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Uma abordagem Evolucionária para o Problema de Mapeamento de
Tarefas em Redes em Chip

RESUMO

Este trabalho têm como objetivo a implementação de um algoritimo evolucioná-
rio, baseado no algoritmo de Evolução Diferencial (DE), para a resolução do problema de
Mapeamento de Tarefas em Redes em Chip. Foi implementada uma variação do algo-
ritmo clássico de Evolução Diferencial, alterando-se o procedimento de operação genética
da etapa de Recombinação, que passou a premiar individuos com base na existencia de
uma condição indicativa de maior proximidade entre tarefas muito comunicantes. Nossa
implementação foi avaliada a partir do uso do pacote de benchmark NASA Numerical Ae-
rodynamic Simulation (NASA NAS) e os resultados mostraram que nossa implementação
do DE se mostrou viável e competitiva. Na comparação com o mapeamento realizado com
o framework CAFES, nossa implementação se mostrou superior em duas das 5 aplicações
testadas, obtendo desempenho equivalente ao CAFES em uma aplicação e obtendo solu-
ções menos eficientes em duas aplicações.

Palavras-Chave: NoC, Evolução Diferencial, Tarefas, Mapeamento, Algoritmos Evolucio-
nários.





An Evolutionary Approach For the Task Mapping Problem

ABSTRACT

This works has the goal to implement an Evolutionary Algorithm, based on the
classical Differential Evolution, to solve the Task Mapping onto NoC problem. Our variant
implemented a changing on the genetic operator of recombination, that started to reward
individuals containing a pre-select condition that indicates when most communicating tasks
are allocated near to each other onto the NoC. Our implementation was subject to the NASA
Numerical Aerodynamic Simulation (NASA NAS) benchmark and results have shown that
our variant is feasible and competitive. When compared to the CAFES Framework, our DE
variant presented superior results on two of five tested applications, reaching equivalent
quality on one of the applications and getting worst results in two of them.

Keywords: NoC, Differential Evolution, Task, Mapping, Evolutionary Algorithms.
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1. INTRODUCTION

Modern computer systems are frequently used to process a large amount of data
or to perform an enormous number of instructions. One of the most challenging problems
currently tackled by computer systems is the Task Mapping problem, which consist, basi-
cally, in finding the best configuration for allocate tasks onto a target architecture, seeking
to optimize this allocation accordingly to some objective criterion. For example, to reduce
power consumption, or to reduce application execution time, are very common when seeking
optimizations. However, considering that Task Mapping is an NP-Hard class problem, brute
force-based methods are not feasible when the number of tasks is big, or even the number
of Available Processing Elements (PEs) is high. Due to this, heuristic-based methods are
preferably to find acceptable solutions in reasonable time, although there is no guarantee
these solutions are the best existing possibilities for solving the problem. In this context, the
family of searching techniques is huge, including mature and widely spread algorithms, such
as the Simulated Annealing (SA) or the Differential Evolution (DE) algorithm.

One challenge is trying to keep a similar, or related a task, close to one another after
mapped to the target architecture. Depending on the complexity of the system, or when the
system runs more than one application at a time, the scenario may became too complex to
traditional non-heuristic techniques to work efficiently. One application can be decomposed
in different tasks, where each task is defined as an interdependent set of instructions and
data that performs data processing and communication.

Network-On-Chips (NoCs) are communication infrastructures similar to computer
networks. Although it may use the basic concepts of larger scaled computer networks,
NoCs have particularities due to the fact they are implemented within a chip. NoCs normally
are flexible to support concurrent communications, which make them suitable to implement
applications that require a large amount of communicating tasks and are computing intensive
[11].

Tests have shown that when compared to other heuristic methods, genetic algo-
rithms provide the fastest way to solve the Task Mapping Problem, specially if the chro-
mosome in the initial Population set represents a mapping solution from another mapping
algorithm [7].

Evolutionary Algorithms (EA) are heuristic-based methods that implement the fol-
lowing procedures: variation operators (such as Mutation and Recombination) to create and
keep diversity, and to expand the search through the space of solutions; and the selection
operator, that acts to push the quality for the solutions.

The Differential Evolution (DE) algorithm is one of the most powerful stochastic
real-parameter optimization algorithms in current use. DE operates through similar com-
putational steps as employed by a standard EA. However, unlike traditional EAs, the DE-
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variants perturb the current-generation population members with the scaled differences of
randomly selected and distinct population members [13]. Because of the way it represents
its individuals, DE is ideal for representing non-linear problems. For this reason we have
chosen DE for develop this work.

In this work we propose a novel implementation of the DE, trying to enhance the
capabilities of a common genetic operator to also account some characteristics that may
raise to better off-springs faster.

1.1 Motivation

Many related works are based on traditional implementations of Genetic or Evolu-
tionary algorithms. However, few works are grounded on modifications of the base strategies
of these techniques. Our proposed implementation seeks to take advantage of the features
of the classical DE algorithm, which allows to implement optimizations based on non-linear
problems, and at the same time use the simplicity and flexibility of its code to reach a more
efficient solver for the task mapping problem.

1.2 Objectives

This work aims to implement a efficient new approach of the DE algorith, in Single
Objective Mode, to solve the Task Mapping in NoCs.

1.3 Document Outline

This document is organized as follows. Chapter 1 briefly introduces this work and
how the document is organized. In Chapter 2, we cover all the theoretical concepts that
were explored in this work, as well as a description of the benchmark applications that were
used to evaluate the quality of our implementations. Chapter 3 describes the main related
works and at the end, makes a brief comparison among these works and our proposal.
At Chapter 4, Project Methodology, we describe our implementation, the metrics used and
the tools we have developed: concurrently, the modification we executed on the genetic
operator of the DE is described. Chapter 5 describes the test scenarios, and how the tests
were executed and the obtained results. Finally, Chapter 6 presents our conclusions and
final considerations.
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2. THEORETICAL BACKGROUND

This chapter surveys two topics: the family of evolutionary algorithms, with a spe-
cific focus on the Differential Evolution algorithm and the task mapping for the NoC problem.
As mentioned before, the DE algorithm is possibly one of the most robust stochastic real-
parameter optimization algorithms currently in use [13]. At the same time, the task-mapping
problem on NoC architectures is very challenging, especially when new tasks of different
applications have to be supported at run-time [49].

2.1 Task Mapping Problem

Given the set of origin objects X = {x1, x2, ... , xc} and the set of destination objects
Y = {y1, y2, ... , yp}, mapping is a complete injective function ϕ : X → Y that associates the
objects from the origin set to the destination set objects having |Y | ≥ |X |. This association
is called map [35].

For this work, the set of objects in the origin is formed by groups of tasks from
a given application, while the NoC tiles form the set of destination objects. Although the
mapping literature is vast, the mapping process may be classified according to the following
four criteria: (i) the target architecture; (ii) the number of tasks per Processing Element (PE);
(iii) the moment in which a task is executed; and (iv) system management approach [33].

According to the target architecture, task mapping can be performed in homoge-
neous (identical PEs) or heterogeneous (e.g. DSP, dedicated IPs, accelerators) systems.
Regarding the number of tasks mapped per PEs, mapping approaches can be classified as
single or multi-task. Single-task assumes only one task assignment per PE while multi-task
allows mapping more than one task per PE according to some criteria (e.g. communication,
execution time, task deadlines) [33].

The mapping process can be defined at design-time or run-time. When task map-
ping is defined at design-time (also referred as offline or static mapping approach), all appli-
cations that will be executed in the system must be known in advance [33].

This work focuses on mapping single-task and multi-task applications onto homo-
geneous and high-level architectures, specifically 2D NoC meshes. For multi-task mapping,
the task grouping criterion used was the communication among tasks.
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2.1.1 Partitioning versus Mapping

Figure 2.1 shows a sample application represented by three different levels (double
border rectangles). In the first level, the application App1 is compounded by a task group T =
{t1, t2, ... , tn}. A partitioning is performed over this application for grouping tasks according
to some objective criterion; thus generating a set of cores N = {n1, n2, ... , nc} [35]. For
this work, the objective of the partitioning is to reduce the volume of communication among
tasks.
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Figure 2.1: Partitioning and Mapping Process. By [35]

The second level shows App2, which is made of a set of cores. A set of tiles τ =
{t1, t2, ... , tp} behaves like a physical medium to position these cores to the communication
infrastructure which is the compound of a set of access points Pa = {pa1, pa2, ... , pap} [35].

Being that O = {o1, o2, ... , on} is the set of all objects from a system, and b ⊆ O
is a subset of O called block and P = {b1, b2, ... , bm} is a partition formed by all blocks of
O; a partitioning is the process that generates P, in a way that b1 ∪ b2 ∪ ... ∪ bm = O and
bk ∩ bi = �∀bk , bi having k 6= 1 [35].

While the partitioning has the intention to group tasks according to an objective
criterion and expose opportunities for parallel execution [8], mapping has the goal of allocate
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these groups to the PEs of the target architecture. Traditional non-evolutionary approaches
tend to use different criteria for each step. For example, it might be possible to first group
tasks with a high communication volume amongst them (partitioning), and only then map
these groups onto the target architecture using an energy consumption criterion [35]. A
fitness function may be used to evaluate the quality of resulting groups. It may or may
not take into account information about the target architecture. For example, the distance
between two tiles may profoundly impact the number of hops required for a message to
be sent within the NoC. Therefore the fitness function should consider the distance when
evaluating a candidate partitioning solution. The same may happen regarding mapping
solutions.

2.1.2 Task Mapping Algorithms

Task mapping algorithms may be roughly classified as [8]: graph theoretic algo-
rithms, mathematical programming, and heuristic algorithms. These algorithms will be briefly
reviewed.

Graph-Theoretic Algorithms

Graph-Theoretic Algorithms frequently require a graph representing the application
as an input. This graph may be generated by the partitioning step and must implement task
groups according to specific criteria, such as execution time, message exchange or any other
parameter [8]. Some algorithms from this family are the Network Flow Algorithm [24], which
uses the Max Flow/Min Cut technique to find assignments and minimizes execution and
communication costs [8]; the Shortest Tree Algorithm, which assigns modules (partitions) of
a program to an non-homogeneous target architecture [6]; the A* Algorithm, that implements
the minimax criterion, which is based on both minimization of inter-processor communication
and processor load balance [48].

Mathematical Programming

Mathematical Programming uses an alternative approach to the task mapping prob-
lem. It considers the constraints of the target architecture, such as the capacity of the pro-
cessing elements, memory capacity and also communication constraints (routing tables,
shorter routes, etc.) [17]. These constraints are represented by mathematical inequality
equations [9] [55].
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Heuristic-based Algorithms

The fact that the task mapping problem is an NP-complete class problem, makes
heuristic-based techniques very interesting to tackle. Any computing effort that skips brute
force approaches will benefit from shorter execution times; although there is no guarantee
that the best global solution will be found. Among the myriad of heuristic-based techniques,
there is the family of Evolutionary Algorithms.

2.2 Evolutionary Algorithms

The history of Evolutionary Algorithms began during the 1940’s, when scientists
were inspired by using natural processes for the first time to help create the branch of AI
(Artificial Intelligence) within the Computer Science discipline. Their research was initially
developed with a focus on the working of cognitive and learning processes. Since then, the
use of Evolutionary Algorithms have spread throughout the scientific community, raising a
myriad of new applications, that have helped to solve many significant problems using very
simple computational approaches [32].

Evolutionary Algorithms use computing models based on natural processes as a
tool for solving problems. Although there are many different proposed computing models
inside this area, they all have in common the concept of mimicking the natural selection
process by implementing routines of selection, mutation and reproduction of individuals [3].

Algorithms from this family work by keeping a set of structures called population,
which is formed by units named individuals, whose behaviour mimics the natural selection
process. Each individual represents a possible solution for the problem. This representation
is made up of a set of chromosomes, which, in turn, are responsible for the discretization of
the problem according to the computing model being used. Each chromosome is associated
with only one characteristic of the solution. Classic implementations usually use values ‘1’
or ‘0’ to indicate the presence (or absence) of the feature associated to the chromosome.
However, it is possible to find implementations where the chromosomes may be valued using
different ranges, such as real numbers (for example, from 0.00 to 1.00 and any real value
in between) or even integer number (for example, from -5 to 10 and any integer value in
between).

Figure 2.2 shows a graph representing a sample application. Each node represents
one task, while each edge indicates messages sent from one task to another. The integer
value associated with each edge informs the message size. For example, the task ‘A’ sends
a message with size 5 to the task ‘B’; the task ‘B’ send a message with size 3 to the task ‘D’
and so on.
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Figure 2.2: Graph representing a sample application.

The following example proposes to map the application from Figure 2.2 to the target
architecture shown in Figure 2.3. This architecture is a 2D mesh (grid) formed by nine
processing units arranged in three lines and three columns.

Each processing unit is identified by its location in the mesh by the pair P = x , y ,
where P is the position, x indicates the line and y indicates the respective column. Alter-
natively, a single integer number may identify a particular processing unit. This number is
given by the formulae P = (x ∗w) + y , where P indicates the position, x indicates the line, w
is the width (number of columns in the mesh), and y is the column identifier. This alternative
indexing will be essential for later implementing the evolutionary algorithm. In this model,
each processing unit may contain none or only one task associated at a time. For this rea-
son, and as shown in this example, a maximum of nine tasks would be mapped. But since
the sample application from Figure 2.2 includes only six tasks, a total of three processing
units will remain idle after assigning those tasks to this 3x3 mesh.
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Figure 2.3: 3x3 2D MESH NoC

The population is compounded by different individuals which are randomly initial-
ized. Each one of these individuals represent a proposed mapping of the sample application
to the target architecture. For this reason, it is necessary to use a data structure which is
able to indicate which task is associated with each processing unit. One possible solution
is to use an array, where each array position represents one unique processing unit. When
a task is mapped to a processing unit, it is possible to describe the association by filling the



26

array position corresponding to the chosen processing unit with the task identifier (in this
case, this identifier is a letter, but typically numeric ID’s are used for tasks), as in Figure 2.4.
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Figure 2.4: Representing a mapping solution as an individual.

In this example, the processing unit 0 (located at the line zero and column zero in
the mesh) received the task ‘E’. The processing unit 1 received the task ‘A’ and so on as
shown in Figure 2.4.

A population is a group of individuals with different configurations. These individu-
als are initially set with random solutions, by simply generating random values for each one
of its chromosomes.

Figure 2.5 shows an example of how a population can be structured. Each line
represents a complete individual (identified by the list of vertically arranged numbers from 0
to 3), while each column (determined by the horizontal numbers from 0 to 8) describes one
chromosome.

E A C F B  D  

B   A C  D F E
 C  A B E D  F
F D A    B E C
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0

1

2

3

Figure 2.5: Example of Population.

These individuals are subject to operations performed by genetic operators (such
as recombination and mutation). Each individual in the population is evaluated by a fitness
function (also called objective function by some authors), which has the purpose to measure
the quality of the individual according to one particular criterion.

The evaluating method used by the fitness function is very dependent on the un-
derlying problem and its computing model of choice. Although most evolutionary algorithm
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solutions will share a common basic code structure, each problem will demand a very spe-
cific fitness function to evaluate the quality of the individuals in the population. For this work,
we have developed two different fitness functions, as shown in the section Section 4.2.

The main idea behind the use of a fitness function is to provide a way to classify
the individuals in the population and then identify which of them are the best solutions for
solving the underlying problem. A fitness function should always result in a scalar value, as
to make it possible to sort the individuals by using this value as a reference.
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Figure 2.6: Population evaluation using a fitness function.

Figure 2.6 shows the basis of the evaluation process. The fitness function inputs
include the target architecture, the application graph (in the example, representing the com-
munication between tasks) and also the individual submitted to evaluation. In this example,
for each individual, the fitness function will return one unique value representing the total
communication volume. It will take into account the size of each message (from the applica-
tion graph) and the number of hops taken from its origin in order to have reached its destina-
tion, and will have considered the task distribution described by the individual configuration.
Thus, from the current generation, the best individual (considering the communication vol-
ume) will be the individual 0, followed by the individual 2, then followed by the individual 1
and finally by the individual 3.

2.2.1 Differential Evolution

The tree of Evolutionary Algorithms is formed by groups of different searching tech-
niques, which are based on the exploration of the space of solutions and are grouped as a
’guided or random’ branch. The main feature of the algorithms in this group is to perform a
search that begins in a random way, but after some iterations, will start to follow towards a
particular direction. According to [52], the strategy is to generate variations of the parameter
vectors. Once a variation is generated, a decision must be made whether or not to accept
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the newly derived parameters. Based on a greedy criterion, a new parameter vector is al-
lowed if, and only if, it leads to a better value after being evaluated by the fitness function.
This value may be required to increase or decrease, depending on the problem being opti-
mized, and although it might allow the algorithm to converge reasonably fast, there is a risk
of becoming trapped in a minimum local area, which will prevent the algorithm to reach the
best existing solution.

When the fitness function represents a nonlinear and non-differentiable problem,
direct search techniques are the methods of choice [52]. Some of these methods are Ge-
netic Algorithms (GAs) [21], Evolutionary Strategies (ESAs) [44], Simulated Annealing (SA)
[26] and the Differential Evolution (DE) [53]. Figure 2.7 displays an ontology with the relation
among these techniques.

Searching Techniques

Evolutionary Algorithms

Simulated Annealing

Calculation Based Enumerative

Evolutionary Strategies Genetic ProgrammingDifferential Evolution

Single Objective Multi Objective

Genetic Algorithms

Figure 2.7: Family of Evolutionary Algorithms. Based on [32]

According to [52], users generally demand that a practical minimization technique
should fulfill the following requirements:

(r.i) Ability to handle non-differentiable, nonlinear and multimodal fitness functions.

(r.ii) Parallelizability to cope with computation intensive fitness functions.

(r.iii) Ease of use. (i.e., limited control variables to steer the optimization. These variables
should also be robust and easy to choose).

(r.iv) Good convergence properties. (i.e., consistent convergence to the global minimum in
consecutive independent trials).

The DE was designed to be a stochastic direct search method. Direct search meth-
ods have the advantage of being easily applied to experimental optimizations where the cost
value (calculated by the fitness function) is derived from a physical experimentation rather
than from a computer simulation [53]. This makes the DE a good candidate to solve prob-
lems based on constraints like the requirement (r.i).

Depending on the problem being optimized, sometimes the fitness function might
take from minutes to hours to complete the evaluation process of an individual. To obtain
reasonable execution times, it may be interesting to try to parallelize the fitness function
code.

The ability to divide the computing effort into different processors or threads is
necessary when the fitness function might take many minutes to complete the evaluation
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process of each individual on the population. Since the DE uses vector population, it is
possible to evaluate each individual separately. This allows the DE to perfectly attend to the
requirement (r.ii) [53].

Classical DE may be implemented with less than 10 lines of code. At the same time,
there will be few controlling parameters, which will make the DE easy to use and simple to
code [53].

The converge properties are mandatory for a good optimization algorithm, and the
DE seems to reach good success rates when comparing to other similar techniques; as will
be demonstrated in Section 5.1.3.

The DE is a direct search method which utilizes NP D-dimensional parameter vec-
tors [52]:

xi ,G, i = 1, 2, ... , NP (2.1)

where G indicates the number of desired generations. NP does not change during
execution time.

Figure 2.8 shows the main stages of the basic DE algorithm to be: vector initializa-
tion, mutation, recombination, and selection.

vector 
initialization

mutation recombination selection

Figure 2.8: DE main stages.

During the vector initialization phase, the initial vector population is initialized ran-
domly and must cover the entire parameter space [52]. It assumes a uniform probability
distribution for all random decisions, and in the case that a preliminary solution is available,
the initial population might be generated by adding normally distributed random deviations
to the nominal solution xnom,0 [52]. This operation is called mutation [52].

The mutation process consists of generating a new mutate vector for each target
vector xi ,G, i = 1, 2, ... , NP as shown in (2.2):

Vi ,G+1 = Xr i
1,G

+ F .(xr i
2,G
− xr i

3,G
) (2.2)

During this process, a new parameter vector is generated by the DE by adding
the weighted difference between two population vectors to a third vector α. This resulting
vector is then scaled using the mutation factor F , generating a new target vector δ, as
shown in Figure 2.9. This new vector will behave as the donor vector for the next phase.
The mutation factor F is one of the execution parameters, and although it does not change
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during executing time in the classical DE, there are alternative implementations where this
factor is dynamically adjusted for reaching better results.

X2

X1

α

δ

α δ
difference vector scaled difference vector

target vector

Figure 2.9: Mutation: an example of a two-dimensional fitness function showing its contour
lines and the process for generating the trial parameter vector. Based on [13].

To enhance the potential diversity of the population, the recombination operation
comes into play after generating the donor vector, which happens after mutation [13]. The
donor vector exchanges its chromosomes with the current population vector Xi ,G, forming
the trial vector Ui ,G = [u1,i ,G, u2,i ,G, u3,i ,G, ... , uD,i ,G] [13]. For the DE algorithm, there are two
different methods to perform the recombination process: the exponential (or two-point mod-
ule) and the binomial (or uniform) [42]. In the exponential method, a random integer number
n is chosen among the numbers [1, D], where D indicates the number of chromosomes on
the vector. This number will be used as a starting point in the target vector, from where the
chromosome started its exchange with the donor vector. A second integer value L (from
Lenght) is chosen from the same range [1, D]. This second number indicates the number of
chromosomes that will be in fact read from the donor vector. Next, the CR (Crossover Rate),
which is a control parameter for the DE just like the F , will be used to decide, whenever
the resulting vector overwrites its current chromosomes with the values read from the donor
vector.

The resulting vector will be evaluated and scored by the fitness functions and then
compared with the current population vector Xi ,G. If it presents a better score, it will replace
the current vector on the population. If the current vector has a better score, then the new
vector will be discarded. But when two or more fitness functions are used, it might not be
possible to define which vector has the best score between them. When this happens, both
vectors are kept in the population and only when the current iteration (generation) ends, will
they be processed; the population will be trimmed to keep only the best individuals.
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2.2.2 Simulated Annealing

In metallurgy, annealing is a heat treatment used to change the physical and chem-
ical properties of a material in order to increase its ductility and reduce its hardness. The
material is heated and then subjected to a slow cooling period. The Simulated Annealing
algorithm (SA) was created in the context of the mechanical statistic [22] and was developed
by Kirkpatrick, Gelatt and Vecchi in 1983 [28].

The SA is used to solve Combinatorial optimization problems, such as minx f (x), x ∈
S, where f : S → R, with finite S. In this context, the optimization process is executed by
levels, simulating the temperature levels during the cooling process. For each level, given a
point u ∈ S, many neighbour points around u are generated, and the corresponding f value
is calculated. Each generated point is accepted or refused according to a certain probability.
The probability of acceptance decreases according to the process level, which means it
depends on the temperature [22].

Algorithm 2.1 shows the SA basic steps. Tk ∈ R∗
+ represents the temperature at

level k and Lk the number of points generated at this level. Initially, T0 and L0 are fixed and
an initial point u is chosen from S, according to [22].

Algorithm 2.1: Simulated Annealing pseudo algorithm.

begin
Initialize u, T0, L0

k ← 0
repeat

for l ∈ [1, ... , Lk ] do
Generate w from V (u)
if f (w) ≤ f (u) then

u ← w
else

if random[0, 1) < exp( f (u−f (w))
Tk

) then
u ← w

end
end

end
k ← k + 1
Calculate Lk and Tk

until ’stop criterion’
end

In order to skip local minimum values, the idea is to accept almost every proposed
transaction. It is important to make sure T0 is big enough, and then, use diminishing proba-
bility rates to accept the points that get the worst score values when evaluated by the fitness
function. When the limit Tk → 0+ is reached, only the points getting the best scores from the
fitness function will be accepted [22].
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2.3 Task Mapping Benchmarks

Benchmarking is the quantitative foundation of computer architecture research.
Without a program selection that provides a representative snapshot of the target application
space, performance results can be misleading and no valid conclusions may be drawn from
an experiment outcome [5]. Parallel architectures, such as Chip-Multiprocessors (CMPs),
may unleash its full potential when running software that matches its hardware features.
It means traditional sequential software may not be suitable to these architectures, in the
same way that traditional benchmarks may not attend the requirements of modern hardware
projects.

Future applications will have to be parallel; but due to the lack of a representa-
tive, and multi-threaded benchmark suites, most scientists are forced to fall back to existing
benchmarks. This usually means the use of older High-Performance Computing (HPC)
workloads, smaller suites with only a few programs or unparallelized benchmarks [5].

Some benchmark solutions were launched to tackle these shortcomings. The
Princeton Application Repository for Shared-Memory Computers (PARSEC) was first launched
by Intel Corporation and Princeton University in 2008 [4] and employed for benchmarking
more than 55 papers in the International Symposium on Computer Architecture (ISCA) from
2010 to 2014 [50]. The PARSEC benchmark proposed to reach five goals:

• Multi-threaded Applications: multi-processor architectures are the most employed
models nowadays for High-Performance Computing (HPC) systems. The trend for
future architectures is to reach performance improvements by increasing the number
of processing elements. Thus, the benchmark must support parallel applications.

• Emerging Workloads: the increasing of processing power comes attached to growing
workloads. A new class of applications may require new capabilities placed beyond
current architectures.

• Diversity: a benchmark must be representative of different application categories.

• Employ State-of-Art Techniques: a benchmark must be updated with the current
state-of-the-art techniques.

• Support Research: different properties must be provided by a benchmark designed
to attend not only commercial evaluations but also researching applications.

The PARSEC benchmark includes applications from various domains, such as fi-
nancial analysis, computer vision, enterprise storage, data mining, etc.
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2.3.1 NASA NAS Parallel Benchmark

The Numerical Aerodynamic Simulation (NAS) Parallel Benchmarks (NPB) is an-
other benchmark for testing the capabilities of parallel computers. The main difference of
this benchmark from PARSEC is its ability to select some parallelization techniques, and
provide the shared memory and message-passing programming models freely. The two
main frameworks are OpenMP – for shared memory – and MPI – for message passing –
and some additional frameworks [16].

Applications from the NASA NAS Parallel Benchmark are derived from computa-
tional fluid dynamics, and are used for astronautical applications [47]. These applications are
distinguished from traditional scientific applications due to the large memory requirements
[56]. Although the NPB suite is grounded in problems of computational fluid dynamics, they
are valuable in the evaluation of parallel computing since they are rigorous and as close to
real applications as can be expected from a benchmark suite [2]. It makes this benchmark
ideal for evaluating parallel applications running in a Network on Chip (NoC).

The NASA NAS Parallel Benchmark is composed of eleven applications, which
mimic standard computation and data movements in CFD applications [16]. Five of the
eleven applications were chosen to be used:

• MG: Multi-Grid on a sequence of meshes, long and short distance communication, and
memory intensive. It is a kernel to solve the Three-dimensional Poisson equation using
a simplified computing model. It is based on constant rates rather than on variable
coefficients as do more realistic solvers. This test is ideal for long distance, highly
structured communication based applications.

• CG: Conjugate Gradient, random memory access and communication. It is a method
used to compute an approximation of the smallest eigenvalues of a large, sparse, sym-
metric positive definitive matrix. Complementary to MG, it tests irregular long distance
communication, employing unstructured matrix-vector multiplication.

• FT: Discrete 3D Fast Fourier Transform, all-to-all communication. It is an alternative
3D partial differential equation solver using Fast Fourier Transform. It tests long com-
munication performance.

• IS: Integer Sort, random memory access. It moves a huge amount of data to execute
sorting operations. By contrast to other applications in the same benchmark suite,
it uses integer arithmetic operations only, in a way floating-point operations are not
involved.

• LU: Lower-Upper Gauss-Seidel solver. It solves a synthetic system of nonlinear partial
differential equations using a symmetric successive over relaxation solver. LU is very
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sensitive to the performance of the communication infrastructure. It sends a large
number of short messages (40 bytes each).

These applications were selected because they have task communication based
profiles, therefore they are ideal for the purposes of this work.
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3. RELATED WORK

The subject of partitioning and mapping applications onto Network on Chip ar-
chitectures have been exhaustingly explored [41]. This chapter analyzes previously docu-
mented work relating to task partitioning and/or the mapping problem, with a focus on mesh
shaped NoCs. Works based on evolutionary approaches, specifically on the DE, were prior-
itized.

C. A. M. Marcon et al. [36] tackled the task mapping problem under the energy
consumption and execution time views. To decrease energy consumption, application tasks
are mapped to the target architecture considering the most efficient communication possible.
This goal is reached by modelling computation and communication characteristics of each
core. Different applications graphs may be used as an input, depending on the level of the
computing model desired. The first model is the Communication Weighted Graph (CWG),
representing the cores of an application and the messages exchanged between them. The
second graph model is the Communication Dependence and Computation Graph (CDCG),
which contains the messages exchanged between all tasks, the message sizes and also the
dependence between them (the starting and ending points for each message to be sent).
Thus, applications constituted by an arbitrary number of cores may be modelled by CDCG
representing its computation and communication characteristics. Both models (CWG and
CDCG) are evaluated by a deterministic XY routing algorithm. The third model used in
this work is the Communication Resource Graph (CRG), which is a directed graph whose
edges and vertices represent physical links and routers of the target architecture, respec-
tively. This model is similar to a NoC Topology Graph [51] or an Architecture Characterization
Graph [25]. The described models were used as starting points for task mapping efforts per-
formed by two different algorithms: Exhaustive Search (ES) and Simulated Annealing (SA).
NoC sizes ranged from 2x2 up to 12x10. For small NoC sizes (up to 3x4), both algorithms
reached similar performance measurements. The authors claimed it was not possible to
find optimum mapping solutions by using ES algorithm on bigger NoC sizes (from 8x8 to
12x10, for example) in a reasonable time. On average, CDCM based mappings tend to be
40% faster than CWM models in regards to execution times, whilst the energy consumption
reduction seems to be insignificant (less than 1%).

J. R. Ku and S. G. Ku [27] proposed the use of an evolutionary algorithm to solve
the task mapping on NoC problems, striving to minimize both the energy consumption and
the link bandwidth requirements. Three random benchmark applications were generated
for the tests at the same time, and one real world M-JPEG encoder was also used. They
divided their implementation in two distinct phases. The first phase was called Task As-
signment problem (CT-GA) where they tried to group tasks with high communication volume
with each other, which they believed should minimize the computational energy by reducing
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power consumption. For this phase, they used a classical implementation of the NSGA-II
algorithm with an elitist approach. The second phase was called Core-Tile Mapping (CT-GA)
and its goal was to associate the previously generated task groups to PE onto the NoC. For
this phase they used a modified implementation of the NSGA-II algorithm with a particular
implementation of the mutation genetic operation, where they tried to place most communi-
cating task groups close to each other when possible. The authors claimed that their imple-
mentation found solutions 15% to 20% on average more efficient with energy consumption
when comparing solutions generated by the Physical Mapping Algorithm (PMAP).

The work from Isask’har Walter et al. [57] analyzed the task mapping problem con-
sidering the steep increase in the number of transistors available on a chip and also the
growing importance of keeping the energy consumption low. These issues lead to the ex-
istence of two trends: the availability of replicated modules that have identical functionality.
The second trend is the creation of task-specific optimized modules (instead to general pur-
pose PEs), used to prolong the path traversed by data on the chip. The authors argued the
NoC design process should take into account this development, since the classic modelling
patterns prevent exploiting the true benefits of a NoC based design. They have shown the
importance of adapting the implementation of the task mapping problem to account classes
of replicated modules and application-level latency requirements. They have tested this new
formulation and claim the new approach leads to more efficient tile mapping and yield sig-
nificant savings in communication costs. They used the Cross-Entropy Method (CEM) [40]
to identify task sets and group them together. The CEM may be considered an evolutionary
algorithm, but relies on statistical methods of sampling instead of genetic operators such
as mutation or recombination. Random communication task graphs were generated for the
tests. The authors claim they reached peaks of almost 35% savings when comparing their
approach to a classical Simulated Annealing implementation.

S. Le Beux et al. [30] used an Evolutionary Algorithm to perform a multi-objetive
optimization of the partitioning/mapping process. The inputs for this solution are the appli-
cation model (constituted by a graph representing application tasks), computing loads (the
number of cycles required for each task to run), the communication between tasks, and a
graph representing the target architecture, which is normally a 2D mesh NoC. Three ob-
jective functions are used. The first objective is system throughput, which characterizes
the system’s ability to pipeline the application execution. The throughput corresponds to
the number of application iterations the system can execute in a given period of time. The
second objective function measures the area cost, indicating the area (space) necessary to
implement a System on Chip (SoC). It summarizes the space of all cores allocated within
the NoC on tasks from a specific application, resulting in a scalar value. The third objective
is the architecture flexibility, which stands for the future ability to be updated to attend to
new requirements. The idea is to minimize the number of allocated processors. Its mea-
surement is given by dividing the number of tasks from the input application by the number
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of allocated processors. The Non-dominated Sorting Genetic Algorithm II (NSGA-II) uses
crossover and mutation genetic operations to evaluate the area cost and architecture flexibil-
ity of every candidate solution on each generation (iteration), while a simulation is performed
to measure the throughput. The authors claim that partitioning and mapping decisions can
be taken early because optimizations are performed at system level, which may contribute
to reducing the time to market.

The work from N. Nedjah et al. [39] proposed a multi-objective evolutionary design
tool to assist NoC designers at high-level stages of a platform based on the NoC design.
It employed the Communication Analysis For Embedded Systems (CAFES) [37] and also
used two multi-objective evolutionary algorithms: the NSGA-II and the Micro Genetic Al-
gorithm (microGA). The application is represented by a directed acyclic task graph (TG)
based on Extensible Markup Language (XML) technology, where each node on the graph
represents a task and its execution and communication attributes. Objective functions are:
hardware area, which stands for the silicon area needed to implement a NoC-based applica-
tion; execution time and also power consumption. The maximum amount of tasks allocated
to a single PE was set to 3. Non-valid mappings were kept on the population. Tests were run
simulating applications from different domains, such as FFT, Inverse Fast Fourier Transform
(IFFT), Pulse With Modulation (PWM) and others. Tests demonstrated that the performance
of the NSGA-II was similar to that reached by CAFES, while the microGA appeared to have
performed better than both, particularly in regards to the hardware area, where the microGA
was almost 50% more efficient.

In [20] D. Göhringer et al. proposed a novel design methodology for helping archi-
tecture development and application partitioning on Multi-Processor System on Chip (MP-
SoC). The main contributions of this work were the tracing library, developed to generate
timing information and a call graph from the sample application; a new function for partition-
ing the application source code in C++; a Profile Analyzer for helping identify hotspots within
the code of local processors and which suggest more appropriated HW/SW Codesigns.
The application is first subject to a partitioning phase, where tasks are grouped using the
Hierarchical Clustering Algorithm. The partition groups are created in many steps, where
the algorithm uses a closeness function at each step to decide which next two tasks will
be added to an existing cluster, and then repeats this process until only one final cluster
remains. This procedure creates a hierarchical list that indicates the ideal number of proces-
sors for the desired hardware architecture. The closeness function is responsible to guar-
antee equal workloads for every processor, minimize the overhead for message exchange
between the processors, respect the memory constraints of each processor, and finally to
reduce the power consumption by decreasing the area size of the FPGA. This work also
uses a communication model grounded on an heuristic approach, by trying to identify better
task associations by positioning message switching tasks as neighbours, when possible.
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C. Deng et al. [14] adapted the classical DE to adhere to a high-level task model,
free of a target architecture. A new permutation step was included right before the recom-
bination phase of the classical DE, so that the current individual chromosomes would now
be subject to a sorting procedure before selection. The authors claimed this modification
was inspired on the Ant Colony Algorithm (ACA). Tests were made comparing the modified
DE with the ACA, the Improved Ant Colony Algorithm (IAC) and the Genetic Algorithm (GA).
The authors did not describe which fitness function was used for the tests, but they claimed
the modified DE was superior to the ACA and GA, as a result of reaching the best fitness
solution earlier (with a fewer number of computed generations).

The work from E. Antunes et al. [3] explored task-partitioning and processor-
mapping methods on homogeneous NoC-Based MPSoC. The effects of both on the energy
consumption of applications was explored separately and unitedly. Different application and
architecture representations were used, such as the Task Communication Graph (TCG),
representing application tasks and its exchanged messages; the Communication Weighted
Graph (CWG), that is similar to the TCG format, however its vertices represent a set of
processors instead of applications tasks; and the Communication Resource Graph (CRG),
representing physical links and routers on the target architecture. A complete Energy Model
was also created to represent the power consumption of processors, memory and commu-
nication architecture. Task partitioning and mapping were made in two different execution
phases since the authors claimed direct task mapping solution might generate less efficient
task distributions onto the target architecture. Results demonstrated that the mapping phase
had a deeper impact on energy consumption, albeit the partitioning influence could not be
neglected. Experiments were conducted on the CAFES framework.

Pavel Krömer et al.[29] presented an article describing a parallel DE implementa-
tion for GPU architectures based on the Compute Unified Device Architecture (CUDA) code.
They have focused their code on solving the task scheduling problem on heterogeneous
platforms. By following the Single Instruction, Multiple Data (SIMD), the computing model
offered by a CUDA compatible GPU, they were able to create separated kernels (the basic
program unit of a CUDA application) to perform each DE step: a first kernel to generate the
initial population; a second kernel to evaluate population individuals; a different kernel to
generate offspring individuals (covering mutation and recombination operations) and a final
kernel to merge parent and offspring populations. The main advantage of this approach
was to keep the processing data on the GPU memory during the entire execution time, sav-
ing precious time by preventing long data copies between host and accelerator memories.
Since each thread was responsible for computing one individual concurrently, the population
size was limited by the capacity of GPU running threads. The authors did not discuss the
occupation rate of the GPU nor the quality of resulting solutions, but they claimed that the
GPU implementation reached better solutions on two of three tests when compared with
the sequential CPU version. No description has been made about how they solved the ran-
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dom generation problem, since most GPU architecture simply do not support randomization
routines.

In [23] K. Hao, B. Wang and Y. Luo proposed to solve the Network Coding Problem
using a multi-objective optimization based in a modified NSGA-II implementation. Similar to
the Task Mapping Problem, the Network Coding problem is also a NP-hard problem, which
in turn, makes the evolutionary approach an interesting one to find reasonable solutions in
feasible computing times. Two fitness functions were used to evaluate coding cost and link
cost solutions. An elitist strategy was used in an attempt to keep the population diverse. The
authors claimed the proposed algorithm computed acceptable solutions in a feasible time.

Sen Zhao et al. [60] proposed a Multi-Objective Differential Evolution algorithm
based on adaptive mutation strategies and a partition select search to further improve di-
versity and convergence on generic multi-objective problems. The mutation operation was
adapted to use the DE/rand/1/bin strategy for best ranked individuals in the population, while
not so good ranked individuals were subject to a DE/current to best/2/bin strategy. Using this
strategy to calculate differential vectors from individuals in the same frontier may favour the
dispersion of the generated mutated individuals along that frontier and also help to spread
the information to reach a non-dominated set with good distribution characteristics. Also,
the selection operation of new mutated individuals (donor vectors) were changed in order
to now take into account the comparison between the new individual against all other indi-
viduals in the population, and not only against its ’father’. This is accomplished by creating
a temporary global population on each DE generation. The F (mutation factor) suffers a
steady decline on its value on each generation, which tends to decrease the disturbance on
the population (possibly decreasing its diversity) but still plays an important role in refining
the local search, which may be beneficial to carrying it out and possibly accelerate the algo-
rithm convergence. Tests were made using the five classical ZDT benchmark functions [62]
comparing the proposed approach, the NSGA-II, a classical MODE and the Strength Pareto
Evolutionary Algorithm 2 (SPEA2). The benchmark compared the mean and variance met-
ric convergence of all testes implementations. The authors claimed the proposed MODE
variant presented an improved behaviour, while keeping its classical features of a faster
convergence and good diversity. They also have affirmed that their novel implementation
presented superior results in some cases.

The work by S. Umamaheswari et al. [54] proposed the Firefly Algorithm (FA)
[18] to perform a multi-objective task mapping onto irregular NoCs, seeking for generate
solutions which could yield a lesser power consumption and smaller areas allocated on the
chip. The ’task scheduling’ step may be associated to the classical partitioning problem,
whilst the ’core mapping’ corresponds to the classical task mapping problem from previous
works. The NoC cores are associated as tiles. The task scheduling creates groups so that
the summation of execution time of tasks within the group can not exceed the maxim value
allowed for each tile on the NoC; the total number of tasks should be less or equal to the
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maximum number of tasks allowed on the NoC tile and the total communication rate should
be less than the total available bandwidth of the NoC surrounding links. Every NoC PE can
allocate only one task at time. A comparison between the proposed FirelFly algorithm with
the classical NSGA-II algorithm suggests the new approach seemed to generate optimal
candidate solutions fasters the the NSGA-II. The authors claimed that their implementation
was sensibly faster than the NSGA-II, specifically when computing bigger area NoCs. No
comparison between the quality of generated solutions have been shown.

Mengyuan Wu et al. [58] suggested a new approach to reduce computing time on
NoC simulations during design time. They proposed a new algorithm called NoC Design
Optimization based on Gaussian Process Model Assisted Differential Evolution (NDPAD).
This model used the DE algorithm to generate candidate solutions that were then subject
to a second optimization phase where these individuals have their evaluation predicted by
an individual solution-based training data selection method. This prediction was supported
by a historic database of individuals. Only the most promising individuals were subject to
a complete NoC simulation that indicated which ones were the best. Tests were performed
using 6x6 NoC sizes in order to prevent extra long execution times, although the authors
have said this scenario would favour traditional EA due to the smaller solution space to
be searched. A comparison of their novel method was made against the Selection-Based
Differential Evolution Algorithm (SBDE) [61], which is a modified version of the traditional
DE. Results suggested the novel approach may be around 50% faster then the traditional
methods when using a specific set of values for the CR and F execution parameters.

In [43], Z. Qingqi et al. tried to solve the task mapping on the NoC problem using
a two objective evolutionary algorithm to reduce energy consumption and communication
latency by optimizing the distribution of the link load. They have created an optimization
method bonding the Membrane Computing and based on Mixed Structure and Genetic Al-
gorithms (MCGA). Membrane Computing is a bio-inspired method used to find new compu-
tational models from the study of biological simple organisms such as living cells. This model
also allows the use of a parallel approach to searching the solution area. Two applications
were used as benchmarks, a Video Objective Plane Decoder (VOPD) and a MPEG-4 de-
coder. Tests indicated the novel approach was slightly more efficient than the traditional GA
implementation, leading to solutions which were around 10% more economic in energy con-
sumption, 35% faster in regards to communication latency for the VOPD benchmark, around
13% more economic in energy consumption and 3% faster in communication latency for the
MPEG-4 application.

In [45], A. Roy et al. presented a hybrid technique associating the classical algo-
rithms Particle Swarm Optimization (PSO) and the Neighborhood Treemap (NMAP) to reach
better results on the task mapping onto the NoC problem. Benchmark applications were
generated by the TGFF tool [15]. These applications covered different domains, such as
multimedia applications (MPEG and MP3) and generic task graph implementations. These
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applications ranged from 12 tasks up to 64 tasks, and mappings were made onto 2x4 NoCs
up to 8x8 NoCs. Two modified versions of the hybrid NMAP + PSO implementations were
proposed and compared to two classical algorithms, the NMAP, the Integer Linear Program-
ming (ILP) and the Kernighan-Lin bi-partitioning strategy (KL) [46]. The authors commented
that the best solutions were found by the ILP implementation, although this technique was
not feasible on larger task graphs due to its computational cost. Results showed one of the
modified implementations NMAP + PSO were able to reach the same optimum solutions as
the ILP technique in some cases. When comparing the hybrid implementations to the KL
technique, the proposed approaches found better solutions in six of eleven executions.

This work presented a DE Algorithm for combinatorial optimization A. Maravilha
et al. [34] using a set-based representation and a special approach to explore the search
space. The benchmark application was a Capacitated Centered Clustering Problem (CCCP)
implementation. The proposed adaptation employed DE to define sub-problems covering a
range of elements across candidate solutions. The authors claimed that the DE implemen-
tation was able to return competitive solutions when compared to a ILS implementation.

B. Xue, W. Fu and Mengjie Zhang [59] used modified versions of DE on single-
objective and multi-objective modes as an approach for selecting a set of non-dominated fea-
ture subsets, which included a small number of features. The approach achieved high clas-
sification performance. Both DE implementations were evaluated after computing datasets
from the UCI machine learning repository [19]. For each selected dataset, the instances
were randomly separated into two distinct sets: 70% as the training set and the remaining
30% as the test set. The crossover rate was set to 0.3. Every test was performed for 30
independent runs on each dataset. This was important, since DE is a stochastic algorithm.
Results have shown that both, Multi-Objective Differential Evolution (MODE) and Single-
Objective Differential Evolution (SODE) implementations outperformed traditional Feature
Select Algorithms (LFS).

The work from D. Das, M. Verma and A. Das [12] tackled the hardware-software
partitioning problem using a DE implementation. The goal was to design the application
tasks distributed into specific hardware and software parts to adhere to real time constraints
as well to reduce system cost. Therefore, the real challenge depended on choosing which
tasks should be implemented in hardware and which ones in software. This is a NP-Hard
class problem. To a certain extend, a brute force or deterministic algorithm would not be
feasible due the large running time it would require. Their implementation used values 0
(for hardware allocation) and 1 (for software allocation) for chromosome representation. It
meant a data structure representing an individual on the population would be as long as
the number of existing tasks to be distributed. The fitness function considered the following
quantities: execution time, area cost, communication cost between software and hardware
partitions. Tests were executed using sets sizes ranging from 10 up to 30 tasks. A compar-
ison was made with a Particle Swarm Optimization (PSO )algorithm, both implementations
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(DE and PSO) have been coded for running in a MathLab environment. The authors have
not discussed the quality of resulting solutions, but they claimed that DE presented a smaller
execution time, reaching the termination condition (number of generations or a predefined
fitness value) faster than PSO. Results have shown DE is around 46% faster than PSO for
smaller task sets (10 tasks) and 37% faster on average for bigger task sets (30 tasks).

O. Cortes et al. [10] proposed an exploration on the influence of execution param-
eters on speeding up DE when running on Graphic Processor Units (GPUs). Although this
work focused on high level DE implementations, test results suggested the dimension size
(number of chromosomes on each individual) and the number of calls to the evaluation func-
tions may have deeply impacted the execution time and also affected the quality of resulting
solutions. Base tests ran solely on CPU have shown the quality of the solutions tends to in-
crease when using lower level values for the CR. On GPU, this behaviour does not seem to
occur, although the average quality of the solutions seems did not seem to reach the same
quality obtained from CPU executions. The main contribution of this work is the claim that a
very specific parameter setting should be chosen for a specific problem being tackled with a
DE implementation.

In [1], A. Al-Wattar et al. proposed a new framework using an Island Based Genetic
Algorithm (IBGA) flow that optimized several objectives including delay and power consump-
tion. This method made use of parallel and isolated populations from different locations on
the solutions space. Each population was processed by a particular GA process. Best can-
didate solutions from each population were then evaluated and generated separated Pareto
fronts. Only the best ranked solutions were finally extracted and globally compared. Besides
allowing a faster exploration of the solution space, this method also has the advantage of
not only indicating an optimal performance and power profile, but hardware platforms (floor-
plans) may also be used as tests. This is an important feature of the dynamic reconfigurable
systems. Tests were executed using applications from different domains, such as JPEG,
MPEG, EPIC, MESA and HAL benchmarks. When comparing these results with the con-
ventional GA, the proposed IBGA implementation achieved on average 55.2% improvement
over the single GA implementation.

Table 3.1 shows a summarized comparative of the works described in this section.



43

Table 3.1: Summary of Related Work

Work Year Application Target
Architecture

Algorithm Goal

[36] 2005 task mapping generic NoC
Exhaustive Search and Simulated

Annealing
reduce energy consumption and

communication cost

[27] 2007 task mapping generic NoC modified NSGA-II minimize energy consumption

[57] 2009 task mapping generic NoC Cross-Entropy Method reduce communication cost

[30] 2010 NoC design generic NoC NSGA-II reduce time to market

[39] 2010 NoC design generic NoC NSGA-II, microGA and CAFES support NoC design

[20] 2010 generic generic Hierarchical Clustering
support software and hardware

design

[14] 2010 non-specified high-level
abstraction

Differential Evolution, Ant Colony
and Improved Ant Colony

Algorithm
algorithm comparison

[3] 2011
task partitioning

and task
mapping

generic NoC CAFES
explore the impacts of task

partitioning and task mapping on
energy consumption

[29] 2011 task scheduling

SIMD
Graphic

Processor
Units

parallel DE reduce execution time

[23] 2012 network coding generic
network modified NSGA-II solve the network coding problem

[60] 2013
ZDT benchmark

functions
non-

applicable modified DE
explore a modified approach for

individual selection and a dynamic
adaptive mutation strategy

[54] 2013 NoC design generic NoC Firefly and NSGA-II
silicon area and energy

consumption optimization

[58] 2014 NoC design generic NoC Differential Evolution
reduce computational cost of NoC

simulations during design time

[43] 2014 task mapping generic NoC modified GA
reduce energy consumption and

communication latency

[34] 2014

Capacitated
Centered
Clustering
Problem

non-
applicable modified DE

explore DE capacities with altered
genetic operators

[59] 2014
selection
algorithm

non-
applicable Differential Evolution

explore SODE and MODE as a
dataset selector for machine

learning support

[12] 2014
hardware-
software

partitioning
generic Differential Evolution

reduce execution time and
communication cost

[10] 2015 CPU and GPU
benchmark

high-level
abstraction Differential Evolution

optimization of execution
parameters

[45] 2015 task mapping generic NoC ILP, KL, NMAP, PSO and hybrid
NMAP + PSO

reduce communication cost

[1] 2016
map execution
units to task

graphs

generic
FPGA

Island Based Genetic Algorithm
reduce energy consumption for

static and partial dynamic
reconfigurable systems

this
work

2016 task mapping generic NoC Differential Evolution reduce communication volume
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4. PROJECT METHODOLOGY

This chapter describes the methodology used on this work, including the two Dif-
ferential Evolution implementations created to solve the Task Mapping on NoC problem.

4.1 Modelling of the Data Structures

There are many different alternatives to define a data structure that represents a
task mapping candidate solution. Basically, it is necessary to precisely indicate the NoC’s
location where each task is allocated. Ideally, we wanted to create a data structure that
was possible to be used on both computing models we were working on, the first one that
accepts one or more tasks allocated per PE, and the second model that allows only one task
per PE.
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Figure 4.1: Population data structure.

The structure is represented in Figure 4.1 as follows: considering that the target
architecture is a 2D mesh, a PE’s location is given by P = (x ∗ w) + y , where P is the PE’s
location, x indicates the line where the PE is positioned within the mesh, y indicates the PE’s
column and w indicates the NoC width (number of existing columns). In the given example,
tasks t0 and t1 from the first individual in the Population were allocated to PE(0, which is
located at the first line and the first column within the NoC. At the same time, task t3 was
allocated to the PE(4), which is positioned right in the middle of the NoC at line 1, column 1.

The number of columns is dependant on the number of chromosomes, which cor-
responds to the number os tasks from the input application.
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4.2 Multi-Objective Differential Evolution Approach

The first explored application model is formed by a generic 2D NoC mesh where
one or more tasks can be allocated simultaneously onto the same PE. Each PE can execute
multiple tasks at a time and its local memory can store data from one or more tasks at the
same time. Thus, tasks allocated within a PE always will be executed in parallel. Therefore,
in this model, there are two parallelism levels: one or more tasks running simultaneously
within the same PE, and also multiple PEs running concurrently. One important aspect of
this model is the fact that tasks within a PE must be prioritized somehow. However, since
optimization of execution time is out of the scope of this work, our model will not implement
sorting nor prioritization among tasks allocated within a PE. Instead, two objectives were
focused: the Communication Volume Metric and the Load Balance Metric.

4.2.1 Communication Volume Metric

For evaluating the communication volume of a task mapping candidate solution, this
model considers the summation of all sent and received messages by tasks allocated within
a PE. If two communicating tasks are allocated within the same PE, then their messages will
not contribute to the total amount of communication, since their messages will never reach
the NoC infrastructure of communication.

fo3(solution 1) = 10+0+25+20+15 =  70

fo3(solution 2) = 10+10+10+10+10+10+10+25+20+15 = 130
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Figure 4.2: Evaluating the communication volume of two task mapping candidate solutions.

Figure 4.2 shows examples of two distinct task mapping candidate solutions and
how they will be evaluated according the communication volume metric. The task set shows
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messages sent from one task to another, including the message size (the indication of a
specific measuring unit for the message size here is not significant). For example, task
t0 sends messages with different sizes for t1 (15), t2 (20) and t3 (25); t3 sends a 10 sized
message to t4, which, in turn, sends a 10 sized message to t5.

The candidate solution 1 have allocated tasks t3 and t4 onto the same PE. Since the
message sent from t3 to t4 will never consume any resource from the NoC’s communication
infrastructure, this message will not collaborate to the communication volume metric, as
shown in Figure 4.2. On the other hand, on the candidate solution 2, these same tasks were
allocated at different locations onto the NoC, in a way the message sent from t3 to t4 has now
to cross a 3 hops long distance to reach its target. It means this message will access the
send/receive engine three times until its sending process to be completed. For this reason,
its contribution for the communication volume metric will be equal to 10+10+10, representing
one summation for each dispensed hop. The number of hops used for this measurement
will be calculated by using the Manhattan Distance metric, which is the distance between
two points measured along axes at right angles. Considering a plane containing a point p1

at (x1, y1) and a second point p2 at (x2, y2), the Manhattan Distance (Md ) is given by the
Equation 4.1.

Md = |x1 − x2| + |y1 − y2| (4.1)

For the given example, considering that the objective is reduce the total communi-
cation volume, the candidate solution 1 will be considered more efficient than the candidate
solution 2, due the fact it returns a smaller value for the communication volume metric (70
for the candidate solution 1 and 130 for the candidate solution 2).

4.2.2 Load Balance Metric

The Load Balance Metric measures the variance of the processing load of all PEs
on the NoC. It means that different PEs allocating tasks with different amount of CPU load
will generate unbalanced candidate solutions. This metric has the goal to foster the creation
of more balanced candidate solutions, by distributing more equally possible the processing
load among NOC PEs.

Each task uses a particular amount of the CPU processing power, indicated as
shown by Figure 4.3. For the given example the respective task’s CPU loads are: t0 (75%),
t1 (53%), t2 (50%), t3 (75%), t4 (10%) and t5 (65%). For example, it means t0 will occupy 75%
of the total computing time of the PE where it is allocated.
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Figure 4.3: Evaluating the Load Balance metric of two candidate solutions.

The metric is calculated as follows. First, the summation of the CPU loads from all
allocated tasks is computed for each PE using the Equation 4.2, where i identifies the PE; k
is the number os tasks allocated at the PE i ; and L is the CPU load of the task j .

Xi =
1
k

k∑
j=1

Lj (4.2)

Next, the average value (X ) is calculated by summing all total CPU loads of all PEs
(PEs with no allocated tasks are ignored on this calculation), as shown in Equation 4.3.

X =
1
n

n∑
i=1

Xi (4.3)

Since the computation of the average (X ) is done, the variance (φ) is finally calcu-
lated as shown in Equation 4.4. Again, PEs with no allocated tasks will be ignored on this
calculation.

φ =
1
n

n∑
i=1

(Xi −X )2 (4.4)

Finally, the value of the Root-Mean-Square Deviation (RMSD) of the candidate
solution is calculated as shown in Equation 4.5.

RMSD =
√
φ (4.5)
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A RMSD value closer to zero identifies a better CPU load throughput in the NoC
PEs.

4.2.3 The Multi-Objective Differential Evolution Applied to the Task Mapping onto NoC
problem

This section describes the adaptation of the DE to solve the task mapping onto
NoC problem considering two optimization constraints: achieve a better distribution of task
allocation over the NoC, by equalizing the processing load of the NoC PEs, and reduce the
total communication volume. Because two fitness functions are used to evaluate the can-
didate solutions, this implementation is considered a Multi-Objective Differential Evolution
(MODE) algorithm.

A notation to represent this model is in Equation 4.6. Being i the current individual
in the population, G is the current Generation, D is the population dimension (the number
of existing chromosomes on each individual), and NP is the population size (the number of
existing individuals in the population).

xi ,G = [x1,i ,G, x1,i ,G, ... , xD,i ,G, ] i = 1, 2, ... , NP. (4.6)

To represent tasks allocation locations within the NoC, we have modelled the Pop-
ulation data structure as follows:

A - Population 
Initialization

Is ui,G+1  

better 
than xi,G 

?

H - Update 
Population

B – Population 
Evaluation

C - Select
xr1,G, xr2,G and xr3,G

D - Mutation E - Recombination F - Evaluates ui,G+1

no

yes

repeat for n generations

for each individual i in the Population, repeatI - Select 
Dominant 

Solutions from 
Archieve

G

𝒗𝒊,𝑮+𝟏 = 𝒙𝒓𝟏,𝑮 + 𝑭(𝒙𝒓𝟑,𝑮 − 𝒙𝒓𝟐,𝑮)

𝒖𝒋,𝒊,𝑮+𝟏 =  
𝒗𝒋,𝒊,𝑮+𝟏 𝒊𝒇 𝒓𝒂𝒏𝒅𝒋,𝒊 ≤ 𝑪𝑹 𝒐𝒓 𝒋 = 𝑰𝒓𝒂𝒏𝒅

𝒙𝒋,𝒊,𝑮 𝒊𝒇 𝒓𝒂𝒏𝒅𝒋,𝒊 > 𝑪𝑹 𝒐𝒓 𝒋 ≠ 𝑰𝒓𝒂𝒏𝒅

Figure 4.4: Multi-Objective Differential Evolution algorithm base procedures.
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Base procedures of the MODE are shown in Figure 4.4. The basic routines are
described as follows:

A - Population Initialization: first the lower and upper bounds must be defined, as
in Equation 4.7.

xL
j ,≤ xj ,i ,1 ≤ xU

j , (4.7)

For the underlying model, each chromosome value is randomly selected from the
uniformly distributed interval [xL

j , xU
j ]. L and U are execution parameters set by the user and

must reflect the number of existing PEs on the target architecture. For example, a 3x3 mesh
NoC will index its PEs from 0 (L) to 8 (U).

Next, the population is randomly initialized with NP individuals compound by D
chromosomes each. Each one of the NP individuals undergoes mutation, recombination
and selection procedures.

B - Population Evaluation: all individuals from the population are subject for eval-
uation from the two fitness functions f1 and f2.

C - Selection: for a given individual xi ,G, three vectors xr1,G, xr2,G and xr3,G are
randomly selected from the population, providing that the indices i , r1, r2 and r3 are distinct.

D - Mutation: the goal of the mutation procedure is to expand the search space.
For that, a donor vector (vi ,G+1) is created by adding the weighted difference of two of the
selected vectors to a third one, using on this calculation the mutation factor (F ), as shown
in Equation 4.8. For this model, F is a constant execution parameter set for a value from
[0.0, 1.0].

vi ,G+1 = xr1,G + F (xr3,G − xr2,G) (4.8)

E - Recombination: the objective of the Recombination procedure is to assimilate
good candidate solutions from previous generations. A new trial vector (ui ,G+1) is created
from the chromosomes of the target vector xi ,G (the current individual in the population)
and the chromosomes of the donor vector vi ,G+1. Chromosomes from the donor vector will
be included on the trial vector with CR probability, as shown in Equation 4.9, providing
i = 1, 2, ... , NP and j = 1, 2, ... , D.

uj ,i ,G+1 =

vj ,i ,G+1 if randj ,i ≤ CR or j = Irand

xj ,i ,G if randj ,i > CR or j 6= Irand

(4.9)

The CR is an execution parameter set by the user and must be ranged between
[0.0, 1.0]. The parameter Irand is an integer from [0, 1, ... , D − 1] (representing one of the
existing chromosomes) and it is mandatory to provide that vi ,G+1 6= xi ,G.
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F - Individual Evaluation: the new individual ui ,G+1 is subject to the two fitness
functions f1 and f2 to compute its fitness values.

G - Dominance Test: the new individual (trial vector) ui ,G+1 is compared to the cur-
rent individual (target vector) xi ,G to identify who between them is dominant. This procedure
uses the two fitness values from each individual to create a Pareto Front where is possible
to find the dominant candidate solutions. According to [38],

"...a solution x1 is sad to dominate the other solution x2, if both
conditions 1 and 2 are true:

1. The solution x1 is no worse than x2 in all objectives, or
fj (x1) > fj (x2) for all j = 1, 2, ... , M.

2. The solution x1 is strict better than x2 in at least one objec-
tive, or fj (x1) < fj (x2) for at least one j ∈ {1, 2, ... , M}."

An ordinary brute force implementation of the dominance test would require O(n2)
iterations to identify the dominant solutions (because it demands that each solution must be
compared to all others). Since it represents a significant computing effort, we decided to test
alternative dominance test algorithms to try enhancing our own implementation. We tested
three different code implementations:

0

200

400

600

800

1000

1200

1400

1600

50 100 500 1000 2000 5000 7500 10000

m
ill

is
ec

o
n

d
s

solution set size

Dominance Test Algorithms
Execution Time

M&S BF Naive BF Smart

(a) comparison of execution times.

0

1

2

3

4

5

6

50 100 500 1000 2000 5000 7500 10000

m
ill

is
e

co
n

d
s

solution set size

Mishra & Sandeep Dominance Test Algorithm
Execution Time

(b) M&S execution time detailed.

3

5

21

32

63

146

210

287

0 50 100 150 200 250 300 350

50

100

500

1000

2000

5000

7500

10000

N

M&S Dominance Test Algorithm

(c) speedup of the M&S algorithm.

Figure 4.5: Comparison between Dominance Test algorithms.
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• Brute Force "naïve": this is the conventional implementation with two nested looping
structures and presents a complexity of O(n2).

• Brute Force "smart": by creating a dependency in the counting control variable of the
inner loop, it is possible to reduce the number of iterations by almost half, therefore the
complexity falls to O(n2

2 ), although it is still subject to a quadratic domain.

• Mishra & Sandeep algorithm: the M&S dominance test [38] uses an approach where
every time a solution is found to be dominated by some other solution, it is removed
from the solution set. Thus, at each new iteration the number of executed comparisons
decreases, which prevents a large amount of computing effort to be executed. In fact,
the complexity of the M&S dominance test is given by O(N.log(N)).

We tested these three dominance test algorithms by computing solutions sets rang-
ing from 50 up to 10000 randomly generated individuals. The results are shown in Figure
4.5. In Figure 4.5a it is possible to see that the M&S algorithm presents a superior perfor-
mance when compared to the other brute force implementations. This behaviour is specially
perceived when computing big solution sets, such as 2000 or bigger ones. Since the differ-
ence of the M&S algorithm performance in relation to the brute force methods is so big, it is
hard to note how this algorithm behaves when computing growing size solution sets using
the same graph scale for both plots. Figure 4.5b shows a detailed graph displaying solely
the M&S algorithm execution time. Even for bigger solution sets, its execution time remains
below 10ms.

Figure 4.5c shows the speedup calculated for the M&S algorithm in relation to the
Brute Force "naïve" implementation. The Brute Force "smart" implementation reached a top
1.9 speedup ratio for bigger solution sets, therefore it was not plotted on this graph.

Figure 4.6: Example of Dominance Test executed with 1000 candidate solutions.

Since it was demonstrated there is no substantial difference on the execution time
among these three tested algorithms for computing small solutions sets, and considering
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our populations (and by consequence, the respective archive sets) would never be bigger
than 30 individuals, we decided to implement the dominance test using lambda expressions
supporting API1. This decision allowed to slightly reduce the complexity of our code, not only
for the dominance test, but also for all archiving operations.

Finally, Figure 4.6 shows the results of a dominance test conducted using 1000
randomly generated candidate solutions. Dominant candidate solutions were highlighted by
a green line forming a Pareto Front, which may not appear too round due to the unintentional
distortion added to the vertical axis by the plotting utility2 when this image was generated.

H - Update Population: this procedure defines which individuals must be kept in
the population. The policy is defined by the Algorithm 4.1.

Algorithm 4.1: Update Population policy.

begin
if xi ,G dominates ui ,G+1 then

keeps xi ,G in the Population
discards ui ,G+1

end
if ui ,G+1 dominates xi ,G then

adds ui ,G+1 to the Population
removes xi ,G from the Population and discards it

end
if not ((xi ,G dominates ui ,G+1) or (ui ,G+1 dominates xi ,G)) then

keeps xi ,G in the Population
adds ui ,G+1 to the Population

end
end

At the end of the current generation’s main loop, it may be possible to see that the
population size has exceed the NP size. When this happens, the Population must be trimmed
back to the NP size before starting to compute a new generation. Dominant individuals must
be prioritized, then followed by individuals with the best fitness values. At the same time,
all dominant individuals are included into a temporary Population-like data structure called
archive.

I - Select Dominant Solutions From Archive: the stop criteria for the MODE
algorithm is the number of generations n. After computing all desired generations, the best
(dominant) solutions found at each generation were appended to the archive data structure.
As a result, it is possible that it now contains:

• repeated or equivalent candidate solutions;

• non-dominant candidate solutions.
1Introduction to LINQ Queries (C#) https://msdn.microsoft.com/en-us/library/bb397906.aspx
2Gnuplot - http://www.gnuplot.info/
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For this reason, the archive content must first have its duplicates removed and
then be subjected to a new dominance test, using the same Dominance Test procedure
as described previously. The resulting individuals represent the best possible candidate
solutions found by the MODE.

4.2.4 The Multi-Objective Task Partitioner Tool

A software tool was created to implement the described MODE model. Figure 4.7
shows a screenshot of the main window. This tool was coded using the Microsoft C# lan-
guage for Windows Desktop environments including the LINQ framework, which is a library
to support lambda notation-based queries.

Figure 4.7: screen-shot of the MO Task Partitioner tool.

Implemented features are:

• Task Generator: it generates random tasks, where it is possible to set the number of
desired tasks and the maximum CPU load (ranging from 1% to 100%). In this case,
task’s CPU loads will be randomly generated within the set range.

• Support to CAFES task set format: instead of generating random tasks, it is possible
to load a task set from a CAFES formatted file. This featured was used to compare the
results of task mapping tests we ran on the CAFES framework with results obtained
from our tools. Both executions used the exact same initial data conditions.

• Execution Parameters: it is possible to configure the following parameters: the num-
ber of tasks (for randomly generated tasks only), the maximum CPU load range, the



55

number of PEs (generating 2D squared NxN meshes only), the Population size, the
number of generations, the Crossover Rate (CR), and the mutation factor (F ). With the
MODE mode, the two objective functions are always used; although selecting only one
will start the SODE mode (to be reviewed later in this document). It is also possible
to use different target architecture configurations, for example, non-squared 2D (NxM)
meshes, a torus mesh or even a 3D mesh. However, these extra models are outside
the scope of this project and therefore will not be described.

When execution starts it is possible to see a progress bar increasing its length while
advancing with the computation of the generations. Depending on the number of tasks and
on the NoC size, the processing time may take a few minutes. In an Intel I5 1.7Ghz running
Microsoft Windows 8 Professional, a sample application with 149 randomly generated tasks
to be mapped onto a 9x9 mesh will take 6 minutes to complete on average.

At the end of the execution, several files will be generated. One Population file
per generation is produced, containing all existing individuals in the Population at the end of
each generation; one dominate set file, containing all dominant individuals at the end of each
generation; an archive file, containing the final archive version at the end of the execution;
and a log file containing the best and the worst fitness values of each generation.

In order to certify the MODE is converging properly and producing better solutions
each time, we have used the Hyper-Volume metric. According to [31], the Hyper-Volume
metric measures the area covered by all non-dominated solutions from a reference point, as
shown in Figure 4.8.

Figure 4.8: schema for calculation fo the Hyper-Volume metric. By [31].

We used the point R = (1, 1) as a reference for this calculation. However, this is only
valid if all values from both fitnesses were previously scaled to a [0.0 to 1.0] range. Thus,
in order to avoid the introduction of any undesired biases, this calculation is performed only
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after all generations have been computed. This will allow the identification of global minimum
and maximum values which will eventually be used to reach the desired fitness of candidate
solution from any of the processed generations. In order for a MODE implementation to run
properly, it is expected that the Hyper-Volume metric will display a constant growth, or at
least, never decrease (when optimizing minimization-based problems, like our model). This
behaviour happens when a Pareto Front forms; the front will be positioned further away from
the reference point each time. If the Hyper-Volume area suddenly had its area decreased,
it would mean that a good candidate solution, that was previously close to the Pareto Front,
was lost. Therefore, this metric is a safe indication of convergence used by Pareto Front-
based Evolutionary Algorithms [31].

Tool set

A tool set was implemented to help running tests and also to validate results. The
first is the Hyper-Volume Calculation tool, shown in Figure 4.9.

(a) Hyper-Volume calculation tool. (b) Graphics and video generator.

Figure 4.9: Tool set.

The Hyper-Volume Calculation tool, as shown in Figure 4.9a, reads output files
generated by the last execution of the source folder and generates a log file containing the
value of the hyper-volume which was calculated for each generation. Optionally, it can also
plot this log file, and also scale global values to the [0.0, 1.0] range.

The graphic and video generator tool is shown in Figure 4.9b. As in the same way
the previous tool operates, it reads output files generated on the source folder and plots the
Population, as well as the Archive (Pareto Front) obtained after computing each generation.
Optionally, it can assemble an MP4 video to dynamically show how the MODE has behaved.

Figure 4.10 shows a benchmark application we have processed to make sure our
MODE implementation was running properly.

In Figure 4.10a it is possible to check the generation 0, where an incipient Pareto
Front starts to form, although still out of the range of the ZDT1 function. The Pareto Front is
known to be subjected to the domain within the [0, 1] period on both axis. During the next
generations, as shown in Figure 4.10b and Figure 4.10c, this initial Pareto Front gets closer
to the real one (shown as a blue curve). During the next generations, most solution points
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(a) Generation (0) (b) Generation (16) (c) Generation (94)

(d) Generation (233) (e) Generation (332) (f) Generation (526)

Figure 4.10: Sample with the ZDT1 benchmark function.

will be placed right over the real Pareto Front. The speed of this convergence depends on
the values chosen for the execution parameters CR, F and NP.

4.3 Single-Objective Differential Evolution Approach

The Single-Objective Differential Evolution algorithm (SODE) is useful for optimiza-
tion problem that relies at only one constraint to be reduced (or increased). The second
application model we explored was also formed by a generic 2D NoC mesh, but at this time,
each PE can allocate only one task at time. Therefore, on this model, parallelism is achieved
by running different tasks on different PEs simultaneously. Although this model focuses on
reducing communication volume, the two fitness functions created for the MODE model can
be subject to optimization individually, one at time.

The Communication Volume Metric works exactly the same way as it was coded
to adhere to the MODE model. The difference relies on the fact that under this SODE, a
candidate solution would never allocate more than one task onto the same PE at the same
time. Thus, it was necessary to personalize the Mutation and Recombination procedures to
respect this constraint.

Considering the SODE algorithm optimizes only one objective at time, this model
requires lesser computing efforts in order to run. There is not the concept of dominance,
given the fact there a Pareto Front is not feasible to raise. Instead, to check the algorithm
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convergence it is necessary to follow the behaviour of fitness values among individuals in
the population. For example, when the optimization problem seeks reducing a variable, a
decreasing tendency must be noted. On the other hand, when the problem demands to
magnify a variable, an increasing tendency must be registered among in individuals in the
Population.

Figure 4.11: Single-Objective Differential Evolution running an Sphere function benchmark.

Figure 4.11 shows the results of our implementation of the SODE algorithm running
an Sphere function benchmark. The value of the best solution in the Population (in this case,
the individual with the smallest fitness value) is recorded into a log file and them plotted on
this graph. Additionally, it is possible to record the value of the worst fitness from each
generation set, and then create a more detailed view on how the algorithm is enhancing (or
not) its Population.

4.3.1 Proposed Modification

For the proposed SODE approach, we have applied a modification inside the Re-
combination Genetic Operator in order to try to reward individuals that eventually may con-
tain characteristic considered desirable to generate improved off-springs. This is achieved
by using a pattern previously identified from the original task communication graph used as
an input parameter. The method consists in trying to find which tasks are most communicat-
ing among them all, in a way that tasks that send and receive a bigger amount of messages
will be considered as a core. Thus, all tasks sending or receiving messages from this core
task should be kept at one hop distant from each other, including the core task. Figure 4.12
shows an example of this technique. First, a list containing all tasks that send messages are
created. After that, this list is enhanced by adding on the same position tasks both tasks,
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who send and receive messages from each other. At this point, a task might appear at more
than one position at time. Finally, the message sizes are summed at each position on the
list. The position containing the greatest value indicates the group of tasks that must be kept
closer preferably. If two or more task group reach the same value, then only the first group
met will be considered as a seed.
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A, B: 5
A, C: 5
B, D: 3
D, F: 1
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A, C: 5
B, D: 3
D, F: 1+4
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E, B: 2

A, B, C,E: 5+5+3
B, D, A, E: 3+5+2
D, F, B: 5+3
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B, D, A, E: 9
D, F, B: 8
C, E, A: 10
E, A, C, B: 10

tA, tB, tC and tE

Figure 4.12: Identifying most communicating tasks.
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5. EXPERIMENTAL RESULTS

This chapter presents and discuses the results of the experiments that were run
using our SODE implementation to work with the Task Mapping onto NoC problem. The first
section describes how the NASA NAS benchmark was used to evaluate our proposed imple-
mentation of the SODE. The next section further describes one of the tested benchmarks,
the CG application. Following this section, the results of the test are discussed. Later, the
next section describes a comparison between the results obtained by SODE and the CAFES
framework. The last section presents some discussions.

A ’robot agent’ was created to automatize the tests and to guarantee a smoother
and more effective test execution. This robot reads an input file where each line represents a
test case and informs the required execution parameters to run the test. These parameters
are: the mode (SODE or MODE), the source tasks file, the fitness function to be used (f1 or
f2), NP, the number of generations, CR, F, the target architecture (set to ’MESH’ by default),
the number of processor lines, the number or processor columns and the number of grid
layers (set to ’1’ by default), as demonstrated in Figure 5.1.

Figure 5.1: Sample of the input file for the test robot.

5.1 Using the NASA NAS benchmark to evaluate the SODE implementation

The SODE implementation was evaluated by using the NASA NAS Parallel bench-
mark, as described previously in Section 2.3.1. Test cases were defined by varying the
combinations of the execution parameters, as demonstrated in Table 5.1.

Table 5.1: Domain of the Execution parameter values.

Parameters Range
NP 10 and 20
G 100, 300, 500, 100, 5000 and 10000

CR 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 06, 0.7, 0.8 and 0.9
F 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 06, 0.7, 0.8 and 0.9
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Since SODE is a stochastic random-based algorithm, a number of independent test
cases were created for using different input parameter sets. Each test case was executed at
least 30 times in order to reach the required number for consideration as a valid statistical
sample. All combinations of input parameters were tried, and special attention was given to
the CR and F pair, making sure they had presented the following ranging behaviours: CR =
{0.5, 0.1, 0.2, ... , 0.9} while F = {0.5, 0.1, 0.2, ... , 0.9}; CR = {0.5, 0.1, 0.2, ... , 0.9} while F =
{0.9, 0.8, ... , 0.1, 0.05}; and CR = {0.9, 0.8, ... , 0.1, 0.05} while F = {0.5, 0.1, 0.2, ... , 0.9}.

5.1.1 NASA NAS CG Evaluation

The NASA NAS CG simulates a Conjugate Gradient calculation application, which
is a method used to solve a particular case of linear equations. It is characterized by pre-
senting irregular patterns of memory access and message exchange.

Figure 5.2: Top 5 Best solutions for the NASA NAS CG application: test case 1

Figure 5.2 displays a data plot from the best candidate solution which was gener-
ated during the tests using the CG application. This test was executed using the following
input parameter set: NP = 10, CR = 0.7, F = 0.3, G = 1000. This particular test case
took 93009ms to be executed. The line of the worst fitness values (green) suggests the
population was subject to a continuing enhancement; where even the line with the best val-
ues appeared to be stuck in a particular minimum local (as possible to see from the period
that started around generation 4000 to almost generation 8900, when a new minimum was
reached). Another important finding was the fact that the algorithm convergence seemed
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to be faster on earlier generations; most likely due to the fact that there was more space
available to be explored on the solution space when the execution started.

It is possible to find a similar behaviour in the subsequent found best candidate
solutions, as demonstrated in the Figures 5.3, 5.4, 5.5 and 5.6.

The plotted test presented in Figure 5.3 used the following input parameter set:
NP = 20, CR = 0.7, F = 0.3, G = 1000, and was executed in 242972ms.

Figure 5.3: Top 5 Best solutions for the NASA NAS CG application: test case 2

The next best candidate solution found had its data plotted in Figure 5.4. This time,
the SODE generated a steep decrease in the fitness value immediately in early generations,
and kept enhancing this value in subsequent generations; although was not as fast as before.
Input parameters were set to NP = 20, CR = 0.8, F = 0.2, G = 10000 and the required
execution time was 243395ms.

The following test case is presented in Figure 5.5. At this time, very few enhances
were reached throughout the execution. Although, a value few generations obtained a final
best value before they reached the stop condition. The following input parameter set was
used on this test case: NP = 10, CR = 0.5, F = 0.5, G = 10000 and the execution time was
equal to 108016ms.

The final test case amongst the best candidate solutions found, is shown in Figure
5.6. It is possible to see two big enhancements, that were generated throughout the test
execution; the first was seen in the beginning generations, and the second appeared around
generation number 1700. This test was run in 120726ms and the input parameters were:
NP = 20, CR = 0.4, F = 0.4, G = 5000.
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Figure 5.4: Top 5 Best solutions for the NASA NAS CG application: test case 3

Figure 5.5: Top 5 Best solutions for the NASA NAS CG application: test case 4
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Figure 5.6: Top 5 Best solutions for the NASA NAS CG application: test case 5

5.1.2 Detail Data Results of all tested NASA NAS application benchmarks

All tested applications were evaluated considering two main aspects: the quality of
the generated candidate solutions, and the execution time they had consumed to perform.

General Quality of Generated Candidate Solutions

The following tables show the top 5 best candidate solutions found for each NASA
NAS benchmark application tested. Data is grouped by the generation size (parameter G).
The best fitness value found, as well as the fitness mean value and its standard deviation
are also shown. This measure is an indication of how the population behaved during the
test execution. Smaller values on the standard deviation suggest that a greater number of
candidate solutions were able to approach the region where the best solution was located.
On the other hand, it was also important to make sure the algorithm was able to explore
alternative locations on the solutions space in order to prevent the algorithm to getting stuck
into a local minimum area.

Table 5.2 presents the top 5 best values obtained on each group of test case exe-
cutions, grouping the data by the number of computed generations (G parameter). Table 5.3
does the same for the FT benchmark application. The IS application test results are detailed
in Table 5.4; whereas Table 5.5 presents the results of the LU application tests. Finally, Table
5.6 shows the data of the test results obtained after MG application testing.
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Table 5.2: Best Solutions using SODE with NASA NAS CG application.

SODE test results running the NASA NAS CG benchmark application

G NP CR F

Best Fitness Generation Best Fitness Value
Mean Best Worst Stdev Mean Best Worst Stdev

100 20 0.2 0.2 63 19 97 29 1789528 1037680 2001172 194267
100 10 0.4 0.4 72 15 97 29 1898272 1040564 2057930 224526
100 20 0.6 0.4 63 11 98 33 1849517 1047111 2044072 227339
100 20 0.4 0.4 46 10 90 26 1870105 1062317 2004180 212459
100 20 0.4 0.6 63 12 98 30 1848679 1078681 1983915 225329

300 10 0.4 0.4 222 109 296 63 1791844 1046383 1928953 216210
300 10 0.4 0.6 251 151 294 32 1829180 1050756 1956887 212704
300 20 0.8 0.2 154 10 277 105 1720465 1051436 1883414 179233
300 10 0.7 0.3 209 54 298 80 1800307 1052310 1934368 204320
300 20 0.4 0.6 140 11 285 94 1784007 1060554 1918935 194512

500 20 0.6 0.4 248 22 459 155 1756861 1026169 1924702 217243
500 10 0.2 0.2 293 10 499 191 1695562 1038611 1934008 172524
500 20 0.5 0.5 332 21 499 134 1793411 1039000 1927421 162356
500 20 0.9 0.1 274 26 497 183 1442714 1040603 1710185 203817
500 10 0.7 0.3 248 10 479 154 1775265 1041377 1876809 181022

1000 10 0.6 0.6 634 220 981 256 1764817 996990 1908720 212729
1000 20 0.7 0.3 671 38 956 281 1686346 1002204 1853708 211006
1000 10 0.8 0.2 640 13 983 369 1619631 1014140 1992747 207921
1000 20 0.8 0.2 533 11 990 400 1662831 1027161 1860116 178468
1000 20 0.5 0.5 601 10 999 339 1756503 1027614 1906023 148314

5000 20 0.4 0.4 2626 13 4964 1737 1555924 977349 1858030 191064
5000 20 0.5 0.5 3306 15 4984 1482 1632847 992284 1958477 145583
5000 20 0.8 0.2 2800 10 4989 2168 1498114 992845 1862494 269410
5000 10 0.6 0.6 3221 213 4988 1577 1651905 993967 1783609 185865
5000 20 0.7 0.3 2656 10 4959 1833 1615491 994603 1956217 211961

10000 10 0.7 0.3 6555 11 9864 5667 1434127 956425 1937284 490925
10000 20 0.7 0.3 2011 18 5023 2692 1579205 960702 1811529 352678
10000 20 0.8 0.2 1215 12 8959 2964 1635647 975035 1903899 350996
10000 10 0.5 0.5 7091 5266 9460 1934 1296877 975672 1624648 348499
10000 20 0.5 0.5 3194 11 9580 3713 1540025 977738 1884257 369674
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Table 5.3: Best Solutions using SODE with NASA NAS FT application.

SODE test results running the NASA NAS FT benchmark application

G NP CR F

Best Fitness Generation Best Fitness Value
Mean Best Worst Stdev Mean Best Worst Stdev

100 20 0.9 0.1 45 12 97 30 3061574 2902705 3104730 64920
100 20 0.7 0.3 46 12 81 49 2994473 2902891 3086055 129517
100 10 0.4 0.6 45 10 81 50 3017030 2919890 3114170 137377
100 10 0.7 0.7 34 13 56 30 3015335 2923582 3107088 129758
100 10 0.1 0.1 48 12 99 31 3077003 2928283 3123282 54323

300 20 0.7 0.3 63 13 204 94 3016365 2814974 3106117 135361
300 10 0.8 0.2 138 16 261 173 2962427 2830491 3094363 186586
300 20 0.9 0.1 142 30 276 83 3061405 2851269 3097316 70065
300 10 0.3 0.3 53 13 93 57 2989329 2854231 3124427 191057
300 20 0.5 0.5 165 80 250 120 2898833 2873235 2924430 36200

500 20 0.5 0.5 127 11 307 141 2942947 2719051 3100288 186746
500 20 0.8 0.2 47 10 146 66 3025981 2793280 3124047 155889
500 20 0.9 0.1 121 12 288 94 3051766 2802796 3098035 93989
500 10 0.7 0.3 128 12 244 164 2973508 2823874 3123142 211614
500 20 0.7 0.3 164 11 467 262 3025147 2826896 3124657 171691

1000 20 0.6 0.4 109 14 392 188 2994175 2722507 3092367 181196
1000 20 0.7 0.3 331 10 955 540 2990424 2769662 3123203 192493
1000 20 0.5 0.5 348 10 921 460 2994846 2788301 3107088 152165
1000 20 0.6 0.6 481 28 934 641 2937987 2788831 3087143 210938
1000 20 0.4 0.4 399 15 784 544 2957224 2790626 3123821 235604

5000 10 0.7 0.3 656 12 2584 1285 2981251 2598294 3124865 256262
5000 20 0.7 0.3 1197 26 4684 2325 2971038 2616395 3106865 236756
5000 10 0.5 0.5 2449 23 4165 2161 2805819 2632472 3095754 252690
5000 20 0.8 0.2 673 10 3954 1607 3022432 2658857 3124853 178878
5000 20 0.4 0.6 204 10 398 274 2886045 2695581 3076508 269356

10000 20 0.5 0.5 3495 13 7509 4045 2870212 2618763 3116888 265030
10000 20 0.4 0.4 2681 16 8008 4613 2926434 2620444 3085381 265062
10000 10 0.5 0.5 8195 6960 9431 1747 2678982 2628470 2729493 71434
10000 20 0.7 0.3 2922 10 8747 5044 2943917 2640106 3107088 263349
10000 20 0.8 0.2 2213 10 8822 4406 2990663 2644067 3116638 231194
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Table 5.4: Best Solutions using SODE with NASA NAS IS application

SODE test results running the NASA NAS IS benchmark application

G NP CR F

Best Fitness Generation Best Fitness Value
Mean Best Worst Stdev Mean Best Worst Stdev

100 20 0,9 0,1 50 25 99 28 1131270 1125246 1138435 5022
100 10 0,3 0,3 12 10 16 3 1139102 1128207 1146510 9637
100 20 0,1 0,1 44 12 81 30 1132704 1130540 1134266 1327
100 10 0,05 0,05 45 11 89 28 1137859 1130619 1148180 5301
100 10 0,9 0,1 37 16 89 25 1138914 1130696 1144822 5164

300 10 0,1 0,1 22 11 59 18 1131790 1122616 1139414 5724
300 20 0,3 0,3 13 11 16 3 1134579 1124307 1141733 9122
300 20 0,9 0,1 72 19 147 49 1131712 1125493 1138520 4345
300 20 0,05 0,05 86 21 212 60 1133797 1128011 1137946 2749
300 10 0,8 0,2 15 13 17 3 1131721 1130341 1133100 1951

500 20 0,9 0,1 46 14 87 31 1133790 1124764 1139017 5192
500 20 0,1 0,1 90 42 251 80 1132870 1126486 1137554 4142
500 10 0,05 0,05 82 12 250 69 1136304 1126700 1149241 5077
500 20 0,7 0,3 27 12 44 16 1132888 1127176 1139456 6185
500 10 0,1 0,1 68 26 127 40 1134628 1128001 1139478 3846

1000 10 0,9 0,1 35 15 59 14 1135542 1122616 1145291 7889
1000 20 0,9 0,1 107 35 230 62 1129923 1125766 1133717 3301
1000 20 0,1 0,1 37 10 86 29 1130375 1127043 1133521 2652
1000 20 0,8 0,2 28 11 41 16 1132463 1127105 1137891 5393
1000 20 0,05 0,05 162 11 544 150 1134438 1130062 1139018 2572

5000 20 0,8 0,2 36 19 67 27 1131388 1123671 1137843 7170
5000 20 0,9 0,1 100 14 262 99 1131491 1125613 1135899 4110
5000 20 0,1 0,1 64 10 145 50 1131274 1126699 1135616 2614
5000 20 0,05 0,05 150 22 446 141 1134272 1128046 1143326 3392
5000 20 0,3 0,3 22 15 33 10 1133918 1131945 1136983 2690

10000 20 0,3 0,3 31 14 48 24 1133843 1126174 1141511 10845
10000 20 0,05 0,05 120 17 449 107 1133930 1126892 1138887 2895
10000 20 0,1 0,1 69 32 122 38 1130532 1126895 1134240 2865
10000 20 0,7 0,3 25 24 27 2 1134519 1127176 1139261 6449
10000 10 0,9 0,1 31 19 52 11 1135792 1131023 1138362 2882
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Table 5.5: Best Solutions using SODE with NASA NAS LU application.

SODE test results running the NASA NAS LU benchmark application

G NP CR F

Best Fitness Generation Best Fitness Value
Mean Best Worst Stdev Mean Best Worst Stdev

100 20 0.9 0.1 83 69 96 11 4114793 3947629 4306354 147461
100 10 0.1 0.1 83 70 95 10 4284131 4079869 4433972 149596
100 10 0.05 0.05 94 89 99 4 4512482 4320080 4680297 148082
100 20 0.8 0.2 82 68 96 11 4956674 4720959 5089371 167115
100 10 0.9 0.1 54 43 65 9 4934605 4734089 5083388 147218

300 20 0.9 0.1 176 158 193 14 3896750 3721676 4107653 159598
300 20 0.1 0.1 159 143 175 13 4347353 4130250 4514092 160699
300 10 0.05 0.05 194 173 214 17 4342720 4188618 4546978 150537
300 10 0.1 0.1 69 46 92 19 4587617 4421274 4792477 153971
300 20 0.4 0.4 47 27 66 16 4753508 4522150 4881232 163890

500 20 0.9 0.1 178 94 261 68 4015476 3828909 4206471 154171
500 20 0.1 0.1 225 136 178 73 4198977 4020634 4399109 155278
500 10 0.05 0.05 130 21 240 155 4622469 4257177 4987761 516601
500 10 0.9 0.1 130 29 230 82 4634355 4425601 4777657 150994
500 10 0.1 0.1 214 104 324 90 4626515 4467360 4835815 154544

1000 20 0.05 0.05 382 315 449 95 4242671 4057703 4427639 261584
1000 20 0.1 0.1 160 116 204 36 4269924 4104967 4493150 163744
1000 20 0.9 0.1 98 50 146 39 4592006 4429736 4797826 153395
1000 20 0.2 0.2 80 38 122 34 5004842 4798761 5156338 150997
1000 10 0.7 0.3 101 57 145 36 4988517 4826846 5174964 143194

5000 20 0.9 0.1 146 89 202 46 4142872 3974924 4322387 142087
5000 20 0.1 0.1 83 22 144 50 4209548 4007302 4377772 153145
5000 20 0.05 0.05 124 79 170 64 4456883 4387956 4525810 97477
5000 10 0.9 0.1 146 87 204 48 4706665 4517852 4898434 155386
5000 20 0.4 0.4 79 18 140 50 4797465 4594562 4965337 153382

10000 20 0.05 0.05 198 45 352 217 4302870 3818578 4787161 684892
10000 10 0.05 0.05 149 66 232 117 4219317 4055089 4383545 232253
10000 10 0.1 0.1 271 70 471 164 4317691 4082057 4441460 166689
10000 20 0.9 0.1 292 128 456 134 4410640 4218857 4588729 151310
10000 20 0.1 0.1 214 41 386 141 4633070 4466170 4845085 157946
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Table 5.6: Best Solutions using SODE with NASA NAS MG application.

SODE test results running the NASA NAS MG benchmark application

G NP CR F

Best Fitness Generation Best Fitness Value
Mean Best Worst Stdev Mean Best Worst Stdev

100 20 0.1 0.1 54 41 75 57 681934 681792 682075 116
100 10 0.1 0.1 24 10 29 21 694506 694272 694739 191
100 20 0.05 0.05 77 62 92 21 709529 709259 709799 382
100 10 0.9 0.1 22 10 27 20 719083 718884 719282 162
100 20 0.9 0.1 69 54 96 73 721410 721249 721571 131

300 20 0.05 0.05 259 249 270 15 645986 636021 655951 14093
300 20 0.7 0.3 59 48 83 63 680206 674706 685706 4491
300 10 0.9 0.1 43 21 54 39 683718 677545 689891 5040
300 20 0.1 0.1 168 119 228 172 691035 685307 696763 4677
300 10 0.05 0.05 219 141 297 110 709846 693146 726547 23618

500 20 0.05 0.05 181 71 292 156 670529 645793 695265 34982
500 20 0.1 0.1 179 155 257 197 665993 651611 680375 11743
500 20 0.8 0.2 41 30 56 42 695418 681496 709339 11367
500 10 0.1 0.1 145 131 211 162 700733 685796 715670 12196
500 20 0.9 0.1 111 96 159 122 712433 696939 727926 12650

1000 10 0.9 0.1 91 72 127 97 678438 674490 682385 3223
1000 10 0.1 0.1 78 55 106 80 689363 684896 693830 3647
1000 20 0.1 0.1 95 83 137 105 696248 691316 701179 4027
1000 20 0.05 0.05 183 171 195 17 697418 692958 701878 6307
1000 20 0.9 0.1 70 55 98 74 700684 695702 705666 4068

5000 20 0.05 0.05 186 89 284 138 681737 668963 694512 18066
5000 10 0.05 0.05 43 32 55 16 700506 690789 710224 13743
5000 20 0.9 0.1 115 100 165 127 705997 693560 718434 10155
5000 10 0.9 0.1 176 160 256 197 709242 696766 721718 10187
5000 20 0.1 0.1 36 14 43 31 711610 697678 725541 11375

10000 10 0.05 0.05 89 73 106 23 694470 674718 714223 27934
10000 20 0.9 0.1 118 95 166 126 699399 680927 717870 15082
10000 20 0.05 0.05 111 54 169 81 712112 701177 723048 15465
10000 20 0.1 0.1 122 73 159 118 719215 701289 737141 14637
10000 10 0.9 0.1 146 109 201 152 729683 710301 749065 15825
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Execution Time

This section presents the results obtained from recording the execution times on all
performed tests.
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(a) NASA NAS CG application.
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(b) NASA NAS FT application.
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(c) NASA NAS IS application.
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(d) NASA NAS LU application.
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(e) NASA NAS MG application.

Figure 5.7: Execution time of NASA NAS application benchmarks running under the SODE
implementation.

Figure 5.7 presents the data plots from execution times taken during the test execu-
tions. It is possible to see the execution time grow at almost the same rate as the Population,
times the number of generations (G ∗ NP). Although all tested applications seemed to have
behaved the same way in regards to the growth of execution time measured, each applica-
tion presented particular values for its execution time, as demonstrated in Figure 5.8.
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Figure 5.8: Global comparison of execution time.

Despite all tested applications having the exactly same number of tasks to com-
pute, the number of send and receive messages amongst them were particular to each
application. For example, the FT application, which implements an 3D fast Fourier Trans-
form, performs all-to-all communication; a fact that was reflected in the extra time required
to compute its benchmark.

5.1.3 SODE versus CAFES Comparison

This section shows the results of a comparison executed between the CAFES
framework and our proposed implementation. The comparison was based on the quality
of the candidate solutions generated by both approaches.

Table 5.7 shows a frame comparing the top 5 best candidate solutions generated
by each implementation, SODE and CAFES.

The SODE implementation was superior to CAFES in generating better candidate
solutions for the CG and FT applications; however, for the IS application, solutions gener-
ated for the CAFES framework were slightly more efficient (around 1% better) than those
generated by the SODE. Finally, CAFES was superior in generating candidate solutions for
the LU and MG applications, as shown in Figure 5.9.

Another important indication of a good convergence is the standard deviation met-
ric. It measures the proximity of the best candidate solutions to each other in the solution
space, and may suggest how far they are from an optimal solution. Although, it is not able to
predict whether or not it is a global or local optimum region. Figure 5.10 shows a comparative
between the two tested approaches.
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Table 5.7: Comparison between SODE and CAFES generated solutions.

Best Fitness Value
Bench App Mean Top 5 Stdev

CG

SODE 969114

956425

8766

960702
975035
975672
977738

CAFES 989330

975064

11537

977700
992170
995720

1005998

FT

SODE 2616473

2598294

9954

2616395
2618763
2620444
2628470

CAFES 3020149

3020280

100

3020140
3019975
3020201
3020147

IS

SODE 1124121

1122616

914

1123671
1124307
1124764
1125246

CAFES 1109178

1108580

574

1108897
1108869
1110224
1109320

Best Fitness Value
Bench App Mean Top 5 Stdev

LU

SODE 3858343

3721676

92400

3818578
3828909
3947629
3974924

CAFES 2503478

2546819

51726

2401693
2523786
2522545
2522545

MG

SODE 655376

636021

14357

645793
651611
668963
674490

CAFES 485965

490259

4950

483629
485791
492037
478110

969114

989330
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Figure 5.9: SODE vs CAFES: quality of generated candidate solutions.
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Figure 5.10: SODE vs CAFES: standard deviation comparison.

The SODE implementation was more efficient on keeping a small standard devia-
tion when computing the CG application benchmark. However, for all other tested applica-
tions, CAFES was superior on reaching smaller values for this metric.

5.2 Conclusions

Effectiveness of the proposed SODE implementation was demonstrated as a result
of the experiments based on the NASA NAS Parallel and its select benchmark applications.
Our implementation proved to keep the good qualities of convergence of the classical DE
implementations. The importance of choosing the right set of input parameter for each
applications was also demonstrated. Finally, our SODE implementation has shown it can be
considered as a viable alternative to the CAFES framework for some applications.
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6. CONCLUSIONS

The Task Mapping onto NoC is a NP-Hard class problem, which means that brute
force approaches are not viable to solve this class of problems. For this reason, heuristic
methods are frequently used to help solve this challenge. Evolutionary Algorithms represent
one important branch within heuristic search techniques; and amongst these branches rests
the Differential Evolution algorithm.

In this work we have proposed an innovative approach for solving the Task Mapping
onto Noc Problem by using a SODE implementation. Our algorithm extended the classical
SODE by adding a new procedure inside the DE’s Mutation genetic operator, which started
to reward candidate solutions that contained a seed, indicative of a previously identified
relationship amongst communicating tasks. Since the seed identification was executed only
once, and before it started computing the DE generations, its impact on the asymptotic
complexity of the main computing algorithm was negligible.

Our implementation was evaluated by running the classical NASA NAS Parallel
benchmark, and by selecting the applications within this package that relied on task com-
munication. The chosen applications were CG, FT, IS, LU and MG. It was demonstrated
that our SODE implementation was able to generate feasible candidate solutions for these
benchmark applications, provided that the right combination of input parameters was made.
For this reason, tests were run using different combinations of input parameters, trying to
find the best combination for them in each tested application.

Tests have shown our implementation was superior than the CAFES framework for
computing CG and FT application benchmarks, similar (around 1% less efficient) for the IS
application and less efficient for the LU and MG applications.

These results have shown the importance of the proposed algorithm for solving the
Task Mapping problem, especially when such applications have a similar profile to those
where our implementation was superior.

This work can potentially contribute to future implementations based on the parallel
DE; possibly seeking to explore more fronts of the space solutions by using concurrent
agents, but exploring the same united Population set.

Finally, this work has made a contribution to improving the CAFES framework, by
exploring its code and mapping opportunities for future enhancements to be made on that
tool set.



76



77

References

[1] Al-Wattar, A.; Areibi, S.; Grewal, G. “Efficient mapping and allocation of execution
units to task graphs using an evolutionary framework”, ACM SIGARCH Computer
Architecture News, vol. 43–4, Sep 2016, pp. 46–51.

[2] Almojel, A. “Characterization of ilp distribution for nasa nas parallel benchmarks”,
Journal of King Saud University - Computer and Information Sciences, vol. 16,
Jan 2004, pp. 45–65.

[3] Antunes, E.; Aguiar, A.; et al.. “Partitioning and mapping on NoC-based MPSoC: an
energy consumption saving approach”. In: International Workshop on Network on Chip
Architectures (NoCArc), 2011, pp. 51–56.

[4] Bao, Y.; Bienia, C.; Li, K. “The PARSEC benchmark suite tutorial”. Source: http:
//parsec.cs.princeton.edu/download/tutorial/3.0/parsec-tutorial.pdf, July 2016.

[5] Bienia, C.; Kumar, S.; et al.. “The PARSEC benchmark suite: Characterization and
architectural implications”. In: International Conference on Parallel Architectures and
Compilation Techniques (PACT), 2008, pp. 72–81.

[6] Bokhari, S. “A shortest tree algorithm for optimal assignments across space and time
in a distributed processor system”, Transactions on Software Engineering, vol. 7–6,
Nov 1981, pp. 583–589.

[7] Braun, T.; Siegel, H., N.; et al.. “A comparison of eleven static heuristics for mapping
a class of independent tasks onto heterogeneous distributed computing systems”,
Journal of Parallel and Distributed computing, vol. 61–6, Jun 2001, pp. 810–837.

[8] Chen, W. “Task partitioning and mapping algorithms for multi-core packet processing
systems”, Ph.D. Thesis, University of Massachusetts Amherst, 2009, 72p.

[9] Chu, W. “Optimal file allocation in a multiple computer system”, Transactions on
Computers, vol. C-18–10, Oct 1969, pp. 885–889.

[10] Cortes, O.; Pais, M.; et al.. “Differential evolution on a gpgpu: The influence of
parameters on speedup and the quality of solutions”. In: International Parallel and
Distributed Processing Symposium Workshop (IPDPSW), 2015, pp. 299–306.

[11] Dally, W. J.; Towles, B. “Route packets, not wires: on-chip interconnection networks”.
In: Design Automation Conference (DAC), 2001, pp. 684–689.

[12] Das, D.; Verma, L.; Das, A. “A differential evolutionary approach to solve the hardware
software partitioning problem”, International Journal of Engineering Research and
Technology, vol. 3–7, Jul 2016, pp. 5.

http://parsec.cs.princeton.edu/download/tutorial/3.0/parsec-tutorial.pdf
http://parsec.cs.princeton.edu/download/tutorial/3.0/parsec-tutorial.pdf


78

[13] Das, S.; Suganthan, P. N. “Differential evolution: A survey of the state-of-the-art”,
Transactions on Evolutionary Computation, vol. 15–1, Feb 2011, pp. 4–31.

[14] Deng, C.; Zhao, B.; et al.. “Modified differential evolution for task assignment problem”.
In: International Workshop on Intelligent Systems and Applications (ISA), 2010, pp.
1–4.

[15] Dick, R.; Rhodes, D.; Wolf, W. “Tgff: task graphs for free”. In: International Workshop
on Hardware/Software Codesign (CODES/CASHE), 1998, pp. 97–101.

[16] Division, N. A. S. “NAS parallel benchmarks”. Source: http://www.nas.nasa.gov/
publications/npb.html, Jul 2016.

[17] Fisher, N.; Anderson, J.; Baruah, S. “Task partitioning upon memory-constrained
multiprocessors”. In: Embedded and Real-Time Computing Systems and Applications
(RTCSA), 2005, pp. 416–421.

[18] Fister, I.; Fister Jr, I.; et al.. “A comprehensive review of firefly algorithms”, Swarm and
Evolutionary Computation, vol. 13, Dec 2013, pp. 34–46.

[19] for Machine Learning, C.; Systems, I. “UCI machine learning repository”. Source:
http://archive.ics.uci.edu/ml/, Jul 2007.

[20] Göhringer, D.; Hübner, M.; et al.. “A design methodology for application partitioning
and architecture development of reconfigurable multiprocessor systems-on-chip”.
In: International Symposium on Field-Programmable Custom Computing Machines
(FCCM), 2010, pp. 259–262.

[21] Goldberg, D. “Genetic Algorithms in Search, Optimization and Machine Learning”.
Addison-Wesley Longman Publishing Co., Inc., 1989, 1 ed., 432p.

[22] Haeser, G.; Ruggiero, M. “Aspectos teóricos de simulated annealing e um algoritmo
duas fases em otimização global”, Trends in Applied and Computational Mathematics,
vol. 9–3, Sep 2008, pp. 395–404.

[23] Hao, K.; Wang, B.; Luo, Y. “Multi-objective network coding optimization based
on NSGA-ii algorithm”. In: International Conference on Control Engineering and
Communication Technology (ICCECT), 2012, pp. 843–846.

[24] Heineman, G.; Pollice, G.; Selkow, S. “Algorithms in a nutshell: a practical guide”.
O’Reilly Media, Inc., 2016, 2 ed., 375p.

[25] Hu, J.; Marculescu, R. “Energy-aware mapping for tile-based NoC architectures under
performance constraints”. In: Asia and South Pacific Design Automation Conference
(ASP-DAC), 2003, pp. 233–239.

http://www.nas.nasa.gov/publications/npb.html
http://www.nas.nasa.gov/publications/npb.html
http://archive.ics.uci.edu/ml/


79

[26] Ingber, L. “Simulated annealing: Practice versus theory”, Mathematical and computer
modelling, vol. 18–11, Dec 1993, pp. 29–57.

[27] Jena, R.; Sharma, G. “A multiobjective evolutionary algorithm-based optimisation
model for network on chip synthesis”, International Journal of Innovative Computing
and Applications, vol. 1–2, Jan 2007, pp. 121–127.

[28] Kirkpatrick, S.; Gelatt, C.; Vecchi, M. “Optimization by simulated annealing”, Science,
vol. 220–4598, May 1983, pp. 671–680.

[29] Krömer, P.; Platoš, J.; et al.. “An implementation of differential evolution for independent
tasks scheduling on GPU”. In: International Conference on Hybrid Artificial Intelligence
Systems (HAIS), 2011, pp. 372–379.

[30] Le Beux, S.; Bois, G.; et al.. “Combining mapping and partitioning exploration for noc-
based embedded systems”, Journal of Systems Architecture, vol. 56–7, Jul 2010, pp.
223–232.

[31] Lim, K.; Ibrahim, Z.; et al.. “Improving vector evaluated particle swarm optimisation
by incorporating nondominated solutions”, The Scientific World Journal, vol. 2013–1,
Mar 2013, pp. 19.

[32] Linden, R. “Algoritmos Genéticos”. BRASPORT, 2008, 2 ed., 400p.

[33] Mandelli, M. “Exploration of runtime distributed mapping techniques for emerging large
scale MPSoCS”, Ph.D. Thesis, Pontifícia Universidade Católica do Rio Grande do Sul,
2015, 134p.

[34] Maravilha, A.; Ramírez, J.; Campelo, F. “Combinatorial optimization with differential
evolution: a set-based approach”. In: Conference on Genetic and Evolutionary
Computation (GECCO), 2014, pp. 69–70.

[35] Marcon, C. “Modelos para o mapeamento de aplicações em infra-estruturas de
comunicação intrachip”, Ph.D. Thesis, Universidade Federal do Rio Grande do Sul,
2005, 192p.

[36] Marcon, C.; Calazans, N.; et al.. “Exploring NoC mapping strategies: an energy and
timing aware technique”. In: Conference on Design, Automation and Test in Europe
(DATE), 2005, pp. 502–507.

[37] Marcon, C.; Calazans, N.; et al.. “CAFES: A framework for intrachip application
modeling and communication architecture design”, Journal of Parallel and Distributed
Computing, vol. 71–5, May 2011, pp. 714–728.



80

[38] Mishra, K.; Harit, S. “A fast algorithm for finding the non dominated set in multi objective
optimization”, International Journal of Computer Applications, vol. 1–25, Feb 2010, pp.
35–39.

[39] Nedjah, N.; Da Silva, M.; Mourelle, L. “Customized computer-aided application
mapping on NoC infrastructure using multi-objective optimization”, Journal of Systems
Architecture, vol. 57–1, Jan 2011, pp. 79–94.

[40] of Industrial Engineering, F.; Management. “The cross-entropy method”. Source: http:
//iew3.technion.ac.il/CE/, Jun 2016.

[41] Ogras, U.; Hu, J.; Marculescu, R. “Key research problems in noc design: a holistic
perspective”. In: International Conference on Hardware/Software Codesign and System
Synthesis (CODES+ISSS), 2005, pp. 69–74.

[42] Price, K.; Storn, R.; Lampinen, J. “Differential evolution: a practical approach to global
optimization”. Springer Science & Business Media, 2006, 1 ed., 540p.

[43] Qingqi, Z.; Yanling, Q.; et al.. “Multi-objective mapping for network-on-chip based on
bio-inspired optimization algorithms”. In: Prognostics and System Health Management
Conference (PHM), 2014, pp. 387–390.

[44] Rechenberg, I. “Evolutionsstrategie : Optimierung technischer Systeme nach Prinzipien
der biologischen Evolution”. Frommann-Holzboog, 1973, 1 ed., 161p.

[45] Roy, A.; Manna, K.; Chattapadhay, S. “Effect of core ordering on application mapping
onto mesh based network-on-chip design”. In: International Conference on Computing
for Sustainable Global Development (INDIACom), 2015, pp. 363–369.

[46] Sahu, P.; Manna, K.; et al.. “Extending kernighan–lin partitioning heuristic for application
mapping onto network-on-chip”, Journal of Systems Architecture, vol. 60–7, Aug 2014,
pp. 562–578.

[47] Saini, S.; Bailey, D. “NAS parallel benchmark (version 1.0) results 11-96. performance
comparison of HPF and MPI based NAS parallel benchmarks”. In: NASA Ames
Research Center, 1997, pp. 53.

[48] Shen, C.; Tsai, W. “A graph matching approach to optimal task assignment in distributed
computing systems using a minimax criterion”, Transactions on Computers, vol. C-34–
3, Mar 1985, pp. 197–203.

[49] Singh, A. K.; Srikanthan, T.; et al.. “Communication-aware heuristics for run-time task
mapping on NoC-based MPSoC platforms”, Journal of Systems Architecture, vol. 56–7,
Jul 2010, pp. 242–255.

http://iew3.technion.ac.il/CE/
http://iew3.technion.ac.il/CE/


81

[50] Southern, G.; Renau, J. “Deconstructing PARSEC scalability”. In: Workshop on
Duplicating, Deconstructing, and Debunking (WDDD), 2015, pp. 10.

[51] Srinivasan, M.; De Micheli, G. “Bandwidth-constrained mapping of cores onto NoC
architectures”. In: Conference on Design, Automation and Test in Europe (DATE), 2004,
pp. 896–901.

[52] Storn, R.; Price, K. “Differential evolution – a simple and efficient heuristic for
global optimization over continuous spaces”, Journal of global optimization, vol. 11–
4, Dec 1997, pp. 341–359.

[53] Storn, R.; Price, K. “Differential evolution (de) for continuous function optimization (an
algorithm by kenneth price and rainer storn)”. Source: http://www1.icsi.berkeley.edu/
~storn/code.html, Jul 2016.

[54] Umamaheswari, S.; Kirthiga, K.; et al.. “Cost aware task scheduling and core mapping
on network-on-chip topology using firefly algorithm”. In: International Conference on
Recent Trends in Information Technology (ICRTIT), 2013, pp. 657–662.

[55] Wah, B.; Lien, Y. “Design of distributed databases on local computer systems with a
multiaccess network”, Transactions on Software Engineering, vol. SE-11–7, Jul 1985,
pp. 606–619.

[56] Waheed, A.; Yan, J. “Workload characterization of cfd applications using partial
differential equation solvers”. In: Workshop on Workload Characterization in High-
Performance Computing Environments, 1998, pp. 35.

[57] Walter, I.; Cidon, I.; et al.. “The era of many-modules soc: revisiting the noc mapping
problem”. In: International Workshop on Network on Chip Architectures (NoCArc),
2009, pp. 43–48.

[58] Wu, M.; Karkar, A.; et al.. “Network on chip optimization based on surrogate model
assisted evolutionary algorithms”. In: Congress on Evolutionary Computation (CEC),
2014, pp. 3266–3271.

[59] Xue, B.; Fu, W.; Zhang, M. “Differential evolution (de) for multi-objective feature
selection in classification”. In: Conference on Genetic and Evolutionary Computation
(GECCO), 2014, pp. 83–84.

[60] Zhao, S.; Hao, Z.; et al.. “Multi-objective differential evolution algorithm based on
adaptive mutation and partition selection.”, Journal of Computers, vol. 8–10, Oct 2013,
pp. 2695–2700.

[61] Zielinski, K.; Laur, R. “Constrained single-objective optimization using differential
evolution.” In: Congress on Evolutionary Computation (CEC), 2006, pp. 223–230.

http://www1.icsi.berkeley.edu/~storn/code.html
http://www1.icsi.berkeley.edu/~storn/code.html


82

[62] Zitzler, E. “Density and approximations of µ-distribution for different testproblems”.
Source: http://people.ee.ethz.ch/~sop/download/supplementary/testproblems/,
Jul 2016.

http://people.ee.ethz.ch/~sop/download/supplementary/testproblems/


 

 


	Introduction
	Motivation
	Objectives
	Document Outline

	Theoretical Background
	Task Mapping Problem
	Partitioning vs Mapping
	Task Mapping Algorithms

	Evolutionary Algorithms
	Differential Evolution
	Simulated Annealing

	Task Mapping Benchmarks
	NASA NAS Parallel Benchmark


	Related Work
	project methodology
	Modelling of the Data Structures
	Multi-Objective Differential Evolution Approach
	Communication Volume Metric
	Load Balance Metric
	The Multi-Objective Differential Evolution Applied to the Task Mapping onto NoC problem
	The Multi-Objective Task Partitioner Tool

	Single-Objective Differential Evolution Approach
	Proposed Modification


	Experimental Results
	Using the NASA NAS benchmark to evaluate the SODE implementation
	NASA NAS CG Evaluation
	Detail Data Results of all tested NASA NAS application benchmarks
	SODE versus CAFES Comparison

	Conclusions

	Conclusions
	References

