
Broker Fault Recovery for a Multiprocessor
System-on-Chip Middleware

Anderson R. P. Domingues∗, Jean Carlo Hamerski∗†, Alexandre Amory∗
∗Escola Politécnica, Pontifı́cia Universidade Católica do Rio Grande do Sul (PUCRS)
†Instituto Federal de Educação Ciência e Tecnologia do Rio Grande do Sul (IFRS)

Porto Alegre, Brazil
anderson.domingues@acad.pucrs.br, jean.hamerski@restinga.ifrs.edu.br, alexandre.amory@pucrs.br

Abstract—The publish-subscribe programming model has been
used successfully in many distributed embedded application
domains and has been recently ported to the MPSoC domain.
However, the publish-subscribe model requires the element of the
broker, which is a single process that manages the communication
between nodes; a unique point of failure in the system. This
paper presents a lightweight extension of the publish-subscribe
model with a fault recovery method for the broker. The results
show that the proposed method inserts small memory footprint
to the system while providing minimal system downtime during
recovery.

Index Terms—fault tolerance, embedded software, parallel
distributed applications, MPSoC, publish-subscribe.

I. INTRODUCTION

Multiprocessor system-on-chips (MPSoCs) emerged as an
attractive computer architecture for high performance embed-
ded applications [1]. It usually consists of a set of small
embedded processors, typically connected by a network-on-
chip (NoC). As the number of available processors increases,
it also increases the challenges to manage such systems
efficiently. Several applications are competing for resources
while some overall parameters such as application throughput,
maximal power dissipation, and energy consumption have to
be balanced at runtime. Moreover, as the technology node
decreases in size, enabling more transistors per area, it also
increases the probability of having faults occur in chips,
whether these faults were generated during the manufacturing
process or circuit aging caused them. These challenges be-
come more problematic when considering that the chip might
have some defectives parts. Thus, even though it is currently
possible to manufacture MPSoCs with hundreds or thousands
of processors, the ability to design self-managing applications,
able to deal with several conflicting constraints and possible
faults, is still a research problem [2].

Since the design of parallel distributed applications is al-
ready challenging, it is advisable to hide from the application
level the additional issues related to self-managing systems
by providing high-level functionalities and services for the
programmer. Other distributed embedded application domains
such as Internet of Things [3] and Robotics [4] typically
provide a middleware, which is a layer of software that
provides a set of services to the application level, hiding imple-
mentation details and abstracting the hardware platform. One
of the preferable programming models on those distributed

embedded application domains is called publish-subscribe
(pub-sub) [5], which decouples the source and destination of
the messages by using named data channels called topics and a
process called broker responsible for connecting the channels
to the interested processes.

One drawback of this programming model is that the broker
is a single process that, if unavailable due to a fault, causes
the entire systems to crash. Thus, the broker is a critical point
of failure in the pub-sub programming model. Since MPSoCs
typically consist of several small processors with a limited
amount of memory (e.g., about hundreds of Kbytes), usual
fault tolerance (FT) approaches such as TMR (triple module
redundancy) and checkpoint-rollback are not recommended.

This paper presents a lightweight fault recovery mechanism
for brokers of a publish-subscribe middleware for MPSoCs.
The proposed approach uses the existing brokers to backup
sensitive data of its neighbor brokers, which provides high
availability to the system because when a fault is detected in
a broker’s processor, its neighbor broker promptly assumes
the responsibility of managing the applications of the faulty
broker. This broker replacement is entirely transparent to the
application level. Note that the approach is loosely coupled
to the hardware as it relies on few features, such as parallel
architecture, distributed private memories, message passing
API, and a clustered managing system.

This paper is organized as follows. Section II presents
the related work with a focus on system-level and user-level
FT for MPSoCs. Section III describes the original pub-sub
middleware for MPSoCs. Section IV presents the proposed
extensions for broker fault recovery. Section V presents the
analytical models for network message volume estimation.
Section VI shows the MPSoC platform case study and ex-
perimental results. Finally, Section VII concludes the paper.

II. RELATED WORK

Recent works aim to provide FT on the user-level and
system-level, specifically on hardware/software elements that
have some management function in the MPSoC. For user-
level, Barreto et al. [6] present a software-based method that
automatically reallocates to a healthy processing element (PE)
the tasks of an application affected by faults. The application
is restarted in the new PE, causing a short downtime.

978-1-5386-7431-4/18/$31.00 © 2018 IEEE

Regarding system-level, Wachter et al. [7] propose a spe-
cialized control NoC, in addition to a primary data NoC, used
to detect faults on PEs and to discover new fault-free paths on
the NoC. The approach requires additional hardware elements
to accomplish FT. Zou and Pasricha [8] propose a system-level
framework to trade-off energy consumption and fault-tolerance
in the NoC fabric. The framework addresses energy-efficient
resilience in NoCs in two phases: design time and runtime. At
design time, the authors implement an application mapping
heuristic while satisfying application bandwidth and latency
constraints. At runtime, a prediction algorithm dynamically
estimates fault vulnerability of NoC router components, to
manage energy overheads by enabling or disabling FT mech-
anisms in the NoC. Also focusing on the system-level, Fochi
et al. [9] present a method to fault detection with a protocol
to migrate the management software to another healthy PE.
The goal is to preserve managed data without using redundant
structures. The authors use an auxiliary NoC to detect the fault
in a PE. A keep-alive protocol performs the fault detection.
After the fault has been detected, a neighbor management PE
copies the kernel and context memory to a slave PE chosen
between those that compose the cluster. The method only
covers CPU faults, requiring both the router, network interface,
and memory to be fault-free.

The related works cited in this section present essential
advances to improve fault detection and tolerance in MPSoC
environments. Those works that focus on the system-level
require for additional hardware [7–9] to accomplish the FT.
The work presented in this paper focuses on the system-level,
specifically in the broker management FT, with detection and
actuation entirely performed in software components. In this
paper, a fault is inserted at the broker’s PE and, as in similar
works, we also assume that the network and other PEs are
fault free.

III. PUBLISH-SUBSCRIBE SYSTEM

The publish-subscribe pattern is an alternative to perform
communication between participants (processes) of a parallel
distributed system. In this communication model, the sender
process (publisher) does not send messages directly to a spe-
cific receiver process (subscriber). The messages are classified
into topics of interest, and a subscriber receives messages
only of those topics to which it has subscribed. Publishers
send messages to topics without knowledge of which are
the subscribers since the pub-sub system coordinates the
communication between publishers and subscribers at system-
level. In most pub-sub systems, a component named broker
is responsible for this coordination, either intermediating or
coordinating the subscriptions.

This paper is based on the Message-Queuing SoC (MQSoC)
pub-sub middleware for MPSoCs [10]. The operations sup-
ported by this middleware are: (i) advertise, which announces
a new topic to the system; (ii) unadvertise, which makes a
topic unavailable to the rest of the system; (iii) subscribe,
with which a process announces that it wants to receive data
from a specific topic; (iv) unsubscribe, where a process stops

receiving data from a specific topic; (v) publish, whence a
publisher sends data to a specific topic; and (vi) yield, which
is used to schedule incoming messages in a process. In this
middleware, the broker is involved in the four initial operations
(i, ii, iii and iv). Thus, they must be extended to implement
the proposed broker fault recovery process. All operations
are described as follows, such as the modifications made to
support our approach.

A. Advertise

When a process performs an advertise, a message of type
msg advertise is sent to the broker informing the address of
the publisher process and the topic name where the messages
will be published. The broker then stores this data into
its Publishers table and forwards the generated entry to a
secondary broker, which stores a copy of the primary brokers’
Publishers and Subscribers table. The operation ends by the
publisher receiving a msg advertise ack from the primary
broker, as shown in Figure 1(a).

B. Unadvertise

The unadvertise operation undoes a previous advertise op-
eration. A message of type msg unadvertise is sent to the
broker which erases the publisher address and the informed
topic name from its Publishers table if such an entry exists.
As in the advertise operation, data is also forwarded to the
secondary broker, which also erases its entry copy. At the end
of the operation, the publisher receives a msg unadvertise ack
informing that the operation succeeded, as shown in Figure
1(b). Note that publishers cannot send any more messages via
this specific topic unless they advertise on the topic again.

C. Subscribe

A process can subscribe to a topic by sending a
msg subscribe message to the broker informing its address
and the topic name of the subscription. The broker then stores
the data in its Subscribers table and lookup for publishers
for the topic into its Publishers table and forwards it to the
secondary broker. Messages of type msg subscribe control
are sent to each of the publishers informing that further
messages must also be sent to the new subscriber. Finally, the
subscriber receives a msg subscribe ack message to confirm
the operation, as shown in Figure 1(c). It is important to
note that the same topic might have multiple publishers and
multiple subscribers at the same time.

D. Unsubscribe

A subscriber sends a msg unsubscribe to the broker inform-
ing its address and the topic name to unsubscribe from. Then,
the broker removes the respective entry from the Subscribers
table and forwards the unsubscription to the secondary broker.
The broker also searches for the publishers of this topic in its
Publishers table and sends them msg unsubscribe ctrl so that
they stop sending messages to the subscriber for that topic.
The protocol is shown in Figure 1(d).

Publisher Node Primary Broker Secondary Broker

msg_advertise(topic) stores pair
(topic, publisher)

stores pair
(topic,
publisher)

msg_forward_advertise(
 topic, publisher)msg_advertise_ack()

(a) Protocol for advertise operation.

Publisher Node Primary Broker Secondary Broker

msg_unadvertise(topic) erases pair
(topic, publisher)

erases pair
(topic,
publisher)

msg_forward
_unadvertise(
 topic, publisher)

msg_unadvertise_ack()

(b) Protocol for unadvertise operation.

Subscriber Node Primary Broker Secondary Broker

msg_subscribe(
 topic)

store subscription
(topic, subscriber)

stores
subscription
(topic, subscriber)

msg_forward
 _subscribe(
 topic, subscriber)

msg_subscribe
 _ack()

lookup publishers
for the topic

Publisher

msg_subscribe
 _control(
 topic, subscriber)

stores
subscription
(topic, sub-
scriber)

(c) Protocol for subscribe operation.

Subscriber Node Primary Broker Secondary Broker

msg_unsubscribe(
 topic)

erase subscription
(topic, subscriber)

erase
subscription(
topic, subscriber)

msg_forward
 _unsubscribe(
 topic, subscriber)

msg_unsubscribe
 _ack()

lookup publishers
for the topic

Publisher

msg_unsubscribe
 _control(
 topic, subscriber)

erase
subscription
(topic, sub-
scriber)

(d) Protocol for unsubscribe operation.

Figure 1. Protocol for each of the publish-subscribe middleware operations.

E. Publish

The publish operation allows publishers to feed a topic by
sending messages of type msg publish to the processes sub-
scribed to that topic. Since publishers are aware at middleware-
level of each of the subscribers for topics they advertised, the
message is sent directly to each of the subscribers. Brokers do
not take part in this operation, which is thus not affected by
faults in the brokers.

F. Yield

The yield operation permits a subscriber to wait for a certain
number of publications for some topic. This operation blocks
the subscriber in a loop until messages are received. The
buffer is periodically verified for messages and, in case of
a message in the buffer, the associated callback is called and
the message counter decreased by one. Otherwise, the task
could be suspended until a message is received if the optional
parameter suspend is given.

IV. PROPOSED FAULT TOLERANCE PROTOCOL

The proposed fault recovery approach relies on a 3-stage
protocol consisting of monitoring, cluster recovery and broker
recovery phases. Before presenting these stages, we have to
present the general backup structure of the brokers. We assume
that the entire system is divided into clusters of nodes where
one node in the cluster is called cluster manager and has the
role of broker for the middleware. These brokers are related
as presented in Figure 3. The arrow in the figure indicates
that the broker at the end of the arrow (called primary broker)
is monitored by the broker at the start of the arrow (called
secondary broker). This ring topology is reconfigured in the
presence of a faulty broker.

A. Monitoring Phase

In the first phase, a secondary broker periodically sends
messages of type msg keepalive request to its respective
primary broker 2(a). The primary broker then must respond

in time with a msg keepalive response or otherwise it will be
considered as faulty (Figure 2(b)). The time between requests
and responses must be configured according to system needs.
A very long time may delay the detection of faults, whereas
a very short time may overload system’s network.

Once a secondary broker detects that its respective primary
broker is faulty, the recovery protocol begins. The faulty
node receives a message of type msg shutdown, requesting
its shutdown. This message is to ensure that secondary broker
and the primary broker will not be serving the cluster at the
same time, forcing the faulty broker out of the network.

As the last step, the secondary broker must inform other
brokers that its primary broker is now out of the system.
So, the secondary broker sends a msg fault advertise to the
new elected primary broker, which sends the message to its
secondary broker (which the former is tertiary to) and so on
and so forth. The message keeps being sent until it reaches all
the brokers in the system.

B. Cluster Recovery Phase

This phase can be seen in Figure 2(c). Secondary brokers
keep a list of members of its cluster and another list of mem-
bers of its primary broker cluster. These lists are generated
at brokers’ startup and are not modified unless some fault is
detected. The cluster recovery starts by merging both lists.
From this point, all slaves inside the cluster in which the fault
was detected will be part of the cluster of the secondary broker.
The secondary broker sends a msg set broker message to each
of the affected slave nodes.

The recovery proceeds with the secondary broker updating
its own secondary broker (i.e., the one which monitors it)
by sending the address of new members in the cluster. Also,
the cluster members of the elected primary broker must be
requested, so the secondary broker can back them up and
recover in case of another fault.

Secondary
Broker

Primary
Broker

msg_keepalive
 _request()

msg_keepalive
 _response()

mark node
as active

(a) Monitoring protocol messages
without fault (good case).

msg_keepalive
 _request()

Primary
Broker

mark node
as inactive

msg_shutdown()

timeout

Secondary
Broker

(b) Monitoring messages in the pres-
ence of a fault (bad case).

set
new
broker

backup
new nodes

msg_update
 _primary()

msg_update_
 response(nodes)

Secondary
Broker

Elected Primary
Broker

set new primary
broker

Tertiary
Broker Slave

backup new nodes

msg_update
 _response(nodes)

msg_setbroker()

(c) Cluster recovery protocol.

msg_forward
 _advertise(entry)

msg_forward_request()

msg_forward
 _subscribe(entry)

msg_forward
 _advertise(entry)

Secondary
Broker

Elected Primary
Broker

stores
advertise
entries

Tertiary
Broker

marks foreign
entries as native

stores
subscribe
entries

lookup native
entries

msg_forward
 _subscribe(entry)

(d) Broker recovery protocol.

Figure 2. Protocols for each of the phases of the proposed FT mechanism.

C. Broker Recovery Phase

Brokers store a list of pairs of subscribers and subscribed
topics and another list of publishers and topics they advertise.
Every time an advertise, unadvertise, subscribe or unsubscribe
operation takes place, these lists are updated, and copies of the
updated entries are sent to the secondary broker. It is achieved
during each of the middleware’s operations through the
messages msg forward advertise, msg forward subscribe,
msg forward unadvertise and msg forward unsubscribe.

The broker recovery starts with the secondary broker con-
catenating its lists with the ones of the faulty broker. Since
these lists represent topics, both clusters were merged into one.
The secondary broker is now the primary broker of the merged
cluster. A new primary broker is elected to be monitored,
replacing the faulty broker. The ring configuration is then
repaired and, finally, entries for Publishers and Subscribers
tables of the elected primary broker are backed up. The broker
recovery phase is shown in Figure 2(d).

V. ANALYTICAL MODELS

Enabling the FT module implies additional messages being
sent through the network. The number of messages might vary
from system to system and is bound to implementation. In this

section, we introduce analytical models (AM) for estimating
the communication overhead caused by our proposed protocol,
assuming that every message has the same length.

A. Monitoring Phase

As presented in Section IV-A, msg keepalive request are
periodically sent by secondary brokers to keep up to date with
a primary broker’s status. These messages can be answered
with a msg keepalive response or be missed. In both cases,
the number of messages stays the same for a given time
span, since a miss will generate a msg keepalive shutdown.
Considering l as the length of the time span between two
msg keepalive request and t the point of time when a fault is
detected, the number of messages (Φ) sent is given as shown
by Equation 1.

Φ = 2t.l−1 (1)

B. Cluster Recovery Phase

During cluster recovery, slaves of the faulty broker receive
msg set broker messages informing that their broker changed
to the secondary broker (Mf). The tertiary broker must
also be informed of new members, generating an additional
message per cluster member. Elected primary brokers update
the secondary broker with its entries (Mn) in response to the
msg update request. Finally, the msg fault advertise is prop-
agated to all brokers once per fault (B). The total of messages
for cluster recovering phase (Ψ) is shown in Equation 2.

Ψ = 2Mf + Mn + B + 1 (2)

C. Broker Recovery Phase

Brokers exchange Publishers and Subscribers tables en-
tries during the broker recovery phase. The secondary broker
elects a new primary broker and sends a message of type
msg forward request to it, receiving its entries in response
for both Publishers and Subscribers tables (Pn + Sn + 1).
Before storing the entries, the secondary broker must update
the tertiary broker with its entries (Pu + Su). The Equation
3 models the total of messages exchanged during the broker
recovery phase (Υ).

Υ = Pn + Sn + Pu + Su + 1 (3)

The total volume of messages Π for all phases of the
protocol is given in by the sum of Φ, Ψ and Υ, which
comes from Equations 1, 2 and 3. It is important to note that
these equations do not relate to each other and can be used
independently to estimate message volume for each phase of
the protocol. For instance, we could find the total volume of
messages generated during cluster recovery for the application
presented in Section VI-B, as demonstrated in equation 4.

Ψ = 2Mf + Mn + B + 1

= 2 × 8 + (8 + 4 + 1) = 29 messages
(4)

VI. EXPERIMENTAL RESULTS

This section presents the MPSoC Platform (VI-A), the
application adopted in the case study (VI-B), the FT setup
(VI-C), and the respective experimental results (VI-D).

A. FreeRTOS MPSoC Platform

Figure 3 illustrates the case study platform composed by a
6x6 NoC-based MPSoC platform, with homogeneous process-
ing elements (PEs) in 3x3 clusters. This configuration is used
in all experiments. Each PE includes a Cortex-M4F processor,
private random access memory (RAM) addressed to store both
system and applications, network interface, DMA, and router.

The system running in each PE is composed of an ex-
tended FreeRTOS kernel [11] and the incorporated pub-sub
middleware [10]. The kernel is responsible for the task map-
ping feature, as well as the task scheduling, and interface
with the hardware elements. The applications are stored in
a repository accessed only by PE-0 and are mapped at system
startup during task mapping. The middleware is responsible
for the publish-subscribe system management extended by the
proposed broker recovery protocol.

The MPSoC hardware infrastructure was described using
OVPSIM APIs by Imperas, which provides an instruction
accurate simulation framework. The kernel software was im-
plemented in the C programming language and the middleware
software using the C++ programming language (compilers
arm-none-eabi-gcc and arm-none-eabi-g++, version 4.9.3).

30

cluster
idle worker

31 32 33 34 35

24 25 26 27 28 29

18 19 20 21 22 23

12 13 14 15 16 17

6 7 8 9 10 11

0 1 2 3 4 5

Application Repository

R

Network
Interface

Processor

DMA

broker

router

PE

publisher/subscriber

RAM

Application Level

Pub/Sub Middleware

FreeRTOS Kernel

Operations

Syscalls

monitoring

Figure 3. A 6x6 platform with 3x3 clusters configuration.

B. Application Case Study

The experiments use the Producer-Consumer application,
which contains two tasks: a producer and a consumer. The
producer task generates a message flow (workload) that is
received by the consumer task. The pub-sub middleware
operations are used to perform the communication between the
two tasks. The Figure 4 shows the modeled producer-consumer
application. A topic identifies the message flow. The producer
task is the publisher, and the consumer task is the subscriber
of the topic.

Consumer

subscribe(topic A)

Producer

advertise(topic A) publish(topic A)
packets

flow

Figure 4. The producer-consumer application.

The only situation in which the proposed broker recovery
protocol can delay an application is when the application
requests actions for the broker while it is executing the
recovery process. Thus, we devised a scenario to distribute
in time the application requests for the broker, maximizing
the probability of impact in the application execution time.
The Figure 5 shows the scheme of performed test cases.
The base scenario consists of four parallel producer-consumer
applications (A, B, C, and D), which are spaced in the scenario
execution time. Applications are configured with a workload
of 32 messages. Application A is the first one to begin the
execution ((1) in the Figure 5). In its turn, application B starts
(2) when application A has performed half of its workload (16
messages). Applications C and D follow the same behavior.
The scenario finishes when the application D workload is
completed (3).

Time

PROD-CONS A

PROD-CONS B

PROD-CONS C

PROD-CONS D

Fault Insertion Interval (100 points)

32 packets

32 packets

32 packets

32 packets

1

2
3

Figure 5. Application Case Study Scenario

C. Fault Tolerance Feature Setup

The broker FT feature has the following configurations that
must be defined at design-time: (a) the time span between
keepalive requests (30,000 clock cycles in the performed ex-
periments); (b) the number of unanswered keepalive requests
to consider the broker as faulty (3 in performed experiments).

D. Results and Discussion

The performed experiments use the scenario explained in
the previous sections (VI-A and VI-B). In the 100 performed
test cases, we evaluate the scenario execution time (SET),
broker recovery time (BRT), and Communication Volume. The
difference between the test cases is the moment when the fault
is inserted into the broker (in 100 different instants of time).
All test cases have the same task mapping scheme. Thus, they
are mapped in the same cluster (colored in the Figure 3). The
fault is inserted into PE-3, which is the broker manager of this
cluster. The time unit is presented in thousands of clock cycles,
measured by a timing model [11] that captures the executed
instructions for each processor, generating an execution time
in clock cycles from the total of executed instructions. The

9090

9100

9110

9120

9130

9140

9150

9160

9170

Sc
en

ar
io

 E
xe

cu
to

n
 T

im
e

(k
cl

o
ck

 c
yc

le
s)

20

25

30

35

40

B
ro

ke
r

R
ec

o
ve

ry
 T

im
e

(k
cl

o
ck

 c
yc

le
s)

20000

21000

22000

23000

24000

25000

26000

27000

C
o

m
m

u
n

ic
at

o
n

 V
o

lu
m

e
(N

u
m

b
er

 o
f

f
ts

)

Figure 6. Box Plot Chart of the Scenario Execution Time (left), Broker
Recovery Time (right-top), and Communication Volume (right-bottom) results
for a sample of 100 test cases.

communication volume unit is flit. Messages are sent through
the NoC divided by 32-bit wide flits. In this experimental
setup, a control message has 16 flits.

Figure 6 shows the results of scenario execution time (SET),
broker recovery time (BRT) and communication volume. The
mean SET is 9,106 thousand of clock cycles. It presents a vari-
ation because the publish-subscribe communication suffers in-
terference only at the test cases where a producer or consumer
tasks call the advertise or subscribe operations at the same
time as the broker recovery process occurs. The mean BRT
is 32 thousands of clock cycles. The broker recovery presents
an insignificant execution time compared with the SET, even
if we consider that the evaluated application is very simple.
When the BRT is compared to more complex applications, the
impact is even smaller. The mean communication volume is
24,667 flits. This value represents flits of both control and data
messages. This communication volume is much higher when
compared to the analytical models in Equation 4. For com-
parison, we evaluate a scenario without fault insertion in the
same experimental setup. The communication volume in this
scenario is, on average, 5.04% higher because the four brokers
remain exchanging keep-alive request/response messages in all
scenario execution time. However, this network overhead can
be trade-off with the recovery latency by changing the time
span between keepalive messages.

Concerning memory footprint for code, the software system
composed by the kernel and middleware with the proposed FT
feature has 28.98KB, which corresponds to a 1.66KB increase
compared to the middleware without the FT feature.

VII. CONCLUSION AND FUTURE WORK

In this paper, we present a mechanism for FT in a communi-
cation middleware for MPSoCs. To achieve that we modified
an existing middleware to provide data redundancy and ex-
tended the communication protocol to recover both brokers
and cluster managers. We validated our approach through
an experiment over a MPSoC platform. Results showed that
our approach had a minimal resource overhead for different
fault insertion setups. We also presented analytical models for
estimating network usage.

Although our approach presented itself satisfactorily regard-
ing consumed system resources, there are problems to be
addressed regarding FT in brokers for the pub-sub model.
For instance, there is no known solution for the treatment of
transient faults for this domain. In this paper, we avoid the
issue by disabling the faulty PE, even though it still has some
operational capability. In the future, we intend to tackle this
problem by extending the presented approach.

ACKNOWLEDGMENT

Thanks to Imperas Software Ltda. and Open Virtual Plat-
forms for support and access to their models and simulator.
Jean Carlo Hamerski is supported by CNPq and IFRS.

REFERENCES

[1] W. Wolf, A. A. Jerraya, and G. Martin, “Multiprocessor
system-on-chip (mpsoc) technology,” IEEE Transactions
on Computer-Aided Design of Integrated Circuits and
Systems, vol. 27, no. 10, pp. 1701–1713, 2008.

[2] V. Nollet et al., “A safari through the mpsoc run-time
management jungle,” Journal of Signal Processing Sys-
tems, vol. 60, no. 2, pp. 251–268, 2010.

[3] O. B. Sezer, E. Dogdu, and A. M. Ozbayoglu, “Context-
aware computing, learning, and big data in internet of
things: A survey,” IEEE Internet of Things Journal,
vol. 5, no. 1, pp. 1–27, 2018.

[4] X. Li et al., “A survey on intermediation architectures
for underwater robotics,” Sensors, vol. 16, no. 2, p. 190,
2016.

[5] P. T. Eugster et al., “The many faces of pub-
lish/subscribe,” ACM computing surveys (CSUR), vol. 35,
no. 2, pp. 114–131, 2003.

[6] F. F. Barreto, A. M. Amory, and F. G. Moraes, “Fault
recovery protocol for distributed memory mpsocs,” in
Circuits and Systems (ISCAS), 2015 IEEE International
Symposium on. IEEE, 2015, pp. 421–424.

[7] E. Wachter et al., “Brnoc: A broadcast noc for control
messages in many-core systems,” Microelectronics Jour-
nal, vol. 68, pp. 69–77, 2017.

[8] Y. Zou and S. Pasricha, “Heft: A hybrid system-level
framework for enabling energy-efficient fault-tolerance
in noc based mpsocs,” in 2014 International Conference
on Hardware/Software Codesign and System Synthesis
(CODES+ISSS), Oct 2014, pp. 1–10.

[9] V. Fochi, L. L. Caimi, M. Ruaro, E. Wächter, and
F. G. Moraes, “System management recovery protocol for
mpsocs,” in System-on-Chip Conference (SOCC), 2017
30th IEEE International. IEEE, 2017, pp. 367–374.

[10] J. C. Hamerski, G. Abich, R. Reis, L. Ost, and A. Amory,
“Publish-subscribe programming for a NoC-based mul-
tiprocessor system-on-chip,” in IEEE International Sym-
posium on Circuits and Systems (ISCAS), 2017, pp. 1–4.

[11] G. Abich et al., “Extending FreeRTOS to support dy-
namic and distributed mapping in multiprocessor sys-
tems,” in IEEE International Conference on Electronics,
Circuits and Systems (ICECS), 2016, pp. 712–715.

