
Testable Error Detection Logic Design Applied to
an Asynchronous Timing Resilient Template

Felipe A. Kuentzer, Leonardo R. Juracy, Matheus T. Moreira∗ and Alexandre M. Amory
Faculty of Informatics, PUCRS University
∗Chronos Tech, Research and Development

felipe.kuentzer@acad.pucrs.br, leonardo.juracy@acad.pucrs.br, matheus@chronostech.com, alexandre.amory@pucrs.br

Abstract—Resilient circuits are becoming a popular alternative
to cope with process, voltage, and temperature variability under
ultra-deep-submicron technology. Timing resilient architectures
rely on error detection logic (EDL) to detect and recover from
timing violations. Different EDLs have been proposed to either
reduce the area overheads associated with the additional circuitry
or to reduce recovery time, but most of them do not account
for testability. This paper proposes a testable EDL (TEDL)
architecture for manufacturing and field testing. Fault coverage
and area overhead are illustrated on a resilient implementation
of Plasma, a 3-stage OpenCore MIPS CPU, which contains the
proposed testable EDL circuitry. The results show that 100% of
the stuck-at faults of the TEDL are detectable with 4.61% area
overhead when compared to the Plasma with the original EDL
design.

Index Terms—timing resilient, error detection logic (EDL),
asynchronous design, design for testability (DfT), stuck-at fault.

I. INTRODUCTION

Energy efficiency has become one of the most common and
important demands for contemporary applications, increas-
ing the demand for integrated circuits that operate near the
threshold voltage levels, which unfortunately aggravates the
effects process, voltage, and temperature (PVT) variability.
Traditionally, timing margins are incorporated to the clock
period in order to compensate for the uncertainties of PVT
variations, and translate to performance, power and area losses.
Timing resilient architectures emerged as a promising solution
to alleviate these margins, improving system performance
while reducing energy consumption by allowing operation at
reduced voltages. These architectures need additional circuitry
to detect and recover from timing violations.

Timing resilient architectures include Razor [1], which
detects timing violations using an EDL and corrects valid
data through a dedicated recovery circuit with one clock cycle
penalty. Razor II [2] is a simplification of Razor that uses ar-
chitectural replay, requiring a complete pipeline flush, instead
of using a specific recovery circuit. Bubble Razor [3] recovers
from errors by stalling the pipeline in order to avoid the need
of architectural replay, thus reducing the performance penalties
associated with error recovery. TIMBER [4] and [5] avoid
architectural replay by borrowing time from neighbor pipeline
stages. Timing resiliency was also applied to asynchronous
circuits in Blade [6] and SafeRazor [7]. Both proposals present
solutions to metastability of previous designs [8]. In particular,

Blade recovers from timing errors by adding extra delay to the
handshake communication to the following pipeline stages.

Resilient architectures rely on error detecting sequential
(EDS), to detect when a setup timing violation occurs. To
convert a traditional design into a timing resilient one, the
sequential elements are replaced by these EDSs, thus an
increment in area and power is associated with the additional
detection mechanism. For example, when comparing Blade [6]
and Bubble Razor [3] to a traditional synchronous design, the
overall area overhead for the Blade implementation is 8.4%
and Bubble Razor presents 21% increase in combinational
logic and 280% in the sequential area. To account for these
overheads, new power and area efficient EDS elements where
proposed in [9] and [10].

Despite the increasing evolution of resilient architectures,
little has been done regarding the testability of these designs.
A problem when considering the testability of timing resilient
architectures is the area overhead of test circuitry since the
resilient implementation already incurs in significant area over-
head. Moreover, some EDS proposals use custom sequential
cells that are not available in most technology libraries, thus
it is not possible to take advantage of automated design
for testability (DfT) flow with commercial Electronic Design
Automation (EDA) and Automatic Test Pattern Generation
(ATPG) tools. This paper demonstrates the challenges of using
ATPG tools with the Blade resilient architecture and presents
a testable EDL (TEDL) that is compatible with classic DfT
techniques available in commercial EDA tools. The proposed
architecture is compared to the original EDL presented in [6]
using a 3-stage MIPS CPU called Plasma [11], targeting an
FDSOI 28nm technology. Experimental results show that the
proposed TEDL has 100% of single stuck-at fault coverage,
with about 4.61% of area overhead compared to the Plasma
with the original Blade’s EDL.

The remainder of this paper is organized as follows. Section
II presents related DfT designs for testing timing resilient
circuits. Section III introduces Blade’s original EDL. Section
IV discusses a preliminary fault coverage analysis of Blade’s
EDL using classic ATPG approach and a behavioral approach.
Section V describes the proposed testable EDL architecture
along with the test methodology. Section VI shows the case
study and the results for fault coverage and area overhead.

978-1-5386-7431-4/18/$31.00 c© 2018 IEEE

Finally, Section VII provides some conclusions.

II. RELATED WORKS

When considering the testability of timing resilient circuits,
previous works look at classic approaches used in industry,
such as the scan technique, which can be applied to various
types of structural faults including stuck-at and delay. Anas-
tasiou et al. [12] proposes the reuse of existing error tolerant
circuitry of the Razor architecture to propose a new scan cell,
called scan Razor flip-flop (SR-FF). With this new scan cell
architecture, the shift phase does not affect the inputs of the
combinational logic, thus power dissipation during testing is
reduced.

Another similar approach is the Time Dilation scan archi-
tecture [13], where a classic mux-D scan is modified to act
as a timing violation detector and recovery mechanism. The
Time Dilation scan architecture is suitable for online timing
error detection and recovery and supports classical off-line
scan testing. Results show a reduction in area and power
consumption when compared to the Razor flip-flop (R-FF),
but do not address the testability of the resilient circuit itself.

Yuan et al. [14] present a scan architecture based on
the Double Sampling With Time Borrowing (DSTB) EDS,
proposed by [15]. In this approach, the error detection circuitry
from the resilient architecture is reused to detect manufactur-
ing faults. A similar approach has been applied to Blade [16],
where the error detection logic is applied to help to detect
and diagnose its internal faults. Differently from the previous
approaches, no scan technique is applied to the EDS. A fault
classification method is also presented. However, instead of
classic ATPG, the method relates the overall behavior of the
circuit to an existing fault in the EDL, such as the circuit halt.
Results show that Blade’s original EDL has low stuck-at fault
coverage (30%), and a single fault in the EDL can completely
disable its ability to detect timing violations. More details will
be presented in Section IV-B.

III. BLADE’S ERROR DETECTION LOGIC

The notion of resiliency has been proposed by different
authors in the literature with different error detection circuits.
They include a shadow latch, proposed in [3], that captures
the data before the main latch to compare and generate an
error signal and a side-channel error detection strategy [17]
that takes advantage of an inherent redundancy in a standard
flip-flop cell. This paper focuses on the Blade template [6] and
its EDL, illustrated in Figure 1.

Blade’s EDL [6] consists of error detecting latches with a
transition detector, that is based on the Transition Detection
With Time Borrowing (TDTB) EDS [15], asymmetric C-
elements and Q-Flops [18]. The transition detector is based
on an XOR function of the data input and a delayed version
of this input, which produces a pulse at X, thus indicating
a data transition. The C-element acts as a memory cell that
stores any violation detected during the high phase of the CLK.
The C-element switches to 0 if CLK is at 0 and to 1 only if
both CLK and the X output of a TD is at 1. The output of the

Error Detection Logic

Dout

SampleCLK

Din

X

E
rr
1

E
rr
0

From other
QFlops

From other
Celements

Latch

DL1

QFlop

Controller

EDS

DL2 C+

w1

w2

w3

w4
w9 w10

w11 w12

w5 w6
w7

w8

G1

G3 G4

CEL

G2

Fig. 1: Original EDL diagram [6], including nets named from w1 to
w12.

C-element is sampled by the Q-Flop at the end of the CLK
high phase.

The Q-Flop ensures safe operation against metastability by
an internal filter, and its outputs only change if data is not
metastable. The dual-rail signal Err, composed by wires Err0
and Err1, stalls the controller until the outputs are stable and
it can safely evaluate if an error occurred. The delay element
DL2 defines the transition detector pulse width, while DL1
is the compensation delay added to ensure that a transition
before the rising edge of CLK is not flagged as a violation. The
other logic elements, such as G2, are designed to amortize the
area overhead of the C-elements and Q-Flops across multiple
pipeline stages.

IV. PRELIMINARY TESTABILITY ANALYSIS OF BLADE’S
EDL

Before presenting the proposed method in the next section,
this section discusses the testability issues of Blade’s EDL
using two different strategies to perform fault analysis.

A. ATPG Fault Coverage Analysis

In this Section, the stuck-at fault coverage for the origi-
nal EDL is reported using Synopsys TetraMAX ATPG tool.
For this particular analysis, a netlist targeting 28nm FDSOI
technology is generated with DesignCompiler from Synopsys.
The netlist consists of a two-stage Blade pipeline (Figure 2),
where the EDSs of the first stage are directly connected to
the ones of the second stage. This scenario simplifies the inte-
gration and analysis with Synopsys tools since it removes the
particularities of an asynchronous resilient template. Instead
of asynchronous controllers, non-overlaping clock signals are
created, one for each stage, and the circuit becomes essentially
a synchronous latch based design, and all primary inputs are
controllable and all primary outputs are observable.

Blade has unconventional sequential cells such as the tran-
sition detector, the C-element and the Q-Flop which are not
typically available in most standard-cell libraries. Moreover,
their correspondent scan cells are either not available in most
libraries or not supported by comercial DfT flows. Thus, it

UUT

Din
[11:0]

Dout
[11:0]

Err1_1 Err0_1CLK_1 Sample_1 Err1_2 Err0_2CLK_2 Sample_2

EDL_1

QF

TD

Latch

C+

EDL_2

QF

TD

Latch

C+

Fig. 2: ATPG test scenario. The transition detectors (TD) are con-
nected to three-input C-elements (C) and the C-elemets to two-input
OR gates. In total there are 6 TDs to each OR gate. The OR gate is
then connected to a Q-Flop (QF). With 2 QF per step, each step is
12 bits wide.

would not be possible to use automated tools to obtain the
fault coverage reports. In order to overcome this problem,
without compromising the applicability of our solution, those
unconventional sequential cells were modeled as macro blocks
consisting of only cells already supported by the 28nm FD-
SOI library, including latches and flip-flops, to implement
the sequential behavior. An advantage of this approach is
that Blade’s EDL can be evaluated with or without a scan
chain because the sequential cells (latches and flip-flops) are
recognized by the DfT tools to perform automatic scan chain
generation. The asymmetric C-element behavior is described
in a similar way to [19]. The Q-Flop is described as a standard
flop that is reset when its enable is low, which is, in terms of
behavior, equivalent to the Q-Flop. Finally, the resulting netlist
is functionally validated before starting the DfT flow.

The fault simulations performed by the ATPG tool con-
sidered only single stuck-at faults. The tool is configured to
ignore all the first stage, redundant wires, and internal nodes
from the macro cells, which gives a total of 12 fault points.
These 12 points are the labeled wires of Fig. 1, named w1
to w12. The fault coverage of the Blade‘s original EDL is
evaluated considering two scenarios: using no scan structure
and replacing all latches by the Level Sensitive Scan Cells
[20].

Table I shows the summary reported by TetraMAX. The
faults are classified into five classes and the fault coverage
is calculated by the total number of faults divided by the
number of Detected plus the Possibly detected faults. The
low fault coverage is related to the lack of observability and
controllability of internal nodes. Even adding a scan cell is not
enough to improve the fault coverage. This is mainly caused
by the C-element and the Q-Flop, that, due to their functional
behavior, do not allow the tool to stimulate and observe faults
in their path.

A possible solution is to make the C-element scannable.
Scannable C-elements were proposed in the past, such as in
[21] and [22]. These solutions are not considered in this paper
because they present a higher impact in area and performance
as it is further discussed later. In the case of the Q-Flop,

TABLE I: TetraMAX stuck-at fault summary report.

no-Scan Scan
Detected 6 7
Possibly detected 2 1
Undetectable 1 1
ATPG untestable 0 0
Not detected 15 15

not-controlled (7) (7)
not-observed (8) (8)

Total Faults 24 24

Fault Coverage 33.3% 33.3%

the problem lies on guaranteeing that the metastability filter
is not affected by the modifications in the cell design. The
second issue is that commercial DfT tools only recognize
conventional sequential cells, such as latches or flip-flops.
Thus, the designer would not be able to use automated scan
chain generation for the C-element and the Q-flop.

B. Behavioral Fault Coverage Analysis

A complete stuck-at fault analysis of Blade’s original EDL
is presented in [16]. This work follows a different approach
from the one presented in Subsection IV-A. Instead of relying
on classic ATPG approach, faults are detected through a fault
classification method based on the functional behavior of the
entire EDL when in the presence of an internal fault.

A similar concurrent test approach has been used for a
network-on-chip [23] and a processor [24]. Chrysanthou et
al. [23] use a group of lightweight micro-checker modules in
a network-on-chip as concurrent hardware assertions, checking
for illegal output patterns while the circuit is in normal mode.
This approach provides full fault coverage and diagnostic
capability. Wang and Patel [24] propose the use of a symptom-
based error detection approach to detect atypical events that
concurrently hint the occurrence of soft errors in a processor.
These events trigger a rollback to a safe checkpoint, restoring
the processor state.

It has been demonstrated in [16] that a single stuck-at fault
might jeopardize the resilience of part of the circuit. The fault
coverage analysis considered three test approaches. The first
one relied only on functional testing of the circuit, where most
of the faults were detected through a pipeline halt observation,
accounting for 34% of fault coverage, which provides a similar
fault coverage compared to the classic ATPG approach. The
second approach presented in [16] considered the use of a
scan chain to make the signals Err0 and Err1 externally
observable, which increased the fault coverage to 66%. It has
been observed that the undetected faults were activated only
when a timing violation (TV) was detected. Thus, in order
to achieve 100% of fault coverage, a successful test method
must be able to inject a TV during the test. It was shown
that it is required to inject TV in test mode, but it does not
show how to do it. Also, it was observed that some faults
were only detectable by observing the EDL’s error signals of
the next stage, and not the signals of the faulty EDL. We
observed that when a fault prevents the EDL from detecting

Testable Error Detection Logic

Dout

SampleCLK

Din

X

Er
r1

Er
r0

w1

w2

w3

w4

w8

w9 w10

w11 w12

From other
QFlops

From other
Celements

From other
AND gates

tm

w13
w16

w20 w21 w22

w15

G3 G4 G8G7

w23

G9 G10

w5
w6

w7

w19
G6

DL1

QFlopw17

w18

tv

w14

Controller

TD

M1 M2
1

0

10

DL2
G1

LatchLatchLatch

G5

C+
CEL

G2

Fig. 3: TEDL diagram and labeled wires. The gray gates represent the additional logic included to improve the testability. Figure adapted
from [6].

a TV, the TV is propagated to a following stage, which in
turn ends up detected, and indicates that the previous stage
failed to detect the injected TV. However, the data might be
logically masked by the following combinational logic before
it reaches the next EDS, leading to an undetected fault. These
uncertainties motivated the development of a new testable EDL
architecture, detailed next.

V. THE PROPOSED TEST APPROACH

A. Proposed Architecture

The proposed TEDL, Figure 3, is designed to add con-
trollability and observability, for test purposes, and to avoid
assumptions and uncertainties of our previous approach. As
previously pointed, part of the EDL is only activated when a
TV occurs. So, to properly test this part of the EDL, one must
be able to control the EDL’s input to generate TVs. To generate
a TV, the original Blade EDS is modified. First, note that the
TD is no longer incorporated into the sequential element. As
previously discussed in Section IV, this opens the possibility
to use scan cells that are compatible with commercial EDA
tools.

The new TD has a new input called tv. This signal can
be individually controlled for each stage or be a global input
signal connected to all TDs. In this work, the global approach
is applied. When the tv is activated, it forces the X output
of all TDs to be constantly high, independently of the input
Din, thus generating a TV. An alternative solution would be
to add a two-input OR gate between each TD output and the
correspondent C-element input to force a TV, but there would
be less controllability and higher area overhead.

The tm port is another new global input signal. It controls
whether the output of the C-element or the output of G5 is
forwarded. This gate and the other gray elements highlighted
in Figure 3 are concurrent checkers added to detect faults that,
otherwise, would be masked and not detected. For instance,
a stuck-at-0 in w5 cannot be detected if all X signals are at
logic level 1, since the C-element output rises if at least one
of its inputs plus the CLK signal are activated, which means
that the fault will be masked and not observed.

It is important to notice that the proposed approach has little
impact in Blade’s timing constraints. The timing overhead of
the M1 multiplexer and the inverter inside the new TD can
be compensated in the DL2 delay line. Except for the M2
multiplexer, all the other new elements do not create timing
overheads compared to the original architecture.

The diagnostics of the internal stuck-at faults can be ob-
tained by observing the outputs w20, w11, w12, w21, w22
and w23, and the pattern associated with internal faults. These
outputs are connected to scan flops to be externally observable.

B. TEDL Operational Modes
In order to stimulate the entire circuit, the TEDL must

switch between its four operational modes, defined by the state
of input signals tm and tv. The four modes are: normal mode
(NM), normal mode with timing violation (NMTV), test mode
(TM) and test mode with timing violation (TMTV). In NM, the
multiplexer M1 selects the path that does not pass through the
inverter and M2 selects the w17 path. In NMTV, tv is enabled
and the w15 path is selected, which forces all X signals of the
pipeline stage to 1. The TM is used basically to detect stuck-at
faults in w5 by selecting the w18 path. Finally, the TMTV is
applied to force all X signals to 1 and to pass them through
the G5 gate.

The test procedure with the TEDL requires that the pipeline
is full. In Blade, this is done through an asynchronous hand-
shaking protocol. A full pipeline will not accept a new input
data request until an output data is acknowledged, and a
lockstep control of the circuit is created. It allows the circuit
to alternate between a test pattern capture phase and a test
pattern shift phase. The full pipeline also avoids that real TVs
are generated since all stages are stable. At this moment, the
TEDLs can be configured to the different operation modes in
order to produce the test patterns. After each capture phase,
a shift phase is also executed, and the faults are identified
through the fault classification method described below.

C. Fault Classification Method
A fault is detected whether the output pattern is different

from the expected gold pattern defined for each operational

mode (Table II). These six output ports also enable some
level of diagnostic. One important thing to notice about the
fault patterns is that the state of tm and tv signals are also
considered. For instance, assume that there is a stuck-at-0
at w7. If a TV occurs, this fault prevents the Q-Flop from
registering the TV, and the fault cannot be detected in NM.
Either the NMTV or the TMTV modes put all G2 inputs at 1
and it is expected that an error is flagged for all internal lines.
However, since w7 is stuck-at-0, w20 remains at 0, indicating
the existence of a fault. Another example is a stuck-at-1 at
w19. This wire is expected to be 1 only when tv is active,
so in NM or TM w22 and w23 must be at 0. Since w19 is
stuck-at-1, w23 rises, while w22 remains at 0 due to other non
faulty G6 gates.

TABLE II: TEDL operation modes and their expected outputs.

Mode
Gold Pattern

TM tv w20 w11 w12 w21 w22 w23

NM 0 0 0 0 1 1 0 0

NMTV 0 1 1 1 0 0 1 1

TM 1 0 0 0 1 1 0 0

TMTV 1 1 1 1 0 0 1 1

VI. CASE STUDY: PLASMA CPU

To evaluate the fault coverage and area overhead of our
proposed architecture we use the Blade automated flow de-
scribed in [6]. This flow uses industry standard tools, including
DesignCompiler and PrimeTime from Synopsys and NC-Sim
from Cadence. The flow converts a single clocked synchronous
RTL design into an asynchronous Blade design. It consists
of Tcl and shell scripts, a library of custom cells and a
Verilog co-simulation environment. There are 5 main steps
for the circuit conversion: Synchronous Synthesis, Flip-flop
to Latch conversion, Latch Retiming, Resynthesis and Blade
Conversion. The last step was the one that was modified to
include the proposed TEDL. In order to compare the results,
we implemented the same case study of [6], a 3-stage version
of MIPS OpenCore CPU called Plasma [11], targeting a 28nm
FDSOI technology.

The co-simulation environment implements a testbench
where a stream of inputs is forked to both the synchronous
and Blade netlists, and the stream of outputs are compared to
validate the implementation. The fault simulation environment
described in [16] was incorporated into this co-simulation
environment. The fault simulation environment has as input
parameters: a list of fault points to inject faults, that consists
of all the labeled wires presented in Figure 3; the gold patterns
for each one of the operation modes, shown in Table II; the
fault patterns that indicate the existence of an internal fault;
and the list of faults that can be related to those fault patterns
(diagnostic information).

A. Fault Coverage

A series of fault simulations were executed in order to
validate the fault coverage of the TEDL, and the modifications
made to the flow and co-simulation environment. Each fault

TABLE III: Area of EDL vs TEDL used in the Plasma CPU.

Cell
EDL TEDL

N Area µm2 N Area µm2

C-element 80 189.055 80 189.055
Q-Flop 20 91.280 20 91.280
Latch 238 427.258 238 427,258
TD 238 466.099 238 893.357

OR G2 20 52.224 20 52.224
OR G3 2 7.507 2 7.507

AND G4 2 7.507 2 7.507
AND G5 - - 80 112.934
AND G6 - - 20 55.488
AND G7 - - 2 7.507
OR G8 - - 2 7.507

AND G9 - - 2 7.507
OR G10 - - 2 7.507

MUX M2 - - 80 117.504
MUX-D - - 14 79.968

Total 362 1240.930 564 1920.606

Area Overhead 54.77%

TABLE IV: Comparison of Plasma-EDL vs Plasma-TEDL in terms
of area (µm2).

Plasma-EDL Plasma-TEDL Overhead
Combinational area 7095.28324 7829.35683 9.38%

Buf/Inv area 608.89921 687.23522 11.40%
Noncombinational area 7860.69133 7860.69133 -
Macro/Black Box area 228.57500 228.57500 -
Net Interconnect area undefined undefined -

Total cell area 1 15184.54957 15918.62316 4.61%

point was simulated for a single stuck-at-0 and single stuck-at-
1, alternating between the four test configurations in Table II
to detect the injected fault. The simulation results showed that
100% of the stuck-at faults inside the TEDL are detectable,
while with the original EDL, a little over 30% of the stuck-
at faults are detected [16]. There are particularly three fault
points inside the TEDL that depend on a transition in Din to
produce a pattern that can be related to a fault. These are: w15,
w16 and w3. Since we are assuming no control over Din, the
ATPG or the source code executing on the Plasma CPU must
be able to generate these transitions. In addition, since these 3
nets are internal to the TD cell, they would be collapsed from
the fault list generated by a conventional ATPG tool.

B. Area Comparison

The area comparison of both implementations is shown in
Table III and Table IV. Table III presents the EDL and TEDL
number of elements and its corresponding area. Both Plasma
implementations have the 238 TDs divided into two groups,
each one with its own controller.

Unlike the original EDL architecture, the TD in the TEDL
is not incorporated to the sequential element. To compare
the original EDL architecture with the TEDL, instead of
using a custom cell, the original EDS is also decomposed in

1Does not include Buf/Inv area and Net Interconnect area.

standard cells. The resulting area for the original TD and the
new TD is 1.958 µm2 and 3.754 µm2 respectively. In Table
III the 893.357 µm2 TD area refers to total number of TDs
(3.754 ∗ 238). The test patterns are captured through a scan
chain connected to the outputs w20, w11, w12, w21, w22 and
w23 of each stage, but any observability technique can be used.
For this work a MUX-D scan chain is applied and its area is
acconted in Table III.

As our results show, the TEDL imposed an increment of
54.77% in area, when compared to the original EDL in the
Plasma design (Table III). Note that this experiment is intended
to compare the TEDL using the same scenario of Blade’s
proposal [6], but Blade allows a tradeoff between critical paths
covered by EDLs and the area overhead of its implementation.
In this particular setup, out of the total 529 latches, 238 are
modified . When looking at the overall area overhead, with
almost half of the laches modified, the Plasma-TEDL shows a
4.61% area overhead when compared to Plasma-EDL, and the
TEDL affects mainly the combinational area of the designs
(Table IV). The area can be further reduced by incorporating
M2 multiplexer and G5 AND gate. Finally, the TD can be
further optimized and some of the concurrent checkers, AND
and OR gates, can be replaced by NAND and NOR gates
respectively.

VII. CONCLUSION

This paper presents a testable error detection logic (TEDL)
architecture to be used in the Blade timing resilient template.
The new architecture provides the necessary infrastructure
to achieve full coverage of single stuck-at faults inside the
TEDL while maintaining compatibility with commercial EDA
tools. By adding four modes of operation and observability
of the TEDL outputs, it is possible to capture patterns that
can be related to specific faults inside the TEDL. Comparing
the Plasma-TEDL with the Plasma-EDL, the area overhead is
4.61%. As an ongoing work, we believe that the area overhead
of the TEDL can be further reduced, and we also plan to
extend the TEDL fault analysis to delay fault model.

ACKNOWLEDGMENT

The authors would like to thank Peter A. Beerel and his
research group for the help with the Blade flow and discussions
about the EDL testability issues. Alexandre would like to thank
CNPq for the financial support (process 460205/2014-5).

REFERENCES

[1] D. Ernst, N. Kim, S. Das, S. Pant, R. Rao, T. Pham, C. Ziesler,
D. Blaauw, T. Austin, K. Flautner, and T. Mudge, “Razor: a low-power
pipeline based on circuit-level timing speculation,” in MICRO-36, Dec
2003, pp. 7–18.

[2] D. Blaauw, S. Kalaiselvan, K. Lai, W. H. Ma, S. Pant, C. Tokunaga,
S. Das, and D. Bull, “Razor ii: In situ error detection and correction for
pvt and ser tolerance,” in ISSCC 2008, Feb 2008, pp. 400–622.

[3] M. Fojtik, D. Fick, Y. Kim, N. Pinckney, D. Harris, D. Blaauw, and
D. Sylvester, “Bubble Razor: Eliminating timing margins in an ARM
Cortex-M3 processor in 45 nm CMOS using architecturally independent
error detection and correction,” IEEE JSSC, vol. 48, no. 1, pp. 66–81,
Jan 2013.

[4] M. Choudhury, V. Chandra, R. Aitken, and K. Mohanram, “Time-
borrowing circuit designs and hardware prototyping for timing error
resilience,” IEEE TCOMP, vol. 63, no. 2, pp. 497–509, Feb 2014.

[5] S. Kim and M. Seok, “Variation-tolerant, ultra-low-voltage µP with a
low-overhead, within-a-cycle in-situ timing-error detection and correc-
tion technique,” IEEE JSSC, vol. 50, no. 6, pp. 1478–1490, Jun 2015.

[6] D. Hand, M. Moreira, H. Huang, D. Chen, F. Butzke, Z. Li, M. Gibiluka,
M. Breuer, N. Calazans, and P. A. Beerel, “Blade - a timing violation
resilient asynchronous template,” in ASYNC, May 2015, pp. 21–28.

[7] M. Cannizzaro, S. Beer, J. Cortadella, R. Ginosar, and L. Lavagno,
“Saferazor: Metastability-robust adaptive clocking in resilient circuits,”
IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 62,
no. 9, pp. 2238–2247, Sept 2015.

[8] S. Beer, M. Cannizzaro, J. Cortadella, R. Ginosar, and L. Lavagno,
“Metastability in better-than-worst-case designs,” in 2014 20th IEEE
International Symposium on Asynchronous Circuits and Systems, May
2014, pp. 101–102.

[9] R. N. Tadros, W. Hua, M. T. Moreira, N. L. V. Calazans, and P. A. Beerel,
“A low-power low-area error-detecting latch for resilient architectures in
28-nm fdsoi,” IEEE Transactions on Circuits and Systems II: Express
Briefs, vol. 63, no. 9, pp. 858–862, Sept 2016.

[10] W. Hua, R. N. Tadros, and P. A. Beerel, “Low area, low power,
robust, highly sensitive error detecting latch for resilient architectures,”
in Proceedings of the 2016 International Symposium on Low Power
Electronics and Design, 2016, pp. 16–21.

[11] “Plasma cpu,” http://opencores.org/project,plasma, 2014.
[12] A. Anastasiou, Y. Tsiatouhas, and A. Arapoyanni, “On the reuse of

existing error tolerance circuitry for low power scan testing,” in 2015
IEEE International Symposium on Circuits and Systems (ISCAS), May
2015, pp. 1578–1581.

[13] S. Valadimas, A. Floros, Y. Tsiatouhas, A. Arapoyanni, and X. Kavou-
sianos, “The time dilation technique for timing error tolerance,” IEEE
Transactions on Computers, vol. 63, no. 5, pp. 1277–1286, May 2014.

[14] F. Yuan, Y. Liu, W.-B. Jone, and Q. Xu, “On testing timing-
speculative circuits,” in Design Automation Conference (DAC), 2013
50th ACM/EDAC/IEEE, May 2013, pp. 1–6.

[15] K. Bowman, J. Tschanz, N. S. Kim, J. Lee, C. Wilkerson, S. Lu,
T. Karnik, and V. De, “Energy-efficient and metastability-immune re-
silient circuits for dynamic variation tolerance,” IEEE JSSC, vol. 44,
no. 1, pp. 49–63, Jan 2009.

[16] F. A. Kuentzer and A. M. Amory, “Fault classification of the error
detection logic in the blade resilient template,” in 2016 22nd IEEE In-
ternational Symposium on Asynchronous Circuits and Systems (ASYNC),
May 2016, pp. 37–42.

[17] I. Kwon, S. Kim, D. Fick, M. Kim, Y. Chen, and D. Sylvester, “Razor-
Lite: A light-weight register for error detection by observing virtual
supply rails,” IEEE JSSC, vol. 49, no. 9, pp. 2054–2066, Sep 2014.

[18] F. U. Rosenberger, C. E. Molnar, T. J. Chaney, and T. P. Fang, “Q-
modules: internally clocked delay-insensitive modules,” IEEE Transac-
tions on Computers, vol. 37, no. 9, pp. 1005–1018, Sep 1988.

[19] F. te Beest, A. Peeters, K. van Berkel, and H. Kerkhoff, “Synchronous
full-scan for asynchronous handshake circuits,” Journal of Electronic
Testing, vol. 19, no. 4, pp. 397–406, Aug 2003.

[20] L. R. Juracy, M. T. Moreira, F. A. Kuentzer, and A. de Morais Amory,
“Optimized design of an lssd scan cell,” IEEE Transactions on Very
Large Scale Integration (VLSI) Systems, vol. 25, no. 2, pp. 765–768,
Feb 2017.

[21] F. te Beest and A. Peeters, “A multiplexer based test method for self-
timed circuits,” in 11th IEEE International Symposium on Asynchronous
Circuits and Systems, Mar 2005, pp. 166–175.

[22] H. Iwata, S. Ohtake, M. Inoue, and H. Fujiwara, “Bipartite full scan
design: A dft method for asynchronous circuits,” in 2010 19th IEEE
Asian Test Symposium, Dec 2010, pp. 206–211.

[23] K. Chrysanthou, P. Englezakis, A. Prodromou, A. Panteli, C. Nicopou-
los, Y. Sazeides, and G. Dimitrakopoulos, “An online and real-time
fault detection and localization mechanism for network-on-chip architec-
tures,” ACM Trans. Archit. Code Optim., vol. 13, no. 2, pp. 22:1–22:26,
Jun. 2016.

[24] N. J. Wang and S. J. Patel, “Restore: Symptom-based soft error detection
in microprocessors,” IEEE Transactions on Dependable and Secure
Computing, vol. 3, no. 3, pp. 188–201, July 2006.

