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ORGANIZAÇÃO DE MEMÓRIA DISTRIBUÍDA COM SUPORTE À 

MIGRAÇAO DE DADOS PARA MPSOCS BASEADOS EM NOCS 

 

RESUMO 

O avanço da tecnologia de semicondutores possibilitou o desenvolvimento de 

sistemas intra-chip (SoCs) que integram, em um mesmo chip, diversos elementos de 

processamento (PEs) e módulos de memória. SoCs que possuem mais de um PE são 

denominados de sistemas intra-chip multiprocesados (MPSoCs).   

À medida que o número de PEs aumenta em um MPSoC, torna-se  necessário o uso 

de técnicas que resultem em um baixo consumo de energia, baixa latência na 

comunicação e escalabilidade. Em MPSoCs baseados em redes intra-chip, com blocos de 

memória compartilhada (cache L2), o aumento no número de PEs culmina no aumento da 

quantidade de acessos realizados a estes módulos. Isto torna a organização de memória 

um dos componentes mais críticos destes sistemas, tendo em vista que a mesma pode 

apresentar um alto consumo de energia e alta latência de resposta. Fatores como estes 

podem limitar o uso e a escalabilidade destes sistemas. 

Dentre os fatores que afetam o consumo de energia e a latência da organização de 

memória de um MPSoC estão: o protocolo de coerência de cache e o mapeamento dos 

dados de aplicações. Este trabalho propõe a utilização de uma organização de memória 

cache L1 que possui latência de acesso não uniforme, onde acessos realizados podem 

ser destinados a diferentes bancos de memória cache L2 (NUCA – non uniform cache 

access architecture). Além disso, o presente trabalho explora os serviços físicos providos 

pela rede intra-chip, tais como multicast e prioridades, para otimizar a implementação de 

um protocolo de coerência de cache baseado em diretório. Os resultados obtidos 

mostram uma redução média de 39% no consumo de energia de comunicação e 17% de 

latência em transações do protocolo de coerência quando explorando serviços físicos 

oferecidos pela rede intra-chip. 

Além disso, a fim de melhorar o posicionamento de dados de aplicações, é proposto 

um protocolo de migração de dados que posiciona os dados utilizados por uma região de 

PEs em um banco de memória cache L2 próximo. Com a utilização deste protocolo, é 

possível obter uma redução média de 29% no consumo de energia nos acessos à 

memória cache L2. 

 

Palavras Chave: MPSoCs baseados em NoC, Sub-sistema de Memória, Coerência de 

Cache, Migração de Dados. 



 

 

DISTRIBUTED MEMORY ORGANIZATION WITH SUPPORT FOR 

DATA MIGRATION FOR NOC-BASED MPSOCS 

 

ABSTRACT 

The evolution in the deployment of semiconductor technology has enabled the 

development of System-on-Chip (SoCs) that integrate several processing elements (PEs) 

and memory modules in a single chip. SoCs that integrate several PEs are referred as 

Multiprocessor System-on-Chip (MPSoCs).  

As the number of PEs increases in an MPSoC, techniques that present low energy 

consumption, low latency and scalability become necessary. In NoC-based MPsoCs that 

adopt the Shared Memory model in the L2 cache, as the number of PEs increases, the 

number of accesses to memory modules also increases. This makes memory organization 

one of the most critical components of the system because it can present high energy 

consumption and high latency. Such factors may limit the use and scalability of MPSoC 

systems. 

Among the factors that contribute to increase latency and energy consumption in 

memory organizations are: the cache coherence protocol and the mapping of application's 

data. This work proposes the use of a cache memory organization that presents non-

uniform access latency, where accesses to the L1 cache can target different L2 cache 

banks (NUCA – non uniform cache access architecture), as a function of the address 

being accessed. Additionally, this work proposes the exploration of the physical services 

provided by the network-on-chip, such as multicast and priorities, to optimize the 

implementation of a directory-based cache coherence protocol. The obtained results show 

an average reduction of 39% in communication energy consumption and 17% reduction in 

latency for transactions of the cache coherence protocol when exploring NoC services.  

To improve placement of application's data, a data migration protocol is proposed. 

The goal of the protocol is to approximate L2 cache blocks to PEs that are mostly 

accessing it, moving blocks to a closer L2 cache bank, if available. By using a data 

migration protocol, an average reduction of 29% was obtained in the energy consumption 

of cache accesses. 

 

Keywords: NoC-based MPSoCs, Memory subsystem, Cache Coherence, Data Migration.
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1 INTRODUCTION 

During the last decades, the field of embedded systems evolved significantly. Most of 

the evolution is based on the increase of the amount of transistors that can be placed at 

the same silicon surface. This evolution allowed modifications on the architecture of 

embedded systems, which evolved from discrete elements on a PCB (Printed Circuit 

Board) to SoCs (System on Chip). 

A SoC is an integrated circuit that implements most or all of the functions of a 

complete electronic system [JER05]. SoC designs are based on IP (Intellectual Property) 

modules integrated on silicon chips, as described by Gupta et al. [GUP97] and 

Bergamaschi et al. [BER01]. Gupta et al. [GUP97] define an IP as a pre-designed, pre-

verified hardware piece that can be used as a building block for large and complex 

applications on an Integrated Circuit (IC). The design of systems based on IPs reuse is an 

attempt to reduce the time-to-market, which is the time that a new product takes to enter 

the market. SoCs are usually denoted MPSoCs (Multiprocessor Systems on Chip) when 

constituted by more than one processing element (PE). According to [JER05] most SoCs 

are in fact MPSoCs because it is too difficult to design a complex SoC without making use 

of multiple PEs.  

1.1 MPSoCs  

The architecture of an MPSoC system is composed by a combination of: PEs, 

memory elements and a communication infrastructure. Considering processing, MPSoCs 

are classified in two classes: 

 Homogeneous: in this class all PEs of the MPSoC have the same architecture. 

The fact that all PEs have the same architecture facilitates task migration, for 

instance, because there is no need for translating the binary code of a given 

application to other architecture. Examples of homogeneous systems can be 

found in [SAI07][CAR09]; 

 Heterogeneous: in this class the architecture of at least one PE is different 

from the others. The advantage of this class is, for example, to develop real 

time systems. For instance, an MPSoC system can have an ARM processor 

for handling system tasks and a DSP processor for handling 3G signals. 

Examples of heterogeneous systems can be found in [MON08][LIM09]. 

Considering the communication infrastructure used to interconnect PEs and memory 

elements, three infrastructures are commonly employed in MPSoC: dedicated wires, 

shared busses and networks-on-chip (NoCs). 

Dedicated wires are effective for systems with a small number of cores, but the 

number of wires around the core increases as the number of PEs in the system grows. 
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Therefore, dedicated wires have poor reusability and flexibility. A shared bus is a set of 

wires common to multiple cores. This approach is more scalable and reusable, when 

compared to dedicated wires. However, busses allow only one communication transaction 

at a time, thus all cores share the same communication bandwidth in the system and 

scalability is limited to a few dozen of IP cores [KUM02]. Using separate busses 

interconnected by bridges or hierarchical bus architectures may reduce some of these 

constraints. Nonetheless, scalability remains a problem for hierarchical bus architectures.  

MPSoC designs are mostly based on Networks-on-Chip (NoCs) as they provide 

scalability, high bandwidth, energy efficiency, reliability, parallel communication and 

scalable design exploration space [MIL04]. A NoC is an on-chip network composed by 

switches, which are connected among themselves by communication channels.   

1.2 Memory system in MPSoCs 

According to [KAN05], one of the most critical components that determine the 

success of an MPSoC-based architecture is its memory system. This assertion is justified 

by the fact that applications might spend several cycles waiting for the conclusion of 

read/write memory operations. 

The technology employed to develop processing elements advances faster than that 

used in the development of memory components, which enables PEs to operate at higher 

frequencies. This disparity allows PEs to consume data at rates not possibly achieved by 

DRAM memories, creating a performance gap. To decrease this gap, a solution commonly 

applied in high-end microprocessors is the use of static memories and a memory 

hierarchy. In a hierarchy, several levels of memories are used to decrease average 

memory access latency. The main idea is to place faster but smaller memories closer to 

processors and slower but larger memories in further levels. The smaller memories 

contain a subset, which consists usually of the most accessed data from the data stored in 

the adjacent further level. In general-purpose systems, there usually exist four levels of 

memory: level 1 cache, level 2 cache, main memory and secondary memory. 

Cache memories can provide an acceptable data rate to feed the processor, 

maximizing the number of instructions that are executed in a certain period. Caches work 

as temporary, fast access memories that prevent the processors to stall while waiting for 

an instruction or data from main memory. Another interesting point in the use of caches is 

that they can reduce energy consumption, once memory accesses are local, avoiding 

transactions on a bus/network-on-chip that would be necessary to bring a block of data 

from main memory/secondary memory.  

In multiprocessor systems, the use of cache memories might give raise to the 

problem of cache incoherence, which refers to the consistency of data stored in local 
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caches of a shared resource. To avoid incoherence, a cache coherence protocol must be 

implemented. 

1.3 Data Migration in MPSoCs  

MPSoC systems tend to have hundreds of elements [ITR11]. As the system size 

increases, there is a need to develop mechanisms that optimize these systems in several 

aspects, such as: energy consumption, latency and resource allocation. To decrease 

energy consumption, techniques such as DFVS may be applied to decrease the energy 

consumption of PEs when they are executing low priority tasks or are idle. Also, in multiple 

memory bank systems, there is the possibility of migrating data from a bank to another to 

approximate them to the processors that are mostly accessing those data. Accesses done 

to the data after migration tend to consume less energy in communication and take less 

time as the distance between the memory bank and the PEs decreases.  

1.4 Goals 

The goals of the current work are divided in strategic and specific. As a strategic goal 

this work proposes solutions to optimize the use of distributed memory blocks in a NoC-

based MPSoC through the use of data migration technique. The use of data migration 

techniques in these systems brings two main benefits: smaller energy consumption in the 

communication infrastructure (NoC) and also decrease the traffic in certain areas of the 

MPSoC leading to a smaller probability of congestion.  

The specific goals of this work are: 

 Development of a memory controller for the HeMPS platform. This requires 

the development of a network interface for integrating the memory with the 

NoC. The memory controller stores data from applications and can be 

initialized at design time. 

 Development of a data cache controller and its integration with the PLASMA 

processor.  

 Development of a cache coherence protocol for the HeMPS platform,  

exploring the benefits (decrease in latency and energy consumption) that 

physical services, such as multicast and priorities, can provide to the 

implementation of the protocol.  

 Evaluate the implementation of the cache coherence protocol through the use 

of synthetic and real applications. 

 Development of parallel benchmarks for the HeMPS platform. The 

benchmarks allow the evaluation of the techniques and architectures 

proposed in the current work. 
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 Implementation of a cache API, at the application level, in the HeMPS 

microkernel, which allows applications to access the data cache. 

 Development of a data migration protocol for a NoC-based MPSoC. Evaluate 

the benefits related to energy consumption and latency of memory accesses 

when using the data migration protocol.  

1.5 Contributions 

The contributions of the current work include: 

 The development of a distributed memory hierarchy for NoC-based MPSoC 

(Chapter 4); 

 The development of an energy-efficient cache coherence protocol for NoC-

based MPSoCs (Chapter 5); 

 Development of a data migration protocol for NoC-based MPSoCs (Chapter 

6). 

1.6 Document Organization 

This document is organized as follows.  Chapter 2 presents the state of the art for 

three areas of NoC-based MPSoCs: memory organization; cache coherence protocols and 

data migration. Chapter 3 presents the MPSoC platform used as reference for the 

development of this work. Chapter 4 presents the cache controller developed for the 

HeMPS Platform. Chapter 5 presents an energy efficient cache coherence protocol for the 

platform described in Chapter 3. Chapter 6 presents the data migration protocol proposed 

to the HeMPS Platform. Chapter 7 presents results related to Chapters 4, 5 and 6. Finally, 

Chapter 8 presents conclusions and directions for future works. 
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2 RELATED WORKS 

This Chapter presents state-of-the-art works for 3 topics related to the memory 

architecture of NoC-based MPSoCs: memory organizations, cache-coherence protocols 

and data migration algorithms.  

2.1 Memory Organization 

Memory organization determines the structure, location and number of memory 

banks in the MPSoC architecture. The reviewed literature presents in its majority three 

types of memory organizations: centralized shared memory (CSM), distributed shared 

memory (DSM) and distributed memory (DM). In the CSM organization, there exists only 

one physical memory bank and a unique (global) address space. The memory bank is 

shared among all PEs of the system, and communication between PEs is done through a 

common region of memory. The problem presented by the CSM organization is scalability. 

As the number of PEs increases, the number of requests issued to the memory also 

increases [MAN10], which induces congestion on a given region of the NoC, resulting in 

unpredictable access latency. Very few works have been found in the literature using the 

CSM organization. Consequently, it is omitted in the next subsections.  

DSM [HEN03] is a memory organization that allows multiprocessors to support a 

single shared address space that is implemented with physically distributed memory. This 

organization is more scalable when compared to CSM, as the overall bandwidth of the 

memory is increased. Although, in case several PEs access the same memory address, 

one of the memory controllers will be overloaded.  

In a non-shared memory system, such as DM, each PE has a private memory, which 

is accessed exclusively by the PE it is associated with. Communication among PEs occurs 

through message-passing only.  

The next subsections present state-of-art works for DSM and hybrid organizations. In 

hybrid organizations, concepts of both shared and distributed organizations are applied to 

the memory organization.  

2.1.1 Distributed Shared Memory  

According to Kim et al. [KIM06] the higher latency presented by the routers in a NoC 

directly affects the way distributed shared memories are designed. To address the latency 

issue, the authors propose a switch architecture for providing low-latency for cache 

coherence operations on a distributed shared memory MPSoC platform. The authors 

denote the platform as DCOS, which stands for Directory Cache On a Switch. The 

platform is composed of a three-level memory hierarchy, where a private L1 cache, which 

stores data and instruction, constitutes the first level cache. The second level is a shared 
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L2 cache, which is a write-back cache with write-allocate. The third level memory is a 

shared memory that can be either located on-chip or off-chip.  

To address the cache coherence problem, a directory based MSI (modified-shared-

invalidate) protocol is used. To decrease latency of cache coherence operations, the 

authors propose the insertion of both Shared Memory directory and L2 cache directory 

cache inside the switch, as shown in Figure 1. The results show a substantial reduction of 

average read latency and execution time compared to a platform in which directory caches 

are not embedded into the switches. Although, according to the results presented by the 

authors an important decrease in execution time is obtained only when the directory 

contains 2048 entries. This may represent an important area overhead of the router, which 

is not evaluated in the work.   

 

Figure 1 – DCOS switch architecture proposed by [KIM06]. 

Yuang et al. [YUA08] discuss the implementation of a distributed shared memory and 

control mechanisms, such as synchronization and consistency model, for a NoC-based 

MPSoC. There are two types of nodes in the system: master and slave. Master nodes, 

shown in Figure 2, contain: a microprocessor, a network interface, and a private memory 

that stores local data and instructions. All these modules are attached to a local bus. Slave 

nodes may be used for storing shared data and for inter-processor communication. Slave 

nodes contain: a shared memory, a semaphore memory and a network interface. The 

semaphore memory has two main purposes: synchronize inter-processor communication 

and control memory consistency, which corresponds to handling of memory accesses and 
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in order execution of the accesses. To ensure synchronization in memory accesses, a lock 

mechanism is employed. To ensure memory consistency, a write with response scheme 

(ACKs) is provided. To evaluate performance of the implemented memory system, the 

authors simulated the execution of two applications (FFT and Matrix Pipeline) on a 

SystemC cycle accurate NoC Platform simulator. The results show a speed up of three 

when the size of processed data increases. The authors do not provide execution time and 

energy consumption for applications. 

 

Figure 2 – Distributed Shared Memory architecture proposed by [YUA08]. 

Man et. al [MAN10] discuss the problems of using a unique, centralized Memory 

Management Unit (MMU), shared by PEs in a NoC-based Chip Multiprocessor (CMP). 

According to the authors, as the number of PEs increases, the number of memory 

references also tends to increase. Consequently, the sequential structure of a centralized 

MMU can become the bottleneck of the system. To tackle this problem, a distributed MMU 

is proposed. Distributed MMU scheme takes several MMUs as resources on the NoC to 

handle memory access requests. According to the authors, with a proper number of MMUs 

and reasonable network placement of these modules, both memory bandwidth 

requirements and NoC communication traffic may be decreased. In the design proposed 

by [MAN10], PEs are grouped into a Translation-Sharing Partition (TSP) that contains a 

MMU responsible for handling requests of PEs belonging to that partition. Figure 3 shows 

an example of a 5x5 2D mesh NoC having 3 TSPs and 4 MMUs. 

The authors in [MAN10] conducted simulations to evaluate throughput and delay in a 

5x5 mesh network as a function of different number and distribution of MMU nodes. The 

traffic generated on the experiments was synthetic and based on a Poisson distribution.  

Results showed that the increase of MMU nodes decreases the delay of PE nodes 

significantly. Therefore, it is possible to conclude that network latency of distributed MMU 

is very sensitive to the size of TSPs and number of MMUs.  
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Figure 3 – NoC view of TSP partitions and positioning of MMU and PE nodes. 

Monchiero et al. [MON06] present a NoC-based MPSoC platform, modeled at the 

GRAPES Plataform [MON08]. The platform is composed of ARM7 PEs, memory elements, 

memory and interrupt controllers, as shown in Figure 4. Each PE has a L1 data and 

instruction cache. Memory elements can be of two types: shared memory banks or a L2 

cache, centralized in a unique node connected to the NoC. To access one of the shared 

banks, a given PE must send a request to a HW Memory Management Unit (HWMMU) 

that is responsible for managing shared memory access. The operations supported by 

HWMMU are: memory allocation (MMU_MALLOC); memory release (MMU_FREE); copy 

and move. 

The authors performed experiments to evaluate latency and energy consumption at 

the GRAPES Platform executing a set of applications from SPLASH-2 and PARMACS 

benchmarks. Different scenarios where tested by varying parameters of memory 

architecture (number of shared memory banks) and NoC topology (ring, spidergon and 

mesh). The results showed that a decrease in latency is obtained when there is an 

increase on the number of shared memory banks. Although, when there are more than 

four memory banks the communication cost overcomes the gains of having more memory 

banks. According to the authors, latency reduction is obtained due to the decrease on the 

memory contention and decrease of transactions on the network. Among the three NoC 

topologies evaluated (mesh, spidergon and ring), mesh presented the shortest execution 

time.  
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Figure 4 – Multiprocessor architecture proposed by [MON06]. 

Silva et al. [SIL09] present an evaluation of four different memory organizations for a 

NoC-based MPSoC to compare their performance and energy efficiency. The evaluated 

organizations are: (i) a distributed memory that includes processors with local private 

memories; (ii) a shared memory accessed by all processors; (iii) a distributed shared 

memory; (iv) a physically shared but logically distributed memory (nDMA). The 

experiments conducted by the authors evaluate the behavior of the four memory 

organizations when the traffic on the network increases, what induces higher packet 

latency. Results showed that for applications with high communication demands, the 

distributed memory organization presents the highest tolerance to communication latency. 

Although, applications with low communication workload this organization seems to suffer 

more than others due to network latency. Regarding performance, the nDMA memory 

shows the smallest variation of performance reduction (22% to 33%) when NoC traffic 

increases from 10% to 20%.  

2.1.2 Hybrid organizations 

Tota et al. [TOT10] present the MEDEA framework, which consists of a configurable 

NoC-based MPSoC modeled in SystemC. This framework supports two programming 

models: shared memory and message passing. Instructions fetch and load/store 

operations adhere to the standard shared memory model whereas synchronization and 

data exchange among cores may occur, for performance or cost reasons, by means of 

explicit low-latency message passing technique. The system is composed of three basic 
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elements: a NoC, RISC-like PEs and the Multiprocessor Memory Management Unit 

(MPMMU) that interfaces an external DDR memory. The NoC has a torus topology and 

implements a deflection-routing (Hot Potato) algorithm that allows each flit to be routed 

independently. Each PE consists of a configurable Tensilica XtensaLX, which was used to 

implement the MPI message passing interface. The MPMMU is a special processor that 

handles shared-memory transactions (reads/writes). The global shared-memory is divided 

into two logic segments: shared and private area. Each core has a private segment and 

can access the shared segment through the use of a lock mechanism. Experiments were 

conducted by the authors using the use of the Jacobi algorithm. The authors reached the 

conclusion that the hybrid approach scales better and uses silicon area for additional cores 

instances in a more efficient way compared to a standard shared memory approach. 

2.1.3 Memory organizations comparison 

Table 1 shows a comparison of the reviewed works in memory organizations 

considering four topics. Most works adopt a 2D Mesh NoC. Only one of the reviewed 

works ([MON06]) evaluates the impact of the NoC topology in the memory performance. 

Most works consider the evaluation of the proposed platform in SystemC or higher-level 

simulation platforms. Although high-level models accelerate implementation, they do not 

provide high accuracy. It is also possible to notice that most works do not evaluate the 

energy consumption considering the placement of the memory in the MPSoC, and neither 

evaluate the cost of transactions on the network. This work proposes the exploration of 

DSM organization, modeled in synthesizable VHDL, where L2 data cache banks 

characterize the shared memory.   

2.2 Cache coherence protocols for NoC-based MPSoCs 

The use of cache memories in multiprocessor systems may raise the cache 

coherence problem. This problem occurs when PEs have local copies from a shared 

resource, such as a shared memory, which is modified by other PEs. In this way, local 

copies may become inconsistent. If any modification is done locally to a cached copy of 

the shared resource, changes must be propagated to other caches; otherwise PEs might 

process inconsistent data. To avoid this problem, there are two possible solutions: do not 

allow caching of shared data or implement a cache coherence protocol. MPSoC systems 

are mostly designed for parallel applications. In these applications, some data are shared 

between several PEs, and communication may occur through accessing a common region 

of memory. Additionally, applications that perform a significant amount of communication 

may suffer from NoC latency [TOT10]. In these cases, the use of shared memories and 

cache coherence protocols may help decreasing the communication overhead between 

PEs.  
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Table 1 - Comparison of the reviewed works considering memory organization. 

Memory Organizations for NoC-based MPSoCs 

Author 
NoC 

topology 
Memory 

Organization 

Modeling 
Level / 

Simulator 
Goal 

[KIM06] 2D Mesh 
L1 and L2 + 

Shared Memory 
banks 

RSIM 
Simulator 

Decrease latency of the cache 
coherence protocol 

[YUA08] 2D Mesh 
SM banks + 
semaphore 

memory 
SystemC 

Explore Synchronization and 
Memory consistency 

[MAN10] 2D Mesh 
Distributed MMU 

(Memory 
Management Unit) 

- 
Evaluate the placement of 

MMUs 

[MON06] 
Ring, 

spidergon, 2D 
Mesh 

L1 and L2 + SM 
banks 

Grapes 
Platform 

Implement a HWMMU 

[SIL09] 2D Mesh 
4 types: SM, 

DSM, nDMA and 
private memory 

SystemC 
Evaluate memory performance 

under latency 

[TOT10] Torus L1 + L2 
RTL and 
SystemC 

Explore a hybrid architecture 

This work 2D Mesh L1 + L2 RTL 
Evaluate DSM and allow data 

migration algorithm 

 

Cache coherence protocols can roughly be classified in two classes: software-based 

protocols and hardware-based protocols. Hardware protocols include snoopy-based 

protocols, which are not appropriate for NoC-based MPSoCs, as they require that all 

accesses to the memory must be visible for all memory banks and PEs of the system. 

Global visibility is very efficient for busses, but NoCs are composed of segmented links 

interconnected through routers. To provide global visibility all memory accesses need to 

be broadcasted to all processors, considerably increasing the amount of traffic in the NoC. 

In addition, according to the energy model proposed by Hu et al. [HU03], the amount of 

traffic in the NoC causes an increase in the energy consumption of the NoC.  

Directory-based protocols are another type of hardware protocol. In such protocols, 

before modifying a given block of the memory, PEs must access a centralizing point, the 

directory, to obtain the status of the block. According to the status, invalidation/update 

messages are sent to guarantee system coherence. Directory-based protocols are more 

attractive for NoC-based MPSoCs as they do not require global visibility for all memory 

accesses.  
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Software-based protocols, usually, rely on explicit synchronization, and do not ensure 

cache coherence on the granularity of individual memory accesses, but on groups of 

memory accesses. Additionally, software protocols rely on the use of compiled-time 

information to predict run-time behavior. The performance of such protocols is significantly 

degraded when predicted hits do not happen at runtime [ADV91].  

Yuang et al. [YUA08] proposes a hierarchical cluster based cache coherence 

protocol for large-scale NoC-based shared memory architectures. The nodes of the NoC 

are grouped into units named clusters. Each cluster consists of a group of L1 cache banks 

and one L2 cache bank, which is named HEAD and contains a local directory. The HEAD 

node is located at a NoC router that has the average minimum distance to all members of 

the cluster.  Figure 5(b) shows a 5x5 mesh NoC, where each circle comprises a cluster. 

The HEAD of each cluster is painted in black. The shared memory is located off-chip and 

maintains the global directory, as shown in Figure 5(a). Cache coherence is enforced 

hierarchically. Similarly to the directory-based cache coherence protocol, the global 

directory is a flat, full-map directory, which stores the status of each block. The difference 

is that instead of keeping which PEs have copies of the blocks, the global directory keeps 

which clusters have a copy of each block. Intra-cluster, the local directory stores which 

nodes of the cluster (L1 caches) contain a copy of each block.  

The advantages of using such protocol for enforcing coherence on the platform is the 

reduction on the number of hops traversed by messages of the coherence protocol 

(Longest Manhattan Distance and Long Distance Travel). Another advantage is the 

reduction on the space required for storing the directory. A disadvantage of the clustered 

approach is that each application must be mapped onto a single cluster, which is not 

always possible, what can degrade performance significantly. 

 

Figure 5 – In the left, it is shown the architecture of the HEAD node. In the right, each 

circle comprises a cluster region [YUA08]. 

Jhalani et. al [JHA11] propose the inclusion of a data pattern, called migratory data, 

to the directory-based cache coherence protocol to make the protocol adaptive. Migratory 

data is a data pattern exhibited by parallel programs where blocks move between PEs and 

at each PE the block is in exclusive state, which means that each PE tries to write on the 

block. To detect that a block follows the migratory pattern, one of the following conditions 
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must arrive: (i) at the time of a write-hit, a block appears in shared state with exactly two 

cached copies and the processor currently requesting the invalidation operation is not the 

same which requested invalidation previously; (ii) at the time of a write-miss, there is only 

one copy of this block and it is modified. 

By detecting that a given block is migratory, the protocol used to maintain its 

coherence is the adaptive cache coherence protocol, otherwise a regular version of the 

invalidate protocol is used. The adaptive protocol reduces execution time of applications 

and reduces the traffic generated on the NoC by the cache coherence protocol. To 

evaluate the protocol, experiments were conducted with the use of the RSIM simulator, 

with sizes of 32KB (2-way associative) for L1 cache and 1MB (4-way associative) for L2 

cache, both having block sizes of 32 bytes. Five SPLASH benchmarks were simulated. 

The results showed that the adaptive protocol performed better in some benchmarks, but 

worse in others compared to the regular MESI protocol.   

Jerger et al. [JER08b] proposes a method for cache coherence in multicore 

architectures, named Virtual Tree Coherence (VTC). It is based on a virtual ordered 

interconnection tree, which keeps a history of nodes sharing a common region of memory. 

Figure 6 shows the architecture of each node. For each region, a virtual tree of the nodes 

that shared that region is created. The routers used information stored in the VTC Table 

(Figure 6) to obtain information about the virtual trees and their members. Every time a 

given region is accessed by one of the nodes, a request is sent to the root of the tree, 

which in turn, requests the data to the node holding the most updated copy of it. This 

request is done through a multicast message traversing the tree. 

 The implementation of the multicast according to the tree topology decreases 

latency when compared to unicast-based implementations. The authors compare their 

implementation to a directory-based implementation and to another implementation based 

on a greedy algorithm. Results show a performance improvement of 25% of this 

implementation over the directory-based one and 11% over the greedy one.  

 

Figure 6 – PE architecture with L2 cache and VTC modules [JER05]. 

Chtioui et al.  
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[CHT09] present the development of a dynamic hybrid cache coherence protocol for 

shared-memory NoC-based MPSoCs shown in Figure 7. According to the authors, existing 

regular protocols such as invalidation and update, do not take into account the patterns of 

data accesses performed by applications during runtime, leading to unnecessary 

operations of update/invalidate on a given block. This might affect the amount of traffic on 

the NoC (e.g. generated by unnecessary update operations) and, consequently, increase 

the energy consumption. In response to that, the authors propose a protocol based on the 

traditional directory-based protocol that adapts itself to the way in which the data is used, 

alternating between an update to invalidate protocol and vice-versa. It is considered as 

dynamic because the threshold value that determines if the protocol should be alternated 

changes during runtime. Operations of the cache coherence protocol are transmitted to 

PEs through the use of a dedicated bus, as shown in Figure 7. 

 

Figure 7 – NoC-based MPSoC architecture with an exclusive bus for cache coherence 

transactions [CTH09]. 

The experiments were conducted with the use of the SoCLib platform running two 

benchmarks: Fast Fourier Transform and matrix multiplication. The simulated architecture 

is composed by MIPS R3000 processors, containing I-Cache and D-Cache, two banks of 

shared memory, one for instruction and the other for data. All modules are connected to a 

crossbar NoC through a VCI interface. Results show that the most significant gain of the 

hybrid protocol is the reduction on energy consumption when compared to regular 

invalidate and update protocols. Also, the hybrid protocol reduces both cache misses, 

compared to invalidation protocol, and unnecessary updates, compared to update 

protocol. The use of a dedicated bus to cache coherence operations affects the scalability 

of the system.  

Petrot et al. [PET06] present research for the problems of cache coherency and 

memory consistency in NoC-based shared-memory MPSoCs. According to the authors, in 
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SoC architectures, software-oriented cache coherence protocols provide the best trade-off 

between complexity and performance as they incur no hardware cost at all. The software-

solution used in [PET06] makes shared data uncached and local, non-shared data, 

cached. Each application is written as a set of POSIX threads. The memory is partitioned 

into two types of segments: local segments, which store private data for each processor 

and shared segments, which store shared variables such as communication buffers. 

Memory consistency is guaranteed with the use of the release consistency model. The 

experiments conducted by the authors compare the proposed solution to a fully uncached 

solution. The results show a performance improvement of a factor of 3, versus the fully 

uncached solution when running a Motion-JPEG decoder for 48x48 pixels movies of 24 

images. Another software solution for a cache coherence protocol in MPSoCs is presented 

by Ophelders et. al [OPH09].  

Most of the works of the state of the art, shown in Table 2, adopt a shared memory 

organization and the platform evaluated is usually modeled in high abstraction levels. 

Some works propose the use of traditional protocols for NoC-based MPSoCs, such as the 

directory-based protocol. Most NoC-based MPSoCs designs including a memory hierarchy 

do not explore the services offered by NoCs to improve performance, using the NoC as 

simple bus. An exception to this remark is the work of [JER08a] which proposes a protocol 

based on trees implemented in the NoC. Several NoCs implement multicast messages at 

the physical level [JER08a][CAR08]. The use of multicast messages by cache-coherence 

protocols has several advantages, as the reduction on the number of cycles required to 

perform write-invalidate operations, as well as to reduce the traffic generated by these 

protocols on the NoC. 

 

Table 2 - Reviewed works in cache coherence protocol for NoC-based MPSoCs. 

Cache-Coherence Protocol in NoC-based MPSoCs 

Authors Abstraction Level Memory 
Organization 

Cache-Coherence Mechanism 

[YUA08] SystemC 
Distributed Shared 

Memory 
Atomic writes 

[JHA11] RSIM Simulator Shared Memory Adaptive directory-based 

[JER08a] PHARMsim - Virtual tree coherence 

 

[CHT09] 
SystemC (SoCLib) Shared Memory 

Dynamic Hybrid Cache 
Coherence based on a shared 

directory 

[PET06] 
Cycle Accurate 

Level 
Shared Memory 

Shared data is not cached 
avoiding the need for a 
coherence mechanism 

This work RTL 
Distributed Shared 

Memory 
Multicast optimized directory-

based cache coherence 
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2.3 Data Migration Algorithms 

Wire delays play an important role in cache design [BEC04]. As semiconductor 

technology advances the number of cycles required to transmit data in the chip increases. 

Therefore, wire latency increases fast. To reduce this latency in cache design, designers 

have split L2 caches into several cache banks. Such architectures are named NUCA (Non 

Uniform Cache Access) and have varying access latency. Latency is a function of the 

distance between the processor requesting data and the cache bank that will provide the 

data.   

Some of the key design points of data migration algorithms include:  

 when the migration occurs, which directly influences the way that cache 

accesses are accounted;  

 the granularity of the migration, for instance an algorithm could migrate one or 

more blocks of a cache at once;  

 which bank (target) will receive the migrating block once  detected that the 

migration should occur;  

 how blocks are retrieved in the system before and after migration (search 

algorithm).  

Beckmann et al. [BEC04] argue that block migration is less effective for CMPs (chip 

multiprocessors) because 40-60% of L2 cache hits in commercial workloads are satisfied 

in central banks, which are equally far from all processors. Based on this assumption, the 

Authors propose a combined solution which uses a data migration protocol combined with 

optimized layout techniques. The main goal of their work is to optimize performance. In our 

work, we consider MPSoC applications, which may not present the same pattern that is 

present in commercial workloads. Additionally, the main focus of our work, which is not 

addressed by [BEC04], is the energy consumption of cache accesses.  

Nafziger et. al. [NAF10] discuss the cache access latency problem in NoC-based 

systems as the number of PEs increases. According to the authors, methods proposed in 

the literature do not consider massively parallel architectures, with hundreds of cores, and 

also do not take into consideration the dynamic patterns of accesses to caches. According 

to [NAF10], three factors must be considered to reduce latency in cache accesses: NoC 

layout; data migration algorithm; and future access prediction. The layout adopted by the 

authors is a hybrid layout in which a cluster of PEs is connected to a L2 cache bank 

through a bus, shown in Figure 8. The L2 cache banks are connected to a 2D mesh 

network. The system is composed by a varying number of clusters. Data are migrated 

between L2 cache banks according to the Directional Migration Algorithm (DMA). In this 

approach, a block is migrated from a bank to its neighbor bank that is one hop closer to 

the PEs accessing it. To avoid unnecessary migrations, it only occurs once the number of 
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accesses done by a cluster of PEs reaches a threshold of 4 accesses. Additionally, an 

algorithm called Active Neighbor Migration is implemented on top of DMA to migrate 

blocks that will be likely accessed in the future by a group of PEs. A problem in this 

approach is that applications may not be entirely mapped into a cluster. This may cause 

the problem of migrating a cache block several times between cache banks due to data 

sharing between two tasks of the same application.  

 

Figure 8 – Cluster architecture proposed by Nafziger et al. [NAF10]. 

Eisley et al. [EIS08] propose the use of data cache migration to reduce off-chip 

memory access. Every time a block is evicted from L1 cache, a migration algorithm uses 

information embedded in the routers of the NoC to steer the migrating cache blocks 

towards underutilized L2 caches. The information present in the routers (Score Table in 

Figure 9) is updated periodically from immediate neighbors and is based on estimates of 

L2 cache utilization in a particular direction. The authors justify this action by saying that 

evicted blocks probably will be used in the near future. In this way, a cache miss is 

avoided. The problem with this approach is that as any L2 cache is eligible for receiving an 

evicted cache block, evicted blocks may interfere in the performance of other applications. 

Kandemir et al. [KAN05] models the optimal data placement in the L2 cache space 

problem as a two dimensional post-office placement problem. For each cache block that is 

shared by more than one PE, the location of the PEs and the number of times that each 

has accessed the block (weight) are used to calculate an approximate optimal placement 

for the data. The main goal of finding the proper location to a given cache block is to 

decrease the number of migrations that are required to place a given block in its proper 

location. The problem with this approach is the additional complexity for finding the optimal 

location for each block, which can incur additional area overhead. Although, preventing 

several unnecessary data migrations may help reducing energy consumption. 
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Figure 9 – Router architecture proposed by Eisley et. al [EIS08] to guide evicted blocks to 
unused cache blocks. 

2.3.1 Static and Dynamic NUCA 

NUCA architectures are sub-divided in two categories: S-NUCA and D-NUCA. In S-

NUCA architectures, blocks are mapped to a given cache bank based on its address. The 

blocks are not moved between cache banks. In D-NUCA cache architectures, a block may 

be migrated to other banks towards processors that mostly access it, reducing dynamic 

energy consumption and latency. Despite the benefits of migration, one of the main 

challenges of D-NUCA cache architectures is to implement an energy-efficient and low 

latency mechanism to search for a block. It is necessary because as the blocks can 

migrate from one bank to another, it is not possible to determine the location of a block 

based only on its address, such as in an S-NUCA. 

 [LIR11] proposes a search algorithm named HK-NUCA for D-NUCA cache 

architectures. The algorithm has three stages to find a block in the L2 NUCA cache and is 

activated after a miss occurs in the first level cache. In the first stage, the cache controller 

of the requesting core accesses the closest NUCA bank; in the second stage, the home 

bank is accessed. The home bank corresponds to the bank determined by the bank bits of 

the address being accessed; and in the third stage, parallel accesses are sent to all banks 

that possibly hold the block. In case none of the stages finds the block, a miss request is 

sent to the upper-level memory.  

2.3.2 Data Migration Methods Comparison 

Table 3 shows a summary of the reviewed works on data migration. Most works 

adopt gradual migration based on the directional migration algorithm that migrates a cache 

block towards the PEs that mostly accesses it gradually. None of the reviewed works 
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adopts as the target platform NoC-based MPSoC. Additionally, most of the solutions only 

optimize the latency accesses, but do not consider the energy consumption. As one of the 

main goals of MPSoC designs is to consume low energy, our work proposes a data 

migration protocol whose main goal is to reduce energy consumption after performing a 

data migration. 

 

Table 3 - Summary of the reviewed for data migration protocols. 

Data Migration Protocol  
Authors Migration Algorithm Goal Platform Communication 

Infrastructure 

[BEC04] Direction Migration 
Algorithm   

Optimize performance CMP 2D Mesh NoC 

[NAF10] Direction Migration 
Algorithm  + Prediction 

based Migration 

Reduce cache access 
latency 

CMP 2D Mesh NoC 
between routers 
/ Bus between 

PEs 

[EIS08] Directional Migration 
guided by usage 

information 

Reduce off-chip memory 
accesses 

CMP 2D Mesh NoC 

[KAN05] Gradual Migration 
Algorithm 

Decrease the number of 
necessary migrations 

CMP 2D Mesh NoC 

This Work Region based migration Decrease energy 
consumption  

MPSoC 2D Mesh NoC 

 

2.4 General evaluation of the state of the art 

Most papers consider the modeling of the platform in cycle-accurate level or higher-

levels of abstraction. Although these models require less effort and allow faster simulation, 

the RTL level still must be considered. The RTL level is necessary because some 

problems, concerning either the memory architecture or the traffic generated on the NoC 

are only observable at this level or at lower abstraction levels. Common examples of these 

problems are: congestion, burstiness and jitter.  

In this work, we propose a distributed shared memory architecture, with support to 

data migration and cache coherence, implemented in an RTL NoC-based MPSoC.  
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3 HEMPS-Q PLATFORM 

The HeMPS-Q Platform, developed in the scope of Carara’s Thesis [CAR11] (Figure 

10), is a homogeneous MPSoC in which PEs are interconnected through a Network-on-

Chip (NoC) named Hermes QoS. Each PE contains a RISC microprocessor, a local 

(scratch pad) memory, a DMA controller and a Network Interface (NI). These modules are 

wrapped by the Plasma-IP module, which is then connected to the NoC. The next sections 

detail each of these modules. Section 3.6 presents the microkernel responsible for 

managing task allocation/execution and communication on the system. Concluding this 

Chapter, Section 3.8 presents the HeMPS Generator framework, which allows automatic 

generation of a parameterized architecture at RTL level. The user can manually configure 

platform parameters, such as NoC size, memory size and number of memory pages. 
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Figure 10 – HeMPS-Q platform architecture. 

There are two types of Plasma-IPs: slaves (SL) and master (MP). Plasma-IP SLs are 

responsible for executing application tasks. Plasma-IP MP is responsible for managing 

task mapping and system debug. The external memory, named task repository, contain all 

application tasks. According to some mapping heuristic, the Plasma-IP MP maps the tasks 

into the Plasma-IP SLs.  The Plasma-IP MP can also receive debug messages from 

Plasma-IP SLs, transmitting them to an external host through an Ethernet interface (not 

shown in Figure 10). 

3.1 Hermes QoS 

The Hermes QoS enhances the original Hermes NoC proposed in [MOR04] providing 

support to Quality of Service (QoS). Hermes QoS adopts a bi-dimensional (2D) mesh 

topology, Hamiltonian routing algorithm, replicated physical channels and a priority 

scheme to transmit packets. Two features of the Hermes QoS are important to support the 

implementation of the cache coherence protocol and data migration protocol: Hamiltonian 

routing and priorities. 
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3.1.1 Hamiltonian routing 

According to [HAR72], it is possible to define several Hamiltonian paths on a bi-

dimensional mesh by labeling the routers from 0 to N-1, being N the number of routers, as 

shown in Figure 11. A Hamiltonian path is a path through which it is possible to traverse all 

nodes of a graph passing only once for each node. After defining the Hamiltonian paths, 

the network can be divided into two disjoint and acyclic sub-networks, as defined by the 

dual-path algorithm. One sub-network contains ascending paths that go from the smallest 

label router to the highest label router and the other contains descending paths that go 

from the highest label router to the smallest label router. Thus, packets sent from a router 

labeled 0 targeting a router labeled 3 will take the ascending path. Figure 11 shows a 

network with 16 routers, labeled from 0 to 15, having two disjoint networks. Ascending 

packets are sent using the network depicted by the lines, whilst descending packets are 

sent using the network depicted by the dotted lines.  

7 6 5 4

0 1 2 3

15 14 13 12

8 9 10 11

 

Figure 11 - Example of label assignment based on a Hamiltonian path in a 4x4 mesh. 

Hamiltonian paths provide a good support for implementing efficient 

multicast/broadcast algorithms [CAR08]. Multicast messages may be used in the 

implementation of cache coherence protocols to optimize invalidation messages that target 

several PEs caching a given block. Without multicast, an invalidation message would have 

to be sent individually to all processors in the system, increasing the number of 

transactions in the network, as well as energy consumption and congestion. Thus, it is 

possible to assert that the interconnection mean plays an important role on the design and 

implementation of a cache coherence protocol. 

The Hermes QoS supports multicast for both circuit-oriented connection and packet 

switching, based on the dual path algorithm. Multicast messages carry in the header the 

network address of all routers to which the message must be delivered. When a multicast 
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message is sent from a lower labeled router to a higher labeled router, the target network 

addresses are sorted in decreasing order, as shown in Figure 12(b). On the other hand, 

when a multicast message is sent from a higher labeled router to a lower labeled router, 

network addresses are sorted in increasing order in the header, as shown in Figure 12(a). 

When the message reaches each target router, the address of the current address (first flit 

of the header) is removed from the header and a copy of the message is forwarded to the 

next network address present in the header, and to the local port of the router. 

 

Figure 12 – Two examples of multicast messages. The first shows an example of a 
multicast message to network addresses 8, 10, 12 and 14. The second shows a multicast 

message that target network addresses 5, 3 and 1. 

3.1.2 Physical channels and priority 

The NoC Hermes QoS uses two 16-bit channels (physical links) to interconnect the 

routers. The advantage of this approach is that it allows allocation of one physical path for 

sending only high priority packets. In the NoC Hermes, channel 0 is used to transmit both 

high and low priority packets, whilst channel 1 only transmits high priority packets.  

3.2 Plasma-IP  

Plasma-IP is a modified version of an open-source soft core, described in VHDL, 

freely available at OpenCores [OPE11]. It consists of a 32-bit RISC architecture, strongly 

based on the MIPS-I ISA (Instruction Set Architecture).  

The Plasma-IP core is implemented with a configurable pipeline that can be set to 

two or three stages, with an additional optional stage for memory accesses. The entity that 

controls the core converts a 32-bit instruction opcode to a 60-bit opcode and sends control 

signals to the other entities.  

The most significant modifications performed on the original Plasma architecture 

were: insertion of a paging mechanism; exclusion of the UART module; addition of a DMA 

module and a NI (Network Interface). Concerning the instruction set, which is based on 

MIPS-I ISA, Plasma originally did not include the syscall instruction. Syscall allows the 

implementation of software traps. Traps are an entry point that allows user applications to 

ask the kernel to perform low-level functions such as accessing I/O devices or controlling 

an external memory. The syscall instruction was added to the Plasma implementation.  
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3.3 Network Interface (NI) 

The Network Interface main function is to serve as a wrapper of the Plasma 

processor to the NoC. It is responsible for splitting 32-bit words that are written in the 

memory by the processor to 16-bit flits that are transmitted in the NoC. So, for every word 

sent from the processor to the network, two flits are sent through the NoC. The NI is 

responsible for breaking up words into flits and re-assembling the words at the receiving 

end.  

The NI is constituted by two finite-state machines (FSM): Receive and Send. The 

Receive is a 4-state machine responsible for buffering incoming packets from the network 

and signaling to PLASMA that a new packet may be handled. Furthermore, the Receive 

machine is responsible for controlling the reading of data from Plasma core. The Send is a 

6-state machine responsible for sending packets to the NoC. The contents of the packets 

sent on the NI are fetched from memory by the DMA module. The NI controls DMA 

operations, and copy to/from memory.   

3.4 DMA 

The implementation of the Plasma processor available at OpenCores did not include 

a DMA module in its architecture. Without a DMA module, the processor must handle 

incoming packets buffered at NI. This operation is very expensive for the processor as it 

cannot execute any application task during this time, which causes a reduction on the 

system performance.  

To address this problem, a DMA module was designed to execute two operations: 

transfer packets stored on memory to the NI and transfer incoming packets from NI to 

memory. DMA programming is done inside the microkernel (Section 3.6), whenever a new 

interrupt event originated from the NI module is detected or, every time a packet must be 

sent to the NoC. The configuration of the DMA module is done through a set of memory-

mapped registers:   

 DMA_OP: defines the operation to be performed by the DMA module, and can 

be either read or write. 

 DMA_ADDRESS: defines the initial address for a given operation. 

 DMA_SIZE: defines the size of the data to be transferred. 

 DMA_START: initiates the operation assigned to the DMA. 

To check the availability of the DMA module, a memory-mapped register, named 

DMA_ACTIVE, is used.  
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3.5 Memory system 

Each Plasma-IP follows the Von-Neumann organization, having only one private 

memory, which stores both data and instructions. To allow simultaneous access from DMA 

and processor, the private memory is implemented as a dual-port memory. The memory 

space is divided into pages. The first pages store the microkernel, and the remaining ones 

store application tasks. 

Application tasks are fetched from an external, off-chip memory, during system 

initialization (static mapping) or at run-time (dynamic mapping). The master PE accesses 

the external memory through a repository interface, in order to fetch object code of all 

tasks that are going to be executed in the system. This interface is also present on slave 

Plasma-IPs, and can be used to connect the core to another type of memory, such as a 

cache memory, with the advantage of not having to modify the core architecture. 

3.6 Microkernel 

The microkernel that runs on PLASMA core is a tiny operating system responsible for 

managing and supporting task execution on each core. The HeMPS microkernel is a 

preemptive OS, where each task occupies the CPU for a pre-defined period of time called 

timeslice. The microkernel has two versions: one runs on PLASMA master whose main 

objective is to coordinate task distribution and management. The master does not run any 

application task. The other runs on PLASMA slaves and gives support to features such as 

multitasking and software interrupts (traps). The memory of both master and slave is 

paginated. The kernel occupies the first pages, whilst the tasks occupy the remaining 

ones. The microkernel is divided into layers as shown in Figure 13. 

PHYSICAL HARDWARE

BOOT

COMMUNICATION DRIVERS

INTERRUPT 
HANDLING

SCHEDULING
TASK 

COMMUNICATION
SYSCALL

HEMPS MICROKERNEL

1st Layer

2nd Layer

3rd Layer

 

Figure 13 - HeMPS Microkernel Layers. 

Upon finishing the execution of the boot code, the main function of the microkernel is 

called through the main global label that represents the main function of the C code. The 

microkernel initializes internal structures that are used later to maintain tasks 

status/context and configures all interrupts. 
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3.6.1 Boot (1st Layer) 

The boot layer contains a few routines written in assembly and in C. The assembly 

code is responsible for initializing segments of global and static (.bss) data, global and 

stack pointers. 

The Plasma processor starts its execution by fetching an instruction from the first 

address in memory (0x00000000). The first positions of memory contain the assembly 

code. 

3.6.2 Communication drivers (2nd Layer) 

The communication drivers are accessed only inside kernel address space, 

preventing user tasks from dealing directly with hardware modules. Although this limitation 

exists, a user task can have access to communication drivers through high-level macros, 

defined in the microkernel, which cause a trap and call to the communication driver 

routines. The communication routines are Send() and Receive(). Both routines write/read 

messages from the pipe (communication vector, described in Section 3.6.7). The 

implementation of the communication model in the HeMPS Platform is based on the read 

request protocol, while the computation model is based on the KPNs (Kan Process 

Networks).  The Receive() blocks task executes until the moment that the message to be 

received is available on the pipe, the Send() routines is non-blocking. 

3.6.3 Task execution (3rd layer) 

To manage tasks execution, the microkernel keeps a TCB (Task Control Block) 

structure for each task. This structure contains the entire context of each task, so that it 

must be updated before switching execution to another task (context saving). Figure 14 

shows the TCB structure that is currently implemented inside the microkernel in C. The 

registers saved on TCB structure are: temporary registers ($t0 - $t9); saved registers ($s0 

- $s8); argument registers ($a0 - $a3); function result registers ($v0 - $v1); return address 

($ra); stack pointer ($sp); global pointer ($gp); and registers used to store 

multiplication/division results ($hi and $lo). Beyond these registers, for each task is 

maintained its id (identifier), pc (program counter), offset (indicating its initial memory 

position) and status. The status of a task can be: 

 READY : means that the task is ready to be executed; 

 RUNNING :  indicates that the task is currently executing in the CPU; 

 TERMINATED : indicates that the task finished its execution;  

 WAITING : indicates that the task requests a message and is waiting for 

response; 

 FREE : indicates that the TCB is free and can be allocated; 

 ALLOCATING: indicated that the TCB is being allocated. 
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Figure 14 - TCB structure described in C language. 

3.6.4 Multitasking 

Preemptive multitasking requires support from the hardware, otherwise there might 

exist situations where it is not possible to remove a given task from the CPU.  The 

PLASMA core maintains a memory-mapped tick counter, implemented as an internal 

memory-mapped register. This register is incremented each clock cycle, and causes an 

interrupt event when it reaches a threshold. The time interval that starts at zero and the 

moment when the counter reaches the threshold is denominated timeslice. The interrupt 

event is handled by the interrupt handler, which in turn, calls the scheduling algorithm that 

allocates another task to be executed in the CPU.  

The microkernel implements a round-robin scheduling algorithm, which assigns time 

slices for each task in equal portions and in circular order, handling all tasks without 

priority. Round-robin scheduling is both simple to implement and starvation-free. 

3.6.5 Task allocation 

The master PE, according to the task mapping, executes task allocation on HeMPS 

Platform. HeMPS Platform supports two types of task mappings:  

 Static: The user defines, at design time, in which Plasma-IP each task is going 

to be executed. When the execution starts, tasks are sent to PEs according to 

the user definition. 

 Dynamic: When a task is dynamically allocated, it is sent to the Plasma-IP that 

will execute it only when another task in the system requests the allocation. 

This situation happens whenever a task Ti, running on processor Pi, needs to 

send a message to task Tj. Task Ti searches for task Tj location on its internal 

table, but it finds out that task Tj has not been allocated yet. Consequently, it 

sends a message to the master requesting the allocation to be done. 

3.6.6 Interrupts 

Interrupts in the microkernel can be generated after the occurrence of one of the 

following events: arrival of a new packet at the NI; timeslice counter reaches up its 

threshold, indicating a new task must be allocated; and a call to the syscall primitive 

(software interrupt – trap).  
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When a hardware interrupt event happens, the PC register receives the 0x3C 

address causing the execution of a full context saving function. When a software interrupt 

event happens, the PC register receives the 0x44 address causing the execution of a 

partial context saving function. 

3.6.7 Task communication 

Different tasks running on a distributed system need to communicate to coordinate 

and synchronize task execution. Task communication inside the processor is done through 

an area called pipe. A pipe is a communication channel in which messages are consumed 

at the same order they were produced. There exists only one global pipe per processor 

that is shared between all tasks.  

According to the KPN model adopted by HeMPS microkernel, a channel read 

operation must be blocking. Thus, when a Receive() instruction is executed, the task is 

blocked until it receives the requested message from the pipe. On the opposite, write 

operations must be non-blocking, which means that after every Send() operation, the task 

keeps executing.  

When a task wants to receive a message, a read operation on the pipe occurs. 

Whenever a task wants to send a message it does a write operation (WritePipe()). If both 

sending and receiving tasks are located at the same processor, no message is sent 

through the network. Although, in case tasks reside at different processors, a packet is 

assembled and sent to the target task processor. This process is shown in Figure 15, 

where in (a) task 2 (t2) located at Processor 1 writes a message to task 5 (t5) on the pipe 

and continues its execution.  Subsequently, task 5 makes an explicit call to request_msg 

that sends a message to Processor 1 requesting the reading of the pipe. Then, Processor 

1 is interrupted by the NI when the request arrives, and sends a message (msg, Figure 

15(b)) to processor 2 which receives the message and unblocks task 2.  

 

Figure 15 - Intertask communication between tasks located at different processors. 
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3.7 Memory management 

As already mentioned in section 3.5, each Plasma-IP contains only a dual-port 

private memory, which is divided into pages. The first pages store the microkernel, and the 

subsequent ones store user tasks. Each task is associated to a page number, which is 

kept by a CPU internal register, denominated page. Every memory address 

(mem_address_wop) generated by memory controller (Mem_ctrl) of the Plasma core does 

not includes the page, only the logical offset inside it. Thus, before putting the address on 

the memory bus, it is necessary to concatenate the page initial address in memory with the 

address contained in mem_address_wop.  

This mechanism prevents a given task located at a given page to access data from a 

task located at a different page. An important consideration is that this mechanism also 

prevents tasks from accessing the kernel memory area, avoiding a crash caused by a 

malicious user task. 

3.8 HeMPS Generator 

The HeMPS Generator is a framework that allows platform customization, where the 

user can define the number of processors connected in a mesh NoC through the 

parameters X and Y. The maximum number of tasks per slave can be configured, and is a 

function of two parameters: page size and memory size. For performance evaluation 

purposes, processors and local memories are modeled using cycle accurate instruction set 

simulators (ISSs) and C/SystemC models, respectively. This enables faster design space 

exploration. The left panel in Figure 16 presents two applications (mpeg, and 

communication) along with their task composition. Drag and drop actions allow to perform 

the initial static task mapping to slave processors. The master processor receives the 

remaining tasks (the applications that are still on the left panel when the platform is 

generated), which correspond to the contents of the task repository.  
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Figure 16 - HeMPS Generator Framework. 
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4 MEMORY ORGANIZATION FOR NOC-BASED MPSOCS 

The increasing complexity of software applications executed in embedded devices 

requires the study and development of energy efficient and scalable mechanisms for 

processing, communication and memory. According to [KAN05], the memory subsystem is 

the bottleneck of an MPSoC in terms of energy consumption and performance. Solutions 

to memory organizations for NoC-based MPSoCs must address both aspects. Additionally, 

they must cope with the expanding number of on-chip cores and more complex software 

applications. 

The HeMPS Platform, described in Chapter 3, does not include a memory hierarchy. 

Communication among application tasks, as well as data exchange only occurs through 

message passing. Silva et al. [SIL09] show that applications requiring a great number of 

data exchange might suffer from the increased latency present in NoCs. These types of 

applications may benefit from having a shared cache memory that stores global data. The 

shared-memory model facilitates interchange of data between processors and according 

to [TOT10] facilitates the programming model. Furthermore, the shared memory model 

may improve performance when executing applications that operate on large objects such 

as images.  

Despite the benefits aforementioned, careful evaluation must be done to determine 

the impact of additional memory structures. The evaluation must consider mainly energy 

consumption and area, which means that the memory organization, as well the cache-

coherence protocol (Chapter 5) must be designed considering both constraints. 

The current chapter presents the first contribution of this dissertation. It presents the 

development of a memory hierarchy for the HeMPS Platform. The hierarchy is constituted 

by L2 shared data cache banks, which are connected to the NoC, and two memories per 

processor: a local memory that stores both data and instructions private to the PE and a 

L1 cache for global data. Some of the control mechanisms of the memory hierarchy are 

executed in software by the microkernel that runs on slave PEs. One of the mechanisms 

implemented in software is the handling of cache misses. This approach was adopted to 

simplify the hardware modules.  

This Chapter is structured in three subsections: the first presents the hardware 

modules that compose the memory organization developed for the HeMPS Platform; the 

second presents a NUCA memory organization developed for the HeMPS platform and, 

the last subsection presents the software structures developed in the microkernel to 

support the use of the cache memories by application tasks.  
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4.1 Hardware support 

The reference HeMPS MPSoC (Figure 10) has been modified to support a two-level 

memory hierarchy, as illustrated in Figure 17. The first memory level contains processor’s 

memories, whose address space is divided into two separated segments: one for the L1 

data cache and the other for the local memory. The local memory can be seen as a 

scratchpad memory [KAN05] because it guarantees one-cycle latency for every access. 

Additionally, all accesses to this memory end in this level, which means that accesses 

never result in a miss. The local memory stores the microkernel, application tasks and 

application tasks private variables. Accesses to the L1 data cache might result in a miss. 

In this case, a block request is sent to L2 cache, which is the upper level in the hierarchy. 

The L1 private data cache stores copies of blocks of the L2 shared data cache. The L2 

data cache stores data shared by applications.  
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Figure 17 - MPSoC with a two level memory hierarchy – shared memory and caches (only 
Slave-PEs may contain caches). 

The M-Lite processor may receive data from several sources. The source that 

provides the data depends on the address being accessed. Figure 18 shows the modules 

of the Plasma-IP and some interconnections between modules. The mem_data_r signal of 

the M-Lite processor is a 32-bit input signal that receives data from four sources: (i) local 

memory; (ii) private L1 data cache (only slave-PEs); (iii) task repository (only master-PE); 

(iv) memory-mapped registers. Several memory-mapped registers are used in the M-Lite 

processor to help the development of control routines in software (microkernel). For 

instance, the DMA_STATUS is a memory-mapped register, which is mapped to a given 

address of the memory. In this case, such mapping allows the microkernel to verify DMA 

status (busy, idle) before programming it to execute a given operation. 

4.1.1 L1 data cache architecture 
 

The L1 data cache adopts the direct mapping scheme, due to the minimum hardware 

support required to implement it. A tag memory is used to store control bits and tags for 

each block of the cache. The tag memory stores for each block: (i) tag, the most significant 

bits of the L2 cache block address stored; (ii) valid bit indicates if the block is valid and 
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shared; (iii) modified bit, the PE modified its exclusive copy of the block. The cache block 

size contains 128 32-bit words (the same size of the packet that can be stored in the 

communication pipe). 

Cache management is done both in hardware and software. A module named cache 

controller, implemented in hardware, controls read and write operations as well as hit and 

miss signalizing. The control in software is performed by the microkernel which handles 

misses and updates the tag memory. 

When a write access is generated to the L1 data cache, the cache controller receives 

as input the following signals from the M-Lite processor (Figure 18): address, which 

informs the cache where to write; data_write the data to write in the cache; and 

write_byte_enable, which is a four-bit signal that indicates which bytes of the data_write 

signal must be written to the cache. The cache is only activated if the address generated 

by the processor is above the address 0x10000000. For a read access, only the address 

signal is necessary. 

For each new access, the cache controller signalizes the occurrence of a hit or a 

miss by setting a memory-mapped register. After performing an operation on the data 

cache, the microkernel reads the memory-mapped register, named CACHE_HIT, to decide 

which operation to take next. If the first bit of CACHE_HIT is asserted, it means that the 

accessed address is valid in the cache. If not, a miss occurred and the microkernel must 

assemble a read request packet and send it to the L2 cache controller. 

 When the L2 cache controller sends the block back to the processor, the NI detects 

the packet arrival and interrupts the microkernel. Subsequently, the processor programs 

the DMA to copy the block to the cache and updates the tag memory entry of the block 

read.  

4.1.2 L2 data cache architecture 

The second and lowest level of the memory hierarchy is the L2 shared data cache 

(Figure 19). The L2 cache is connect to the NoC through a Network Interface as an IP. It 

provides support for handling memory operations, cache coherence and data migration. 

Cache coherence and data migration topics are presented in the next chapters of this 

dissertation (Chapter 5 and 6, respectively).  

The L2 cache is accessible to all PEs and is composed of: (i) a Network Interface (NI) 

connecting the L2 cache bank to the NoC; (ii) a cache controller, responsible for 

interpreting incoming packets buffered at NI and executing read/write operations; (iii) a 

directory memory, which stores information to support the implementation of a cache-

coherence protocol (The directory memory sub-module is described in Chapter 5); (iv) a 

memory bank, logically divided into blocks of 128 32-bit words. Note that more than one L2 

bank can be instantiated in the MPSoC, resulting in a NUCA organization.  
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Figure 18 - Internal modules of the PLASMA processor. 

All necessary instructions to execute an application task are stored in the local 

memory. The L2 cache is exclusively used for storing shared data. Therefore, there is no 

traffic in the network due to fetching instructions from the L2 cache to PEs. The advantage 

of this memory hierarchy is the smaller traffic inside the NoC.  The next subsections 

describe each sub-module of the L2 cache. 
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Figure 19 – Internal architecture of the L2 cache module. 
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4.1.2.1 Network Interface 

The Network Interface sub-module is responsible for bridging the NoC router with the 

L2 cache bank. The NI is responsible for buffering incoming packets and also, for sending 

packets generated by the cache controller. The NI interfaces both channels of NoC and 

has two sub-modules, send and receive. 

The receive sub-module has two buffered ports (port 0 and port 1 in Figure 19), with 

a buffer at each input port. Packets containing write operations have higher priority in the 

NoC because they are longer than packets containing other operations (e.g. read request). 

Packets containing operations such as read and coherence specific actions are sent using 

low priority. The output ports of the NI are not buffered, since the cache controller may 

send the data in burst. 

Two signals (first and last) are used to control the write and read operations of data 

on the input buffer, following a circular buffer approach. Each position of the buffer stores a 

word (32 bits) plus an additional control bit, which indicates if that position of the buffer 

stores the last word of a packet. This allows the NI to separate flits from one packet to 

another. Every time a new word is written to the buffer, the last signal is incremented. On 

the other hand, every time a word is read from the buffer, the first signal is decremented. 

When both signals have the same value (point to the same position of the buffer), the 

buffer is considered empty. When the last signal is one position behind the first signal, the 

buffer is considered full. 

If the first and last signals are different, it means that there is available data to be 

read in the buffer. The NI is responsible for signalizing to the cache controller module that 

there is available data to be read. In situations where the buffer of the NI is full, and the 

cache controller is busy, the credit_i signal is set to low. This signal indicates to the NoC 

that the L2 cache bank is fully occupied and cannot receive any additional packet. This 

signal is set back to high after the cache controller consumes some words of the buffer.  

The send sub-module is controlled by the cache controller, which sets a send_data 

signal to high and puts a word in the bus. The send module needs to split a word into two 

flits before sending them to the target PE in the NoC. The split operation is necessary 

because the width of the NoC links is of 16 bits (flit size). 

4.1.2.2 Cache controller 

The cache controller is responsible for performing the following operations: 

  read and write of packets from/into the cache banks; 

 cache coherence control (Chapter 5); 

 data migration (Chapter 6); 

 forwarding packets to another L2 cache (block search - Chapter 6). 
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The architecture of the cache controller is constituted by two finite-sate machines 

(FSM). One FSM is responsible for handling only write packets that are buffered at port 0 

(high priority packets), whilst the other is responsible for handling all other types of 

packets. 

Each write packet contains a 128-word cache block, having a total size of 262 flits. 

The format of write packets is shown in Figure 20. The first flit of the packet contains the 

network address of the shared memory (TargetNetAddr) (shown as flit 0 in Figure 20); the 

second flit (Size) contains the size of the packet; the third flit contains the service that must 

be executed by the cache controller; the fourth flit (SourceNetAddr) contains the network 

address of the PE that is writing the cache block to the L2 cache; the fifth flit (TargetBlock) 

contains the address of the cache block being updated; the sixth flit (SourceTaskId) 

contains the id of the task that issued the write operation; the remaining flits are the 

contents (words) of the cache block (Payload). 

 

flit 0 TargetNetAddr 

flit 1 Size 

flit 2 Service 

flit 3 SourceNetAddr 

flit 4 TargetBlock 

flit 5 SourceTaskId 

flit 6-261 Payload (only in write 
packets) 

Figure 20 - Packet format for shared memory operations. 

 

The other FSM (FSM 2 - Figure 19) handles incoming packets buffered at port 1 (low 

priority packets). These types of packets are short (6 flits). The format of short packets is 

the same as of the write packets, except that short packets do not contain the payload. 

The priority mechanism included in the Hermes QoS NoC (Chapter 3) enables to 

differentiate the memory transactions. Such strategy avoids the contention of a L2 cache 

bank for long periods, such as in situations when a L2 cache is receiving a write packet 

originated at a cache miss. In this situation, even having one of the ports busy, the other 

one is free to receive and buffer service requests that will be handled as soon as the write 

operation finishes. 

4.1.2.3 Directory memory 

The directory memory consists of an auxiliary memory that stores the status of each 

block of the L2 shared cache, enabling the implementation of the directory-based cache 

coherence protocol (Chapter 5). For each block of the L2 shared cache, there is a 

correspondent entry in the directory memory that stores a set of bits as shown in Figure 
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21. Each field of the structure shown in Figure 21 represents 1 bit. The first bit indicates if 

the block is valid. The second bit, Shared, informs if the current block is in the shared state 

of the MSI (Modified-Shared-Invalid) protocol. The next bit, transition, is used in this work 

to optimize the protocol in certain scenarios, as explained later in section 5.4. The index 

bits store the network address of the PE when the block is in exclusive state (shared bit is 

low). This helps reducing time searching time when write-back messages need to be sent 

to the PE holding an exclusive copy of the block. The remaining bits (P0, P1, …, PN) 

inform which PEs have a non-modified cached copy of this block, when the block is in 

shared state. The number of index bits is equal to log2 nPEs, here nPEs is the number of 

PEs in the system and the number of PN bits is equal to nPEs.  

Shared Transition Index 0 Index 1 Index 2 P0 P1 ... PNValid

 

Figure 21 – Structure of an entry of the directory memory. 

4.2 Non-Uniform Cache Access (NUCA) 

The decoupled architecture of the L2 cache module allows the instantiation of several 

caches at a given MPSoC configuration, resulting in a NUCA architecture. In such 

architecture, the shared cache banks are physically distributed but logically centralized 

[HEN03]. In this architecture, it is necessary to determine which L2 cache bank will provide 

a cache block in case of miss.  

The L2 cache bank that provides a cache block in case of a cache miss is chosen 

based on the physical address being accessed by the PE. The advantage of having more 

than one L2 cache bank is the increased memory throughput as there are more cache 

controllers to handle requests simultaneously [MAN10]. Also, it allows the implementation 

of mechanisms that allow moving cache blocks to L2 cache banks closer to the PEs that 

mostly access them, reducing energy consumption spent in communication. This is the 

main goal of a data migration algorithm described in Chapter 6. In a CSM architecture, 

which has only one L2 cache bank, the cache controller node may congest the region of 

the NoC where it is placed when several PEs issue requests to this cache.  

In the HeMPS platform, applications obtain access to the cache through the 

microkernel. In the NUCA architecture, the microkernel is responsible for determining 

which L2 cache bank will provide a given block in case of miss. To implement NUCA 

support in the microkernel, we assumed a sequential address space, divined into n 

segments of equal size, as shown in Figure 22. Each segment is assigned to a different L2 

cache bank. The network address of each bank is associated to a position of an array 

named memory_banks. The array is used by the microkernel to retrieve the network 

address of the cache bank that will receive the cache miss.  
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0x0000 

0x0001 

0x0002 

0x0003 

0x0004 

0x0005 

0x0006 

0x0007 

0x0008 

0x0009 

0x0010 

0x0011 

Figure 22 – Example of address space division in cache banks, assuming four blocks per 
L2 cache bank. 

L2 cache banks have a configurable number of blocks. In a 32 blocks per bank 

configuration (number_of_blocks_per_bank), when an application task access a block 

whose address is in the range of 0 to 31, the microkernel sends a read request to the first 

cache bank in the memory_banks array. If the application task accesses a block in the 

range 32 to 63, and a cache miss arrives, a request will be sent to the second cache bank.  

4.3 Software support for memory hierarchy 

This section describes the control mechanisms of the memory hierarchy implemented 

in software. These mechanisms have two main goals: (i) minimize the amount of control 

structures required by the L1 and L2 cache controllers; (ii) provide a cache API which 

allows applications to manipulate the cache. The microkernel of the HeMPS platform is 

responsible for: (i) handling cache misses; (ii) controlling cache coherence on the PE side; 

and (iii) programming the DMA to perform the copy of an incoming cache block from the 

NoC to the L1 cache.  

4.3.1 Cache API 

The cache API provides an interface that allows applications to read and write data 

on the data cache memory. The API hides implementation details and complexity from the 

user, controlling cache coherence and handling misses. The functions provided by the API 

act as an interface between applications tasks and the microkernel.   

Currently, three functions are provided by the cache API to the applications tasks: 

bank 0  

bank 1  

bank 2  
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 read_block_word(block_address, offset): Allows the task to read a 32-bit word from a 

given block of the cache. The function receives two parameters: block_address, which 

is the logical address of the block being accessed; offset, which is the address of the 

word being read in the cache block.  

 write_block_word(block_address, offset, value): Allows the user to write a 32-bit value 

to a word of a given cache block. The function receives three parameters. The first two 

parameters define the logical block address and word offset inside the block. The third 

parameter (value) corresponds to a 32-bit word that will be written in the specified 

location. 

 flush_block(block_address): This function allows the user to force an eviction of a 

cache block. It is useful for debug purposes and also to the implementation of the 

cache coherence protocol. 

All functions manipulate integer values. For instance, the read_block_word function 

returns an integer as a result of the read operation. If the user needs to manipulate data 

from the cache as a different type, such as a char for instance, the 32-bit integer value 

needs to be casted to the desired type. It is out of the scope of this work to provide a full-

fledged API that supports read and write operations having different value sizes and types.   

4.3.2 Handling of cache operations inside the microkernel  

In the HeMPS platform, the syscall instruction is used as an entry point for 

application tasks to request the execution of a privileged operation to the microkernel. A 

privileged operation accesses a data structure of the microkernel or communicates with a 

hardware element, such as the DMA, which cannot be programmed directly by an 

application, for instance.  

When an application needs to execute a privileged operation, it requests the 

microkernel to execute a service, such as the Send service, which sends a message in the 

NoC. The request is done through a call to syscall that causes trap. A trap is a software 

interrupt that makes the processor start executing the microkernel syscall handler function. 

The syscall approach is treated by the cache API functions to request the microkernel to 

access the data cache. 

Every time an application executes a call to the read_block_word function, for 

instance, a trap occurs and the microkernel is called to perform a read on a given position 

of the cache. The microkernel then executes the read operation as shown in Figure 23. 

The first operation executed by the microkernel is to place the physical address of the 

cache block being accessed in the address bus (step 1). In this step, the logical address is 

used. This address is converted inside the M-Lite processor to a physical address. The 

conversion is based on a logical to physical mapping table that is updated after each data 

migration (Chapter 6). If the mapping table does not contain a logical to physical mapping, 
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the logical address is assumed to be the physical address. The L1 cache controller uses 

this address to access tag memory and signalize hit or miss occurrence (step 2). In case 

the cache block being accessed is present in the cache, the cache controller also puts the 

requested word on the data bus of the processor in the next clock cycle. The microkernel 

verifies the CACHE_HIT register to verify hit/miss occurrence (step 3). If a hit occurred, the 

microkernel returns the word as a result of the syscall function to the application task (step 

4). In case the hit bit is low, a packet must be sent to the L2 cache bank that has a valid 

copy of the cache block. Before doing this, the microkernel must verify if it needs to write 

back the current cache block (step 5).  After this, the microkernel sends a write back 

packet to a L2 cache (step 6). Next, the microkernel assembles a read request packet and 

programs the NI to send the packet to the corresponding L2 cache (step 7) and sets the 

task to WAITING status (step 8). All the steps described so far are executed on the PE.  

NI_Handler scopeSyscall scope

Put address on 

the memory bus

hit ?
Returns data to 

application

Current line is 

dirty?

Write line back

Send a read 

request to a L2 

cache bank

Sets task to 

WAITING state

Program DMA

NI_Handler triggered by 

NI interruption

Update tag 

memory

Sets task to 

READY state

Returns data to 

application

yes

no

yes

no

step 1

step 2/3

step 4

step 5

step 6

step 7

step 8

step 9

step 10

step 11

step 12

step 13

 

Figure 23 – Sequence diagram of all possible actions performed by the microkernel in a 
read operation. 

Next, the L2 cache bank receives the packet and decodes it, and then reads the 

cache block from the cache bank. As the words of the block are being read from the cache 

memory bank, the L2 cache controller assembles and starts sending a message with the 

response block to the PE that issued the cache miss.  
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When the message arrives at the NI of the PE, a hardware interrupt occurs (step 9). 

Before treating the read response packet, the microkernel needs to save the context of the 

current task that is running (in the cases where there is only a task per processor, an idle 

task is scheduled and runs in the processor). The microkernel then programs the DMA to 

copy the block to the cache memory (step 10), updates the tag memory (step 11), sets the 

application to READY state so that it can be schedule again (step 12), and finally, returns 

the word back to the application (step 13). 

For a write operation, there is an additional action necessary that is acquiring 

exclusivity to write in the cache block. In this operation, instead of issuing a read request 

such as in the read operation (step 7 - Figure 23), a read with exclusivity request is issued. 

The difference between the requests is that in the last the L2 cache bank responds with 

the data of the block being read (such as in the ordinary read request) plus the 

enforcement that the block is in exclusive state and can be modified.  

4.4 Concluding remarks 

An evaluation of the mechanisms and modules of the memory organization is 

presented later at Section 7.1. The experiments mainly evaluate the gains in latency when 

increasing the number of L2 cache banks (NUCA organization).  
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5 CACHE COHERENCE PROTOCOL 

The presence of caches in microprocessor-based systems improves performance by 

reducing the processor’s memory access time and by decreasing the bandwidth 

requirements of both the local memory module and in the NoC. Unfortunately, the local 

caching of data introduces the cache coherence problem. Directory-based protocols are 

suitable for NoC-based MPSoCs because these protocols do not require global visibility for 

all memory transactions. 

The first description of directory-based protocols appears in Censier and Feautrier’s 

paper [CEN78]. The directory is simply an auxiliary data structure that tracks the caching 

state of each cache block in the system. For each cache block in the system, the directory 

needs to track which caches, if any, have read-only copies of the block, or which cache 

has the latest copy of the block if the block is held exclusively. A directory-based cache-

coherent machine works by consulting the directory on each cache miss and taking the 

appropriate action based on the type of request and the current state of the directory 

The type and number of status that can be assigned to a cache block varies 

according to the protocol. In the MSI protocol, a shared block can be in 3 states: modified 

– which indicates that only one PE has a valid copy of the block, which means that the L2 

cache does not contain a valid entry of that block; shared – one or more PEs contain a 

read-only copy of the block which is stored in the L2 cache; invalid – block data is not 

valid. In addition to the three states of the MSI protocol, we propose the creation of the 

transition state (T). This state indicates that a given cache block is not consistent in the L2 

cache, but a write-back request has been already issued to the L1 cache which has 

modified the block. Requests that arrive at the L2 cache when the block is in T state are 

forwarded to the L1 cache bank that has the modified copy of the block. More details about 

the T state are presented in section 5.4. 

This work adopts a hybrid implementation of the MSI protocol, being part of it 

implemented in hardware (in the L1/L2 cache controller) and part in software (in the 

microkernel). This design choice simplifies the hardware implementation because some 

mechanisms, such as DMA programming, are handled in software. 

The L1 cache controller is responsible for: (i) detecting and signaling hit/miss when 

the address value changes in the cache; (ii) updating the tag memory; (iii) executing read 

and write operations. The microkernel is responsible for: (i) exchanging messages with the 

L2 cache bank; (ii) replacing blocks when necessary; (iii) handling write-back operations. 

The L2 cache controller is responsible for: (i) handling the directory memory; (ii) enforcing 

coherence according to the MSI protocol. To enforce coherence, it is necessary to: request 

write-back of a cache block if a read occurs on a modified block; invalidate L1 copies when 
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a PE requests permission (exclusivity) to modify a given cache block; forwarding read 

requests to the correct L1 cache controller when a cache block is in the T state. 

Cache coherence protocols may adopt different approaches to maintain cache blocks 

consistent. For instance, some protocols update all copies of a cache block after it is 

modified locally in a given PE. Other protocols invalidate the local copies of all PEs but the 

one that did the update. Such protocols are usually classified as invalidation based 

protocols. 

In invalidation based protocols, several unicast messages are issued whenever a 

cache block needs to be invalidated. The traffic generated by these messages increases 

significantly the energy consumption introduced by the cache and latency [JER08b]. One 

way to minimize this overhead is to send multicast messages to reduce the traffic induced 

by invalidation messages.  

The main goal of the implemented protocol is to explore NoC services such as 

multicast and priorities, as well as some properties of the NoC, such as duplicated physical 

links. Exploring low-level features of the NoC may reduce the energy consumption and 

increase the performance of cache coherence protocols for NoC-based MPSoCs. The 

exploration of NoC services in the cache coherence protocol implementation is the second 

contribution of the current work. The next subsections present the optimizations proposed 

by this work to implement the MSI directory-based protocol. 

5.1 Invalidating cache blocks 

Whenever a PE needs to modify a given cache block, the L2 cache must invalidate 

all valid entries of the block to prevent cache incoherence. An invalidation message is then 

sent to every PE sharing this cache block. Finally, the L2 authorizes the modification of the 

block by the requesting PE.  

In unicast-only NoCs, a unicast packet must be sent for each PE. Figure 24(a) shows 

a scenario where PE01 requests exclusivity of a block, which is in shared state. Two other 

PEs are currently holding a copy of this block (PE02 and PE03). Therefore, an invalidation 

message is sent to PE 02 and PE 03. Using unicast messages, the traffic generated on 

the NoC in this case increases according to the number of PEs sharing the block. Figure 

24(b) shows a scenario where multicast is exploited. In this case, the L2 cache issues a 

multicast message targeting several PEs, reducing network traffic. The traffic reduction 

decreases the switching activity of the routers, therefore reducing energy consumption.
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Figure 24 - Sequence diagram for a request of exclusivity on a shared cache block. 

5.2 Read request optimization 

The use of multicast messages might optimize a read operation on a cache block 

that is in modified state. The non-optimized operation occurs as shown in Figure 25(a). 

After receiving the modified block from PE02 (event 3), the L2 cache first writes the block 

into the cache bank, and then sends a copy of it to the requesting PE (PE01). In the 

optimized operation, the PE containing the modified block (PE02) sends a multicast 

message to both the requesting PE (PE01) and the L2 cache. 

PE 01
L2 data

cache

PE 02 

modified=1
Read block 

(4 flits)

1

2Write-back 

(multicast - 260 flits)

PE 01
PE 02 

modified=1Read 

block 

(4 flits)

1

Send 

block

(260 flits)

Write-back 

request

(4 flits)

2Write-back 

(260 flits)

3

(b) Multicast(a) Unicast

L2 data

cache

Write-back 

request

(4 flits)

 

Figure 25 - Sequence diagram for a read operation of a modified cache block. 

5.3 Write request optimization 

To write on a cache block, the PE must read it beforehand. If the block that a given 

PE wants to modify is already in modified state, the PE holding the modified copy must 

execute a write-back operation. Suppose PE01 wants to write on a modified cache block, 

only cached by PE02. PE01 sends a read-with-exclusivity request to the L2 cache, which, 

in the non-optimized implementation (Figure 26(a)), sends a write-back request to PE02. 

After receiving the write-back response, the L2 cache sends a copy of the block to PE01 

and updates the directory.  
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In the optimized implementation (Figure 26(b)), after receiving the read-with-

exclusivity request from PE01, the L2 cache updates the directory, setting PE01 as the 

holder of the modified copy of the cache block. Then, it sends a special write-back to 

PE02, which will send a copy of the block to PE01, and invalidate its copy of the block. 

Additional requests for this block may arrive at the L2 cache before finishing this operation. 

To ensure sequential consistency, these operations must be blocked at PE01 until it 

finishes the operation on this block. 

PE 01
L2 data

cache

PE 02 

modified=1

Read block

with 

exclusivity 

(4 flits) 1

2

Write-back (260 flits)

PE 01
PE 02 

modified=1
Read block 

with 
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1

Send 

block

(260 flits)

Write-back 

request

(4 flits)

2Write-back 

(260 flits)

3

(b) optimized(a) non-optimized 

L2 data

cache

Write-back 

request

(4 flits)

 

Figure 26 - Sequence diagram for a write-back operation after a write request. 

5.4 The Transition State  

The benefit of having a new state in the cache coherence protocol is the possibility of 

decreasing latency in some situations. This gain is achieved when forwarding requests 

that arrive at the L2 cache to the L1 cache that has an updated copy of the cache block 

being requested.  

Figure 27 presents the MPSoC configuration that will be used to illustrate a scenario 

that explains the operation of the transition state. Suppose PE03 holds a given cache 

block in modified state, and PE00 wants to read it. A read miss occurs, resulting in a read 

request to the L2 cache (event 1 in Figure 28). When the L2 cache receives the request of 

PE00, it searches for the address of PE whose L1 cache holds the block in modified state. 

This search is performed in the local directory of the L2 cache. A write-back request is 

issued to PE03 (event 2), setting the block from M (modified) to T (transition) state. Next, if 

another request arrives at the L2 cache, such as from PE05, for instance (event 3), instead 

of blocking the request until the block is updated, the L2 cache issues a read request of 

this block to PE03 (step 4). PE03 then sends a packet containing a copy of the cached 

block of its local cache to PE05 (step 7). This reduces the load of the L2 cache. 

This optimization is possible because, although after writing-back the block to the L2 

cache and PE00 (events 5 and 6), PE03 still has a valid copy of it. Therefore, it might 
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serve a copy of the block to PE05. When the L2 cache receives the write-back packet 

(event 5) it sets the block as shared. 

Without the transition state, the standard coherence protocol would have to buffer in 

the L2 cache the read request from PE05 and wait for: (i) the arrival of the write-back 

packet in the L2 cache; and (ii) the update of the block in the L2 cache. In the proposed 

optimization, the PE holding the modified block (PE03) sends the block directly to PE05 

just after finishing the write-back operation. This optimization tends to reduce the number 

of cycles required to send a copy of the block to the second PE, which requested the read, 

as it does not require the block to be on the L2 cache. 

PE00
L2 data

cache

PE02

(master)

PE05 PE04 PE03

 

Figure 27 - MPSoC configuration: 3x2 NoC, 5 PEs (1 master, 4 slaves) and 1 L2 cache. 
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Figure 28 - Sequence diagram for the T state. 

5.5 Concluding remarks 

The proposed optimizations are evaluated in section 7.1.5. The results obtained from 

this study were published as a full-paper in two conferences, ReCoSoC [CHA11a] and 

SBCCI [CHA11b] . The paper published in the SBCCI conference has been chosen to be 

published in a special edition of the JICS journal. 
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6 DATA MIGRATION PROTOCOL 

Task mapping is a challenging task in MPSoC designs [EVE10]. Given the amount of 

available resources in the MPSoC, it is not always possible to map application tasks near 

to all resources that will be accessed by them. Additionally, some mapping approaches do 

not consider the frequency of memory accesses and the distance of an application task to 

the memory bank that it mostly accesses. Thus, it is possible to have scenarios where 

tasks are mapped in PEs distant to the memory bank that they access. Moreover, dynamic 

mechanisms implemented in the MPSoC, such as task migration, or the occurrence of an 

unexpected problem, such as a faulty path on the NoC, may degrade performance 

significantly. Such problems are not predicted by task mapping algorithms.   

In NUCA architectures, blocks of data can be migrated between cache banks to 

reduce memory accesses communication costs [BEC04]. Such migrations are triggered by 

a data migration mechanism. The implementation of such mechanism requires additional 

structures in the MPSoC. Some of the advantages of performing data migration are: 

reduction in the energy consumption of memory accesses; access latency reduction; and 

reduction of hot spots in a given region of the NoC, as the distance traversed by a memory 

access request and response are usually shortened after migration.  

A data migration mechanism needs to monitor accesses done to memory blocks at 

runtime. The monitoring process takes into consideration: the block being accessed, which 

cache bank that the block is currently stored and the PE that is accessing it most 

frequently. Based on these parameters, the mechanism can evaluate and decide whether 

a migration will optimize the system. The proposal and development of the data migration 

protocol is the third contribution of the current work. 

The approach adopted by this work to evaluate if a block needs to be migrated is 

defined by a function that calculates the cost of a single L2 cache access. In this work, we 

define as parameters for f_cost the communication energy and the access latency 

(measured in clock cycles). A block is only migrated if the new cost is smaller than the 

current one, considering the function f_cost.  

In the scope of this work, the main goal of the data migration mechanism when 

migrating a block is not to decrease f_cost for a single PE, but for a region of PEs. A 

region is herein defined as a set of PEs and a L2 cache bank, named home bank. The 

number of regions in a given MPSoC configuration is equal to the number of L2 cache 

banks instantiated in the platform. The smallest f_cost is achieved when a given PE 

accesses a block that is located at the home bank. Data migration only occurs between L2 

cache banks of different regions, based on the frequency of accesses done to a block by a 

region. 
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The advantage of adopting the region approach is the smaller amount of control 

required by the data migration mechanism, once accounting accesses in a given block 

considers regions and not individual PEs. The disadvantage of this approach is that it 

requires the definition of regular regions having the minimum mean distance of PEs to the 

L2 cache bank. Additionally, it is desired that regions have a similar number of PEs so that 

the bandwidth required by the cache controllers is nearly the same. This is not possible to 

achieve in some situations depending on the positioning of L2 cache banks.  

Table 4 shows the distance in number of hops between each PE and L2 cache bank 

for a 4x4 2D NoC configuration. The minimum distance (marked in gray) of a PE to a given 

bank is used for defining the region that the PE belongs to. For instance, the closest bank 

to PE whose network address is 1 is the Bank 0. Consequently, PE 1 will be part of the 

same region of bank 0. The same approach is applied to all PEs to compose regions. 

Figure 29 shows a 2D representation of the MPSoC presenting the resulting regions 

delimited by the rectangles. 

 

Table 4 – Distances in number of hops of all PE to all L2 cache banks (placed at address 
0, 3, C, F). 

PE Address Bank 0 Bank 3 Bank C Bank F 

1 1 2 5 4 

2 2 1 4 5 

4 4 1 2 5 

5 3 2 3 4 

6 2 3 4 3 

7 1 4 5 2 

8 2 5 4 1 

9 3 4 3 2 

A 4 3 2 3 

B 5 2 1 4 

D 5 4 1 2 

E 4 5 2 1 

 

Considering the scenario illustrated at Figure 29 where task T2 is mapped at PE 

Slave 7. This task accesses a block α located at the L2 cache bank attached to C router, 

therefore, assuming the NoC uses deterministic Hamiltonian routing, for each access of 

task T2 to that block, the packet traverses 5 routers. If block α is mostly accessed by the 

PEs of the same region of PE where task T2 is mapped, it could be migrated to the L2 

cache bank attached to router 0, decreasing the path traversed from 5 to 1 router. This 

migration would reduce the energy consumption in the NoC for data accesses of task T2. 
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Figure 29 – Regions (rectangles in the figure) defined according to the minimum distance 
to the L2 cache bank. 

The following subsections detail the implementation of the four mechanisms that 

compose the data migration heuristic: access accounting; free space verification; block 

migration; and block search.  

6.1 Block Accesses Accounting 

To account accesses done to a given block by PEs, each block of the directory 

memory was extended to include N 4-bit counters, where N is the number of regions in the 

MPSoC. As each PE belongs to a region, for every access performed to a given block of 

the L2 cache, the region counter is incremented. Each counter maintains the number of 

accesses done by PEs of the same region to that block. When one of the counters 

reaches a pre-defined threshold, it indicates that the block should be migrated. The 

threshold corresponds to the minimum difference between counters of the same block to 

trigger block migration. 

Figure 30 shows an algorithmic description of the counter checker module, which is 

implemented in hardware as a finite state machine. The algorithm receives as input a 

vector of counters, whose length is equal to the number of regions in the MPSoC. This 

vector stores the number of accesses performed by each region to the lastly accessed 

block of the L2 cache bank. An auxiliary index regioni is used to point to a position of the 

vector, which will be compared to all region counters. The first while loop, starting at line 6, 

moves the regioni pointer through the vector array. The inner loop (lines 12-19), compares 

the region’s counter pointed by regioni to the counter of the other regions, whose location 

in the array is pointed by regionj. The idea of the inner loop is to compare the counters of 
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all regions to the region pointed by regioni. If the difference of the counter pointed by 

regioni to the one pointed by regionj is higher than a given threshold for all cases, the 

migrate_counter will be incremented N-1 times, where N is the number of regions of the 

MPSoC. It is not equal to N because during the comparison regioni and regionj point to the 

same region once in the iteration. When migrate_counter variable is equal to N-1 the 

migration is triggered (line 23). 

Input: Region counters (counters) for a given block and a threshold. 

Output: The decision to migrate or not a given block. 

1.  // auxiliary variable that stores the index of the region being  

2.         // compared with others 

3.  regioni  1 

4.  // The number of regions in the MPSoC 

5.    total_regions  the number of regions in the MPSoC 

6.  WHILE regioni < total_regions DO 

7.   // pointer to the region to be compared to the one pointed  

8.   // by regioni 

9.   regionj  1 

10.   // auxiliary counter that will help deciding to migrate 

11.     migrate_counter 0 

12.        WHILE regionj < total_regions DO 

13.      // The number of regions in the MPSoC 

14.     diff  counters[regioni] – counters[regionj]  

15.    //  threshold is a constant defined by the user 

16.    IF diff ≥ threshold THEN 

17.     migrate_counter  migrate_counter + 1 

18.    END IF 

19.   END WHILE 

20.   // checks if the block should migrate 

21.   IF migrate_counter = (total_regions-1) THEN 

22.    // initiates the migration process 

23.    migrate_block() 

24.   END IF 

25.   END WHILE 

 

Figure 30 – Block access accounting algorithm. 

6.2 Free space verification 

The migration process is only performed if the L2 cache bank that will receive the 

migrating block has a free block slot to store it. Differently from other data migration 

approaches that swap two blocks of two different banks, our approach only migrates a 

block to a bank that has a free block slot.  
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To verify if the migration can be performed, after detecting that a given block can be 

migrated, the source L2 cache bank (where the block to be migrated is currently stored) 

sends a message to the target L2 cache bank requesting the address of a free block slot.  

If a free block slot is available, the target L2 bank reserves the position for receiving the 

migrating block and sends back the address of the free block to the source L2 bank. 

A submodule of the L2 cache bank, named free block searcher (FBS) is responsible 

for finding the address of the first free block in the bank. The FBS module uses the 

strategy of a circular search as shown in Figure 31. Each entry of directory memory has a 

valid bit that indicates if the block is valid or not. If a given block is not valid, it can be used 

to store a migrating block.  

0 1 3 4 N. . . . . . . .

First free block

2

 

Figure 31 – Circular mechanism for verifying free blocks in the L2 cache bank. 

The search algorithm starts checking if the first block is free (invalid) at position 0. If 

the block is not free, then, in the next clock cycle, the block 1 is checked. If a free block 

search has already been executed in the bank, the first block checked is the subsequent of 

the previous free block found. The same procedure is repeated for all blocks until a free 

block is found. If no block is found, the search is stopped at the position that it started.  

The FBS module takes L clock cycles to finish, where L is the number of blocks of the 

L2 cache to detect that it is full. The advantage of using such a serial search is the 

minimum area overhead. A parallel approach could be used instead. Several parallel 

searches could be triggered. Although resulting in a best performance, such strategy 

requires additional control structures and area.  

6.3 Migration process 

The migration process, shown in Figure 32, occurs in four steps: (i) request free block 

address; (ii) receive free block address; (iii) block transfer; and (iv) update address 

mapping table in PEs having the block. The first step (Figure 32 – 1) and the second step 

(Figure 32 – 2) were covered in Section 6.2. After receiving the free block address, the 

source L2 cache bank sends a copy of the block to the target bank (Figure 32 – step 3) 

and invalidates its local copy. In the last step (Figure 32 – step 4), the source L2 cache 

bank checks the directory entry of the block and sends an update address message to all 

PEs that have a valid copy of the block. The update address message informs to the PE 

that the bank storing the block has changed, causing an update to the address table.  
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Figure 32 – Four steps of the data migration process. 

Figure 33 shows the waveform of a logical simulation of block migration in an 8x8 

MPsoC instance. In the figure it is possible to see all steps of the process. In the scenario 

shown in Figure 33 the entire data migration operation takes 740 clock cycles. The 

timeslice of a task is of 16384 clock cycles. Thus, the time spent in data migration 

represents, in this case, only 4.5% of the timeslice. 

 

Figure 33 – Logical simulation of a data migration. 

(1) In label 1 of Figure 33, L2 cache bank whose network address is 38 sends a free block 

request to the bank whose network address is 0. The message has 6 flits, as shown in 

Figure 34, being the two first used by the NoC to route the packet (target network 

address and size, respectively). The third flit (0x0260) indicates the service, the next flit 

represents the source network address of the message and the last flit has no valid 

information (padding).  

flit 0 Target Address (0x0000) 

flit 1 Size (0x004) 

flit 2 Service (0x0260) 

flit 3 Source Address (0x0038) 

flit 4 Padding (No use) 

flit 5 Padding (No use) 

Figure 34 – Free block slot request format. 
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(2) In label 2, L2 cache bank 0 receives the message shown in (1).  

(3) In 3, L2 cache bank whose address is 0 sends the location of a free block back to 

cache bank 38 in a message as shown in Figure 35. In this example, the first free block 

found is in the address 0x0800 (5th flit in the message). 

 
flit 0 Target Address (0x0038) 

flit 1 Size (0x004) 

flit 2 Service (0x0270) 

flit 3 Source Address (0x0038) 

flit 4 Free block address (0x0800) 

flit 5 Padding (No use) 

Figure 35 – Free block slot response format. 

(4) In 4 L2 cache bank whose network address is 38 sends a copy of the block, which 

represents the migration of the block. The format of this message is shown in Figure 

36. This operation takes 337 cycles to complete.  

 

flit 0 TargetNetAddr (0x0000) 

flit 1 Size (0x0260) 

flit 2 Service (0x0369) 

flit 3 SourceNetAddr (0x0038) 

flit 4 Target Block (0x0800) 

flit 5 SourceTaskId 

flit 6-261 Payload (block data) 

Figure 36 – Block migration message format. 

(5) In 5, L2 cache bank whose network address is 38 updates all PEs with the new 

physical location of the block with a multicast message. The format of this message is 

shown in Figure 36. If in the future, any request arrives at bank 38 for the migrated 

block, it forwards the message to L2 cache bank 0.  

 
flit 0 Target Address (0x0038) 

flit 1 Size (0x004) 

flit 2 Service (0x0270) 

flit 3 Source Address (0x0038) 

flit 4 Original block addr (0x0180) 

flit 5 Free block address (0x0800) 

Figure 37 – Update address mapping table message format. 
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6.4 Migrated Block Search 

In the data migration algorithm proposed in this work, at most two messages are 

required to find a block in the system. A search occurs every time a PE accesses a word 

from a block that is not in its local data cache (cache miss). In this situation, the following 

actions are performed: 

(1) The microkernel of PE where the cache miss occurred sends a read request 

message to the L2 cache bank that stored that block for the first time. The 

target bank is determined based on the physical address of the block 

accessed; 

(2) If the block has not been migrated, the cache bank provides the block to the 

PE. Otherwise, the first L2 cache bank forwards the read request to the bank 

that currently stores the block, which will respond to the PE. 

A L2 cache bank stores, for each block, the network address of the L2 bank that 

stores the blocks that migrated from it. This approach requires the update of the network 

address of a given block after its migration. 

6.5 Concluding remarks 

The mechanisms of the proposed data migration protocol are evaluated in section 

7.3. The results obtained from this study were submitted to the Networks-on-Chip (NoCs) 

2012 conference. 
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7 RESULTS 

This Chapter presents the experiments performed to validate and evaluate the 

solutions proposed in chapters 4, 5, and 6. All solutions were implemented in a RTL 

version of HeMPS platform and validated through functional simulation (using the 

ModelSim simulator). 

To evaluate the consumed energy per memory transaction, the present work adopts 

the volume-based energy model proposed by Hu et al. [HU03]. Equation 1 computes the 

communication energy spent to transit 1 bit through a distance of n hops. 

bitbit LhopsShops

hops

bit EnEnE *)1(*   

 
(1) 

In Equation 1: ESbit (20.58 pJ/flit), ELbit (2.84 pJ/flit) and nhops correspond to the energy 

consumption of the router, in the interconnection wires and the number of hops to transmit 

1 flit, respectively.  

The energy model was calibrated using the ST/IBM CMOS 65 nm technology at 1.0 

V, adopting clock-gating, 100 MHz clock frequency and injection rate of 10% of the 

available link bandwidth. The PrimePower (Synopsys) tool generates the power and 

energy values used in Equation 1.  

This chapter is organized as follows: section 7.1 presents the experiments performed 

to evaluate the L2 cache bank and the NUCA organization (Chapter 4); section 7.1.5 

presents the experiments performed to evaluate the proposed optimizations to the MSI 

cache coherence protocol (Chapter 5); section 7.3 presents the experiments proposed to 

evaluate the region-based data migration algorithm (Chapter 6).  

7.1 Memory Organization experiments 

According to [VER07], the way that applications access the memory can be classified 

in: mostly-read, mostly-write and a mixed of both. Applications are classified as mostly-

read when the majority of memory accesses are reads; mostly-write when the majority of 

accesses are writes; and mixed, where read and write operations occur with the same 

probability. Considering the fact that in the HeMPS platform, before writing to a cache 

block it must be read, we assume that mostly-write and mixed sets can be evaluated 

through the use of the same set of applications. 

To evaluate the benefits of NUCA architecture proposed by this work in a NoC-based 

MPSoC, three sets of synthetic application were developed. Each set access the memory 

according to one of the three patterns described previously. For each pattern, 4 different 

implementations of the synthetic application are evaluated. Each implementation differs 

from the others in the number of tasks, which can be of 4, 6, 8 and 10 tasks. Each task 
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accesses four cache blocks of the L2 cache. In the mostly-read set, each task performs 

four read operations. For each block read, 40% of it is locally processed by the application 

before reading the next block. In the mostly-write set, each task executes four write 

operations. After each write, 40% of each block is modified by the task before starting 

writing in the next block. This simulates the processing time of the task. 

Each set of the synthetic applications was simulated in a 4x4 instance of the HeMPS 

Platform. Each task is mapped in a separated PE (up to 10 PEs are used). The number of 

L2 cache banks is varied: 1 L2 cache bank, 2 L2 cache banks and 4 L2 cache banks. The 

parameters evaluated during the simulation are presented per application: average miss 

latency; number of misses; and communication energy consumption.  

Also, two applications were adopted as benchmarks to evaluate the benefits of 

NUCA over CSM architecture: Matrix Multiplication and Equation Solver. 

7.1.1 Mostly-read set 

The results for mostly-read applications set are shown in Figure 38. According to the 

results, the average cache miss latency decreases as the number of L2 cache banks 

increases, due to two factors: (i) the increased cache bandwidth; and (ii) the possibility of 

mapping applications tasks to PEs near to the cache bank which will be mostly accessed 

by the task. The cache bandwidth is increased because each bank is independent and can 

handle a different cache request, which reduces the number of packets that are queued 

before being handled. In current manufacturing technologies, wire delay is considered a 

major problem to cache designs, therefore allocating tasks close to cache banks helps 

reducing the latency that a given operation takes to be executed. 

 

 

Figure 38 – Cache miss average latency (AL), expressed in number of clock cycles, for a 
varying number of applications tasks and L2 cache banks for the mostly-read set. 

As shown in Figure 38, cache miss latency for the configuration which uses only 1 L2 

cache bank is always higher, even when being accessed by a small number of tasks.  The 

two banks configuration presents an average latency similar to the latency presented by 4 



 

 

 
 

72 

banks (except for the 4 tasks case). Although, the worst latency (shown as extension of 

the graph – thinner blocks) is high for 10 tasks, which means that some of the tasks 

experience high miss latency in this configuration.  

7.1.2 Mostly-write set 

The results for the mostly-write application set are shown in Figure 39. The difference 

from the mostly-read application set is that the 4 cache banks configuration shows a more 

significant decrease in average cache miss latency when compared to the other 

configurations. The reduction in number of cycles is of up to 23% for the 8 tasks 

application.   

It is possible to conclude that the average cache miss latency increases fast as the 

number of applications accessing that cache also increase. Therefore, the NUCA 

architecture can help reducing latency by distributing cache access messages across the 

NoC and also, by increasing access bandwidth.  

 

 

Figure 39 - Average write latency (AL), shown in number of clock cycles, for a given 
number of L2 cache banks. Also, worst write request latency (WL) for a given configuration 

of cache banks. 

7.1.3 Matrix multiplication (MM) 

The implementation of the MM application follows the traditional quadratic algorithm, 

with no optimizations. The core of the implementation of this application for the HeMPS 

platform is shown in Figure 40. The outmost loop iterates over the blocks of matrix, while 

the subsequent loop iterates over the columns of the matrix. The value of a cell of the 

resulting matrix is the result of the sum of all columns of the first matrix multiplied by all 

blocks of the second matrix. In the code, the tmp variable accumulates this value, and is 

then used to write the value to the resulting matrix (in the block where the function 

write_block_word is called).  
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The outmost loop can be parallelized. Each task can iterate over part of the blocks of 

the first input matrix, while the inner loops must be replicated in all tasks. The matrix 

multiplication can be characterized as a mostly-read application due to the fact the 

innermost loop has two reads, while the write operation is only executed once per column.  

In the implementation for the HeMPS Platform, the input matrices are statically set 

into the L2 cache banks at design time. The size of both matrices is 10x10.  

 

 

Figure 40 – Core part of the implementation of the matrix multiplication for the HeMPS 
platform. 

 Scenario 1 

Figure 41 presents the task graphs of two MM applications. In both cases, two tasks 

are used to execute the multiplication; each task is responsible for generating half of the 

resulting matrix. The difference between applications is that in application a (a), both tasks 

access the same L2 cache bank, while in application b (b), each task accesses a different 

L2 cache bank. 

T0

T1

$0

$1

T0

T1

$0

a) Two tasks (T0, T1) and 

one cache bank ($0)

b) Two tasks (T0, T1) and two 

cache banks ($0, $1)

Application A Application B

 

Figure 41 – Two different implementations of a MM application using 2 tasks. 

Table 5 shows that the average miss latency is smaller in application B, due to the 

use of 2 cache banks. The energy consumed in communication is also smaller, because 

applications can be mapped to PEs closer to the L2 bank that it is going to access mostly. 

This reduces the number of hops that each message sent from a PE to the cache must 

traverse. The execution time decreases when using 2 cache banks because fewer 

requests are queued in the L2 cache banks. 
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Table 5 – Results obtained from simulation of scenario 1 of matrix multiplication. (c/c 
means clock cycles) 

 Application A Application B 

Average miss latency 630 c/c 580 c/c 

Hit count 13489 13082 

Energy consumed  

(Communication) 
3.45µJ 2.28µJ 

Execution time 218133.5 c/c 212093.5 c/c 

 

 Scenario 2 

Figure 42 presents two task graphs for a MM application, which uses 3 tasks. The 

situation is similar to the one presented in Figure 41. The difference is that each task is 

responsible for generating 1/3 of the resulting matrix. 

T0

T1

$0T2

a) Three tasks (T0, T1, T2) 

and one cache bank ($0)

b) Three tasks (T0, T1, T2) and 

two cache banks ($0, $1)

T0

T1

$0

$1T2

Application A Application B

 

Figure 42 – Two different implementation of a MM application using 3 tasks. 

Application A uses only one cache bank, while application B uses two cache banks. 

As the average miss latency is lower for application B, the total execution time of the 

application decreases when compared to application A.  Compared to Scenario 1, the 

execution time is significantly smaller because of the increase in the level of parallelization. 

The energy spent in communication is near the same due to the fact that the memory 

accesses are the same in both cases.  

 

Table 6 – Results obtained from simulation of scenario 2 of matrix multiplication.  (c/c 
means clock cycles) 

 Application A Application B 

Average miss latency 625 c/c 538 c/c 

Hit count 5362 5233 

Energy consumed  

(Communication) 
1.69 µJ 1.68 µJ 

Execution time 108376 c/c 102898 c/c 
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7.1.4 Equation Solver 

The equation solver kernel [CUL99] solves a simple partial differential equation on a 

grid, using what is referred to as finite differencing method. The kernel sweeps over the 

grid, excluding the border blocks, updating each point by using the values of its neighbors. 

The algorithm stops when the generated value for all points converges over a pre-defined 

tolerance. The expression used for updating each point is described in Equation 2: 

 

   (2) 

In Equation 2, A is the grid of values of the original expression.  

Figure 43 shows 3 task graphs that implement the equation solver application. In all 

task graphs, the problem is divided into 4 tasks; each task is responsible by updating 25% 

of the blocks of the grid per sweep. For each sweep, the Sync task is responsible for 

implementing a barrier that guarantees that each task waits for the others to finish until all 

the grid is updated (synchronization). The difference between task graphs a, b and c is the 

number of L2 cache banks used.  
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Figure 43 – Tasks graphs for equation solver application. 

Table 7 shows the results for the three applications. In this case, the only gain using 

more cache banks is the reduction of the average cache miss, which is of approximately 

7% comparing the 4 L2 cache banks configuration over the 1 bank configuration. There is 

an increase in energy consumption of communication when the number of cache banks 

increases. The execution time for all applications is nearly the same, which means that the 

load of the application is not problematic for the only one cache bank scenario.  
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Table 7 – Results obtained from simulation of the equation solver application.  (c/c means 
clock cycles) 

 Application A Application B Application C 

Average miss latency 537.25 c/c 510.5 c/c 502.15 c/c 

Energy consumed  

(Communication) 

0.17 µJ 0.29 µJ 0.29 µJ 

Execution time 0.85ms 0.85ms 0.84ms 

7.1.5 Concluding remarks 

The results for the MM applications presented a reduction in both latency and 

communication energy consumption as the number of L2 cache banks increases. The 

reduction in latency is justified by the increased bandwidth of the higher number of banks, 

whilst the reduction in energy consumption is justified by the fact that application tasks can 

be statically mapped closer to the L2 banks, decreasing the distance travelled by the 

packets of the memory transactions. The Equation Solver applications do not show 

significant reductions on latency because the load of simulated applications is small and 

therefore, the communication overhead overlooks the gain provided by using more L2 

cache banks.  

7.2 Cache Coherence Protocol experiments 

This section presents experiments performed to compare the optimized cache-

coherence protocol presented in Chapter 5, against a non-optimized MSI directory-based 

protocol. 

7.2.1 Experimental Setup 

The HeMPS platform used as a case study is configured as: 5x5 NoC mesh 

topology, containing 24 PEs (1 master and 23 slaves) and 1 L2 cache bank. The first 

implementation, named OPT, employs the four optimizations described in Chapter 5. The 

second implementation, named NO-OPT, adopts a standard MSI directory-based protocol 

based on unicast messages only. In all experiments, the results evaluate the number of 

clock cycles, and the energy spent in communication between the PEs and the L2 cache.   

The packets containing memory operations are generated by synthetic application 

tasks. Figure 44 shows an example of application, which uses two functions of the cache 

library: cache_read_block_word, which reads a word of a block (indicated by number 1 in 

Figure 44); cache_write_block_word, which writes to a given word of a shared block 

(indicated by number 2 in Figure 44). In the current example, the value 0x44 is written to 

the first word of block 1. 



 

 

77 

7.2.2 Invalidating cache blocks 

In situations where more than one cache is sharing the same block of the L2 cache, 

the cache controller needs to send invalidation messages to invalidate these copies before 

granting exclusivity to a PE. To evaluate the benefits of using multicast to propagate these 

messages, the number of caches sharing a copy of the same L2 block varies. Table 8 

shows the number of clock cycles required to send invalidation messages to 3, 5 and 8 

caches, respectively. Although with a smaller number of targets to invalidate, the first 

scenario (3 caches sharing a block) presents higher gain compared to the non-optimized 

implementation. This is due to the task mapping on the platform, which allowed the 

sending of only one multicast message, which significantly reduces the amount of data 

transmitted on the NoC. For the other scenarios (5 and 8 caches sharing a block), the use 

of multicast messages saves energy and improves performance at most 17.53%. 

 

 

Figure 44 - Example of an application reading and writing to the shared memory. 

Table 8 – Number of clock cycles and energy consumption of invalidate messages 
depending on the number of caches sharing a block. 

 Platform 3 caches 5 caches 8 caches 

Energy 
(pJ) 

NO-OPT 1635 2584 3798 

OPT 685 2073 2916 

 OPT gain vs NO-
OPT 

58.07% 19.76% 23.20% 

Clock 
Cycles  

NO-OPT 141 154 147 

OPT 129 127 129 

 OPT Gain vs NO-
OPT 

8.51% 17.53% 12.24% 
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7.2.3 Read request optimization 

To evaluate the read optimization, a task after a cache miss, must issue a read 

request to a modified block. Upon receiving the request, the L2 cache issues a write-back 

request to the PE, which holds exclusivity on the block being requested. In the OPT 

implementation, after receiving the write-back request, the PE sends a multicast message 

containing a copy of the block, both to the L2 cache and to the requesting PE.  

The experiments varied the distance, in hops, between the PE reading the block and 

the L2 cache. Figure 45 presents the results. The average energy reduction offered by the 

optimization is 12%. However, the NO-OPT implementation is slightly faster than the OPT 

implementation (in average 30 clock cycles), due to the higher complexity to treat multicast 

packets at each router, and the non-minimal path taken by these packets. 

 

Figure 45 - Energy consumption of the read operation on a modified block as the number 
of hops increases. 

7.2.4 Write request optimization 

To evaluate the write optimization, a task after a write miss, must issue a read with 

exclusivity request to a modified block. Upon receiving the request, the L2 cache issues a 

write-back request to the PE, which holds the modified copy of the block being requested. 

In the OPT implementation, after receiving the write-back request, the PE sends a unicast 

message containing a copy of the block, only to the requesting PE, bypassing the L2 

cache. To evaluate this optimization, the placement of the L2 cache is defined in Figure 

48(a). The PE holding the modified copy of the block is fixed at PE00. The evaluated 

scenarios varied the position of the PE writing to a block of the cache. 

Figure 46 shows that there is an average reduction of 17% in the number of clock 

cycles required to finish the write operation. Also, Figure 47 shows that there is a reduction 

of up to 86.8% on the energy spent during this operation by the OPT implementation over 

the NO-OPT. The reason of this significant reduction is that long messages, containing 



 

 

79 

data blocks, are transmitted only once, from PE to PE. The L2 cache can be bypassed 

because its copy of the block would be altered right after.  

 

Figure 46 - Number of cycles required to execute a read operation on a modified block 
varying the location of the modified block. 

 

Figure 47 - Energy consumed to execute a read operation on a modified block varying the 
location of the modified block. 

7.2.5 The Transition state 

To evaluate the addition of the transition state, a scenario where 2 PEs issue 

subsequent reads to a modified block of the L2 cache is analyzed. The first PE which 

issues a read request will benefit from the Read request optimization, whilst the second 

PE will benefit from the addition of the T state. The NoC feature enabling this optimization 

is the duplicated physical channels, because while the L2 cache controller monitors the 

channels waiting for a write-back packet, the other channel can receive requests, such as 

a read request. 

The results show that the gains against the standard MSI protocol, in this case, are 

sensitive to the task and L2 cache mapping. In scenarios where the PE that issues the 

second read request is closer to the PE previously holding the modified copy of the block, 

there are gains both in performance of the protocol (decrease in clock cycles) and also a 

save on the energy spent during the operation. Figure 48(a) shows a scenario where PE18 

holds the modified copy of the block being accessed, PE10 is the second reader and the 
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L2 cache is located at the upper left corner of the platform. In this case, the second read 

operation consumes, in the OPT version of the platform 19.035 pJ, against 42.893 pJ for 

the NO-OPT version. This represents a 55% decrease in energy consumption. The 

number of clock cycles required is decreased by 7%.  

In scenarios where the PE that issues the second read request is closer to the L2 

cache, the addition of the T state increases the number of clock cycles, and the consumed 

energy. In Figure 48(b), the second reader is mapped on PE10, PE01 holds the modified 

copy being accessed and the L2 cache is located at the upper left corner. For this case, 

the energy consumed during this operation by the OPT implementation is 37.583 pJ, 

against 30.621 pJ for the NO-OPT. It represents a 22% increase on the energy consumed. 

The number of clock cycles is increased by 5%.  

To reduce energy consumption for all scenarios, this optimization must be activated 

dynamically according to the task mapping. Upon receiving a read request, a module of 

the L2 cache calculates the Manhattan distance between PEs (PE reading and PE holding 

the modified block) and L2 cache, and chooses if it is best to use the T state optimization 

or block the request until finishing the write-back operation for this block. 
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(a) Optimized task mapping. 
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(b) Unoptimized task mapping. 

Figure 48 –Task mappings for the T state optimization. 

7.2.6 Concluding remarks 

This work is one of the first attempts to explore the benefits NoCs can bring to cache-

coherence protocols, evaluating a complete system at the RTL level (PEs and the NoC), 

including the software (microkernel and applications) running on top of it. 

By using the proposed protocol optimizations, results show that it is possible to 

reduce the energy consumed by the operations up to 86.8% (average reduction: 39%) and 

to achieve an improvement of 17.53% in the execution time (clock cycles). All 

optimizations, except the Transitions state, always reported energy reduction. The 

Transition state optimization is sensible to the task mapping. This fact points to several 

future works, as couple the proposed techniques to mapping heuristics that consider the 



 

 

81 

memory position in the MPSoC, and data migration policies to optimize the memory 

performance.  

7.3 Data Migration Protocol experiments 

This section presents the experiments performed with the data migration algorithm in 

the HeMPS platform. The experiments presented in this section were performed in a 

HeMPS platform configured as follows: 6x6 and 8x8 2D mesh; four regions and one L2 

bank per region. The threshold for data migration is four accesses.  

Experiments were performed with a synthetic and a real applications. The synthetic 

application simulates the execution of 15 cache misses. In this way, 15 accesses are 

issued to a L2 cache bank. Between each read operations, a loop simulates the execution 

of the application. The real application used to evaluate data migration consists of a 16x16 

matrix multiplication algorithm (section 7.1.3), implemented with four tasks. Two scenarios 

are proposed to evaluate energy consumption. In scenario 1, illustrated in Figure 49, two 

PEs (PE 11 and PE 14 – region 0) access a block located at L2 cache bank that is located 

at network address 30 (L2 Bank 30 – region 2). In this scenario, the energy consumed by 

data migration is important, as the data must be transmitted from a L2 cache bank that is 

10 hops away from the original location of the block. The distance before data migration of 

the PE 11 and PE 14 to the accessed L2 cache bank is of 9 and 6 hops, respectively. After 

migration, the distance is reduced for 1 hop for PE 11 and 4 hops for PE 14.  
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Figure 49 – Example scenario 1 for data migration, evaluates migration of a block from a 
distant region. 

In scenario 2, illustrated in Figure 50, the same two PEs of the previous scenario 

access a block that is located at a neighbor region (region 3).  The distances of the PEs to 

the accessed L2 bank, which is originally L2 bank 35, for PE 11 and PE 14 is 4 and 5 

hops, respectively. After migration, distance is reduced to 1 and 4 hops, respectively. 
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Figure 50 – Example scenario 2 for data migration, evaluates migration of a block to a 
neighbor region.  

Both scenarios are used to evaluate data migration in an 8x8 NoC configuration. For 

all scenarios energy consumption and latency of cache accesses are measured before 

and after migration.   

All tasks of the matrix application were mapped in Region 0, as shown in Figure 51 

(PEs 01, 09, 10, 11). The data of the matrices were statically initialized at L2 Bank 35. This 

situation simulates a scenario where a task mapping heuristic mapped application tasks 

far from the location where the data they accesses are stored. 
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Figure 51 – Matrix multiplication task mapping.  
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7.3.1 Energy evaluation 

Table 9 shows energy values for both scenarios and NoC configurations. It is 

possible to notice that a 52.4% reduction in energy consumption in communication was 

obtaining when migrating the block accessed by PE 11 from the L2 cache bank of region 2 

to region 0 in the 6x6 NoC configurations. The significant reduction is obtained because 

after migration, the accesses messages must traverse only 1 hop instead of 9. The energy 

cost of migration is easily hidden in this situation. A smaller gain of 11% is noticed for PE 

14. This is justified by the fact that for this PE the distance to the accessed L2 cache bank 

decreased only 2 hops. As the size of the NoC increases, from 6x6 to 8x8, it is possible to 

see that migrating the block close to the PE brings an even higher decrease of 54.7% for 

PE 11, although the decrease in energy consumption after migration for PE 1C, positioned 

in the border of two regions, is smaller than in the previous scenario. This happens 

because the decrease in energy consumption is small and the migration cost is high. 

Therefore, to amortize the migration cost, a significant number of operations must be 

performed in the migrated block after migration. 

 

Table 9 – Energy values obtained for scenario 1 and 2 considering 6x6 and 8x8 NoC 
MPSoCs. 

 6x6 MPSoC 8x8 MPSoC 

  Energy PE 0x11 
PE 

0x14 
 Energy PE 0xF 

PE 
0x1C 

Scenario 
1 

Without 
data 

migration 

Single 
access 

878.3 nJ 
590.3 

nJ Without 
data 

migration 

Single 
access 

1274.04 
nJ 

779.4 
nJ 

Overall 
13175.07 

nJ 
8723.4 

nJ 
Overall 

19110.6 
nJ 

11691.1 
nJ 

With data 
migration 

Single 
access 

86.9 nJ 
383.7 

nJ With data 
migration 

Single 
access 

86.9 nJ 
581.5 

nJ 

Overall 
6267.8 

nJ 
7751.7 

nJ 
Overall 

8654.08 
nJ 

11127.2 
nJ 

 
Overall 

reduction 
52.4% 11.1%  

Overall 
reduction 

54.7% 4.8% 

Scenario 
2 

Without 
data 

migration 

Single 
access 

383.7 nJ 
482.6 

nJ Without 
data 

migration 

Single 
access 

581.5 nJ 
680.4 

nJ 

Overall 
5755.6 

nJ 
7239.5 

nJ 
Overall 

8723.4 
nJ 

10207 
nJ 

With data 
migration 

Single 
access 

86.9 nJ 
383.7 

nJ With data 
migration 

Single 
access 

86929.92 
nJ 

581.5 
nJ 

Overall 
3285.09 

nJ 
6747.5 

nJ 
Overall 4478 nJ 

9919.1 
nJ 

 
Overall 

reduction 
42.3% 6.8%  

Overall 
reduction 

48.7% 2.82% 

 

For the second scenario, the migration cost is smaller, as the source and target L2 

cache banks for the migrated block are closer. The gains for PE 0x11 and PE 0xF that are 
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one hop from the target L2 cache bank is significant because PEs are closer to the L2 

cache bank 0. Although, for the other PEs, the distance from the source L2 cache bank to 

the target one decreases by only one hop. Even in this case, the gains reach 4.8%.  

The matrix multiplication was executed and evaluated with and without migration. 

Application tasks were mapped in a neighbor region of the L2 cache bank were the 

matrices were stored. A 7.2% reduction in energy consumption was obtained. The smaller 

reduction observed in this application comes from the fact that some blocks are constantly 

evicted from the L2 cache bank due to a conflict of blocks in direct mapping. The eviction 

of the blocks triggered the migration of one of these blocks, resulting in a smaller decrease 

of energy consumption. 

7.3.2 Latency evaluation  

The latency results obtained for both scenarios and matrix multiplication were similar. 

The evaluation of the first scenario (Figure 49) showed that without using data migration, 

the average miss latency was of 766 clock cycles, and the worst case was of 1197 clock 

cycles. When using data migration, the average miss latency increased slightly to 817 

clock cycles, and the worst case was the same of 1197 clock cycles. The reason for the 

increase of 6% in number of clock cycles was that during the process of data migration, 

cache misses take longer to be treated by the L2 cache bank. Although NoC bandwidth is 

high, and data migration takes only about 535 clock cycles to finish in a 6x6 NoC 

configuration, misses that are issued during this period are penalized.  

The latency results for the performed experiments showed that even in situations that 

a PE accesses data from a closer L2 bank, the number of clock cycles required to finish 

the operation does not decrease.  This happens because, even for the cases where the L2 

bank is farther, network latency is significantly smaller than PEs latency. Figure 52 shows 

the latency for cache access latency before and after migration considering an 8x8 

configuration for the NoC. The accessed block was originally in L2 cache bank located at 

network address 56, and migrated to a L2 bank located at network address 00. The PE 

accessing the block has the network address 15. When the PE accesses the block in the 

distant memory, the read request takes 76 clock cycles to be received by L2 bank 56. This 

bank takes 6 clock cycles to start sending the requested block back to the PE. After 68 

clock cycles the first flit arrives at PE 15. The packet issued in response operation takes 

534 clock cycles to be consumed by the PE. When the response packet arrives at PE 15, 

it has not finishing processing the request packet that it had sent previously. This happens 

because after sending a read request packet, the PE runs the scheduler function of the 

microkernel, which looks if there is any task available to execute while waiting for the 

response packet.  
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Figure 52 – Evaluation of number of cycles spent in each step of a read request operation 
before and after migration. 

As the response packet tends to arrive back very fast, reducing network latency 

between the read request and response will not make the overall execution time of the 

read operation decrease.  To illustrate this point, another read access is performed to the 

new L2 cache bank 00, which is one hop far from PE 15. Network time for the read request 

is significantly smaller, 17 clock cycles. Also, the number of clock cycles required for the 

first flit (of the response packet) arrives at the PE decreases from 68 to 8. Although, when 

the first flits arrive at PE 15, it is not ready for treating incoming packets from the NI as it is 

running the scheduler algorithm. Therefore, the overall number of clock cycles taken in 

both scenarios, before and after migration, is identical (684 clock cycles). 

7.3.3 Concluding remarks 

A significant reduction in energy consumption was obtained in both NoC 

configurations. For the 6x6 NoC configuration, a decrease of 52% was obtained 

considering the best scenario for data migration and 54.7% for the 8x8 configuration. The 

reduction average of all evaluated scenarios was of 29%. The matrix multiplication showed 

a decrease of 7.2% in energy consumption due to data migration of constantly evicted 

blocks. 

Despite the fact that a decrease in network latency was obtained, the overall latency 

of L2 read operations performed in the L2 cache banks was not observed because the PE 

is not ready to treat the response packet at the moment it arrives back, even for the slower 

scenarios. This fact clearly demonstrates the large bandwidth offered by NoCs, serving 

PEs with small latencies. 
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8 CONCLUSIONS AND FUTURE WORKS 

The increasing number of PEs in MPSoCs requires the study of memory solutions 

that present high bandwidth, low latency and low energy consumption. Allied to this, the 

exploration of the NoCs by memory mechanisms is required as this interconnection 

architecture becomes predominant.  

This Dissertation contributed in three different topics related to memory organization 

in NoC-based MPSoCs: 

 NUCA organization; 

 cache coherence protocols for NoC architectures; 

 data migration protocol. 

The adoption of NUCA organizations helps eliminating the problem of latency in 

cache access because there is no need to consider the slowest latency as in uniform 

organizations. Distributing a single cache bank into several banks decreases wire delay, 

which is a serious problem in state-of-the-art chips [BEC04]. Also, the adoption of NUCA 

allows the development of data migration protocols such as the one proposed in this work. 

The development of cache coherence protocols for NoC-based MPSoCs must 

consider the interconnection mean. This exploration enables the optimization of the 

protocol resulting in both smaller energy consumption and latency. The use of physical 

multicast messages in the implementation of directory-based protocols is mandatory as 

the number of PEs increases to decrease the number of issued packets in the network. 

The MSI directory-based protocol proposed in this work showed that it is possible to 

reduce the energy consumed by the memory operations up to 86.8% (average reduction: 

39%). 

The development of data migration protocols is essential for NUCA architectures 

because data are attracted to cache banks nearby the PEs that mostly access it. The 

advantages of accessing closer banks are the smaller energy consumption, smaller 

network latency that helps preventing the occurrence of congestion in some areas of the 

NoC. The data migration protocol proposed by this work showed that it is possible to 

decrease energy consumption up to 54.7% (average of 29%) and network latency. 

Although due to the latency of the software layer, for the presented experiments the overall 

memory operations time has not decreased even when having a smaller latency in the 

NoC.   

8.1 Future works 

The current work is an initial effort performed by the Author to explore NUCA 

organizations and study adaptive memory mechanisms for NoC-based MPSoCs having 
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several PEs. Future works include a deeper study and evaluation of the mechanisms 

proposed by this work and software mechanisms that are required to provide memory 

consistency. Future works include: 

 Synthetize the L2 cache bank controller and evaluate area and static energy 

consumption; 

 Compare the area of a synthetized L2 cache bank with the area consumed by 

the PLASMA PE; 

 Evaluate the impact of NoC topology on the cache coherence protocol; 

 Use physical network priority to evaluate transactions of the cache coherence 

protocol; 

 Perform a deeper evaluation of the proposed data migration protocol 

considering the influence of the cache coherence protocol; 

 Study and evaluate new heuristics to trigger data migration; 

 Study and evaluate new heuristics to determining better data placement; 

 Study and evaluation of a memory consistency model at the software level. 
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