
ESCOLA POLITÉCNICA

PROGRAMA DE PÓS-GRADUAÇÃO EM CIÊNCIA DA COMPUTAÇÃO
DOUTORADO EM CIÊNCIA DA COMPUTAÇÃO

LEANDRO TEODORO COSTA

SPLIT-MBT: A MODEL-BASED TESTING METHOD FOR SOFTWARE PRODUCT LINES

Porto Alegre

2017

PONTIFICAL CATHOLIC UNIVERSITY OF RIO GRANDE DO SUL
SCHOOL OF TECHNOLOGY

GRADUATE PROGRAM IN COMPUTER SCIENCE

SPLIT-MBT: A MODEL-BASED
TESTING METHOD FOR

SOFTWARE PRODUCT LINES

LEANDRO TEODORO COSTA

Thesis presented as partial requirement for
obtaining the degree of Ph. D. in Computer
Science at Pontifical Catholic University of
Rio Grande do Sul.

Advisor: Prof. Avelino Francisco Zorzo

Porto Alegre
2018

Leandro Teodoro Costa

SPLiT-MBt: A Model-based Testing Method for Software
Product Lines

This Thesis has been submitted in partial fulfillment

of the requirements for the degree of Doctor of

Computer Science, of the Graduate Program in

Computer Science, School of Technology of the

Pontifícia Universidade Católica do Rio Grande do

Sul.

Sanctioned on August 22th, 2017.

COMMITTEE MEMBERS:

Prof. Dr. Edson Alves de Oliveira Junior (UEM)

Prof. Dr. Fabian Luis Vargas (PPGEE/PUCRS)

Prof. Rafael Prikladnicki (PPGCC/PUCRS)

Prof. Dr. Avelino Francisco Zorzo (PPGCC/PUCRS - Advisor)

To God, Holy Mary,
my family and friends
who supported me and
have been on my side
whenever I needed.

“Do you wish to rise? Begin by descending. You
plan a tower that will pierce the clouds? Lay first
the foundation of humility.”
(St. Augustine)

ACKNOWLEDGMENTS

I thank God for supporting me at all times during these five years. I am aware that without
Your help I would not have been able to reach my objectives. Thank you Lord Jesus, I know you
have been so patient with me. I promise that I will repay You for all the graces You have poured
into my life. I am also thank Virgin Holy Blessed Mary, Mother of God, by your glorious intercession.

A special thank to Prof. Dr. Avelino Francisco Zorzo for believing in my work, for his all
supporting and patience during the moments that I thought I would fall. Thank you for the advice
and teachings, for being my supervisor, my mentor and my friend in the last 10 years.

I thank Dell for the financial support provided me. I also thank the opportunity to develop
my research as a member of the CePES, a project from the Development and Information Technol-
ogy Program (PDTI) related to the DELL/PUCRS partnership.

I would like to thank my colleagues and friends from CePES: Aline Zanin, Elder Rodrigues,
Flávio Oliveira, Juliana Damasio, Maicon Bernardino. Thank you all for the collaboration, discus-
sion, support and laugh moments.

Thank my friends from Church: Father Pedro for being my spiritual director, for always
giving me good advice, for praying for me and, above all, for being a beloved friend. Thank my
friends Umberto Guarise, Bruno Pires, Cristian Nunes, Father Kauê, Cássia Feijó, Tainá Martins,
Josilene Cristina and Rodrigo Naimayer.

I especially thank my father, mother, sister and my beloved fiancee, Ana Luíza Vicentini
for always being by my side in every difficult moment. Thank you, mother, for the magnificent
person you are. You always believed and supported me in countless ways.

SPLIT-MBT: UM MÉTODO DE TESTE BASEADO EM MODELOS
PARA LINHAS DE PRODUTO DE SOFTWARE

RESUMO

Linhas de Produtos de Software (LPS) tem como objetivo auxiliar no desenvolvimento de
sistemas com base na reutilização de componentes de software. Através deste conceito, é possível
criar um conjunto de sistemas similares, reduzindo assim o tempo de comercialização e custo e,
consequentemente, obter maior produtividade e melhorias na qualidade do software. Embora o reuso
seja a base para o desenvolvimento de sistemas para LPS, a atividade de teste ainda não se beneficia
totalmente desse conceito. Isto se deve a um importante fator inerente a LPS, i.e., Variabilidade. A
variabilidade diz respeito a como os membros/componentes que compõem os produtos de uma LPS
diferem entre si. Além disso, a variabilidade representa diferentes tipos de variação sob diferentes
níveis com diferentes tipos de dependência. O problema de lidar com a variabilidade no contexto do
teste não é uma tarefa trivial, uma vez que quando a variabilidade em LPSs cresce, a quantidade de
testes necessários para avaliar a qualidade do produto pode aumentar exponencialmente. Portanto,
esta tese apresenta um método chamado SPLiT-MBt para gerar casos de teste funcional e scripts
para testar produtos derivados de LPSs. Assim, os casos de teste para testar funcionalidades comuns
entre os produtos são gerados com base nesse reuso inerente às LPSs. Para fornecer esse reuso, o
SPLiT-MBt é aplicado em duas etapas. Na primeira, as informações de variabilidade e teste anotadas
em modelos de sistema são utilizadas para gerar seqüências de teste usando diferentes métodos, e.g.,
HSI, UIO, DS ou TT. Esses métodos são aplicados a modelos formais, e.g., Máquinas de Estado
Finitos (FSMs), as quais são estendidas para lidar com informações de variabilidade. Na segunda
etapa, os modelos de teste e as seqüências geradas são reutilizados para gerar scripts de teste, os
quais podem ser executados por diferentes ferramentas de teste funcional com o objetivo de avaliar
a qualidade dos produtos. Finalmente, para demonstrar a aplicabilidade deste trabalho, utilizamos
nosso método para testar produtos de duas LPSs, i.e., uma LPS real chamada PLeTs e uma LPS
acadêmica chamada AGM. Além disso, realizamos um estudo experimental com o intuito de avaliar
o esforço de gerar casos de teste para produtos de uma LPS. O objetivo foi comparar o nosso SPLiT-
MBt com outras duas metodologias/abordagens de teste de LPSs. Ao final, os resultados apontam

que o esforço para gerar casos de teste usando nosso método foi reduzido consideravelmente quando
comparado com as outras metodologias.

Palavras Chave: Linha de Produto de software, Teste de Linha de Produto de Software, Teste
Funcional, Teste Baseado em Modelos, Métodos de Geração de Casos de Teste.

SPLIT-MBT: A MODEL-BASED TESTING METHOD FOR
SOFTWARE PRODUCT LINES

ABSTRACT

Software Product Lines (SPL) aim to develop systems based on reuse of software com-
ponents. Through this concept it is possible to create a set of similar systems, thus reducing time
to market and cost and thus obtaining greater productivity and improve software quality. Although
reuse is the basis for developing systems from SPLs, the testing activity does not yet fully benefit
from this concept. This is due to an important aspect inherent to SPLs, i.e., variability. The vari-
ability refers to how the members/components that compose the products of an SPL are different
from each other. It represents different types of variation on different levels with different types
of dependencies. The problem of dealing with variability in the test context is not a trivial task,
since when variability in SPLs grows, the amount of tests needed to assess the product quality can
increase exponentially. This thesis presents a method called SPLiT-MBt to generate functional test
cases and scripts to test products derived from SPLs. Thus, test cases to test products common
functionalities are generated based on the reuse inherent to SPLs. In order to provide this reuse,
SPLiT-MBt is applied in two steps. In the first step, variability and test information annotated in
system models are used to generate test sequences using different methods, e.g., HSI, UIO, DS
or TT. These methods are applied to formal models, e.g., Finite State Machines (FSMs) that are
extended to deal with variability information. In the second step, test models and sequences are
reused to generate test scripts, which could be executed by different functional testing tools with
the aim of evaluating the quality of products. Finally, in order to demonstrate the applicability of
this work, we apply our method to test products of two SPLs, i.e., an actual SPL named PLeTs and
an academic SPL named AGM. Moreover, we also performed an experimental study to evaluate the
effort to generate test cases for SPL products. The main goal was to make a comparison between
our SPLiT-MBt and two other methodologies/approaches. Thus, the results point out that the
effort to generate test cases using our method was reduced considerably when compared to the
other methodologies.

Keywords: Software Product Line, Software Product Line Testing, Functional Testing, Model-based
Testing, Test Case Generation Method.

LIST OF FIGURES

2.1 Model for fault, error and failure [Web16] . 30
2.2 Levels of Testing [Utt06] . 34
2.3 Feature Model of a Mobile Phone [Bro16] . 39
2.4 Separate test case development [RRKP06] . 41
2.5 Opportunistic reuse of existing test cases [RRKP06] . 41
2.6 Design test cases for reuse [RRKP06] . 42
2.7 Research Design . 46
3.1 Split-MBT steps for generating functional test cases . 51
3.2 Domain Engineering testing model . 52
3.3 FSM generated from Activity Diagram of the Figure 3.2 . 55
3.4 Adapted FSM . 59
3.5 Test model of a specific product . 63
3.6 FSM generated from the Activity Diagram of Figure 3.5 . 63
3.7 Abstract test case generated from the test sequence 4 of Table 3.4 65
3.8 Script generated from the abstract test case of Figure 3.7 . 66
4.1 Use Case diagram of AGM [Jun10] . 70
4.2 Activity Diagram of the use case Play Selected Game . 71
4.3 Activity Diagrams of the activities Bowling Moves, Brickles Moves and Pong Moves 72
4.4 Generated script to test the functionalities of Brickles game 73
4.5 PLeTs Use Case model . 75
4.6 Activity Diagram of PLeTs Structural Tools . 76
4.7 FSM with variability information . 77
4.8 FSM with a state representing a variation point . 77
4.9 Snippet of an abstract test case . 80
4.10 Script to test the functionalities of a PLeTs product . 81
5.1 Experiment Time . 98
B.1 FSM Animation Loop . 117
B.2 FSM Initialization . 117
B.3 FSM Bowling Moves . 117
B.4 FSM Brickles Moves . 118
B.5 FSM Check Previous Best Score . 118
B.6 FSM Exit Game . 119

B.7 FSM Pong Moves . 119
B.8 FSM Install Game . 119
B.9 FSM Save Game . 120
B.10 FSM Save Scores . 120
D.1 Activity Diagram of Testing Type . 125
D.2 Activity Diagram of Functional Testing Functionalities . 126
D.3 Activity Diagram of Performance Testing Functionalities . 127
D.4 Activity Diagram of Functional Testing . 128
D.5 Activity Diagram of Performance Testing . 129
D.6 Activity Diagram of Parameterization . 129
E.1 FSM of Choose the type of the test . 131
E.2 FSM of Functional Functionalities . 132
E.3 FSM of Performance Functionalities . 133
E.4 FSM of Functional Testing . 134
E.5 FSM of Performance Testing . 135
E.6 FSM of Parameterization . 136
E.7 FSM with Variation Point . 137
G.1 SPLiT-MBt Tool Interface . 141
H.1 Profile form/characterization questionnaire of the Experiment 143

LIST OF TABLES

2.1 Comparison among SPL Testing Approaches/Methodologies 44
3.1 Input and Output information of the FSM from Figure 3.3 56
3.2 Generated test sequences . 59
3.3 Traceability Model and Test Sequences . 61
3.4 Generated test sequences . 62
3.5 Generated test sequences . 64
4.1 Generated sequences for each product . 73
4.2 PLeTs SPL Requirements . 74
4.3 Sample of test sequences Q, P, HI and HSI . 78
5.1 Scales of Experiment Variables . 86
5.2 Assigning Subjects to the Treatments for a Randomized Complete Block Design . . . 93
5.3 Summarized data of the effort . 94
5.4 ANOVA Summary . 95
5.5 ANOVA Data Set . 96
5.6 Table of differences among ordered averages . 96
A.1 State Cover per Product 1 . 111
A.2 State Cover per Product 2 . 111
A.3 Transition Cover per Product 1 . 112
A.4 Transition Cover per Product 2 . 112
A.5 Wi Sequences of State Pairs per Product . 113
A.6 Wi Sequences of States Pairs per Product . 113
A.7 Wi Sequences of States Pairs per Product 2 . 114
A.8 Wi Sequences of States Pairs per Product 2 . 114
A.9 Table to Support the Final Test Sequence Generation for the UIO Method 115
C.1 Actual Input, Output and Variability Information of AGM . 121
F.1 Actual Input, Output and Variability Information of PLeTs 139

LIST OF ACRONYMS

ANOVA - Analysis of Variance
AGM - Arcade Game Maker
CFG - Control Flow Graph
CADeT - Customizable Activity Diagrams, Decision tables and Test specifications
DF - Degree of Freedom
DS - Distinguishing Sequence
FSM - Finite State Machine
HSI - Harmonized State Identification
HSD - Honestly Significant Difference
QTP - HP Quick Test Professional
RFT - IBM Rational Functional Tester
IDE - Integrated Development Environment
MTM - Microsoft Test Manager
VS - Microsoft Visual Studio
MBT - Model-based Testing
OVM - Orthogonal Variability Modele
PLeTs - Product Line of Model-based Testing Tools
PLUS - Product Line UML-based Software Engineering
PLUC - Product Line Use Case
PLUTO - Product Lines Use Case Test Optimization
RQ - Research Question
ScenTED - Scenario based TEst Case Derivation
SEI - Software Engineering Institute
SPL - Software Product Line
SPLiT-MBt - Software Product Line Testing Method Based on System Models
SDL - Specification and Description Language
SMarty - Stereotype-based Management of Variability
SUT- System Under Test
TDL - Technology Development Laboratory
TT - Transition Tour
UIO - Unique Input/Output

CONTENTS

1 INTRODUCTION . 25

1.1 PROBLEM STATEMENT AND RATIONALE FOR THE RESEARCH 25
1.2 OBJECTIVES AND THESIS CONTRIBUTIONS . 26
1.3 THESIS ORGANIZATION . 28

2 BACKGROUND . 29

2.1 TEST CONCEPTS AND TERMINOLOGY . 29
2.2 SOFTWARE TESTING . 29
2.2.1 TESTING TECHNIQUES . 31
2.2.2 LEVELS OF TESTING . 33
2.2.3 MODEL-BASED TESTING . 37
2.3 SOFTWARE PRODUCT LINE . 37
2.3.1 VARIABILITY MANAGEMENT IN SPLS FROM SYSTEM MODELS 39
2.3.2 SOFTWARE PRODUCT LINE TESTING . 40
2.4 RELATED WORK . 42
2.5 RESEARCH METHODOLOGY . 45
2.5.1 RESEARCH DESIGN . 45
2.6 CHAPTER SUMMARY . 46

3 SPLIT-MBT: A MODEL-BASED TESTING METHOD FOR SOFTWARE
PRODUCT LINES . 49

3.1 CONTEXTUALIZATION . 49
3.2 SPLIT-MBT DURING DOMAIN ENGINEERING . 50
3.2.1 ADD FUNCTIONAL TEST INFORMATION . 51
3.2.2 DOMAIN PARSER . 54
3.2.3 DOMAIN TEST SEQUENCE GENERATION . 56
3.3 SPLIT-MBT DURING APPLICATION ENGINEERING . 60
3.3.1 RESOLVING VARIABILITY . 60
3.3.2 ADD FUNCTIONAL TEST INFORMATION . 62
3.3.3 APPLICATION PARSER AND APPLICATION TEST SEQUENCE GENERATION . . . 62
3.3.4 ABSTRACT TEST CASE GENERATION . 64
3.3.5 SCRIPT GENERATOR AND EXECUTOR . 65
3.4 CHAPTER SUMMARY . 67

4 EXAMPLES OF USE . 69

4.1 ARCADE GAME MAKER (AGM) - AGM . 69
4.1.1 MODELING THE UML DIAGRAMS OF AGM . 69
4.1.2 DERIVING TEST SCRIPTS USING THE SPLIT-MBT TOOL 71
4.1.3 ANALYSIS . 73
4.2 PRODUCT LINE OF TESTING TOOLS - PLETS . 74
4.2.1 ADD TEST INFORMATION TO SPL MODELS . 74
4.2.2 GENERATE TEST SEQUENCES WITH VARIABILITY . 77
4.2.3 RESOLVING VARIABILITY . 78
4.2.4 ABSTRACT TEST CASE GENERATION . 79
4.2.5 TEST SCRIPT GENERATION AND TEST EXECUTION . 80
4.3 CHAPTER SUMMARY . 81

5 EMPIRICAL EXPERIMENT . 83

5.1 DEFINITION OF THE EXPERIMENTAL STUDY . 83
5.2 EXPERIMENT INSTRUMENTS . 84
5.3 EXPERIMENT PLANNING . 84
5.3.1 CONTEXT SELECTION . 85
5.3.2 HYPOTHESIS FORMULATION . 85
5.3.3 VARIABLES SELECTION . 86
5.3.4 SELECTION OF SUBJECTS . 87
5.3.5 EXPERIMENT DESIGN . 87
5.3.6 INSTRUMENTATION . 88
5.3.7 THREATS TO VALIDITY . 88
5.4 OPERATION OF THE EXPERIMENTAL STUDY . 91
5.4.1 PREPARATION . 91
5.4.2 EXECUTION . 92
5.5 RESULTS . 94
5.6 ANALYSIS AND INTERPRETATION . 94
5.6.1 PRIORI TEST . 95
5.6.2 POSTERIORI TEST . 95
5.7 CONCLUSIONS AND RESULT ANALYSIS . 97

6 THESIS SUMMARY AND FUTURE WORK . 99

6.1 THESIS CONTRIBUTIONS . 99

6.2 LIMITATIONS AND FUTURE WORKS . 100
6.3 PUBLICATIONS . 100

REFERENCES . 103

APPENDIX A – SUB SEQUENCES GENERATED PER PRODUCT 111

APPENDIX B – FSM PER PRODUCT FROM AGM . 117

APPENDIX C – AGM - Input, Output and Variability Data 121

APPENDIX D – PLETS ACTIVITY DIAGRAMS . 125

APPENDIX E – FSMS FROM PLETS . 131

APPENDIX F – PLETS - INPUT, OUTPUT AND IDENTIFIERS DATA 139

APPENDIX G – SPLIT-MBT TOOL INTERFACE . 141

APPENDIX H – PROFILE FORM/CHARACTERIZATION QUESTIONNAIRE OF
THE EXPERIMENT . 143

APPENDIX I – EXPERIMENT GUIDE WITH SPLIT-MBT TOOL 145

APPENDIX J – EXPERIMENT GUIDE WITH CADET . 159

APPENDIX K – EXPERIMENT GUIDE WITH MTM . 171

25

1. INTRODUCTION

“There is no excuse for those who could
be scholars and are not.”

St. Josemaría Escrivá

1.1 Problem Statement and Rationale for the Research

Currently, several companies have investigated ways to obtain a higher productivity through
reusing software artifacts in order to reduce time and cost in the development of new versions of
the software they produce. In this context, Software Product Lines (SPLs) [CN01] have been used
as a valuable approach. SPL is defined as a set of software assets sharing common and variable
features in order to meet the needs of a specific domain, which may be a market segment or
mission [CN01] [Ins16a]. By means of SPL, we can obtain reuse of the software components;
thereby reducing cost, time to market, and increasing the products quality. Despite these benefits,
the adoption of SPL concepts has also brought some challenges, e.g. the complexity to test products
derived from them.

A concern related to SPL testing is that, differently from testing single applications, an
SPL requires testing functionalities shared by several products (Domain Engineering, oriented to the
development of reusable artifacts), as well as testing functionalities of specific products (Application
Engineering, oriented to the reuse of developed artifacts) [Lin02]. Therefore, a fault1 not found
during Domain Engineering may result in the generation of several products that may fail [ER11].

In order to overcome these issues, several authors have been focusing their efforts on
the development of methodologies [BG04] [OG09] [NFTJ04], techniques [CGSE12] [HVR04], meth-
ods [RRKP06] [ER11] [NdCMM+11] [LPP13] and approaches [MSM04] [McG01] [KLKL07] to apply
SPL testing. Although these works are valuable to support the generation of test sequences regard-
ing the variability, being able to adapt single application testing techniques into an SPL context,
they do not address some relevant issues. For example, these works do not systematically optimize
the test case generation, they do not provide a systematic way to extend these techniques, and just
some of these works address, in a strict aspect, the problem of test automation for SPL products.

Moreover, to the best of our knowledge, those works do not address the adoption of
any prioritization and minimisation technique to generate test cases. Therefore, as consequence
of applying these techniques, a bunch of test cases are generated and some of them are useless,
i.e. repetitive and irrelevant. Therefore, would be useful to define a way to test SPL products
considering variability, as well as reducing the amount of test cases and at the same time selecting

1We used the concepts of fault, error and failure according to [ALRL04].

26

the most relevant ones. These test cases could be also used to, automatically, generate test scripts
and then provide test automation in both Domain Engineering and Application Engineering.

1.2 Objectives and Thesis Contributions

In order to address the issues introduced earlier, we propose a method named Software
Product Line Testing Method Based on System Models (SPLiT-MBt), which provides the reuse
of test artifacts based on adapting Model-based Testing (MBT) [Kri04] for automatic generation of
functional test cases and scripts from models/notations that represent the SPL functionalities and
variability information.

To provide reuse of test artifacts, SPLiT-MBt is applied in two steps. The first one occurs
during Domain Engineering, when test and variability information are extracted from SPL models.
We assume that these models were previously designed by the SPL analyst using a variability manage-
ment approach. For example, if the models were designed using UML, then SMarty [Jun10] [OGM10]
could be used. SMarty aims to manage variability in UML models supported by a profile and a set
of guidelines. This approach could be applied to manage variability present in Use Cases, Classes,
Components, Activities, and Sequence Diagrams, as well as to Packages. Therefore, a test ana-
lyst uses SPLiT-MBt to add test information2 on two UML diagrams, i.e. Use Case and Activity
Diagrams. The test information is added, by the test analyst, on these two diagrams in the form
of stereotypes and tags. Then, once the Use Case and Activity Diagrams are annotated with test
information, the test analyst uses SPLiT-MBt to generate Finite State Machines (FSMs) [Gil62]
from these UML diagrams.

These FSMs are extended in an SPL context and are used as input, in a specific step of our
SPLiT-MBt method, to generate test sequences with variability information. These test sequences
are generated through extending conventional test sequence generation methods in an SPL context,
e.g., Transition Tour (TT) [NT81], Unique Input/Output (UIO) [SD88], Distinguishing Sequence
(DS) [Gon70], W [Cho78] or Harmonized State Identification (HSI) [PYLD93].

SPLiT-MBt supports extended versions of these methods, which are modified to generate
test sequences considering variability information present in FSMs. An advantage of extending these
methods to handle variability in a SPL context is they provide some benefits, such as prioritization
and minimisation of test cases. The test sequences generated through applying these modified
methods are stored in a test repository and the variability present in these sequences is resolved by
our SPLiT-MBt during Application Engineering.

The second step of SPLiT-MBt takes place during Application Engineering, when the
variability present in those test sequences is resolved to meet the specific requirements of each
system. We assume that the variability is resolved at design time by the SPL analyst from a
Traceability Model containing information about the resolved variability. Thus, the Traceability

2It corresponds to test data for functional testing, e.g. test input data or expected results.

27

Model is the main artifact to resolve variability present in the test sequences. Once the variability
is resolved, the test sequences are reused to test the specific functionalities of several products.
Moreover, at this phase, models that represent specific functionalities of each product are generated
and they are annotated with test information by the test analyst. Similar as occurs during Domain
Engineering, these models are converted into FSMs and the conventional methods of test sequence
generation are applied in order to generate specific test sequences for each product. Finally, all these
sequences (from Domain Engineering and Application Engineering) are converted into a description
equivalent to test cases in natural language, i.e., abstract test cases.

An abstract test case is a text file describing the interaction of the user with the system. By
having a generic format, the abstract test cases can easily be used as a reference for generating scripts
for different functional testing tools, e.g. HP Quick Test Professional (QTP) [Mal09], IBM Rational
Functional Tester (RFT) [DCG+09], Selenium [HK06], Microsoft Visual Studio (VS) [Lev11] and
Microsoft Test Manager (MTM) [Man16]. SPLiT-MBt allows that test data used to generate test
scripts are chosen through functional testing criteria, e.g., Boundary Value Analysis and Equivalence
Partitioning [DMJ07] [MS04]. These criteria contribute to a testing process more systematic and
effective, since they avoid testing all system inputs, which would make the testing process impractical.
The idea is that test artifacts developed during Domain Engineering are reused to test products during
Application Engineering.

Therefore, the adoption of our method presents several benefits from the reuse inherent
to SPLs. For instance, through the set of test sequence generation methods that are extended using
SPLiT-MBt, it is possible to reduce the amount of test cases, provide a full coverage of the product
functionalities and contribute to select relevant test cases (prioritization and minimization of test
cases). Another advantage of our method is that it is based on MBT, since all test information
is annotated on systems models, for example, UML Use Case and Activity Diagrams. Thereby, for
being based on MBT, SPLiT-MBt contributes to reduce the likelihood of misinterpretation of the
system requirements by a test engineer and decreasing testing time in SPL projects.

Furthermore, SPLiT-MBt saves testing effort, since we reuse the test sequences generated
in Domain Engineering to test several products derived from Application Engineering. Therefore,
if we have, for example, 10 products sharing several functionalities, our method will generate test
sequences to test the common functionalities for these 10 products just once. Therefore, the set
of test sequences generated during Domain Engineering is used to test just those products sharing
common functionalities.

In a nutshell, SPLiT-MBt aims to answer the following questions: i) How to test the SPL
products with the benefits of reusing test artifacts? ii) How to test, in a systematic manner, the
products of an SPL? iii) How to reduce the number of test cases and still find the same amount
of system failures? iv). How to generate test scripts to be executed by different functional testing
tools?

In order to answer these questions, this thesis presents the SPLiT-MBt method, which
proposes the following contributions:

28

• To produce test cases that are reused to generate scripts based on system models. Thus, test
cases to test common functionalities for different products are generated just once (Question i).

• To develop a tool named SPLiT-MBt Tool, which supports the activities of the SPLiT-MBt
method. Thus, the testing process of products derived from SPLs can be performed automat-
ically (Question ii).

• To adapt test sequence generation methods in an SPL context. Thus, it is possible to reduce
the number of test cases through applying prioritization and minimization of test cases, which
contributes to select the relevant ones (Question iii).

• To define a generic structure representing test cases in pseudo-natural language. Thus, it
is possible to generate test scripts that can be executed by different functional testing tools
(Question iv).

This work was developed in the context of a academy-industry collaboration, in which, our
research group has worked closely to a Technology Development Laboratory (TDL) of Dell Computer
Brazil. It is a global IT company whose development and testing teams are located in different regions
worldwide to develop and test in-house solutions in order to attend their own demand systems on a
global scale of sales of computer assets. The aim of this cooperation is to experiment and develop
new strategies and approaches for software testing. In this collaboration we have developed new
strategies and approaches for software testing, e.g., an SPL [CCO+12][RVZG10] to generate test-
ing products for different testing techniques, i.e. performance testing [MRMdOTC+15][RBC+15],
structural testing [CZR+14], functional testing [LRD+15]. In this context, we have also developed
a Domain Specific Language, called Canopus, for performance testing [SRZ16][SZR16].

1.3 Thesis Organization

This thesis has seven chapters and it is organized as follows. Chapter 2 presents some
background on SPL concepts, MBT technique, SPL testing and Variability Management and related
work. Chapter 3 presents a detailed description of the SPLiT-MBt method. In Chapter 4, we
present two case studies in which SPLiT-MBt is applied to test the product functionalities of an
academic SPL: Arcade Game Maker (AGM) [Ins16b] and; an actual SPL: Product Line of Model-
Based Testing Tools (PLeTs) [RVZG10]. In Chapter 5 we also present how we conducted an
empirical experiment to analyse three different methods: our SPLiT-MbT, Customizable Activity
Diagrams, Decision tables and Test specifications (CADeT) [OG09] and Microsoft Test Manager
(MTM) [Man16]. Finally, in Chapter 6 we present the contribution of this thesis and some con-
clusions and future work. At the end of this document, we also present an appendix with the UML
models of the SPLs we have used to evaluate this work.

29

2. BACKGROUND

“Humility is the first stage of wisdom.”

St. Thomas Aquinas

In this chapter we present the concepts related to Software Testing, Variability management
approaches, Software Product Lines and Software Product Line Testing strategies. The goal is to
introduce the main concepts related to Software Testing and Software Product Lines. For a more
detailed study we suggest the reading of the following works [Web16] [AO08] [LCYW11] [CN01]
[Som11] [PBL05] [LSR07] [Gom05] [FGMO12] [RRKP06] [TTK04] [KKB+17].

2.1 Test Concepts and Terminology

In this section, we present some relevant test concepts and terminology that will be used
throughout this thesis. Currently, there are some divergences among authors when defining the
concepts of fault , error, and failure. Therefore, in order to provide the understanding of these
concepts, we will use a terminology defined by authors from fault tolerance area [MM98]. We chose
this terminology since it is used as reference by several scientific community researchers and also
because it is used by the members of our research project.

During the development of a software system, the minimum expected is that it is in
compliance with the software requirements specification. When the software does not reach this
goal, we can state that the system has a failure, i.e., it is not in compliance with that specified
during the first development stages [Web16] [ALRL04]. This can occur, for example, when the
system does not meet some of its functional requirement specifications.

An error is a state of the system in which a processing from that state results in a failure.
It is well known that the execution of a functionality may have a set of states, when any of these
states diverges from the correct state (what is expected for a specific functionality), we can say that
the system is in an error state. Finally, a fault is defined as the initial, physical, or algorithmic cause
of an error, usually a consequence of a human action [ALRL04]. Figure 2.1 shows the definition of
fault, error and failure concepts, which we have just described.

2.2 Software Testing

The evolution and increased complexity of computer systems have made the testing process
an activity so complex as the development process itself. This situation may become more compli-
cated depending on the size and complexity of the software that is being developed. For this reason,

30

Figure 2.1: Model for fault, error and failure [Web16]

the development of a system may have several problems and, consequently, a product different from
that specified during the software requirements stage could be generated [AO08] [MS04].

Currently, there are many factors that contribute to the incidence of errors. However,
the main cause of errors is related to the human influence. It is well known that the system
development depends on people’s notion and their interpretation. Hence, the existence of faults
and errors is almost inevitable. For instance, during a software development, the programmers will,
inevitably, make some mistake. In this case, we can say that the developers caused a fault and then,
a system error was generated; resulting in a set of failures. A system with faults may not generate
failures during its execution. In this context, it is better that a system failure occurs frequently than
only sometimes [MS04].

The cost of repairing system failures can change according to the moment a fault is found.
The cost of a fault found during the first development stages may be very small. On the other hand,
a system failure caused by a fault found during the final development steps can cause a huge cost.
The damage can be even bigger when a system failure is detected when the client (final user) is
using the software. Therefore, when a failure is detected in the early development stages, the cost
to repair system faults will be lower as well.

Although find out system faults as soon as possible are very expected/desirable, that is
not a trivial task. In order to ensure that these faults will be found before delivering the system
to the client, the software must pass by several validation and verification processes [ALRL04].
Validation is a process that aims to evaluate software in order to ensure compliance with the system
requirements and; verification is the process that aims evaluating whether the software has met the
specified requirements during all software development stages. Validation and verification processes
must be present during the first development stages (during the software requirements specification
step) and not only in the final stages. In this context, there are several validation and verification
techniques that can be applied during the system development, such as: model checking, symbolic
execution and software testing [ALRL04].

Software testing is one of the most used techniques to obtain systems reliability. In addition,
according to [AO08] software testing is defined as the process of systematically evaluating systems

31

through their controlled execution and observation. The main goal is to identify faults, errors and
failures in order to ensure the consistency of the system functionalities.

2.2.1 Testing Techniques

Since we have presented the testing concepts and terminology, we will, in this section,
introduce and discuss the concepts of two testing techniques used to assist testers and test analysts
to detect and remove faults in software systems, i.e. Functional and Structural testing. This two
techniques are referenced by several authors and the most of the testing literature as a way to reveal
as many failures as possible, which is the purpose of the software testing [MS04] [AO08].

Functional Testing

Functional testing is a technique to derive test cases from the program specification.
Therefore, the test case generation is based on the software functional requirements. Moreover, this
technique aims to evaluate the external behavior of a program and not only its internal details (source
code). For this reason, it is also called a specification test or black-box testing [MS04] [AO08].

The functional test assess a set of outputs from the inputs and checks whether the obtained
result corresponds to the expected result [MS04]. Moreover, the functional test is able to identify
defects in a program or application, provided that all possible program inputs are applied; when this
occurs the test is called exhaustive test [AO08]. The problem is that the set of test inputs can be
very large or even infinite as well, what could make the test process impracticable or unfeasible. On
the other hand, if we do not define some test inputs (or define a small test input size), we could
not ensure that all program functionalities are working correctly.

In order to overcome this issue/limitation, there are functional test criteria that were
created to make this testing process more systematic, e.g., Equivalence partitioning, Boundary-
value analysis and Cause-effect graphing [MS04]. This test criteria can be used by the tester to
assist him to reduce the test input size and, at the same time, generate test cases with a higher
probability to find faults [MS04] [AO08].

• Equivalence partitioning: this criterion is based on identifying the program input data from the
specification and divide this data input domain into valid and invalid equivalence classes [EM07].
Then, assuming that a subset of input data values of a given class (valid or invalid class) is
representative of the whole class, we select the smallest amount of test cases based on that
subset of input data. Therefore, whether a input value of a given equivalence class reveals a
failure, then it is reasonable that all other input values from that equivalence class will reveal
the same failure. Therefore, whether a input value of a given equivalence class reveals a fail-
ure, then it is reasonable that all other input values from that equivalence class will reveal the
same failure. Therefore, whether a input value of a given equivalence class reveals a failure,

32

then it is reasonable that all other input values from that equivalence class will reveal the
same failure. Hence, using this criterion, the tester could systematically assess the software
requirements and also reduce the amount of test cases. These factors contribute to decrease
the effort and time spent when testing a software system.

• Boundary-value analysis: it is known as a complement to the Equivalence Partitioning criterion.
However, different from the former criterion, Boundary-value analysis is more rigorous. It
means that, instead of randomically selecting any input value from a given class, the Boundary-
value analysis criterion aims to generate tests based on the input values associated to a class
boundaries (i.e., input values that correspond to the data boundaries of a specific software
system functionality). According to [MS04] and [EM07], this criterion can assist the testers,
since a large number of failures is usually concentrated in the classes boundaries or close to
them.

• Cause-effect graphing: the Equivalence partitioning and Boundary-value analysis criteria have
been widely used by several authors from scientific community and testers for many years to
assist them to reduce the amount of test cases and the test effort as a whole [MS04]. However,
those criteria do not exploit combinations of the input conditions. In order to overcome this
issue, Cause-effect graphing criterion aims to define test requirements based on the possible
combination of input conditions. Therefore, first, the tester must identify the possible input
conditions (causes) and possible actions (effects) of the program. Then, a graph, linking the
identified causes and effects, is generated. This graph is converted into a decision table from
which test cases are derived.

Structural Testing

Usually, software testing uses functional test cases that are derived from system require-
ments. However, to test only functional aspects of the system does not guarantee that the program
will not present failures during its lifetime, because some part of the program source code may not
have been covered. In this context, the execution of a program that contains faults, unfortunately,
may not result in the generation of failures noticed by the user [MS04]. Therefore, structural testing
is essential, since it aims to verify whether all parts of the source code were covered or not.

Structural testing is a technique for generating test cases from the analysis of source code.
It seeks to evaluate the program internal details, such as test conditions and logical paths. For this
reason, it is also called test oriented to logic or white-box testing. In general, most of the criteria
based on structural analysis use a graph notation named Control Flow Graph (CFG) [VMWD05],
which represents all the paths that might be traversed during the program execution. These criteria
are based on different program elements that can be connected to the control-flow and data-flow
in the program. Control-flow uses the control features of a program to generate test cases, i.e.,
loops, deviations or conditions. Criteria based on data flow use data flow analysis of the program
to generate test cases. The main criteria based on control-flow are:

33

• All-nodes: this criterion defines that each CFG node must be visited at least once, i.e. each
command must be executed at least once during the program execution;

• All-edges: this criterion defines that each CFG edge must be traversed at least once, i.e. each
possible outcome of each decision point must be exercised at least once during the program
execution;

• All-paths: this criterion defines that all possible program paths must be executed.

Although it is desirable to execute all paths of a program, this task is impracticable in the
most cases. The reason for that is due to the presence of program loops, which might generate
an infinite number of paths. This was one of the factors for introducing the criteria based on
data flow. Criteria based on data flow use data flow analysis of the program to generate test
cases. The test cases are derived from associations between variable definitions and the use of these
variables [LVMM07]. One reason for introducing criteria based on data flow was due to, even for
small programs, tests based only on the control flow may not reveal faults in some situations, for
example, a variable that was declared but never used, or a variable that was declared but was not
initialized.

Structural test case generation consists of selecting values from an input domain of a
program that satisfies specific criteria. For instance, the All-nodes criterion groups in a domain
all the input values that execute a specific node. The selecting input values task could be made
using data generation techniques, e.g., random [HT90], based on symbolic execution [LCYW11] or
dynamic execution [DLL+09].

Currently, there is a diversity of commercial (e.g., Quick Test Professional [Mal09], IBM
Rational PurifyPlus [IBM17]), academic (e.g., JaBUTi [VDMW06], EMMA [Rou17]), and open
source (e.g., Semantic Designs Test Coverage [Sem16]) code coverage tools to assist the testing
process. However, most of these tools have been individually and independently developed from
scratch based on a single architecture. Thus, they face difficulties of integration, evolution, mainte-
nance, and reuse. In order to reduce these difficulties, it would be interesting to have a strategy to
automatically generate specific products, i.e., tools that perform tests based on the reuse of assets
and the core architecture. This is one of the main ideas behind SPLs [CN01]. SPL and testing are
the main concepts addressed on this thesis.

2.2.2 Levels of Testing

In this section, we present the levels of testing that are performed by testers and test
analysts during the software development process. These levels of testing is used as reference to
assist testers on generating test cases from the software requirements specification to the system
acceptance by the customer/client. It is well known that there are many testing level models proposed
by several authors in the literature that discuss the relation of each testing level with the software

34

development process [MS04] [AO08] [Som11]. According to these authors and many others, there
are four levels of testing (see Figure 2.2), i.e., Unit Testing, Integration Testing, System Testing and
Acceptance Testing.

Figure 2.2: Levels of Testing [Utt06]

Unit Testing

The Unit Testing, also known as module test, aims to test the smallest units of the
software, i.e. the most basic software components, such as, functions, methods and classes. It
is usually performed by the developer, since he has a higher knowledge about the source code.
Therefore, usually, the Unit Testing aims to detect algorithm and/or logic faults and even minor
programming faults. Furthermore, a good set of unit testing contributes to find and remove faults
in the early stages of development. Hence, it is possible to save time and reduce costs, since it is
cheaper to remove faults during unit testing than at any other testing level [AO08].

Integration Testing

The purpose of the integration testing is to find errors generated from the integration of
internal software components that were already tested during the unit testing. Different from the
unit testing, integration testing aims to individually test each system component/module. Further-
more, it seeks to find faults when these components are combined, since a software component
working properly during unit testing could not work when combined/integrated to another software
components. The integration testing can also be applied to verify the compatibility among software
components, since there is no guarantee that these modules wont have connectivity problems when
integrated. That may occurs, mainly, when developer teams uses different versions of the develop-

35

ment IDE to build software components. For instance, a development team A uses an older Eclipse
version and a development team B uses the most recent one [Som11].

System Testing

During the system testing level, all software components were already integrated and
successfully tested. Hence, this level aims to verify whether the system software is in accordance
with defined in the software requirements specification. Therefore, during system testing, testing
teams generate a set of test cases based on the software specification document. In this context,
the main goal is verify if the software functionalities are working as expected; if the the software
still working when it is submitted to a high load. For instance, the functionalities of an e-commerce
system may work when one user is accessing the application. However, it could not work as expected
when one hundred (high load) users are accessing the application simultaneously. Actually, there are
several types of system testing that can be performed by different testing teams with specific and
high skills. Next, we present some of them:

• Functional Testing: to perform functional testing, the software requirements specification is
analyzed to derive a set of functional test cases. Therefore, it aims to verify whether the
system behavior meets its software requirements. Thereunto, the testers submit the software
system to a set of input data and then, the output is analyzed. If, for a specific functionality,
the output is equal to the expected result, it means that the analyzed functionality is working
properly (for more details, see Section 2.2.1).

• Performance Testing: the performance testing aims to analyze the system behaviour when it
is submitted to a given users load in a specific test environment. In an nutshell, it seeks to
evaluate how much a system or system component is able to meet the performance require-
ments, such as, response time or throughput. For example, a performance requirement might
define that “response time” for a specific functionality must be less than three seconds when
one hundred users are accessing the system simultaneously. Hence, the performance tester
can simulate that environment and analyze the results. If the “response time” is higher than
3 seconds, for example, then the system must be optimized. An example of system optimiza-
tion could be increase some system resources, e.g. memory and processor. In addition, the
performance test aims to identify potential bottlenecks that cause performance degradation
in the system [SW02].

• Stress Testing: stress testing aims to assist performance testers on analyzing the system
behavior and determine whether the system meets its performance requirements when it is
submitted to beyond the normal load conditions. Therefore, the performance testers may
verify if the system still working even under the worst load.

• Security Testing: it aims to ensure that the software system meets the security requirements.
It also verifies if the software system works as expected when submitted to the most diverse

36

access illegal attempts, aiming to identify possible vulnerabilities. In order to perform this, it
tests whether the system protection mechanisms, actually protect it from improper access. It
is very common that software systems being target from people who seek to perform actions
that could harm or even benefit others. Due to situations like that, the security test aims
to demonstrate whether the system performs exactly what it should do or not. Furthermore,
it can also assist testers to define a contingency plan and then, determine what precaution
should be taken against possible attacks.

Regression Testing

Regression testing cannot be defined as testing level, since it is applied along all software
testing process. It is most like a sub step performed during the other testing levels (Unit, Integration
and System levels). Actually, regression testing is a test technique applied when a change in the
software system is made, i.e., when a specific software functionality is added or removed; when the
system is migrated to another platform. Therefore, in an nutshell, regression testing is applied to
each new version of the software [MS04].

When the software system could not maintain its functionalities working properly in its
new versions, we can say that the software system “has regressed”. In this context, the regression
testing aims to contribute to the “non-regression” of the new system versions. Hence, any testing
process that seeks to avoid problems related to systems regression is called “non-regression” testing.
By convention, the “no” is omitted and it is usually called regression testing.

The use of this technique is essential, since each system modification can generate faults
and failures in the software components (that in previous versions were working properly). Therefore,
tests performed in previous software versions should be repeated in their new versions and then, to
ensure that the current software components will work and stay valid. A great idea is that these
tests are automated, because, consequently, the time spent to perform them again will be smaller.
The test automation process can be essential, especially whether the software system is constantly
in maintenance process.

Acceptance Testing

The acceptance testing is usually performed by the customer/end user and, in general,
it is a testing level that is not considered as a responsibility of the company who developed the
system. Therefore, the customer aims to check the system behaviour in order to verify whether the
software meets the requirements specification specified in the contract [MS04]. In an nutshell, the
customer aims to validate the expected results from the software system. Although the customer has
the responsibility for running the tests, the professional from the company (developers and testers)
could assist him preparing the test environment and execution. Finally, the customer could accept
the software and then, the company prepares the software delivery or the customer may not accept
the software as well. In the second case may occur when the customer identify some inconsistency

37

or nonconformity with the software requirements. Therefore, the software must be revised and
corrected.

2.2.3 Model-based Testing

Model-based Testing (MBT) is a technique to automate the generation of test artifacts
based on system models [Kri04]. Using MBT, it is possible to model the structure and the behavior
of a system, hence they can be shared and reused by test team members. Furthermore, it is possible
to extract the test information from those models to generate new test artifacts, such as, test cases,
scripts and test scenarios [EFW01].

In order to generate test artifacts, the MBT adoption requires the creation of models based
on system requirements specified by software engineers and test analysts. One approach that can
be applied to better represent the system requirements is the use of UML models [BRJ05]. UML
models can improve the system specification through stereotypes and tag definitions. The use of
stereotypes is one of the UML extensibility mechanisms in which properties are described using tags.
That is, when a stereotype is applied to a model element, the values of the properties are referred
to as tagged values. Hence, all the information added to the model through stereotypes and tagged
values can be used to derive new artifacts, such as, test cases and/or test scenarios.

Although MBT can bring several advantages, as already mentioned, and test artifacts can
be generated using models based on UML, for example, the MBT technique has been widely used
to test products generated from single system applications. The benefits from the adoption of this
technique can also be applied to test SPL products.

2.3 Software Product Line

In last decade, Software Product Line has emerged as a promising technique to achieve
systematic reuse and at the same time to decrease development costs and time-to-market. An SPL
can be defined as a group of similar software that were developed from a common set of requirements,
that share common core assets and it is focused on obtaining a high degree of reuse [CN01] [PBL05].

In past years, many successful cases studies have been reported [Ins16a] [LSR07] [SPL17]
the benefits from the reuse inherent to SPLs. For instance, Nokia reported that the SPL adoption
resulted in a significant increase in production of new models of mobile phones. Therefore, SPL
allows to optimize time and resources due to the possibility to build a new software from the
management of products variability and reuse of existing components.

According to Software Engineering Institute (SEI) [Ins16a], the SPL engineering has three
main concepts from which it is possible to provide that reuse of components. The first one, is
called Core Assets Development, also known as Domain Engineering. The second concept is named

38

Product Development and it is known as Application Engineering. Finally, the third concept is
named Management of Product Line.

During Domain Engineering, the common and variable SPL artifacts are defined, while
during Application Engineering, the main goal is to derive specific products (applications) exploring
the variability of an SPL. Variability management is one of the main activities performed during
the development of an SPL, since that is the way to differentiate a product from each other in
an SPL [CN01]. A variability can be represented by variants and variation points. A variation
point represent artifact places that were not resolved during the development of the core assets
and; variants represent a feature/functionality that will be chosen to resolve a variation point. For
each variation point, one or more variants can be associated. Variability (i.e. variants and variation
points) can be introduced in all artifacts, which will be explored during the Application Engineering
to derive products that meet the specific requirements of different customers [PBL05]. Some of
these artifacts refers to requirements, architecture, components, test cases and feature model.

The feature model represents the aspects related to the variability in an SPL. Moreover, it
presents all the characteristics that are inherent to an SPL and the relation between the components
as well. According to [KCH+90], a feature is an important/relevant system feature that is visible
to the end user. A feature can be optional, common/mandatory or be part of alternative inclusive
variants (alternative_OR) or exclusive ones (alternative_XOR) [KCH+90]. An optional feature
does not need to be present in a product derived from the SPL. On the other hand, a mandatory
feature must be present in all products derived from the SPL. Furthermore, it is possible to exist
alternative_XOR features in a feature model, which means that: when one feature is chosen from a
list of possible features, then the other features of the same list wont be present in a specific product.
In turn, Alternative_OR features are used to represent a situation where one or more features of
the same variation point can be present in a specific product. Moreover, features may have some
relation to each other and some restrictions can be determined, such as: dependency relationships
(depends/requires) and; mutually exclusive ones (mutex/excludes).

Figure 2.3 presents a feature model of a mobile phone, which has four features in the first
level. The Call and Screen features are mandatory and; GPS e Media are optional. The Screen
feature has three alternative sub features: Basic, Colored and High Resolution, which means that
these three sub features wont be present in the same product, simultaneously. The Basic sub feature
has a exclusion relationship with the feature named GPS, i.e. if one of them is chosen to resolve the
variability, then the other one wont be present in the product. Therefore, whether a product screen
is basic, thus, the product will not be the GPS feature and vice versa. The Media feature has two
or sub features: Camera and MP3, where the Camera feature has a dependency relationship with
the High Resolution feature. In this context, if a product has a Camera media, then, the screen
must be in High Resolution.

The SPL features model is responsible for representing aspects related to variability, which
may be associated to different abstraction levels, such as, source code and documentation. As
described earlier, variability defines how members of a products family differentiate each other and

39

Figure 2.3: Feature Model of a Mobile Phone [Bro16]

also are represented by variation points and variants, where a variation point may contain one or
more variants. In a mobile phone SPL, for example, the variation point could be the communication
protocol and the variants of this variation point could be GSM, UMTS, CDMA.

The reuse inherent to SPLs is one of its main benefits due to the variability introduced
during Domain Engineering. Next, we present some works describing how the variability management
could be integrated to system models and the MBT technique.

2.3.1 Variability management in SPLs from System Models

The adoption of MBT can also be applied in the context of SPLs through an adaptation of
this technique. However, to adapt MBT in an SPL context it is necessary to consider an important
aspect inherent to SPLs, i.e. variability. Variability determines the differences among products
derived from an SPL and is defined in the Domain Engineering, where the variability management is
performed. Variability management is a responsibility of the SPL analyst and includes several tasks,
such as, variability identification, analysis and resolution. In order to resolve a specific variability
it is necessary to take one or more design decisions, which were postponed at some point during
development of an SPL [PBL05] [LSR07].

Variability management is related to development stages of SPLs, which include at least
the following activities [PBL05] [LSR07]: variability identification, identify differences in SPL
products and where they are located in the core artifacts; variability delimitation, specify the
binding time and the multiplicity of a variability. Binding time defines the time that a variability
is resolved, while the multiplicity of variability determines the amount of variants to be chosen
to resolve a variability; variability implementation, consists of selecting mechanisms to realize
variabilities, e.g., plugins are variability mechanisms at runtime. For instance, using Eclipse Java

40

Integrated Development Environment (IDE) [Gro09], it is possible to add plugins during program
execution; variant management, controls the variants and their variation points. This task also
consists of analyzing products that can be derived from an SPL.

Currently, there are works that aim to manage variabilities using different modeling nota-
tions, such as, Specification and Description Language (SDL) [KJG99] and UML [BRJ05]. In [HP03],
the authors extend the UML metamodel and propose the triangle notation, in which a triangle repre-
sents the relationship between a variation point and its variants. This triangle is included by an Use
Case (variation point) and connected to a set of Use Cases (variants). Similarly, [Gom05] presents
an approach named Product Line UML-based Software Engineering (PLUS), which uses the concept
of extension points in Use Case diagrams to represent the relationship between a variation point
(extended Use Case) and its variants (Use Case of extension).

Another work describing a variability management approach in SPLs is proposed by [OGM10],
in which the author presents an approach named Stereotype-based Management of Variability
(SMarty). This approach was adopted and used to represent variability information for SPLiT-MBt.
The motivation for choosing SMarty among other variability management approaches based on UML
notation, is that it can be easily extended, it has a low learning curve, it supports many models,
it is able to represent variability information in UML elements by using tags and stereotypes and,
different from other approaches, it defines a stereotype to represent inclusive variants. Moreover,
through its profile, SMarty represents cardinality information of variants as a meta-attribute, making
the variability representation fully compatible with the UML metamodel, which makes SMarty sup-
ported by existing UML modeling tools [OGM10] [FGMO12]. Although we have chosen SMarty, the
SPLiT-MBt can also be integrated with other similar approaches, e.g., the triangle notation [HP03]
or PLUS [Gom05], since they represent variability information in models describing the systems’
functionalities.

Those variability management approaches can also be integrated with testing strategies
and benefit from the reuse inherent to SPLs to generate reusable test artifacts to test products
derived from SPLs.

2.3.2 Software Product Line Testing

The testing activity does not yet fully benefits from the concept of reuse, which is the core
of the systems development from SPLs. To mitigate this problem, there are three strategies to test
products derived from SPLs [RRKP06] [TTK04]: test each product individually; opportunistic reuse
or; test case generation oriented to reuse.

The first strategy (see Figure 2.4) does not benefit from the advantages of reusing test
artifacts, since each product generated in the Application Engineering is individually tested. This
strategy is very expensive because there is no reuse. Therefore, the effort to test products derived

41

from an SPL is the same to test applications based on the development of single applications. Thus,
test cases that are common to many products are derived several times.

Figure 2.4: Separate test case development [RRKP06]

Differently from the first strategy, the second one (see Figure 2.5) applies the concept of
reuse of test artifacts. For this strategy, the test cases generated for the first application derived
from an SPL are reused to test new applications. This type of reuse is not systematically performed,
i.e., methods to support the selection of test cases are not used. Another problem occurs when
selecting test cases from the first application is not correctly performed. Thus, the functionalities
of the new applications could not be completely tested.

Figure 2.5: Opportunistic reuse of existing test cases [RRKP06]

The third strategy (see Figure 2.6) generates test cases similar to the product development
from SPLs, i.e., it takes place in two sub-processes. In the first (Domain Testing), reusable test
artifacts are generated, while in the second one (Application Testing) the test artifacts are reused
to test specific products. Thus, test cases to test functionalities common to several applications are
generated once. This strategy is used as reference to generate test artifacts using our SPLiT-MBt
and some SPL testing approaches, which we discuss in the next section .

42

Figure 2.6: Design test cases for reuse [RRKP06]

2.4 Related Work

Currently, there has been an increasing interest related to SPL testing. In this context,
several authors have presented approaches and methodologies to test SPLs using testing techniques,
such as, structural or functional testing or variability and architecture testing for SPLs. Especially,
functional testing based on UML models are the most discussed topic.

Several studies present approaches and methodologies deriving functional test cases from
UML models, which are adapted to represent variability information in SPLs. For example, McGregor
et al. [McG01], Nebut et al. [NFTJ04], Bertolino et al. [BG04], Kang et al. [KLKL07], Hartmann et
al. [HVR04], Olimpiew et al. [OG09], Reuys et al. [RRKP06], Capellari [CGSE12] and most recently
Kang et al. [KKB+17]. A brief description of the majority of these works is found in three systematic
mappings [ER11] [NdCMM+11] [LPP13] and a comparison with our method is described below.

In the approach proposed by McGregor et al. [McG01], test cases with variability infor-
mation are derived in Domain Engineering and reused in Application Engineering. Similarly to the
approach presented in this thesis, the author applies the proactive reuse concept to derive test cases.
However, the approach proposed by the author is not based on MBT, but it focuses on deriving test
cases from requirement documents in natural language. Therefore, that approach does not benefit
from the advantages of adopting MBT, such as requirements validation through testing models,
systematic generation and automation of test cases.

Nebut et al. [NFTJ04] present a method for generating test cases from sequence diagrams,
which represents scenarios describing the test requirements. These scenarios cannot be directly used
to test an application, since they are generic and incomplete, i.e., these are high-level sequences that
are used to automatically generate test cases for each product. Similar to SPLiT-MBt, this method
applies the proactive reuse concept, and it derives test cases from the MBT technique. However,
the method proposed by Nebut et al. focuses on reducing the testing effort only through reusing
test artifacts developed during Domain Engineering. On the other hand, SPLiT-MBt reduces the

43

testing effort through reusing artifacts and through defining methods to generate test sequences
that are applied in both Domain Engineering and Application Engineering.

Bertolino et al. [BG04] present a methodology called Product Lines Use Case Test Op-
timization (PLUTO), in which UML use cases are modified to represent variability information in
SPLs (Product Line Use Cases - PLUCs). This information is explicitly described through defining
three tags: Optional, Alternative and Parametric. Based on this methodology, test cases are manu-
ally derived using the Category Partition method. This methodology extends the Category Partition
method to deal with the variability in SPLs and then instantiate test cases for a specific product.
However, the derivation of test cases is manually performed, since the approach specifies the test
requirements in natural language. Therefore, this lack of automation contributes to a greater effort
on the testing process as a whole.

Kang et al. [KLKL07] present an approach to derive test scenarios from the “merge”
of adapted sequence diagrams to represent variability information in Orthogonal Variability Model
(OVM), which represents the SPL architecture. However, it is necessary to generate a sequence
diagram and combine it with the corresponding architecture model for each derived test scenario.
On the other hand, SPLiT-MBt integrated to SMarty derives test cases from a single model, i.e.,
activity diagrams representing variability and test information.

Hartmann et al. [HVR04] use activity diagrams as testing and variability model. However,
test cases are derived only during Application Engineering. Therefore, it does not consider the reuse
of test cases.

Olimpiew et al. [OG09] present a method called Customizable Activity Diagrams, Decision
Tables and Test Specifications (CADeT), which is based on the PLUS method to generate test cases
from use case diagrams and feature model. Activity diagrams are generated from use case diagrams,
from which decision tables describing test data are derived. Although this method could be similar
to SPLiT-MBt, it does not present explicitly how the coverage of the test sequences generated from
the activity diagram is performed. Moreover, the method proposed by Olimpiew et al. does not
present precisely how constraints among variants influence the amount of test cases.

Another work similar to SPLiT-MBt is presented by Reuys et al. [RRKP06] that proposes a
method called Scenario based TEst Case Derivation (ScenTED) to derive test cases from Use Case
and Activity Diagrams. These test cases are generated using an extended version of the Branch
Coverage criterion to the SPL context. These test cases are represented by sequence diagrams that
contain concrete test data. Although this method allows the reuse of test cases preserving variability
information in Domain Engineering (as well as the SPLiT-MBt), it is not clear how to generate test
cases considering dependency relationships, such as, requires or excludes. Moreover, for each test
sequence generated by the Branch Coverage, it is necessary to generate the corresponding sequence
diagram, as well as to adapt these diagrams in Application Engineering. On the other hand, SPLiT-
MBt provides methods of generating sequences applied to Domain Engineering and Application
Engineering, and it presents a systematic way to adapt the test sequences generated in Domain
Engineering to test products.

44

Capellari [CGSE12], presents the FSM-based Testing of Software Product Line FSM-TSPL
method to generate HSI Test Sequences for SPLs. Different from SPLiT-MBt, this work is only used
to generate test sequences during Application Engineering and it is just based on an opportunistic
reuse [RRKP06]. This type of reuse is not systematically performed, i.e., methods to support the
selection of test cases are not used. Another problem occurs when selecting test cases from the first
application is not correctly performed. Thus, the functionalities of the new applications could not
be completely tested.

The majority of approaches, methods and techniques presented in these papers apply MBT
to derive functional test cases and reuse these artifacts to test specific products. Although these
works present alternatives to reduce the testing effort, most of them focus only on the reuse of
developed artifacts. On the other hand, SPLiT-MBt aims to minimize this effort through adapting
test sequences generation methods applied to FSMs, e.g., HSI, UIO, TT or DS. These methods
allow greater coverage of failures and to generate smaller test sequences. Furthermore, these works
do not present clear and structured steps to generate test scripts. In general, most of these studies
leave many gaps when referring to traceability; they do not describe precisely how test information
present in models are instantiated to generate scripts for testing tools. Moreover, these works have
few details on the empirical validation, and do not describe clearly how the test automation process
is performed.

It is important to highlight that, recently, Kang et al. [KKB+17] presented a comparison
among the major Software Product Line Testing methods. In the paper, the author addressed the
strategies defined by those methods, e.g. opportunities for reuse depending on how variability is
represented in the domain test artifacts and the SPL aspects that are essential for reuse in SPL
development, e.g., variability representation and test data determination time. The main methods
presented by the author are also addressed in this thesis, which demonstrates that our research is
valid and is focus of interest for the scientific community.

Table 2.1 presents a comparative summary of the main SPL testing approaches/methodologies
regarding to the main concepts and characteristics considered by our SPLiT-MBt.

These comparisons provide some indicators related to the effectiveness and advantages of
our SPLiT-MBt when comparing to other SPL testing methodologies. However, we know that an
experimental approach and a deep study must be considered to prove these supposed advantages.

Table 2.1: Comparison among SPL Testing Approaches/Methodologies
Features CADeT ScenTED PLUTO SPLiT-MBt
Variability Management
Approach PLUS Own simple approach No Support SMarty and

other approaches

System Models Use Case and
Activity Diagrams

Use Case and
Activity Diagrams

No (Requirements are
specified in natural language)

Use Case and
Activity Diagrams

Test Case
Generation Method Unclear Extended Branch

Coverage criterion Category Partition Extended HSI,
UIO, W,Wi

Test Automation Partial (do not
generate test scrips)

Partial (do not
generate test scrips) Manual Script generation

from UML models
Functional Testing
Techniques No No No Boundary-value Analysis

Test Script Generator No No No MTM script

45

2.5 Research Methodology

It is well known that it is possible to define a structured method as a way to reach the
objectives of a scientific research. Moreover, we also know that, in order to achieve these objectives,
we can structure or systematize our research through defining a set of technical strategies, i.e. a
research methodology [Yin13]. In an nutshell, the research methodology corresponds to a process
and operations that can be applied in a scientific research [Yin13]. In this section, we present the
research methodology we have planned and applied during the development of this thesis.

We classified our research as exploratory. The exploratory research aims to develop or
modify concepts and ideas through defining new theories and hypothesis that was not discussed in
previously studies [Gil95]. It is important to highlight that we have defined two methods for our
exploratory research, i.e., literature review, and empirical experiment. Next, we present the research
design we have defined to organize our research.

2.5.1 Research Design

During the research development of this thesis we choose a quantitative strategy regarding
to the exploratory research, i.e controlled experiment [WRH+00]. An experimental research can be
used to test hypothesis under managed conditions through comparing, for example, approaches,
methods or models. We have applied an controlled experiment, since the research of our thesis
aims to answer “how” and “why” questions and also because we verified the need to compare our
SPLiT-MBt against other two methods to generate test cases for SPL products.

In order to develop our research, we defined a research methodology organized in three
phases: Conception, Validation and Knowledge (see Figure 2.7). The phases description is as follows:

• Conception: the first phase is divided in two blocks, i.e. Theoretical Base and Development.
The former is related to the research objectives, literature review, research question. In an
nutshell, it refers to the theoretical basis definition regarding the to main research topics of
our thesis, i.e. Software Product Line Testing, Model-based Testing, Testing types. The
later corresponds to the analysis of the SPL testing methods existing in the literature, e.g.,
CADeT, ScenTED, PLUTO, which are used as reference to define our SPLiT-MBt. Moreover,
we studied different methods to generate test sequences, e.g. HSI, UIO, W, TT and how to
extend them to an SPL context.

• Validation: this phase is divided in two blocks, i.e., Utilization and Experiment. The
former is used to illustrate how we have applied our SPLiT-MBt to generate test cases and
test scripts for two SPLs, i.e., AGM and PLeTs. The later is used to illustrate how we compare
our SPLiT-MBt against two other methods through defining an controlled experiment. It refers
to the planning, execution, data collection, and the result analysis of the experiment.

46

• Knowledge: the last phase aims to contribute to the scientific community by publishing our
research results.

It is important to highlight that the data analysis we have defined to assess our research
corresponds to: statistical methodse.g. average, median, and standard deviation. Moreover, during
the experiment, we performed advanced statistical techniques to assess the behaviour of our SPLiT-
MBt, i.e., Analysis of Variance (ANOVA) test [Lev12] and the Tukey test, which aims to determine
the differences among means (averages) in terms of standard error [Lev12] [Por17].

Figure 2.7: Research Design

2.6 Chapter Summary

Due to the capability to model and represent variabilities and thus obtain greater reuse of
features, functionalities and components, the use of SPLs can bring several advantages and benefits
to customers and consumers. According to [LSR07], after the advent of programming languages,
SPLs can represent the most “exciting” and significant changing in the development paradigm, due
to the ease and efficiency in developing systems with SPLs. The author also emphasizes that in no
other software engineering area are evidenced improvements such as, those provided by SPLs. The
most important claims is related to the benefits from the use of SPL. In this context, we highlight the
product quality, smaller time to market and higher productivity in product development. Moreover,
many companies, such as, Philips and Nokya, have found that, when a strategy for using SPLs is

47

well implemented, it can bring several improvements, such as [Ins16a]: higher productivity in large
scale; increasing of products quality; higher customer satisfaction; higher efficiency in the use of
human resources; higher company’s capability to keep itself in the market; cost reduction; ability to
migrate, in months, to new markets (not in years). Despite these benefits, one of the problems with
the SPL adoption is related to the product testing. This is due to the variability introduced during
Domain Engineering, which makes the SPLs’ testing activity a great challenge. In the next section,
we present our MBT method to generate functional test cases for SPL products and how it is able
to assist testers to deal with variability information during all SPL testing process .

48

49

3. SPLIT-MBT: A MODEL-BASED TESTING METHOD FOR
SOFTWARE PRODUCT LINES

“Those who are not good to others are
bad to themselves.”

St. Leo the Great

In the previous chapter, we focused on describing the main concepts related to the Testing,
SPL Testing and MBT. We also presented the main works (methods, approaches and techniques)
that have characteristics in common with our SPLiT-MBt. In this chapter, we introduce the mo-
tivation and discuss the main features of our method, which was developed from our collaboration
with a Technology Development Lab (TDL) of Dell Computers Brazil. Furthermore, an example
(i.e. an UML model) is used as a reference to detail the steps of our SPLiT-MBt. At the end, we
present, based on the the steps of our method, how we could perform SPL Testing using an SPL
Testing Tool named SPLiT-MBt Tool, which is able to generate test scripts to test products during
Application Engineering.

3.1 Contextualization

The adoption of SPL concepts to develop a family of related products leads to the reduction
of cost and effort. Although the adoption of these concepts may provide several advantages during
the requirements identification, design and coding of software artifacts, the testing phase must be
carefully planned and executed. It is well known that software testing in a stand-alone development
process is a complex and challenging activity. Therefore, the testing activity in an SPL context is
even more complex, since common and specific artifacts must be tested, as well as the interaction
among these artifacts. Consequently, in order to test SPL products it is necessary to develop and
apply approaches and methods differently from those used in a stand-alone development process,
where single applications must be tested. With the purpose of improving the testing of applications
derived from SPLs, we propose a method to test SPL products named Software Product Line
Testing Method Based on System Models (SPLiT-MBt).

Our method supports automatic functional test case generation from UML models, but
could be expanded for other models. As mentioned before, the idea is to generate test artifacts
during Domain Engineering and reuse them during Application Engineering. In order to make
this possible, SPLiT-MBt is applied in two steps: first, we add test information on UML models,
that were previously designed using a variability management approach, to generate test sequences
during Domain Engineering. Second, we add test information on UML models (during Application
Engineering) and resolve variability present in the test sequences. Finally, test scripts are generated

50

to be executed for a specific testing tool. Next, we present the main topics that encompasses this
steps:

• Testing activity during Domain Engineering:

– extracting test information and variability from extended UML models based on SPL
requirements;

– generating Finite State Machines (FSMs) with test and variability information from UML
models;

– generating test sequences with variability through applying a chosen test sequence gen-
eration method (over FSMs), which is adapted/extended to SPL context;

• Testing activity during Application Engineering:

– resolving variability present in test sequences;

– extracting test information from UML models based on software requirements of a specific
product, since it is possible to exist functionalities of products that are represented only
in Application Engineering;

– generating FSMs from information annotated on UML models of a specific product;

– generating test sequences to a specific product through applying a chosen test sequence
generation method (over FSMs);

– generating test cases to test SPL products;

– generating test scripts for a chosen functional testing tools based on test sequences
generated on Domain Engineering and Application Engineering.

These steps are performed by a prototype tool supporting the SPLiT-MBt activities, i.e.
SPLiT-MBt Tool. It is a plugin-based tool that provides automatic test sequence generation using
different test sequence generation methods, e.g., W, Wp and HSI. Furthermore, in order to automate
test scripts generation, as well as the test execution, our tool can also be integrated with different
functional testing tools e.g., QTP, RFT, Selenium, VS, MTM. In the next sections, we present in
details the steps to generate test cases and scripts based on the SPLiT-MBt (see Figure 3.1).

3.2 SPLiT-MBt during Domain Engineering

Functional testing at the system level could not be applied during Domain Engineering.
The reason is related to the presence of variability and also because complete systems are not de-
rived during Domain Engineering [PBL05]. However, during Domain Engineering it is possible to
generate test artifacts that can be reused to test systems generated during Application Engineering.
In this context, the SPLiT-MBt supports automatic generation of reusable functional test artifacts

51

Figure 3.1: Split-MBT steps for generating functional test cases

in three steps: (see Figure 3.1): (a) Add Functional Test Information: consists of annotat-
ing, with test information, UML models describing variability information; (b) Domain Parser:
extracts test and variability information from Activity Diagrams to generate FSMs, and; (c) Domain
Test Sequence Generation: generates test sequences through applying test sequence generation
methods that are extended to SPL context to deal with variability.

3.2.1 Add Functional Test Information

The first step of our method (see Figure 3.1 (a)) consists of manually annotating, with test
information, an UML model previously designed with a variability management approach. This UML
model is generated by an SPL analyst, that using a specific variability management approach, is
responsible to extract information from the SPL requirements specification to design the model.
SPLiT-MBt can be integrated to several variability management approaches, e.g. Product Line
UML-based Software Engineering (PLUS) [Gom05], Triangle Notation [HP03] or Stereotype-based
Management of Variability (SMarty) [OGM10].

As described in Section 2.3.1, we have adopted the SMarty approach, since it can be easily
extended, it has a low learning curve, it supports the variability management for several UML models
and, different from other approaches, it define a stereotype to represent inclusive variants. Figure 3.2
presents an example of UML Use Case and Activity Diagram describing variability information that
was previously designed by the SPL analyst using the SMarty approach. Variation points in Activity
Diagrams are identified in DecisionNode elements with the stereotype �variationPoint�, as
illustrated in the Figure 3.2. In that example, the variation point represents the variability Var1

52

(name), which requires the selection of at least one (minSelection) and up to three (maxSelection)
variants, and that must be done at design time (bindingTime). When an SPL grows, this variability
allows the addition of new variants (allowAddingVar). The variation point in question has three
variants, which are represented by the Action elements S9, S2 and S8 (variants). They are annotated
with the stereotype alternative_OR, indicating that a derived product may have at least one or
even three of these variants representing features in its architecture. The other diagram elements
are annotated with the stereotype mandatory, indicating that the features associated with these
elements must be present in the configuration of all derived products.

Figure 3.2: Domain Engineering testing model

Although SMarty approach could manage variability in different UML models, it is not
able to represent test information, e.g., input/output data to test the application functionalities.
Therefore, to generate functional test cases for products derived from SPLs using SPLiT-MBt

53

integrated to SMarty, it is still necessary to add functional test information on models representing
the SPL functionalities, i.e. UML Activity Diagrams.

We have chosen UML Activity Diagrams as functional testing model, since they are the
most widely used models to represent the behavior and functionalities of a system [BRJ05]. Basically,
stereotypes and tagged values are, manually, added to these diagrams by the test analyst, and
some specific UML elements are annotated with test information [RVZG10] [SRZ+11]. The use of
stereotypes and tags allows to describe functional test information necessary to generate test scripts.
Moreover, stereotypes and tagged values can be used to enhance the specification documents,
improving the quality of models and test artifacts [AD97].

Based on the analysis of several scientific papers (see Chapter 2), as well as the ad hoc
experience, observations and practices developed in our research group (we experimented some
functional testing tools, e.g. QTP, RFT, Selenium, VS and MTM), we have defined one stereotype
(FTstep) that has three tags (TDactionDomain, TDexpectedResultDomain and TDfunctionalCri-
terion) where test information is annotated. Their description is as follows: FTstep, stereotype
annotated in the ControlFlow (transition) elements of an Activity Diagram. It has three associated
tags: TDactionDomain, that specifies the action data to be performed by the user to test a specific
functionality. Test information present in this tag is used to perform a specific system functionality;
TDexpectedResultDomain, that specifies the expected result data used to check whether a specific
functionality is working as described in the functional requirements. The information present in
this tag is compared to the result obtained from the system execution for the data described in
TDactionDomain tag; and TDfunctionalCriterion, that specifies information about the functional
test criterion used to test some system functionality, e.g. Boundary Value Analysis or Equivalence
Partitioning [MS04].

For instance, it is possible to use different functional testing criteria to test different
functionalities of the same application. In a specific example, it would be possible to apply the
Boundary Value Analysis criterion to test a specific functionality and to apply another criterion,
such as Equivalence Partitioning, to test another functionality. Therefore, the tester/test analyst
who is using SPLiT-MBt Tool could choose among different functional criteria to test different
functionalities of the same system.

The test analyst could annotate the actual test data directly in a specific tag or use
an external XMI file (for great volume of data) named Functional Test Data to describe the test
information. In the case of using an external file, the tag describes only a reference to this file.
For instance, TDactionDomain tag is annotated with a value corresponding the concatenation of
two pieces of information: activity name and tag name (see Figure 3.2)1. On the other hand, the
Functional Test Data file has the names of all activities of the diagram, the name of all tags and
actual test data as well. Thus, it is possible to correlate the information described in the tags of the
diagram with the actual data described in this file for later generation of test cases.

1All other transitions of the model have their transitions annotated with similar test information.

54

We consider the option of using an external file with actual test data information rather
than only add them directly in the model, since the addition of such information directly in the
tags is feasible up to a certain limit. Representing a great volume of data in a single tag may be
difficult to visualize. Furthermore, the use of a structured file as an XML, provides greater clarity
and understanding of the actual test data.

It is important to highlight that when the SPL evolves or changes, the test information
annotated in these stereotypes and tags must be modified as well. An advantage is that the
test information is updated in the SPL models through rewriting test information described in the
tags and stereotypes. Thus, the new test cases are automatically generated based on the changes
performed in the models. Therefore, it is possible to save time during the evolution of the SPL,
since all test modification is earlier performed at the beginning of the modeling process. Hence, all
test information is updated just once and there is no need to change the test information for each
product of the SPL in a individually manner.

The process of adding tags, stereotypes and test information on the Activity Diagram is
required to apply the other steps of the SPLiT-MBt method. At the end, the test analyst must
export the models describing all test and variability information to an XMI file, which is the input of
the next step of our method.

3.2.2 Domain Parser

This step (see Figure 3.1 (b)) consists of automatically extracting variability and test
information from Activity Diagrams (XMI file) to generate a formal model, e.g. Finite State Ma-
chines (FSM). We have chosen FSMs, since they are among the most used formal models applied
in MBT [CSV10]. Furthermore, FSMs are a good alternative to design software testing com-
ponents, since they may be applicable in any specification model describing a finite number of
states [EFW01] [Cho78] and also because FSMs are the most suitable models to generate sequences
used as testing data input [Cho78]. The reason to generate FSMs is to apply test sequence gener-
ation methods (e.g., UIO, HSI, DS) that are able to generate less amount of tests. The idea is to
test products with less effort (time spent) as well as generating less test cases when comparing with
other approaches. The problem is that FSMs were essentially designed to test software based on
single system paradigm, and only few works [Gom05] [MRKN13] extend FSMs to an SPL context.
Therefore, an extension of FSMs to represent variability information was required.

In order to deal with this issue, we have developed an approach that is integrated to
SPLiT-MBt, which is able to generate extended FSMs from Activity Diagrams. Basically, that
approach consists of converting information present in Activity Diagrams (XMI file) into FSMs with
test and variability information (an example of an FSM generated from the Activity Diagram of the
Figure 3.2 is shown Figure 3.3). Thus, all variability and test information from an Activity Diagram

55

Figure 3.3: FSM generated from Activity Diagram of the Figure 3.2

is forwarded to the FSM. The conversion process just mentioned occurs according to the following
criteria:

• The InitialNode and ActivityFinal elements from the Activity Diagram are converted into Start
and End states;

• Action elements from the Activity Diagram are converted into corresponding states in the
FSM;

• ControlFlow elements from the Activity Diagram are converted into corresponding transitions
in the FSM;

• DecisionNode elements are not converted to a specific element in the FSM, since FSMs do
not have a corresponding element. However, the transitions associated to this element are
connected directly to the state (activity/element Action) that yielded the deviation.

• DecisionNode elements tagged with the �VariationPoint� stereotype are associated to
the corresponding transitions in the FSM, i.e., a variation point is represented by a numeric
identifier (VPid) associated to its variants in the FSM (see Table 3.1 (b));

• Variability information (e.g., alternative_XOR, alternative_OR, optional, mandatory)
annotated in Action elements from the Activity Diagram are represented in the FSM transi-
tions;

• Input information from the FSM transitions corresponds to the test input data and functional
criterion in the Activity Diagram (see Table 3.1 (a));

• Output information from the FSM transitions describes several information, i.e., source state,
target state, expected result and variability information (see Table 3.1 (b)).

Based on the criteria described above, the Activity Diagram is converted to an FSM sup-
porting variability information (see Table 3.1). This table presents input and output data information

56

of the FSMs. The input data are described in Table 3.1 (a) and has three types of information:
ID, which corresponds to the FSM input identifier (see Figure 3.3); Input, which corresponds to the
input data used to test the system functionalities and; Functional Criterion, which corresponds to
the functional criteria used to select test data. Similarly, the output data are represented in Table 3.1
(b) by a set of information: ID, which corresponds to the FSM output identifier; Output, which cor-
responds to the expected result related to a test performed to assess a specific system functionality;
Variability, which corresponds to the variant type associated with a given state (Target State) and;
information regarding the source and target states of the FSM. FSMs are the outcome of Domain
Parser and it is used as input in the next steps of our SLPiT-MBt.

(a) FSM Input (b) FSM Output

ID Input Functional Criterion ID Output State State VariabilitySource Target

a S0.input S0.criterion 01 S0.output Start S0 mandatory18 S7 S0

b S1.input S1.criterion 02 S1.output S0 S1 mandatory14 S6 S1
c S9.input S9.criterion 03 S9.output S1 S9 alternative_OR (VP1)
d S8.input S8.criterion 04 S8.output S1 S8 alternative_OR (VP1)
e S2.input S2.criterion 05 S2.output S1 S2 alternative_OR (VP1)

f S3.input S3.criterion

06

S3.output

S8 S3

mandatory07 S2 S3
08 S9 S3
09 S3 S3

g S4.input S4.criterion 11 S4.output S3 S4 mandatory
h S5.input S5.criterion 10 S5.output S3 S5 mandatory

i S6.input S6.criterion 12 S6.output S5 S6 mandatory13 S4 S6
j S7.input S7.criterion 16 S7.output S6 S7 mandatory

k End.input End.criterion 15 End.output S6 End mandatory17 S7 End

Table 3.1: Input and Output information of the FSM from Figure 3.3

3.2.3 Domain Test Sequence Generation

Once the conversion from an Activity Diagram to an FSM containing variability and test
information is performed, the next step (see Figure 3.1 (c)) consists of generating test sequences
(Domain Test Sequences). Therefore, the FSM previously generated is used to create test sequences
with variability information. These sequences are produced through the use of a specific test sequence
generation method, e.g., TT, UIO, DS, W or HSI. However, these methods are applied only in FSMs
and are able to generate less test sequences. The idea is to test products with less effort (time spent),
as well as to generate less test cases when comparing with other approaches. However, they had to
be extended in an SPL context to handle variability information present in FSMs, since they were
originally created to test applications developed from the single system paradigm, which make them

57

inefficient to reduce the number of test cases to test products derived from SPLs. Therefore, one of
the goals of this work is to investigate how different methods of generating test sequences existing
in the literature can be adapted and/or applied to reduce the testing effort for applications derived
from SPLs.

In a nutshell, in an SPL context, these methods must be able to determine the location of
a variation point and then generate distinct sequences to test all variants associated to a particular
variation point. Furthermore, these methods must be able to handle all variability information present
in the FSMs, e.g. Optional and Mandatory variants as well dependency relationship (requires);
mutually exclusive relationship (mutex) and; inclusive (OR)/exclusive (XOR) variants.

After performing a deep investigation based on the comparison of the HSI, UIO, TT, DS
and W methods as well as identifying the characteristics that these methods have in common, we
could realize that test sequence generation methods have several characteristics in common. For
example, they work with a set of partial test sequences: State Cover (Q), Transition Cover (P),
Characterized Set (W), Identification Set (Wi), Harmonized Identifiers (HI), Unique sequence of
input and output (UIO). Some of these partial test sequences are gather together and the result
corresponds to the final test sequence for each method. For instance, joining the Q, P and HI
(partial sequences) produces as result the HSI final test sequence.

Therefore, based on that investigation, we concluded that the HSI method is the most
suitable for our purpose. The reason for choosing this method was due to the fact that it is one of the
least restrictive methods regarding the properties that FSMs must have. For instance, the HSI is able
to interpret complete and partial FSMs [PYLD93]. Moreover, the HSI method allows full coverage of
existing failures and it generates smaller test sequences than other methods, which contributes to a
testing process optimization. These factors are very relevant in SPL context, because when an SPL
grows, the number of test cases necessary to test SPL products could increase exponentially [ER11].

In order to generate test sequences from an extended version of the HSI, it is necessary to
apply it considering variability information present in the FSM (see Figure 3.4). We have adopted the
HSI to be integrated to SPLiT-MBt with the purpose of generating test sequences with variability
information. However, as we mentioned earlier, we had to extend it to an SPL context. This
adaptation of the HSI method is described as follows:

1. Variants can also be a variation point. In this case, FSM’s states (variants) associated to a
variant (that is also a variation point) are “separated” from the original FSM. In this context,
a new FSM is produced, i.e. a sub FSM. Sub FSMs can be generated in another situation. For
instance, they can also be created when exist “Nested Activities” in UML Activity Diagrams,
i.e. when an action element (activity) of an Activity Diagram makes a reference to another
Activity Diagram. It is important to highlight that a sub FSM will be replaced by a state that
represents the sub FSM in the main FSM;

2. Variants associated to the same variation point are assumed to be a single state in the FSM.
Furthermore, the input transition of this single state must have the input/output information

58

of all states (variants). This state is a concatenation of: VP_ plus a unique identifier,
e.g. VP_S1. This state represents a specific variation point and has information about its
variants. This occurs because it is not possible to determine which variants associated to a
particular variation point will be resolved, since a variation point is not resolved during Domain
Engineering. Thus, a solution was to increase the abstraction level through defining a unique
state representing the variants associated to a variation point. Therefore, the test sequence
generation methods can be applied and still preserve variability, which will be resolved only in
Application Engineering. A concrete example representing this situation is shown in Chapter 4;

3. After executing the criteria 1 and 2, it is necessary to generate a set of partial test sequences,
which is performed by the application of a test sequence generation method under an FSM,
i.e. HSI. As described earlier, the partial test sequences correspond to a set of sequences that
are joined together to form the final set of test sequence of a specific test sequence generation
method. For instance, the final test sequence generated by the HSI method is composed by
the combination of three partial test sequences, i.e. State Cover (Q), Transition Cover (P)
and Harmonized Identifier (HI). It is important to highlight that different from the traditional
way to generate test sequences (that using the original version of HSI, for example), SPLiT-
MBt uses the extended version of HSI, since this new version is able to handle variability
information present in the FSMs.

4. In Domain Engineering the goal is to preserve variability. Therefore, variants having depen-
dency relationship (depends/requires) or mutually exclusive ones (excludes/mutex) among
themselves, as well as optional variants and variants that are part of a group of alternative
inclusive variants (alternative_OR) or exclusive ones (alternative_XOR) are not consid-
ered when performing the methods, but will be resolved in Application Engineering, in which
concrete test cases are derived to test specific products [CN01].

5. The output of this SPLiT-MBt step is a set of test sequences generated from the use of
a chosen method, i.e. HSI. These sequences still contain variability information, which is
represented by the following alphabet:

• Op = represents optional variants;

• VP_or = represents a variant that is part of a group of inclusive alternative variants
(alternative_OR);

• VP_xor = represents a variant that is part of a group of exclusive alternative variants
(alternative_XOR);

• {} = defines the set of variants associated to a variation point;

• () = defines the set of test sequences generated by the application of a test sequence
generation method under an FSM;

• [] = defines the set of test sequences generated by the application of a test sequence
generation method under sub FSMs;

59

• Req−> = represents the dependency relationship (depends/requires) among variants;

• Ex−> = represents the mutually exclusive relationship (excludes/mutex) among variants.

Figure 3.4: Adapted FSM

Although, we have adopted the HSI to generate test sequences with variability information,
the process to extend other test sequence generation methods (e.g. W or UIO) in an SPL context
are similar. Furthermore, it is important to highlight that through the mentioned process steps,
it was possible to extend the HSI. This extended version is able to handle variability information
present in the FSMs and then, generate test sequences with variability information2.

Considering the extended version of HSI, which was based on these criteria, the process of
generating test sequences for the FSM of Figure 3.4 resulted in the set of HSI test cases described
in Table 3.2. As it is possible to realize, 7 test sequences preserving variability information were
generated. An example of test sequences in which variability was resolved would be: (abdfff, abdfgib,
abdfgik, abdfhib, abdfhik, abdfgijk, abdfgijab). In order to generate these sequences, the variation
point VP1 was resolved by selecting the input ‘d’ associated to the variant (state) S8.

ID Set of Test Sequences
Sequence 1 ab{d;e;c}V P_orfff,
Sequence 2 ab{d;e;c}V P_orfgib,
Sequence 3 ab{d;e;c}V P_orfgik,
Sequence 4 ab{d;e;c}V P_orfhib,
Sequence 5 ab{d;e;c}V P_orfhik,
Sequence 6 ab{d;e;c}V P_orfgijk,
Sequence 7 ab{d;e;c}V P_orfgijab

Table 3.2: Generated test sequences

Once the test sequences are generated, they are stored in a repository (Test Repository)
to be later reused (when variability was already resolved) to test specific products during Application

2It is not the focus of our thesis to describe how those test sequence generation methods are adapted for an SPL
context. A detailed explanation about how this adaptation process occurs can be found in [Zan16].

60

Engineering (see Figure 3.1). This repository stores test sequences generated based on information
from several Activity Diagrams. Therefore, SPLiT-MBt allows to extract test information from
Domain Engineering through applying the MBT technique in an SPL context for later generation of
test cases and scripts during Application Engineering.

3.3 SPLiT-MBt during Application Engineering

During Domain Engineering (see Section 3.2), a set of test sequences that include vari-
ability information were generated. Therefore, during Application Engineering it is necessary to
resolve the variability present in those test sequences and reuse them to generate test scripts to
test specific products. These tasks are automatically performed in seven steps (see Figure 3.1):
(d) Resolving Variability: resolve variability present in the test sequences that are stored in
the Test Repository; (e) Add Functional Test Information: consists of annotating, with
test information, UML models representing functionalities of a specific product; (f) Application
Parser: extracts test information from Activity Diagrams to generate FSMs; (g) Application
Test Sequence Generation: generates test sequences through applying conventional test se-
quence generation methods; (h) Abstract Test Case Generation: based on generated test se-
quences, a set of abstract test cases is derived; (i) Script Generator: generates scripts from the
abstract test cases to be executed by a functional testing tool; (j) Executor: executes the test
using a specific functional testing tool. These last three steps are similar to features from a product
line called PLeTs - (Product Line of Model-Based Testing Tools [RVZG10].

3.3.1 Resolving Variability

This step (see Figure 3.1 (d)) describes how to resolve the variability present in the test
sequences generated during Domain Engineering in order to reuse them to test specific products.
To provide that, this step receives as input two types of artifacts, i.e. the test sequences stored in
the Test Repository and a Traceability Model 3. We assumed that this model was previously
designed by the SPL analyst based on the SMarty approach.

The Traceability Model is described in a tabular format [MJG14], i.e. a matrix that
makes a correlation between an SPL feature model and UML model elements, such as, use case and
action elements from Activity Diagrams (see Table 3.3a). The lines of the matrix have information
about the name of UML elements (e.g. UML use case and action elements), and the columns have
information about the SPL features. The inter relationships between UML elements and features
are marked in the matrix with a "blob" to determine the configuration information, i.e. the selected
features for resolving variability. Thus, based on the association between the features and UML

3An example of a Traceability Model can be found in [Jun10] - Page 84.

61

elements it is possible to determine the UML elements that have their variability resolved, i.e. the
models that represent actual products of an SPL.

Table 3.3: Traceability Model and Test Sequences

(a) Traceability Model

Features
(From Feature Diagram)Activity Diagram

(Action Elements/Input Data) Navigate Shopping
Shopping Cart/e *
Perform Search/y *
Order Status/w *

(b) Test Sequences

Test Sequences
(From Test Repository)
ab{d;e;c}V P_orfff
hi{j;k;l}V P _orppp
pq{r;s;t}V P _orvvv

When we have the information about the models with the resolved variability (provided
by the Traceability Model) the variability present in the test sequences is resolved by cross-
ing information present in the Traceability Model with the test sequences present in the Test
Repository (see Table 3.3b). For instance, when considering the following hypothetical test se-
quence: (ab{d;e;c}V P_orfff). It is possible to realize three inputs (d;e;c) associated to variants
type OR. When this sequence is compared with information present in a Traceability Model (e.g.
activity shopping cart with data input = ’e’) it is possible to determine which variant (d;e;c) will be
selected to resolve the variability present in that sequence. In this case, the selected variant was ’e’
and as result we have the corresponding test sequence: abefff.

Moreover, we can also apply this approach to resolve variability present in the sequence
“ab{d;e;c}V P_orfff” from Table 3.2. When resolving the variability present in that sequence, two
other test sequences are generated: abdfff and abcfff. After resolving the variability present in the se-
quences generated during Domain Engineering, eight test sequences were generated (see Table 3.4).
These resolved test sequences can be converted into equivalent test cases in natural language, i.e.,
abstract test cases. This activity is performed by the Abstract Test Case Generation step.

Finally, it is important to notice that, although it has not been addressed in the above
example, this step is also responsible for resolving dependency (depends/requires) and exclusion (ex-
cludes) relationships among variants, as well as optional variants. This resolution is also performed
by crossing variability information present in the Traceability Model with the test sequences
present in the Test Repository. More details on how that situation can be applied is shown in
Chapter 4.

62

ID Test Sequences
Sequence 1 abdfff,
Sequence 2 abcff,
Sequence 3 abdfgib,
Sequence 4 abdfgik,
Sequence 5 abdfhib,
Sequence 6 abdfhik,
Sequence 7 abdfgijk
Sequence 8 abdfgijab

Table 3.4: Generated test sequences

3.3.2 Add Functional Test Information

This step (see Figure 3.1 (e)) has some similarities when comparing to its equivalent step
from Domain Engineering, i.e. test information are added to UML models. However, the model
depicts functionalities of a specific product. For example, during Application Engineering could be
necessary to add a specific functionality to an existing product when a new version of this product
is required. As this functionality is specific to a single product, it is, usually, not added to models
during Domain Engineering. In this context, a new model representing the specific functionalities for
a particular product must be designed from scratch during Application Engineering. In this SPLiT-
MBt step, we assumed that these models (Activity Diagrams) were previously designed based on
information extracted from Software Application Requirements. Thus, a test analyst is only
responsible for annotating, with test information, those UML models. This annotation process is
almost the same as that performed during Domain Engineering. Therefore, the same tags used
to annotate ControlFlow elements (transitions) during Domain Engineering are used at this step,
i.e. TDactionDomain, TDexpectedResultDomain and TDfunctionalCriterion. The difference is that,
during Application Engineering, the Activity Diagrams have no variability information.

When the Activity Diagrams is fully annotated, with test information, the test analyst
must export the models to an XMI file, which is the input of the next step of our method.

3.3.3 Application Parser and Application Test Sequence Generation

The Application Parser and Application Test Sequence Generation steps (see
Figure 3.1 (f-g)) are very similar to their equivalent ones from Domain Engineering, just differing
in some aspects. For instance, the Application Parser is applied to models that contain only
test information, since the variability has been previously resolved. Figure 3.5 depicts an Activity
Diagram describing the functionalities of Use Case 3 (UC3), i.e. functionalities of a specific product.

Therefore, the Application Parser receives, as input, an XMI file describing test in-
formation related to the Activity Diagram from Figure 3.5 and then one FSM is generated (see

63

Figure 3.6). This formal model is the input of the Application Test Sequence Generation
step, from which are applied a specific test sequence generation method, i.e. traditional HSI. In
this step, there is no need to adapt the HSI, since there is no variability information to be handled.
Therefore, a set of test sequences is, automatically, generated through applying the HSI under FSMs
describing functionalities of a specific product. Table 3.5 shows the generated test sequences, using
HSI, for the FSM from Figure 3.6. These sequences are the input of the next step of SPLiT-MBt.

Figure 3.5: Test model of a specific product

Figure 3.6: FSM generated from the Activity Diagram of Figure 3.5

64

ID Test Sequences
Sequence 1 aced,
Sequence 2 abdfh,
Sequence 3 abdfa,
Sequence 4 abdfgh

Table 3.5: Generated test sequences

3.3.4 Abstract Test Case Generation

This step (Figure 3.1 (h)) aims to, automatically, convert the test sequences, gener-
ated in Application Test Sequence Generation and Resolving Variability steps (see Fig-
ure 3.1)), into abstract test cases. For each test sequence, the corresponding abstract test case is
generated. An abstract test case is a text file structured in a technology independent format that
describes the activities to be performed by the user (or a tool) during the interaction with the System
Under Test (SUT). It uses the test data to define the user or, their actual data inputs/outputs and
the functional criteria. These data input/output and functional criteria present in the abstract test
case corresponds to the test information, previously, added to the Activity Diagrams and propagated
during the steps of SPLiT-MBt.

The motivation for generating abstract test cases is that they can be reused to, auto-
matically, produce scripts to several functional testing tools, e.g. MTM, VS, QTP or RFT. Thus,
SPLiT-MBt provides greater flexibility by allowing that products derived from an SPL can be tested
using different testing tools. For instance, consider an IT company that has adopted SPLiT-MBt to
test the products of its SPL. This company can be motivated by technical or managerial decision
to easily migrate from a testing tool A to a testing tool B without the need to manually create new
scripts. Thus, all test cases and scripts previously created can be reused. Furthermore, the abstract
test case has a clear representation where the test data are presented in a high level language.

Figure 3.7 presents an abstract test case generated from a set of test sequences in the
previous step, i.e., abdfgik. Each element of this sequence has information related to the input data
(TDactionDomain) and output (TDexpectedResultDomain), as well as definition of the functional
test criterion (TDfunctionalCriterion) used for selecting test data. The input/output information
and functional criteria present in the abstract test case have actual test data, which were extracted
from the file Functional Test Data mentioned in Section 3.2.1.

In the example presented in Figure 3.7, the Boundary Value Analysis criterion was used in
all functionalities that will be tested. The motivation for choosing this criterion is because it is one
of the most known in the literature and can be easily automated. This criterion defines test data
to the limits of a range of values and data preceding and succeeding this interval. For instance,
considering the range of values [21; 100] (Figure 3.7 - 1. S0), the following data to test a specific
functionality must be set: 20; 21; 100; 101. Although the Boundary Value Analysis criterion has
been used as an example, other criteria, such as Equivalence Partitioning, could be applied.

65

#Test Case: Sequence 4 - abdfgik
1. S0
<<TDactionDomain = [21; 100] >>
<<TDexpectedResultDomain = "Age must be in the range between 21 and 100 years old">>
<<TDfunctionalCriterion = Boundary Value Analysis>>
2. S1
<<TDactionDomain = ["a"; "abcdefghij"]>>
<<TDexpectedResultDomain = "The field must have at least 1 and at most 10 characters">>
<<TDfunctionalCriterion = Boundary Value Analysis>>
3. S8
<<TDactionDomain = [1; 1638]>>
<<TDexpectedResultDomain = "The font size must be a value between 1 and 1638">>
<<TDfunctionalCriterion = Boundary Value Analysis>>
4. S3
<<TDactionDomain = [1930; 2005]>>
<<TDexpectedResultDomain = "Birth date accepts values from 1930 to 2005">>
<<TDfunctionalCriterion = Boundary Value Analysis>>
5. S4
<<TDactionDomain = [R$ 1.000,00; R$ 85.000,00]>>
<<TDexpectedResultDomain = "Authorized lending to values between
R$ 1.000,00 and R$ 85.000,00">>
<<TDfunctionalCriterion = Boundary Value Analysis >>
6. S6
<<TDactionDomain = [0; 5] >>
<<TDexpectedResultDomain = "Age must be in the range between 0 and 5 years old">>
<<TDfunctionalCriterion = Boundary Value Analysis>>
7. End
<<TDactionDomain = [12; 24]>>
<<TDexpectedResultDomain = "Contract period from 12 to 24 months">>
<<TDfunctionalCriterion = Boundary Value Analysis>>

Figure 3.7: Abstract test case generated from the test sequence 4 of Table 3.4

Finally, once the abstract test cases were generated, they are instantiated to concrete test
cases, i.e., test scripts.

3.3.5 Script Generator and Executor

This step (Script Generator - see Figure 3.1 (i)) consists of, automatically, creating
scripts based on the abstract test cases generated in previous step. It is a tool-dependent step,
since the scripts are “strongly” associated to a specific functional testing tool, i.e. MTM. In this
context, SPLiT-MBt supports the instantiation of abstract test cases into test scripts to be used
to the test execution. Although we have chosen the MTM, SPLiT-MBt allows the integration with
other functional testing tools, e.g. VS and QTP and RFT.

The test scripts generated by SPLiT-MBt Tool have a tabular format. These scripts are
imported by a testing tool, e.g. MTM, for the test execution. Figure 3.8 shows a script with
test information generated from the abstract test case illustrated in Figure 3.7. In this example,
it is possible to see that the values of the fields TDactionDomain, TDexpectedResultDomain
correspond respectively to the input data and expected results present in cells Action/Description
and Expected Results. Some data of the Action/Description cell were set based on functional

66

Figure 3.8: Script generated from the abstract test case of Figure 3.7

criteria Boundary Value Analysis. The other information set in Test Case #, Work Item ID and
Test Title cells are generated automatically and correspond respectively to the test case name,
test case identifier and test title.

Finally, once the test scripts are generated, the SPLiT-MBt prototype tool performs its
last functionality (Executor - see Figure 3.1 (j)), which aims to launch the testing tool and to
start the test execution. This initialization consists of an internal system call, where through the
SPLiT-MBt prototype tool interface the user (tester) provides the testing tool installation path and
the scripts path. Thus, the testing tool test environment is initialized and the test can be finally
performed.

67

3.4 Chapter Summary

In this chapter, we presented the SPLiT-MBT method, which is based on the MBT tech-
nique to generate functional test cases and scripts for products derived from SPLs. In the SPLiT-
MBT, test artifacts developed during Domain Engineering are reused to test products during Appli-
cation Engineering. In order to provide this reuse, SPLiT-MBt is applied in two phases. First, test
information are annotated in UML models to generate test sequences with variability during Domain
Engineering. During Application Engineering, the variability in these sequences is resolved and then,
they are converted into abstract test cases, from which test scripts are generated. In Chapter 4, we
demonstrate how SPLiT-MBt Tool could be used to provide test automation of SPL products in
two example of uses.

68

69

4. EXAMPLES OF USE

“In a word, never let go on these three
things: faith, hope and love. And know
that the greatest of these will always be
love.”

St. Paul

Based on our method SPLiT-MBt, we developed a tool named SPLiT-MBt Tool. This
chapter describes how SPLIt-MB Tool was applied to generate test cases for products that could be
derived from two SPLs, i.e. an academic SPL named Arcade Game Maker (AGM) SPL [Ins16b] and
an actual one named Product Line of Testing Tools (PLeTs) [RVZG10]. PLeTs was developed in
the context of a collaboration project between our university and a global IT company. Therefore,
the main goal is to demonstrate that our method is able to generate reusable test artifacts to assess
both PLeTs’ and AGM’s products.

4.1 Arcade Game Maker (AGM) - AGM

AGM was developed by the Software Engineering Institute (SEI) with the purpose of
assisting the learning of the SPL concepts through a practical approach. This SPL could be used
to derive three different electronic games, i.e. Bowling, Brickles and Pong, which are used by the
scientific community to assess and to validate their approaches [OGM10] [FGMO12] [MSM04]. In
order to test the functionalities of the AGM’s products, we have generated test artifacts (using
SPLiT-MBt Tool) that were reused to generate scripts to test the common functionalities among
these products.

4.1.1 Modeling the UML Diagrams of AGM

In order to generate test artifacts (using our SPLiT-MBt Tool) to test the AGM’s prod-
ucts, it is necessary to annotate, with test information, Use Case and Activity Diagrams that were
previously designed by the SPL analyst with the purpose to describe the AGM’s functionalities.

As described in Chapter 3, the the SPL analyst also annotates variability information in
these models using the SMarty approach, while test information was annotated (using SPLiT-MBt)
through the TDactionDomain, TDexpectedResultDomain and TDfunctionalCriterion tags.
Figure 4.1 shows the Use Case Diagram of AGM [Jun10], which represents the user’s actions and
the product functionalities of this SPL. This diagram has two actors and twelve use cases describing
several operations that can be performed by the user/player, such as install and uninstall games

70

Figure 4.1: Use Case diagram of AGM [Jun10]

(Install Game and Uninstall Game), to select the game to be played (Play Selected Game), to save
the current score of a player (Save Score), check the recorded best score (Check Previous Best
Score) and end an ongoing game (Exit Game).

The Play Selected Game use case was chosen as an example to show how the test case
generation is performed using SPLiT-MBt and how these test artifacts are reused to test the product
functionalities. The motivation for choosing this use case is that it is what best represents user
interactions with the system, even showing the player actions during a game session. From this use
case, an Activity Diagram was derived (see Figure 4.2), which describes the player interactions with
the AGM products. First, the player selects the Play option in the menu (Select Play) in order to
initialize a game. Then the player clicks the left mouse button and start a game session (Initialize
the game). Next, the player clicks the left mouse button or use the keyboard to send commands
to the selected game (Brickles Moves, Pong Moves or Bowling Moves). At the end of each game
session, the player answers a dialog box (Responds to Won/Lost/Tied Dialog) and decides whether
to restart or end the game.

71

Figure 4.2: Activity Diagram of the use case Play Selected Game

The Select Play, Initialize the game and Responds to Won/Lost/Tied Dialog activities
represent mandatory variants (mandatory), i.e., they have to be present in all generated products.
The Brickles Moves, Pong Moves and Bowling Moves activities, on the other hand, correspond to
inclusive variants (alternative_OR), since a product derived from AGM can have the combination
of one, two or even three games. Each one of these three activities has a link to another corresponding
diagram, which describes, in details, the player actions during a game session. These other three
Activity Diagrams can be seen in Figure 4.3.

4.1.2 Deriving Test Scripts Using the SPLiT-MBt Tool

In order to generate test scripts to test the AGM products, first, test and variability
information annotated in the models were exported to an XMI file. This step was performed using
the Astah Professional modeling tool [Pro16]. SPLiT-MBt Tool parses this file to convert it into
an FSM, in which the adapted version of the HSI method was applied. When applying this method
twelve sequences containing test and variability information were produced, and ten of them are
sequences generated from sub FSMs, which represent the Activity Diagrams depicted in Figure 4.3.

72

Figure 4.3: Activity Diagrams of the activities Bowling Moves, Brickles Moves and Pong Moves

Finally, these sequences are stored in the repository for later script generation during Application
Engineering.

During Application Engineering, seven products were derived. These products represent a
combination of one, two and three AGM games and they were generated when variability was resolved
based on information present in Traceability Model. The information present in Traceability
Model is used as reference to resolve the variability present in the test sequences stored in the Test
Repository. Then, during Application Engineering, a set of test sequences is reused and converted
into an equivalent description to test cases in natural language, i.e., abstract test cases.

Finally, the abstract test cases were instantiated to concrete test cases, i.e., test scripts
to be executed by the functional testing tool MTM (see Section 3.3.5). Figure 4.4 shows a script
describing the test cases used to test some functionalities of the Brickles game. It is important to
note that no functional testing criteria was used, since for each tested functionality, only one input
was set and not a data domain as presented in Section 3.3.4.

73

Figure 4.4: Generated script to test the functionalities of Brickles game

4.1.3 Analysis

When variability was resolved, 20 test sequences were generated. During Application
Engineering, these sequences were reused to test the functionalities of 7 products. These products
represent the combination from one to three games and the number of test sequences reused for
these products are depicted in Table 4.1. As shown in this table, the number of test sequences
reused among those products was equal to 80. Based on this number, the reuse percentage was
obtained through a metric called Size and Frequency metric (Rsf) [DKMT96]. Considering this
metric, the reuse percentage of generated test sequences is given by:

Rsf = Sizesf − Sizeact

Sizesf

= 80− 20
80 = 0.75

Product ID Games that Compose the Products Number of Derived Test Sequences
Product 1 Brickles 10
Product 2 Bowling 8
Product 3 Pong 2
Product 4 Brickles and Bowling 18
Product 5 Brickles and Pong 12
Product 6 Bowling and Pong 10
Product 7 Brickles, Bowling and Pong 20

Total = 80

Table 4.1: Generated sequences for each product

This value determines that 75% of test sequences1 generated during Domain Engineering
are reused to test the functionalities of 7 products derived from AGM. Therefore, for this specific
example, SPLiT-MBt allowed the test artifacts generation with a considerable reuse percentage.

1The test sequences with variability, test sequences with variability already resolved, abstract test cases and test
scripts can be found in the appendix of this thesis.

74

Thus, it demonstrates a possible gain when comparing with approaches that do not consider reuse
as a strategy for generating test artifacts, where test cases are individually generated for each
product. Furthermore, the use of test sequence generation methods, such as HSI contributes to an
effort reduction in the test activity, since they allow full coverage of the failures. These features are
essential in the SPL context, because an SPL growing (the increasing of variabilities) has influence
in the amount of tests needed to validate the product quality. Finally, SPLiT-MBt allows the test
script generation for several functional testing tools through the abstract test cases. This feature
contributes to a greater flexibility, allowing test execution independent of technology.

4.2 Product Line of Testing Tools - PLeTs

PLeTs was designed and developed to automate the generation of MBT Tools (prod-
ucts) [RVZG10] [SRZ+11] [CCO+12]. These testing tools automate the generation of test cases
based on the system models, i.e. products derived from PLeTs accept a system model as an input
and generate test cases. Actually, PLeTs could be used to generate MBT tools that perform three
type of tests, i.e. Performance, Functional or Structural Testing. Table 4.2 summarizes the main
functionalities of PLeTs products, which are used to explain our method.

Table 4.2: PLeTs SPL Requirements

ID Requirement Description
RF-01 Choose Type

of Test
The system should allow the user to select the type of testing that will
be performed.

RF-02 Functional The MBT tools must support automatic generation of testing data for
functional testing. These tools must support integration with other
functional testing tools.

RF-03 Performance The MBT tools must support automatic generation of testing data for
performance testing. These tools must support integration with other
performance testing tools.

RF-04 Structural The MBT tools must support automatic generation of testing data for
structural testing. These tools must support integration with other
structural testing tools.

RF-05 Functionalities
Functional

The MBT tools must allow users to: create a log file, edit an configu-
ration file and close the system interface.

RF-06 Functionalities
Performance

The MBT tools must allow users to: set performance test environment
(scripts and scenarios), and test case generation.

4.2.1 Add Test Information to SPL Models

Based on PLeTs requirements presented in Table 4.2, the SPL analyst has to design the
Use Case and Activity Diagrams that describe the functionalities of the PLeTs products. Thus,
the SPL analyst has to build these diagrams and add variability information in accordance with the

75

SMarty approach. Figure 4.5 presents an Use Case model with one actor and six use case elements
describing several operations that can be performed by the user, such as: select the type of testing to
be executed (Choose Type of Test); to perform one of three types of test (Functional, Performance
or Structural).

The PLeTs Structural use case element (see Figure 4.5) was chosen as an example to
demonstrate how the test case generation is performed using SPLiT-MBt and how these test artifacts
are reused to test the product functionalities. The reason for choosing this use case element is that it
is decomposed into an Activity Diagram (see Figure 4.6) that presents more variability elements, e.g.
optional and mandatory variants; dependency relationship (requires); mutually exclusive relationship
(mutex) and; inclusive variants (alternative_OR)2.

Figure 4.5: PLeTs Use Case model

This PLeTs Activity Diagram describes the user interactions with some PLeTs products,
specifically, those used to perform structural testing. First, the user must import an XMI file (Load
XMI File) that has information related to structural testing. Next, the user click on “Parser button”
(Submit the XMI File to a Parser) in order to generate test cases. Then, the user chooses the path
(Type the Path to Save Abstract Structure and Data File) where the test cases will be saved (Saving
the Abstract Structure and Data File), and selects the tool that will perform the structural testing
(Informing the Tool Path). Next, the user generates test scripts for one of the three available tools
(Export to JaBUTi, Export to PokeTool, Export to Emma). Finally, the user chooses a directory
to save the scripts (Save Scripts), executes the test and presents the test results (Test Results). If
the user generates test cases for JaBUTi, a project file will be created (Save Project File .jbt), since
this tool needs to create an additional configuration file.

The Load XMI File, Submit the XMI File to a Parser, Type the Path to Save Abstract
Structure and Data File, Saving the Abstract Structure and Data File, Informing the Tool Path,

2We have generated test cases for all Activity Diagrams related to the other use case elements. These diagrams
and all test artifacts generated in this Example of Use (e.g. test sequences with variability, test sequences with
variability already resolved, abstract test cases and test scripts) can be found in the appendix of this thesis.

76

Figure 4.6: Activity Diagram of PLeTs Structural Tools

Save Scripts and Test Results activities represent mandatory variants (mandatory), i.e. they have
to be present in all generated products. The Export to JaBUTi, Export to PokeTool, and Export
to Emma activities, on the other hand, correspond to inclusive variants (alternative_OR), since a
product derived from PLeTs may have the combination of one, two or even three structural testing
tools. This Activity Diagram has also dependency and mutually exclusive relationships, i.e. Export
to JaBUTi requires the Save Project File .jbt activity, while the Export to PokeTool and Export to
Emma will exist in a product configuration only whether the Save Project File .jbt activity will not
be selected to make part of a specific product.

It is important to highlight that when the Use Case and Activity Diagrams have been
modeled and the variability information has been added to these models, our method can be ap-
plied. As described in Chapter 3, the first SPLit-MBt step consists of annotating ControlFlow
elements in Activity Diagrams, with test information, through the use of TDactionDomain and
TDexpectedResultDomain tags and their respective tagged values.

Therefore, to make it clearer, we inserted a note element, in the Activity Diagram depicted
in Figure 4.6, to show some tagged values annotated in a ControlFlow element. In this example,
all tags we have defined for our method and their corresponding tagged values are shown. Each of
these tags has a value that is bounded to the transition between the Load XMI File and Submit the
XMI File and Save activities.

77

4.2.2 Generate Test Sequences with Variability

After the SPL analyst modeled and exported the PLeTs models to an XMI file3, this file
must be loaded using the SPLiT-MBt Tool and then, seven FSMs, with variability information, are
generated. Figure 4.7 shows an example of FSM, which depicts information related to input/output
information. Input (e.g. bs, bt, bu) corresponds to the input data used to test the system function-
alities, and output (e.g. 72, 73, 74) corresponds to the expected result. This information is just a
set of identifiers and the actual test data is described in a table that can be found in the appendix
of this thesis. This table also presents information regarding the source/target states of the FSM,
as well as variability, which corresponds to the variant type associated with a given state (Target
State).

Figure 4.7: FSM with variability information

Figure 4.8: FSM with a state representing a variation point

Considering that FSM with variability, the HSI method must generate test sequences
during Domain Engineering. In order to make it possible, the states (variants) associated to the
same variation point are assumed to be a single state in the FSM (VP_1), in which the input
transition of this state must have the input/output information of all states (variants).

As a result of this step, the FSM depicted in Figure 4.7 is converted into the FSM in
Figure 4.8. It is possible to notice, in this FSM, that the input transition of VP_1 has input and
output information from the states (variants) Export to JaBUTi, Export to PokeTool, and Export
to Emma as well as information related to dependency (bqreq−>11) and mutually exclusive (ciex−>11,
brex−>11) relationship.

3Most of the UML modeling environments export models to an XMI file. Here we used Astah Professional
modeling tool [Pro16]

78

Table 4.3: Sample of test sequences Q, P, HI and HSI

State State Cover (P)
3 ε, bs, bt
VP_1 ε, bs, bt, bu, bv{bq;ci;br\}V P_or

11 ε, bs, bt, bu, bv{bq;ci;br\}V P_or, {bs;bs;bs},ca
State Transition Cover (Q)
3 ε, bs, bt, bu
VP_1 ε, bs, bt, bu, bv,{bq;ci;br\}V P_or, {bs;bs;bs}
11 ε, bs, bt, bu, bv,{bq;ci;br\}V P_or, {bs;bs;bs},cb
State Harmonized Identifier (HI)
2 bt
4 bt
11 null
HSI Final Test Sequence: bs,bt,bu ,bt,bv,{bqreq−>11; ciex−>11;
brex−>11\}V P_or,{bs;bs;bs},ca, cb

Once the FSM is modified, the HSI method will generate test sequences for FSMs with
transitions containing a set of inputs instead of transitions with just one input, as those used to
test single applications. In order to apply the modified HSI, we must consider and adapt the three
steps used by this method to generate partial test sequences, i.e. Q, P and HI. These steps produce,
as result, a set of partial test sequences that are combined with each other to compose the HSI
final test sequence. Table 4.3 presents a sample of test sequences with variability information, in
which we describe the partial test sequences generated through applying P, Q and HI as well as HSI
final test sequence. The test sequences are stored in a repository to be resolved during Application
Engineering.

4.2.3 Resolving Variability

Through applying the adapted HSI for all FSMs (seven FSMs) that correspond to the
entire PLeTs functionalities in Domain Engineering, 18 test sequences with variability information
were generated. During Application Engineering, when the variability is resolved through the use of
the Traceability Model, 3,257 test sequences were produced. In order to illustrate an example
of test sequence with variability already resolved, we consider the following test sequences: “bu bt
bv ci bs cb cd” and “bu bt bv br bs cb cd”. These sequences were generated when the variability
present in the test sequence “bs bu bt bv {bqreq−>11;ciex−>11;brex−>11}V P _or {bs;bs;bs} cb cd” was
resolved. All the 3,257 test sequences were reused to test the functionalities of 336 products derived
from PLeTs and based on these numbers, the reuse percentage was obtained by a metric called Size
and Frequency (Rsf) [DKMT96]. Considering this metric, the reuse percentage for the generated
test sequences is given by:

79

Rsf = Sizesf − Sizeact

Sizesf

= 3, 257− 18
3, 257 = 0.99

This value determines that 99% of test sequences generated in Domain Engineering were
reused to test the functionalities of all products derived from PLeTs. Therefore, the SPLiT-MBt
allowed the test artifacts generation with a considerable reuse percentage for this example. Thus,
it demonstrates a possible gain when comparing with approaches that do not consider reuse as a
strategy for generating test artifacts, where test cases are individually generated for each product.
Furthermore, the use of methods for generating test sequences, such as HSI contributes to an effort
reduction in the test activity, since they allow full failures coverage. These features are essential in
the SPL context, because the increasing of variabilities has influenced the amount of tests needed
to validate the quality of products. SPLiT-MBt can also be useful to adapt several test sequence
generation methods, from which test sequences are converted into abstract test cases and test
scripts.

4.2.4 Abstract Test Case Generation

The test sequences generated in the last step were converted into an equivalent descrip-
tion to test cases in natural language, i.e. abstract test cases. Figure 4.9 presents an abstract
test case generated from a set of test sequences in the previous step, i.e., “bu bt bv ci bs cb
cd”. Each element of this sequence has information related to the input data (TDactionDomain)
and output (TDexpectedResultDomain), as well as definition of the functional test criterion
(TDfunctionalCriterion) used for selecting test data. The input/output information and func-
tional criteria present in the abstract test case have actual test data, which corresponds to the test
information present in the Activity Diagram from Figure 4.6. This abstract test case represents user
activities (e.g. 1. Load XMI File and 2. Submit the XMI file to a Parser) and its related tagged
values are presented between double angle quotation marks (e.g. �TDactionDomain�: “Press
Enter”).

In the example presented in Figure 4.9, no functional testing criteria was used, since for
each tested functionality, only one input was set and not data domain (data set). It is important
that SPLiT-MBt supports the use of the Boundary Value Analysis criterion to select a set of test
data, since it is one of the most-known criteria in the literature and can be easily automated. It
is important to highlight that SPLiT-MBt allows the use of other criteria, such as Equivalence
Partitioning. Finally, once the abstract test cases are generated, they are instantiated to concrete
test cases, i.e., test scripts.

80

#Abstract Test Case: Structural - bu bt bv ci ck cb cd
1. Load XMI File
<<TDactionDomain = "Type the path of the XMI file on
console" >>
<<TDexpectedResultDomain = "File XMI loaded">>
2. Submit the XMI file to a Parser
<<TDactionDomain = "Press Enter">>
<<TDexpectedResultDomain = "Information necessary
extracted for generating a data structure in memory">>

3. Type the path to Saving the Abstract Structure and
Data File
<<TDactionDomain = "Specify the directory to save
the Abstract Structure">>
<<TDexpectedResultDomain = "Directory where the
abstract data is saved is displayed on console">>
4. Saving the Abstract Structure and Data File
<<TDactionDomain = "Press Enter">>
<<TDexpectedResultDomain = "Data File and Abstract
Structure saved">>
5. Informing the tool path
<<TDactionDomain = "Inform the launcher path of
Jabuti, EMMA or Poketool">>
<<TDexpectedResultDomain = "Path informed">>
6. Export to PokeTool
<<TDactionDomain = "Click on Poke-Tool application
located on c:/Poketool.exe">>
<<TDexpectedResultDomain = "PokeTool application
opened">>
7. Save Script
<<TDactionDomain = Select directory to save java class
for poketool">>
<<TDexpectedResultDomain = "Java class is saved">>
8. Test results
<<TDactionDomain = "Application will open on screen">>
<<TDexpectedResultDomain = "Tests results on screen">>
9. end
<<TDactionDomain = "Press on Close">>
<<TDexpectedResultDomain = "Application is closed">>

Figure 4.9: Snippet of an abstract test case

4.2.5 Test Script Generation and Test Execution

The next step to be performed by SPLiT-MBt is to instantiate scripts to MTM from the
abstract test cases previously generated. As described in Chapter 3, the scripts generated by the
SPLiT-MBt Tool have a tabular format and for this Example of Use 3,257 scripts were automatically
generated. Figure 4.10 shows an snippet script with test information generated from the abstract
test case illustrated in Figure 4.9. In this example, it is possible to notice that the values of the
fields TDactionDomain, TDexpectedResultDomain correspond respectively to the input data and
expected results present in cells Action/Description and Expected Results. The information
present in Action/Description cells corresponds to the test data.

81

Figure 4.10: Script to test the functionalities of a PLeTs product

Finally, once the test scripts were generated, we use the SPLiT-MBt Tool to perform the
test execution. Thereunto, we have used our tool to launch the interface of the MTM, load the
scripts previously generated and start the test execution. This initialization consists of an internal
system call, where through the SPLiT-MBt Tool interface4 we provided the scripts and the MTM
installation path. Thus, the MTM’s environment is initialized and the test is performed.

4.3 Chapter Summary

In this chapter, we presented two SPLs (i.e. an academic SPL named AGM and a actual
one named PLeTs) from which we generate reusable functional test cases and scripts using our
tool, i.e. SPLiT-MBt Tool. This tool was developed from the concepts and features created for
our method, i.e. it is an instance of the SPLiT-MBt. We also showed that our method is able to
generate, during Domain Engineering, test sequences with variability information from UML models
previously designed by the SPL analyst. Then, when variability is resolved, these test sequences are
reused, during Application Engineering, to generate scripts to test products derived from AGM and
PLets.

One of the main advantages of our method is related to the possibility of reusing test
information described in SPL models to generate, during Domain Engineering, test sequences using
an extended version of a test sequence generation method, i.e. HSI. This extended version is able
to handle variability information present in FSMs and then, generate test sequences with variability
information. Moreover, using the extended version of the HSI it is possible to reduce the amount

4A picture of SPLiT-MBt Tool interface can be found in the appendix of this thesis.

82

of test cases (since it is a feature inherent to HSI and one of the purposes of this method has been
created) providing full coverage of the product functionalities.

Another advantage of SPLiT-MBt is related to the possibility of generating, during Ap-
plication Engineering, an abstract structure that can be used to generate test scripts to different
functional test technologies, such as QTP, RFT, Selenium, VS and MTM. Therefore, a company
that is using tool A can, motivated by a technical or managerial decision, easily change to a testing
tool B without having to create new test cases. Hence, SPLiT-MBt provides benefits not only during
Domain Engineering, but also during Application Engineering when the SPL products can be tested
using the functional test technology available for a specific company.

Finally, our method provides a considerable reuse percentage of the test artifacts generated
for both Examples of Use, i.e. AGM and PLeTs. Therefore, we can claim that SPLiT-MBt is, in
these specific contexts, a useful method to provide: reusable test artifacts, full functional test
coverage, and flexibility to generate test scripts for different test technologies. In Chapter 5, we
demonstrate how we apply an controlled experimental study to compare our SPLiT-MBt with other
similar approaches.

83

5. EMPIRICAL EXPERIMENT

“The most beautiful act of faith is the
one made in darkness, in sacrifice, and
with extreme effort.”

St. Pio of Pietrelcina

It is well known that software testing is a costly, time-consuming and critical activity to the
success of software projects. Therefore, all applications must pass to a rigorous validation process
to ensure the desired quality level. This statement is also true when considering products derived
from a Software Product Line (SPL). Hence, the test of applications based on SPLs is even more
important, since, as mentioned in Chapter 1, a fault not found in a given software component can
generate hundreds of products with failures. The problem is that software testing approaches found
in the literature define techniques, processes and methods to test applications individually, and the
are no evidence of studies comparing the approaches and methods to test products derived from
SPLs. In order to overcome this issue, we conducted a controlled experiment with the purpose of
demonstrating the performance of our SPLiT-MBt against two other methods, one is similar to ours
and the other one refers to the conventional way to test single applications.

This empirical experiment is organized as follows. In Section 5.1 the experiment definition.
Section 5.2 describes the instruments used for this experimental study. Section 5.3 presents the
experiment planning, the research question, the hypotheses and variables. Moreover, we present in
this section, the design of our experiment and the threats to the experiment validity. In Section 5.4
we present the preparation and the experiment execution. Section 5.5 we describe the results of this
study. Finally, Sections 5.6 and 5.7 we present the analysis of our findings and the conclusions we
have drawn from the experiment results.

5.1 Definition of the Experimental Study

The motivation of our controlled experiment is to evaluate the effort when applying func-
tional testing (at System Level) to verify the functionalities of products derived from an specific SPL.
For this purpose, we analyzed three different methods: SPLiT-MbT (see Chapter 3); Customizable
Activity Diagrams, Decision tables and Test specifications (CADeT) [OG09]; and Microsoft Test
Manager (MTM) [Man16]. The first two methods are oriented to reuse of test cases; and the third
one consists of testing each product individually, i.e. the conventional way to test single applications.
In a nutshell, our main goal with this study is to answer the following question:

“What is the effort to apply functional testing for products derived from SPLs when using
SPLiT-MBt, MTM and CADeT?”

84

5.2 Experiment Instruments

In order to perform our experimental study, we defined four experiment instruments, i.e.
SPLiT-MBt, CADeT, MTM and System Under Test (SUT). Next, we briefly introduce them.

SPLiT-MBt: our method to generate test cases for SPLs. Chapter 3 has the description of
this instrument;

CADeT: is a functional test design method for SPLs that applies feature-based test coverage
criteria together with a variability management approach named Product Line UML-based
Software Engineering (PLUS) [Gom05] to create reusable test cases for an SPL. PLUS supports
the variability management in several UML models, e.g. Use Case and Activity Diagrams.
Reusable test information are annotated in Activity Diagrams and mapped to decision tables.
Moreover, information regarding variability and all variability relationships are also described
in decision tables, which will be later analyzed to apply a specific feature-based test coverage
criterion to the SPL. Based on this coverage criteria, representative products configurations
are generated to cover all features, all relevant feature combinations of an SPL, and then test
information are generated to cover the functionalities of each product;

Microsoft Test Manager (MTM): is a functional testing tool used to perform manual or
automated functional testing. The use of MTM can bring several advantages, e.g. centralize
the project, write and execute tests and facilitate the execution of user interactions with the
system under test. It allows testers to perform testing using the Visual Studio interface or
command line. Furthermore, it is also possible to execute tests using Team Foundation Build.
In order to perform a manual or automated testing, it is necessary to execute the tests using
a test plan. The test plan has test data information and could be described in a excel file,
which is imported by the MTM that perform the test execution. For this experimental study,
we compare the three methods through analyzing the time spent by a tester when using each
method.

We defined two SPLs as SUT: an academic and an actual SPL, i.e. Arcade Game Maker
(AGM) [Ins16b] and Product Line of Model-Based Testing Tools (PLeTs) [RVZG10]. A full
description of these two SPLs can be found in Sections 4.1 and 4.2.

5.3 Experiment Planning

In this section, we describe how we plan our experiment, as well as introduce the research
question, its hypotheses and variables. Moreover, we present how we selected the subjects, the
experiment design and the threats to the experiment validity.

85

5.3.1 Context Selection

The context of our experiment was characterized according to four dimensions:

Process: in our experiment, we used an in-vitro approach, since it refers to the experiment in
the laboratory under controlled conditions. Our experiment is not an industrial SPL testing,
i.e., it is off-line;

Participants: we invited doctoral, master and undergraduate students from Computer Science
courses;

Reality: our experiment addresses a real problem, i.e., the differences in individual effort
to create functional test cases to test products derived from AGM and PLeTs when using
SPLiT-MBt, CADeT and MTM;

Generality: it is a specific context, since the tool we have used during the experiment is a
testing tool generated from the concepts of our method, i.e. SPLiT-MBt Tool.

5.3.2 Hypothesis Formulation

In this section, we present our hypothesis and also define the measures used to evaluate
them. Informally, we define our hypotheses as follows:

1. To apply functional testing for products derived from SPLs using MTM (conventional
way to test single applications) needs more effort when compared to approaches/methods that
provide reuse of test artifacts when performing that type of testing, e.g., SPLiT-MBt and CADeT.

2. Moreover, our SPLiT-MBt also provides some advantages related to effort when com-
pared to the CADeT method.

Based on those informal hypothesis, we can formally state them. Furthermore, we also
define the measures we have used to evaluate the hypotheses. For each hypothesis, we have defined
the following notation:

φspt: it represents the effort when using SPLiT-MbT to apply functional testing for products
derived from SPLs.

φcad: it represents the effort when using CADeT to apply functional testing for products
derived from SPLs.

φmtm: it represents the effort when using MTM to apply functional testing for products derived
from SPLs.

86

Our Research Question (RQ) is “What is the effort to apply functional testing for
products derived from SPLs when using SPLiT-MBt, MTM and CADeT?”. And our
hypotheses are:

H0: the effort is the same when using SPLiT-MbT, MTM and CADeT to apply functional
testing for products derived from SPLs.

H0: φspt = φcad = φmtm

H1: the effort is different when using SPLiT-MbT, MTM or CADeT to apply functional testing
for products derived from SPLs for at least one pair of these methods.

H1: φspt 6= φcad or

φspt 6= φmtm or

φcad 6= φmtm

5.3.3 Variables Selection

In this section, we present the dependent and independent variables used to represent the
treatments of our experiment and their measured values as well (see Table 5.1). The independent
variables represents the treatments and correspond to the variables whose results and behavior must
be evaluated. The dependent variable represents the effort (time spent) when using the three SPL
testing methods. This measured value is used to describe the effectiveness of the methods.

Table 5.1: Scales of Experiment Variables

Experiment variables
Variable type Variable name Scale type
Independent SPL Testing Method Nominal
Control Subjects Experience Ordinal
Control Degree of Formal Education Ordinal
Dependent Effort Ratio

Independent and Dependent Variables

The independent variable of interest in our experiment corresponds to the choice of a SPL
testing method. It has a nominal scale and can assume one of three values: SPLiT-MBt, CADeT or
MTM. The dependent variable we have defined for this experiment is effort. It is measured as the
amount of time spend by SPL testers to generate functional test cases for products derived from
SPLs.

87

Control Variables

For our experiment, we have defined two control variables, i.e., degree of formal education
and the subjects experience in functional testing, UML notation and Software Product Lines. The
degree of formal education and the subjects experience corresponds to blocking variables and they
were defined to reduce sources of variability, which contributes to improve the experiment precision.

5.3.4 Selection of Subjects

The subjects selection was defined in accordance with the availability of academic students.
We invited doctoral, master and undergraduate students to participate in our experiment as subjects.
The undergraduate students were third year, or later, students from Computer Science. They are
students from the PUCRS1 university and each subject has different experience knowledge, e.g.,
experience in the industry as software analyst, software tester or as developer, or just experience
developing software in an Computer Science undergraduate course.

5.3.5 Experiment Design

The experiment design addressed the following general principles:

Randomization: The subjects were randomly allocated to each SPL testing method, i.e.
SPLiT-MBt, or CADeT or MTM. Moreover, as all subjects would execute all treatments
(SPLiT-MBt, CADeT or MTM - Randomized complete block design), we always randomly
defined their execution sequence.

Blocking: as we mentioned earlier, the subjects we have selected for our experiment have
different background in functional testing, UML notation and Software Product Lines. There-
fore, in order to minimize the effect of those differences, we classified the subjects into three
groups according to their skills (Beginner, Intermediate and Advanced groups - see Table 5.2).
In order to define whether a subject is beginner, intermediate or advanced, we have applied
a characterization questionnaire, prior to the experiment, to quantify the subject background
on functional testing, UML modeling notation and Software Product Lines.

Balancing: the subjects were randomly grouped into each group (randomized block design).
Therefore, each SPL method is performed by the same number of subjects (SPLiT-MBt,
CADeT or MTM).

Standard design types: The design type aims to evaluate whether the values of φspt, φcad

and φmtm are different for similar values of µspt, µcad and µmtm. Therefore, it is necessary to
1http://www.pucrs.br

88

compare the three treatments against each other. According to [WRH+00], the One Factor
with more than Two Treatments design type must be applied. The factor corresponds to the
SPL testing method we have defined for this experiment and; the treatments corresponds to
the SPLiT-MBt, CADeT and MTM methods. The response variable is measured on a ratio
scale, which allow us to rank the measured items and to quantify and compare the differences
among them.

5.3.6 Instrumentation

According to [WRH+00], there are three types of instruments, i.e., objects, guidelines and
measurement instruments. Next, we describe each one of these instruments:

Objects: the experiment objects are test artifacts generated by the subjects to test PLeTs’
and AGM’s products. We also provide other documents for the experiment execution, e.g.,
SPL requirements, UML models (previously designed) describing SPL functional requirements
and variability information and test specification. Moreover, we provided a UML modeling
tool named Astah Professional to assist the subjects for adding test information on the use
cases and activity diagrams;

Guidelines: the methods and the tools were presented to the subjects through a printed
manual. It presents an overview of the methods and detailed instructions on how to apply
them to add test information to test products derived from SPLs (SUTs). Moreover, we
performed a training phase in a laboratory room for all the experiment subjects. During the
training, the subjects could ask open questions about the methods and the processes to add
test information using the three methods described in the manual. It is important to mention
that in the training phase, a SPL different from the experiment was used when adding test
information. Furthermore, questions and answers were shared among all the subjects in the
training room. During the experiment execution, a printed guide was used by the subjects. It
includes the steps to add test and the related information about the processes for generating
test cases using the three methods, i.e., SPLiT-MBt (a guideline for modeling SPL functional
using Astah UML tool was also included), CADeT and MTM.

Measurement instruments: We collected effort metrics for each subject. All subjects
performed the tasks using the same computational resources.

5.3.7 Threats to Validity

An experimental process must clearly identify the concerns about the different types of
threats to the experiment validity [WRH+00]. It is important to mention that there are some factors

89

that contribute to mitigate the threats in an experiment process. According to [CC79], these factors
helps to a further experiment analysis by researchers, and also contributes to simplify the experiment
replication. The author relates/associates these factors to different classification schemes for several
types of threats to validate the experiment. For our experiment, we adopted a classification scheme
that is divided in four types of threats:

Conclusion validity: This is a threat that may affect the experiment when we are drawing
conclusions related to the treatment and their outcomes. For instance, the small number of
subjects (30 subjects) to perform our experiment can be considered as a threat. This threat
may, in some degree, contributed to affect the experiment results. However, when performing
this experiment, we have achieved some important results and feedback on how SPL testing
methods could bring advantages for the scientific community and also because there is no
evidence, in the literature, of an empirical experiment related to a comparison among different
SPL testing methods. The threats to the experiment conclusion validity are the following:

– Measures reliability: this type of threat may depend on many different factors, e.g., bad
instrument layout, bad instrumentation. Moreover, we can state, for this type of threat,
that objective measures is more reliable when compared to subjective ones (those related
to human judgement). In our experiment, the effort (time spent) is a objective measure
and then, do not depend on human judgement;

– Treatment reliability implementation: although we have used the same SPLs (PLeTs
and AGM) for the three methods and the guidelines (printed manual) delivered to the
subjects contain the same set of SPL test information, it is possible that treatment
implementation is not similar among the subjects who perform the experiment. This
risk could not be completely avoided, since we cannot interfere with the subjects when
they are applying functional testing for SPL products. In order to mitigate the influence
of this threat, we defined the same starting time for each one of the three treatments,
i.e., a guideline describing the test information to be added when using the SPLiT-MBt,
CADeT or MTM;

– Random irrelevancies in the experimental setting: in order to mitigate this threat, our
experiment execution was conducted in an isolated laboratory. The main goal was to
avoid external interaction, e.g., the use of mobile phones, interruptions, and other factors;

– Random heterogeneity of subjects: the variation related to the selection of heterogeneous
subjects with different experiences and academic degrees may be a threat to the experi-
ment results. In order to mitigate this threat, we have defined both academic degree and
experience in functional testing, UML notation and Software Product Lines as blocking
variables.

Internal validity: it refers to the threats related to the internal validity of our experiment.

90

– History: the schedule of our experiment execution was planned to avoid periods in which
subjects could be exposed to external influences. Therefore, we have intended to avoid
performing the experiment during the student (subjects) exam period;

– Maturation: the training phase and the experiment as well were applied, in general,
during the morning, since the subjects are more motivated and less tired;

– Selection: we have applied a characterization questionnaire to assess the subjects knowl-
edge/experience. We used that information to select and group (block) the subjects.

External validity:

– Subjects: a threat for our experiment external validity was selecting subjects that may
not be representative for the SPL and functional testing community. Therefore, in order
to mitigate this issue, the students we have selected to participate of our experiment
should be in the masters and doctoral computer science courses or be students close
to end their undergraduate course (in computer science as well). Thus, all subjects
have a basic/sufficient functional testing and UML modeling knowledge. Moreover, we
categorized the subjects into three groups, i.e., Advanced, Intermediate and Beginner.
Therefore, we were able to obtain a balanced group of subjects. Although we have a
balanced group, the number of Advanced (6 subjects) and Beginner (9 subjects) subjects
were less than Intermediate (15 subjects). This is a factor that could have some influence
in the experiment results. In order to overcome this issue, we design our experiment so
that each subject executes the three treatments. Hence, we were able to make a fairer
comparison among the three methods and then, obtain more precise results. Moreover,
we also random divided the subjects of each block into three groups and, each subjects
group started the experiment with a different treatment;

– Tasks: another threat for our experiment is related to the tasks we have defined to apply
functional testing to test products derived for PLeTs’ and AGM’s SPL. It is possible
that, when performing the experiment, the activities executed by the subjects may not
reflect the activities performed by an actual SPL tester. In order to mitigate this issue, we
defined (based on the experience obtained from the work developed between our research
group and a Technology Development Laboratory (TDL) of a large IT company) for our
experiment a representative set of test cases with a reasonable task size (defined by
the number of test cases). Moreover, we validated this set of test cases with an SPL
professional who had no contact with the subjects during the experiment execution;

– Experiment effects: one of the threats is related to the fact that some subjects could
know the empirical experiment’s author and then, this may have influenced the re-
sults/outcomes. In order to mitigate this threat, we do not reveal the author’s identity
till the end of the experiment. Moreover, we invited another researcher to assist us when
applying the experiment.

91

Construct validity: a threat that may occur in any empirical experiment is that the subjects
could wrongly conclude that their performance is measured with the purpose of verifying who
is “the best”. In order to mitigate this issue, we explained to the subjects (before the training
phase and also before the experiment execution) that we are only assess and evaluate the SPL
methods and not their behaviour or personal performance. As we said earlier, another threat
is that the test cases we have defined may not be representative. This threat was minimized
by evaluating the complexity of the test cases with an SPL professional and also because the
experience obtained from the collaboration between our research group and the TDL we have
work with, enabled us to define a representative set of test cases.

5.4 Operation of the Experimental Study

In this section, we present the preparation phase of our experiment and also show the
details about its execution as well.

5.4.1 Preparation

An important factor that must be considered when designing an experiment is to have a
balanced sample of subjects [WRH+00]. Therefore, we present in this section: how we conducted
the experiment; the documentation we have prepared for the participants and; how we configured
the whole experiment environment.

First, we made a personal contact with the subjects through a presentation, in which the
experiment and its purpose was explained. This presentation was divided into two moments. First,
we gave to the subjects information about the general idea of the experiment and we told them that
they could use that moment to ask any question. Then, we explained the purpose of our research
and how the results would be published. Next, we provided them a profile form/characterization
questionnaire (it can be found in the appendix of this thesis) that all subjects should answer. The
information obtained from this questionnaire was used to characterize and distribute the subjects
through the blocks before performing the experiment. At the end, we explained to the subjects that
their personal data would be kept confidential.

An important issue we have considered during the experiment preparation was defining
how we should collect the data related to the independent variable effort (time spent). In order to
avoid any human mistake, we used a chronometer application to measure the time spent by each
subject when performing the experiment. Thus, after every experiment session, all test artifacts
generated by the subjects were further analyzed (to verify any inconsistency) and then, stored in a
cloud application.

92

5.4.2 Execution

The experiment execution took place in March of 2016 and was organized in two phases:
training and experiment execution. The training phase was divided into two sessions: one used to
train thirty (30) subjects in modeling functional testing using UML Use Case and Activity Diagrams
and; another one to use SPLiT-MBt Tool, CADeT Tool, and MTM. During the training phase, the
subjects were oriented to generate functional test cases for AGM’s SPL (SUT).

On the other hand, the experiment execution phase was divided into three sessions, in
which each session was related to a specific method (SPLiT-MBt, CADeT or MTM) to generate
functional test cases. Thus, Session 1 was performed by subjects using SPLiT-MbT Tool; Session 2
was performed by subjects using CADeT Tool and Session 3 was performed by subjects using MTM.
Moreover, each session was designed to analyze the effort when using the mentioned methods. At
this phase, the SUT we have defined was PLeTs SPL. The synthesis of the experiment execution is
as follows:

1. Training Phase (two days to perform this phase):

Session 1: UML Use Case and Activity Diagrams;

Session 2: SPLiT-MBt Tool, CADeT Tool, and MTM.

2. Experiment Execution Phase (three days to perform this phase):

Session 1: Generate test cases using SPLiT-MbT;

Session 2: Generate test cases using CADeT;

Session 3: Generate test cases using MTM.

As we mentioned earlier, the subjects were divided into three groups (blocks), according to
information obtained from the profile form, i.e., Advanced, Intermediate and Beginner. Each group
of subjects performed the experiment as follows:

Advanced Group: the Advanced Group (composed by 6 subjects) was equally divided and
distributed among the three treatments (SPLiT-MBt, CADeT and MTM methods). It is im-
portant to highlight that, although all the Advanced subjects have executed the experiment
using the three methods, two of them started the experiment using a different method (Ran-
domized complete block design). Therefore, two started with SPLiT-MBt; two started with
CADeT and two started with MTM. Then, when two subjects ended the experiment with their
first method, they performed the experiment using a second method and finally performed the
experiment using the third method. Thus, all subjects executed the experiment using the
three methods;

93

Intermediate Group: the Intermediate Group (composed by 15 subjects) was equally divided
and distributed among the three treatments. Similarly as done for the Advanced Group, all
the Intermediate subjects executed the experiment using the three methods and five of them
started the experiment using a different method. Therefore, five started with SPLiT-MBt;
five started with CADeT and five started with MTM. Then, when five subjects ended the
experiment with their first method, they performed the experiment using a second method
and finally performed the experiment using the third method. Thus, all subjects executed the
experiment using the three methods;

Beginner Group: exactly as done for the other groups, the Beginner Group (composed by 9
subjects) was equally divided and distributed among the three treatments. Therefore, all the
Beginner subjects executed the experiment using the three methods and three of them started
the experiment using a different method. Hence, three started with SPLiT-MBt; three started
with CADeT and three started with MTM. Then, when three subjects ended the experiment
with their first method, they performed the experiment using a second method and finally
performed the experiment using the third method. Thus, all subjects executed the experiment
using the three methods;

Table 5.2 shows how the subjects were distributed and the number of subjects in each
block. As we previously mentioned, the subjects were randomly selected to start the experiment
using one of three treatments (Randomized complete block design). Therefore, we had a concern
on characterize and distribute the subjects according to their profile, experience and knowledge. It is
important to highlight that we also defined a break of one day for each group of subjects (Advanced,
Intermediate and Beginner) and a break of two days among the training and experiment phases.
The main goal was to avoid that some exhaustion of the participants could influence the results.

Table 5.2: Assigning Subjects to the Treatments for a Randomized Complete Block Design

Subjects assignment
Treatments Blocks Num. of subjects

SPLiT-MBt
Beginner 9
Intermediate 15
Advanced 6

CADeT
Beginner 9
Intermediate 15
Advanced 6

MTM
Beginner 9
Intermediate 15
Advanced 6

94

5.5 Results

In this section, we present the effort (dependent variable) data collected from our ex-
periment. Table 5.3 shows the summarized effort data (time spent) by subjects to perform the
experiment using SPLiT-MBt, CADeT and MTM methods. In the table, column Block Average
Time presents the average time per block, while column Method Average Time presents the av-
erage time per method. For instance, the Beginner block that applied the SPLIt-MBt spent an
average time of 38m20s, while the Advanced block that applied the SPLIt-MBt spent 33m00s.

To better summarize the results, we also present the average time spent per method,
i.e., average time spent by Beginner, Intermediate and Advanced subjects to apply each method
(SPLiT-MBt, CADet, and MTM). For instance, the subjects who applied the CADeT method spent
an average time of 38m30s, while the subjects who applied the MTM method spent an average time
of 45m10s.

Based on the results summarized in the table, the average effort using SPLiT-MBt was
less than with CADeT and MTM (36m16s vs 38m30s vs 45m10s). Otherwise, considering the time
spent per block, the average effort using SPLiT-MBt was more balanced than CADeT and MTM,
since the Beginner, Intermediate and Advanced blocks who applied SPLiT-MBt had similar effort
(38m20s, 36m41s and 33m00s, respectively). Therefore, it is possible to claim, in this particular
situation, that SPLiT-MBt is suitable and intuitive, since even Beginner or Intermediate subjects
could generate test cases without advanced skills.

Table 5.3: Summarized data of the effort

Effort (minutes/sec)
Treatments Blocks Block Average Time Method Average Time

SPLiT-MBt
Beginner 38m20s

36m16sIntermediate 36m41s
Advanced 33m00s

CADeT
Beginner 49m33s

38m30sIntermediate 36m56s
Advanced 27m50s

MTM
Beginner 58m13s

45m10sIntermediate 42m56s
Advanced 31m20s

5.6 Analysis and Interpretation

In this section, we summarize our general results and also describe, in details, the effort
data collected from our experiment. Next, we present how we performed hypothesis testing for all
data sets using as reference the PortalAction statistical package [Por17], [WRH+00] and Levin’s et
al [Lev12].

95

5.6.1 Priori Test

The priori test has been used to verify whether there is difference among treatments in an
empirical experiment [Lev12]. In our experiment, we have applied the Analysis of Variance (ANOVA)
test [Lev12], since it is a test to be applied when there are more than two treatments [WRH+00].
Therefore, we have used the ANOVA test because we defined three treatments for our experiment,
i.e., SPLiT-MBt, CADeT and MTM. This test aims to verify, in a first moment, whether the averages
of at least two methods differ significantly. In a nutshell, the ANOVA test is applied to reject H0 or
not. If this test rejects H0, a posteriori test must be applied to identify where the difference exists.

We performed this ANOVA test with a single factor (effort) and a significance level α =
0.05 (see Table 5.4 and Table 5.5). The main goal was to detect whether there was a significant
difference between the average time spent by the subjects using each one of the methods. Then,
we conclude that there is evidence that those methods have difference among themselves, since the
data sets collected (from populations) has F = 4.064; F critical = 3.101 and; P-value = 0.021 (see
Table 5.5)2.

Based on these values, we can state that the test rejected H0 and we have a 2.1% chance
of being wrong. Thus, we have a very small likelihood to be wrong when we claim that at least one
of the the three methods (SPLiT-MBt, CADeT or MTM) has an average different from the others.
Therefore, when rejecting H0, a posteriori test must be applied to identify where the difference
exists.

Table 5.4: ANOVA Summary

Summary
Treatments Count Sum Average Variance
SPLiT-MBt 30 1088 36.267 41.444
MTM 30 1355 45.167 221.868
CADeT 30 1155 38.5 211.5

Count: Sample size.
Sum: Sum of time spent by the subjects per treatment.
Average: Average per treatment.
Variance: Square of the standard deviation.

5.6.2 Posteriori Test

In this section, we present how we found the differences, among the treatments of our
experiment, regarding to the time spent by the subjects when performing the experiment using
SPLiT-MBt, CADeT and MTM.

2If F > F critical, we reject the null hypothesis (H0) [Lev12].

96

Table 5.5: ANOVA Data Set

ANOVA
Source of Variation SS df MS F P-value F critical
Between Groups 1286.422 2 643.211 4.064 0.021 3.101
Within Groups 13769.533 87 158.271

Total 15055.956 89
SS: Sum of Squares.
df: Degree of freedom.
MS: Mean Square.
F: MSbetween ÷MSwithin, where MSbetween is MS Between Groups and MSwithin is MS

Within Groups.
P-value: Error likelihood when rejecting H0.
F critical: Value found in a table. This value is what is referred to as the F statistic.

Thereunto, we have applied the Tukey test, which aims to determine the differences among
means (averages) in terms of standard error [Lev12] [Por17]. In an nutshell, it is a test used to
find where exist a Honestly Significant Difference (HSD) among the averages regarding to the time
spent to perform the experiment using the three methods. “Honest” because we adjust for making
multiple comparisons. Therefore, we applied the Tukey test to determine where these differences
were found. Next, we present the steps to apply the HSD using the Tukey test.

Step 1: to calculate the differences (absolute value/modulus) among the averages (effort)
per method. Then, to create a table of differences among ordered averages (see Table 5.6).

Table 5.6: Table of differences among ordered averages

SPLiT-MBt = 36,267 CADeT = 38,5 MTM = 45,167
SPLiT-MBt = 36,267 - 2.233 8.9
CADeT = 38,5 - - 6.667
MTM = 45,167 - - -

Step 2: to identify in Table H the value of q, which depends on three factors:

1. Degree of freedom (df) for MSwithin. In our case, df = 30 - 1 = 29, where “30” is
the number of subjects per treatment;

2. Number k of tested averages. In our case, k = 3, since we have three treatments;

3. Significance level: α = 0.05.

After this analysis, we have identified the value of q, which is: q = 3.49.

Step 3: to calculate the Honestly Significant Difference (HSD).

HSD = q

√
MSwithin

nwithin

97

Where:

q is the value obtained from the Table H.

MSwithin is the mean square within the methods (SPLiT-MBt, CADeT and MTM).

nwithin is the sample size (number of subjects).

HSD = 3.49
√

158.271
30 = 8.016

Step 4: to compare the DSH with the values from the Table of differences among averages
described in step 1. When the differences (in absolute value/modulus) are higher than HSD,
then, we can state that there is a significant statistical difference between the average times
of the methods, with alpha of 5% of significance. Therefore, in the three calculated differ-
ences (SPLiT-MBt and CADeT; SPLiT-MBt and MTM; CADeT and MTM), the Tukey test
identified, through the HSD, that there is a significant difference between: SPLiT-MBt and
MTM, whose difference (in absolute value/modulus) is 8.9, i.e., a value higher than 8.016
(HSD). The test did not identify other significant differences among the other methods, since
the difference between SPLiT-MBt and CADeT is 2.233 and; the difference between CADeT
and MTM is 6.667, i.e. these values are smaller than 8.016 (HSD). Next, we present the
conclusions and the result analysis obtained from these data values.

5.7 Conclusions and Result Analysis

The main contribution of our experiment is regarding to comparison of our SPLiT-MBt
against a similar method named CADeT and a conventional approach used to test single applications
named MTM. This comparison was made by measuring the effort (time spent) to apply functional
testing for products derived from SPLs using each one of these three methods, wherein SPLiT-MBt
and CADeT are oriented to reuse of test artifacts and MTM provide functional testing without any
reuse.

Based on the results we have presented in this chapter, we can draw some conclusions.
Our SPLiT-MBt presents a significant statistical difference when compared to MTM. It means that,
in this particular situation, our method present advantages when compared to the conventional
way to test single applications. However, SPLiT-MBt shown no significant difference regarding to
the average times when compared to CADeT, a method similar to SPLiT-MBt and also used to
test products derived from SPLs. Although SPLiT-MBt and CADeT did not present a significant
difference, the test we have applied (ANOVA test) demonstrates that CADeT has no significant
difference when compared to MTM as well. In an nutshell, regarding to the average times, SPLiT-
MBt has a significant advantage when comparing to MTM, but CADeT have no difference when
compared to the same method.

98

Figure 5.1: Experiment Time

Figure 5.1 presents the box-plot graph of the data set relative to the experiment time. In
this data set, the medians of execution time with SPLiT-BMt, MTM and CADeT were, respectively,
35, 44 and 36 minutes. Therefore, we can state that SPLiT-MBt had a substantial advantage
against MTM and a slight advantage when compared to CADeT. Although the difference between
SPLiT-MBt and CADeT was very small, it is important to highlight that SPLiT-MBt generated
automated test scripts that can be executed using a test technology (e.g., MTM or RFT) while
CADeT generated only test cases in natural language.

Moreover, when observing the ANOVA Table, it is possible to identify that the variability
of the average times obtained by the Variance are quite higher for MTM and Cadet when com-
paring to SPLiT-MBt (221.868, 211.5 and 41.444, respectively - see Table 5.4). Therefore, we can
state (again, for this particular situation) that SPLiT-MBt has a more homogeneous behavior when
compared to the other two methods.

Therefore, we can claim that through the use of our SPLiT-MBt, users who do not have
advanced knowledge about UML and functional testing will have a performance similar to users with
advanced skills. This is not the case of the other two methods, since the variance is quite higher
for them. In the next chapter, we present the conclusions, the points that can be improved in our
work and the thesis summary.

99

6. THESIS SUMMARY AND FUTURE WORK

“Without love, deeds, even the most
brilliant, count as nothing.”

St. Therese of Lisieux

In this thesis, we presented the SPLiT-MBT method, which is based on the MBT technique
to generate functional test cases and scripts for products derived from SPLs. The proposed method
supports the generation of test artifacts developed during Domain Engineering to reuse them to test
products during Application Engineering. In order to provide this reuse, SPLiT-MBt is applied in
two phases. In the first one, test and variability information annotated in models, e.g., Use Case
and Activity Diagrams are used to generate test sequences in Domain Engineering. These sequences
are generated through applying test sequences generation methods in FSMs, which are extended to
deal with variability information.

In the second phase, where the variability is resolved, test sequences generated during
Domain Engineering are reused to test products derived in Application Engineering. Furthermore,
in this phase, conventional test sequence generation methods are used to generate specific test
sequences. These sequences are converted into abstract test cases, from which scripts are generated.
These scripts could be executed by several functional testing tools, e.g., VS, MTM, RFT or QTP.
The input data present in these test scripts are generated using a functional criteria, e.g., Boundary
Value Analysis and Equivalence Partitioning.

Through these activities, the SPLiT-MBt allows: the reuse of test artifacts through the
information present in models and reuse of test sequences generated in Domain Engineering. These
features are essential to reduce the test effort, because when the variabilities in SPLs grows, the com-
bination of tests can increase exponentially. Furthermore, SPLiT-MBt also aims to reduce the test
effort through applying test sequence generation methods, which are adapted to deal with variability
information. Another advantage is that SPLiT-MBt allows the integration of different functional
testing tools, which is performed based on a structure representing test cases in natural language,
i.e., abstract test cases. Thus, the script generation is performed independent of technology.

6.1 Thesis Contributions

In this work, we have developed a method (SPLiT-MBt) to test products derived from
SPLs through the reuse of test artifacts generated during Domain Engineering. SPLiT-MBt also
generates test sequences through extending conventional test sequence generation methods (e.g.
UIO, W, TT, HSI) in an SPL context. Furthermore, our method provide the reuse of test artifacts
based on adapting MBT to generate functional test cases and scripts from models/notations that
represent the SPL functionalities and variability information.

100

In this context, we claim that SPLiT-MBt provides several advantages, such as: it generates
test cases that are reused to generate scripts based on system models. Therefore, test cases to test
common functionalities for different products are generated just once; our method generates a generic
structure representing test cases in pseudo-natural language. Thus, it is possible to generate test
scripts that can be executed by different functional testing tools; it provides reduction of amount of
test cases through applying prioritization and minimization of test cases. Thus, when test sequences
are generated, the user could choose the most relevant test cases according to personal criteria.

Based on the concepts of our method, we developed a tool named SPLiT-MBt Tool, which
was used demonstrate the applicability of our method through generating test cases for two SPLs,
i.e., AGM and PLeTs. At the end, our method provide evidences that is able to generate test cases
with reuse of test artifacts. At the end, we conducted a controlled experiment with the purpose
of demonstrating the performance of our SPLiT-MBt against two other methods, i.e. CADeT and
MTM. This study demonstrates that SPLiT-MBt is significantly better than MTM and also has a
more homogeneous behavior when compared to the CADeT and MTM.

6.2 Limitations and Future Works

Despite these benefits and contributions we have presented, there are some points in our
work that could be improved. For example, we can better evaluate/assess SPLiT-MBt through
generating test cases and scripts for another SPLs. Another concern is that SPLiT-MBt automates
only the functional test case generation. However, this method could be applied to other types of
testing, e.g., performance test for web applications. Although we have demonstrated the applicability
of our method using two SPLs and conducted an empirical experiment to evaluate our results, we
are aware that we could define a bigger sample size and choose subjects from a company with
experience on SPL testing. Furthermore, we can work on providing test automation using testing
technologies different from MTM, e.g., Selenium, RFT or QTP. Finally, we have to point out that
another limitation of our work concerns the fact that SPLiT-MBt is not able to generate test cases
and scripts from dynamic SPLs and the variability is resolved only at design time. However, we are
working on extending SPLiT-MBt to address these issues.

6.3 Publications

During the development of this thesis, we presented and discussed our research results and
some related studies in the following papers:

• Costa, L. T.; Zorzo, A. F. ; Rodrigues, E. M. ; Bernardino, M. ; Oliveira, F. M. . Structural
Test Case Generation Based on System Models. In: International Conference on Software
Engineering Advances (ICSEA), 2014, Nice. International Conference on Software Engineering
Advances, 2014.

101

• Costa, L. T.; Oliveira, F. M. ; Rodrigues, E. M. ; Silveira, M. B. ; Zorzo, A. F. . An approach
for Generating Structural Test Cases Based on System Models. In: Workshop de Teste e
Tolerância a Falhas, 2012, Ouro Preto - MG. Simpósio Brasileiro de Redes de Computadores
e Sistemas Distribuídos (SBRC) - WTF 2012, 2012.

• Costa, L. T.; Czekster, R. ; Oliveira, F. M. ; Rodrigues, E. M. ; Silveira, M. B. ; Zorzo, A. F. .
Generating Performance Test Scripts and Scenarios Based on Abstract Intermediate Models.
In: The 24th International Conference on Software Engineering and Knowledge Engineering,
2012, San Francisco. 24rd International Conference on Software Engineering and Knowledge
Engineering, 2012.

• Zanin, A. ; Zorzo, A. F. ; Costa, L. T. . SPLiT-TeSGe - Um Processo para Adaptação
de Métodos de Geração de Sequências de Testes para Linha de Produto de Software. In:
Workshop de Testes e Tolerância a Falhas, 2015, Vitória. Workshop de Testes e Tolerância a
Falhas, 2015.

• Rodrigues, E. ; Bernardino, M. ; Costa, L. T. ; Zorzo, A. F. ; Oliveira, F. . PLeTsPerf -
A Model-Based Performance Testing Tool. In: 2015 IEEE 8th International Conference on
Software Testing, Verification and Validation (ICST), 2015, Graz. 2015 IEEE 8th International
Conference on Software Testing, Verification and Validation (ICST), 2015.

• Rodrigues, E. M. ; Oliveira, F. M. ; Bernardino, M. ; Saad, R. ; Costa, L. T. ; Zorzo, A. F.
. Evaluating Capture and Replay and Model-based Performance Testing Tools: An Empirical
Comparison. In: Empirical Software Engineering (2014), 2014, Turin. Empirical Software
Engineering, 2014.

• Rodrigues, E. M. ; Oliveira, F. M. ; Costa, L. T. ; Bernardino, M. ; Zorzo, A. F. ; Souza, S.
S. ; Saad, R. . An empirical comparison of model-based and capture and replay approaches
for performance testing. Empirical Software Engineering, v. 1, p. 1-30, 2014.

102

103

REFERENCES

[AD97] Apfelbaum, L.; Doyle, J. “Model Based Testing”. In: Proceedings of the 10th
Software Quality Week Conference, 1997, pp. 296–300.

[ALRL04] Avizienis, A.; Laprie, J. C.; Randell, B.; Landwehr, C. “Basic Concepts
and Taxonomy of Dependable and Secure Computing”, IEEE Transaction on
Dependable Secure Computing, vol. 1, 2004, pp. 11–33.

[AO08] Ammann, P.; Offutt, J. “Introduction to Software Testing”. Cambridge University
Press, 2008.

[BG04] Bertolino, A.; Gnesi, S. “PLUTO: A Test Methodology for Product Families”. In:
Proceedings of the 5th Workshop on Software Product-Family Engineering, 2004,
pp. 181–197.

[BRJ05] Booch, G.; Rumbaugh, J.; Jacobson, I. “The Unified Modeling Language User
Guide (2nd Edition)”. Addison-Wesley Professional, 2005.

[Bro16] Broek, P. “Extended Feature Models”. Available in: http://www.utwente.nl,
Jan 2016.

[CC79] Cook, T. D.; Campbell, D. T. “Quasi-experimentation: Design and Analysis Issues
for Field Settings”. Houghton Mifflin, 1979.

[CCO+12] Costa, L. T.; Czekster, R. M.; Oliveira, F. M.; Rodrigues, E. M.; Silveira,
M. B.; Zorzo, A. F. “Generating Performance Test Scripts and Scenarios Based
on Abstract Intermediate Models”. In: Proceedings of the 24th International
Conference on Software Engineering & Knowledge Engineering, 2012, pp. 112–
117.

[CGSE12] Capellari, M. L.; Gimenes, I.; Simão, A.; Endo, A. “Towards Incremental FSM-
based Testing of Software Product Line”. In: Proceedings of the 6th Brazilian
Software Quality Symposium, 2012, pp. 9–23.

[Cho78] Chow, T. S. “Testing Software Design Modeled by Finite-State Machines”, IEEE
Transactions on Software Engineering, vol. 4, 1978, pp. 178–187.

[CN01] Clements, P.; Northrop, L. “Software Product Lines: Practices and Patterns”.
Addison-Wesley, 2001.

[CSV10] Cristiá, M.; Santiago, V.; Vijaykumar, N. L. “On Comparing and Complementing
two MBT Approaches”. In: Proceedings of the 11th Latin American Test
Workshop, 2010, pp. 1–6.

104

[CZR+14] Costa, L. T.; Zorzo, A. F.; Rodrigues, E. M.; Silveira, M. B.; Oliveira, F. M.
“Structural Test Case Generation Based on System Models”. In: Proceedings of
the 9th International Conference on Software Engineering Advances, 2014, pp.
276–281.

[DCG+09] Davis, C.; Chirillo, D.; Gouveia, D.; Saracevic, F.; Bocarsley, J. B.; Quesada,
L.; Thomas, L. B.; Lint, M. v. “Software Test Engineering with IBM Rational
Functional Tester: The Definitive Resource”. IBM Press, 2009.

[DKMT96] Devanbu, P.; Karstu, S.; Melo, W.; Thomas, W. “Analytical and Empirical
Evaluation of Software Reuse Metrics”. In: Proceedings of the 18th International
Conference on Software Engineering, 1996, pp. 189–199.

[DLL+09] Dara, R.; Li, S.; Liu, W.; Smith-Ghorbani, A.; Tahvildari, L. “Using Dynamic
Execution Data to Generate Test Cases”. In: Proceedings of the 25th IEEE
International Conference on Software Maintenance, 2009, pp. 433–436.

[DMJ07] Delamaro, M. E.; Maldonado, J. C.; Jino, M. “Introdução ao Teste de Software”.
Elsevier, 2007.

[EFW01] El-Far, I. K.; Whittaker, J. A. “Model-based Software Testing”. Wiley, 2001.

[EM07] Everett, G. D.; McLeod, R. J. “Software Testing: Testing Across the Entire
Software Development Life Cycle”. John Wiley & Sons, 2007.

[ER11] Engstrom, E.; Runeson, P. “Software Product Line Testing - A Systematic
Mapping Study”, Information and Software Technology, vol. 53, 2011, pp. 2–
13.

[FGMO12] Fiori, D. R.; Gimenes, I. M. S.; Maldonado, J. C.; OliveiraJr, E. A. “Variability
Management in Software Product Line Activity Diagrams”. In: Proceedings of
the 18th International Conference on Distributed Multimedia Systems, 2012, pp.
89–94.

[Gil62] Gill, A. “Introduction to the Theory of Finite State Machines”. McGraw-Hill,
1962.

[Gil95] Gil, A. “Métodos e Técnicas de Pesquisa Social”. Atlas, 1995.

[Gom05] Gomaa, H. “Designing Software Product Lines with UML: From Use Cases to
Pattern-Based Software Architectures”. Addison-Wesley, 2005.

[Gon70] Gonenc, G. “A Method for the Design of Fault Detection Experiments”, IEEE
Transactions on Computer, vol. 19, 1970, pp. 551–558.

105

[Gro09] Gronback, R. C. “Eclipse Modeling Project: A Domain-Specific Language (DSL)
Toolkit”. Addison-Wesley, 2009.

[HK06] Holmes, A.; Kellogg, M. “Automating Functional Tests Using Selenium”. In:
Proceedings of the 9th International Conference on Agile, 2006, pp. 270–275.

[HP03] Halmans, G.; Pohl, K. “Communicating the Variability of a Software-Product
Family to Customers”, Software and System Modeling, vol. 2, 2003, pp. 15–36.

[HT90] Hamlet, D.; Taylor, R. “Partition Testing does not Inspire Confidence (Program
Testing)”, IEEE Transactions on Software Engineering, vol. 16, 1990, pp. 1402–
1411.

[HVR04] Hartmann, J.; Vieira, M.; Ruder, A. “A UML-based Approach for Validating
Product Lines”. In: Proceedings of the 3rd International Workshop on Software
Product Line Testing, 2004, pp. 58–65.

[IBM17] IBM. “IBM Rational PurifyPlus”. Available in: http://www.ibm.com/software/
awdtools/purifyplus/, Jul 2017.

[Ins16a] Institute, S. E. “Software Product Lines (SPL)”. Available in: http://www.sei.
cmu.edu/productlines/, Oct 2016.

[Ins16b] Institute, S. E. “Software Product Lines (SPL)”. Available in: http://www.sei.
cmu.edu/productlines/ppl, Oct 2016.

[Jun10] Junior, E. A. O. “SystEM-PLA: um Método para Avaliação de Arquitetura de
Linha de Produto de Software Baseada em UML”, Ph.D. Thesis, Instituto de
Ciências Matemáticas e Computação, Universidade de São Paulo, Brasil, 2010.

[KCH+90] Kang, K. C.; Cohen, S. G.; Hess, J. A.; Novak, W. E.; Peterson, A. S. “Feature-
Oriented Domain Analysis (FODA) Feasibility Study”, Technical Report, Carnegie
Mellon University, 1990.

[KJG99] Kerbrat, A.; Jéron, T.; Groz, R. “Automated Test Generation from SDL
Specifications”. In: Proceedings of the 9th SDL Forum, 1999, pp. 135–152.

[KKB+17] Kang, S.; Kim, J.; Baek, H.; Ahn, H.; Jung, P.; Lee, J. “Comparison of
Software Product Line Test Derivation Methods from the Reuse Viewpoint”.
In: Proceedings of the 6th International Conference on Software and Computer
Applications, 2017, pp. 1–8.

[KLKL07] Kang, S.; Lee, J.; Kim, M.; Lee, W. “Towards a Formal Framework for Product
Line Test Development”. In: Proceedings of the 7th IEEE International Conference
on Computer and Information Technology, 2007, pp. 921–926.

106

[Kri04] Krishnan, P. “Uniform Descriptions for Model Based Testing”. In: Proceedings of
the 15th Australian Software Engineering Conference, 2004, pp. 96–105.

[LCYW11] Lin, M.; Chen, Y.; Yu, K.; Wu, G. “Lazy Symbolic Execution for Test Data
Generation”, IET Software, vol. 5, 2011, pp. 132–141.

[Lev11] Levinson, J. “Software Testing With Visual Studio 2010”. Pearson Education,
2011.

[Lev12] Levin, Jack; Fox, J. A. F. D. R. “Estatística para Ciências Humanas”. Pearson
Education do Brasil, 2012.

[Lin02] Linden, F. “Software Product Families in Europe: the Esaps Cafe Projects”, IEEE
Software, vol. 19, 2002, pp. 41–49.

[LPP13] Lamancha, B. P.; Polo, M.; Piattini, M. “Systematic Review on Software Product
Line Testing”. In: Proceedings of the 10th International Software and Data
Technologies, 2013, pp. 58–71.

[LRD+15] Laser, M.; Rodrigues, E. M.; Domingues, A. R.; de Oliveira, F. M.; Zorzo, A. F.
“Research Notes on the Architectural Evolution of a Software Product Line”,
International Journal of Software Engineering and Knowledge Engineering, vol. 20,
2015, pp. 1753–1758.

[LSR07] Linden, F. J. v. d.; Schmid, K.; Rommes, E. “Software Product Lines in Action:
The Best Industrial Practice in Product Line Engineering”. Springer-Verlag, 2007.

[LVMM07] Lemos, O. A. L.; Vincenzi, A. M. R.; Maldonado, J. C.; Masiero, P. C. “Control
and Data Flow Structural Testing Criteria for Aspect-oriented Programs”, Journal
of Systems and Software, vol. 80, 2007, pp. 862–882.

[Mal09] Mallepally, S. R. “Quick Test Professional (QTP) Interview Questions and
Guidelines: A Quick Reference Guide to QuickTest Professional”. Parishta, 2009.

[Man16] Manager, M. T. “Running Tests in Microsoft Test Manager”. Available in:
http://www.msdn.microsoft.com/en-us/library/dd286680, Jan 2016.

[McG01] McGregor, J. D. “Testing a Software Product Line”, Technical Report, Clemson
University, 2001.

[MJG14] Marcolino, A.; Jr., E. A. O.; Gimenes, I. M. S. “Towards the Effectiveness of
the SMarty Approach for Variability Management at Sequence Diagram Level”.
In: Proceedings of the 16th International Conference on Enterprise Information
Systems, 2014, pp. 249–256.

107

[MM98] Meadows, C.; McLean, J. “Security and Dependability: Then and Now”. In:
Proceedings of the 7th Computer Security, Dependability and Assurance: From
Needs to Solutions, 1998, pp. 166–170.

[MRKN13] Millo, J. V.; Ramesh, S.; Krishna, S. N.; Narwane, G. “Compositional Verification
of Software Product Lines”. In: Proceedings of the 10th Integrated Formal
Methods, 2013, pp. 109–123.

[MRMdOTC+15] Macedo Rodrigues, E.; Moreira de Oliveira, F.; Teodoro Costa, L.; Bernardino,
M.; Zorzo, A. F.; do Rocio Senger Souza, S.; Saad, R. “An Empirical Comparison
of Model-based and Capture and Replay Approaches for Performance Testing”,
Empirical Software Engineering, vol. 20, 2015, pp. 1831–1860.

[MS04] Myers, G. J.; Sandler, C. “The Art of Software Testing”. John Wiley & Sons,
2004.

[MSM04] McGregor, J.; Sodhani, P.; Madhavapeddi, S. “Testing Variability in a Software
Product Line”. In: Proceedings of the 3rd International Workshop on Software
Product Line Testing, 2004, pp. 45–50.

[NdCMM+11] Neto, P. A. M. S.; do Carmo Machado, I.; McGregor, J. D.; de Almeida, E. S.;
de Lemos Meira, S. R. “A Systematic Mapping Study of Software Product Lines
Testing”, Information and Software Technology, vol. 53, 2011, pp. 407–423.

[NFTJ04] Nebut, C.; Fleurey, F.; Traon, Y.; Jezequel, J. M. “A Requirement-Based
Approach to Test Product Families”. In: Proceedings of the 5th Workshop on
Software Product-Family Engineering, 2004, pp. 198–210.

[NT81] Naito, S.; Tsunoyama, M. “Fault Detection for Sequential Machines by Transitions
Tours”. In: Proceedings of the 11th IEEE Fault Tolerant Computing Conferece,
1981, pp. 283–243.

[OG09] Olimpiew, E.; Gomaa, H. “Reusable model-based testing”. In: Proceedings of the
3rd Formal Foundations of Reuse and Domain Engineering, 2009, pp. 76–85.

[OGM10] Oliveira, E. A.; Gimenes, I. M. S.; Maldonado, J. C. “Systematic Management of
Variability in UML-based Software Product Lines”, Journal of Universal Computer
Science, vol. 16, 2010, pp. 2374–2393.

[PBL05] Pohl, K.; Buckle, G.; Linden, F. J. v. d. “Software Product Line Engineering:
Foundations, Principles and Techniques”. Springer-Verlag, 2005.

[Por17] Portal Action. “System Action Statistical Package”. Available in: http://www.
portalaction.com.br/en, Apr 2017.

108

[Pro16] Professional, A. “Astah Professional”. Available in: http://www.astah.net/
editions/professional, Jan 2016.

[PYLD93] Petrenko, A.; Yevtushenko, N.; Lebedev, A.; Das, A. “Nondeterministic State
Machines in Protocol Conformance Testing”. In: Proceedings of the 6th
International Workshop on Protocol Test Systems, 1993, pp. 363–378.

[RBC+15] Rodrigues, E. M.; Bernardino, M.; Costa, L.; Zorzo, A.; Oliveira, F. “Pletsperf - a
model-based performance testing tool”. In: Proceedings of 8th IEEE International
Conference on the Software Testing, Verification and Validation, 2015, 2015, pp.
1–8.

[Rou17] Roubtsov, V. “EMMA: a Free Java Code Coverage Tool”. Available in: http:
//emma.sourceforge.net, Jul 2017.

[RRKP06] Reuys, A.; Reis, S.; Kamsties, E.; Pohl, K. “The ScenTED Method for Testing
Software Product Lines”. In: Proceedings of the 10th Software Product Lines,
2006, pp. 479–520.

[RVZG10] Rodrigues, E. M.; Viccari, L. D.; Zorzo, A. F.; Gimenes, I. M. S. “PLeTs-
Test Automation using Software Product Lines and Model Based Testing”. In:
Proceedings of the 22th International Conference on Software Engineering and
Knowledge Engineering, 2010, pp. 483–488.

[SD88] Sabnani, K.; Dahbura, A. “A Protocol Test Generation Procedure”, Computer
Networks and ISDN Systems, vol. 15, 1988, pp. 285–297.

[Sem16] Semantic Designs. “Semantic Designs Test Coverage”. Available in: http://www.
semdesigns.com, Jul 2016.

[Som11] Sommerville, I. “Software Engineering”. Pearson/Addison–Wesley, 2011.

[SPL17] SPLHF. “Software Product Line Hall of Fame”. Available in: http://splc.net/
hall-of-fame/, Jan 2017.

[SRZ+11] Silveira, M. B.; Rodrigues, E. M.; Zorzo, A. F.; Costa, L. T.; Vieira, H. V.;
de Flavio Moreira Oliveira. “Generation of Scripts for Performance Testing Based
on UML Models”. In: Proceedings of the 23rd International Conference on
Software Engineering and Knowledge Engineering, 2011, pp. 258–263.

[SRZ16] Silveira, M. B.; Rodrigues, E. M.; Zorzo, A. F. “Performance Testing Modeling:
an Empirical Evaluation of DSL and UML-based Approaches”. In: Proceedings of
the 31st ACM Symposium on Applied Computing, 2016, pp. 1660–1665.

[SW02] Smith, C. U.; Williams, L. G. “Performance Solutions: A Practical Guide to
Creating Responsive, Scalable Software”. Addison-Wesley, 2002.

109

[SZR16] Silveira, M. B.; Zorzo, A. F.; Rodrigues, E. M. “Canopus: A Domain- Specific
Language for Modeling Performance Testing”. In: Proceedings of the 9th IEEE
International Conference on Software Testing, Verification and Validation, 2016,
pp. 157–167.

[TTK04] Tevanlinna, A.; Taina, J.; Kauppinen, R. “Product Family Testing: a Survey”,
ACM SIGSOFT Software Engineering Notes, vol. 29, 2004, pp. 12.

[Utt06] Utting, M.; Legeard, B. “Practical Model-Based Testing: A Tools Approach”.
Morgan Kaufmann, 2006.

[VDMW06] Vincenzi, A. M. R.; Delamaro, M. E.; Maldonado, J. C.; Wong, W. E.
“Establishing Structural Testing Criteria for Java Bytecode”, Software: Practice
and Experience, vol. 36, 2006, pp. 1513–1541.

[VMWD05] Vincenzi., A. M. R.; Maldonado, J. C.; Wong, W. E.; Delamaro, M. E. “Coverage
Testing of Java Programs and Components”, Science of Computer Programming,
vol. 56, 2005, pp. 211–230.

[Web16] Weber, T. S. “Tolerância a Falhas: Conceitos e Exemplos”. Available
in: http://www.inf.ufrgs.br/~taisy/disciplinas/textos/ConceitosDependabilidade.
PDF, Oct 2016.

[WRH+00] Wohlin, C.; Runeson, P.; Host, M.; Ohlsson, M. C.; Regnell, B.; Wesslen, A.
“Experimentation in Software Engineering: An Introduction”. Kluwer Academic
Publishers, 2000.

[Yin13] Yin, R. “Case Study Research: Design and Methods”. SAGE Publications, 2013.

[Zan16] Zanin, A. “Split-Tesge: um Processo para Adaptação de Métodos de Geração
de Sequências de Testes para Linha de Produto de Software”, Master’s Thesis,
Programa de Pós-Graduação em Ciência da Computação, Pontifícia Universidade
Católica do Rio Grande do Sul, Brasil, 2016.

110

111

APPENDIX A – SUB SEQUENCES GENERATED PER PRODUCT

Table A.1: State Cover per Product 1

PRODUCT S8 PRODUCT S2 PRODUCT S9
Start - Start - Start -
S0 a S0 a S0 a
S1 b S1 b S1 b
S2 n/a S2 abe{VP_OR} S2 n/a
S3 abc{VP_OR}f S3 abe{VP_OR}f S3 abc{VP_OR}f
S4 abc{VP_OR}fg S4 abe{VP_OR}fg S4 abc{VP_OR}fg
S5 abc{VP_OR}fh S5 abe{VP_OR}fh S5 abc{VP_OR}fh
S6 abc{VP_OR}fhi S6 abe{VP_OR}fhi S6 abc{VP_OR}fhi

abc{VP_OR}fgi abe{VP_OR}fgi abc{VP_OR}fgi
S7 abc{VP_OR}fhj S7 abe{VP_OR}fhij S7 abc{VP_OR}fhij

abc{VP_OR}fgj abe{VP_OR}fgij abc{VP_OR}fgij
S8 abc{VP_OR} S8 n/a S8 n/a
S9 n/a S9 n/a S9 abc{VP_OR}f
END abd{VP_OR}fhjk END abe{VP_OR}fhjk END abc{VP_OR}fhjk

abd{VP_OR}fgjk abe{VP_OR}fgjk abc{VP_OR}fgjk

Table A.2: State Cover per Product 2
PRODUCT S2-S8 PRODUCT S9-S8 PRODUCT S9-S2 PRODUCT S2,S8,S9

Start - Start - Start - Start -
S0 a S0 a S0 a S0 a
S1 b S1 b S1 b S1 b
S2 abe{VP_OR} S2 n/a S2 abe{VP_OR} S2 abe{VP_OR}

S3 abe{VP_OR}f S3 abc{VP_OR}f S3 abc{VP_OR}f S3 abd{VP_OR}f; abe{VP_OR}f
abd{VP_OR}f abd{VP_OR}f abe{VP_OR}f abc{VP_OR}f

S4 abe{VP_OR}fg S4 abc{VP_OR}fg S4 abc{VP_OR}fg S4 abc{VP_OR}fg; abe{VP_OR}fg
abd{VP_OR}fg abd{VP_OR}fg abe{VP_OR}fg abd{VP_OR}fg

S5 abe{VP_OR}fh S5 abc{VP_OR}fh S5 abc{VP_OR}fh S5 abc{VP_OR}fh
abd{VP_OR}fh abd{VP_OR}fh abe{VP_OR}fh abe{VP_OR}fh

S6

abe{VP_OR}fgi

S6

abc{VP_OR}fgi

S6

abc{VP_OR}fgi abc{VP_OR}fh
abe{VP_OR}fhi abc{VP_OR}fhi abc{VP_OR}fhi

S6

abc{VP_OR}fhi
abd{VP_OR}fgi abd{VP_OR}fhi abe{VP_OR}fgi abe{VP_OR}fhi
abd{VP_OR}fhi abd{VP_OR}fgi abe{VP_OR}fhi abd{VP_OR}fhi

S7

abe{VP_OR}fgij

S7

abc{VP_OR}fgij

S7

abc{VP_OR}fgij abc{VP_OR}fgi
abd{VP_OR}fgij abd{VP_OR}fgij abe{VP_OR}fgij abe{VP_OR}fgi
abe{VP_OR}fhij abc{VP_OR}fhij abc{VP_OR}fhij abd{VP_OR}fgi
abd{VP_OR}fhij abd{VP_OR}fhij abe{VP_OR}fhij

S7

abc{VP_OR}fhij
S8 abc{VP_OR} S8 abc{VP_OR} S8 n/a abc{VP_OR}fgij
S9 n/a S9 abc{VP_OR}f S9 abc{VP_OR}f abe{VP_OR}fhij

END

abe{VP_OR}fhjk

END

abc{VP_OR}fhjk

END

abc{VP_OR}fhjk abe{VP_OR}fgij
abe{VP_OR}fgjk abc{VP_OR}fgjk abc{VP_OR}fgjk abd{VP_OR}fhij
abd{VP_OR}fhjk abd{VP_OR}fhjk abe{VP_OR}fhjk abd{VP_OR}fgij
abd{VP_OR}fgjk abd{VP_OR}fgjk abe{VP_OR}fgjk S8 abc{VP_OR}

S9 abc{VP_OR}f

END

abc{VP_OR}fhjk
abc{VP_OR}fgjk
abe{VP_OR}fhjk
abe{VP_OR}fgjk
abd{VP_OR}fhjk
abd{VP_OR}fgjk

112

Table A.3: Transition Cover per Product 1
PRODUCT S8 PRODUCT S2 PRODUCT S9

Start ε a Start ε a Start ε a
S0 εab S0 εab S0 εab
S1 εabe{VP_OR} S1 εabd{VP_OR} S1 εabe{VP_OR}
S2 εabe{VP_OR}f S2 n/a S2 n/a

S3
abe{VP_OR}ff

S3
abd{VP_OR}ff

S3
abc{VP_OR}ff

abe{VP_OR}fg abd{VP_OR}fg abe{VP_OR}fg
abe{VP_OR}fh abd{VP_OR}fh abc{VP_OR}fh

S4 abe{VP_OR}fgi S4 abd{VP_OR}fgi S4 abc{VP_OR}fgi
S5 abe{VP_OR}fhi S5 abd{VP_OR}fhi S5 abc{VP_OR}fhi

S6

abe{VP_OR}fhik

S6

abd{VP_OR}fhik

S6

abc{VP_OR}fhik
abe{VP_OR}fhij abd{VP_OR}fhij abc{VP_OR}fhij
abe{VP_OR}fhib abd{VP_OR}fhib abc{VP_OR}fhib
abe{VP_OR}fgik abd{VP_OR}fgik abc{VP_OR}fgik
abe{VP_OR}fgij abd{VP_OR}fgij abc{VP_OR}fgij
abe{VP_OR}fgib abd{VP_OR}fgib abc{VP_OR}fgib

S7

abe{VP_OR}fhjk

S7

abd{VP_OR}fhjk

S7

abc{VP_OR}fhjk
abe{VP_OR}fhja abd{VP_OR}fhja abc{VP_OR}fhja
abe{VP_OR}fgjk abd{VP_OR}fgjk abc{VP_OR}fgjk
abe{VP_OR}fgja abd{VP_OR}fgja abc{VP_OR}fgja

S8 n/a S8 abd{VP_OR}f S8 n/a
S9 n/a S9 n/a S9 abc{VP_OR}f

END abe{VP_OR}fhjk END abd{VP_OR}fhjk END abc{VP_OR}fhjk

Table A.4: Transition Cover per Product 2
PRODUCT S2,S8,S9 PRODUCT S9-S2 PRODUCT S8-S2 PRODUCT S8-S9

Start ε a Start ε a Start ε a Start ε a
S0 εab S0 εab S0 εab S0 εab

S1
εabe{VP_OR} S1 εabe{VP_OR} S1 εabe{VP_OR} S1 εabd{VP_OR}
εabd{VP_OR} εabe{VP_OR} εabd{VP_OR} εabe{VP_OR}
εabe{VP_OR} S2 εabe{VP_OR}f S2 εabe{VP_OR}f S2 n/a

S2 εabe{VP_OR}f

S3

abc{VP_OR}ff

S3

abe{VP_OR}ff

S3

abd{VP_OR}ff

S3

abe{VP_OR}ff abe{VP_OR}fg abe{VP_OR}fg abd{VP_OR}fg
abe{VP_OR}fg abc{VP_OR}fh abe{VP_OR}fh abd{VP_OR}fh
abe{VP_OR}fh abe{VP_OR}ff abd{VP_OR}ff abc{VP_OR}ff
abd{VP_OR}ff abe{VP_OR}fg abd{VP_OR}fg abe{VP_OR}fg
abd{VP_OR}fg abe{VP_OR}fh abd{VP_OR}fh abc{VP_OR}fh
abd{VP_OR}fh S4 abc{VP_OR}fgi S4 abe{VP_OR}fgi S4 abd{VP_OR}fgi
abc{VP_OR}ff abe{VP_OR}fgi abd{VP_OR}fgi abc{VP_OR}fgi
abe{VP_OR}fg S5 abc{VP_OR}fhi S5 abe{VP_OR}fhi S5 abd{VP_OR}fhi
abc{VP_OR}fh abe{VP_OR}fhi abd{VP_OR}fhi abc{VP_OR}fhi

S4
abe{VP_OR}fgi

S6

abc{VP_OR}fhik

S6

abe{VP_OR}fhik

S6

abd{VP_OR}fhik
abd{VP_OR}fgi abc{VP_OR}fhij abe{VP_OR}fhij abd{VP_OR}fhij
abc{VP_OR}fgi abc{VP_OR}fhib abe{VP_OR}fhib abd{VP_OR}fhib

S5
abe{VP_OR}fhi abc{VP_OR}fgik abe{VP_OR}fgik abd{VP_OR}fgik
abd{VP_OR}fhi abc{VP_OR}fgij abe{VP_OR}fgij abd{VP_OR}fgij
abc{VP_OR}fhi abc{VP_OR}fgib abe{VP_OR}fgib abd{VP_OR}fgib

S6

abe{VP_OR}fhik abe{VP_OR}fhik abd{VP_OR}fhik abc{VP_OR}fhik
abe{VP_OR}fhij abe{VP_OR}fhij abd{VP_OR}fhij abc{VP_OR}fhij
abe{VP_OR}fhib abe{VP_OR}fhib abd{VP_OR}fhib abc{VP_OR}fhib
abe{VP_OR}fgik abe{VP_OR}fgik abd{VP_OR}fgik abc{VP_OR}fgik
abe{VP_OR}fgij abe{VP_OR}fgij abd{VP_OR}fgij abc{VP_OR}fgij
abe{VP_OR}fgib abe{VP_OR}fgib abd{VP_OR}fgib abc{VP_OR}fgib
abd{VP_OR}fhik

S7

abc{VP_OR}fhjk

S7

abe{VP_OR}fhjk

S7

abd{VP_OR}fhjk
abd{VP_OR}fhij abc{VP_OR}fhja abe{VP_OR}fhja abd{VP_OR}fhja
abd{VP_OR}fhib abc{VP_OR}fgjk abe{VP_OR}fgjk abd{VP_OR}fgjk
abd{VP_OR}fgik abc{VP_OR}fgja abe{VP_OR}fgja abd{VP_OR}fgja
abd{VP_OR}fgij abe{VP_OR}fhjk abd{VP_OR}fhjk abc{VP_OR}fhjk
abd{VP_OR}fgib abe{VP_OR}fhja abd{VP_OR}fhja abc{VP_OR}fhja
abc{VP_OR}fhik abe{VP_OR}fgjk abd{VP_OR}fgjk abc{VP_OR}fgjk
abc{VP_OR}fhij abe{VP_OR}fgja abd{VP_OR}fgja abc{VP_OR}fgja
abc{VP_OR}fhib S8 n/a S8 abd{VP_OR}f S8 abd{VP_OR}f
abc{VP_OR}fgik S9 abc{VP_OR}f S9 n/a S9 abc{VP_OR}f
abc{VP_OR}fgij

END

abc{VP_OR}fhjk

END

abe{VP_OR}fhjk

END

abd{VP_OR}fhjk
abc{VP_OR}fgib abc{VP_OR}fgjk abe{VP_OR}fgjk abd{VP_OR}fgjk

S7

abe{VP_OR}fhjk abe{VP_OR}fhjk abd{VP_OR}fhjk abc{VP_OR}fhjk
abe{VP_OR}fhja abe{VP_OR}fgjk abd{VP_OR}fgjk abc{VP_OR}fgjk
abe{VP_OR}fgjk
abe{VP_OR}fgja
abd{VP_OR}fhjk
abd{VP_OR}fhja
abd{VP_OR}fgjk
abd{VP_OR}fgja
abc{VP_OR}fhjk
abc{VP_OR}fhja
abc{VP_OR}fgjk
abc{VP_OR}fgja

S8 abd{VP_OR}f
S9 abc{VP_OR}f

END

abe{VP_OR}fhjk
abe{VP_OR}fgjk
abd{VP_OR}fhjk
abd{VP_OR}fgjk
abc{VP_OR}fhjk
abc{VP_OR}fgjk

113

Table A.5: Wi Sequences of State Pairs per Product
PRODUCT S2 PRODUCT S8 PRODUCT S9

STATE PAIR Wi STATE PAIR Wi STATE PAIR Wi
Start S0 a Start S0 a Start S0 a
Start S1 a Start S1 a Start S1 a
Start S2 a Start S3 a Start S3 a
Start S3 a Start S4 a Start S4 a
Start S4 a Start S5 a Start S5 a
Start S5 a Start S6 a Start S6 a
Start S6 a Start S7 a Start S7 a
Start S7 a Start S8 a Start S9 a
Start End a Start End a Start End a
S0 S1 a S0 S1 a S0 S1 a
S0 S2 a S0 S3 a S0 S3 a
S0 S3 a S0 S4 a S0 S4 a
S0 S4 a S0 S5 a S0 S5 a
S0 S5 a S0 S6 a S0 S6 a
S0 S6 a S0 S7 a S0 S7 a
S0 S7 a S0 S8 a S0 S9 a
S0 End a S0 End a S0 End a
S1 S2 b S1 S3 b S1 S3 b
S1 S3 b S1 S4 b S1 S4 b
S1 S4 b S1 S5 b S1 S5 b
S1 S5 b S1 S6 b S1 S6 b
S1 S6 b S1 S7 b S1 S7 b
S1 S7 b S1 S8 b S1 S9 b
S1 End b S1 End b S1 End b
S2 S3 e{VP_OR} S3 S4 f S3 S4 f
S2 S4 e{VP_OR} S3 S5 f S3 S5 f
S2 S5 e{VP_OR} S3 S6 f S3 S6 f
S2 S6 e{VP_OR} S3 S7 f S3 S7 f
S2 S7 e{VP_OR} S3 S8 f S3 S9 f
S2 End e{VP_OR} S3 End f S3 End f
S3 S4 f S4 S5 g S4 S5 g
S3 S5 f S4 S6 g S4 S6 g
S3 S6 f S4 S7 g S4 S7 g
S3 S7 f S4 S8 g S4 S9 g
S3 End f S4 End g S4 End g
S4 S5 g S5 S6 h S5 S6 h
S4 S6 g S5 S7 h S5 S7 h
S4 S7 g S5 S8 h S5 S9 h
S4 End g S5 End h S5 End h
S5 S6 h S6 S7 i S6 S7 i
S5 S7 h S6 S8 i S6 S9 i
S5 End h S6 End i S6 End i
S6 S7 i S7 S8 j S7 S9 j
S6 End i S7 End j S7 End j
S7 End j S8 End d{VP_OR} S9 End c{VP_OR}

Table A.6: Wi Sequences of States Pairs per Product
PRODUCT S2 - WI PER STATE PRODUCT S8 - WI PER STATE PRODUCT S9 - WI PER STATE
Start a Start a Start a
S0 a S0 a S0 a
S1 ab S1 ab S1 ab
S2 abe{VP_OR} S3 abf S3 abf
S3 abe{VP_OR}f S4 abfg S4 abfg
S4 abe{VP_OR}fg S5 abfgh S5 abfgh
S5 abe{VP_OR}fgh S6 abfghi S6 abfghi
S6 abe{VP_OR}fghi S7 abfghij S7 abfghij
S7 abe{VP_OR}fghij S8 abfghijd{VP_OR} S9 abfghijc{VP_OR}
End abe{VP_OR}fghij End abfghijd{VP_OR} End abfghijc{VP_OR}

114

Table A.7: Wi Sequences of States Pairs per Product 2
PRODUCT S2,S8,S9 PRODUCT S9,S2 PRODUCT S8-S2 PRODUCT S8-S9

STATE PAIR Wi|| STATE PAIR Wi STATE PAIR Wi STATE PAIR Wi
Start S0 a Start S0 a Start S0 a Start S0 a
Start S1 a Start S1 a Start S1 a Start S1 a
Start S2 a Start S2 a Start S2 a Start S3 a
Start S3 a Start S3 a Start S3 a Start S4 a
Start S4 a Start S4 a Start S4 a Start S5 a
Start S5 a Start S5 a Start S5 a Start S6 a
Start S6 a Start S6 a Start S6 a Start S7 a
Start S7 a Start S7 a Start S7 a Start S8 a
Start S8 a Start S9 a Start S8 a Start S9 a
Start S9 a Start End a Start End a Start End a
Start End a S0 S1 a S0 S1 a S0 S1 a
S0 S1 a S0 S2 a S0 S2 a S0 S3 a
S0 S2 a S0 S3 a S0 S3 a S0 S4 a
S0 S3 a S0 S4 a S0 S4 a S0 S5 a
S0 S4 a S0 S5 a S0 S5 a S0 S6 a
S0 S5 a S0 S6 a S0 S6 a S0 S7 a
S0 S6 a S0 S7 a S0 S7 a S0 S8 a
S0 S7 a S0 S9 a S0 S8 a S0 S9 a
S0 S8 a S0 End a S0 End a S0 End a
S0 S9 a S1 S2 b S1 S2 b S1 S3 b
S0 End a S1 S3 b S1 S3 b S1 S4 b
S1 S2 b S1 S4 b S1 S4 b S1 S5 b
S1 S3 b S1 S5 b S1 S5 b S1 S6 b
S1 S4 b S1 S6 b S1 S6 b S1 S7 b
S1 S5 b S1 S7 b S1 S7 b S1 S8 b
S1 S6 b S1 S9 b S1 S8 b S1 S9 b
S1 S7 b S1 End b S1 End b S1 End b
S1 S8 b S2 S3 e{VP_OR} S2 S3 e{VP_OR} S3 S4 f
S1 S9 b S2 S4 e{VP_OR} S2 S4 e{VP_OR} S3 S5 f
S1 End b S2 S5 e{VP_OR} S2 S5 e{VP_OR} S3 S6 f
S2 S3 e{VP_OR} S2 S6 e{VP_OR} S2 S6 e{VP_OR} S3 S7 f
S2 S4 e{VP_OR} S2 S7 e{VP_OR} S2 S7 e{VP_OR} S3 S8 f
S2 S5 e{VP_OR} S2 S9 e{VP_OR} S2 S8 e{VP_OR} S3 S9 f
S2 S6 e{VP_OR} S2 End e{VP_OR} S2 End e{VP_OR} S3 End f
S2 S7 e{VP_OR} S3 S4 f S3 S4 f S4 S5 g
S2 S8 e{VP_OR} S3 S5 f S3 S5 f S4 S6 g
S2 S9 e{VP_OR} S3 S6 f S3 S6 f S4 S7 g
S2 End e{VP_OR} S3 S7 f S3 S7 f S4 S8 g
S3 S4 f S3 S9 f S3 S8 f S4 S9 g
S3 S5 f S3 End f S3 End f S4 End g
S3 S6 f S4 S5 g S4 S5 g S5 S6 h
S3 S7 f S4 S6 g S4 S6 g S5 S7 h
S3 S8 f S4 S7 g S4 S7 g S5 S8 h
S3 S9 f S4 S9 g S4 S9 g S5 S9 h
S3 End f S4 End g S4 End g S5 End h
S4 S5 g S5 S6 h S5 S6 h S6 S7 i
S4 S6 g S5 S7 h S5 S7 h S6 S8 i
S4 S7 g S5 S9 h S5 S8 h S6 S9 i
S4 S8 g S5 End h S5 End h S6 End i
S4 S9 g S6 S7 i S6 S7 i S7 S8 j
S4 End g S6 S9 i S6 S8 i S7 S9 j
S5 S6 h S6 End i S6 End i S7 End j
S5 S7 h S7 S9 j S7 S8 j S8 S9 d{VP_OR}
S5 S8 h S7 End j S7 End j S8 End d{VP_OR}
S5 S9 h S9 End d{VP_OR} S9 End c{VP_OR} S9 End c{VP_OR}
S5 End h
S6 S7 i
S6 S8 i
S6 S9 i
S6 End i
S7 S8 j
S7 S9 j
S7 End j
S8 S9 d{VP_OR}
S8 End d{VP_OR}
S9 End c{VP_OR}

Table A.8: Wi Sequences of States Pairs per Product 2
Wi PER STATE - PRODUCT S2,S8,S9 Wi PER STATE - PRODUCT S9,S2 Wi PER STATE - PRODUCT S8-S2 Wi PER STATE - PRODUCT S8-S9

Start a Start a Start a Start a
S0 a S0 a S0 a S0 a
S1 ab S1 ab S1 ab S1 ab
S2 abe{VP_OR} S2 abe{VP_OR} S2 abe{VP_OR} S3 abf
S3 abe{VP_OR}f S3 abe{VP_OR}f S3 abe{VP_OR}f S4 abfg
S4 abe{VP_OR}fg S4 abe{VP_OR}fg S4 abe{VP_OR}fg S5 abfgh
S5 abe{VP_OR}fgh S5 abe{VP_OR}fgh S5 abe{VP_OR}fgh S6 abfghi
S6 abe{VP_OR}fghi S6 abe{VP_OR}fghi S6 abe{VP_OR}fghi S7 abfghij
S7 abe{VP_OR}fghij S7 abe{VP_OR}fghij S7 abe{VP_OR}fghij S8 abfghijd{VP_OR}
S8 abe{VP_OR}fghijd{VP_OR} S9 abe{VP_OR}fghijd{VP_OR} S8 abe{VP_OR}fghijd{VP_OR} S9 abfghijd{VP_OR}c{VP_OR}
S9 abe{VP_OR}fghijd{VP_OR} End abe{VP_OR}fghijd{VP_OR} End abe{VP_OR}fghijd{VP_OR} End abfghijd{VP_OR}c{VP_OR}
End abe{VP_OR}fghijd{VP_OR}c{VP_OR}

115

Table A.9: Table to Support the Final Test Sequence Generation for the UIO Method
Source State Input Output Target State State Cover UIO

Start a 1 S0 ε a
Start b enpty Start ε a
Start {dec}V P_OR enpty Start ε a
Start {fff} enpty Start ε a
Start f enpty Start ε a
Start g enpty Start ε a
Start h enpty Start ε a
Start i enpty Start ε a
Start j enpty Start ε a
Start k enpty Start ε a
S0 a enpty S0 a b
S0 b 2 S1 a b
S0 {dec}V P_OR enpty S0 a b
S0 {fff} enpty S1 a b
S0 f enpty S2 a b
S0 g enpty S3 a b
S0 h enpty S4 a b
S0 i enpty S5 a b
S0 j enpty S6 a b
S0 k enpty S7 a b
S1 a enpty S1 a,b {dec}_VP_OR
S1 b enpty S1 a,b {dec}_VP_OR
S1 {dec}V P_OR 04|04|06 VP_S1 a,b {dec}_VP_OR
S1 {fff} enpty S1 a,b {dec}_VP_OR
S1 f enpty S2 a,b {dec}_VP_OR
S1 g enpty S3 a,b {dec}_VP_OR
S1 h enpty S4 a,b {dec}_VP_OR
S1 i enpty S5 a,b {dec}_VP_OR
S1 j enpty S6 a,b {dec}_VP_OR
S1 k enpty S7 a,b {dec}_VP_OR
S3 a enpty S3 a,b,{dec}V P_or{fff} g
S3 b enpty S3 a,b,{dec}V P_or{fff} g
S3 {dec}V P_OR enpty S3 a,b,{dec}V P_or{fff} g
S3 {fff} enpty S3 a,b,{dec}V P_or{fff} g
S3 f 9 S3 a,b,{dec}V P_or{fff} g
S3 g 11 S4 a,b,{dec}V P_or{fff} g
S3 h 10 S5 a,b,{dec}V P_or{fff} g
S3 i enpty S6 a,b,{dec}V P_or{fff} g
S3 j enpty S3 a,b,{dec}V P_or{fff} g
S3 k enpty S3 a,b,{dec}V P_or{fff} g
S4 a enpty S4 a,b,{dec}V P_or ,{fff},g i
S4 b enpty S4 a,b,{dec}V P_or ,{fff},g i
S4 {dec}V P_OR enpty S4 a,b,{dec}V P_or ,{fff},g i
S4 {fff} enpty S4 a,b,{dec}V P_or ,{fff},g i
S4 f enpty S4 a,b,{dec}V P_or ,{fff},g i
S4 g enpty S4 a,b,{dec}V P_or ,{fff},g i
S4 h enpty S4 a,b,{dec}V P_or ,{fff},g i
S4 i 13 S6 a,b,{dec}V P_or ,{fff},g i
S4 j enpty S4 a,b,{dec}V P_or ,{fff},g i
S4 k enpty S4 a,b,{dec}V P_or ,{fff},g i
S5 a enpty S5 a,b,{dec}V P_or ,{fff},h i
S5 b enpty S5 a,b,{dec}V P_or ,{fff},h i
S5 {dec}V P_OR enpty S5 a,b,{dec}V P_or ,{fff},h i
S5 {fff} enpty S5 a,b,{dec}V P_or ,{fff},h i
S5 f enpty S5 a,b,{dec}V P_or ,{fff},h i
S5 g enpty S5 a,b,{dec}V P_or ,{fff},h i
S5 h enpty S5 a,b,{dec}V P_or ,{fff},h i
S5 i 12 S6 a,b,{dec}V P_or ,{fff},h i
S5 j enpty S5 a,b,{dec}V P_or ,{fff},h i
S5 k enpty S5 a,b,{dec}V P_or ,{fff},h i
S6 a enpty S6 a,b,{dec}V P_or ,{fff},h,i k
S6 b 14 S1 a,b,{dec}V P_or ,{fff},h,i k
S6 {dec}V P_OR enpty S6 a,b,{dec}V P_or ,{fff},h,i k
S6 {fff} enpty S6 a,b,{dec}V P_or ,{fff},h,i k
S6 f enpty S6 a,b,{dec}V P_or ,{fff},h,i k
S6 g enpty S6 a,b,{dec}V P_or ,{fff},h,i k
S6 h enpty S6 a,b,{dec}V P_or ,{fff},h,i k
S6 i enpty S6 a,b,{dec}V P_or ,{fff},h,i k
S6 j 16 S7 a,b,{dec}V P_or ,{fff},h,i k
S6 k 15 End a,b,{dec}V P_or ,{fff},h,i k
S7 a 18 S0 a,b,{dec}V P_or ,{fff},h,i,j k
S7 b enpty S7 a,b,{dec}V P_or ,{fff},h,i,j k
S7 {dec}V P_OR enpty S7 a,b,{dec}V P_or ,{fff},h,i,j k
S7 {fff} enpty S7 a,b,{dec}V P_or ,{fff},h,i,j k
S7 f enpty S7 a,b,{dec}V P_or ,{fff},h,i,j k
S7 g enpty S7 a,b,{dec}V P_or ,{fff},h,i,j k
S7 h enpty S7 a,b,{dec}V P_or ,{fff},h,i,j k
S7 i enpty S7 a,b,{dec}V P_or ,{fff},h,i,j k
S7 j enpty S7 a,b,{dec}V P_or ,{fff},h,i,j k
S7 k 17 End a,b,{dec}V P_or ,{fff},h,i,j k

VP_S1 a enpty VP_S1 a,b,{dec}V P_or {fff}
VP_S1 b enpty VP_S1 a,b,{dec}V P_or {fff}
VP_S1 {dec}V P_OR enpty VP_S1 a,b,{dec}V P_or {fff}
VP_S1 {fff} 06|07|08 S3 a,b,{dec}V P_or {fff}
VP_S1 f enpty VP_S1 a,b,{dec}V P_or {fff}
VP_S1 g enpty VP_S1 a,b,{dec}V P_or {fff}
VP_S1 h enpty VP_S1 a,b,{dec}V P_or {fff}
VP_S1 i enpty VP_S1 a,b,{dec}V P_or {fff}
VP_S1 j enpty VP_S1 a,b,{dec}V P_or {fff}
VP_S1 k enpty VP_S1 a,b,{dec}V P_or {fff}

116

117

APPENDIX B – FSM PER PRODUCT FROM AGM

Figure B.1: FSM Animation Loop

Figure B.2: FSM Initialization

Figure B.3: FSM Bowling Moves

118

Figure B.4: FSM Brickles Moves

Figure B.5: FSM Check Previous Best Score

119

Figure B.6: FSM Exit Game

Figure B.7: FSM Pong Moves

Figure B.8: FSM Install Game

120

Figure B.9: FSM Save Game

Figure B.10: FSM Save Scores

121

APPENDIX C – AGM - INPUT, OUTPUT AND VARIABILITY DATA

Table C.1: Actual Input, Output and Variability Information of AGM
ID Inputs ID Outputs Source States Target States Variability

a Select Play from menu 01 Creates the standard in-
stances of the required
classes

Start Standard Instances mandatory

b Enters the READY state 02 The gameboard is displayed Standard Instances Ready State mandatory
c Left-click Button to begin

play
03 Start game action and the

animation begins
Ready State Initialize the game mandatory

d{VP_or} Brickles Moves 04 Brickles Moves Initialize the game Brickles Moves alternative_OR
e{VP_or} Pong Moves 05 Pong Moves Initialize the game Pong Moves alternative_OR
f{VP_or} Bowling Moves 06 Bowling Moves Initialize the game Bowling Moves alternative_OR
g Responds to Won/Lost

/Tied dialog
07 Dialog to play again is pre-

sented
Present Won/Lost/Tied
Dialog

Responds to WonLostTied
Dialog

mandatory

Present Won/Lost Dialog Responds to
Won/Lost/Tied Dialog

Present Lost Dialog Box Responds to
Won/Lost/Tied Dialog

Present Won Dialog Box Responds to
Won/Lost/Tied Dialog

h Respond "no" in the dialog to
play again

08 Exit the game Responds to
Won/Lost/Tied Dialog

Exit mandatory

i Respond "yes" in the dialog
to play again

9 Returns the gameboard to
its initialized, ready-to-play
state

Exit Standard Instances mandatory

j Positions the mouse and left-
clicks to send ball down alley

10 Ball starts to move Bowling Moves Enter Commands mandatory (sub-FSM
Bowling Moves)

k Move the ball down the alley
using a randomly selected al-
gorithm

11 Ball reaches the pins or not Enter Commands Move the Ball mandatory (sub-FSM
Bowling Moves)

l Ball reaches the pins 12 Pins are knocked down as de-
termined by the physics of
the collision

Move the Ball Knock Down Pins mandatory (sub-FSM
Bowling Moves)

m Ball NOT reaches the pins 13 Pins are not knocked down as
determined by the physics of
the collision

Move the Ball Counts number of pins
knocked down

mandatory (sub-FSM
Bowling Moves)

n Counts number of pins
knocked down

14 Number of pins knocked
down are displayed

Knock Down Pins Counts number of pins
knocked down

mandatory (sub-FSM
Bowling Moves)

o System computes the score 15 The score is displayed and the
number of actions are incre-
mented

Counts number of pins
knocked down

Compute Score mandatory (sub-FSM
Bowling Moves)

p Game starts a new action 16 Gameboard in the initial state
is presented

Compute Score Enter Commands mandatory (sub-FSM
Bowling Moves)

q The last game action is per-
formed

17 The Won/Lost dialog is pre-
sented

Compute Score Present Won/Lost/Tied Di-
alog

mandatory (sub-FSM
Bowling Moves)

r Left-clicks or uses the key-
board to enter commands

16 Paddles andd puck start to
move

Pong Moves Enter Commands mandatory (sub-FSM
Pong Moves)

s Let the puck collide into the
walls

19 Based on the rules, the puck
is absorbed or changes direc-
tion according to the laws of
physics

Enter Commands Present Won/Lost Dialog mandatory (sub-FSM
Pong Moves)

t Left-clicks or uses the key-
board to enter commands

20 Moves the paddle horizon-
tally to follow the mouse
track

Brickles Moves Brickles Enter Commands mandatory (sub-FSM
Brickles Moves)

u Puck still in movement 21 System checks for a collision
with another object

Back into the Playing Area Brickles Enter Commands mandatory (sub-FSM
Brickles Moves)

v New puck begins its move-
ment

22 System checks for a collision
with another object

Provides a New Puck Brickles Enter Commands mandatory (sub-FSM
Brickles Moves)

x Puck collides with the floor 23 Puck ceases to exist Brickles Enter Commands Delete Actual Puck mandatory (sub-FSM
Brickles Moves)

z Puck collides with the ceiling
or wall

24 Puck is reflected back into
the playing area

Brickles Enter Commands Back into the Playing Area mandatory (sub-FSM
Brickles Moves)

ab Puck collides with a brick 25 Puck is reflected back into
the playing area

Defines Action Back into the Playing Area mandatory (sub-FSM
Brickles Moves)

ac Puck collides with the last
brick

26 The Won dialog is presented Defines Action Present Won Dialog Box mandatory (sub-FSM
Brickles Moves)

ad Maximum number of pucks
has been reached

27 The Lost dialog is presented Delete Actual Puck Present Lost Dialog Box mandatory (sub-FSM
Brickles Moves)

ae Maximum number of pucks
has not been reached

28 A new puck is provided Delete Actual Puck Provides a New Puck mandatory (sub-FSM
Brickles Moves)

bo Puck collides with a brick 62 Puck is absorbed or changes
direction according to the
laws of physics

Enter Commands Defines Action mandatory (sub-FSM
Brickles Moves)

122

af Let the puck collide into the
walls

29 Based on the rules, the puck
is absorbed or changes direc-
tion according to the laws of
physics

Enter Commands Puck collides in the wall mandatory (sub-FSM
Pong Moves)

ag Selects exit from system
menu

30 Prompts actor to save or exit
the game

Start (FSM Exit) Exit From System Menu mandatory (sub-FSM
exit game)

ah Click the log out button in
the upper right corner of the
game window

31 Prompts actor to save or exit
the game

Start (FSM Exit) Exit From Exit Button mandatory (sub-FSM
exit game)

aj Choose exit game option 33 exit game Exit From Exit Button Exit the game mandatory (sub-FSM
exit game)

aj Choose exit game option 33 exit game Exit From System Menu Exit the game mandatory (sub-FSM
exit game)

ak Choose saves game option 34 Saves the game and exits the
program

Exit From Exit Button Save Game mandatory (sub-FSM
exit game)

ak Choose saves game option 34 Saves the game and exits the
program

Exit From System Menu Save Game mandatory (sub-FSM
exit game)

al Choose cancel exit game op-
tion

35 Returns to suspended action Exit From Exit Button Cancel the EXIT action mandatory (sub-FSM
exit game)

al Choose cancel exit game op-
tion

35 Returns to suspended action Exit From System Menu Cancel the EXIT action mandatory (sub-FSM
exit game)

ao Open Previous Best Score
Window

38 Previous Best Score Window
is Showed

Start Previous Best Score Check Best Score mandatory (sub-FSM
Check Best Score)

ap Prompts Actor to Specify a
Filename

39 Sistem Reads the File and
Returns Score in a Dialog
Box

Check Best Score Choose Previous Score File mandatory (sub-FSM
Check Best Score)

aq Prompts actor to specify a
filename

40 Finds that file does not exist Check Best Score Choose an Invalid Previous
Score File

mandatory (sub-FSM
Check Best Score)

ar Selects OK on dialog box to
continue

41 Returns to state before select Choose Previous Score File Exit Check Best Score Pro-
gram

mandatory (sub-FSM
Check Best Score)

ar Selects OK on dialog box to
continue

41 Returns to state before select Choose Invalid Previous
Score File

Exit Check Best Score Pro-
gram

mandatory (sub-FSM
Check Best Score)

as Selects SAVE SCORE from
system menu

42 Prompts actor to specify a
filename

Start Save Score Enter File Name mandatory (sub-FSM
Save Score)

at Author enter an existing file
name to save score

43 System displays message that
the file already exists

Enter File Name Overwrites existing score mandatory (sub-FSM
Save Score)

au The author type a unique file
name to save score

44 System creates a new file and
save the game it

Enter File Name Create a New File to Save
Score

mandatory (sub-FSM
Save Score)

av Click on ok button 45 System overwrites existing
score

Overwrites existing score Confirm Saved Game mandatory (sub-FSM
Save Score)

ax Click cancel button 46 Score is not saved Overwrites existing score Cancel Save Score mandatory (sub-FSM
Save Score)

ax Click cancel button 46 Score is not saved Disk is Full Cancel Save Score mandatory (sub-FSM
Save Score)

az User selects an invalid loca-
tion to save the score file

47 System displays message that
the disk is full

Create a New File to Save
Score

Disk is Full mandatory (sub-FSM
Save Score)

ba User select a valid location to
save the score file

48 System save score Create a New File to Save
Score

Save Game successfully mandatory (sub-FSM
Save Score)

ba User select a valid location to
save the score file

48 System save score Disk is full Save Game successfully mandatory (sub-FSM
Save Score)

hi Selects the installer exe-
cutable to execute

32 Presents a file chooser to al-
low selection of a directory in
which to place the game files

Start Install Game Start Installation mandatory (sub-FSM
Install Game)

bb Selects an invalid location to
save the game files

49 System finds insufficient
space to which to write
files and displays the Out of
Space dialog box

Start Installation Installation Not Performed mandatory (sub-FSM
Install Game)

bc Click on OK button 50 Exits the program Installation Not Performed Exits the Program mandatory (sub-FSM
Install Game)

bd Selects a directory to save
game files

51 Places game files in the direc-
tory and install game

Start Installation Successful Installation mandatory (sub-FSM
Install Game)

be Selects the SAVE option in
the system menu

52 Allows the actor to specify a
filename

Start Save Game Enter File Name mandatory (sub-FSM
Save Game)

bf Select a valid directory and
valid filename to save the file

53 The game is saved Enter File Name Locate is valid mandatory (sub-FSM
Save Game)

bg Reports a file name and a lo-
cation to save the game

54 Raises exception because the
disk is full

Enter File Name Disk is Full mandatory (sub-FSM
Save Game)

bh Select another directory to
save the file and informs an
existing file name

55 System displays message that
the file already exists and
asks if you want to overwrite

Disk is Full Existing file name mandatory (sub-FSM
Save Game)

bi Select a valid directory and
valid filename to save the file

56 The game is saved Disk is Full Saved Game mandatory (sub-FSM
Save Game)

bj Click on ok button 57 System overwrites existing
game file

Existing file name Confirm Saved Game mandatory (sub-FSM
Save Game)

bk Click the cancel button 58 Game is not saved Existing file name Cancel Save Game mandatory (sub-FSM
Save Game)

bl Generate periodic signals 59 Signals are send to the game Start Animation Loop Generate Signals mandatory (sub-FSM
Save Game)

123

bm Moves all objects one step
according to their movement
algorithm

60 Objects are moved Generate Signals Move Objects mandatory (sub-FSM
Save Game)

bn Checks for collisions executes
the collision algorithms of the
objects

61 Collision algorithms are exe-
cuted

Move Objects Checks for Collisions mandatory (sub-FSM
Save Game)

bp Generate periodic signals 63 Signals are send to the game Start Uninstall Game Start Uninstall mandatory (sub-FSM
Uninstall Game)

bq Selects directory where game
is stored

64 Erases files in the directory
and Presents the Uninstall
Completed dialog box

Start Uninstall Erases Files mandatory (sub-FSM
Uninstall Game)

br Selects the OK button in the
dialog box

65 Closes dialog box Erases Files Close mandatory (sub-FSM
Uninstall Game)

124

125

APPENDIX D – PLETS ACTIVITY DIAGRAMS

Figure D.1: Activity Diagram of Testing Type

126

Figure D.2: Activity Diagram of Functional Testing Functionalities

127

Figure D.3: Activity Diagram of Performance Testing Functionalities

128

Figure D.4: Activity Diagram of Functional Testing

129

Figure D.5: Activity Diagram of Performance Testing

Figure D.6: Activity Diagram of Parameterization

130

131

APPENDIX E – FSMS FROM PLETS

Figure E.1: FSM of Choose the type of the test

132

Figure E.2: FSM of Functional Functionalities

133

Figure E.3: FSM of Performance Functionalities

134

Figure E.4: FSM of Functional Testing

135

Figure E.5: FSM of Performance Testing

136

Figure E.6: FSM of Parameterization

137

Figure E.7: FSM with Variation Point

138

139

APPENDIX F – PLETS - INPUT, OUTPUT AND IDENTIFIERS DATA

Table F.1: Actual Input, Output and Variability Information of PLeTs

Functionalities of Functional Testing
ID Input ID Output
e Choose a functionality on the menu 5 Functionality chosen
f Click on File button 6 File options on the screen
g Click on Configuration button 7 Configuration options on the screen
h Click on Log button 8 Will be open two options
i Click on Close button 9 Program closed
j Click on Edit Configuration File button 10 File configured
k Log on the screen cleared 11 Click on Clear button
l Click on Save log file button 12 Log on the screen saved
m Application will close 13 Application ended

Functionalities of Performance Testing
ID Input ID Output
n Open the tool 14 Functionality chosen
o Click on import XMI/XML file button 15 File exported
p Click on Help button 16 Help screen opened
q Click on Environment button 17 Load Runner Path screen opened
r Click on file button 18 Will be open two options on the screen
s Click on Parsed Load Runner Script to XMI button 19 Directory screen opened
t Click on Generate ATC button 20 Convert test data into generic test scenarios
u Click on import XMI/XML file button 21 File exported
v Click on Environment button 22 Environment screen opened
x Choose a Load Runner path | Click on OK button 23 Path chosen
y Click on Parameterization button 24 Configure data parameterization
z Click on Generate Scripts button 25 Convert abstract test cases
w Click on Execute Test button | Click on OK button 26 Invoke the executable program to run the scripts generated
aa Click on Exit button 27 Program closed

Functional Testing
ID Input ID Output

ac (Req->Functionalities Functional.)Click on Load from
XMI File button, select file and click on open

29 File XML loaded

ad Select the method of test sequences generation, HSI 30 File XML loaded
ae Select the method of test sequences generation, W 31 Method of test sequence generation W is selected
af Select the method of test sequences generation, Wp 32 Method of test sequence generation Wp is selected
ag Select the method of test sequences generation, DFS 33 Method of test sequence generation DFS is selected
ah Click on generate test case from load test data button 34 The abstract test case are generated using HSI method
ai Click on generate test case from load test data button 35 The abstract test case are generated using W method
aj Click on generate test case from load test data button 36 The abstract test case are generated using Wp method
ak Click on generate test case from load test data button 37 The abstract test case are generated using DFS method
al Click on export file to Visual Studio 38 File exported to Visual Studio
am File exported to OATS 39 Click on export file to OATS
an File exported to MTM 40 Click on export file to MTM
ao File exported to JMeter 41 Export file to Jmeter
ap Select directory to save | Click on OK button 42 Script on VS saved
aq Select directory to save | Click on OK button 43 Script on OATS saved
ar Select directory to save | Click on OK button 44 Script on MTM saved
as Select directory to save | Click on OK button 45 Script on JMeter saved

at Click on Load File to be parsed | Select file
|Click on Open

46 File XML loaded

au Choose between close the application or
run the application again

47 Command chosen

Choose the Testing Type

140

ID Input ID Output
a Select the type of the test 1 Type of the test is selected
b Start Functional Testing 2 Functional Testing is started
c Start Performance Testing 3 Performance Testing is started
d Start Structural Testing 4 Structural Testing is started

Parameterization
ID Input ID Output
av Click on parameterization button 48 The screen will open
ax Choose the scenario on the left 49 The scenario will be marked on the screen
az Choose the file on the right 50 The file preview will open on the right
aw Click on Export scripts file 51 Will be open a screen to choose a directory
ba Click on OK button to save the script 52 Script is saved

Performance Testing
ID Input ID Output

bb (Req->Functionalities Performance)Click on
import XMI/XML file button

53 File exported

bc Click on Generate ATC for HSI button 54 Convert test data into generic test scenarios
bd Click on Generate ATC for DFS button 55 Convert test data into generic test scenarios
be Click on Generate ATC for W button 56 Convert test data into generic test scenarios
bf Click on Generate ATC for WP button 57 Convert test data into generic test scenarios
bg Click on Parameterization button 58 Configure the data of parameterization
bh Click on Parameterization button 59 Configure the data of parameterization
bi Click on Parameterization button 60 Configure the data of parameterization
bj Click on Parameterization button 61 Configure the data of parameterization
bk Click on Generate Scripts for Load Runner button 62 Script are generated
bl Click on Generate Scripts for Visual Studio button 63 Script are generated
bm Click on Generate Scripts for JMeter button 64 Script are generated
bn Click on Execute Test button 65 Open Load Runner application to run the scripts generated
bn Click on Execute Test button 66 Open Visual Studio application to run the scripts generated
bn Click on Execute Test button 67 Open JMeter application to run the scripts generated
bo Clcik on Close button 68 Application closed

Structural Testing
ID Input ID Output
bs Type the path of the XMI file on console 72 File XMI loaded

bt Press Enter 73 Information necessary extracted for generating a data
structure in memory

bu Specify the directory to save the Abstract Structure 74 Directory where is saved the abstract data structure
is displayed on the console

bt Press Enter 86 Data File and Abstract Structure saved
bv Inform the launcher path of Jabuti, EMMA or Poketool 88 Path informed

bq Click on Jabuti application located on“c:/PletsCoverageJabutti.exe”
(Req->Specify the directory where the Jabuti.jbt file will be stored)

70 Jabuti application opened

br Click on Emma application located on“c:/PletsCoverageEmma.exe”
(Ex->Specify the directory where the Jabuti.jbt file will be stored)

87 PokeTool application opened

ci Click on Poke-Tool application located on “c:/Poketool.exe”
(Ex->Specify the directory where the Jabuti.jbt file will be stored)

71 Emma application opened

cj Press Enter to export file to JaBUTi 87 Java class for Jabuti is saved
ck Java class for Poketool is saved 89 Java class for Poketool is saved
cl Java class for Emma is saved 90 Java class for Emma is saved
ca Specify the directory where the Jabuti.jbt file will be stored 79 JaBUTi’s GUI is launched
cb Application will open on screen 80 Tests results on screen
cd Press on Close 81 Application closed
ch Press Y in order to run the tests again 85 Console ready to export XML file
cj Select directory to save java class for JaBUTi 87 Java class is saved
ck Select directory to save java class for poketool 87 Java class is saved
cl Select directory to save java class for Emma 87 Java class is saved

141

APPENDIX G – SPLIT-MBT TOOL INTERFACE

Figure G.1: SPLiT-MBt Tool Interface

142

143

APPENDIX H – PROFILE FORM/CHARACTERIZATION
QUESTIONNAIRE OF THE EXPERIMENT

Figure H.1: Profile form/characterization questionnaire of the Experiment

144

145

APPENDIX I – EXPERIMENT GUIDE WITH SPLIT-MBT TOOL

Roteiro para modelagem de teste de Funcional para SPLs e Geração
de Casos de Teste com a Ferramenta SPLiT-MBt Tool

- Anote o horário em que iniciou esta etapa.
Etapa 1 - Anotar os modelos com informações de teste

Esta etapa consiste em anotar os diagramas de atividades com informações
necessárias para automatizar a geração de scripts e cenários para teste funcional para SPLs.

Modelo de teste de Performance: com o objetivo de dar início a esta etapa considere:

- Dê um duplo clique com o botão esquerdo do mouse no diagrama com o nome
“Performance” para abrir o diagrama de atividades correspondente (ver Figura
1).

- Em seguida, será apresentado o diagrama de atividades “Performance” (ver
Figura 2). Este diagrama de atividades possui informações de variabilidade, mas
ainda não possui informações de teste. Desta forma, clique nos elementos
“Control Flow” (transição de uma atividade para outra atividade ou de uma
atividade para um Decision Node e vice-versa) e clique na aba “Tagged Value”
(ver Figura 2).

- Clique no botão “Add” para adicionar as tags com os nomes (coluna “name”)
“TDaction” e TDexpectedResult.

- Insira os valores de teste (coluna “Value”) neste diagrama conforme descrito na
Tabela 1.

Figura 1

Figura 2

Tabela 1

Transição das Atividades Tags Valores

1 - Start State p/ Import XML TDaction
TDexpectedResult

- (Req->Functionalities
Performance)Click on import XMI/XML
file button
- File exported

2 - Decision Node 1 p/
Generate Abstract Test Case
-HSI

TDaction
TDexpectedResult

- Click on Generate ATC for HSI button
- Convert test data into generic test
scenarios

3 - Decision Node 1 p/
Generate Abstract Test Case

TDaction
TDexpectedResult

- Click on Generate ATC for DFS button
- Convert test data into generic test

-DFS scenarios

4 - Decision Node 1 p/
Generate Abstract Test Case
-W

TDaction
TDexpectedResult

- Click on Generate ATC for W button
- Convert test data into generic test
scenarios

5 - Decision Node 1 p/
Generate Abstract Test Case
-WP

TDaction
TDexpectedResult

- Click on Generate ATC for WP button
- Convert test data into generic test
scenarios

6 - Generate Abstract Test
Case -HSI p/
Parameterization

TDaction
TDexpectedResult

- Click on Parameterization button
- Configure the data of parameterization

7 - Generate Abstract Test
Case -DFS p/
Parameterization

TDaction
TDexpectedResult

- Click on Parameterization button
- Configure the data of parameterization

8 - Generate Abstract Test
Case -W p/ Parameterization

TDaction
TDexpectedResult

- Click on Parameterization button
- Configure the data of parameterization

9 - Generate Abstract Test
Case -WP p/
Parameterization

TDaction
TDexpectedResult

- Click on Parameterization button
- Configure the data of parameterization

10 - Decision Node 2 p/
Generate Scripts - Load
Runner

TDaction
TDexpectedResult

- Click on Generate Scripts for Load
Runner button
- LoadRunner script is generated

11 - Decision Node 2 p/
Generate Scripts - Visual
Studio

TDaction
TDexpectedResult

- Click on Generate Scripts for Visual
Studio button
- Visual Studio script is generated

12 - Decision Node 2 p/
Generate Scripts - JMeter

TDaction
TDexpectedResult

- Click on Generate Scripts for JMeter
button
- JMeter script is generated

13 - Generate Scripts - Load
Runner p/ Execute Test

TDaction
TDexpectedResult

- Click on Execute Test button
- Open Load Runner application to run
the scripts generated

14 - Generate Scripts - Visual
Studio p/ Execute Test

TDaction
TDexpectedResult

- Click on Execute Test button
- Open Visual Studio application to run
the scripts generated

15 - Generate Scripts -
JMeter p/ Execute Test

TDaction
TDexpectedResult

- Click on Execute Test button
- Open JMeter application to run the
scripts generated

16 - Execute Test p/ Final
State

TDaction
TDexpectedResult

- Click on Close button
- Application is closed

Modelo de teste Funcional: esta etapa consiste em anotar informações de teste em
um outro diagrama de atividades. Para isso, considere os seguintes passos:

- Dê um duplo clique com o botão esquerdo do mouse no diagrama com o nome
“Functional” para abrir o diagrama de atividades correspondente (ver Figura 3).

- Em seguida, será apresentado o diagrama de atividades “Functional” (ver Figura
4). Este diagrama de atividades possui informações de variabilidade, mas ainda
não possui informações de teste. Desta forma, clique nos elementos “Control
Flow” (transição de uma atividade para outra atividade ou de uma atividade para
um Decision Node e vice-versa) e clique na aba “Tagged Value” (ver Figura 4).

- Clique no botão “Add” para adicionar as tags com os nomes (coluna “name”)
“TDaction” e TDexpectedResult.

- Insira os valores de teste (coluna “Value”) neste diagrama conforme descrito na
Tabela 2.

Figura 3

Figura 4

Tabela 2

Transição das Atividades Tags Valores

1 - Start State p/ Load File
XML

TDaction
TDexpectedResult

- (Req->Functionalities Functional.)Click
on Load from XMI File button, select file
and click on open
- File XML loaded

2 - Decision Node 1 p/
Choose HSI method

TDaction
TDexpectedResult

- Select the method of test sequences
generation, HSI
- Method of test sequence generation
HSI is selected

3 - Decision Node 1 p/
Choose W method

TDaction
TDexpectedResult

- Select the method of test sequences
generation, W
- Method of test sequence generation W
is selected

4 - Decision Node 1 p/
Choose WP method

TDaction
TDexpectedResult

- Select the method of test sequences
generation, Wp
- Method of test sequence generation
Wp is selected

5 - Decision Node 1 p/
Choose DFS method

TDaction
TDexpectedResult

- Click on generate test case from load
test data button
- The abstract test case are generated
using DFS method

6 - Choose HSI method p/
Generate Test Case

TDaction
TDexpectedResult

- Click on generate test case from load
test data button
- The abstract test case are generated
using HSI method

7 - Choose W method p/
Generate Test Case

TDaction
TDexpectedResult

- Click on generate test case from load
test data button
- The abstract test case are generated
using W method

8 - Choose WP method p/
Generate Test Case

TDaction
TDexpectedResult

- Click on generate test case from load
test data button
- The abstract test case are generated
using Wp method

9 - Choose DFS method p/
Generate Test Case

TDaction
TDexpectedResult

- Click on generate test case from load
test data button
- The abstract test case are generated
using DFS method

10 - Decision Node 2 p/
Export to Visual Studio

TDaction
TDexpectedResult

- Click on export file to Visual Studio
- File exported to Visual Studio

11 - Decision Node 2 p/
Export to OATS

TDaction
TDexpectedResult

- Click on export file to OATS
- File exported to OATS

12 - Decision Node 2 p/
Export to MTM

TDaction
TDexpectedResult

- Click on export file to MTM
- File exported to MTM

13 - Decision Node 2 p/
Export to JMeter

TDaction
TDexpectedResult

- Script on JMeter saved
- File exported to JMeter

14 - Export to Visual Studio p/
Save Scripts

TDaction
TDexpectedResult

- Select directory to save | Click on OK
button
- Script on VS saved

15 - Export to OATS p/ Save
Scripts

TDaction
TDexpectedResult

- Select directory to save | Click on OK
button
- Script on OATS saved

16 - Export to MTM p/ Save
Scripts

TDaction
TDexpectedResult

- Select directory to save | Click on OK
button
- Script on MTM saved

17 - Export to JMeter p/ Save
Scripts

TDaction
TDexpectedResult

- Select directory to save | Click on OK
button
- Script on JMeter saved

18 - DecisionNode 3 p/ Load
File XML

TDaction
TDexpectedResult

- Click on Load File to be parsed | Select
file | Click on Open
- File XML loaded

19 - DecisionNode 3 p/ Exit TDaction
TDexpectedResult

- Choose between close the application
or run the application again
- Command chosen

20 - exit p/ Final State TDaction
TDexpectedResult

- Click on Close button to end the
application
- Application is closed

Modelo de teste Estrutural: esta etapa consiste em anotar informações de teste em um outro
diagrama de atividades. Para isso, considere os seguintes passos:

- Dê um duplo clique com o botão esquerdo do mouse no diagrama com o nome
“Structural” para abrir o diagrama de atividades correspondente (ver Figura 5).

- Em seguida, será apresentado o diagrama de atividades “Structural” (ver Figura
6). Este diagrama de atividades possui informações de variabilidade, mas ainda
não possui informações de teste. Desta forma, clique nos elementos “Control
Flow” (transição de uma atividade para outra atividade ou de uma atividade para
um Decision Node e vice-versa) e clique na aba “Tagged Value” (ver Figura 6).

- Clique no botão “Add” para adicionar as tags com os nomes (coluna “name”)
“TDaction” e TDexpectedResult.

- Insira os valores de teste (coluna “Value”) neste diagrama conforme descrito na
Tabela 3.

Figura 5

Figuta 6

Tabela 3

Transição das Atividades Tags Valores

1 - Start State p/ XMI File TDaction
TDexpectedResult

- Export XML file on Astah
- File XML exported

2 - Decision Node 1 p/
PletsCoverageJabuti

TDaction
TDexpectedResult

- Click on Jabuti application located on
“c:/PletsCoverageJabuti.exe”
(Req->Specify the directory where the
Jabuti.jbt file will be stored)
- Jabuti application opened

3 - Decision Node 1 p/
PletsCoverageEmma

TDaction
TDexpectedResult

- Click on Emma application located on
“c:/PletsCoverageEmma.exe”
(Ex->Specify the directory where the
Emma file will be stored)
- Emma application opened

4 - PletsCoverageJabuti p/
Type the XMI file path

TDaction
TDexpectedResult

- Type the path of the XMI file on
console
- File XMI loaded

5 - PletsCoverageEmma p/
Type the XMI file path

TDaction
TDexpectedResult

- Type the path of the XMI file on
console
- File XMI loaded

6 - Type the XMI file path p/
Submit the XMI file to a
parser

TDaction
TDexpectedResult

- Press Enter to Submit the file to a
parser
- Information necessary extracted for
generating a data structure in memory

7 - Submit the XMI file to a
parser p/ Saving the Abstract
Structure and Data File

TDaction
TDexpectedResult

- Specify the directory to save the
Abstract Structure | Press Enter
- Data File and Abstract Structure saved

8 - Saving the Abstract
Structure and Data File p/
Informing the tool path

TDaction
TDexpectedResult

- Inform the launcher path of Jabuti or
EMMA
- Path informed

9 - Informing the tool path p/
Save the java class file
generated

TDaction
TDexpectedResult

- Press Enter in order to save java class
- Java class saved

10 - DecisionNode 2 p/ Save
project file .jbt

TDaction
TDexpectedResult

- Specify the directory where the
Jabuti.jbt file will be stored
- JaBUTi's GUI is launched

11 - Save project file .jbt p/
Test results

TDaction
TDexpectedResult

- Application will open on screen
- Tests results on screen

12 - Decision Node 2 p/ Test
results

TDaction
TDexpectedResult

- Application will open on screen
- Tests results on screen

13 - Decision Node 3 p/ XMI
File

TDaction
TDexpectedResult

- Press Y in order to run the tests again
- Console ready to export XML file

14 - Decision Node 3t p/ Final
State

TDaction
TDexpectedResult

- Press on Close
- Application is closed

Etapa 2 - Gerar arquivo XML dos modelos.

- Esta etapa consiste em exportar um arquivo no formato XMI. Portanto, clique no menu
“Tool” -> “XML Input & Output” -> “Save as XML Project”.

- Exporte para o arquivo Desktop salvando com o nome PLeTs.xml.
- Anote o horário em que terminou esta etapa.

Etapa 3 - Execução da ferramenta SPLiT-MBt Tool.

Esta etapa consiste em executar ferramenta SPLiT-MBt Tool, a qual foi desenvolvida
com base nos conceitos do método SPLiT-MBt. Portanto, execute a ferramenta
TestingTool.exe localizada no diretório: C:\....\Desktop__output\plets (ver as etapas das
figuras 2, 3 e 4)

Figura 7

Figura 8

Figura 4

Etapa 4 - Será automaticamente gerado o arquivo “Plan.xls”, o qual contém informações
dos casos de teste. Abra-o para visualizar estes casos de teste.

- Anote o horário em que terminou esta etapa.

158

159

APPENDIX J – EXPERIMENT GUIDE WITH CADET

Roteiro para Geração de Casos de Teste para SPLs - Abordagem
CADeT para gerar casos de teste.

Anote o horário em que iniciou esta etapa
Esta etapa consiste em mapear informações do diagrama de atividades da Figura 1

para uma tabela chamada “Tabela de Decisão”. O objetivo é que uma vez que a Tabela de
Decisão contém os dados de teste associados com as informações descritas no modelo, casos
de teste para testar SPLs podem ser gerados.

Etapa 1 - Teste de Performance
Portanto, complete a “Tabela de Decisão” conforme descrito a seguir: O diagrama de

atividades da Figura 1 possui informações de teste, as quais procedem de um identificador
especifico (Ex.: Action 2, ExpectedResult 2).

Os dados reais referentes a estes identificadores estão descritos na Tabela 1. Portanto,

preencha os dados da “Tabela de Decisão” (Tabela 2 - arquivo excel) associando os
identificadores do diagrama de atividades da Figura 1 com os valores reais descritos na Tabela
1.

Por exemplo, a célula que corresponde à linha 6 com a coluna ‘A’ da Tabela 2 que antes
possuia apenas o identificador Action 1 deverá conter o valor: (Req->Functionalities
Performance)Click on import XMI/XML file button. Enquanto a célula que corresponde a
linha 6 com a coluna ‘B’ da Tabela 2 que antes possuia apenas o identificador
TDexpectedResult 1 deverá conter o valor: File exported.

Para cada valor real de teste que substitui os identificadores Action e ExpectedResult,
considere a coluna C da Tabela de Decisão (arquivo excel) na mesma linha e marque com um
‘X’ se a atividade no diagrama de atividades NÂO possui a descrição “Kernel”.

Por exemplo, a primeira atividade do diagrama de atividades da Figura 1 possui o nome Kernel
Import XML, logo a célula C:6 da Tabela 2 NÃO deverá ser marcada com um ‘X’.

Figura 1

Tabela 1

Identificador Valores

TDaction 1
TDexpectedResult 1

- 1 (Req->Functionalities Performance)Click on import
XMI/XML file button
- File exported

TDaction 2
TDexpectedResult 2

- 2 Click on Generate ATC for HSI button
- Convert test data into generic test scenarios

TDaction 3
TDexpectedResult 3

- 3 Click on Generate ATC for DFS button
- Convert test data into generic test scenarios

TDaction 4
TDexpectedResult 4

- 4 Click on Generate ATC for W button
- Convert test data into generic test scenarios

TDaction 5
TDexpectedResult 5

- 5 Click on Generate ATC for WP button
- Convert test data into generic test scenarios

TDaction 6
TDexpectedResult 6

- 6 Click on Parameterization button
- Configure the data of parameterization

TDaction 7
TDexpectedResult 7

- 7 Click on Parameterization button
- Configure the data of parameterization

TDaction 8
TDexpectedResult 8

- 8 Click on Parameterization button
- Configure the data of parameterization

TDaction 9
TDexpectedResult 9

- 9 Click on Parameterization button
- Configure the data of parameterization

TDaction 10
TDexpectedResult 10

- 10 Click on Generate Scripts for Load Runner button
- LoadRunner script is generated

TDaction 11
TDexpectedResult 11

- 11 Click on Generate Scripts for Visual Studio button
- Visual Studio script is generated

TDaction 12
TDexpectedResult 12

- 12 Click on Generate Scripts for JMeter button
- JMeter script is generated

TDaction 13
TDexpectedResult 13

- 13 Click on Execute Test button
- Open Load Runner application to run the scripts generated

TDaction 14
TDexpectedResult 14

- 14 Click on Execute Test button
- Open Visual Studio application to run the scripts generated

TDaction 15
TDexpectedResult 15

- 15 Click on Execute Test button
- Open JMeter application to run the scripts generated

TDaction 16
TDexpectedResult 16

- 16 Click on Close button
- Application is closed

Tabela 2

Etapa 2 - Teste Funcional (clicar na aba “Functional” do arquivo excel)
Complete a “Tabela de Decisão” conforme descrito a seguir: O diagrama de atividades

da Figura 2 possui informações de teste, as quais procedem de um identificador especifico
(Ex.: Action 2, ExpectedResult 2).

Os dados reais referentes a estes identificadores estão descritos na Tabela 3. Portanto,

preencha os dados da “Tabela de Decisão” (Tabela 4 - arquivo excel) associando os
identificadores do diagrama de atividades da Figura 2 com os valores reais descritos na Tabela
3.

Por exemplo, a célula que corresponde a linha 6 com a coluna ‘A’ da Tabela 4 que antes
possuia apenas o identificador Action 1 deverá conter o valor: 1 (Req->Functionalities
Performance)Click on import XMI/XML file button. Enquanto a célula que corresponde a
linha 6 com a coluna ‘B’ da Tabela 4 que antes possuia apenas o identificador
TDexpectedResult 1 deverá conter o valor: File XML loaded.

Para cada valor real de teste que substitui os identificadores Action e ExpectedResult,
considere a coluna C da Tabela de Decisão (arquivo excel) na mesma linha e marque com um
‘X’ se a atividade no diagrama de atividades NÂO possui a descrição “Kernel”.

Por exemplo, a primeira atividade do diagrama de atividades da Figura 2 possui o nome Kernel
Load File XML, logo a célula C:6 da Tabela 2 NÃO deverá ser marcada com um ‘X’.

Figura 2

Tabela 3

Identificador Valores

TDaction 1
TDexpectedResult 1

- 1 (Req->Functionalities Functional.)Click on Load from XMI
File button, select file and click on open
- File XML loaded

TDaction 2
TDexpectedResult 2

- 2 Select the method of test sequences generation, HSI
- Method of test sequence generation HSI is selected

TDaction 3
TDexpectedResult 3

- 3 Select the method of test sequences generation, W
- Method of test sequence generation W is selected

TDaction 4
TDexpectedResult 4

- 4 Select the method of test sequences generation, Wp
- Method of test sequence generation Wp is selected

TDaction 5
TDexpectedResult 5

- 5 Click on generate test case from load test data button
- The abstract test case are generated using DFS method

TDaction 6
TDexpectedResult 6

- 6 Click on generate test case from load test data button
- The abstract test case are generated using HSI method

TDaction 7
TDexpectedResult 7

- 7 Click on generate test case from load test data button
- The abstract test case are generated using W method

TDaction 8
TDexpectedResult 8

- 8 Click on generate test case from load test data button
- The abstract test case are generated using Wp method

TDaction 9
TDexpectedResult 9

- 9 Click on generate test case from load test data button
- The abstract test case are generated using DFS method

TDaction 10
TDexpectedResult 10

- 10 Click on export file to Visual Studio
- File exported to Visual Studio

TDaction 11
TDexpectedResult 11

- 11 Click on export file to OATS
- File exported to OATS

TDaction 12
TDexpectedResult 12

- 12 Click on export file to MTM
- File exported to MTM

TDaction 13
TDexpectedResult 13

- 13 Script on JMeter saved
- File exported to JMeter

TDaction 14
TDexpectedResult 14

- 14 Select directory to save | Click on OK button
- Script on VS saved

TDaction 15
TDexpectedResult 15

- 15 Select directory to save | Click on OK button
- Script on OATS saved

TDaction 16
TDexpectedResult 16

- 16 Select directory to save | Click on OK button
- Script on MTM saved

TDaction 17
TDexpectedResult 17

- 17 Select directory to save | Click on OK button
- Script on JMeter saved

TDaction 18
TDexpectedResult 18

- 18 Click on Load File to be parsed | Select file | Click on Open
- File XML loaded

TDaction 19
TDexpectedResult 19

- 19 Choose between close the application or run the
application again
- Command chosen

TDaction 20
TDexpectedResult 20

- 20 Click on Close button to end the application
- Application is closed

Tabela 4

Etapa 3 - Teste Estrutural (clicar na aba “Structural” do arquivo excel)
Complete a “Tabela de Decisão” conforme descrito a seguir: O diagrama de atividades

da Figura 3 possui informações de teste, as quais procedem de um identificador especifico
destacado em vermelho (Ex.: Action 2, ExpectedResult 2).

Os dados reais referentes a estes identificadores estão descritos na Tabela 5. Portanto,

preencha os dados da “Tabela de Decisão” (Tabela 6) associando os identificadores do
diagrama de atividades da Figura 3 com os valores reais descritos na Tabela 5.

Por exemplo, a célula que corresponde a linha 6 com a coluna ‘A’ da Tabela 6 que antes
possuia apenas o identificador Action 1 deverá conter o valor: 1 Export XML file on Astah.

Enquanto a célula que corresponde a linha 6 com a coluna ‘B’ da Tabela 6 que antes possuia
apenas o identificador TDexpectedResult 1 deverá conter o valor: File XML exported.

Para cada valor real de teste que substitui os identificadores Action e ExpectedResult,
considere a coluna C da Tabela de Decisão (arquivo excel) na mesma linha e marque com um
‘X’ se a atividade no diagrama de atividades NÂO possui a descrição “Kernel”.

Por exemplo, a primeira atividade do diagrama de atividades da Figura 2 possui o nome Kernel
XMI File, logo a célula C:6 da Tabela 2 NÃO deverá ser marcada com um ‘X’.

Figura 3

Tabela 5

Identificador Valores

TDaction 1
TDexpectedResult 1

- 1 Export XML file on Astah
- File XML exported

TDaction 2
TDexpectedResult 2

- 2 Click on Jabuti application located on
“c:/PletsCoverageJabuti.exe” (Req->Specify the directory
where the Jabuti.jbt file will be stored)
- Jabuti application opened

TDaction 3
TDexpectedResult 3

- 3 Click on Emma application located on
“c:/PletsCoverageEmma.exe” (Ex->Specify the directory where
the Emma file will be stored)
- Emma application opened

TDaction 4
TDexpectedResult 4

- 4 Type the path of the XMI file on console
- File XMI loaded

TDaction 5
TDexpectedResult 5

- 5 Type the path of the XMI file on console
- File XMI loaded

TDaction 6
TDexpectedResult 6

- 6 Press Enter to Submit the file to a parser
- Information necessary extracted for generating a data
structure in memory

TDaction 7
TDexpectedResult 7

- 7 Specify the directory to save the Abstract Structure | Press
Enter
- Data File and Abstract Structure saved

TDaction 8
TDexpectedResult 8

- 8 Inform the launcher path of Jabuti or EMMA
- Path informed

TDaction 9
TDexpectedResult 9

- 9 Press Enter in order to save java class
- Java class saved

TDaction 10
TDexpectedResult 10

- 10 Specify the directory where the Jabuti.jbt file will be stored
- JaBUTi's GUI is launched

TDaction 11
TDexpectedResult 11

- 11 Application will open on screen
- Tests results on screen

TDaction 12
TDexpectedResult 12

- 12 Application will open on screen
- Tests results on screen

TDaction 13
TDexpectedResult 13

- 13 Press Y in order to run the tests again
- Console ready to export XML file

TDaction 14
TDexpectedResult 14

- 14 Press on Close
- Application is closed

Tabela 6

- Anote o horário em que terminou esta etapa

170

171

APPENDIX K – EXPERIMENT GUIDE WITH MTM

Roteiro para Geração de Casos de Teste para SPLs - Método sem
considerar reuso na geração de casos de teste

- Anote o horário de inicio desta atividade
Etapa 1 - Criar casos de teste de forma manual utilizando o Excel

Esta etapa consiste em gerar casos de teste para cada produto individualmente sem
considerar o reuso dos casos de teste. Este método corresponde ao modo tradicional de
geração de casos de teste para aplicações individuais. Para dar inicio a esta etapa, abra o
arquivo PlanPerf localizado no Desktop\Experimento. Em seguida, complete o arquivo em
questão conforme os dados presentes na Tabela 1.

Tabela 1
Test Step Action/Description Expected Results

1 Import XML

- (Req->Functionalities
Performance)Click on import
XMI/XML file button

File exported

2 Generate Abstract Test Case
-HSI

- Click on Generate ATC for HSI
button

Convert test data into generic
test scenarios

3 Parameterization

- Click on Parameterization
button

Configure the data of
parameterization

4 Generate Scripts - Load Runner

- Click on Generate Scripts for
Load Runner button

LoadRunner script is generated

5 Execute Test

Click on Execute Test button

Open Load Runner application
to run the scripts generated

6 Exit

- Click on Close button

Application is closed

1 Import XML

- (Req->Functionalities
Performance)Click on import
XMI/XML file button

File exported

2 Generate Abstract Test Case
-HSI

- Click on Generate ATC for HSI
button

Convert test data into generic
test scenarios

3 Parameterization

- Click on Parameterization
button

Configure the data of
parameterization

4 Generate Scripts - Visual Studio

- Click on Generate Scripts for
Visual Studio button

Visual Studio script is generated

5 Execute Test

Click on Execute Test button

Open Visual Studio application
to run the scripts generated

6 Exit

- Click on Close button

Application is closed

1 Import XML

- (Req->Functionalities
Performance)Click on import
XMI/XML file button

File exported

2 Generate Abstract Test Case
-HSI

- Click on Generate ATC for HSI
button

Convert test data into generic
test scenarios

3 Parameterization

- Click on Parameterization
button

Configure the data of
parameterization

4 Generate Scripts – Jmeter

- Click on Generate Scripts for
JMeter button

JMeter script is generated

5 Execute Test

Click on Execute Test button

Open JMeter application to run
the scripts generated

6 Exit

- Click on Close button

Application is closed

Em seguida, clique na aba GeneralTestCase Perf DFS e complete o arquivo em

questão conforme os dados presentes na Tabela 2:

Tabela 2
Test Step Action/Description Expected Results

1 Import XML

- (Req->Functionalities
Performance)Click on import
XMI/XML file button

File exported

2 Generate Abstract Test Case
-DFS

- Click on Generate ATC for DFS
button

Convert test data into generic
test scenarios

3 Parameterization

- Click on Parameterization
button

Configure the data of
parameterization

4 Generate Scripts - Load Runner

- Click on Generate Scripts for
Load Runner button

LoadRunner script is generated

5 Execute Test

Click on Execute Test button

Open Load Runner application
to run the scripts generated

6 Exit

- Click on Close button

Application is closed

1 Import XML

- (Req->Functionalities
Performance)Click on import
XMI/XML file button

File exported

2 Generate Abstract Test Case
-DFS

- Click on Generate ATC for DFS
button

Convert test data into generic
test scenarios

3 Parameterization

- Click on Parameterization
button

Configure the data of
parameterization

4 Generate Scripts - Visual Studio

- Click on Generate Scripts for
Visual Studio button

Visual Studio script is generated

5 Execute Test

Click on Execute Test button

Open Visual Studio application
to run the scripts generated

6 Exit

- Click on Close button

Application is closed

1 Import XML

- (Req->Functionalities
Performance)Click on import
XMI/XML file button

File exported

2 Generate Abstract Test Case
-DFS

- Click on Generate ATC for DFS
button

Convert test data into generic
test scenarios

3 Parameterization

- Click on Parameterization
button

Configure the data of
parameterization

4

Generate Scripts – Jmeter

- Click on Generate Scripts for
JMeter button

JMeter script is generated

5 Execute Test

Click on Execute Test button

Open JMeter application to run
the scripts generated

6 Exit

- Click on Close button

Application is closed

Em seguida, clique na aba GeneralTestCase Perf W e complete o arquivo em questão

conforme os dados presentes na Tabela 3:

Tabela 3
Test Step Action/Description Expected Results

1 Import XML

- (Req->Functionalities
Performance)Click on import
XMI/XML file button

File exported

2 Generate Abstract Test Case -W

- Click on Generate ATC for W
button

Convert test data into generic
test scenarios

3 Parameterization

- Click on Parameterization
button

Configure the data of
parameterization

4

Generate Scripts - Load Runner

LoadRunner script is generated

- Click on Generate Scripts for
Load Runner button

5 Execute Test

Click on Execute Test button

Open Load Runner application
to run the scripts generated

6 Exit

- Click on Close button

Application is closed

1 Import XML

- (Req->Functionalities
Performance)Click on import
XMI/XML file button

File exported

2 Generate Abstract Test Case -W

- Click on Generate ATC for W
button

Convert test data into generic
test scenarios

3 Parameterization

- Click on Parameterization
button

Configure the data of
parameterization

4 Generate Scripts - Visual Studio

- Click on Generate Scripts for
Visual Studio button

Visual Studio script is generated

5 Execute Test

Click on Execute Test button

Open Visual Studio application
to run the scripts generated

6 Exit

- Click on Close button

Application is closed

1 Import XML

- (Req->Functionalities
Performance)Click on import
XMI/XML file button

File exported

2 Generate Abstract Test Case -W Convert test data into generic

- Click on Generate ATC for W
button

test scenarios

3

Parameterization

- Click on Parameterization
button

Configure the data of
parameterization

4

Generate Scripts – Jmeter

- Click on Generate Scripts for
JMeter button

JMeter script is generated

5 Execute Test

Click on Execute Test button

Open JMeter application to run
the scripts generated

6 Exit

- Click on Close button

Application is closed

Em seguida, clique na aba GeneralTestCase Perf Wp e complete o arquivo em

questão conforme os dados presentes na Tabela 4:

Tabela 4
Test Step Action/Description Expected Results

1 Import XML

- (Req->Functionalities
Performance)Click on import
XMI/XML file button

File exported

2 Generate Abstract Test Case
-WP

- Click on Generate ATC for WP
button

Convert test data into generic
test scenarios

3 Parameterization

Configure the data of
parameterization

- Click on Parameterization
button

4

Generate Scripts - Load Runner

- Click on Generate Scripts for
Load Runner button

LoadRunner script is generated

5 Execute Test

Click on Execute Test button

Open Load Runner application
to run the scripts generated

6 Exit

- Click on Close button

Application is closed

1 Import XML

- (Req->Functionalities
Performance)Click on import
XMI/XML file button

File exported

2 Generate Abstract Test Case
-WP

- Click on Generate ATC for WP
button

Convert test data into generic
test scenarios

3 Parameterization

- Click on Parameterization
button

Configure the data of
parameterization

4 Generate Scripts - Visual Studio

- Click on Generate Scripts for
Visual Studio button

Visual Studio script is generated

5 Execute Test

Click on Execute Test button

Open Visual Studio application
to run the scripts generated

6

Exit

Application is closed

- Click on Close button

1 Import XML

- (Req->Functionalities
Performance)Click on import
XMI/XML file button

File exported

2 Generate Abstract Test Case
-WP

- Click on Generate ATC for WP
button

Convert test data into generic
test scenarios

3

Parameterization

- Click on Parameterization
button

Configure the data of
parameterization

4

Generate Scripts – Jmeter

- Click on Generate Scripts for
JMeter button

JMeter script is generated

5 Execute Test

Click on Execute Test button

Open JMeter application to run
the scripts generated

6 Exit

- Click on Close button

Application is closed

Nesta etapa abra o arquivo excel “PlanFunc”. Em seguida, clique na aba
GeneralTestCase Func HSI e complete o arquivo em questão conforme os dados presentes
na Tabela 5:

Tabela 5

Test Step Action/Description Expected Results

1 Load File XML

- (Req->Functionalities
Functional.)Click on Load from
XMI File button, select file and
click on open

File XML loaded

2 Choose HSI method

- Select the method of test
sequences generation, HSI

Method of test sequence
generation HSI is selected

3 Generate Test Case

- Click on generate test case
from load test data button

The abstract test case are
generated using HSI method

4 Export to Visual Studio

- Click on export file to Visual
Studio

File exported to Visual Studio

5 Save Scripts

- Select directory to save | Click
on OK button

Script on VS saved

6 Exit

- Choose between close the
application or run the
application again

Command chosen

7 Close

- Click on Close button to end
the application

Application is closed

1 Load File XML

- (Req->Functionalities
Functional.)Click on Load from
XMI File button, select file and
click on open

File XML loaded

2 Choose HSI method

- Select the method of test
sequences generation, HSI

Method of test sequence
generation HSI is selected

3 Generate Test Case

- Click on generate test case
from load test data button

The abstract test case are
generated using HSI method

4 Export to OATS

- Click on export file to OATS

File exported to OATS

5 Save Scripts

- Select directory to save | Click
on OK button

Script on OATS saved

6 Exit

- Choose between close the
application or run the
application again

Command chosen

7 Close

- Click on Close button to end
the application

Application is closed

1 Load File XML

- (Req->Functionalities
Functional.)Click on Load from
XMI File button, select file and
click on open

File XML loaded

2 Choose HSI method

- Select the method of test
sequences generation, HSI

Method of test sequence
generation HSI is selected

3 Generate Test Case

- Click on generate test case
from load test data button

The abstract test case are
generated using HSI method

4 Export to MTM

- Click on export file to MTM

File exported to MTM

5 Save Scripts

- Select directory to save | Click
on OK button

Script on MTM saved

6 Exit

- Choose between close the
application or run the
application again

Command chosen

7 Close

- Click on Close button to end
the application

Application is closed

1 Load File XML

- (Req->Functionalities
Functional.)Click on Load from
XMI File button, select file and
click on open

File XML loaded

2 Choose HSI method

- Select the method of test
sequences generation, HSI

Method of test sequence
generation HSI is selected

3 Generate Test Case

- Click on generate test case
from load test data button

The abstract test case are
generated using HSI method

4 Export to JMeter

- Click on export file to JMeter

File exported to JMeter

5

Save Scripts

Script on JMeter saved

- Select directory to save | Click
on OK button

6 Exit

- Choose between close the
application or run the
application again

Command chosen

7 Close

- Click on Close button to end
the application

Application is closed

Em seguida, clique na aba GeneralTestCase Func DFS e complete o arquivo em

questão conforme os dados presentes na Tabela 6:

Tabela 6
Test Step Action/Description Expected Results

1 Load File XML

- (Req->Functionalities
Functional.)Click on Load from
XMI File button, select file and
click on open

File XML loaded

2 Choose DFS method

- Select the method of test
sequences generation, DFS

Method of test sequence
generation DFS is selected

3 Generate Test Case

- Click on generate test case
from load test data button

The abstract test case are
generated using DFS method

4 Export to Visual Studio

- Click on export file to Visual
Studio

File exported to Visual Studio

5 Save Scripts

- Select directory to save | Click
on OK button

Script on VS saved

6 Exit

- Choose between close the
application or run the
application again

Command chosen

7 Close

- Click on Close button to end
the application

Application is closed

1

Load File XML

- (Req->Functionalities
Functional.)Click on Load from
XMI File button, select file and
click on open

File XML loaded

2 Choose DFS method

- Select the method of test
sequences generation, DFS

Method of test sequence
generation DFS is selected

3 Generate Test Case

- Click on generate test case
from load test data button

The abstract test case are
generated using DFS method

4 Export to OATS

- Click on export file to OATS

File exported to OATS

5 Save Scripts

- Select directory to save | Click
on OK button

Script on OATS saved

6 Exit

- Choose between close the

Command chosen

application or run the
application again

7 Close

- Click on Close button to end
the application

Application is closed

1 Load File XML

- (Req->Functionalities
Functional.)Click on Load from
XMI File button, select file and
click on open

File XML loaded

2 Choose DFS method

- Select the method of test
sequences generation, DFS

Method of test sequence
generation DFS is selected

3 Generate Test Case

- Click on generate test case
from load test data button

The abstract test case are
generated using DFS method

4 Export to MTM

- Click on export file to MTM

File exported to MTM

5 Save Scripts

- Select directory to save | Click
on OK button

Script on MTM saved

6 Exit

- Choose between close the
application or run the
application again

Command chosen

7 Close

- Click on Close button to end
the application

Application is closed

1 Load File XML

- (Req->Functionalities
Functional.)Click on Load from
XMI File button, select file and
click on open

File XML loaded

2 Choose DFS method

- Select the method of test
sequences generation, DFS

Method of test sequence
generation DFS is selected

3 Generate Test Case

- Click on generate test case
from load test data button

The abstract test case are
generated using DFS method

4 Export to JMeter

- Click on export file to JMeter

File exported to JMeter

5

Save Scripts

- Select directory to save | Click
on OK button

Script on JMeter saved

6 Exit

- Choose between close the
application or run the
application again

Command chosen

7 Close

- Click on Close button to end
the application

Application is closed

Em seguida, clique na aba GeneralTestCase Func W e complete o arquivo em questão

conforme os dados presentes na Tabela 7:

Tabela 7
Test Step Action/Description Expected Results

1 Load File XML

- (Req->Functionalities
Functional.)Click on Load from
XMI File button, select file and
click on open

File XML loaded

2 Choose W method

- Select the method of test
sequences generation, W

Method of test sequence
generation W is selected

3 Generate Test Case

- Click on generate test case
from load test data button

The abstract test case are
generated using W method

4 Export to Visual Studio

- Click on export file to Visual
Studio

File exported to Visual Studio

5 Save Scripts

- Select directory to save | Click
on OK button

Script on VS saved

6 Exit

- Choose between close the
application or run the
application again

Command chosen

7 Close

- Click on Close button to end
the application

Application is closed

1 Load File XML

- (Req->Functionalities
Functional.)Click on Load from
XMI File button, select file and
click on open

File XML loaded

2 Choose W method

- Select the method of test
sequences generation, W

Method of test sequence
generation W is selected

3 Generate Test Case

- Click on generate test case
from load test data button

The abstract test case are
generated using W method

4 Export to OATS

- Click on export file to OATS

File exported to OATS

5 Save Scripts

- Select directory to save | Click
on OK button

Script on OATS saved

6 Exit

- Choose between close the
application or run the
application again

Command chosen

7 Close

- Click on Close button to end
the application

Application is closed

1 Load File XML

- (Req->Functionalities
Functional.)Click on Load from
XMI File button, select file and
click on open

File XML loaded

2 Choose W method

- Select the method of test
sequences generation, W

Method of test sequence
generation W is selected

3 Generate Test Case

- Click on generate test case
from load test data button

The abstract test case are
generated using W method

4 Export to MTM

- Click on export file to MTM

File exported to MTM

5 Save Scripts

- Select directory to save | Click
on OK button

Script on MTM saved

6 Exit

- Choose between close the
application or run the
application again

Command chosen

7 Close

- Click on Close button to end
the application

Application is closed

1 Load File XML

- (Req->Functionalities
Functional.)Click on Load from
XMI File button, select file and
click on open

File XML loaded

2 Choose W method

- Select the method of test
sequences generation, W

Method of test sequence
generation W is selected

3 Generate Test Case

- Click on generate test case
from load test data button

The abstract test case are
generated using W method

4 Export to JMeter

- Click on export file to JMeter

File exported to JMeter

5 Save Scripts

- Select directory to save | Click
on OK button

Script on JMeter saved

6 Exit

- Choose between close the
application or run the
application again

Command chosen

7 Close

- Click on Close button to end
the application

Application is closed

Em seguida, clique na aba GeneralTestCase Func WP e complete o arquivo em

questão conforme os dados presentes na Tabela 8:

Tabela 8
Test Step Action/Description Expected Results

1 Load File XML

- (Req->Functionalities
Functional.)Click on Load from
XMI File button, select file and
click on open

File XML loaded

2 Choose WP method

- Select the method of test
sequences generation, WP

Method of test sequence
generation WP is selected

3 Generate Test Case

- Click on generate test case
from load test data button

The abstract test case are
generated using WP method

4 Export to Visual Studio

- Click on export file to Visual
Studio

File exported to Visual Studio

5 Save Scripts

- Select directory to save | Click
on OK button

Script on VS saved

6 Exit

- Choose between close the
application or run the
application again

Command chosen

7 Close

- Click on Close button to end
the application

Application is closed

1

Load File XML

- (Req->Functionalities
Functional.)Click on Load from
XMI File button, select file and
click on open

File XML loaded

2 Choose WP method

- Select the method of test
sequences generation, WP

Method of test sequence
generation WP is selected

3 Generate Test Case

- Click on generate test case
from load test data button

The abstract test case are
generated using WP method

4 Export to OATS

- Click on export file to OATS

File exported to OATS

5 Save Scripts

- Select directory to save | Click
on OK button

Script on OATS saved

6 Exit

- Choose between close the
application or run the
application again

Command chosen

7 Close

- Click on Close button to end
the application

Application is closed

1 Load File XML

- (Req->Functionalities
Functional.)Click on Load from
XMI File button, select file and
click on open

File XML loaded

2 Choose WP method

- Select the method of test
sequences generation, WP

Method of test sequence
generation WP is selected

3 Generate Test Case

- Click on generate test case
from load test data button

The abstract test case are
generated using WP method

4 Export to MTM

- Click on export file to MTM

File exported to MTM

5 Save Scripts

- Select directory to save | Click
on OK button

Script on MTM saved

6 Exit

- Choose between close the
application or run the
application again

Command chosen

7 Close

- Click on Close button to end
the application

Application is closed

1 Load File XML

- (Req->Functionalities
Functional.)Click on Load from
XMI File button, select file and
click on open

File XML loaded

2 Choose WP method

- Select the method of test
sequences generation, WP

Method of test sequence
generation WP is selected

3 Generate Test Case

- Click on generate test case
from load test data button

The abstract test case are
generated using WP method

4 Export to JMeter

- Click on export file to JMeter

File exported to JMeter

5

Save Scripts

- Select directory to save | Click
on OK button

Script on JMeter saved

6 Exit

- Choose between close the
application or run the
application again

Command chosen

7 Close

- Click on Close button to end
the application

Application is closed

- Anote o horário de término desta etapa

