cloud instance managed by a company’s security rules, avoiding sharing

of computational resources. In such scenarios, it is possible to statically invest in the se-

curity of some specific resources, since an IT manager knows the sensitive applications’

placement [FW12]. Although a static placement of security mechanisms could be easily

guessed, one may consider using a model to estimate the impact of these mechanisms

for calculating the monthly, even static, investment on the security cloud resources.

2.3 Summary

This chapter presented both the background and the state of the art used in the

discussion of the topics in this research. The research mainly includes the themes of cloud

computing and security, especially related to confidentiality.

Initially, the chapter presents the principles of the computer security research

field. We pointed out the confidentiality principle and its implementations to be evalu-

ated in a cloud computing environment from the performance-impact perspective. The

confidentiality risks, threats, and solutions for cloud environment were discussed in this

chapter, where technical aspects and implementations were identified and classified in a

36

taxonomy considering the three axes present in a computational system: communication,

storage, and processing.

The chapter also presented works in the state of the art, considering the applica-

tion of mechanisms supporting a confidential cloud environment, with guarantees of con-

fidentiality in all data’s life-cycle. Although most of the works are partial solutions (most

do not cover confidentiality in the processing phase), they use standard security compo-

nents for supporting privacy principles. The components include cryptography algorithms

to protect data and digital signatures for authentication and authorization processes.

Some solutions also consider installing physical components (also called cryptographic co-

processors) into the servers to securely process data. In addition, there are some works

that consider the creation of a fully secure cloud environment based on software-based

solutions and commodity hardware. Such approach allows cloud user to choose regular

IaaS cloud providers to deploy their sensitive components with confidentiality guarantees.

Similarly, cloud provider can start to offer PaaS and SaaS with confidentiality support.

Regarding the security costs, there are several works in which performance and

security are modeled in scenarios with and without cloud principles. However, to the best

of our knowledge, those models do not put together security principles and the concepts

of the cloud’s components, such as the shared tenancies in the virtualization layer; neither

evaluate the security principles individually, which is a contribution of this work. Although

estimating the usage of resources on a cloud environment is complex due to its high

abstraction of the physical layer, the state of the art in modeling computational systems

supports this research in developing a cost modeling for the confidentiality principle and

its implementation for cloud environments.

This chapter presented elements to answer the first part of the research question

1 - What are the confidentiality risks and solutions in cloud computing environments, and

how is a confidential cloud created?

The research on security risks and threats produced a taxonomy that points out

the confidentiality principle as an important player in coping with the challenges of cloud

computing adoption for users with strict privacy levels. By adding solutions such as cryp-

tography in the cloud software stack, users can experience the benefits of cloud comput-

ing with higher guarantees of avoiding information leakage during communication, stor-

age, and even during the processing phase.

37

3. FULL-STACK CONFIDENTIALITY FOR CLOUD COMPUTING

The creation of a cloud environment with support of the confidentiality principle

should avoid information leakage, especially when hosting sensitive applications in public

cloud environments. This principle is broken when an unauthorized party has access to

an inappropriate information disclosure. In the last chapter, we identified solutions to cre-

ate cloud environments with the support of security in communication, storage, and also

during sensitive data processing. However, those solutions do not achieve confidentiality

guarantees when data are in-transit, at-rest, and on-processing. The Full-Stack Confiden-

tiality Architecture presented in this chapter aims to identify the placement of confiden-

tiality components in the cloud computing software stack. This placement should consider

the nature of cloud computing environments that often share their resources among dif-

ferent users, from market competitors to malicious entities. The components include the

solutions for transferring, storing, and processing data with privacy, using techniques such

as cryptography and homomorphic encryption. This architecture design is a proposition

based in both the architectures presented in Section 2.2.1 and their components for pro-

viding data confidentiality in a cloud environment. It is the starting point of this research,

which aims to demonstrate the impact of the confidentiality principle when hosting users’

sensitive data.

3.1 Confidentiality and Cloud Computing

The Security of a Cloud environment is managed in different perspectives ac-

cording to the chosen deployment model: Infrastructure-as-a-Service (IaaS), Platform-as-

a-Service (PaaS), or Software-as-a-Service (SaaS). For the IaaS model, the security should

be managed and deployed by the cloud users. They are responsible for cryptography

and authentication mechanisms consuming resources, i.e. CPU cycles, in their virtual ma-

chines. For PaaS and SaaS, the cloud provider will deliver security as part of services such

as databases, e-mail services, and e-commerce systems. In both cases, measuring the

confidentiality overhead impact can help both cloud users and cloud providers to estimate

resource allocation, availability, and costs. However, it is necessary to understand the

placement of the security mechanism in the software stack.

On one hand, cloud providers currently offer security mechanisms like file en-

cryption and private networks. Those services are also known as Security-as-a-Service

(SECaaS) [VT14, FGT14], where security is relayed to the cloud provider. However, the

cloud user has a lower control of the chosen algorithms and the key management. On

the other hand, in the IaaS model, the cloud user is responsible for deploying the secu-

rity mechanisms for communicating, storing, and also processing data. In such scenario,

38

security levels could be established following the company’s security requirements. Both

scenarios apply similar techniques for protecting data, especially when supporting confi-

dentiality using cryptography algorithms.

In order to provide confidentiality in the cloud, it is necessary to see it as a com-

putational system that is composed of data processing, storage, and communication axes.

Each of these axes have their own confidentiality solutions, and they can be combined to

cover the privacy level demanded by a given software or application.

Public Cloud

Images

Manager
StorageHypervisor

Homorphic Encryption CFS*

VPN

Private/Local

VPN

Figure 3.1 – Confidentiality for Clouds is often applied to three axes of the computational
architecture: Communication (i.e. using VPNs), Storage (i.e. using Cryptographic File
Systems), and Processing (i.e. using Homomorphic Encryption). Some of the mechanisms
override each other in terms of data confidentiality, but can coexist depending on user’s
demands.

Figure 3.1 shows a cloud composed of services from a provider, which are ac-

cessed by a remote client under a private and controlled environment. The padlocks in

the figure represent the adoption of confidentiality in different parts of the architecture.

The instance identified as private is a controlled environment under the company’s se-

curity rules, and no extra security mechanisms are applied for privacy guarantees. This

client is connected through the Internet to a public cloud, where the padlocks represent

where security is applied. The key management should be always handled by a trusted

entity, which could be a third party or the company itself. The coexistence of confiden-

tiality components can happen due to users’ demands in guaranteeing data are never

disclosed, neither during communication nor persistence nor processing.

Confidentiality could be extended to a hybrid cloud environment, as depicted in

Figure 3.2. In such scenario, each cloud player should support the confidentiality require-

ments, and its management should be also handled by a trusted entity. The cloud services

should adopt a security component in this figure represented by the padlocks. The hybrid

cloud confidentiality interconnection and management is a further topic not detailed in

this work.

39

Organization

Private Cloud

Hypervisor

P�blic Clo��

Images

Manager
StorageHypervisor

Homorphic Encryption CFS*

*
C
ry

p
to

g
ra

p
h
ic F

ile
 S

y
ste

m
P�blic Clo��

P�blic Clo��

Figure 3.2 – Confidentiality applied for hybrid cloud context composed by multiples cloud
instances.

3.2 Full-Stack Confidentiality Architecture

The composition of the Full-Stack confidential cloud instance considers the solu-

tion for the axes independently. Although some of the confidentiality solutions are based

on similar technologies, the implementation of each component has its own characteris-

tics. Figure 3.3 describes the cloud architecture, where the Confidentiality box, placed on

top of the Infrastructure-as-a-Service layer, holds the confidentiality solutions that will be

offered to upper layers, i.e for users’ application and services. Each axis in the Confiden-

tiality box can be applied independently, but can also co-exist to build an On-Transit/At-

Rest Confidentiality, combining communication and storage axes, or a Full-Stack Confi-

dentiality, combining security solutions of all three axes.

3.2.1 Network Confidentiality

The first axis to be considered is the communication among cloud nodes, inter-

nally and externally. Confidentiality is necessary here since communication on the Internet

is not safe. Moreover, attackers’ hosts could be placed inside the cloud, sharing the local

network or even the same physical network interface, allowing internal attacks.

The connections will not only carry sensitive data. There are several different

types of communication belonging to a variety of services in each instance. Those commu-

nications are related to real-time applications’ synchronization, storage replication, man-

agement, monitoring, billing, etc.

40

Network Storage Processing

Con den yptograph ey Man

Physica e

Service

N�������a	�a�
��vice
���aS��a	�a�
��-��e Pr���		�oS�a	�a�
��vice

ication

(��� ����T���)

Storage

������ e�����

������� !F�"""

Processing

F

O#$%ransi&'O#$*est Con +,#&i./i&0

Encr12345 67378794: ;<=<=<r>
phic Encr123y<?: @rocessors

A4BCr4 D?93rCB3y<?9 tEFA:AGHJ

K

K

Figure 3.3 – Full-stack security architecture for cloud computing environments.

To build a confidential communication in the clouds, managers commonly create

channels based on Virtual Private Networks [HKH+10, LS11]. The channels apply authen-

tication protocols (using password or digital certificates) and cryptographic algorithms.

Alternatively, managers can create several channels according to each user’s security re-

quirement. A multi-channel design, presented by Storch et.al. [SDRZM15], presents the

results in terms of network bandwidth compared to a single channel. The bandwidth in-

creases up to 5 times; however, the CPU time used for data communication does not

exceed 5% using a single processor. Although the solution is feasible, it is not common

to split the communication, since it demands extra management and software modifica-

tion. Besides, IT managers often penalize security to acquire better performance during

communication. This trade-off relates to the fact that some cryptography algorithms both

increase the data size and take some extra time in the processing phase (queuing appli-

cations’ communication).

As a standard communication channel in the cloud, webservices with HTTP SSL-

/TLS support handle problems such as certificate authentication and network firewall by-

pass, due to its large adoption. In terms of performance, the authentication time is spread

across the total communication time since it occurs only once at the beginning. Other-

wise, secure communication follows the standard process, using cryptography as in VPNs

and producing a similar overhead.

41

3.2.2 Storage Confidentiality

The second axis considered in a cloud environment is the persistence layer used

by data and software storage. This mechanism is commonly managed by the virtualization

technology that hosts the user’s virtual machines.

To allow data confidentiality at-rest, the persistence layer should also support this

security principle. Recently, public cloud providers have started to offer encrypted discs

for confidentiality support for users’ data [Gooa, Amab]. On one hand, from providers’

perspectives, such functionality demands computational resources and may impact fea-

sibility of cloud services. On the other hand, users would not be able to deploy their

own security rules and mechanisms, relaying storage security responsibility to the cloud

provider.

In order to support confidentiality in a public cloud environment, some works

[KL10, PLM+11] present solutions for safely persisting data in public cloud environments.

Those solutions adopt data integrity and availability principles in terms of keeping data

enciphered and non-touchable based on theoretical proofs. Besides the novel techniques

proposed in the literature, the Cryptographic File Systems (CFS) can be considered for

data storage in public clouds. This technique, initially proposed by Blaze [Bla93] in the

90’s, consists of encrypting and decrypting data during the persistence flow that supports

the confidentiality principle. CFSs use regular cryptography algorithms available in well-

established operating systems’ images provided by cloud providers.

The impact of adding security to the persistence layer should be considered by

the user since it requires additional computational resources, and users would be billed

by the cloud provider. However, leaving data in plain text, stored in a cloud environment,

would increase the risk of information leakage.

3.2.3 Processing Confidentiality.

The third axis is related to tasks running in a cloud environment, specifically the

run-time phase. In this phase an application consists of transferring data and instruction

in/out of the processor as plain text. Even if both communication and storage mechanisms

add some security, this should be considered in order to keep the data’s secure during

its entire life cycle in a shared and public computational environment. As mentioned

in Section 2.1.2, there are some vulnerabilities in virtualized environments exploited by

cross-VM attacks. It will actually not be a threat if the physical host (memory and the

processors) in a cloud environment is not shared. However, this scenario would increase

42

the costs to deploy an application in the cloud. It is also not common in public cloud

providers, due to financial concerns.

In the last few years, researchers have been investigating solutions to add con-

fidentiality during the run-time phase. The embedded cryptography instructions of Intel

processors [Int06] allow (de)ciphering data using hardware instructions. Those instruc-

tions handle only the registers’ data, keeping data stored in the main memory encrypted.

Although it could prevent data leakage for cross-VM attacks exploiting the shared mem-

ory, the data still be in plain text in some manner inside the chip. Recently Intel presented

an extension, called Intel SGX [Int14] (Software Guard Extension), to promote secure soft-

ware execution with trust verification. Such an approach leverages confidentiality in a

cloud environment, but since the users have to change parts of their application to use it,

this may also impact the performance.

In order to support confidentiality for the processing phase, it is necessary to con-

sider algorithms to handle encrypted data, such as operations over encrypted databases

and the homomorphic encryption. Such solutions ensure the computing of data without

decrypting it entirely, therefore avoiding information leakage.

The encrypted database querying [HILM02, BW07, AEKR14] technique considers

handling enciphered data with an interface like in Database Management Systems. The

technique handles queries by comparing enciphered parameters within the enciphered

data stored in the database management system. In doing so, there is no exposure of

sensitive data even during the querying phase. However, having been studied in last ten

years, the encrypted database querying technique still is a basic database system with

poor support for rich SQL instructions, such as the store-procedures [AEKR14].

At same time, research about homomorphic encryption has attempted to develop

a rich mechanism for confidential data processing. The homomorphic multiplication op-

eration provided by the RSA cryptography [RSA78], supports multiplying two encrypted

values, resulting in an enciphered value which is the product of the original two values.

For example, for the values p and q, the encryption function enc, and the decryption

function dec, p ∗ q = dec(enc(p) ∗ enc(q)) [RAD78]. The only way to acquire the result

is by deciphering the computed value with the private key, which is a pair of the pub-

lic key used over the two original values. This feature enables handling values without

disclosing them during the processing phase, and it is called a homomorphic operation.

The work called Full Homomorphic Encryption (FHE) [Gen09] proposes a complete model

for computing encrypted values. This theory is considered a definitive solution for han-

dling enciphered data in a strong, secure manner, providing additive and multiplicative

operations [vDGHV10] that could support a rich set of functions for computational sys-

tems. However, it is still a theory, and no feasible solutions based on cryptography have

achieved the desired results, even at a high overhead.

43

3.3 Real Scenarios Implications

The security principles applied to the entire stack of a cloud environment can

support higher privacy levels in accomplishment with users’ requirements. Currently,

the privacy policies of public cloud services neither describes details about the back-end

mechanisms (such as key management or data placement) nor offers tools for controlling

confidential data’s life cycle. To provide confidentiality in a full-stack manner, it is neces-

sary adopting techniques such as the ones presented earlier for the axes: communication,

storage, and processing. However, adopting security mechanisms in those three axes will

change aspects of application execution, platform management, data placement, costs

estimation, etc.

Organization

Private Cloud

Hypervisor Images

Manager

Public Cloud

Images

Manager
StorageHypervisor

Channel 1

Channel 2

Channel n

Homorphic Encryption

Key Manager

CFS*

*Cryptographic File System

Figure 3.4 – Secure interconnection of two cloud instances in a Full-stack design.

For instance, one may consider providing a set of desired security requirements

in a distributed cloud environment, composed by services of two different cloud providers,

as depicted in Figure 3.4. The padlocks in the figure point out the components where con-

fidentiality can be applied. By adopting confidentiality techniques such as cryptography

algorithms, it is also necessary to add a key manager in the architecture, responsible for

keeping cryptography keys safe and available for authorized users, in this case placed on

the organization’s side.

Both internal and external networks should provide an encrypted layer to connect

cloud services. This connection could be based on VPNs (Virtual Private Network) where

a new private LAN will be instantiated. From this point, the application peers need to

share the network addresses of this new private network to contact each other. In such

cases, the VPN channel should be previously instantiated on virtual machines, which could

increase the deployment phase time. However, some benefits could be identified from

multi-channel instantiation, such as load balance and bandwidth aggregation [SDRZM15].

Alternatively, applying standard communication of the SaaS (Software-as-a-

Service), by using a webservice design, comes a solution to provide private connections

44

through HTTPS for applications in a more transparent mode and avoid the VPN manage-

ment. However, the application will need either a built-in webservice or an API based on

this technology.

Besides transmission setup, data should be stored in a secure manner, using the

Cryptographic File Systems or an Encrypted Object Storage system. Considering data stor-

age, symmetric cryptography is commonly adopted due to its low overhead compared to

asymmetric cryptography. In such cases, there are two possibilities: sending the already

encrypted data and sharing the cryptography key; or encrypting data on remote site with

a remote key, adding some overhead if an encrypted communication is also adopted and

creating a key management problem since the Organization would need to control the

cryptography keys [FN94].

The first option requires an application’s feature to be specially designed for

master-key exchange since it will be necessary on the remote site for data access. How-

ever, there are risks in exposing the entire data on both sides if the master-key is stolen

either during its transmission or on the remote environment. The second option could be

implemented by platforms’ services such as cryptographic files systems. After transferring

the data through a secure channel (such as a VPN), it will be automatically encrypted and

then persisted on the remote storage system. Although this scenario could be transparent

for an application developer, it would add extra processing time to both sides, considering

the channel must read-and-decrypt data from source storage, encrypt-and-decrypt it for

transmission, and finally encrypt data for persistence on the destination side.

Even if both communication and storage layers are encrypted, to provide confi-

dentiality in those mechanisms, the data will only be confidential if the plain text is never

handled, even on memory or in registers inside the processors. If the cryptographic al-

gorithm opens the plain text at any point, there are no security guarantees, since the

environment is not entirely under users’ control. For example, the cryptographic file sys-

tem only ensure confidentiality for persisted data and all cached in-memory bytes are in

plain text. The same happens with Virtual Private Networks that support confidentiality

only for in-transit bytes.

The mechanisms mentioned in Section 3.2 can hide the plain text even during the

processing phase. However, those techniques, such as homomorphic encryption, impact

some aspects of the application. Initially, there are some issues to be verified in the

software architecture since the application hosted in a public environment will handle

only ciphered data. Every time an authorized user wants to access the plain data, it

will be necessary to call the key management software (see Figure 3.4) to acquire the

cryptographic key. It is important to implement this process on the application and also

rewrite parts or even the entire system since it will handle sensitive users’ data. The main

problem is related to the key management placement security, but the literature [BKL+09,

KD12, YWRL10] has already discussed solutions to enable trusted platform integration.

45

Nevertheless, performance becomes an issue since it is strongly affected by the

cryptographic processing techniques. Although the encrypted databases have a similar

performance when compared to the non-encrypted systems, the operations made over

data are restricted to comparing bytes – in this case, encrypted bytes. The plain text

would never be exposed, but some operations in relational databases, such as triggers

and procedures, could not be implemented. To provide a full set of encrypted operations,

the encrypted database needs to rewrite standard database functions making the oper-

ations confidential [FW12], bringing to the cloud only the storage role and consequently

increasing the processing time.

The homomorphic encryption, which aims to provide computation over encrypted

data, still has not been implemented in production environments. Although it solves

most of the problems related to privacy in public cloud environments, there are some

issues related to both performance and storage. The techniques of current implemen-

tation increase both the processing phase and the data size since they are commonly

based on asymmetric cryptography. However, the performance issue could be solved in

the near future with specialized processors, as well as processors with embedded instruc-

tions [Int06, Int14], which have been used for symmetric encryption.

3.4 Summary

There are several solutions for supporting confidentiality for users’ digital as-

sets that can be deployed in a cloud computing environment. Moreover, recently, cloud

providers have been supporting security by offering services with features for encrypting

data during communication and storage. In order to understand the security component

placement in a cloud environment, this chapter presented an architecture design used

to identify the confidentiality component placement in cloud computing environments to

support data-leakage avoidance in the data’s life-cycle, which consists of applying the

confidentiality principle during data communication, storage, and processing.

The architecture design puts confidentially components over the Infrastructure-

as-a-Service model to support application execution on top of them. The components, as

mentioned, can co-exist to improve the confidentiality level, but they can also be deployed

independently. The chapter ended with an overview of the implications of adding such

components in a cloud environment, which include the increased deployment time due to

the setup of confidentiality mechanisms and, in some cases, as when using homomorphic

encryption, the modification of the users’ application. Besides these implications, there is

additional overhead introduced by those components, and users may need to calculate the

extra costs as more confidentiality is added to the software stack. The next three chapters

aim to extend these topics, focusing on the performance overhead, through creating a

46

prediction model. The architecture presented in this chapter is used as a reference to

identify the components and their roles in the cloud software stack.

This chapter contributes to the validation of the hypothesis (i) it is possible to

support confidentiality in all data’s life-cycle in cloud computing environments by answer-

ing the research question 1 - What are the confidentiality risks and solutions in cloud

computing environments, and how is a confidential cloud created?

By properly choosing the confidentiality components matched with the security

demands and the cloud computing software stack, it is possible to improve confidentiality

guarantees such as information leakage prevention along with the services implemented

by a cloud computing provider. These services can support the confidentiality principle

through handling users’ data using cryptographic tools and protocols during the three

main phases of users’ data: communication, persistence, and processing.

47

4. NETWORK CONFIDENTIALITY MODEL

The Full-Stack confidential architecture, designed in the previous chapter, pre-

sented the confidentiality components placement following the computational aspects of

cloud computing. The modeling of security impact in the proposed architecture should ob-

serve mechanisms and techniques used for supporting security principles, in this case the

confidentiality. Each axis in the cloud architecture has its implementation, and they can

be modeled separately. In this way, this chapter presents the modeling for the network

axis, which includes the interconnection among cloud endpoints considering the public,

private, and hybrid cloud, internally and externally.

Based on the security taxonomy of cloud computing, presented in Chapter 2, it

is possible to identify at least two main principles that guarantee privacy for networks.

Firstly, an authentication mechanism is responsible for establishing the communication

within authentic peers. One can identify two main events implemented by mechanisms

that support this principle, one at the beginning (exchanging identities’ information), and

another at the ending (closing the communication). Secondly,concerning the confidential-

ity principle, it has to guarantee aspects for avoiding disclosure of in-transit data. This

principle is present in the entire data flow from the connection’s beginning to its ends.

The most common method for hiding data during their transference is ciphering them us-

ing cryptography algorithms, which demands extra resources in both the sender and the

receiver. This overhead is the main focus of the cloud network cost modeling.

Following in this chapter, the network security aspects for cloud computing are

presented in Section 4.1. Then, in Section 4.2, the mathematical modeling for the network

axis is described and discussed with the aim of predicting the demanded extra CPU load

needed for confidentiality guarantees in the cloud. Section 4.3 presents both the demon-

stration and the evaluation of the proposed modeling, and, in Section 4.4, a summary is

presented considering this chapter’s remarks.

4.1 Network Security in the Cloud

The network security in cloud computing environments considers the communi-

cation among services, placed either inside or outside the cloud, for the modes IaaS, PaaS,

and SaaS. These communications are commonly established through the Internet, and the

security requirements should be considered in agreement with a company’s data exposure

rules. Confidentiality is necessary here since Internet-based communication is not safe.

This caution is also applied inside the cloud, where attackers’ hosts could be placed either

physically or logically in the same link on the cloud, allowing internal attacks.

48

The network architecture build in the IaaS mode concerns the communication

in the Network Layer of the TCP/IP protocol stack. The security in such a layer is often

provided by an IP-based solution where the IP address is the identifier of the end-to-end

connection. Regarding establishing a connection, some security mechanisms such as fire-

walls and authentication tools grant the authorization aspects by controlling and identify-

ing peers. After a connection has been established, the security concern which demands

attention is the confidentiality of in-transit data.

The IPSec protocol was designed to be backward compatible with IPv4 and IPv6.

This allows the creation of a encrypted network without modification of any intermedi-

ate components in the protocol stack. Since it works in the network layer after two

nodes setup an IPSec communication (applying keys and certificates appropriately), all

communication made through either TCP or UDP enjoy the security service provided by

IPSec [Sta10]. In summary, the IPSec protocol encapsulates and encrypts the entire pay-

load of the IP protocol but reuses the same header’s information such as the IP address

(which is identified by intermediate components such as the routers).

In its turn, the Virtual Private Network (VPN) also aims to guarantee privacy for

the communicating process. This concept creates a new private network among the peers

by encapsulating not only the application’s data but part of the network stack. Although

overlapping the network architecture, it is possible to identify some advantages for this

model, such as creating an extension for the company’s local network (using private ad-

dresses) including the public cloud nodes. The IPSec protocol can act as a VPN in the

Tunnel mode, where even the IP header is encapsulated within the payload and rewritten.

Figures 4.1 and 4.2 depict the protocol stack for both scenarios.

LranspMPQ RLUVW XYVZ

[\Q]MP^ R_VW _V`\cZ

fgh^

Physical

jkklmnqsmvw xz{{|} ~{|�

{ranskv�s x{�|} ��|�

��s�v�� x�|} �|��n�
P������

PPg��Q\ [\Q]MP^ ���Pess

��� �����������

P���gc _hQerh\Q ���Pess

��� ��������������

�V[�gPQ��l PPg��Q\ [\Q]MP^

Figure 4.1 – VPN stack layers.

49

Network ¡¢£¤ ¢£¥¦§¨

©ª«¬

Physical

P®¯°±

²³³´µ¶·¸µ¹º »¼½½¾¿ À½¾Á

½rans³¹Â¸ »½Ã¾¿ ÄÅ¾Á
PÆÇÈª§ ¢«Éer«¦É ÊËËÌess

ÍÎÏ ÐÑÑÒÐÑÒÐÑÒÑÓÐÔ

¢£¥¦§ Õ Örans×ØÌÉ ÙØË¦

Figure 4.2 – IPSec stack layers.

Regarding the adoption of confidentiality, IPSec and other VPN implementations

(such as OpenVPN [Yon]) apply cryptography algorithms for ciphering the payload of a

protocol stack [HKH+10, LS11]. The cryptography used for this process is based on sym-

metric algorithms, which use a single key for encrypting and decrypting the data. This

single key is exchanged once, at the beginning of the communication during the authenti-

cation process. Some implementation also considers regenerating the communication key

using time intervals or communication events, increasing security by forcing an attacker

to recalculate the target key. Alternatively, managers can create several channels accord-

ing to each user’s security requirement. A multi-channel design is detailed in [SDRZM15],

where the authors present the results in terms of network bandwidth compared to a sin-

gle channel. The bandwidth increases up to 5 times; even so, the CPU time used for data

communication does not exceed 5% using a single processor.

However, IT managers often penalize either the security or the system’s perfor-

mance due to a lack of knowledge about the VPN’s cryptography algorithm behavior. The

trade-off between network performance and the demanded security level is related to the

fact that some cryptography algorithms both increase the data size and take some extra

time in the processing phase (queuing the application’s communication).

The most common symmetric cryptography algorithms used in VPNs are AES,

Blowfish, Camellia, and 3DES. Although they are being used for many implementations, IT

managers may consider figuring out the overhead of each one as a model for predicting

performance issues and, in consequence, make decisions about the architecture design,

considering not only the security level but also the performance impact.

50

4.2 Cost Modeling

When evaluating the CPU costs of a secure communication, it is necessary to

measure each side and to isolate the total sent and received data and measure the en-

cryption and decryption costs, respectively. These costs will be impacted by the chosen

cryptography algorithm, and, in order to generalize it, the total CPU time needs to be

defined by a metric related to each algorithm.

In doing so, it is possible to write the total CPU time’s definition as a function

of the cryptography algorithm in encrypting the total sent data and decrypting the total

received data, in a certain network structure. The cryptographic CPU time is spread over

the whole transmission, since data is ciphered on-demand, as the network packages are

dispatched online.

This theoretical model aims to produce a mathematical formula that could be

used in simulations to define the total cost of mechanisms supporting secure communi-

cations. The target of the model is a perceptual CPU consumption for each node in a

communication. At this point, it is possible first define the formula as a CPU time alloca-

tion over the total transmission time consumption as:

N(d) =
Ctime(d)

T (d)
(4.1)

where C is the ciphering time and T is the total time in transmitting a certain amount d

of data.

Next, it is important to consider handling encryption and decryption functions in-

dependently, since different algorithms execute those processes using more or fewer CPU

cycles as noticed in the experiments mentioned in Section 4.3. In doing so, if communi-

cation between two nodes A and B occurs in one way (A to B), A would consider only the

encryption CPU time, and B would consider only the decryption CPU time, disregarding

the communication control packages. Therefore, the total data amount d needs to be rep-

resented as two variables s (for sent amount) and r (for received amount). In this case,

one can rewrite the formula as:

N(s,r) =
Ctime(s + r)

T (s + r)
(4.2)

where s is related to the total sent data and r is the total received data. Now, first de-

compose the function T and get the time from the partition of the data amount and the

network capacity as:

N(s,r ,b) =
Ctime(s + r)

(s + r)/b
(4.3)

where b is the bandwidth of the communication. As mentioned earlier, the CPU cycles

for each ciphering process need to be considered in different perspectives for the specific

51

amount of data sent or received. So the formula could be rewritten as:

N(s,r ,b) =
E × s + D × r

(s + r)/b
(4.4)

where E and D give the weight of CPU time for each portion of data, encrypting and de-

crypting data respectively. Although E is the inverse operation of D, there is a significant

difference in terms of CPU time impacting the final results. By adding those values, the

formula gives the total CPU time in a network node using a certain cryptography algorithm

for sent and received data.

In order to consider a generic formulation of CPU allocation for cryptography, it

is essential to extend the formula to different algorithms. Therefore, it is necessary to

insert a factor that represents the encryption/decryption cost for each algorithm. Hence,

a generic formula could now be rewritten as:

N(s,r ,b) =
F × (E × s + D × r)

(s + r)/b
(4.5)

where F is the cryptography factor of a given algorithm, E is the function of Encrypting

sent data s amount and D is the function of Decrypting the received data r amount. Those

functions should be designed to define the CPU time amount on each operation. The

function F will produce the CPU time that an algorithm used to cipher data, and this value

is divided by the total transmission time in order to achieve the CPU perceptual allocation

for safe network operations.

4.3 Evaluation and Validation

The evaluation of the security overhead modeling for the network axis consists

of creating both an isolated environment for controlled measurement and a cloud-based

scenario for demonstrating the application of the formulas.

4.3.1 Security Overhead Measuring

To evaluate the communication on a Cloud scenario, first of all, it is necessary

to develop a controlled environment to isolate uncontrolled variables. For this experi-

ment, two virtual machines were created on a testbed composed of two Intel Xeon E5530

2.4 GHz (4 cores each) and 16GB RAM. Virtualization was provided by the Xen hypervi-

sor v6.2 [BDF+03]. Each virtual machine ran OS Debian 8.2 with kernel 3.16.0-4-amd64,

512MB RAM and 1 VCPU.

52

To provide secure communication in this environment, OpenVPN [Yon] was used

for encrypted connections setup. OpenVPN provides a secure network communication

using OpenSSL [VMC08]. OpenSSL offers several symmetric cryptographic algorithms.

The set of algorithms, provided by OpenSSL, allows a custom-ciphered communication,

since in some situations, even though performance could be compromised, it is important

to increase the security level, or vice-versa. The operational concerns about the adoption

of OpenVPN to set different levels of security have already been studied and presented in

the literature [KK04]. In this work, researchers assessed several tools to provide VPN and

concluded that OpenVPN would offer the best solution. Therefore, it would be possible

to consider all security possibilities offered by OpenSSL to protect the communication

through an acceptable security level.

Hence, in the controlled environment, virtual machines were connected through

two OpenVPN tunnels, with bandwidth limited to 1 Gbps. Both tunnels were authenticated

with TLSv1.2, TLS_DHE_RSA_WITH_AES_256_GCM_SHA384, 2048 bit RSA. The first tunnel

was configured to transfer data without any kind of cryptography. The second one was

configured to use different types of symmetric cryptographic algorithms (each experiment

used a different algorithm). In each tunnel, 1GB of data was sent, on a client-server

application through TCP sockets. The client side captured total time from when it starts

to when it receives a final ACK after sending all data, both with and without cryptography.

Furthermore, processor usage was also measured in terms of time allocation.

The experiment was conducted for each symmetric encryption algorithm orga-

nized by key length: 128 bits (RC2, DES-EDE, BF, CAST5, AES and CAMEL-LIA), 192 bits

(DES-EDE3, DESX, AES, CAMELLIA) and 256 bits (AES and CAMELLIA). The encryption

modes were CBC, OFB, CFB, CFB1 and CFB8 [AGP+, KRRR98, EKK13].

The results for the first group were obtained when communication occurred, en-

crypting data using a 128-bit key. In Figure 4.3, one can notice that AES in CBC mode

produced the least average overhead impact because bandwidth was the highest (210

Mbps). Nonetheless, the CPU load of AES-CBC was not much different (56%) when com-

paring with the best CPU load, CAMELLIA in OFB mode (49%). This will give a balance

between bandwidth and CPU usage when using AES-CBC. Furthermore, if comparing the

different operation modes for AES, i.e., CBC, OFB, CFB, CFB1 and CBF8, it is possible also,

for example, to say that, in terms of bandwidth, AES-CBC is 23% more efficient than AES-

OFB and AES-CFB modes, and 500% more efficient than AES-CFB1 and AES-CFB8. The

cloud costs related to bandwidth are not considered in this work since they are not part of

pricing for all cloud providers.

The results for the second group of experiments used a 192-bit key. It is interest-

ing to notice that the CPU load of AES and CAMELLIA was almost constant (less than 7%

variation) in CBC, OFB and CFB modes. However, AES in CFB mode presented the best

CPU load (52%) and the worst performance in CFB1 and CFB8 modes. That situation indi-

53

CBC CFB CFB1 CFB8 OFB

25

50

75

100

25

50

75

100

25

50

75

100

1
2
8

1
9
2

2
5
6

0 50 150 0 50 150 0 50 150 0 50 150 0 50 150

Bandwidth in Mbps

C
P

U
 O

ve
rh

e
a
d
 i
n
 %

Algorithm

AES

BF

CAMELLIA

CAST5

DES−EDE

DES−EDE3

DESX

RC2

Figure 4.3 – Bandwidth and CPU overhead of different symmetric cryptography algorithms

cated the huge performance impact of shifting mechanisms presented on CFB1 and CFB8

encryption modes. Furthermore, AES-CBC had the best bandwidth per CPU load ratio, and

AES-CBF1 mode had the worst ratio. Those results show that the operation mode has to

be taken into consideration when using a secure communication.

The last set of experiments used a 256-bit key. The results indicated that using

this key size, AES-CBC continued to be the best option, followed by AES-OFB and AES-

CFB modes. CAMELLIA presented equivalent values in CBC and OFB modes. However,

CAMELIA-CFB produced a very low (the worst) bandwidth usage efficiency, but with the

best CPU load rate. Such a mode may be an option for application with low bandwidth

requirements. As it was already shown with the other key sizes, CFB1 and CFB8 presented

the worst range between bandwidth and CPU load rate.

It is possible to notice that the only situation when AES is not the best option

was when using a 128-bit key, since CAMELLIA-CFB1 was better than AES-CFB1 (55Mbps

vs. 30Mbps and 54% CPU vs. 74% CPU). The best performance (CPU vs bandwidth) was

obtained with AES in CBC mode with a 128-bit key. The worst performance was CAMELLIA

in CFB1 mode with 256-bit key. Replacing a 128-bit key with a 192-bit key made AES-CBC

decrease to 7% of bandwidth and 3.5% of CPU load. Replacing a 128-bit key to a 256-bit

key made AES-CBC decrease to 15% of bandwidth and the same 3.5% of CPU load. This

shows that there is a linear relation between cryptography of VPNs and the data volume.

Naturally, cloud users and providers should further investigate this relation using larger

keys and datasets according their requirements.

54

The observed values when comparing the cryptography algorithm, the operation

mode, and the key size have produced a comparison table which fits the function F of

Equation 3.5. Table 4.1 presents the weight of varying the key size and the operation

Mode, and each algorithm have a baseline. In a real scenario, one can consider measuring

the baseline CPU times and then predict the application of alternative key length and

operation mode setups.

Algorithm Enc Dec
AES-128-CBC 1 0,8742851376
AES-128-CFB 1,1523485587 1,0626404709
AES-128-OFB 1,070218983 1,0157329126
AES-192-CBC 1,1554807151 0,9829813061
AES-192-CFB 1,2409618295 1,036069918
AES-192-OFB 1,1233924342 0,9106074808
AES-256-CBC 1,2810885594 1,0526752633
AES-256-CFB 1,2554311118 0,9466890275
AES-256-OFB 1,2096260789 0,8878171437
BF-CBC 1 0,9336018075
BF-CFB 0,9388494781 0,7381345507
BF-OFB 0,927076264 0,7567569253
CAMELLIA-128-CBC 1 0,7099748031
CAMELLIA-128-CFB 1,0552358024 0,7872815992
CAMELLIA-128-OFB 1,0250045954 0,7697152656
CAMELLIA-192-CBC 1,2009548507 0,846741928
CAMELLIA-192-CFB 1,189711938 0,8129598678
CAMELLIA-192-OFB 1,1656006894 0,7866807282
CAMELLIA-256-CBC 1,256340577 0,8978393011
CAMELLIA-256-CFB 1,1803523326 0,7983552169
CAMELLIA-256-OFB 1,160345349 0,7910437887
CAST5-CBC 1 0,8938781089
CAST5-CFB 1,0321314016 0,8735323703
CAST5-OFB 0,9623151557 0,8098246713
DES-EDE3-CBC 1 1,0233901873
DES-EDE3-CFB 0,9891461626 1,0038822639
DES-EDE3-OFB 0,9885653418 1,0126936967
DES-EDE-CBC 0,9924265018 1,0220268135
DES-EDE-CFB 0,9841869277 1,0071327864
DES-EDE-OFB 0,9912080889 1,0083969209
DESX 1 0,9687318414
RC2-CBC 1 1,1845378842
RC2-CFB 0,9662279262 0,9820333425
RC2-OFB 0,9614032211 0,97981095

Table 4.1 – Formula weights algorithms baselines.

Furthermore, it is important to notice that, when considering the use of cryptog-

raphy to send secure data among cloud nodes, not only the algorithm that is chosen has

to be considered, but also the operation mode that it is using.

55

4.3.2 Model Validation

In order to verify whether our model would be applied in real environments, we

implemented a scenario using two virtual machines in the Amazon EC2 Cloud infrastruc-

ture [Amaa]. Each virtual machine was defined by the Amazon T3.medium instance,

composed by Intel(R) Xeon(R) CPU E5-2670 v2 @ 2.50GHz, 1 vCPU, 3.75GB RAM and

Ubuntu Server 14.04 LTS (HVM), EBS General Purpose (SSD) Volume Type. The connec-

tion between those virtual machines was performed through two VPN channels. The first

one was an insecure channel and the second one was a secure channel using the Open-

VPN/OpenSSL tool [Yon]. To simulate the data transference from executions of a standard

Cloud application, the Netperf benchmark tool, version 2.7.0, [AMN09] was used and in-

stalled on both virtual machines, using a client-server mode.

During the experiment, 500 MB of data was transferred from the client to the

server and 500 MB from the server to the client, concurrently. At the end of the communi-

cation, the Netperf tool recorded the percentage of CPU usage of each node, for sending

and receiving data. The experiment was executed through an insecure channel, without

cryptography, and then executed again through a secure channel. All measurements from

the secured channel were compared with the measurements from the insecure channel,

and only the overhead was considered in this evaluation.

A set of experiments per algorithm was conducted. In the experiments, we var-

ied the operation mode (CBC,CFB,OFB) and the key size (128, 192, and 256-bit), when

available. The experiments were conducted for all algorithms and modes in Table 4.1.

The "Local CPU" information provided by Netperf, which is related to the entire

host’s CPU load, was considered from an average from the two used channels. The Net-

perf tool also provides the total elapsed time for the transmission; this value was used to

compute the total CPU time demanded by each channel. From the execution, all baseline

values were used as the F value in Formula 4.5. Using these baseline values, the CPU load

for other modes of the same algorithm was predicted.

Since Netperf provides the percentage of hosts’ CPU load, and, because it is nec-

essary to have the total CPU time used by each channel to apply Formula 4.5, the baseline

CPU time (in seconds) was computed as the product of the CPU load (%) of the sending

channel and the total elapsed time. In the results from the experiments for AES-128-CBC,

the mean value of total CPU time was 3.438305 seconds. From this value it was be possible

to apply Formula 4.5 as:

56

N(0.5,0.5,0.01253) =
F × (3.438305 + 0.8742851376 ∗ 3.438305)

(0.5 + 0.5)/0.0233904
=

N(0.5,0.5,0.01253) =
F × (6.4443638)

42.7525
=

N(0.5,0.5,0.01253) =
1 × 6.4443638

42.7525
= 15.074%

where 3.438305 is the model baseline, 0.8742851376 is the factor for deciphering based

on values from Table 4.1, and value 1 indicates the baseline factor. The same principle was

used to apply Formula 4.5 to the modes in Table 4.2, which are predicted values. Table 4.2

also presents, in column "Real", the measured values in the real scenario.

The comparison of the measured values and the modeled values are presented

in Figure 4.4 and Figure 4.5. These values were calculated to validate our model, and,

as can be seen in Table 4.2, the predicted results have an accuracy superior than 90% in

most cases.

Figure 4.4 shows that the prediction model accuracy is superior than 91% for

most operation modes except for 256-CFB and 256-OFB, which show also higher error rate

for real measurements. On the other hand, in Figure 4.5, the prediction model applied for

the Camellia algorithm presented an accuracy of 91% for CAMELLIA-256-CFB, other modes

were predicted with accuracies bellow this metric.

Figure 4.4 – Model Validation for AES Algorithm: comparison between real and modeled
overhead by using cryptography in data communication among Cloud instances.

As was presented in this section, our model can represent real scenarios’ behav-

iors for most algorithms and operation modes. Nonetheless, we could also notice that

57

Algorithm/Mode Predicted Real Error
AES-128-CBC* 18,75% 18,75% 0,00%
AES-128-CFB 20,86% 19,60% 6,46%
AES-128-OFB 19,00% 18,74% 1,35%
AES-192-CBC 19,85% 18,96% 4,72%
AES-192-CFB 21,86% 22,97% 4,81%
AES-192-OFB 18,84% 20,22% 6,83%
AES-256-CBC 22,69% 20,90% 8,55%
AES-256-CFB 22,73% 27,55% 17,49%
AES-256-OFB 21,31% 27,97% 23,80%
BF-CBC* 38,11% 38,11% 0,00%
BF-CFB 30,64% 31,81% 3,66%
BF-OFB 30,66% 32,15% 4,64%
CAMELLIA128-CBC* 30,58% 30,58% 0,00%
CAMELLIA-128-CFB 35,00% 30,20% 15,91%
CAMELLIA-128-OFB 32,96% 29,72% 10,92%
CAMELLIA-192-CBC 39,27% 34,24% 14,71%
CAMELLIA-192-CFB 38,30% 31,41% 21,94%
CAMELLIA-192-OFB 36,71% 30,63% 19,85%
CAMELLIA-256-CBC 42,43% 34,02% 24,73%
CAMELLIA-256-CFB 38,28% 35,10% 9,07%
CAMELLIA-256-OFB 37,38% 33,58% 11,31%
CAST5-CBC* 31,48% 31,48% 0,00%
CAST5-CFB 32,34% 33,74% 4,13%
CAST5-OFB 29,32% 36,36% 19,37%
DES-EDE3-CBC* 56,82% 56,82% 0,00%
DES-EDE3-CFB 56,17% 63,13% 11,03%
DES-EDE3-OFB 57,17% 63,20% 9,54%
DES-EDE-CBC 56,42% 55,49% 1,69%
DES-EDE-CFB 55,84% 58,67% 4,83%
DES-EDE-OFB 56,94% 59,40% 4,15%
DESX-CBC* 48,76% 48,76% 0,00%
RC2-CBC* 59,52% 59,52% 0,00%
RC2-CFB 59,45% 51,19% 16,12%
RC2-OFB 61,96% 58,19% 6,48%

Table 4.2 – Algorithm CPU load prediction comparison. (* baseline values are not pre-
dicted.)

extra variables can be included for accuracy improvements for specific algorithms, for

example, for the Camellia algorithm. However, since AES is the most-used algorithm in

HTTPS or SSH communications [LMN07], and for the proposed model it had achieved high

accuracy, this implies that our model can be used for SLA estimation in real Cloud envi-

ronments adopting VPNs.

58

Figure 4.5 – Model Validation for CAMELLIA Algorithm: comparison between real and mod-
eled overhead by using cryptography in data communication among Cloud instances.

4.3.3 Mathematical Validation

The model proposed in this chapter mainly supports the relation between the CPU

load and the data volume to predict overhead allocation in cloud computing environments.

The previous validation consists of defining a constant F which represents the difference

among the algorithms. In this Mathematical Validation, a multi-linear regression1 over

the measurements will be used for fitting the Encryption and Decryption variables. These

variables are represented by the β values of a regular multi-linear formula, which aim

to find the CPU load as the result of the data volumes (sent and received) within their

respective weights. A general formula can be written as:

CPU = β + β1 × s + β2 × r (4.6)

where β1 represents the weight for encryption, and β2 is for the weight of decryption. The

variables s and r are, respectively, the data amount sent and received.

Based on this observation and following a similar evaluation, a new experiment

was conducted with the objective of (1) executing an OLTP benchmark and measuring the

CPU overhead, and (2) verifying the relation of CPU and the data volume as a linear re-

gression for predicting different scenarios, applying the results to fit the formula variables.

1Multiple linear regression attempts to model the relationship between two or more ex-
planatory variables and a response variable by fitting a linear equation to observed data.
http://www.stat.yale.edu/Courses/1997-98/101/linmult.htm.

59

This validation considers a benchmark execution over a cloud environment com-

posed of two virtual machines (VM) which communicate through a local network, and their

discs are provided by the virtualization layer, in this case using Xen Server 6.2.

The benchmark is a TPC-C [LD93] implementation, producing a workload from

one VM over a standard MySQL instance hosted into the second VM. For each execution,

the database is re-populated, and both the communication and storage data volumes are

profiled, as well as the CPU load percentages of the Database process and the entire node.

These metrics are produced in two execution scenarios: (1) without any cryptography,

(2) with a Virtual Private Network (VPN). These two scenarios are also stressed for the

benchmark, where the executions are from 1 to 10 simultaneous connections.

Figure 4.6 – CPU overhead demonstration for increasing demand and data volume.

Figure 4.6 shows an increased load of CPU as more concurrent connections are

added to the VPN scenario. It is also possible to observe a decreased data volume trans-

mitted, impacted by the VPN overhead. The VPN CPU load is related to the entire node,

discarding the CPU load of the database process. By subtracting the plain CPU load from

the VPN scenario, it is possible to acquire the measured CPU overhead of adding the VPN

in the communication of the benchmark. The multi-linear regression considered the CPU

overhead as a function of the sent and the received data volume, where the R-squared

values were 0.9991.

Figure 4.7 presents the comparison of different VM’s memory size, where the net-

work data volume was modeled in function of the overhead of adding a VPN. It is possible

to observe a difference in the model accuracy in execution with few concurrent connec-

tions. In these scenarios, the CPU was not stressed, allowing some variations in CPU

60

Figure 4.7 – Predicted values for different VM’s memory size based on multi-linear regres-
sion.

utilization due to the OS scheduler policies. However, for the stressed scenarios, the aver-

age error was not superior to 5%, which validates the relation between data volume and

CPU load when using security for networks based on cryptography algorithms.

4.4 Summary

Communication security for cloud computing scenarios is well-established for al-

most all solutions from government agencies to standard users. The variety of solutions

and implementations often grants the confidentiality principle based on cryptography al-

gorithms such as AES, Camellia, 3DES, and Blowfish. With the aim of choosing an efficient

algorithm, cloud users or providers may yearn to predict the demanded CPU allocation

for supporting cryptography during the communication flow for estimating costs, relo-

cating parts of the application, or even choosing an alternative for cryptography within

company’s Privacy Level Agreements.

This chapter presented a study of the cloud communication architecture to de-

tach security aspects and measure the impact of the confidentiality principle. Based on

an evaluation of VPN overhead for different cryptography algorithms, the developed mod-

eling considered the relation between data volume and CPU allocation. This modeling was

validated by a set of experiments in a cloud environment where predicted values accu-

racy was from 91.45% to 98.65% for the AES algorithm. The modeling in this chapter is

also validated for an OLTP benchmark execution, where the communication of the bench-

61

mark’s loading process was measured and used for fitting a multi-linear regression. The

multi-linear model considers the function of the network’s sent and received volumes to

explain the VPN’s CPU overhead. The regression had an R-squared equal to 0.9991 and

could predict scenarios with different VM’s memory sizes with an accuracy close to 95%.

The network axis model is part of the full-stack confidentiality model we are de-

veloping in this research, and it is part of validation for the hypothesis (ii) confidentiality

costs can be modeled and used in the sizing of cloud computing environments, by answer-

ing the research questions:

• 2 - What is the overhead for adding confidentiality mechanisms in the cloud com-

puting stack? Although cloud computing environments already have security for

in-transit data, we have shown how the security is applied in this axis and what the

impact of implementing cryptography algorithms in the communication flow is. After

being identified, the cryptography algorithms were evaluated in terms of CPU allo-

cation to communicate in a cloud environment, and the overhead was explained by

the relation between data volume and CPU allocation.

• 3 - How can the overhead of combined security mechanisms for communicating,

storing, and processing data in a cloud environment be estimated ? The modeling

presented in this chapter has as input the characteristics of the cryptography (includ-

ing the algorithm and the key sizes) used in the communication as well as the data

volume transferred by users’ application. From these values, the modeling could be

fitted to predict the extra CPU needed in the environment to support the service level

of the application with confidentiality for data in-transit.

62

5. STORAGE CONFIDENTIALITY MODEL

The increased data volume in the BigData era, fed by the tremendous amount of

connected devices and global Internet services adherence, have been motivating IT man-

agers look for cheaper, heterogeneous, and distributed persistence services. In addition

to their volume, data generated in areas such as business, health care, and social media

have an augmented importance nowadays, from buyer tracking for sales suggestions to

disease-symptom evaluation for public health predictions.

Regarding data confidentiality, cloud computing providers have been offering en-

cryption of data at rest, where both the persistence flow between users’ virtual machines

and the storage unit and hard disks are ciphered using symmetric cryptography algo-

rithms [Gooa]. This feature is identified in the full-stack confidentiality architecture as the

second axis to be considered to promote the confidentiality principle for data stored in

public cloud providers.

Although confidentiality is essential in many applications, and ciphered persis-

tence have been improved in recent years, the impact of adding a security layer in the

persistence flow should be accounted since data storage is a common bottleneck in com-

putational systems. By identifying the common implementations of confidentiality used

in cloud providers and understanding the overhead in the persistence flow, it is possible

to use a model to predict the extra computational resources needed to efficiently pro-

vide this service, helping IT managers decide among alternatives to support institutions’

Privacy Level Agreements.

In this chapter, in Section 5.1, the security aspects and implementations are pre-

sented and discussed. Next, in Section 5.2, a modeling for predicting the security impact

in clouds’ storage systems is proposed, especially considering the confidentiality princi-

ple’s impact in terms of CPU allocation. The proposed modeling is evaluated in Section 5.3,

where both a performance analysis and a mathematical evaluation are used. Finally, Sec-

tion 5.4 summarizes this chapter’s content as well as its findings and results.

5.1 Storage Security in the Cloud

Cloud storage services are used for persisting both users’ data and applications’

files. Cloud storage mechanisms are commonly managed by the virtualization technology

that hosts the user’s virtual machines and the cloud services.

To allow data confidentiality, the persistence layer should also support the usage

of both authentication and cryptography tools. Considering the IaaS cloud service model,

in most public clouds, VM’s volumes are stored in shared spaces (i.e. managed by LVM)

63

and encrypting them is an extra feature supported by some providers [Gooa, Amab]. For

PaaS and SaaS, providers have also started to support encryption mechanisms using stan-

dard cryptography algorithms like the AES, such as the Amazon’s S3 object storage [Amad]

and Azure’s Blob Storage [Mic]. In order to support privacy in a public cloud environment,

alternatively, some works [KL10, PLM+11] present solutions for safely persisting data on

public cloud environments. Those solutions adopt data integrity and availability principles

in terms of keeping data enciphered and non-touchable based on theoretical proofs.

The impact of adding security to the persistence layer should be considered by

the user since it requires computational resources which would be billed by the cloud

provider. Otherwise, leaving data in plain text stored in a cloud environment would lever-

age information leakage. The following sections present two confidentiality solutions for

storage services, considering both SaaS/PaaS and IaaS.

5.1.1 Object Storage

Considering the storage services available in current cloud providers, the Object

Storage (Amazon AWS S3, OpenStack Swift) is an alternative for the SaaS service mode.

This service abstract from users some aspects such as the infrastructure scalability or

availability, delivering a simplified interface for storing or retrieving byte-based objects

(files, figures, videos, documents, etc) to the user. The interface is developed for de-

livering authentication and authorization features as well as enabling the confidentiality

principle by adding cryptography algorithms.

The cloud software architecture should change its persistence flow and, instead

of reading and writing files into a file system, it should send/receive data into/from a cloud

service, normally through the Internet. For instance, a Photo Gallery web-application

based on cloud services will allow authenticated users to upload files and, unlike host-

ing a user’s file within the web server, the application can redefine the upload target into

an Object Storage, relaying storage management to the cloud provider.

Regarding confidentiality, the cloud storage service commonly allow enabling

data encryption either on the client-side or on the server-side [Amad]. In the client-side en-

cryption mode, the application should manage the cryptography keys, matching it within

the enciphered data. In the server-side encryption mode, the key management is also de-

livered as a service by providers, demanding no modification in the application. Although

the server-side mode encryption is simple to implement, all users’ keys are stored in the

cloud, which might not be in accordance with a company’s security rules.

The back-end architecture commonly uses regular storage systems, in some

cases shared with IaaS services. Figure 5.1 depicts the elements for the OpenStack Swift

Object Storage [Ope] (similar to the Amazon AWS S3), and it is possible to observe a

64

software stack upon the storage discs, where data are persisted. For instance, the cryp-

tography application could be placed either in the client component or in a server-side

component, for Swift in the Proxy Server layer.

LÚÛÜ ÝÛÞÛßàáâ

Client Client Client

Proãä

Server

Proãä

Server

Proãä

Server

Controller

åààÚæßt

çèéáàê

Server

Controller

åààÚæßt

çèéáàê

Server

Controller

åààÚæßt

çèéáàê

Server

ëìíîïíðîïîñò óôõö n

÷øùúûüýþÿ ûk��ü t ÷��ùþt Storage

Figure 5.1 – OpenStack Swift architecture.

5.1.2 Cryptography File Systems

Cryptography File Systems (CFSs), earlier introduced by The Design of a Cryptog-

raphy Based Secure File System [Gud80] and A Cryptographic File System for Unix [Bla93],

have been used to provide persistent data with confidentiality. The main feature of this

mechanism consists of providing encrypted stored data with no application modification.

The application uses standard I/O instructions since the CFS works in lower systems’ lay-

ers.

Most cloud providers build their service on top of regular data centers. The stor-

age system is often provided by a centralized per-rack storage unit and on-host discs. The

hardware storage is managed by the virtualization layer that places the virtual machine

65

(VM’s) disc images according to rules of the virtualization player. These disc images are

attached to VMs, and the images are accessed like regular discs by the guest operating

system running inside that VM. Figure 5.2 shows a regular I/O stack for Unix-like systems,

where in the Block Layer the Virtualization technology adds extra sub-layers in order to

access shared physical resources managed by the virtualization software. In such an envi-

ronment, the CFSs operates in layers between the application and the Block Layer without

knowledge of the virtualization layer.

User

Space

Kernel

Space

Application

VFS

File System

Block Layer

Storge

Media

Front-End Driver

Back-End Driver
Native

Virtualization Stack

Figure 5.2 – I/O stack in Unix-like systems over a virtualized environment.

Similarly, cloud providers offer storage as a service through internet-based com-

munication, e.g. HTTP and RESTful. Those systems are also called WebServices and are

also handled by the virtualization layer (to support service elasticity). Some of these ser-

vices support security principles using cryptography and secure protocols.

Cloud storage systems are composed of layers which are implemented accord-

ing to the application, i.e. a guest operating system hosted into a virtual disc, which is

managed by a virtualization layer over a storage service managed by a Network-Attached

Storage. Confidentiality mechanisms can be applied to different levels of the storage

stack, and doing it in at least one is enough to avoid data leakage.

66

When applying confidentiality for storing data inside the virtual machine, the user

is responsible for choosing the cryptography algorithm and also for managing the keys,

having total control of the security. The cryptography mechanism could be applied ei-

ther internally in the user’s software or using a persistence mechanism with cryptography

support, i.e. the Cryptographic File Systems.

Most CFSs use symmetric cryptography due to performance issues and could be

implemented with different levels of abstraction [WDZ03]:

Block-based System

The block-based storage system has cryptography support by handling one disk

block at a time. There is no knowledge of upper layers, such as files or directories, and

it could even be used by software that needs to access raw partitions (such as databases

management systems). In other words, the persistence flow is intercepted by a cryp-

tography phase which applies the ciphering to each block in the raw device, as shown

in Figure 5.3. In the Linux systems, the Device-mapper crypt [Fru05] is a kernel module

which provides block devices using the kernel’s crypto API [Cor]. This API runs in kernel

privileged memory area, where also all instructions and keys are maintained.

User

Space

Kernel

Space

Application

VFS

File System Block Layer

Storge

Media

Cryptography

Module

Figure 5.3 – I/O stack in Unix-like systems with Cryptography read/write applied directly
the block storage unit.

67

Stackable File System

Stackable cryptography file systems (SFS) are placed on top of the regular file

system, and usually support multiple operating systems since the software layer which

intercepts the data flow for encryption is independent of the persisted data. The ciphering

process uses a regular file system as the lower layer for hosting the directory-file struc-

ture and modifies only the files’ content and optionally the filename (or directory name).

Figure 5.4 shows a Cryptography Module running in a User Space layer that handles appli-

cations’ files, storing them into another File System.

The EncFS [Gou] is a Linux-based and was created as a virtual encrypted view

for a directory in a regular file system in the user-space. It runs without any special per-

mission and uses the FUSE (File System in Userspace) library. The key management is

made through users’ configurations (but never stored), and it is prompted every time the

encrypted directory is mounted. During the mounting phase, a new key is derived from

the original within a certain number of rounds, which is described in the user’s configu-

ration file. The primarily goal of this file system is to protect data off-line and it supports

strong cryptography algorithms, such as AES and 3DES, for standard OS’s users. Similarly,

the eCryptFS [Hal07] builds a cryptographic file system over a regular directory structure

using algorithms such as the AES with different key sizes. In this case, the key is managed

by a regular Linux key ring, and the ciphering processes are relayed to the kernel module

Crypto API. All algorithms supported by this kernel module are also eligible to be used by

eCryptFS.

When comparing Block and Stackable models, the former may achieve better

performance due to fewer layers between application and the storage hardware. However,

a performance comparison between those two models should be evaluated according to

the above applications’ behavior. Despite the model architecture impacting the overhead,

the main impact on the performance is caused by the cryptography algorithm.

5.2 Cost Modeling

The application of confidentiality in storage systems, supported by the cryptog-

raphy modules presented earlier, is often based on a regular symmetric algorithms such

as AES and BlueFish. However, the overhead of storing data with privacy is not only based

on the performance of the cryptography algorithm. It is necessary to consider the archi-

tecture of the persistence flow, the IO subsystem, as well as the encryption and decryp-

tion operations in such software stack. Additionally, the storage system often uses cache

mechanisms for performance improvement that needs to be paired with the cryptography

module.

68

User

Space

Kernel

Space

Application

VFS

File System

Block Layer

Storge

Media

Cryptography

Module

File System

Figure 5.4 – I/O stack in Unix-like systems with Cryptography module read/write in a File
System.

Currently, cryptography algorithms are achieving reasonable performance, es-

pecially using modern processors [Int06]. On the other hand, the IO subsystem’s perfor-

mance still depends on physical aspects for persisting data. These two characteristics

make the security storage systems have a chained dependency, in which the persistence

flow throughput is affected by the cryptography instructions, and, in turn, the cryptogra-

phy performance is affected by the IO subsystem queuing, which still is a main bottleneck

in computational systems.

But how much the cloud storage impacts the CPU usage, what the impact of

cryptography on the persistence flow is, and how to predict the overhead of adding con-

fidentiality in the storage layer are some of the questions that need answered for better

allocation of cloud computing resources. For this reason, it is crucial to model the cost of

using cryptography in the cloud storage environment. Specially the impact in CPU usage

since cloud billing is commonly based on CPU units (such as cycles or hours).

As mentioned earlier, the CPU time used by cryptography algorithms is spread

along the IO queue time. In doing so, one can first deduce an inverted relation of the total

69

CPU time consumed by cryptography for a certain data amount and the time to persist it.

This relation can be written as:

S(d ,t) =
C(d)

t
(5.1)

where d is a data amount, C is the function for expressing the CPU time for that given data

amount d , and t is the total time of the persistence flow. The formula would be simpler

if a single one-way direction (reading or writing) is considered. However, it is necessary

to identify and split the data amount d in write and read operations to make it adherent

to real scenarios. It is also necessary to consider the significant difference in reading and

writing throughput to estimate the total time of the persistence process. In doing so, the

formula could be rewritten as:

S(w ,r ,TPr ,TPw) =
E × w + D × r

(r/TPr) + (w/TPw)
(5.2)

were w and r are total data written and read, respectively; E and D are the function

weights for estimating the CPU time of encrypting and decrypting an amount of data.

These values will produce the total CPU time for the ciphering process. Also, the TP vari-

ables are related to the throughput of the reading and writing operations in IO subsystems.

Although it would be a reasonable abstraction to simply add the cryptography’s CPU time

to the IO time, the machine’s memory size has also a significant impact on the applica-

tion’s total time since the file system’s cache subsystem allows better performance of the

cryptography algorithms’ utilization. The memory size m impacts the total time of the IO

subsystem, and it is represented as:

S(w ,r ,TPr ,TPw ,m) =
E × w + D × r

∆(r/TPr + w/TPw)
(5.3)

where the variable m represents the available memory for the IO subsystem and needs

to be considered for two scenarios: the total dataset size being smaller than the available

memory, or not. ∆ is dependent of a condition within m as:

∆ =

{

F (r/TPr + w/TPw , m), r + w < m

1, r + w >= m
(5.4)

where the F function in the formula gives the index of the extra performance for in-

memory operations. This behavior could be observed during the experiments (later pre-

sented) where a file with a size smaller than the host’s available memory achieved at least

3 times higher performance.

As a summary, to apply the formula values for the following variables are needed:

the amount of data read (r) and written (w), the function costs of encrypting (E) and

decrypting (D) each king of persistence flow, and the throughput of the IO subsystem.

Throughput needs to be measured for two resources: the read and write operations into

70

raw-external devices including virtual disc of virtualization layer, and the read and write

operations into memory, which will fit the F function, as presented in the Formula 5.4.

The presented model estimated the CPU allocation of a host (or virtual cloud

host) for a certain data amount. This value helps to predict the overhead in a host when

confidentiality is added in the persistence flow for privacy guarantees. The system ad-

ministrator could trace a company’s application I/O data amount and use this formula to

estimate the CPU allocation per node.

5.3 Evaluation and Validation

In order to evaluate the proposed model, initially, a set of experiments was con-

ducted to fit the mathematical model, considering the impact of memory, the absolute

CPU load and the relation between dataset’s size and execution time. Next, the data vol-

umes (read and write) of an OLTP benchmark was used to do a multi-linear regression

fitting, still considering the relation to the CPU overhead.

5.3.1 Environment Description

The validation environment was composed by virtual machines running standard

Linux using a single virtual processor and variable memory sizes (256MB, 512MB, 768MB,

and 1024MB). The virtual machines were hosted in a physical server with an Intel Xeon

X6550 2GHz 8-core processor, 96GB RAM, a local SATA disk with 128GB, and XenServer

6.2. For these experiments, the Cryptography File System approach is used because its

adoption does not demand application modification, and it is considered a low level high-

performance solution for the cloud software stack. The Cryptography File Systems used in

the experiments are the dm-crypt [Fru05], placed in the kernel level and acting as a Block

CFS; the EncFS [Gou], running in user-space with the FUSE library, acting as a Stackable

CFS; and the algorithm was always set to AES with a 256-bits key. This algorithm was

chosen due to its recommendation by security institutes [BHW06]. This configuration was

evaluated by the IOZone [NC] I/O benchmark tool.

5.3.2 Validation

This evaluation defines the weights for the variables and functions from Equation

5.3. The variables E and D in the formula are the processing time for encrypting and

decrypting an amount of data in bytes, respectively. Considering that the CFSs used in

71

this validation use a standard cryptography algorithm, these values could be captured

from an isolated test case (i.e. measured with command line tools) and applied in a linear

function. The measured values for E and D for a 500MB file were respectively 4558ms and

3956ms. It is noticeable that the encryption operation consumes more time compared

to decryption. This operation is also essential during the writing processes, which is far

more expensive than reading in terms of time for the I/O subsystem. When combining

both encrypting and writing operations, the worst case scenario for this experiment is

presented. So, the next experiments would consider only writing operations in order to

demonstrate the model application.

In Equation 5.3, the throughput variables are determinant in the overall formula

application. In order to measure them, an experiment was conducted to write files in a

CFS with sizes from 10MB to 1000MB, and the host CPU consumption is captured for four

memory sizes: 256MB, 512MB, 768MB, and 1024MB. Figure 5.5 shows differences in CPU

allocation according to the file size and the host memory size. In general, the CPU load

was near 10% for files with size up to 68% of the available memory. This experiment

shows memory consumption during the encryption phase. Otherwise, for bigger files, the

I/O subsystem queues the work-flow, not allowing the progress of the encryption. In such

a scenario, the formula would be impacted by the host’s memory size, which is mapped

in the mathematical model as the ∆ factor. This factor is conditioned by the function in

Equation 5.4, where the total execution time is affected by a factor F when persisted data

is bigger than available memory size m. The reduced CPU load is also reflected in the total

execution time, as it was observed during the test executions.

Figure 5.5 – Memory size effect in overall CPU load during CFS persistence

When isolating CPU overhead with or without memory as a support to improve

performance, it is possible to demonstrate a stabilized load due to the IO subsystem’s lim-

itation. Figure 5.6 presents a comparison between two cryptography key sizes for writing

72

files from 10MB to 1GB in a VM with 512MB of memory. It is possible to see that, although

the key length increases, the CPU allocation follows a standard behavior.

Figure 5.6 – CPU overhead comparison for AES with different key lengths

5.3.3 Mathematical Evaluation

Similarly to network modeling, the behavior of the cryptography persistence flow

also considers the relation between CPU load and data volume. This relation is verified in

the validation presented earlier for files sizes smaller than the available VM’s memory.

Based on the previous experiments, a new set of experiments were conducted

for an OLTP benchmark with and without a CFS. The goal of this experiments is to produce

a multi-linear regression to explain the CFS CPU overhead. through the function of the

amount of bytes read and written(REMOVED).

The used benchmark software is a TPC-C [LD93] implementation producing a

workload over a standard relational database instance with data being persisted in two

different directories. One of them is a raw file system and the second one is a dm-

crypt [Hal07] file system (CFS). For each execution, the database is repopulated into the

desired file system (with and without cryptography). These two scenarios are also stressed

with concurrent connections from 1 to 10.

Figure 5.7 shows a CPU load comparison for scenarios with and without a CFS. In

one hand, for the plain mode, without CFS, there is an increase in the data volume as more

concurrent clients are added to the execution. However, there is no significant variation

in CPU load. In the other hand, the CFS scenario increases the CPU utilization with the

addition of concurrent connections since the data volume also increases. However, the

73

Figure 5.7 – CPU load variation for an OLTP benchmark with and without CFS

data volume is significantly inferior to the Plain scenario. The CPU load and the data

volumes of the CFS scenario are used to fit the linear regression where R-squared was

0.9982. The linear regression considers the variables w (write) and r (read) representing

the data volumes for the respective operations. The values are then guessed form CPU =

β +β1 ∗w +β2 ∗ r . This modeling was then used to predict the CPU overhead of CFS for four

scenarios, where the VM’s memory size was modified to 512MB, 1024MB, 1536MB, and

2048MB, always using a single VCPU. It was possible also to observe that the database

management system does not access the entire file taking benefits from a cache sub-

system, so the memory size effects observed in the previous validation were not present

in this experiment.

Figure 5.8 depicts the relative difference between the measured CPU overhead

and the prediction, based on the fitted values. It is possible to observe an error not supe-

rior to 10%, and in most cases, the accuracy was close to 95% in average.

5.4 Summary

Cloud storage confidentiality has been considered an essential feature for achiev-

ing companies’ security requirements. The current implementation for persisting data on

cloud environments commonly adopts cryptography algorithms to provide confidentiality

for data at rest, including operating systems files, users documents, etc.

74

Figure 5.8 – Predicted CPU overhead for different memory sizes, based on multi-linear
regression.

The modeling presented in this chapter considers the relation between persisted

data volume and the CPU overhead introduced by the cryptography algorithms. In a dif-

ferent perspective of the network modeling presented in the previous chapter, there is a

extra variable for the cloud storage system related to the IO subsystem, where the avail-

able memory changes CPU allocation due to the nature of file systems that use cache

mechanism (i.e.paging) to improve performance. This variable was also modeled and val-

idated in the experiments. The proposed modeling was evaluated in two scenarios, first

considering a specialized IO benchmark where it was possible to predict the CPU over-

head of the CFS within an accuracy close to 98%. Later, an OLTP benchmark was used

to produce a workload for a database persisted in a CFS. The modeling variables, for this

case, were fitted using a multi-linear regression where it was possible to predict different

scenarios setups with an accuracy close to 95%.

The modeling of the cloud storage sub-system is also part of the full-stack con-

fidentiality architecture we are developing in this research. This is the second axis con-

sidered in the validation of the hypothesis (ii) confidentiality costs can be modeled and

used in the sizing of cloud computing environments, which is supported by answering the

research questions:

• 2 - What is the overhead for adding confidentiality mechanisms in the cloud com-

puting stack? It is possible to identify several components for supporting data confi-

dentiality at rest, and we have shown how confidentiality is applied in this axis and

what the impact when cryptography algorithms are applied. After being identified,

the storage confidentiality was evaluated in terms of CPU allocation for persistence

75

operations in a cloud environment, and the overhead was explained by the relation

between data volume and CPU allocation, mapped in the formulations.

• 3 - How can the overhead of combined security mechanisms for communicating,

storing, and processing data in a cloud environment be estimated? The modeling

presented in this chapter uses as input the stored volumes handled by the applica-

tion hosted in a cloud node. These volumes, read and written in a storage unit, feed

the prediction formulas that also need to consider the cryptography algorithm used

in the storage setup.

76

6. PROCESSING CONFIDENTIALITY MODEL

Although most of the cross-VM attacks are theoretical demonstrations, and some

successful intrusions in co-resident VMs could be made only in specific processors [IIES14,

RTSS09], there still are alerts from security institutes to adopt a cloud computing envi-

ronment for sensitive data processing. The run-time phase of an application in a com-

putational system consists of transferring data and instruction in/out of the processor. In

conventional computer architectures, this is made in plain text, and the literature presents

several works which aim to exploit information leakage in vulnerabilities in both the virtu-

alization layer and hardware architecture [WL08, RJX08, HCAL17, RGVM13, WZL15].

Based on such security risks, which can also be exploited in cloud computing

environments, the full-stack confidential architecture, presented in Chapter 3, introduced

the processing axis where the confidentiality principle should be supported for data inside

the processor chip, specifically when they are stored in registers, caches, and memories.

In order to protect data, even during the processing phase, some techniques,

such as Homomorphic Encryption [Gen09, RSA78], Querying over Encrypted Databases

[PZB11, AEKR14, DGBL+16, HILM02], and embedded processor’s instructions [Int14], have

been developed to keep data ciphered for calculations and comparisons, operations which

are made on the memory-cache-CPU flow. In fact, data are never disclosed in this kind of

solution, which increases the overall confidentiality of the system. However, this security

approach adds overhead for the user’s application, and additional costs should be mapped

in order to estimate its impact on the cloud environment.

This chapter is structured as the following. Section 6.1 presents the technolo-

gies and solutions for supporting secure processing in cloud environments. Section 6.2

presents a high-level performance modeling for confidentiality in the processing axis.

Later, an evaluation of the proposed modeling is described in Section 6.3, considering

solutions in the literature and their performance evaluations. This chapter ends with the

conclusions and considerations in Section 6.4.

6.1 Secure Processing in the Cloud

One of the main characteristics of cloud computing is the hardware-sharing ca-

pability supported by the virtualization layer. This layer supports the creation of Virtual

Machines, each of them with virtual discs for storage, virtual network interfaces for com-

munication, and virtual CPUs for data processing. Regarding processing, the concept of

a virtual CPU (vCPU) is inspired by the so-called time-sharing mechanisms of operating

77

systems, where instead of a single process, the processor is shared by all guests’ virtual

machines (each VM with an OS applying internal scheduling in its turn) [BDF+03].

The run-time phase of an application demands transference of data and instruc-

tions between the processor and memories (caches and RAM), normally as plain text.

Based on this characteristic, exploiting a virtualization or hardware vulnerability for copy-

ing or even retaining neighborhoods’ VM’s data may have success. Even if both commu-

nication and storage mechanisms add some security level, this fact should be considered

in order to keep the data’s security during their entire life cycle in such shared and public

computational environment. It is actually not a threat if the physical host (memory and the

processors) in a cloud environment is not shared, as in private clouds or in Virtual Private

Clouds [Amac]. However, this scenario would increase the costs to deploy an application

in the cloud, and it is also not common among cloud users due to financial feasibility.

Another approach that can be considered is to identify the sensitive parts of appli-

cations to schedule them properly. Watson P. et.al. [Wat12] present a multi-level security

strategy to take apart sensitive applications’ workflows and run them in a safe location.

This safe location could be related to either a security-aware cloud environment, which

would be penalized by cryptography processing, or a private cloud instance managed by

the company’s security rules. In such scenarios, it is possible to statically invest in the se-

curity of some specific resources, since the IT manager knows the sensitive applications’

placement [FW12]. Although this kind of solution can solve the leakage of sensitive data,

the application has to be modified, and its execution should be tracked for delivering appli-

cations’ routines which process sensitive data in, i.e., either a private cloud or a dedicated

bare-metal server.

Trying to solve security issues in public cloud environments, researchers have

been producing some solutions to add confidentiality during the run-time phase. The

embedded cryptography instructions of Intel processors [Int06, Int14] allow (de)ciphering

data using hardware instructions. Those instructions handle only the registers’ data, keep-

ing data stored in both the cache hierarchy and the main memory encrypted. Although

it could prevent data leakage for some cross-VM attacks by exploring the shared mem-

ory [WL08], data would be in plain text inside the chip, theoretically allowing some leak-

age. Adding such a technique also demands software modification due to the necessity

of using specialized processor instructions. Recently, some works using container-based

solutions and Intel SGX instructions have solved the side channel attack by binding dedi-

cated processors and cache memories [KGP+17]. This approach leads to under provision-

ing and impacts the feasibility of cloud solutions, also demanding a specialized processor

not common in public cloud providers.

In order to improve confidentiality for the processing phase, it is necessary to con-

sider algorithms to handle encrypted data such as in operations over encrypted databases

78

and homomorphic encryption. This would allow the data stay encrypted during processing

and therefore avoid plain data leakage.

The encrypted database querying [DGBL+16, AEKR14, BW07, HILM02, PZB11]

techniques consider handling enciphered data as in Database Management Systems

(DBMS). The technique handles queries by comparing enciphered parameters within the

enciphered data stored in the database. For instance, a Select Equals operation, e.g.

querying a name in a table, calculates a hash for the searching value and compares it

within all hashes of a certain DBMS table’s column. In its turn, the Select Sum operation,

e.g. sum a table column, applies a homomorphic sum operation for a given numerical

column in a search. In doing so, there is no exposition of sensitive data even during the

querying phase. However, having been studied in last ten years, the encrypted database

querying technique still is a incomplete database system with few mechanisms for com-

plex SQL instructions, such as the store-procedures [AEKR14], causing companies to avoid

migrating their applications using such encrypted DBMS.

At same time, research about homomorphic encryption has tried to develop en-

hanced mechanisms for confidential data processing. The homomorphic multiplication

operation provided by the RSA cryptography [RSA78] supports multiplying two encrypted

values resulting in an encrypted value which, when decrypted, is the product of the plain

two values: for example, for the values a and b, the encryption function enc, and the de-

cryption function dec, a ∗ b = dec(enc(a) ∗ enc(b)) [RAD78]. The only way to acquire the

result is by deciphering the computed value with the private key, which is a pair of the

public keys used for the two original values. This feature enables handling values without

disclosing them during the processing phase, and it is called a homomorphic operation.

In the work called Full Homomorphic Encryption (FHE) [Gen09] Gentry C. et.al. propose

a complete model for computing encrypted values. This theory is considered a full solu-

tion for handling enciphered data in a trustful and secure manner providing additive and

multiplicative operations [vDGHV10] that could support a complete set of functions for

computational systems. But it is still a theory, and no practical solutions based on cryp-

tography have achieved the desired results, even at a high overhead. In this context, a

high-level cost modeling is presented in the next sessions, presenting an estimation of the

impact added by a secure processing axis in the Full-Stack confidentiality architecture.

6.2 Cost Model

Unlike the linearity observed in communicating and storing models (Chapters 4

and 5), the complexity of each operation for the processing axis needs to be considered

separately, which demands software tracing in order to estimate the overall impact of

confidentiality in the processing phase. For instance, in CryptDB, a Select equality oper-

79

ation is far cheaper than a Select sum operation since the former computes simple hash

comparisons while the second requires homomorphic operations.

The difference among operations demands a formulation which considers each

operation in isolation. The dataset is also observed per operation. Regarding the op-

eration’s complexity, this work proposes an abstract formulation for modeling the extra

computational resources in the processing axis. The cost of processing data with confi-

dentiality for this scenario is a function with operations and dataset as input. This function

should produce a CPU overhead as the output. This can be written as:

f (op1, op2, ..., opn, d) = C1(op1, d) + C2(op2, d) + ... + Cn(opn, d) (6.1)

where op is related to the operation weight, d is a given dataset, and C is a function

producing a cost in terms of CPU overhead to compute the operation over the dataset. The

final result f is given by the total cost of operations. In other words, a dataset associated

with an operation has its own weight in the total overhead estimation. This function could

be replaced by a regular mathematical calculation to achieve such results. From this high

level modeling, one can apply a formulation based on a multi-linear regression1, where

each operation has its own weight. This can be written as:

f (op1, op2, ..., opn) = β0 + op1β1 + op2β2 + ... + opnβn (6.2)

where β values are the weights to be fitted with a training dataset, which will produce the

result based on data volumes of each operation.

6.3 Applying the Cost Model

This model is applied in two phases: mapping the application’s operations, and

applying per-operation overhead, which has been already measured by cryptography

database authors, in this case, the CryptDB.

The workload used in this evaluation consists of an OLTP benchmark with a set of

operations, common in an e-commerce application. The TPC-C benchmark [LD93], used in

this thesis in previous evaluations, produces a workload based on the following operations:

• New Order: consists of creating an entire new order with a high frequency and heavy

flow, which represents on-line operation for common production environments;

• Payment: updates customers’ transactions, reflected in several databases’ tables,

and represents a light-weight operation with a low-frequency flow;

1http://www.stat.yale.edu/Courses/1997-98/101/linmult.htm

80

• Order Status: queries the status of customers’ last order. It is a mid-weight low-

frequency operation flow;

• Delivery: process a batch of 10 new (not delivered) orders, reviewing the entire

operation, deleting and updating several tables;

• Stock Level: query recent sold items, looking for products with low stock level. It is

a light-weight operation and not frequent.

Equation 6.1 will be used to quantify the overhead of the different complexities

for encrypted operations. The application of this formula requires profiling the software

taking into account the database queries. For these experiments, the set of operations ex-

ecuted by the TPC-C benchmark were mapped, and the overhead for each was calculated

according to the CryptDB evaluation [PZB11, PRZB11]. Table 6.1 presents the accumu-

lated overhead for each TPC-C operation following the specification of the benchmark2. It

is possible to observe different operation sets being affected by the cryptography charac-

teristics added by CryptDB. Particularly for the Delivery operation, although it is processed

in batches, it has the highest overhead specially because the addition of the operation Se-

lect Sum, which demands a homomorphic sum. Such an operation was reported in the

CryptDB author’s paper as the most expensive operation, with an overhead up to 98%.

The Delivery operation is composed by a set of Select Equals, Update, Delete operations,

and one SelectSum operation, which impacted the overall overhead even though it was

called once.

Benchmark
Phase

New Order Payment Order Status Delivery Stock Level

Operations
Select Equals
Update
Insert

Update Inc
Update
Select Equals
Select Range

Insert
Select Equals
Select Range

Select Equals
Delete
Update
Select Sum
Update Inc

Select Equals

Overall
Overhead

8,73% 25,17% 10,04% 27,39% 7,6%

Table 6.1 – Calculated overhead based on SQL operations demanded by each TPC-C
phase [PZB11].

Besides the overhead added by the techniques of Querying over Encrypted Data-

bases, CryptDB also changes the data volume persisted in the server side, adding extra

columns with metadata to tables. According to the authors, this increases the database

volume by 4.5 times in terms of storage allocation. Figure 6.1 depicts the comparison

between a base-line execution using a non-encrypted database, represented by the solid

2https://github.com/Percona-Lab/tpcc-mysql

81

line, and a encrypted database, represented by the dotted line. The values for the en-

crypted database were obtained though mapping the benchmark’s operations and Table

6.1, producing an estimated overhead.

Connections

1 2 3 4 5 6 7 8 9 1�

(�
�

C
�
�
	
o

�

Figure 6.1 – CPU Load overhead recalculated in function of CryptDB overhead.

6.4 Summary

The solutions to support security in the cloud environments, in particular for the

confidentiality principle, can be supported in the processing axis through mechanisms

such as the Homomorphic Encryption and the Querying over Encrypted Databases. Al-

though the virtualization technology, used for sharing server’s processor among users,

supports context isolation for users’ VMs, the literature presents several works in which

information leakage is exploited, e.g., cross-VM attacks.

The solutions for supporting confidentiality of users’ applications during their

run-time phase are based on two primary requirements: data should be ciphered, and

every processing over the data should not disclose them. These conditions demand a

per-operation solution since the complexity of data manipulation is dependent on the ap-

plication features development. A general solution, yet a theoretical concept, is proposed

by Gentry as a Full-Homomorphic Encryption [Gen09]. Alternatively, the Querying over

Encrypted Databases solutions proposes a set of operations to achieve security require-

ments, including the confidentiality principle. All solutions describe overhead in support-

ing encrypted data processing.

In this chapter, a high-level modeling is proposed with the aim of estimating the

overhead of supporting homomorphic operations in cloud computing environments. Based

82

on overhead measurements of an Encrypted Database, we produced an evaluation where

it was possible to identify the database operations of an OLTP benchmark and map them

within an Encrypted Database solution.

This chapter complements the full-stack confidentiality model we developed in

this research. This is the third axis supporting the validation of the hypothesis (ii) confi-

dentiality costs can be modeled and used in the sizing of cloud computing environments,

and complements the research questions as follows:

• 2 - What is the overhead for adding confidentiality mechanisms in the cloud com-

puting stack? New solutions for processing over encrypted data have been devel-

oped, and have opened new opportunities to move confidential data processing to

cloud environment, which allow users to get its benefits. Most of the solutions for

handling encrypted data add a high overhead to the computational systems, but

some solutions for Encrypted Databases have low-cost operation such as the hash

comparisons. Application’s operation have different overheads, from 7% when com-

paring hash values, 20% when encrypting new data, and 98% when processing an

homomorphic operation. Hardware-based confidentiality is an alternative with low

performance impact, but is only possible with modifications in the user application.

• 3 - How can the overhead of combined security mechanisms for communicating,

storing, and processing data in a cloud environment be estimated? The difference

in the CPU load of confidential solutions’ operations demands an application trace

to analyze their cost individually. Each application operation should be mapped as

either a Homomorphic Encryption routine or a specialized query of the Encrypted

Databases or a security hardware instruction. These confidential operations, when

applied to a given dataset, will produce an overhead to be used in the formula fitting,

which then finally can be used to estimate the overhead of supporting confidentiality

for data during the processing phase. It is not a straightforward application since

the solutions for this axis are still not mature, and many improvements need to be

made if such a solution starts to be part of cloud computing environments. It is also

necessary to consider the operations impact in the other axes such as in network

and storage and then apply the formulas for predicting the total CPU load of a full-

stack confidential architecture appropriately. This evaluation is presented in the next

chapter of this work.

83

7. COST MODEL USE CASES

The cost model proposed in this work can be applied to estimate the impact of

supporting the confidentiality in cloud environments. On one hand, for the cloud models

SaaS and PaaS, cloud providers are responsible for security support, and should imple-

ment mechanisms for levering confidentiality, integrity, and availability of rented assets.

In such a scenario, the provider needs to estimate the costs of supporting security prin-

ciples for the services delivered to the customers so that this service is properly priced.

For instance, a Database-as-a-Service product could achieve a higher security level by

implementing confidentiality for both the communication with the customers application

and the data of files stored in the public cloud, however, this increased security level may

impact resources utilization and consequently the price of the services.

On the other hand, the IaaS cloud model lays out the security concerns to be

managed by cloud users. Users also need to estimate the extra costs of adding privacy

principles such as deploying a Cryptography File System (CFS) for protecting a VM’s files or

even implementing a VPN among public cloud nodes. This deployment also demands the

knowledge of the impact of adding security mechanisms since the public cloud resources

are billed on-demand, and any extra resource allocation will impact the final price of the

services [MKL09]. Figure 7.1 depicts the security responsibility distribution between users

and providers.

Facilities

Network

Storage

Server

VM

A��

Facilities

N�����

Storage

Server

VM

A��

Facilities

N�����

Storage

Server

Service

A��

Facilities

N�����

Storage

Server

Service

A��

Private

P

PaaS SaaS

Pr������ ��� ControlU��� �as Control

Figure 7.1 – Security responsibility in cloud computing deployment models.

With the aim of demonstrating the utilization of the cost model proposed in this

work and discussing the overheads when adding security in cloud environments, the fol-

lowing scenario is described and the security costs are sized considering its adoption of

confidentiality. The scenario consists of a Provider Cost Evaluation which considers demon-

84

strating the responsibility of cloud providers in delivering a safe solution to clients, con-

sidering cloud modes PaaS and SaaS.

7.1 Scenario Description and Measurements

Cloud computing providers have gained attention in recent years due to deliv-

ering a set of computational services demanded by companies of any size, from small

start-ups to big and well-established corporations. The providers deliver services in three

different modes. The IaaS mode provides computational infrastructure as services which

include Virtual Machines, storage disks, and network. The PaaS mode delivers to cus-

tomers essential services used by developers such as databases, message queues, and

mailing services. Finally, the mode called SaaS delivers to end-users complete software

solutions such as office suites, customer relationship management (CRM), and social me-

dia tools.

In order to understand the feasibility of delivering secure service in these three

modes, it is necessary to first understand and then predict the overhead of the mecha-

nisms that support the security principles.

In this context, a scenario of a database instance delivered to the customer as

a service is considered (classified as PaaS). In practice, the provider deploys virtual ma-

chines with a desired software stack (i.e. a MySQL instance) and applies the concepts of

elasticity (vertical or horizontal) to support the demanded user’s workload. This deploy-

ment can be offered to users under different security levels, by adding confidentiality in

both communication and storage axes.

v !"#

Figure 7.2 – Service level of requests, for a non-safe cloud environment.

85

To understand the impact of confidentiality mechanisms in a cloud environment,

a set of experiments based on an e-commerce workload were conducted, and the re-

sponse time of requests was observed. In the following figures, the horizontal axis repre-

sents an increasing demand with concurrent clients (from 1 to 10) making requests into

the database system. The vertical axis is related to the amount of request which is on-

time (considering the minimal response time for each operation). The color in bars, rep-

resents the number of vCPUs allocated for the VM hosting the DBMS. Figure 7.2 presents

measurements of an environment without the adoption of any security mechanism. In all

executions, the amount of requests achieving the desired response time was superior to

90%.

The next evaluation includes security in the communication between the client

(demanding requests into the server), and the server with VPN (Figure 7.3).

$%&')

Figure 7.3 – Service level of requests, for a VPN-based cloud environment.

It is possible to observe, a reduction in requests that can achieve the desired

response time as more concurrent clients are added. The overhead of the VPN is easily

noticeable by its impact on the services. When more than eight concurrent users were

added, it was not possible to achieve 90% of succeeding requests. Subsequently, in order

to understand the storage security impact, the DBMS was deployed over a CFS, to support

confidentiality for persisted data.

Figure 7.4 presents the impact of a CFS, which does not add significant overhead

compared to the VPN scenario. This behavior reflects the fact that the VM’s memory is

large enough for the DBMS to make only in-memory operations generating few file system

page fault. Only scenarios with one vCPU could not achieve the desired response time for

more than eight concurrent clients. Finally, an environment considering a VPN and also a

CFS is evaluated.

86

*+,-.

Figure 7.4 – Service level of requests, for CFS-based cloud environment.

/03:;

Figure 7.5 – Service level of requests, for VPN-CFS-based cloud environment.

Figure 7.5 presents the impact of combining two security levels, in this case for

communicating and storing data. In all scenarios, even for a single connection, no more

than 50% of the requests are within the desired response time. The isolated test scenarios

contribute with CPU allocation and data volumes for tuning the variables of the cost model

formulas, which are demonstrated in next section.

7.2 Applying the Confidentiality Costs Model

In the test-cases presented in Section 7.1, the evaluation shows that cloud pro-

viders have to resize resources if they want to achieve SLAs when security is needed.

This can be also verified with the model developed and validated in Chapters 4 and 5. It

87

considers the data volume communicated and persisted in the environment as the input

of the formulas.

The test case using confidentiality for communication, presented in Figure 7.3,

produced the values in terms of data volume and CPU load used to fit the network model-

ing formula. By rewriting the network modeling equation 4.4:

N(s,r ,b) =
E × s + D × r

(s + r)/b
(7.1)

the variables to be fitted are E and D, since the others are part of the function input. For

this case the multi-linear regression yielded E = 0.00000006385 and D = 0.000002805,

and the standard error of the values was expressed in the R-squared 0.9991.

Similarly, the test case applying confidentiality for the storage, using a CFS, pro-

duced the values for fitting the persisted data volume and the CPU load used by the CFS

in the storage modeling. By rewriting the storage equation 5.2:

S(w ,r ,TPr ,TPw) =
E × w + D × r

(r/TPr) + (w/TPw)
(7.2)

the variables to be fitted are E and D, since the others are part of the function input. For

this case the multi-linear regression yielded E = 0.0000000222 and D = −0.00000000549,

and the standard error of the values was expressed in the R-squared 0.991.

Table 7.1 presents the volumes and the CPU overhead of each confidentiality

scenario where the variables’ weights were obtained from. It was possible to notice an in-

crease in the data volume as more concurrent connections were added. The data volumes

also produced a linear relation within the CPU overhead in both scenarios. However, even

when adding security to network and storage, data throughput still increased as more

clients were added in parallel.

Clients
Network with VPN Storage with CFS

sent1 received1 CPU Overhead read1 write1 CPU Overhead
1 9380 1797 6.88% 16 71386 2.08%
2 11442 2183 7.85% 10384 60244 1.75%
3 15777 3010 10.87% 3040 79802 2.24%
4 20098 3853 13.72% 2864 100118 2.68%
5 24940 4764 16.63% 5680 142990 3.57%
6 29741 5687 19.65% 944 161318 4.00%
7 32959 6306 21.48% 5616 177396 4.34%
8 35154 6710 22.70% 1184 191127 4.75%
9 35036 6715 22.45% 7840 222755 5.46%
10 34770 7022 23.54% 3344 225332 5.63%

Table 7.1 – Measured values for data volume and CPU overhead, used for fitting prediction
formulas. 1Data volumes are expressed in KBytes.

88

When applying the weights for encrypting and decrypting data for both communi-

cations and storage together, it is then possible to predict a scenario where confidentiality

is applied simultaneously for the network and storage axes. Table 7.2 presents the mea-

sured values for network and storage when using cryptography tools for confidentiality

support. This table also presents the Measured CPU Overhead as well as the comparison

within the Predicted CPU Overhead.

Now, it is possible to apply the modeling for the processing axis to estimate the

total overhead of confidentiality when applied in all three layers.

From the modeling for confidentiality in the processing axis, presented in Chap-

ter 6, one can consider applying the overhead for the database operations of the e-

commerce benchmark presented in Section 6.3. The operations mapped in Table 6.1 are

the same in the evaluation presented in this section. From that profiling, it is possible to

map the transaction allocations and the increase in storage (which is 4.5 times bigger),

based in columns read and write of Table 7.2.

Column Full-Stack overhead for CryptDB, in Table 7.2, presents the impact of stor-

ing this experiment in an Encrypted Database, in this case the CryptDB. The prediction for

this column needs to consider the overall overhead added by the cryptographic operations

as well as the increasing in the storage data volumes, applied by CryptDB. Considering

confidentiality in communication and storage, from the current experiment, and the over-

head of the confidentiality in the processing axis, it was possible to estimate the impact

of the Full-Stack Confidentiality, which was 10% in average (learned from previous exper-

iment in Chapter 6). This values are an estimation based on CryptDB paper [PZB11] since

they could not be verified practically due to TPC-C demands operations not supported by

available version of CryptDB.

Clients
Network with VPN and Storage with CFS Full-Stack

overhead for
CryptDB

sent1 received1 read1 write1
CPU Overhead
Measured

CPU Overhead
Predicted

1 2958 564 3456 60482 3.51% 4.78% 9.13%
2 5328 1018 96 67913 5.35% 6.36% 11.36%
3 7583 1455 1744 77344 7.01% 7.97% 13.69%
4 9590 1836 3488 82308 8.68% 9.30% 15.39%
5 11117 2130 528 86064 9.60% 10.35% 16.74%
6 13240 2533 8688 92357 11.28% 11.74% 18.57%
7 15393 2941 3856 106361 12.83% 13.40% 21.34%
8 17759 3395 2656 134359 14.89% 15.50% 25.63%
9 19188 3668 4496 154359 16.59% 16.82% 28.50%
10 20652 3950 2000 161244 17.56% 17.90% 30.12%

Table 7.2 – Model application considering the trained formulas for a scenario with confi-
dentiality guarantees in communication and storage, and a prospection of Full-Stack con-
fidentiality costs using CryptDB. 1Data volumes are expressed in KBytes.

89

Figure 7.6 – Environment overhead comparison in terms of CPU allocation. Bars represent
a scenario only with network and storage security. The line represent the estimated CPU
overhead including the Processing axis.

Finally, for this evaluation, the CPU overhead was observed and compared with

the prediction produced by applying the model, presented in Chapters 4, 5, and 6, in

this work. From Figure 7.6 we can conclude that the larger the volume is in both network

and storage, the higher the CPU overhead is, compared with a standard environment.

This behavior validates the characteristics developed in Network and Storage modelings,

which associate data volumes and cryptography overhead. The figure also depicts the

comparison bars between the measured and the predicted CPU overhead, which achieves

an accuracy close to 95% in average. The solid line in this figure presents the estimated

overhead for a Full-Stack Confidentiality scenario, applying the cryptographic techniques

and tools, presented and discussed in this research, for the communication (using VPN),

storage (using CFS), and processing (using CryptDB) axes.

7.3 Applying the Model in Public Cloud Providers

Several Cloud Computing providers have been developing software solutions for

companies of many sizes. The solutions range from static web hosting to robust BigData

processing and Artificial Intelligence applications. Regarding the security, the in-transit

solutions are already a commodity through the well-established HTTPS protocol [NFL+14].

Moreover, when a privacy requirement demands that data should be kept encrypted at

rest, cloud computing providers have started to offer solutions for encrypting the data

itself, as in object storage solutions [Amad], and for encrypting the entire VM’s disk. The

90

solutions allow a user to upload the key used for the cryptography process, but those keys

should be managed by the cloud provider, which can be a security issue as discussed later.

To verify the applicability of the modeling proposed in this thesis, we measure the

overhead of adding security using the on-board features of current cloud providers. The

Amazon AWS [Amaa] provider was chose for being a pioneer in cloud computing solutions

and the biggest player in the current scenario. From the available products supporting

encryption, the Elastic Block Store (EBS) [Amab] is the AWS product supporting the cre-

ation of the VM’s disks used for persisting data, as well as for the VM’s operating system.

This product supports disk encryption as a feature offered by the cloud provider. In other

words, the user rents an encrypted disk with the guarantee that data are ciphered at rest.

In this scenario, we conducted experiments with two VMs (a dedicated VMwithout

sharing CPU cycles - in AWS they are identified as EC2-M4), one of them hosting a database

and the other one hosting the client benchmark software. The virtual machines were

placed in the same availability zone1 and the same local network. From this environment,

the e-commerce benchmark execution, used in previous evaluations, was reproduced for

scenarios considering the encryption of the disk where the database is persisted. The

execution considered disks with encryption supported by the cloud provider in two disk

types: standard magnetic disks and disks with provisioned IO operations. According to

AWS documentation [Amab], the disk encryption process encrypts data inside the bare

metal host, so both data transmission to the storage unit and its persistence are ciphered.

Figure 7.7 – Disk encryption comparison between Cloud encryption and user encryption.

Figure 7.7 shows the CPU load comparison of the database node for the three

disks’ scenarios. It is possible to observe that there is no significant CPU load in the

1An availability zone is a physical data center where VMs are physically allocated.

91

Virtual Machine, which is characterized when the Cloud Provider does not charge users’

allocation with the Disk Encryption process since it is a feature of the cloud’s storage

service. From this observation, it would be necessary to measure the overhead in the

bare-metal host, which is not allowed from the users’ perspective. The experiment also

allows the creation of Virtual Private Networks, deployed by users. These VPNs added

similar overhead compared to the first scenario presented in this chapter.

Although the impact of confidentiality mechanisms could not be observed in the

users’ application, the cloud provider is impacted by the cryptography operations in the

persistence flow. This impact could change price aspects of providers’ service, which

would motivate them to apply a similar evaluation on the lower layer to understand and

predict the overall impact of offering Disk Encryption in their services.

7.4 Summary

In order to build a confidential cloud computing environment and to measure the

CPU impact of cryptographic mechanisms in the cloud software stack, this chapter started

with an experiment in a controlled environment where the cost model could be evaluated

to predict an environment composed of secure communication and storage. The potential

impact on the service availability is demonstrated in Figure 7.5 where, on average, 50% of

the requests of the e-commerce benchmark could not be served on time. After applying

the modeling of network and storage, developed in Chapters 4 and 5, it was possible to

predict this overhead with an accuracy close to 95%. From this evaluation, an estimation

for a full-stack confidentiality is then calculated from the observations of the processing

axis, presented in Chapter 6. Although its validation could not be reproduced in practice,

due to benchmark and CryptDB compatibility, we demonstrated the empirical estimation

of the Full-Stack Confidentiality Architecture, based on CryptDB overhead measurements.

This chapter also shows the evaluation of a real cloud scenario, considering a

public cloud provider. The provider supported the creation of Encrypted Disks, and it

was possible to understand that no CPU overhead is transferred to users’ VMs during the

encryption of data persistence flow. However, it would be interesting to predict such over-

head on the provider’s side in order to understand the costs of supporting confidentiality.

This chapter answered the research question 4 - How can a security overhead

modeling help users and providers to create a confidential cloud environment? Once it

is possible to understand the data volume and the cryptography type (algorithms and

key sizes), users and providers can predict the overhead of adding confidentiality in the

communication, storage, and processing axes and then recalculate the costs of the cloud

computing environment. This may leverage some future work in scheduling algorithms

92

and new security strategies for balancing the confidentiality level and the costs in renting

cloud computing environments.

93

8. CONCLUSION

8.1 Concluding Remarks

In recent years, companies and government agencies have increased their se-

curity demands to ensure strict privacy features in cloud computing environments. Even

though cloud security has been discussed both in industry and academia, cloud services

rarely support data leakage avoidance, especially for the processing phase of sensitive

data. This gap prevents most users, especially the ones who have privacy demands, from

adopting cloud services, and, consequently, they will not earn the benefits from reduced

costs, infinite scalability, and the many other advantages of cloud computing.

With the intent of investigating and proposing solutions, many works [KKA14,

MJ15, RK14, RC15, KKKM13] have identified and mapped the vulnerabilities of computa-

tional systems on cloud environments. The alternatives for offering confidentiality in a

full-stack manner, considering all layers of cloud environments, points to cryptography as

the technology that supports confidentiality in communication (using VPNs), storage (us-

ing CFSs), and also in the processing phase (through Homomorphic Encryption). Such a

scenario is proposed in this thesis as the Full-Stack Confidentiality Architecture for Cloud

Computing, where its design is presented, considering the placement of cryptography

components for preventing confidentiality risks, such as information leakage, even during

data processing, considering the shared tenancies feature of the cloud.

Although the proposed architecture increases privacy levels, the security mech-

anisms that support the confidentiality principle are commonly neither part of software

sizing estimations nor the cloud’s pricing. This may lead to under-provisioning and conse-

quently an additional investment to maintain the service security. Based on this context,

this Ph.D. work also conducted the research for identifying and modeling the overheads of

current solutions in security to build a cloud computing environment with confidentiality

for data in-transit, at-rest, and on-processing.

It was possible to ensure that for the communication among services in cloud en-

vironments there are standard models following Internet-based protocols such as HTTPS.

This protocol demands the creation of a secure tunnel between peers by exchanging cryp-

tographic keys, as in Virtual Private Networks. The research in Chapter 4 also shows that

cryptographic algorithms add CPU overhead to the communication, and the modeling pro-

posed a linear relationship between the data volume and the CPU overhead. This modeling

is mapped considering several algorithms such as AES, Blowfish, and Camellia. The eval-

uation demonstrates the accuracy of the cost model which was between 91% and 98%.

This model was the starting point in this research, and helped to answer part of the re-

94

search questions related to the feasibility of supporting confidentiality for communication

and the estimation of their costs.

The research work then investigates the security of the storage in cloud com-

puting environments. Similarly to communication, the confidentiality principle applied in

storing data in standard cloud computing environments also uses symmetric cryptogra-

phy. Data is encrypted and decrypted during the persistence flow, which ensures that

no plain text is kept at rest in third party devices. This characteristic is important due to

security reasons since the cloud computing nature considers sharing computational re-

sources in order to reduce client costs. For this axis, the modeling presented in Chapter 5

also considers the relation of data volume and the CPU overhead added by cryptography

tools. In the evaluation, an environment using a Cryptography File Systems could demon-

strate the overhead added by security, and the modeling could estimate this overhead

with an accuracy close to 98%, using the AES algorithm for ciphering persisted data. This

research complements the answers for the research questions regarding availability and

confidentiality costs.

The confidentiality principle, already established for communication and storage,

is also applied for the processing phase of data in cloud computing environments. As for

the shared environment in the cloud, the virtualization technology leverages its success by

also sharing the CPU time, allowing it to place users’ VMs into the same bare-metal servers

through the virtualization consolidation techniques. Despite their advantages, they also

opened issues related to security such as the ones exploited by the cross-VM attack, lever-

aging information leakage in co-resident VMs. Chapter 6 presents solutions based on

cryptography, not yet mature for production, to support the processing of encrypted data

without disclosing it such as the Full Homomorphic Encryption [Gen09], which is a possi-

bility for making additive and multiplicative operations; however, it was not possible to

identify an algorithm with these characteristics. Nevertheless, the techniques for Search-

ing over Encrypted Database are further developed, promoting full confidentiality when

handling data, but impacting the overall system in terms of both CPU utilization and data

volume. Based on the literature, this chapter presents a high-level modeling which con-

siders the diverse complexity of database-encrypted operations. In the model demonstra-

tion, a database benchmark is analized in order to identify all querying operations which

demand to be secure. Then the overhead of each operation is calculated, based on the

evaluation presented by the authors of this solutions. This demonstration was conducted

to show the application of the confidential processing modeling and to complement the

answers for the research questions, based on the Full-Stack Confidentiality Cloud environ-

ment.

The three modelings, that may be combined, aim to support the cloud man-

ager’s decisions when adding the confidentiality principle in the software stack. Chap-

ter 7 presents a scenario where a cloud provider delivers a Database-as-a-Service which

95

is classified as a PaaS service. When the confidentiality principle is applied the communi-

cation and storage axes, measurements show a reduction in the service quality, specifi-

cally affecting the response time of users’ requests. Based on the observation of the data

volumes in communication and in the persistence flow, the modeling developed in this

research was applied to estimate the overall impact in terms of performance and, in con-

sequence, the quality of the services. CPU overhead was predicted with an accuracy close

to 95%.

The presented experiments demonstrate that the relation among the variables

identified in this work is a mathematical representation for understanding the adoption of

cryptography in computational environments, in this case, cloud computing environments.

8.2 Hypotheses Validation

The development of this research thesis validated the hypotheses that it is viable

to implemen the confidentiality principle in the entire data’s life-cycle and also model the

confidentiality impact in cloud computing environments. The validations were conducted

considering the state of the art in the researched area, as well as performing experiments

with cryptography algorithms in cloud computing environments, for three axes: commu-

nication, storage and processing. Four research questions were answered to support the

hypotheses:

1. What are the confidentiality risks and solutions in cloud computing environments,

and how is a confidential cloud created? There are several risks and threats re-

lated to confidentiality in cloud environments, especially in public providers where

resources are shared in multi-tenancies with different users. The taxonomy pre-

sented in Chapter 2 points out the confidentiality principle as an important player

in coping with the challenges of cloud computing adoption by users with strict pri-

vacy levels. By adding solutions such as cryptography in the cloud software stack,

users can relish the benefits of cloud computing with higher guarantees of avoiding

information leakage during the communication, storage, and even the processing

phase. The confidentiality’s components placement is presented in Chapter 3 as a

Full-Stack Confidentiality Architecture, where cloud services are deployed. These

services can support the confidentiality principle through handling users’ data using

cryptographic tools and protocols during the three main phases of data’s life cycle:

communication, persistence, and processing.

2. What is the overhead for adding confidentiality mechanisms in the cloud computing

stack? Based on the Full-Stack architecture, it was possible to identify the compo-

nents impacting cloud’s overall overhead for supporting confidentiality. The costs

96

of applying confidentiality in communication, storage, and processing are discussed

and modeled in Chapters 4, 5, and 6, respectively. Regarding communication and

storage, the overhead of using cryptography has a linear relation within the data

volume, both communicated and persisted. From a different perspective, the new

solutions for processing over encrypted data produced a modeling where the com-

plexity of each operation needs to be evaluated against a particular dataset. Most

of the solutions for handling encrypted data add a high overhead to the computa-

tional systems, as shown in Chapter 6, but some solutions for Encrypted Databases

have low-cost operations, such as hash comparisons, and could be feasible for some

applications.

3. How can the overhead of combined security mechanisms for communicating, stor-

ing, and processing data in a cloud environment be estimated? From the evaluation

motivated by the previous research question, Chapters 4, 5, and 6 presented mod-

elings which consider the variables of data volume, cryptography algorithms, key

length, and processing characteristics to predict the overhead added by the confi-

dentiality principle in cloud computing environments. The operations, when applied

individually to a training dataset, produce an overhead to be used in the formulation

fitting, which then finally can be used to estimate the overhead of supporting data

confidentiality during their life.

4. How can a security overhead modeling help users and providers to create a confiden-

tial cloud environment? Once it is possible to understand the data volume and the

cryptography type (algorithms and key sizes), users and providers can predict the

overhead of adding confidentiality by following the architecture proposed in Chap-

ter 3. The validation developed in Chapter 7 considered an e-commerce benchmark

producing a workload in an environment with confidentiality guarantees in the com-

munication and storage axes. After fitting the individual formulas, a prediction was

demonstrated, and it was possible to achieve an accuracy close to 95% in terms of

extra CPU load in the cloud nodes. From this evaluation, and based in the process-

ing axis modeling presented in Chapter 6, we also estimated the overhead of the

full-stack confidentiality architecture.

8.3 Future Work

Security is still an increasing demand for computational systems due to many

reasons, from ransonware attacks to new financial and business models using, for in-

stance, cryptocurrencies. From the results obtained in this research, it is possible to sug-

gest topics for future research considering the scope of confidentiality and cloud comput-

ing.

97

There are several security mechanisms that have been added to cloud comput-

ing services, including secure object storage, disc encryption, and authentication with

cryptography key management. These mechanisms can compose an extension to the

modeling presented in this work, considering not only the confidentiality principle but also

integrity, availability, authenticity and trustworthiness, etc. It will be necessary to un-

derstand the software implementation which supports those principles as well as to map

them within the cloud computing environment.

As a relevant topic, it would be productive for researchers and also the industry

creating cloud security components to contribute to current cloud projects such as Open-

Stack1 and Cloud Stack2. Once they become part of the solution, users would start to

consider confidentiality in their deployments. Regarding the addition of new cryptography

components, an important topic to be researched is the impact in terms of management

costs and time to deploy security components to support not only confidentiality but in-

tegrity and availability principles.

Nonetheless, the permanent evolution in building new solutions for cloud comput-

ing also demands a review of security principles. The rising of the container-based clouds

reopens some issues in sharing computational resources since the isolation feature of the

hardware virtualization is not part of the container’s software stack. With the aim of im-

proving systems performance, the containers, which replace the Virtual Machines, cut off

the virtualization layer by sharing a kernel among their users, instead of sharing hardware

(CPU, memory, disks, and network). Although they offer higher risks for the isolation of

user’s assets, they also offer higher performance, making the adoption of stronger cryp-

tography algorithms feasible. We understand that the more the performance is improved

by computational systems, the more feasible it will be to add security mechanisms.

1http://openstack.org
2http://cloudstack.apache.org

98

REFERENCES

[ABF+16] Alves, D. C.; Batista, B. G.; Filho, D. M. L.; Peixoto, M. L.; Reiff-Marganiec,

S.; Kuehne, B. T. “CM Cloud Simulator: A Cost Model Simulator Module

for Cloudsim”. In: Proceedings of the IEEE World Congress on Services

(SERVICES), 2016, pp. 99–102.

[ACKM04] Alonso, G.; Casati, F.; Kuno, H.; Machiraju, V. “Web services”. Springer, 2004,

354p.

[AEKR14] Arasu, A.; Eguro, K.; Kaushik, R.; Ramamurthy, R. “Querying encrypted

data”. In: Proceedings of the ACM SIGMOD International Conference on

Management of Data, 2014, pp. 1259–1261.

[AGP+] Abdalla, M.; Gierlichs, B.; Paterson, K. G.; Rijmen, V.; Sadeghi, A.-R.; Smart,

N. P.; Stam, M.; Ward, M.; Warinschi, B.; Watson, G. “Algorithms, key size and

protocols report”. Accessed: Dec, 2016, Source: http://www.ecrypt.eu.org/

csa/documents/D5.2-AlgKeySizeProt-1.0.pdf.

[Amaa] Amazon Web Services, Inc. “Amazon AWS”. Accessed Nov, 2013, Source:

http://aws.amazon.com/.

[Amab] Amazon Web Services, Inc. “Amazon Elastic Block Store (EBS) – Block

Storage for EC2”. Accessed Jan, 2017, Source: https://aws.amazon.com/

ebs/.

[Amac] Amazon Web Services, Inc. “Amazon Virtual Private Cloud (VPC)”. Accessed

Jan, 2017, Source: https://aws.amazon.com/vpc/.

[Amad] Amazon Web Services, Inc. “Protecting Data

Using Encryption”. Accessed Jan 2017, Source:

http://docs.aws.amazon.com/AmazonS3/latest/dev/UsingEncryption.html.

[AMN09] Al-Mandhari, W.; Nakajima, N. “Throughput enhancement with channel

interference cancellation in multi-hop/multi-radio wireless mesh network”.

In: Proceedings of the 1st International Conference on Wireless

Communication, Vehicular Technology, Information Theory and Aerospace

Electronic Systems Technology, 2009, pp. 248–251.

[BBE+13] Bari, M.; Boutaba, R.; Esteves, R.; Granville, L.; Podlesny, M.; Rabbani,

M.; Zhang, Q.; Zhani, M. “Data center network virtualization: A survey”,

Communications Surveys Tutorials, IEEE, vol. 15–2, 2013, pp. 909–928.

99

[BDF+03] Barham, P.; Dragovic, B.; Fraser, K.; Hand, S.; Harris, T.; Ho, A.; Neugebauer,

R.; Pratt, I.; Warfield, A. “Xen and the art of virtualization”, SIGOPS Oper.

Syst. Rev., vol. 37–5, Oct 2003, pp. 164–177.

[BHW06] Bowen, P.; Hash, J.; Wilson, M. “Sp 800-100. information security handbook:

A guide for managers”, Technical Report, National Institute of Standards &

Technology, Gaithersburg, MD, United States, 2006.

[BKL+09] Blaze, M.; Kannan, S.; Lee, I.; Sokolsky, O.; Smith, J.; Keromytis, A.; Lee, W.

“Dynamic trust management”, Computer, vol. 42–2, Feb 2009, pp. 44–52.

[Bla93] Blaze, M. “A cryptographic file system for unix”. In: Proceedings of the 1st

ACM Conference on Computer and Communications Security, 1993, pp. 9–

16.

[BPH14] Baumann, A.; Peinado, M.; Hunt, G. “Shielding applications from an

untrusted cloud with haven”. In: Proceedings of the 11th USENIX

Symposium on Operating Systems Design and Implementation (OSDI 14),

2014, pp. 267–283.

[Bur] Burgess, M. “Google’s next submarine cable will connect Singapore to

Australia”. Accessed Jan, 2017, Source: http://www.wired.co.uk/article/

google-facebook-plcn-internet-cable.

[BW07] Boneh, D.; Waters, B. “Conjunctive, subset, and range queries on encrypted

data”, Theory of Cryptography, vol. 4392, 2007, pp. 535–554.

[CF12] Chadwick, D. W.; Fatema, K. “A privacy preserving authorisation system for

the cloud”, Journal of Computer and System Sciences, vol. 78–5, 2012, pp.

1359 – 1373, jCSS Special Issue: Cloud Computing 2011.

[Cla05] Clark, T. “Storage virtualization: technologies for simplifying data storage

and management”. Addison-Wesley Professional, 2005, 234p.

[CLHK11] Chuang, I. H.; Li, S. H.; Huang, K. C.; Kuo, Y. H. “An effective privacy

protection scheme for cloud computing”. In: Proceedings of the 13th

International Conference on Advanced Communication Technology

(ICACT2011), 2011, pp. 260–265.

[Clo] Cloud Security Alliance. “Privacy Level Agreement [V2]:A Compliance

Tool for Providing Cloud Services in the European Union”. Accessed Nov,

2015, Source: https://downloads.cloudsecurityalliance.org/assets/research/

pla/downloads/2015_05_28_PrivacyLevelAgreementV2_FINAL_JRS5.pdf.

100

[Cor] Corbet, J. “The 2.5 Kernel gets crypto”. Accessed Nov, 2015, Source: http:

//lwn.net/Articles/14157/.

[DGBL+16] Dowlin, N.; Gilad-Bachrach, R.; Laine, K.; Lauter, K.; Naehrig, M.; Wernsing,

J. “Cryptonets: Applying neural networks to encrypted data with high

throughput and accuracy”, Technical Report, Microsoft Research, 2016,

12p.

[DW10] Diesburg, S. M.; Wang, A.-I. A. “A survey of confidential data storage and

deletion methods”, ACM Comput. Surv., vol. 43–1, Dec 2010, pp. 2:1–2:37.

[EKK13] Ebrahim, M.; Khan, S.; Khalid, U. “Symmetric algorithm survey: A

comparative analysis”, International Journal of Computer Applications,

vol. 61–20, 2013, pp. 12–19.

[EMEBHM16] El Makkaoui, K.; Ezzati, A.; Beni-Hssane, A.; Motamed, C. “Data

confidentiality in the world of cloud”, Journal of Theoretical and Applied

Information Technology, vol. 84, 2016, pp. 305–314.

[FGT14] Furfaro, A.; Garro, A.; Tundis, A. “Towards security as a service (secaas):

On the modeling of security services for cloud computing”. In: Proceedings

of the International Carnahan Conference on Security Technology (ICCST),

2014, pp. 1–6.

[FHMS12] Fahl, S.; Harbach, M.; Muders, T.; Smith, M. “Confidentiality as a service

– usable security for the cloud”. In: Proceedings of the IEEE 11th

International Conference on Trust, Security and Privacy in Computing and

Communications, 2012, pp. 153–162.

[FK09] Franciosi, F.; Knottenbelt, W. J. “Towards a QoS-aware Virtualised File

System”. In: Proceedings of the UK Performance Engineering Workshop,

2009, pp. 1–12.

[FN94] Fiat, A.; Naor, M. “Broadcast encryption”, Advances in Cryptology - CRYPTO’

93, vol. 773, 1994, pp. 480–491.

[FR14] Fielding, R.; Reschke, J. “Hypertext Transfer Protocol (HTTP/1.1): Message

Syntax and Routing”. Accessed Jun, 2014, Source: http://www.ietf.org/rfc/

rfc7230.txt, Jun 2014.

[Fru05] Fruhwirth, C. “New methods in hard disk encryption”, Technical Report,

Institute for Computer Languages, Theory and Logic Group, Vienna

University of Technology, 2005.

101

[FW12] Freitas, L.; Watson, P. “Formalising workflows partitioning over federated

clouds: Multi-level security and costs”. In: Proceedings of the IEEE Eighth

World Congress on Services, 2012, pp. 219–226.

[GA03] Govindavajhala, S.; Appel, A. W. “Using memory errors to attack a virtual

machine”. In: Proceedings of the Symposium on Security and Privacy, 2003,

pp. 154–165.

[Gen09] Gentry, C. “A fully homomorphic encryption scheme”, Ph.D. Thesis, Stanford

University, 2009, 209p.

[GFC14] Gong, S.; Fu, S.; Chen, Z. “Research on the key technologies of storage

virtualization”. In: Proceedings of the 2012 International Conference on

Cybernetics and Informatics, 2014, pp. 1273–1279.

[GGT12] Goiri, Í.; Guitart, J.; Torres, J. “Economic model of a cloud provider operating

in a federated cloud”, Information Systems Frontiers, vol. 14–4, 2012, pp.

827–843.

[GMR+12] Gonzalez, N.; Miers, C.; Redígolo, F.; Simplício, M.; Carvalho, T.; Näslund,

M.; Pourzandi, M. “A quantitative analysis of current security concerns and

solutions for cloud computing”, Journal of Cloud Computing: Advances,

Systems and Applications, vol. 1–1, 2012, pp. 11.

[Gooa] Google, Inc. “Encryption at rest in google cloud platform”. Accessed

Jan, 2017, Source: https://cloud.google.com/security/encryption-at-rest/

default-encryption/.

[Goob] Google, Inc. “Google cloud platform”. Accessed Jan, 2017, Source: https:

//cloud.google.com/.

[Gooc] Google Inc. “Virtual Network - Your Private Cloud Network”. Accessed Jan,

2017, Source: https://cloud.google.com/virtual-network/.

[Gou] Gough, V. “EncFS Encrypted Filesystem”. Accessed May, 2016, Source:

http://www.arg0.net/#!encfs/c1awt.

[GR95] Guttman, B.; Roback, E. A. “Sp 800-12. an introduction to computer security:

The nist handbook”, Technical Report, National Institute of Standards &

Technology, Gaithersburg, MD, United States, 1995.

[Gud80] Gudes, E. “The design of a cryptography based secure file system”, IEEE

Transactions on Software Engineering, vol. SE-6–5, Sept 1980, pp. 411–420.

102

[HA12] Hashemi, S. M.; Ardakani, M. R. M. “Taxonomy of the Security Aspects

of Cloud Computing Systems - A Survey”, International Journal of Applied

Information Systems, vol. 4–1, September 2012, pp. 21–28, published by

Foundation of Computer Science, New York, USA.

[Hai16] Haimbala, J. “Avoiding dark cloud: Secure storage and trusted computing”,

Ph.D. Thesis, University of Westminster, 2016, 73p.

[Hal07] Halcrow, M. “ecryptfs: A stacked cryptographic filesystem”, Linux Journal,

vol. 2007–156, Apr 2007, pp. 2–12.

[HCAL17] Han, Y.; Chan, J.; Alpcan, T.; Leckie, C. “Using virtual machine allocation

policies to defend against co-resident attacks in cloud computing”, IEEE

Transactions on Dependable and Secure Computing, vol. 14–1, Jan 2017,

pp. 95–108.

[HILM02] Hacigümüş, H.; Iyer, B.; Li, C.; Mehrotra, S. “Executing sql over encrypted

data in the database-service-provider model”. In: Proceedings of the ACM

SIGMOD International Conference on Management of Data, 2002, pp. 216–

227.

[HKH+10] Hiroaki, H.; Kamizuru, Y.; Honda, A.; Hashimoto, T.; Shimizu, K.; Yao,

H. “Dynamic ip-vpn architecture for cloud computing”. In: Proceedings

of the 8th Asia-Pacific Symposium on Information and Telecommunication

Technologies (APSITT), 2010, pp. 1–5.

[HZKL10] Huang, D.; Zhang, X.; Kang, M.; Luo, J. “Mobicloud: Building secure cloud

framework for mobile computing and communication”. In: Proceedings

of the Fifth IEEE International Symposium on Service Oriented System

Engineering, 2010, pp. 27–34.

[IHG10] Ibrahim, A. S.; Hamlyn-Harris, J. H.; Grundy, J. C. “Emerging security

challenges of cloud virtual infrastructure”. In: Proceedings of the APSEC

Workshop on Cloud Computing, 2010, pp. 1–6.

[IIES14] Irazoqui, G.; Inci, M. S.; Eisenbarth, T.; Sunar, B. “Fine grain cross-vm attacks

on xen and vmware”. In: Proceedings of the IEEE Fourth International

Conference on Big Data and Cloud Computing, 2014, pp. 737–744.

[IKC09] Itani, W.; Kayssi, A.; Chehab, A. “Privacy as a service: Privacy-aware data

storage and processing in cloud computing architectures”. In: Proceedings

of the Eighth IEEE International Conference on Dependable, Autonomic and

Secure Computing, 2009, pp. 711–716.

103

[Int06] Intel Corporation. “Intel®Advanced Encryption Standard (AES) New

Instructions Set”. , Intel White Paper, 2006, https://software.intel.com/sites/

default/files/article/165683/aes-wp-2012-09-22-v01.pdf.

[Int14] Intel Corporation. “Software guard extensions programming reference”.

, Intel White Paper, 2014, https://software.intel.com/sites/default/files/

managed/48/88/329298-002.pdf.

[JR16] Jouini, M.; Rabai, L. B. A. “A multi-dimensional mean failure cost model

to enhance security of cloud computing systems”, International Journal

of Embedded and Real-Time Communication Systems, vol. 7–2, 2016, pp.

1–14.

[JZ11] Jamil, D.; Zaki, H. “Cloud computing security”, International Journal of

Engineering Science and Technology, vol. 3–4, 2011, pp. 3478–3483.

[KA98] Kent, D. S. T.; Atkinson, R. “IP Encapsulating Security Payload (ESP)”.

Accessed Nov, 2015, Source: https://rfc-editor.org/rfc/rfc2406.txt,

Nov 1998.

[KD12] Kim, Y.; Doh, K.-G. “A trust management model for qos-based service

selection”, Information Security Applications, vol. 7690, 2012, pp. 345–357.

[KGP+17] Kelbert, F.; Gregor, F.; Pires, R.; Köpsell, S.; Pasin, M.; Havet, A.; Schiavoni, V.;

Felber, P.; Fetzer, C.; Pietzuch, P. “Securecloud: Secure big data processing

in untrusted clouds”. In: Proceedings of the Design, Automation Test in

Europe Conference Exhibition (DATE), 2017, pp. 282–285.

[KK04] Khanvilkar, S.; Khokhar, A. “Virtual private networks: an overview with

performance evaluation”, Communications Magazine, IEEE, vol. 42–10,

2004, pp. 146–154.

[KKA14] Khalil, I. M.; Khreishah, A.; Azeem, M. “Cloud computing security: A survey”,

Computers, vol. 3–1, 2014, pp. 1–35.

[KKKM13] Khan, A. N.; Kiah, M. M.; Khan, S. U.; Madani, S. A. “Towards secure mobile

cloud computing: A survey”, Future Generation Computer Systems, vol. 29–

5, 2013, pp. 1278 – 1299, special section: Hybrid Cloud Computing.

[KKTM11] Khadilkar, V.; Kantarcioglu, M.; Thuraisingham, B. M.; Mehrotra, S. “Secure

data processing in a hybrid cloud”, CoRR, vol. abs/1105.1982, 2011, pp.

1–16.

[KL10] Kamara, S.; Lauter, K. “Cryptographic cloud storage”, Financial

Cryptography and Data Security, vol. 6054, 2010, pp. 136–149.

104

[KLM16] Kashyap, R.; Louhan, P.; Mishra, M. “Economy driven real-time scheduling

for cloud”. In: Proceedings of the 10th International Conference on

Intelligent Systems and Control (ISCO), 2016, pp. 1–6.

[KRRR98] Knudsen, L.; Rijmen, V.; Rivest, R.; Robshaw, M. “On the design and security

of rc2”. In: Fast Software Encryption, Vaudenay, S. (Editor), Springer Berlin

Heidelberg, 1998, Lecture Notes in Computer Science, vol. 1372, pp. 206–

221.

[LD93] Leutenegger, S. T.; Dias, D. “A modeling study of the tpc-c benchmark”. In:

Proceedings of the ACM SIGMOD International Conference on Management

of Data, 1993, pp. 22–31.

[LLLZ16] Li, K.; Liu, C.; Li, K.; Zomaya, A. Y. “A framework of price bidding

configurations for resource usage in cloud computing”, IEEE Transactions

on Parallel and Distributed Systems, vol. 27–8, Aug 2016, pp. 2168–2181.

[LMN07] Lee, H. K.; Malkin, T.; Nahum, E. “Cryptographic strength of ssl/tls servers:

Current and recent practices”. In: Proceedings of the 7th ACM SIGCOMM

Conference on Internet Measurement, 2007, pp. 83–92.

[LS11] Liao, W.-H.; Su, S.-C. “A dynamic vpn architecture for private cloud

computing”. In: Proceedings of the Fourth IEEE International Conference on

Utility and Cloud Computing (UCC), 2011, pp. 409–414.

[LWW+10] Li, J.; Wang, Q.; Wang, C.; Cao, N.; Ren, K.; Lou, W. “Fuzzy keyword search

over encrypted data in cloud computing”. In: Proceedings of the INFOCOM,

2010, pp. 1–5.

[McG06] McGraw, G. “Software Security: Building Security In”. Addison-Wesley

Professional, 2006.

[McK09] McKinsey & Company. “Clearing the air on cloud computing”, Technical

Report, "McKinsey & Company", 2009.

[MEH15] Makkaoui, K. E.; Ezzati, A.; Hssane, A. B. “Challenges of using homomorphic

encryption to secure cloud computing”. In: Proceedings of the International

Conference on Cloud Technologies and Applications (CloudTech’15), 2015,

pp. 1–7.

[Mer03] Mercuri, R. T. “Analyzing security costs”, Communications of the ACM,

vol. 46–6, 2003, pp. 15–18.

[MG11] Mell, P.; Grance, T. “The NIST definition of cloud computing”, NIST special

publication, vol. 800–145, 2011, pp. 1–7.

105

[Mic] Microsoft Inc. “Azure Storage Service Encryption for

Data at Rest”. Accessed Jan, 2017, Source: https:

//docs.microsoft.com/en-us/azure/storage/storage-service-encryption.

[Mil86] Miller, V. S. “Use of Elliptic Curves in Cryptography”. Berlin, Heidelberg:

Springer Berlin Heidelberg, 1986, pp. 417–426.

[MJ15] Mahalle, S.; Jaiswal, R. “Article: Cloud computing security: A survey”,

International Journal of Computer Applications, vol. 115–6, April 2015, pp.

21–25.

[MKL09] Mather, T.; Kumaraswamy, S.; Latif, S. “Cloud Security and Privacy: An

Enterprise Perspective on Risks and Compliance”. O’Reilly Media, Inc.,

2009.

[MNGV16] Mashayekhy, L.; Nejad, M. M.; Grosu, D.; Vasilakos, A. V. “An online

mechanism for resource allocation and pricing in clouds”, IEEE Transactions

on Computers, vol. 65–4, April 2016, pp. 1172–1184.

[MW11] Milojicic, D.; Wolski, R. “Eucalyptus: Delivering a Private Cloud”, Computer,

vol. 44–4, April 2011, pp. 102–104.

[NC] Norcott, W. D.; Capps, D. “Iozone filesystem benchmark”. Accessed Nov,

2015, Source: http://www.iozone.org.

[NFL+14] Naylor, D.; Finamore, A.; Leontiadis, I.; Grunenberger, Y.; Mellia, M.; Munafò,

M.; Papagiannaki, K.; Steenkiste, P. “The cost of the "s" in https”. In:

Proceedings of the 10th ACM International on Conference on Emerging

Networking Experiments and Technologies, 2014, pp. 133–140.

[NSMZ16] Noor, T. H.; Sheng, Q. Z.; Maamar, Z.; Zeadally, S. “Managing trust in

the cloud: State of the art and research challenges”, Computer, vol. 49–

2, Feb 2016, pp. 34–45.

[OKS08] Opitz, A.; König, H.; Szamlewska, S. “What does grid computing cost?”,

Journal of Grid Computing, vol. 6–4, 2008, pp. 385–397.

[Ope] OpenStack Foundation. “OpenStack - Swift”. Accessed Jan, 2017, Source:

http://swift.openstack.org/.

[PGM17] Paladi, N.; Gehrmann, C.; Michalas, A. “Providing user security guarantees in

public infrastructure clouds”, IEEE Transactions on Cloud Computing, vol. 5–

3, July 2017, pp. 405–419.

106

[PKZ11] Puttaswamy, K. P. N.; Kruegel, C.; Zhao, B. Y. “Silverline: Toward data

confidentiality in storage-intensive cloud applications”. In: Proceedings of

the 2Nd ACM Symposium on Cloud Computing, 2011, pp. 10:1–10:13.

[PLM+11] Popa, R. A.; Lorch, J. R.; Molnar, D.; Wang, H. J.; Zhuang, L. “Enabling

security in cloud storage slas with cloudproof”. In: Proceedings of the

USENIX Conference on USENIX Annual Technical Conference, 2011, pp. 31–

31.

[PRZB11] Popa, R. A.; Redfield, C. M. S.; Zeldovich, N.; Balakrishnan, H. “Cryptdb:

Protecting confidentiality with encrypted query processing”. In: Proceedings

of the Twenty-Third ACM Symposium on Operating Systems Principles, 2011,

pp. 85–100.

[PZB11] Popa, R. A.; Zeldovich, N.; Balakrishnan, H. “CryptDB: A practical encrypted

relational DBMS”, Technical Report, DSpace - MIT, 2011.

[Rac] RackSpace US Inc. “RackSpace - The open cloud company”. Accessed Nov,

2013, Source: http://rackspace.com.

[RAD78] Rivest, R. L.; Adleman, L.; Dertouzos, M. L. “On data banks and privacy

homomorphisms”, Foundations of secure computation, vol. 4–11, 1978, pp.

169–180.

[Raj11] Rajkumar Buyya, James Broberg, A. M. G. “Cloud Computing Principles and

Paradigms (Wiley Series on Parallel and Distributed Computing)”. Wiley,

2011, 1 ed., 664p.

[RC11] Rocha, F.; Correia, M. “Lucy in the sky without diamonds: Stealing

confidential data in the cloud”. In: Proceedings of the IEEE/IFIP 41st

International Conference on Dependable Systems and Networks Workshops

(DSN-W), 2011, pp. 129–134.

[RC15] Rahman, N. H. A.; Choo, K.-K. R. “A survey of information security incident

handling in the cloud”, Computers & Security, vol. 49, 2015, pp. 45 – 69.

[RCM09] Roschke, S.; Cheng, F.; Meinel, C. “Intrusion detection in the cloud”. In:

Proceedings of the Eighth IEEE International Conference on Dependable,

Autonomic and Secure Computing, 2009, pp. 729–734.

[RGVM13] Rocha, F.; Gross, T.; Van Moorsel, A. “Defense-in-depth against malicious

insiders in the cloud”. In: Proceedings of the IEEE International Conference

on Cloud Engineering (IC2E), 2013, pp. 88–97.

107

[RJX08] Riley, R.; Jiang, X.; Xu, D. “Guest-transparent prevention of kernel rootkits

with vmm-based memory shadowing”. In: Proceedings of the Recent

Advances in Intrusion Detection, 2008, pp. 1–20.

[RK14] Roman, M.; Khan, S. “Cloud computing security: A survey”, Global Journal of

Technology, vol. 8, 2014, pp. 15–28.

[RSA78] Rivest, R. L.; Shamir, A.; Adleman, L. “A method for obtaining digital

signatures and public-key cryptosystems”, Commun. ACM, vol. 21–2,

Feb 1978, pp. 120–126.

[RTSS09] Ristenpart, T.; Tromer, E.; Shacham, H.; Savage, S. “Hey, you, get off of

my cloud: Exploring information leakage in third-party compute clouds”. In:

Proceedings of the 16th ACM Conference on Computer and Communications

Security, 2009, pp. 199–212.

[SC17] Singh, A.; Chatterjee, K. “Cloud security issues and challenges: A survey”,

Journal of Network and Computer Applications, vol. 79, 2017, pp. 88 – 115.

[SCF+15] Schuster, F.; Costa, M.; Fournet, C.; Gkantsidis, C.; Peinado, M.; Mainar-Ruiz,

G.; Russinovich, M. “Vc3: Trustworthy data analytics in the cloud using sgx”.

In: Proceedings of the IEEE Symposium on Security and Privacy, 2015, pp.

38–54.

[SDR17] Storch, M.; De Rose, C. A. F. “Cloud storage cost modeling for cryptographic

file systems”. In: Proceedings of the 25th Euromicro International

Conference on Parallel, Distributed and Network-based Processing (PDP),

2017, pp. 9–14.

[SDRZM15] Storch, M.; De Rose, C. A.; Zorzo, A. F.; Michelin, R. “Multi-channel

Secure Interconnection Desgin for Hybrid Clouds”. In: Proceedings of The

Fourteenth International Conference on Networks, ICN15, 2015, pp. 67–73.

[SGR09] Santos, N.; Gummadi, K. P.; Rodrigues, R. “Towards trusted cloud

computing”. In: Proceedings of the 2009 Conference on Hot Topics in Cloud

Computing, 2009, pp. 1–5.

[SJL+16] Seol, J.; Jin, S.; Lee, D.; Huh, J.; Maeng, S. “A trusted iaas environment

with hardware security module”, IEEE Transactions on Services Computing,

vol. 9–3, May 2016, pp. 343–356.

[Sta01] Standard, N.-F. “Announcing the Advanced Encryption Standard (AES)”,

Federal Information Processing Standards Publication, vol. 197, 2001, pp.

1–51.

108

[Sta10] Stallings, W. “Cryptography and Network Security: Principles and Practice”.

Upper Saddle River, NJ, USA: Prentice Hall Press, 2010, 5th ed., 752p.

[Sta11] Stamp, M. “Information Security: Principles and Practice”. Wiley Publishing,

2011, 2nd ed., 606p.

[STT+12] Sharma, B.; Thulasiram, R. K.; Thulasiraman, P.; Garg, S. K.; Buyya, R.

“Pricing cloud compute commodities: a novel financial economic model”.

In: Proceedings of the 12th IEEE/ACM International Symposium on Cluster,

Cloud and Grid Computing (CCGRID 2012), 2012, pp. 451–457.

[STTB15] Sharma, B.; Thulasiram, R. K.; Thulasiraman, P.; Buyya, R. “Clabacus: A risk-

adjusted cloud resources pricing model using financial option theory”, IEEE

Transactions on Cloud Computing, vol. 3–3, July 2015, pp. 332–344.

[Tox14] Toxen, B. “The nsa and snowden: Securing the all-seeing eye”, Queue,

vol. 12–3, Mar 2014, pp. 40–51.

[Tru] Trusted Computing Group. “Trusted computing”. Accessed Jan, 2017,

Source: https://trustedcomputinggroup.org/trusted-computing/.

[TVRB15] Toosi, A. N.; Vanmechelen, K.; Ramamohanarao, K.; Buyya, R. “Revenue

maximization with optimal capacity control in infrastructure as a service

cloud markets”, IEEE Transactions on Cloud Computing, vol. 3–3, July 2015,

pp. 261–274.

[vDGHV10] van Dijk, M.; Gentry, C.; Halevi, S.; Vaikuntanathan, V. “Fully homomorphic

encryption over the integers”, Advances in Cryptology - EUROCRYPT 2010,

2010, pp. 24–43.

[VMC08] Viega, J.; Messier, M.; Chandra, P. “Network Security with OpenSSL:

Cryptography for Secure Communications”. O’Reilly Media, 2008, 384p.

[VT14] Varadharajan, V.; Tupakula, U. “Security as a service model for cloud

environment”, IEEE Transactions on Network and Service Management,

vol. 11–1, March 2014, pp. 60–75.

[Wat12] Watson, P. “A multi-level security model for partitioning workflows over

federated clouds”, Journal of Cloud Computing: Advances, Systems and

Applications, vol. 1–1, Jul 2012, pp. 15.

[WDZ03] Wright, C.; Dave, J.; Zadok, E. “Cryptographic file systems performance:

What you don’ t know can hurt you”. In: Proceedings of the Second IEEE

International Security in Storage Workshop (SISW ’03), 2003, pp. 47–47.

109

[WL08] Wang, Z.; Lee, R. B. “A novel cache architecture with enhanced

performance and security”. In: Proceedings of the 41st IEEE/ACM

International Symposium on Microarchitecture, 2008, pp. 83–93.

[WRAK13] Waqar, A.; Raza, A.; Abbas, H.; Khan, M. K. “A framework for preservation

of cloud users’ data privacy using dynamic reconstruction of metadata”,

Journal of Network and Computer Applications, vol. 36–1, 2013, pp. 235 –

248.

[WTM+14] Win, T. Y.; Tianfield, H.; Mair, Q.; Said, T. A.; Rana, O. F. “Virtual machine

introspection”. In: Proceedings of the 7th International Conference on

Security of Information and Networks, 2014, pp. 405–410.

[WWRL10] Wang, C.; Wang, Q.; Ren, K.; Lou, W. “Privacy-preserving public auditing

for data storage security in cloud computing”. In: Proceedings of the IEEE

INFOCOM, 2010, pp. 1–9.

[WZC+14] Wei, L.; Zhu, H.; Cao, Z.; Dong, X.; Jia, W.; Chen, Y.; Vasilakos, A. V. “Security

and privacy for storage and computation in cloud computing”, Inf. Sci., vol.

258, Feb 2014, pp. 371–386.

[WZL15] Weng, C.; Zhan, J.; Luo, Y. “Tsac: Enforcing isolation of virtual machines in

clouds”, IEEE Transactions on Computers, vol. 64–5, May 2015, pp. 1470–

1482.

[Yon] Yonan, J. “OpenVPN–an open source SSL VPN solution”. Accessed Nov, 2013,

Source: https://openvpn.net/.

[YWRL10] Yu, S.; Wang, C.; Ren, K.; Lou, W. “Achieving secure, scalable, and fine-

grained data access control in cloud computing”. In: Proceedings of the

INFOCOM, 2010, pp. 1–9.

[YYA09] Yau, S. S.; Yin, Y.; An, H. G. “An adaptive tradeoff model for service

performance and security in service-based systems”. In: Proceeding of the

IEEE International Conference on Web Services, 2009, pp. 287–294.

[ZCB10] Zhang, Q.; Cheng, L.; Boutaba, R. “Cloud computing: state-of-the-art and

research challenges”, Journal of Internet Services and Applications, vol. 1–

1, 2010, pp. 7–18.

