
Evaluating Serialization for a Publish-Subscribe
Based Middleware for MPSoCs

Jean Carlo Hamerski∗†, Anderson R. P. Domingues∗, Fernando G. Moraes∗, Alexandre Amory∗
∗School of Technology – PUCRS – Av. Ipiranga 6681, 90619-900, Porto Alegre, Brazil

†Instituto Federal de Educação Ciência e Tecnologia do Rio Grande do Sul (IFRS), Porto Alegre, Brazil
jean.hamerski@restinga.ifrs.edu.br, anderson.domingues@acad.pucrs.br, {fernando.moraes,alexandre.amory}@pucrs.br

Abstract—Efficient serialization is a must-have feature in
distributed embedded protocol stacks because of the restrained
resources available for use in such systems. Although there are
many serialization libraries out there, only some of them focus
on resource usage, which is of most importance for the embedded
domain. Thus, a comparison of serialization libraries considering
resource usage is of high relevance for the embedded systems
domain. This paper presents an experiment-based comparison
of serialization libraries while concentrating on resource usage
for a multiprocessor system-on-chip (MPSoC) platform. Results
show that MsgPuck library surpasses other libraries for both
serialization speed and memory consumption criteria.

Index Terms—embedded systems, networking, serialization.

I. INTRODUCTION AND BACKGROUND

A multiprocessor system-on-chip (MPSoC) typically con-
sists of a set of processing elements (PEs) distributed over
the chip and interconnected by a network-on-chip (NoC). In
such systems, the memory organization is usually based on
the No Remote Memory Access (NoRMA) approach, where
the embedded processors indirectly access the remote address
via messages sent via a NoC. As any other distributed sys-
tem based on NoRMA, the communication infrastructure and
protocol stack play an essential role in the system architecture.

Although the community widely debated on-chip physical
communication infrastructure in the past [1], discussions about
how to build a protocol stack for MPSoCs are rarer to be
found. Regardless of the type of distributed domain, in typical
protocol stacks, each of the layers has a set of protocols, which
provide different services to the upper layer. The uppermost
layer is the application layer while the lowermost one is the
physical layer. Layers in between physical and application
layers may vary from system to system. For instance, the OSI
model suggests the implementation of five other layers: data
link, network, transport, session, and presentation.

Despite the many different typical services for a protocol
stack, serialization service is one of the most common among
them. Two approaches for serialization are commonly found
in the literature: binary and textual. In both, some serialization
service is responsible for transforming some applications data
structure into serial data, which can be either a stream of
bytes (binary serialization) or merely a string (e.g., XML,
JSON). Deserialization is the reverse process, where a stream
of bytes (or a string) is received and converted to a copy of
the data structure that originated it. It is important to note that
serialization and deserialization are often called serialization,
for short. We use this terminology for the rest of this paper.

There are dozens of serialization libraries available. How-
ever, these libraries are designed for a particular application
domain that has requirements to be met. For example, appli-
cations for mobile phones require interoperability, low power
consumption, among others. Another example is web applica-
tions where, usually, textual serialization formats (e.g., XML,
YAML, and JSON) are preferred. Thus, the approach for
serialization methods is bound to the domain of application.

In MPSoCs, where the amount of memory available for
each PE is minimal (about tens or hundreds of KBytes),
some programming platforms (e.g., Java, Python) cannot be
used. It also excludes approaches that rely on large external
dependencies (e.g., LibBoost). Besides, serialized data must
be as small as possible to save bandwidth in the NoC,
reducing network contention and energy consumption. For
these reasons, string-based serialization (e.g., XML, JSON) are
not valid options. Lastly, the serialization and deserialization
must be fast, because the MPSoCs are usually based on small
and simple processors. For instance, such processors work
with 32-bit data path, fixed-point arithmetic, and three or
five pipeline stages. Lastly, some applications have real-time
constraints, although we do not address them in this paper.

The requirements for MPSoC excludes a substantial number
of available serialization methods. The main contribution of
this paper is to present a performance and resource usage
evaluation of the few adequate solutions we could find, against
the requirements mentioned before. As given in the next
section, only a few studies present similar comparisons, but
the solutions they evaluate have no use for MPSoCs since
the domains of applications are radically different and less
constrained when compared to the MPSoC domain.

II. RELATED WORK

Although some studies on the comparison of serialization
libraries exist in the literature, none of them are focused
on serialization for highly memory constrained embedded
platforms such as MPSoCs. The most related paper eval-
uates serialization with a focus on the Internet of Things
domain [2]. However, they assume the Beagle Bone Black
[3] or Odroid [4] hardware platforms. Both platforms have
more than 512MB of memory and use a complete Linux-
based OS, which has much more resources than the individual
processors of our target MPSoC architecture. Thus, most of the
evaluated serialization methods cannot be applied for MPSoCs
because, for instance, the evaluated methods require from 1MB

773978-1-5386-9562-3/18/$31.00 ©2018 IEEE

to 22MB of memory, which is more memory than the total
amount of memory available for individual processors in the
target MPSoC platform.

Maeda [5, 6] presented similar studies comparing several
serialization libraries for Java. The requirement of languages
such as Java and Python is also a limitation for processors
with few KBytes of memory. Also, most of serializers work
with formats such as XML, YAML, and JSON. Even though
these formats present advantages concerning readability and
interoperability, they present the drawback of bigger serialized
data size when compared to the binary data formats. In the
MPSoC domain, bandwidth usage is much more important
than readability. For this reason, binary serialization is more
suitable for MPSoC.

Sumaray and Makki [7] present a similar comparison for
data size, serialization speed and ease of use of serialization
libraries. However, they focus on Android-based platforms,
which falls on the same issues as the previous references.

This paper is the first one to present an experiment-based
comparison of serialization libraries applied to the context of
embedded platform highly constrained in memory.

III. SERIALIZATION LIBRARIES

In programming languages such as Java and C#, serial-
ization is implemented by extending some interface of the
built-in API. In other programming languages, such as C and
C++, serialization must be implemented almost from scratch.
The community developed several libraries, in the hope of
mitigating efforts during the implementation of serialization.

Most of the libraries support both serializations of basic
types and complex types. For the latter, the support mostly
is provided through schemas, which the approach vary from
library to library. Depending on the approach, resources re-
quired may exceed what is available on resource constrained
platforms. We considered the following libraries.

MsgPack-c (version 2.1.5) is an implementation of the
MsgPack (msgpack.org) serialization format with support to
C and C++ language. MsgPack-c requires both a C++03 or
C++11 compatible compiler and code annotation. MsgPack-c
is available at github.com/msgpack/msgpack-c.

MsgPuck (v. 2.0) is a compact implementation of Ms-
gPack library, written in C. MsgPuck repository announces
interesting characteristics like zero-cost abstractions and zero
overhead. All necessary library code is written in a pair
of .c and .h files. In addition to support the base types,
MsgPuck also has support to arrays as representation of a
sequence of objects and maps for key-value pairs of objects.
MsgPuck requires a C89+ or C++03 compatible compiler
and it does not use schemas or code annotation. Available
at github.com/rtsisyk/msgpuck.

MPack (v. 0.8.2) is a third implementation of MsgPack
format, also written in C, without libc requirement. MPack
does not use schemas or code annotation. Available at
github.com/ludocode/mpack.

FlatBuffers (v. 1.8.0) allows that the data can be ac-
cessed without unpacking serialized data. However, this fea-

ture does not come without a cost, as show in the results
of section VI. Flatbuffers is based on Protocol Buffer for-
mat (github.com/google/protobuf), also known as ProtoBuf.
FlatBuffers requires both a C++11 compatible compiler and
schemas definition. Available at github.com/google/flatbuffers.

NanoPB (v. 0.3.9) is an implementation of ProtoBuf that
targets embedded systems. The serialization rely on schemas.
Schemas of NanoPB are written into proto files, and their
syntax is very similar to C’s struct syntax. Nanopb should
compile with most ansi-C compatible compilers, but it requires
implementations of the strlen, memcpy and memset functions.
Available at github.com/nanopb.

YAS (v. 5.0.1) is a replacement for Boost Serialization
library (www.boost.org). Advantages of YAS include that it is
header-only library and does not depends on external libraries
and endianess. It requires both a C++11 compatible compiler
and schema definitions. Available at github.com/niXman/yas.

IV. THE TARGET PLATFORM

A. Hardware Infrastructure

We perform the experiments in a 6x6 NoC-based MPSoC
with homogeneous PEs. Each PE is equipped with an ARM’s
Cortex-M4F processor, direct memory access (DMA) module,
a 512KBytes private random access memory (RAM), a net-
work interface (NI), and router. An extra memory module is
attached to the PE-0. This extra memory stores applications’
static code until the system startup, when these are loaded
into PEs’ private memories. The platform is described using
OVPSIM API (http://www.ovpworld.org/), which provides an
instruction accurate simulation framework. Figure 1 presents
the organization of the platform.

30

cl
us

te
r

worker

31 32 33 34 35

24 25 26 27 28 29

18 19 20 21 22 23

12 13 14 15 16 17

6 7 8 9 10 11

0 1 2 3 4 5
Network Interface

Processor

DMA

broker

PE

RAM

Application Level

Pub/Sub Middleware

FreeRTOS Kernel

Operations

Syscalls

ap
pl

ic
at

io
n

re
po

si
to

ry

Router

Figure 1. A 6x6 MPSoC platform with 3x3 clusters configuration.

B. Software and Network Infrastructure

The system running in each PE is composed of an extended
version of FreeRTOS kernel [8] and a communication middle-
ware [9] based on the publish-subscribe (pub-sub) pattern. The
kernel is responsible for the task mapping and scheduling, and
interaction with hardware. The network infrastructure counts
with a protocol stack that interacts with the underlying NoC
by system calls to the kernel. The pub-sub protocol is im-
plemented by the middleware, intermediating communication

774

between publisher, subscriber, and broker nodes. The messages
are transferred by using named data channels called topics.

V. EXPERIMENTAL SETUP

A. Application Case Study

The experiments use a Producer-Consumer application,
which contains two tasks: a producer and a consumer. The
pub-sub middleware is used to perform the communication
between the two tasks. A topic identifies the message flow. We
use three distinct data types that represent the application data
in each test scenario. The goal is to evaluate each serialization
library using from straightforward to more complex data
types. Figure 2 shows the used data types. The size of the
structs A, B and C is, respectively, 8, 60 and 92 bytes, not
considering the size of types that are dynamically sized. In our
experiments, the size of all vectors is 1, that is, each vector
has only 1 inserted element. The application data is delivered
to the middleware level by using the provided API [9]. The
middleware serializes the application data using a serialization
library and transfers the serialized payload to the low level of
the protocol stack until it is transmitted over the NoC. One
message is sent by producer to consumer task in all scenarios.

/* Struct A */ enum TempLevel{High=1,Medium,Low};
struct Temperature{

int32_t timestamp; /* Struct C */
float temp;}; struct AllSensors{

std::string name;
/* Struct B */ Temperature temp;
struct InstrCnt{ float calib;
char[32] name; int16_t cpu_usage;
int32_t arith; std::vector<uint8_t> occupancy;
int32_t logical; TempLevel tempLevel;
int32_t branch; std::vector<InstrCnt> processors;
int32_t jump; InstrCnt instrCnt;
int32_t load; std::vector<Temperature> History;};
int32_t store;
int32_t nop;};

Figure 2. Data structures used within the experiment.

B. Evaluated Metrics

Three metrics are extracted from each scenario: serialization
and deserialization execution time, data size, and code size. A
scenario is a combination of a serialization library and one of
the three structures presented in Figure 2. Thus, a total of 16
scenarios were run, since YAS and NanoPB do not support
the serialization of vectors, which are used in Struct C.

The serialization execution time corresponds to the total
time spent by the producer process to perform the serialization
of data. The deserialization execution time is the time spent
by the consumer process to perform the deserialization of the
received data. The measurement unit is the number of clock
cycles measured through a timing model [10] that capture the
executed instructions for each processor, generating an execu-
tion time from total executed instructions. The data size (DS)
corresponds to the number of bytes required to encapsulate
the serialized object into the packet payload, that is, the total
size of the payload data of the application layer. The code
size (CS) corresponds to the amount of memory required in
the PE to store the software code. This metric considers the

size of kernel, middleware and serialization library, together.
The measurement unit is bytes. For comparison purposes, the
size of the software code (kernel plus middleware) without
any serialization library is 22.5KB.

VI. RESULTS AND DISCUSSION

The performed experiment evaluates memory code size
(CS) and payload data size (DS) achieved at each data struct
type. Table I shows the results. Regarding CS and DS, the
MsgPuck library has achieved the fittest result for all three
data structures. All libraries present a larger code size for
Struct C because this struct has elements with standard types
to represent vectors and strings (std::vector and std::string).
Consequently, the code size is significantly increased with
additional methods to handle these types. An alternative to
representing these object types would be the use of specialized
libraries for embedded system, such as Embedded Template
Library (http://www.etlcpp.com). FlatBuffers library needs a
larger number of bytes to represent the serialized data, in
addition to presenting the largest code size. FlatBuffers stores
metadata of complex types into memory in a way that it serves
as pointers to parts of the serialized data. In general, libraries
that use schemas to represent data structures end up producing
a larger code size. They use a run-time type identification
(RTTI), which is a feature of the C++ programming language
that exposes information about an object’s data type at runtime.
On the other hand, the libraries with smaller generated code
size are those that require the explicit definition of the serial-
ize/deserialize method for each object that composes the struct.
We observe a trade-off between ease of use of the library and
the amount of memory necessary to store the software. The
system designer must keep this in mind when choosing the
serialize library that fits into your design.

Table I
MEMORY SIZE FOR EACH ANALYZED LIBRARY.

Library Struct A Struct B Struct C
CS DS CS DS CS DS

MsgPack-c 168.7 9 269.1 15 272.6 67
MsgPuck 22.7 8 23 14 263.2 62

YAS 328.9 15 329.7 49 N/S1 N/S1

Flatbuffers 333.6 24 334 72 336 224
NanoPB 33.6 10 33.7 24 N/S1 N/S1

MPack 34.8 9 35 15 272.3 67
1 N/S = No support for vector of structs

In order to demonstrate an example of ease of use, we show
the code snippet necessary to serialize the Struct B in both the
YAS library (Figure 4), that uses schemas, and the MsgPuck
library (Figure 5), that requires the explicit declaration of
serialization process for each struct element.

We observed that some serialization libraries (MsgPack-
c, MsgPuck and MPack) consume more clock cycles for
deserialization than serialization. In the Producer-Consumer
application, specifically, this is very undesired, since, if the
producer process is faster than the consumer, there will be a
point in application’s lifetime in which the consumer buffer
will be full, and thus the producer will be unable to produce

775

267

827

3301

93 132

1624

944

1745
2352

4908

2772

7170

245
700

2455 2583

3956

23
297

2131

384

1586

568

2029

3572

2241

6579

757

2125

7724

0

1.000

2.000

3.000

4.000

5.000

6.000

7.000

8.000

Struct A Struct B Struct C Struct A Struct B Struct C Struct A Struct B Struct A Struct B Struct C Struct A Struct B Struct A Struct B Struct C

MsgPack-c MsgPuck YAS FlatBuffers NanoPB MPack

C
lo

ck
 C

yc
le

s

Ser. Time Des. Time

12830
...

15927
...

Figure 3. Serialization and deserialization execution time for each evaluated library and serialized data structs.

yas::mem_ostream os;
yas::binary_oarchive<yas::mem_ostream> oa(os);
oa & AppData;
this->message.msg_len = os.get_intrusive_buffer().size;
this->message.msg = (char*) os.get_intrusive_buffer().data;
--
template<typename Ar>
void serialize(Ar &ar, const AppDataClass &t) {
ar & YAS_OBJECT_NVP("InstCnt", ("n",t.InstrCnt.name),
("a",t.InstrCnt.arith), ("l",t.InstrCnt.logical),
"b",t.InstrCnt.branch), ("j",t.InstrCnt.jump),
("ld",t.InstrCnt.load), ("s",t.InstrCnt.store),
("n",t.InstrCnt.nop)); }

Figure 4. Code snippet of the YAS serialization process and required schema.
AppData object contains an InstrCnt member corresponding to the Struct B.

char buf[MAX_PAYLOAD_SIZE];
char *w = buf;
w = mp_encode_str(w, AppData.InstrCnt.name,
strlen(AppData.InstrCnt.name));
w = mp_encode_int(w, AppData.InstrCnt.arith);
w = mp_encode_int(w, AppData.InstrCnt.logical);
w = mp_encode_int(w, AppData.InstrCnt.branch);
w = mp_encode_int(w, AppData.InstrCnt.jump);
w = mp_encode_int(w, AppData.InstrCnt.load);
w = mp_encode_int(w, AppData.InstrCnt.store);
w = mp_encode_int(w, AppData.InstrCnt.nop);
this->message.msg_len = strlen(buf);
this->message.msg = buf;

Figure 5. Code snippet of MsgPuck serialization process for the Struct B.

and deliver more packets. This behavior may slow the sys-
tem, which is not tolerable in some domains (e.g. real-time
applications). When the serialization time is greater than the
deserialization time, the system is also slowed, but the node
that hosts the consumer application will not be compromised
in case it has other tasks to care of.

It is not the goal of this paper to analyze the cause of the
high execution time values of the serialization/deserialization
process in some library since it would require an internal
analysis of each library’s processes. We understand it to be of
great value to disseminate the results presented in this paper
as a benchmark, even for a small but important set of libraries.

VII. CONCLUSION AND FUTURE WORK

In this paper we presented a comparison on serialization
libraries while focusing on the MPSoC domain. Our results

point that MsgPuck is the library that consumes less memory
when serializing. Regarding serialization speed, MsgPuck also
excels and beat other libraries. As future works we intend to
evaluate serialization of data structures containing vector and
string elements represented through specialized libraries for
embedded system, such as Embedded Template Library. Also,
this study can be extended to comprehend a more representa-
tive number of libraries by replicating the experiment.

ACKNOWLEDGMENT

The authors would like to thank Imperas Software and Open
Virtual Platforms for their support and access to their models
and simulator. Jean Carlo Hamerski is supported by CNPq and
IFRS. Author Fernando Gehm Moraes is supported by FAPERGS
(17/2551-0001196-1) and CNPq (302531/2016-5), Brazilian funding
agencies. This study was financed in part by the Coordenação de
Aperfeiçoamento de Pessoal de Nivel Superior – Brasil (CAPES) -
Finance Code 001.

REFERENCES
[1] T. Bjerregaard and S. Mahadevan, “A survey of research and practices

of network-on-chip,” ACM Computing Surveys (CSUR), vol. 38, p. 1,
2006.

[2] B. Petersen, H. Bindner, S. You, and B. Poulsen, “Smart grid serializa-
tion comparison: Comparision of serialization for distributed control in
the context of the internet of things,” in 2017 Computing Conference,
2017, pp. 1339–1346.

[3] B. Foundation. BeagleBone Black. (Date last accessed 21-Sep-2018).
[Online]. Available: https://beagleboard.org/black

[4] O. Platforms. Odroid. (Date last accessed 21-Sep-2018). [Online].
Available: https://www.hardkernel.com

[5] K. Maeda, “Comparative survey of object serialization techniques and
the programming supports,” International Journal of Computer, Electri-
cal, Automation, Control and Information Engineering, vol. 5, no. 12,
2011.

[6] ——, “Performance evaluation of object serialization libraries in xml,
json and binary formats,” in DICTAP, 2012, pp. 177–182.

[7] A. Sumaray and S. K. Makki, “A comparison of data serialization
formats for optimal efficiency on a mobile platform,” in ICUIMC’12.
New York, NY, USA: ACM, 2012, pp. 48:1–48:6.

[8] G. Abich, M. G. Mandelli, F. R. Rosa, F. Moraes, L. Ost, and R. Reis,
“Extending FreeRTOS to support dynamic and distributed mapping in
multiprocessor systems,” in ICECS, 2016, pp. 712–715.

[9] J. C. Hamerski, G. Abich, R. Reis, L. Ost, and A. Amory, “Publish-
subscribe programming for a NoC-based multiprocessor system-on-
chip,” in ISCAS, 2017, pp. 1–4.

[10] F. Rosa, L. Ost, T. Raupp, F. Moraes, and R. Reis, “Fast energy eval-
uation of embedded applications for many-core systems,” in PATMOS,
2014, pp. 1–6.

776

