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Abstract—This paper presents the analysis of a fault injection
campaign in the CPU registers of the LEON3 softcore processor.
The faults are injected through the use of simulation scripts that
force a bit flip while the processor is running a set of three
different workloads. The study is restricted to single bit upsets
(SBU) and investigates the effects of the injected faults and how
they propagate to the CPU core boundaries. The obtained results
show that the majority of the failures are due to faults injected in
only a small number of the processor registers. Furthermore, in
this study, it is proposed a partial triple modular redundancy
approach to protect only the CPU’s most sensitive registers,
achieving a 99.25% SBU tolerance with only a marginal increase
in area.

Index Terms—Fault Injection, FPGA Reliability, SEU, Soft
Error.

I. INTRODUCTION

Embedded processors are used in a wide number of ap-
plications, ranging from aerospace and avionics industry to
household automation systems. Many of those applications
are safety-critical and thus have very rigid dependability
requirements. One of the major concerns when it comes to
dependability are the soft errors, which have the potential to
induce the highest failure rate of all other reliability mecha-
nisms combined [1].

With the modern processors, the rate of radiation-induced
soft errors is increasing dramatically [2]. The continuous
technology downscaling and the lower supply voltages, leads
to an increase in the susceptibility of memory and logic to
radiation coming from atmospheric neutrons or by on-chip
radioactive impurities.

The soft error, or single event upset (SEU), occurs when
a radiation event causes the data state of a memory element
(e.g., register, latch, flip-flop) to be reversed [1]. In soft errors
there is no hardware damage, the affected memory element
can be overwritten with new data. In the most common
scenario the radiation event affects only a single bit, called
single bit upset (SBU). Higher energy radiation events may
cause multiple bits to be affected, leading to a multiple bit
upset (MBU). Furthermore, radiation events that travel through
combinational logic are called single event transient (SET),
and if they propagate to a memory element, they also lead to
a SEU.

There are many works in the literature that propose tech-
niques for SEU mitigation in the memory hierarchy (e.g.,
register file, caches and main memory). Those techniques are
usually based on using error correcting codes (ECC) [3] [4].

When dealing with SEU in the control logic, the most com-
mon approach is the use of the triple modular redundancy
(TMR) [5]. This approach provides single error masking and
double error detection, but when applied to the entire design,
TMR implies in very high area overhead. These costs can
be mitigated with partial TMR approaches [6] [7], which
selectively apply the redundancy in the most vulnerable areas
of the design.

Embedded processors provide a good opportunity to explore
the use of partial redundancy since they usually are very
complex designs that implement hundreds of instructions, with
many of them never being executed, or executed very sparsely
in common workloads. In order to take advantage of this,
deeper knowledge of how SEU-induced faults manifest in the
target processor, and how they propagate to its boundaries
is fundamental. ARM Research did a very comprehensive
study [2] in this regard, conducting an intensive fault injection
campaign in the ARM Cortex-R5 CPU core. They concluded
that only 10% of the sequential elements in the Cortex-R5,
accounts for more than 70% of the errors, suggesting that an
important reliability improvement can be obtained protecting
just these most sensitive components.

In this paper, the investigated processor is the LEON3
from Cobham Gaisler [8], which was developed targeting
critical space applications, supported by the European Space
Agency (ESA). Previous works had conducted fault injection
experiments in the LEON family. In [9] the authors presented
the preliminarily results of a fault injection campaign directed
to the LEON3 integer pipeline. The study divided the pipeline
registers based on their functionality into five categories, and
analyzed each of them regarding their sensitivity to both SBU
and MBU. In [10] the authors compare the default LEON2
with a fault tolerant version. This work was also focused in
the pipeline unit of the processor, with the results highlighting
the different vulnerabilities to faults between the pipeline
stages. In [11], a study evaluated the susceptibility of the
LEON3 with different fault models, including SBU, MBU, and
transient faults. The analysis covered the processor pipeline
registers, register file and caches. Although suggested, partial
redundancy to protect the most vulnerable registers has never
been actually implemented and properly evaluated in any of
the references considered in this paper.

The purpose of this paper is to present an extensive analysis
of the results of a fault injection campaign targeting the
LEON3 processor core, which comprises both the pipeline
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execution unit and the cache controllers. The study investigates
the effects of the injected faults, and how they manifest in the
processor interfaces with other modules such as the caches,
main memory and register file. Based on the information
of the LEON3 most vulnerable registers, a partial TMR
technique is evaluated regarding its fault tolerance and the
area/performance overhead.

The remaining of the paper is organized as follows. Section
II describes an overview of the LEON3 Processor. Then,
Section III describes the fault injection methodology used for
the experiments. Section IV discusses the obtained results,
including the evaluation of the partial TMR implementation.
Finally, Section V concludes the paper.

II. LEON3 PROCESSOR

The LEON3 is a 32-bit processor compliant with the SPARC
V8 instruction set architecture. It is designed for embedded ap-
plications, combining high performance with low complexity
and low power consumption. The processor is described using
the VHDL description language, and is available under the
GNU GPL license.

The LEON3 core features a seven stage pipeline with
separate instruction and data caches. Furthermore, the presence
of an AMBA-2.0 bus interface, allows the processor to be
integrated with many other IPs from the Gaisler Research IP
Library (GRLIB) [12]. Being highly configurable, the LEON3
is particularly suitable for system-on-a-chip (SOC) designs.

In addition to the default LEON3 implementation, Cobham
Gaisler also offers a fault tolerant version (LEON3FT), which
provides protection against SEU errors. The LEON3FT fault
tolerance is focused on the protection of the on-chip RAM
blocks, which are used to implement the register file and
the cache memories, and therefore does not comprehend the
processor control logic.

In Fig. 1 the LEON3 processor core (PROC3) is presented,
which is the target of this study. The PROC3 is composed
of two submodules. The larger one, the integer unit (IU3)
implements the entire processor seven stage pipeline. The
other one is the cache controller, which can be further divided
in the instruction cache controller (ICACHE), the data cache

Fig. 1. LEON3 Processor Core (PROC3).

TABLE I
NUMBER OF REGISTERS IN EACH PROC3 SUBMODULE

Submodule Registers Bits
IU3 232 1193
ICACHE 34 264
DCACHE 83 525
ACACHE 13 17

controller (DCACHE), and the interface between the cache
controllers and the AMBA AHB bus (ACACHE). The entire
PROC3 has a total of 362 registers, all of them investigated in
the fault injection experiments conducted in this work. Table I
provides a breakdown of the register distribution in each of
the PROC3 submodules.

Also presented in Fig. 1 are the PROC3 main output
interfaces (i.e., ports), which are observed during the fault
injection campaign to identify the fault propagation paths and
obtain relevant statistics such as fault manifestation times.
The interfaces connected to the IU3 are the integer register
file (RFI), the processor debug support unit (DBGO), and the
instruction trace buffer (TBI). Moreover, the ones connected
to the cache controller, are the cache memory array (CRAMI),
and the AMBA AHB bus (AHBO).

Concerning the implementation of the partial TMR tech-
nique proposed in this work, the most vulnerable registers
found in the fault injection campaign were triplicated and
connected to a majority voter. Since no combinational circuit
was also replicated, the suggested approach does not offer
protection against transient faults. As the LEON3 operating
frequency in FPGAs is under the 125MHz, the likelihood of
an SET is considered negligible in current technologies [13].

III. FAULT INJECTION METHODOLOGY

This section first describes the fault injection strategy that
was adopted. Then, it presents the chosen fault model for the
experiments, followed by the fault effect classification and the
workload description. Finally, the technique to perform the
fault propagation investigation is detailed.

A. Fault Injection Environment

There are several different fault injection strategies proposed
in the literature. They can be classified in five main categories:
hardware-based fault injection, software-based fault injection,
simulation-based fault injection, emulation-based fault injec-
tion and hybrid fault injection. In [14] it is presented an
extensive survey that compare the different techniques, and
summarizes their advantages and limitations.

In order to fully achieve the objectives of this work, the fault
injection technique chosen had to meet a set of characteristics
such as: full access to the entire processor design without
being intrusive (i.e., not requiring the processor to be stalled,
or any other interference in the execution flow), a good time
resolution and high observability. The method that was found
to best fit those requirements is the simulation-based fault
injection. The main disadvantage of this technique is that it is
time consuming, as simulation time is substantially longer than



real time execution. This limitation combined with the high
number of experiments required to obtain great confidence in
the results, imposed an upper bound in the size of the workload
running in the processor during the experiments.

The simulation-based strategy adopted in this work relied
on the use of built-in simulator commands within TCL [15]
scripts. This setup enabled interaction with the simulation
engine, allowing the manipulation of signals (fault injection),
and observation of the fault effects. The HDL simulator used
for the experiments was the Modelsim [16] from Mentor
Graphics.

The following steps summarize the tasks executed in each
fault injection experiment:

1) Choose a random flip-flop where the fault will be
injected. The selection is done from a list containing all
the registers that are being analyzed in the campaign.
It is important to note, that since the injection target
is selected randomly at the bit level, by the end of the
fault injection campaign, the number of injected faults
by register will be proportional to the register size.

2) Choose a random instant when the fault will be injected.
In order to avoid injecting faults in the processor warm
up phase, the time interval considered for fault injection
comprehend the final 80% of the simulation runtime.

3) Simulate until the chosen injection instant.
4) Inject the fault by forcing a bit flip in the target flip-flop.

Note that the value is not stuck, and can be normally
overwritten during the remaining of the simulation.

5) Simulate until the workload finishes execution or a
predefined timeout is reached.

6) Compare the final registers contents to the ones obtained
from a golden run (executed previously).

7) Finally, store all the collected statistics in a CSV file,
for later analysis.

B. Fault Model

The adopted fault model for the fault injection campaign
is the SBU. In each experiment a single fault is injected by
inverting the logic value of the target signal. Multiple faults
due to a single radiation event (MBU) are not addressed in this
paper. In order to accurately model this effect, it is necessary
to have information regarding the final design layout and the
register neighborhood, which is not available during the HDL
simulation.

C. Fault Effects Classification

After the end of each fault injection experiment, the data
obtained during the simulation is used to classify the fault
effects in five categories. The classification, which is based on
the one used in [10] and [17], is the following:

• No Effect - The program finishes execution normally, with
correct results, and the contents of the processor core
registers match with the golden run.

• Latent - The program finishes execution normally, with
correct results, but the contents of the processor core
registers do not match with the golden run.

• Wrong Result - The program finishes execution, but with
incorrect results.

• Timed Out - The program took an abnormal amount of
time without finishing execution and the simulation was
interrupted. Many conditions may lead to this scenario,
such as an incorrect branching due to the injected fault.

• Exception - The processor detected an unexpected event,
generating a trap and aborting execution.

Note that only the last three categories (i.e., Wrong Result,
Timed Out, and Exception) correspond to effects in which the
processor exhibited erroneous behavior. For the sake of clarity,
the term harmful effects will therefore be used in the remaining
of the text whenever referring to any of these effects.

D. Workload

Three different workloads were used in the fault injection
campaign. These include a proportional integral derivative
controller (PID), a bubble sort implementation (BSORT) and
a hamming encoder (HAMMING). The number of iterations
executed in each workload was adapted so that all three had
almost the same execution time, around 35000 clock cycles.
Due to space constraints, the workloads are not analyzed
individually in this paper, but rather overall performance.

E. Fault Propagation Evaluation Method

In order to properly investigate the fault propagation to the
PROC3 interfaces, some adjustments in the fault injection
setup were necessary. The main change, was the inclusion
of a redundant copy of the PROC3 module in the LEON3
VHDL description. During the fault injection campaign, the
faults were injected in only one of the copies, and the other
was used for reference. Additionally, the interfaces of both
copies were constantly monitored by a TCL script, and the
identified mismatches were recorded for posterior analysis. It
is relevant to note, that this modifications did not introduce any
interference in the processor operation. The redundant PROC3
only received the same inputs as the original PROC3, but its
outputs were not connected to the rest of the system.

IV. EXPERIMENTAL RESULTS

This section presents and discusses the results of the fault
injection campaign.

A. Overall PROC3 Performance

In Fig. 2 is presented a plot containing the overall results of
the fault injection experiments targeting the LEON3 processor
core. It is interesting to see, that even without any mechanism
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for SEU mitigation, most of the injected faults were overwrit-
ten without compromising the program execution. This can
be explained by the fact that a large part of the processor
components are not used in every instruction, and the injected
faults in those components are masked when new instructions
are fetched into the pipeline. Another relevant result, is that the
processor trap/exception mechanism was able to detect only
slightly more than half of the faults that led to harmful effects.

With respect to the individual performance of each module
that composes the PROC3, the results can be seen in Fig. 3. It
is possible to observe that the cache controllers present a much
higher ratio of latent faults than the integer pipeline. This is
due to some of the registers being used on only some specific
cache configurations (e.g., when using the LRU replacement
policy), which causes the injected faults in those registers to
never be overwritten. Furthermore, the higher exception value
observed in the acache module is expected, since this module
has a small number of registers, and one of them corresponds
to critical register used for error warning.

B. Integer Pipeline Performance

Being the integer pipeline the largest module in the LEON3
processor core, it is of great interest to analyze it closely. For
this purpose, the IU3 registers were split by pipeline stage, and
the SEU vulnerability obtained for each stage was investigated
separately. The same analysis was done in [10] for the LEON2
processor, which has a slightly different pipeline structure with
only five stages, and the conclusions were very similar. The
investigation results are presented in the Fig. 4.

According to the results, the Fetch stage presents a much
higher rate of harmful effects than the other pipeline stages.
This behavior is expected, since the Fetch stage contains
only two registers, with one of them being the Program
Counter (PC). Faults injected in the PC may cause the wrong

instruction being fetched, or even an attempt to read an invalid
memory location. Another remark is that the Write-Back stage
contains a high rate of latent faults. This is due to this stage
being composed mostly of special registers that were barely
accessed during the execution of the workloads.

C. Individual Register Performance

Fig. 5 contains the individual performance of the thirty
registers which presented the highest number of harmful
effects. The registers are sorted with the most vulnerable
placed at the top. In this analysis latent and no effect faults are
grouped together, however it is important to remark that should
a longer duration have been considered for the workload,
some of the latent faults could become harmful. Note that
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Fig. 6. Fault Propagation in PROC3 interfaces

as mentioned before, the number of injected faults by register
is proportional to its size. Also, since the analysis is based
on absolute quantities, even though some one bit registers
presented an 100% exception rate, they are considered less
vulnerable than larger registers with smaller exception rates,
but higher absolute values. As can be seen in the results, the
program counter (r.f.pc) presented the worst performance by a
big margin, followed by other important registers such as the
fetched instruction (r.d.inst), both the ALU operands (r.e.op1
and r.e.op2) and the ALU operation result (r.m.result). Note
that the number of harmful effects per register decreases in
a fast pace. This characteristic can be exploited to obtain an
improved fault tolerance with low overhead. Moreover, it is
interesting to observe how the fault effects relate to the register
functionality. Faults injected in registers used by the ALU
frequently lead to wrong results, while the most common effect
of faults injected in error and trap registers is the generation
of exceptions.

D. Fault Propagation

Fig. 6 presents the results obtained regarding fault propaga-
tion to the PROC3 boundaries. The injected bar contains the
fault effect distribution of all injected faults, the propagated
bar only contains the ones that propagated to one or more in-
terfaces, and the rest of the bars correspond to the propagation
on each interface individually. As shown in the results, only
one third of the injected faults have led to a disturbance in the
interfaces. Most no effect and latent faults remained inside
the PROC3. Also, as expected, all the faults that generated
harmful effects propagated to at least one interface.

Between the interfaces, the tbi had the highest propagation
rate, mostly due to the high number of no effect faults. This
behavior is consistent since the trace buffer track statistics of
all the executed instructions (e.g., address, opcode and result).
As to faults that led to harmful effects, the register file interface
is where they have manifested the most. It is important to note,
however, that the results indicate that harmful effects cannot be
detected by looking to only a single interface, for a complete
coverage, a fault detection strategy would need to look more
than one location.

With respect to the fault manifestation times, Fig. 7 contains
a box plot with the obtained values in each PROC3 interface. It
follows that for all interfaces, most propagated faults take less
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Fig. 7. Boxplot of the Fault Manifestation Time in PROC3 interfaces. The
bottom and top of the box corresponds to the first and third quartiles, the line
inside the box is the median, the whiskers are at 1.5 IQR, values outside of
that range are represented by dots.

than ten clock cycles to manifest. Specifically in the cache
memory array interface, more than half of the propagated
faults manifested in the clock cycle following the injection.

E. Partial TMR Evaluation

As shown in Fig. 5, the concentration of harmful effects
in a small number of registers presents a clear indication of
the possibility of obtaining a significant improvement in the
overall reliability by using a selective protection strategy. The
same conclusion can be obtained by looking at Fig. 8, where is
derived the expected SBU tolerance when the most sensitive
registers are protected (e.g., through spatial redundancy). In
order to validate these results, the thirty registers identified
as most vulnerable (from Fig. 5) were protected using the
partial TMR technique previously introduced, and the fault
injection experiments were redone. Fig. 9 contains the updated
results. As expected, the number of latent and no effect
faults improved to around 99.25%, which is a 3.71% increase
compared to the original version. The improved fault tolerance
means having only one incorrect computation every 133 faults,
whereas in the original architecture there was one every 22. In
order to obtain the performance and area penalty, both versions
of the LEON3 were synthesized for the GR-XC3S board. The
maximum achieved frequency dropped from 58.973MHz to
51.781MHz. This decrease is mainly due to the inclusion of
the majority voter logic in the critical path. Moreover, the
FPGA resources utilization can be seen in table II.

V. CONCLUSION

This paper has presented a detailed analysis of the SEU
effects in the LEON3 processor core. The analysis was
based on the data obtained from an extensive fault injection
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TABLE II
FPGA RESOURCES UTILIZATION

Unprotected Protected Overhead
Slice Flip Flops 2919 (10%) 3568 (13%) 22.23%
4 input LUTs 10425 (39%) 11060 (41%) 6.09%
Slices 5660 (42%) 6040 (45%) 6.71%

campaign conducted through the use of a simulation-based
injection technique. The investigation revealed that most of
the faults that led the processor to erroneous behavior were
limited to a small group of registers, mainly the program
counter and the ALU operands. Moreover, was found that
only a third of the injected faults actually propagated to the
CPU core interfaces. These results presented a solid indication
that a reliability improvement was possible by protecting only
the most vulnerable parts of the processor. Based on these
knowledge, an efficient fault tolerant strategy was proposed,
providing a significant gain in the overall reliability without
incurring a noticeable performance penalty.
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