IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received December 18, 2018, accepted January 8, 2019, date of publication February 14, 2019, date of current version March 8, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2899463

Non-Volatile Memory File Systems: A Survey

GIANLUCCA 0. PUGLIA™1, AVELINO FRANCISCO ZORZO!, (Member, IEEE),
CESAR A. F. DE ROSE!, (Member, IEEE), TACIANO D. PEREZ’,
AND DEJAN MILOJICIC 2, (Fellow, IEEE)

IPontifical Catholic University of Rio Grande do Sul, Faculty of Informatics -FACIN, Porto Alegre 90619-900, Brazil
2Hewlett-Packard Labs, Palo Alto, CA 94304-1126, USA

Corresponding author: Avelino Francisco Zorzo (avelino.zorzo@pucrs.br)

This work was supported in part by the Coordenagdo de Aperfeicoamento de Pessoal de Nivel Superior—Brazil (CAPES) under Finance
Code 001, and in part by the Hewlett Packard Enterprise (HPE) with resources under Law 8.248/91.

ABSTRACT For decades, computer architectures have treated memory and storage as separate entities.
Nowadays, we watch the emergence of new memory technologies that promise to significantly change the
landscape of memory systems. Byte-addressable non-volatile memory (NVM) technologies are expected to
offer access latency close to that of dynamic random access memory and capacity suited for storage, resulting
in storage-class memory. However, they also present some limitations, such as limited endurance and
asymmetric read and write latency. Furthermore, adjusting the current hardware and software architectures to
embrace these new memories in all their potential is proving to be a challenge in itself. In this paper, recent
studies are analyzed to map the state-of-the-art of NVM file systems research. To achieve this goal, over
100 studies related to NVM systems were selected, analyzed, and categorized according to their topics and
contributions. From the information extracted from these papers, we derive the main concerns and challenges
currently being studied and discussed in the academia and industry, as well as the trends and solutions being
proposed to address them.

INDEX TERMS Algorithms, design, reliability, non-volatile memory, storage-class memory, persistent

memory.

I. INTRODUCTION
The increasing disparity between processor and memory per-
formances led to the proposal of many methods to mitigate
memory and storage bottlenecks [6], [107]. Recent research
advances in Non-Volatile Memory (NVM) technologies may
lead to a revision of the entire memory hierarchy, dras-
tically changing computer architecture as we know today,
to, for example, a radical memory-centric architecture [38].
NVMs provide performance speeds comparable to those of
today’s DRAM (Dynamic Random Access Memory) and,
like DRAM, may be accessed randomly with little perfor-
mance penalties. Unlike DRAM, however, NVMs are persis-
tent, which means they do not lose data across power cycles.
In summary, NVM technologies combine the advantages
of both memory (DRAM) and storage (HDDs - Hard Disk
Drives, SSDs - Solid State Drives).

These NVMs, of course, present many characteris-
tics that make them substantially different from HDDs.

The associate editor coordinating the review of this manuscript and
approving it for publication was Geng-Ming Jiang.

Therefore, working with data storage in NVM may take
the advantage of using different approaches and methods
that systems designed to work with HDDs do not sup-
port. Moreover, since the advent of NAND flash memo-
ries, the use of NVM as a single layer of memory, merging
today’s concepts of main memory and back storage, has been
proposed [98], [99], aiming to replace the whole memory
hierarchy as we know. Such change in the computer archi-
tecture would certainly represent a huge shift on software
development as well, since most applications and operating
systems are designed to store persistent data in the form of
files in a secondary memory and to swap this data between
layers of faster but volatile memories.

Even though all systems running in such an architecture
would inevitably benefit from migrating from disk to NVM,
one of the first places one might look at, when considering
this hardware improvement, would be the file system. The file
system is responsible for organizing data in the storage device
(in the form of files) and retrieving this data whenever the
system needs it. File systems are usually tailored for a specific
storage device or for a specific purpose. For instance, an HDD

2169-3536 © 2019 IEEE. Translations and content mining are permitted for academic research only.

25836

Personal use is also permitted, but republication/redistribution requires IEEE permission.

VOLUME 7, 2019

See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0003-3587-3701
https://orcid.org/0000-0001-9830-8588

G. O. Puglia et al.: NVM File Systems: A Survey

IEEE Access

file system, like Ext4, usually tries to maintain the data blocks
belonging to a file contiguously or at least physically close to
each other for performance reasons. A file system designed
for flash memory devices, like JFFS2, might avoid rewrit-
ing data in the same blocks repeatedly, since flash memory
blocks have limited endurance. The list could go on, but we
can conclude that whenever the storage hardware changes,
the way data is stored and accessed must be reviewed. In all
these cases, file systems should be adapted to this condition
in order to reduce complexity and to achieve the best possible
performance.

Concerned with the adaptation of current architectures to
NVM devices, in the 2013 Linux Foundation Collaboration
Summit [26], the session ‘“‘Preparing Linux for nonvolatile
memory devices” proposed a three-step approach to migrate
today’s systems to a fully NVM-aware model. In the first step,
file systems will access NVM devices using NVM-aware
block drivers under traditional storage APIs and file systems.
This step does not explore the disruptive potential of NVM
but is a simple method for making it quickly deployed and
accessible by today’s systems.

In the second step, existing file systems will be adapted
to access NVM directly, in a more efficient way. This step
ensures that file systems are designed with NVM charac-
teristics in mind, but keeping the traditional block-based
file system abstraction for compatibility purposes. Signifi-
cant changes in this step may include improvements such as
directly mapping files into application’s address space, fine
tuning consistency and reliability mechanisms, such as jour-
naling, for improved performance and eliminating processing
overhead related to hard disks hardware characteristics.

The final step is the creation of byte-level I/O APIs to be
used by new applications. This step will explore interfaces
beyond the file system abstraction that may be enabled by
NVM. It has the most disruptive potential, but may break
backward compatibility. It also presents a much higher level
of complexity and the requirements for such ground breaking
changes are still being studied. However, at this point, appli-
cations will not only be able to take the best performance out
of NVM, but will also have access to newly improved APIs
and persistence models.

With this in mind, we aim to provide, with this paper,
a much needed detailed overview of the state of the art of
NVM-related studies, identifying trends and future directions
for storage solutions, such as file systems, databases and
object stores. The intention is to provide a comprehensive
view of the area as well as to identify new research and
development opportunities. The systematic mapping model
was chosen as a method to reduce research bias and allow
replication of results. Hence, we map the current state of
the art of NVM storage studies including the most common
issues, the biggest challenges, industry trends and standards,
main tools, and frameworks or algorithms being adopted on
NVM storage solutions. To that end, we provide an overview
on industrial and academic efforts to push current technol-
ogy to be NVM aware and more efficient. We also identify

VOLUME 7, 2019

and categorize: problems related to NVM storage, what solu-
tions to those problems have been proposed, which of those
problems are still unresolved, what are the new approaches to
work with NVMs and how these approaches may improve the
use of NVMs. Our purpose is to gather and analyze studies
related to the application of NVM technologies to different
types of systems (focused on storage systems) not only to
document them but also to provide a straight-forward guide
for researchers unfamiliar with these concepts. Since most
of the promising NVM technologies are still currently under
development and access to these technologies is very lim-
ited, this paper expects to deal with more theoretical content
rather than experimental results and technical applications
(although those are important to the area).

Complementary to our study, a survey presented by Mit-
tal and Vetter [94] provides an overview of NVM tech-
nologies and reviews studies focused on either combin-
ing or comparing different memory technologies. Even
though the previous survey presents a classification of
NVM-related solutions, it does not discuss future directions
nor features that deserve additional investigation. Another
study by Wu et al. [133] explores the challenges of adopting
Phase-Change RAM (PCM) as storage, main memory or
both, summarizing existing solutions and classifying them.

The remaining of this paper is organized as follows.
Section II presents some basic concepts of NVM storage and
technologies approached in this study. Section III details the
process used in this systematic mapping study and explains
the analysis and classification of the selected studies. Sec-
tions IV and V present an extensive discussion about the anal-
ysis results. In order to broaden the contribution of this paper,
Section VI discusses some of the work being conducted in
industry. Section VII discusses the state of the art and future
directions. Section VIII presents relevant published related
work. Finally, Section IX concludes this paper by providing
a quick overview of the state of the art of NVM file systems.

Il. BASIC CONCEPTS

This section presents some concepts that are essential to
the NVM storage theme. These concepts are all intimately
connected to each other and are also the base knowledge that
supports the idea of NVM file systems. Further details on how
these topics work together in practice will be detailed in the
coming sections.

A. NON-VOLATILE MEMORY TECHNOLOGIES

The term Non-Volatile Memory (NVM) may be used to
address any memory device capable of retaining state in
the absence of energy. In this paper, we focus our study
on emerging byte-addressable NVM technologies: memories
that share many similarities to DRAM, such as low latency
and byte-granularity access, while also presenting a few
key distinctions, the most obvious one being their persistent
nature. We also explore studies on Flash memory, as it shares
some traits with byte-addressable NVM and are currently the
most popular NVM in the market.

25837

IEEE Access

G. O. Puglia et al.: NVM File Systems: A Survey

For the sake of clarity and simplicity, in this paper we make
a clear distinction between byte-addressed and block-based
memory devices. We refer to any byte-addressable NVM
technology and memory layer as Persistent Memory (PM).
For more traditional block-devices, usually based on NAND
Flash memory (although PM technologies are also being
employed for block storage), we adopt the term Solid State
Drive (SSD).

Although these technologies have many characteristics in
common, such as low latency, byte-addressability and non-
volatility, they do have some key differences. These differ-
ences have direct impact over fundamental metrics, such as
latency, density, endurance and even number of bits stored
per cell. In this paper we cover the most popular of these
technologies. There are other alternatives that are under
development [72], which we do not describe here. The tech-
nologies we cover are:

+ Magnetic RAM, a.k.a., Magnetoresistive RAM, is basi-
cally composed of two magnetic tunnels whose polarity
may be alternated through the application of a mag-
netic field. Conventional MRAM (also called “‘toggle-
mode”” MRAM) uses a current induced magnetic field
to switch the magnetization of the Magnetic Tunnel
Junction (MT]J, a structure basically composed of two
magnetic tunnels whose polarity may be alternated
through the application of a magnetic field). The ampli-
tude of the magnetic field must increase as the size
of MT]J scales, which compromises MRAM scalability.
MRAM presents high endurance (over 10 writes) and
extremely low latency (lower than DRAM) [139]. Also,
although the energy necessary to read and write from/to
MRAM cells is generally higher than on DRAM cells,
it is usually considered that MRAM is more energy
efficient than DRAM due to its lack of need for cell
refresh. However, MRAM suffers from a severe issue of
density that prevents it from scaling to storage levels. For
that reason, much research was invested into exploring
new memory architectures to make MRAM usage more
feasible.

o Spin-Torque Transfer RAM is a variation of MRAM,
designed to address the scalability issues of its
predecessor. The main difference between these two
technologies is in the cell write process: in STT-RAM,
a spin-polarized current, instead of a magnetic field,
is used to set bits, which makes the cell structure much
simpler and smaller. Similar to MRAM, both the effi-
ciency and endurance in STT-RAM are excellent, being
able to achieve latency lower than DRAM [72] and num-
ber of writes superior to Flash. The main challenge in
adopting STT-RAM at large scale is due to its low den-
sity, even though some authors agree that the technology
has a high chance to replace existing technologies such
as DRAM and NOR Flash than other technologies in this
list [72].

o The basic concept behind Resistive RAM (RRAM) tech-
nology is similar to that of MRAM in that the electric

25838

resistance of components are modified by external oper-
ations to change the state of the memory cells. The most
typical method to do so is applying different voltage
levels to change the cell resistivity. In general, RRAM
is known to be quite efficient, both in terms of access
latency and energy. One of the main advantages of
these technologies, however, is their scalability that,
supposedly, may easily surpass that of DRAM. The main
drawback of RRAM devices is their limited endurance.
Reportedly, resistive technologies such as Memristor
can achieve around 107 writes lifetime [139], which may
limit the usage of the technology (as main memory, for
example).

Phase-Change Random Access Memory (PCRAM,
PRAM or PCM) is currently the most mature of the
new memory technologies under research. It relies on
phase-change materials that exist in two different phases
with distinct properties: an amorphous phase, with high
electrical resistivity, and a crystalline phase, with low
electrical resistivity [113]. PCRAM scales well and
presents endurance comparable to that of NAND Flash,
which makes it a strong candidate for future high-speed
storage devices. This technology is slower than DRAM
(between 5 and 15 times slower) and has a considerable
disparity in energy consumption due to its RESET oper-
ation dissipating a larger amount of energy than other
operations [10], [113].

Flash memory is the most popular and wide-spread
technology on this list. The original Flash memory
structure was designed after traditional Electric Erasable
Programmable Read-Only Memory (EEPROM) to be
able to perform erase operations over separate blocks,
instead of over the entire device. Flash memory is mainly
divided into NOR and NAND Flash. While NOR Flash
is faster and may be written (but not erased) at byte
granularity, NAND presents higher density [18] and is
significantly more durable. In general, Flash memory
is known for being several times slower than emerging
PM technologies and usually employed solely as 1/O
devices, replacing magnetic disks. Despite that, Flash
does share a few key characteristics with upcoming
PM technologies, such as limited endurance, density,
energy constraints, different speeds for read and write
operations and persistence. Since its introduction, Flash
memories have been extensively studied and a variety of
mechanisms to both cope with and explore its character-
istics have been proposed [29], [54], [61]. This research
notably influenced current under development PM stu-
dies. Hence, we argue that, although Flash memory
may present significantly distinct characteristics when
compared to upcoming byte-addressable NVM, knowl-
edge in many aspects and topics regarding Flash (such
as wear-leveling, garbage collection, log-structured file
systems and address translation layer, to name a few)
may be useful to understand and guide research on PM.
Furthermore, Flash memory is still currently extremely

VOLUME 7, 2019

G. O. Puglia et al.: NVM File Systems: A Survey

IEEE Access

TABLE 1. Characteristics of the NVM technologies discussed in [10], [72], [84], [106], and [113].

DRAM FeRAM MRAM STT-RAM RRAM PCRAM Flash
Density per Chip 8-16 Gb 128 Mb 16 - 32 Mb 2 - 16Mb 64Kb 1Gb 256 - 512Gb
Endurance 1015 107° 107 107 10° 107 107
Read Latency 10 - 60ns 75ns 5-10ns 5 - 10ns 10ns 50ns 25 ps
Write Latency 10 - 60ns 50ns 12ns 12ns 10ns 40 - 150ns 200us
Energy per Write 2pl 2pl 120 pJ 0.02 pJ 2pl 100 pJ 100 - 1000 mJ

popular and it does not seem likely that SSD devices are
going to get obsolete anytime soon.

Upcoming NVM technologies have much in common indi-
vidually, such as low energy leakage, fast access, efficient
random access and lifetime limitations. However, they also
have their own drawbacks that may vary from technology
to technology: some have issues with endurance, some have
lower performance, some do not scale well. Table 1 summa-
rizes the main characteristics of these memory technologies.
Additionally, they are at different stages of development,
some being studied in laboratories only, while some are
already being commercialized. All of these memories have
a real potential to replace current predominant technologies
at some level of the memory hierarchy (such as HDDs for
storage, DRAM for main memory and SRAM for processor
caches) and they all represent a huge shift in how persistent
data is managed on today’s systems. Therefore, researchers
have been thoroughly exploring the potential of these tech-
nologies and proposing solutions that may either overlap
or complement each other. That being said, in this work,
we do not focus on any particular underlying NVM technol-
ogy, even though we emphasize innovations and studies on
byte-addressable NVM as our main interest.

B. FILE SYSTEMS

One of the simplest methods to provide NVM access to
applications is by simply mounting a file system over it.
Using special block drivers, it is possible to build traditional
disk file systems, like ReiserFS, XFS or the EXT family, over
a memory range. Metadata and namespace management is
made by the file system while the block driver is responsible
for the actual writes to the physical memory. However, since
these file systems were designed for much slower devices
with very different characteristics, they usually are not the
best fit for NVM management. Hence, a handful of alterna-
tive file systems, designed specifically for NVM, were pro-
posed, designed and implemented [25], [37], [136], [138].
NVM file systems usually take into account issues such as
minimizing processor overhead, avoiding unnecessary data
copies, tailoring metadata to NVM characteristics and ensur-
ing both data protection and consistency.

BPES [25] and PMFS [37], for example, are two early
and well-known examples of NVM improved file systems,
designed to provide efficient access to NVM using the
POSIX interface. Both systems are designed for memory-bus
attached NVM storage and attack common NVM-related
issues such as efficient consistency mechanisms, consistency

VOLUME 7, 2019

with volatile processor cache and NVM optimized struc-
tures. On the one hand, BPFS proposes the epoch barrier
mechanism to reinforce ordering and to maintain consis-
tency when writing to NVM while also avoiding cache
flushes. BPFS also proposes a short-circuit shadow paging,
which is a fine-grained NVM-friendly redesign of the tra-
ditional shadow paging. PMFES, on the other hand, employs
fine-grained journaling to ensure atomicity on metadata
updates while adopting the copy-on-write technique to ensure
atomicity on file data updates. PMFS also provides memory
protection over the file system pages by marking them as read
only and allowing them to be updated by kernel code only
when necessary, during small time windows, by manipulating
the processor’s write protect control register.

A more recent example of NVM designed file system is
NOVA [138]. Besides improving the efficiency of file sys-
tem structure and operations based on NVM characteristics,
NOVA also seeks to provide support for NVM scalability.
It minimizes the impacts of locking in the file system by
keeping per-CPU metadata and enforcing their autonomy.
Like BPFS and PMFS, NOVA keeps some of its struc-
tures in DRAM for performance reasons while also ensuring
the integrity of metadata stored in NVM. NOVA is also
log-structured, which is a common structure of file sys-
tems for persistent memory due to their affinity with these
technologies.

Another common approach is the user-space file systems.
Unlike the aforementioned file systems, such as BPFS that
run as part of the OS kernel, user-space file systems run as
regular user code through libraries and user-level processes.
The usual approach is to map a region of NVM on a process
address space that can be accessed by applications through
programming libraries. These libraries provide to the user
applications traditional (and sometimes more advanced) file
system functionality without the need to interact with kernel
code. This design choice aims to eliminate file system oper-
ation overhead sources related to the interaction between the
process and the operating system, such as system calls and
switching between protection rings. We discuss these choices
and benefits further in Section V-BS5.

While NVM promises to greatly improve storage perfor-
mance, the fact is that, as a technology, it is still far from being
mature. More traditional storage technologies such as SSD
are more well developed (in both software and hardware) and
suitable for larger or mass storage systems, therefore being
indispensable for today’s large systems. Many researchers
take these characteristics into consideration and propose file

25839

IEEE Access

G. O. Puglia et al.: NVM File Systems: A Survey

system hybrid approaches. In these approaches, the idea is
to combine the best of both technologies, by, for example,
using NVM to store frequently accessed data or using it
for logging/journaling while using NAND Flash as back
storage. These approaches may offer an array of advantages
such as better scalability, improved device lifetime, increased
performance, improved reliability and so on. Although the
goals and methods employed by these file systems may
vary, most hybrid file systems [33], [76], [105], [120], [131]
face the same challenges such as predicting access patterns
and managing metadata. We further discuss hybrid file sys-
tem on the remaining of this paper, but most notably in
Sections V-A3, V-C3 and V-C5.

In addition to its simplicity and straightforwardness,
the adoption of file systems is also important to maintain a
consistent interface with legacy software and to make data
sharing easy. Much of the interaction of today’s applications
with persistent data is highly coupled with the specification
of file system operations. Although NVM file systems may
eventually evolve beyond the traditional norms of POSIX,
it is important to keep compatibility with legacy code in mind
when redesigning and optimizing the access interface for
NVM. In this scenario, even with the emergence of alternative
more memory friendly persistence models, like persistent
heaps, file systems are still essential for working with NVM.

IIl. SYSTEMATIC MAPPING STUDY

This section presents the protocol used in the Systematic
Mapping Study (SMS) and how the research was conducted.
The SMS is based on processes used by other similar
studies conducted in both Computer Science and Software
Engineering [6], [64], [107]. The first step of this method
is to define a protocol that presents the details of how the
research was conducted and how the selection of the analyzed
studies was made using paper search engines and manual
searches. The idea of specifying a protocol may help future
works and secondary researches on the field, by providing a
well-structured method of retrieving the studies used by this
systematic mapping. It also provides the context in which the
research was conducted and helps to visualize the goals and
the scope of the systematic mapping, and how its results may
be of use.

As explained previously, for the sake of completion,
we adopt the meaning of the term Non-volatile Memory to
also incorporate technologies such as NAND Flash that are
not byte-addressable. Flash memory has much in common
with currently under development byte-addressable NVM,
and much of the research dedicated to these upcoming tech-
nologies has its roots in studies performed over Flash mem-
ory. Therefore, we do not distinguish byte-addressable NVM
from Flash in this SMS, although we do focus on the issues
common to both technologies.

A. DEFINING SCOPE
The goal of this survey is to map the state of the art of
NVM file systems based on studies conducted in the field.

25840

This should help to visualize the problems, challenges and
main goals when writing a file system designed for NVM
technologies. It also helps to identify the trends of the field
and what currently seems to be the future of NVM usage and
application, and how it may impact on the overall computer
architecture.

1) ESTABLISHING RESEARCH QUESTIONS

The use of research questions to guide an academic research
is a very common approach. These questions help researchers
to define the scope of their work, the premises on which
the research will be based on and what kind of data, argu-
ments and experiments would represent a satisfactory answer
(results of the research). The research questions also help
to identify what kind of contribution the research work will
represent to the academic community.

In a systematic mapping study, research questions are also
used as the basis for the search string, that will be used to
query academic databases for papers related to the study’s
subject. Therefore, establishing a research question is an
important step on the systematic mapping protocol. This
mapping was based on the following 4 questions:

« RQ1: What are the differences between disk-based and

NVM file systems?

o RQ2: What are the challenges and problems addressed

by NVM file systems?

« RQ3: What techniques and methods have been proposed

to improve NVM file systems?

« RQ4: What is the impact of new file system models on

the overall architecture?

2) INCLUSION AND EXCLUSION CRITERIA

To filter the papers used by the systematic mapping study,
a set of inclusion and exclusion criteria is usually applied
during the research. This method helps to ensure that only
relevant papers will be selected and analyzed.

The inclusion criteria used are the following: (1) studies
that provide a substantial comparison between an NVM file
system and another file system (designed for NVM or not);
(2) studies that propose new NVM file systems or new mod-
els of NVM usage; (3) studies that propose improvements
over general purpose file systems to work with NVM; and,
(4) studies that discuss or criticize existing NVM file systems
and NVM technologies.

The exclusion criteria are the following: (1) studies not
written in English; (2) studies that only mention the subject,
but are not focused on it; (3) in case of duplicated or similar
studies, only the most recent one was considered; (4) studies
that do not mention NVM file systems or NVM technologies
in its title and abstract; and, (5) studies that only focus on
NVM hardware aspects and impacts.

3) RESEARCH STRATEGY AND SEARCH STRING

In order to search academic databases for relevant studies,
the key terms of the previously defined research questions
were extracted and used to create a well-formed search string.

VOLUME 7, 2019

G. O. Puglia et al.: NVM File Systems: A Survey

IEEE Access

TABLE 2. Selected studies categorized by their contributions.

Contribution Studies
Alternative NVM [41, [9], [21], [34], [41], [46], [58], [60], [59], [63], [66], [71], [74], [91], [112], [144]
application

Alternative software
layer design

[15], [19], [24], [40], [42], [44], [48], [60], [61], [691], [73], [74], [85], [82], [92], [119], [129]

Surveys

[5], [14], [21], [35], [39], [77], [93], [94], [101], [102], [106], [111], [117], [122], [133], [137], [140]

File system design

[31, [9], [17], [25], [29], [33], [32], [37], [41], [45], [57], [58], [67], [76], [75], [99], [100], [98], [105], [104], [120],
[123], [126], [130], [131], [136], [138], [144]

N”jf.l ‘ [31, [12], [14], [13], [11], [20], [23], [30], [33], [34], [32], [47], [49], [51], [57], [65], [76], [901], [99], [98], [97], [105],
E‘i;‘sig”rf”m [104], [1101, [112], [123], [124], [131], [132], [141], [143], [144]

Standalone technique
or method

(41, [8], [13], [17], [20], [22], [19], [30], [31], [36], [43], [47], [49], [50], [51], [53], [54], [561, [58], [60], [63], [62], [69],
[68], [66], [70], [71], (811, [791, (801, [78], [871, [83], [88], [86], [85], [89], [92], [91], [97], [103], [109], [112], [114],
[115], [116], [118], [125], [127], [132], [134], [135], [142]

TABLE 3. Number of retrieved/selected studies by each search engine.

Engine Number of Retrieved Studies Number of Selected Studies
IEEExplore 105 42
ACM Library 105 35
Compendex 64 12
Springer Link 198 20
Total 472 109

The search string was then applied to selected databases’
search engines in order to retrieve papers containing the
main specified terms. The set of databases accessed by this
systematic mapping study is composed of IEEExplore Dig-
ital Library, ACM Digital Library, Springer Link and EI
Compendex.

The search string was built by extracting the meaningful
terms of the established research questions and organizing
them into three groups: population, intervention, and out-
come. This is a common method used in medical research,
but has been applied in software engineering studies as well.
The groups are organized as:

« Population: Non-volatile memory. Synonyms: NVM,
persistent memory, storage class memory, byte-
addressable memory.

o Intervention: File system. Synonyms: filesystem,
file-system.

o Outcome: Problems and techniques. Synonyms: chal-
lenges, approaches, models, methods.

To make the search string as comprehensive as possi-
ble, “OR” operators were used to establish the relationship
between synonyms and similar terms, and “AND”’ operators
were used to connect population, intervention and outcome
terms. The terms were also converted to singular for conve-
nience. The resulting search string is the following:

(“non-volatile memory” OR “NVM” OR “persistent
memory” OR “storage class memory” OR “byte-
addressable memory”) AND (“file system” OR
“filesystem” OR “file-system”) AND (“problem” OR
“technique” OR “challenge” OR “approach” OR “model”
OR “method”)

After applying the search string in the aforementioned
search engines, the next step taken was to apply the insertion
and exclusion criteria over the retrieved studies. To fit these

VOLUME 7, 2019

studies in the proposed criteria, information like publication
year, paper title and abstract were read and filtered. Addition-
ally, similar or redundant studies were discarded by selecting
only the most recent one. The output of this process is the
set of primary studies that are going to be addressed by this
survey.

To further broaden the range of material used by this SMS,
relevant studies referenced by the primary studies were also
verified and, when appropriate, selected to be used in the
systematic mapping as well. The same inclusion/exclusion
criteria were applied over these referenced studies.

B. APPLYING THE SEARCH STRING

As explained previously, the research was conducted by
querying four search engines (ACM Library, EI Compendex,
IEEExplore and SpringerLink) using the search string pre-
sented in Section III-A3. Together, the four engines returned
a total of 472 publications (including duplicates) from which
109 were selected based on the inclusion and exclusion crite-
ria. To apply the criteria and select appropriate publications,
the information in the title and abstract were used. Table 3
shows the distribution of publications retrieved and selected
for each search engine.

In this research, no date restrictions were specified. As a
result, most of the retrieved papers were published from
2008 and 2016. Therefore, it seems that not imposing
a date range was the best option in this case. We also
noticed an intensification of research in the NVM area
in the last 6 years. This is probably due to the grow-
ing popularity of NAND Flash Solid-State Disks (SSDs)
and the growing maturity and promising specifications
of new NVM technologies, especially the Phase-Change
RAM (PCRAM) [137] and Spin-Transfer Torque RAM
(STT-RAM) [93].

25841

IEEE Access

G. O. Puglia et al.: NVM File Systems: A Survey

TABLE 4. Selected studies categorized by their area of application.

Area of Application Studies

(41, [51, [8], [12], [13], [15], [15], [17], [20], [19], [24], [24], [25], [33], [35], [37], [36] , [40], [42], [43],
[44], [44], [45], [48], [49], [53], [56], [57], [60], [61], [59], [62], [69], [67], [66], [701, [75]. [73], [79], [80],

General purpose [74], [77], [88], [90], [92], [91], [93], [94], [99], [100], [98], [105], [106], [109], [111], [114], [116], [117],
[120], [119], [123], [122], [126], [127], [129], [130], [131], [134], [136], [133], [137], [138], [140], [141],
[143], [144]

Embedded systems [29], [34], [71], [76], [78], [86], [101], [102], [104], [110]

Mobile systems

[22], [32], [43], [50], [65], [68], [86], [89], [115], [118], [124], [135]

Distributed systems/clus-
ters

[91, [L1], [21], [51], [58], [63], [103], [112], [142]

HPC/Scientific
applications

[14], [39], [46], [51], [58], [63], [87], [132]

Data intensive applica-

tions/databases (141, 130, [31], [41], [47], [54]

Mission critical systems [97], [125]

Other [3], [23], [29], [47], [65], [81], [80], [83], [85], [82]

C. COLLECTING AND CLASSIFYING THE RESULTS

This section presents the next step in the SMSS, which involves
analysis and classification of the retrieved studies shown in
Section III-B. The classification presented here is driven by
the previously established research questions, and is intended
to provide a detailed view of the selected studies in order to
answer those questions.

Table 2 classifies the studies according to the contribu-
tions they present. The idea is to identify what kind of
work is currently being done in the area and the kinds of
systems being designed to work with NVM. The categories
listed in Table 2 were derived from the patterns identified
while analyzing the retrieved studies. One of the points
that the table helps to understand is that, despite the huge
differences between byte-addressable NVM and disks and
the emergence of NVM optimized storage [15], [24], [129],
file systems are still a relatively popular area of study
related to NVM. It is also important to notice that the
same study may be related to more than one category.
The categories of contribution identified in this work are

the following:
o Alternative software layer design: file systems are

arguably the most common way to work with per-
sistent data, which makes them a natural target for
NVM-related optimization. However, the storage stack
presents other layers that may benefit from NVM
fine-tuning (e.g., translation layers and block drivers).
In other cases, studies explore alternatives to NVM file
systems such as object-based storage systems and per-
sistent heaps

o Alternative NVM application: the most common and
straightforward application of emerging NVM technolo-
gies is to use it as either main memory or persistent
storage. Studies in this category, however, explore the
application of these same NVM technologies at other
levels of the memory hierarchy, like buffers and caches.
Differently from the Architecture category, these studies
do not focus on NVM as storage, but as a mechanism
to improve performance and reliability of other storage
and RAM devices, complementing their functionalities.
Also, these studies are usually driven by limitations of

25842

current NVM (e.g., density, cost and durability). Exam-
ples of alternative applications of NVM include persis-
tent processor cache and persistent buffer for disks.

o Surveys: publications under this category do not focus
on proposing methods to improve NVM usage. Instead,
these works present aggregated knowledge over the
NVM area, exploring characteristics of NVMs and the
impact of these technologies in many aspects of the
current computer architecture.

o File system design: publications under this category
focus their efforts on proposing the use of a file system
designed specifically for persistent memories. The file
system may be an alternate version of an existing file
system adapted to work with persistent memory, or may
be a new file system designed to work with NVM.

o Novel architecture design: the majority of the studies
involving NVM assume the use of persistent mem-
ory in two architecture models: (1) where NVM is
used as storage, replacing traditional HDDs, and (2)
where NVM is used as main memory, replacing partially
or completely the DRAM-based main memory. In the
scope of this work, it is considered that any publication
that presents an architecture different from (1) and (2)
is either proposing a new architecture or adapting an
existing one and thus belongs in this category. Some
examples of these architecture proposals involve the use
of NVM to improve metadata management and mixing
NVM with volatile memory for performance reasons.

o Standalone technique or method: this category is
reserved for studies that, instead of proposing and eva-
luating a complete solution (e.g., a new file system or
a new architecture), propose one or more mechanisms
to address specific issues or explore the advantages
of NVMs. These methods are usually integrated into
existing systems (e.g., a file system) for evaluation.
Techniques detailed by these studies are usually driven
by common concerns related to memory and storage
management, like metadata storage improvement, block

allocation algorithms or wear leveling.
The classification in Table 4 aims to identify the areas

of application that researchers believe could most benefit

VOLUME 7, 2019

G. O. Puglia et al.: NVM File Systems: A Survey

IEEE Access

from the adoption of NVM. Overall, it helps to visualize
the different ways to adopt NVM and their impacts on the
areas of application and to understand the motivation behind
the solutions proposed by the selected studies. The results
in Table 4, however, show poor distribution, leaning strongly
towards the ‘““general purpose’ category, as studies seem to
not pick a single specific area of application to focus on. This
shows that currently most NVM-related works are interested
in addressing NVM issues and challenges in general and
exploring the impacts of these technologies on a more generic
and abstract structure rather than on specific applications and
environments.

The solutions that are not categorized as general purpose
may be divided in basically 6 categories: mobile, embedded,
distributed, HPC, Data Intensive and mission critical sys-
tems. These are areas of application where storage constraints
are among their main challenges, thus the motivation for
employing NVM to address the storage issues. All areas of
application are characterized as the following:

o General purpose: these are studies that do not focus on a
single niche. Instead, they focus on providing solutions
to common NVM-related problems or problems related
to a specific architecture, and presenting alternative
applications of NVM. This does not necessarily mean
that these solutions may not benefit specific applica-
tions, but that they were not developed having a specific
class of problems in mind, or at least none was specified
by the authors in their respective papers.

o Embedded systems: embedded systems may benefit
greatly from NVMs’ energy efficiency, resistance to
impact (no moving parts), and small size. Studies
focused on embedded systems may cover a large array
of applications and architectures, like wireless sensor
networks and consumer electronics. Additionally, these
studies usually assume architectural and technologi-
cal constraints such as limited capacity and high cost
for NVM chips. Therefore, embedded system-related
works are characterized by their efforts to save physical
memory by avoiding data duplication and providing
compression.

e Mobile systems: studies that focus on mobile systems
usually explore the benefits of low power consumption
and byte-addressability of NVMs. Although the term
mobile devices may refer to many types of hardware with
different architectures, usually those studies explore the
characteristics of today’s mobile phones and use com-
mon mobile phone applications’ workloads to evaluate
new solutions and techniques.

o Distributed systems/clusters: studies of distributed sys-
tems focus mostly on the impact of NVM latency and
persistence over the performance of compute-intensive
distributed software and high-performance computing
systems. Applications in this class include scientific
applications and distributed file systems. The solu-
tions explored by these papers usually explore the
use of NVM to hide network latency, to improve the

VOLUME 7, 2019

performance of distributed storage systems or to guar-
antee consistency among nodes.

e HPC/Scientific applications: high-performance com-
puting (HPC) and scientific systems are related to
CPU-intensive workloads that, naturally, can greatly
benefit from throughput offered by low latency persis-
tent memories that may be placed close to the CPU.

e Data intensive applications/databases: data intensive
applications include storage systems, databases and data
mining applications, and are usually concerned with
consistency, atomicity and performance optimization.
These applications are very storage-dependent, and it
is easy to see how they can be improved by NVM.
Data-intensive and HPC systems are also usually asso-
ciated with clusters and distributed architectures, inher-
iting the concerns of these classes as well.

o Mission critical systems: these are systems that are pro-
jected for high and long-term availability and should
present a high grade of resilience and fault tolerance.
In this case, NVM may be adopted to increase the
amount of system memory and to reduce traditional
complexity of moving data from operating memory to
persistent devices.

o Other: other applications include sensor networks [29],
transactional systems [47], highly concurrent syst-
ems [85], semantic storage and application [3], high
reliability (through data redundancy) systems [81], vir-
tualized systems [82], streaming systems [65] and mul-
tidimensional storage [83].

Our last classification focuses on the problems addressed
by each publication. The idea is to identify the common
problems impacting the use of NVM technologies as well as
the methods used to address them. Naturally, the categories
listed here are intimately related to the type of contribution
categorized earlier in this paper. Figure 1 shows how this
classification relates to the previously presented ones. For
each topic of NVM (represented by the vertical axis), it shows
what contributions and target environments (the horizontal
axis) are most commonly associated with it. The bubbles
represent the number of studies that each category cover.

We discuss each of these topics extensively in Sections IV
and V, since understanding these challenges is essential for
researchers interested in NVM. We believe this discussion
to be the main contribution of this work. In this paper we
separate topics on NVM between storage/file system specific
topics and main memory/general topics. For the purpose
of this distinction, storage is considered whenever a struc-
ture, like file system or object system, is built over NVM
and used to consistently store long term data and metadata
(Section 1V is dedicated to these topics). Thus, cases where
NVM is used as operating memory, similar to current volatile
memory, or used as buffer or cache, are not considered
examples of storage. Hence, in Section V we discuss topics
that are not storage exclusive: they are also relevant when
NVM is used for other purposes like main memory or write
buffer.

25843

lEEEACC@SS G. O. Puglia et al.: NVM File Systems: A Survey

FIGURE 1. Bubble plot illustrating the focus and distribution of NVM research: the X axis illustrates the types of contribution (left) and area of
application (right) previously presented in Tables 2 and 4 respectively. The Y axis represents the issues addressed, separated between Storage
specific and generic/main memory (Tables 5 and 7).

IV. STORAGE AND FILE SYSTEMS topics that are intimately related to emerging PM file systems
In this section, we start presenting the results of our analysis and NVM storage systems in general. These are common
and classification of the selected studies. We start discussing subjects, challenges and concerns that arise when designing

25844 VOLUME 7, 2019

G. O. Puglia et al.: NVM File Systems: A Survey

IEEE Access

TABLE 5. Topics closely related to storage and file systems on NVM and the studies that explore them.

Problem Studies
Access [31. [5], [14], [15], [20], [24], [40], [44], [48], [57], [58], [63], [62], [90], [92], [94], [99], [100], [98],
Interface [103], [106], [123], [126], [127], [129], [136], [144]
Functional Atomicity [171, [201, 1251, [411, [42], [43], [911, [103], [122], [127], [138], [144]
g“]’]baf,e [29], [30], [32],[60] [69], [89], [101] , [104], [136], [138]
olecrion
Metadata [31, [81, [171, [20], [22], [33], [32], [48], [57], [61], [62], [76], [74], [83], [89], [105], [104], [118],
Management [119], [123], [130], [131], [138]
Space [141, [251, [29], [31], [53], [61], [741, [89], [102], [109], [126], [137]

Non-Functional | Efficiency

(Quantitative) | Mounting Time [57],[105],[104], [138]

Write
Amplification

[20], [25], [501, [54], [68], [92], [94], [79], [87], [111]

Non-Functional | Transparency [19], [61], [76], [141]

(Qualitative)

Fragmentation [76], [85], [136]

Parallelism

[12], [58], [85], [90], [122], [137]

a storage based on the NVM technologies presented pre-
viously. Many of the topics discussed here are traditional
issues rooted in the very concept of file systems, such as
fragmentation, metadata and space efficiency. Others are
more closely related to the NVM technology characteristics,
such as access interface optimization and garbage collection.
We further classify these topics according to their nature
as either functional or non-functional issues. At the end of
each of these subsections, we summarize the main points and
complementary insights provided by the reviewed studies.
The topics discussed and the studies that compose them are
presented in Table 5.

A. FUNCTIONAL

This section discusses functional topics and requirements of
NVM-based storage. In this paper, we considered ‘“func-
tional”, topics related to basic storage functionality, beha-
vior and operations exposed to applications. Studies in this
category cover a variety of subjects, including operations
such as defining transactions, manipulating metadata and
allocating/mapping NVM address ranges.

1) ACCESS INTERFACE

Due to PM byte-addressability, an issue that is extensively
discussed in several papers concerns the method of access-
ing and managing these memories. At the hardware level,
the most common question is whether PM should be accessed
as a block device, like disks and SSDs are, or through a
memory-bus with byte-addressable granularity. On the one
hand, using the block-driven approach offers transparent
access to PM with relatively little modification to the existing
software stack and robustness in terms of error detection and
memory protection. On the other hand, accessing PM with a
byte-granularity interface may lead to an unprecedented high
performance, bringing data closer to the processor and fully
exploring PM potential. At the software level, the discussion
is whether data in PM should be accessed through a more tra-
ditional file system API, through an interface closer to that of
today’s main memory (allocating persistent regions and data

VOLUME 7, 2019

structures) or using a novel, more application-friendly inter-
face, such as heap-based and key-value interfaces [48], [61].
Additionally, many studies propose approaches to provide
users with the means of allocating and accessing persistent
areas of memory, through, for example, system calls and
programming libraries directives [40], [129].

A good and simple example of PM file system design
is PMFS [37]. PMFS is designed specifically to avoid
well-known sources of file system overhead on PM. It pro-
vides traditional file system interface and behavior such as
read, write and file mapping operations, while offering better
performance than disk file systems by eliminating expen-
sive page copies and processing overhead. It also allows
applications to map files directly to their address space as
memory arrays through the XIP-enabled (eXecute In Place)
mmap implementation. In general, this traditional file system
approach on PM is essential for applications to migrate to
PM transparently and to support legacy systems, but it also
offers common file system advantages such as hierarchical
namespace, access control and system interoperability.

NV-Heaps [24] proposes a persistent object store based
on PM. NV-Heaps is a very simple and lightweight tool
focused on high performance that provides an easy-to-use
set of primitives including declaration of persistent pointers,
persistent data structures (e.g., lists, trees and maps), starting
atomic transactions, inserting and retrieving objects from
the store. Unlike file systems, key-value object stores are
organized in a flat namespace (no directories) where objects
are retrieved simply through their key instead of a directory
path. Today’s key-value stores are already moving into RAM
and present well-known advantages over file systems such
as scalability, ACID (Atomicity, Consistency, Integrity and
Durability) transaction semantics and efficient indexing.

Mnemosyne [129] grants users access to NVM by per-
sistent regions. Persistent regions are segments of memory
that can be manipulated like regular volatile memory by
user code but are allocated in PM. In order to allocate these
persistent regions, users can either mark a variable as pstatic
or calling the pmap function. These persistent regions are

25845

IEEE Access

G. O. Puglia et al.: NVM File Systems: A Survey

FIGURE 2. Atomic file mapping implementation as described by Nova [138] and AdvFS [127].

stored in files (that may be kept in a secondary storage,
like an SSD) and mapped (through mmap system call) on
demand to the NVM when their owner process is started.
Additionally, Mnemosyne offers users the possibility of per-
sisting data atomically through durable memory transactions.
Users can mark blocks of code with the atomic keyword
and Mnemosyne will ensure ACID properties of all changes
made to persistent data inside this block of code through a
transaction structure.

2) ATOMICITY

Atomicity mechanisms enforce data consistency by ensuring
that operations modifying data are either successfully com-
pleted or completely ignored (rollback). However, atomic
transactions in NVM face particular challenges, espe-
cially concerning efficiency and scalability, due to the
larger impact of transactions overhead and write amplifi-
cation issues represent on faster memories. Hence, many
studies [25], [48], [61], [73], [127], [138] propose different
methods to improve the performance of these mechanisms
while also enforcing the consistency and security of the stor-
age system.

The Byte-addressable Persistent memory File System
(BPFS) [25] uses a tree structure of indexes for its files.
Metadata is updated in-place through atomic updates (up to
8 bytes), therefore no additional writes or data copies are
necessary in this case. For larger updates, BPFS uses an
extension of the shadow paging technique: it performs a copy
of the blocks being updated, updates the necessary data and
writes these copies in new blocks. The main drawbacks of this
solution are that 8-byte atomic writes support is mandatory,
and updates may cause a cascade update in large or sparse
writes, generating extra copies and write amplification.

A file system mechanism that is particularly susceptible
to consistency problems is the “file mapping” also some-
times called “memory mapping”. File mapping is a popular
method of accessing data due to its flexibility, efficiency and
its similarity with regular volatile memory allocation meth-
ods. These characteristics led file mappings to be frequently
employed as the base for PM-based storage systems such as
Mnemosyne [129]. While traditional mapping mechanisms
require data to be copied back and forth from the disk to

25846

DRAM, PM file systems like PMFS allow applications to
access PM pages of mapped files directly by simply mapping
them in the process address space. However, in both cases
the application has no control over the order in which data is
made persistent, which may cause inconsistencies in file data.
With that in mind, a few studies propose making updates to
these mappings atomic [103], [127], [138]. Atomic file map-
ping solutions differ from traditional mappings by: prevent-
ing OS from automatically writing back updated blocks and
performing updates atomically during fsync/msync system
calls using out-of-place updates. Figure 2 depicts how these
atomic updates behave. Even though the implementation of
the solutions may differ, all studies seem to agree on giving
the user the control over when the data written in these
mappings are made durable (through fsync or msync calls, for
instance).

3) GARBAGE COLLECTION

Out-of-place updates, commonly performed by wear-leveling
and atomicity techniques, mean that updates are actually
written in a new block and the old version of the updated data
is marked as invalid. The garbage collector is the one respon-
sible for identifying blocks marked as invalid to allocate space
for new data. This may or may not involve additional writes.
Although this process is usually executed asynchronously
(ideally when the storage device is idle), it has significant
impact on the storage overall performance and energy con-
sumption, thus demanding smart optimization [104].

ELF [29] presents a simple implementation of a garbage
collector. When the number of free pages reaches a deter-
mined threshold, the cleaner process is started. The cleaner
is responsible for identifying and erasing blocks belonging to
deleted files, as well as updating indexes and bitmaps. It may
also merge partially valid blocks (i.e., blocks that contain
some pages marked as invalid) to free additional space.

DFTL (Demand-based Flash Translation Layer) [69] opti-
mizes the garbage collection process by avoiding fragmenta-
tion and enforcing sequential writes, reducing the occurrence
of costly merges between partially valid blocks. It also allows
the free pages threshold (that determines the frequency of
garbage collection execution) to be tuned according to the
system’s workload.

VOLUME 7, 2019

G. O. Puglia et al.: NVM File Systems: A Survey

IEEE Access

The NOVA log-structured file system [138] employs two
garbage collection algorithms: a fast light-weight one used
to free pages composed exclusively by old log entries and a
slower thorough one that may perform merging operations,
copying valid log entries from multiple pages in a new page.

4) METADATA MANAGEMENT

A critical point of optimization in file systems is related
to metadata structure and management. It is known that
access to metadata is intensive [20] and updates are very
frequent. Furthermore, corruption in metadata may lead to
the corruption of big portions or the entirety of a file system.
Thus, it is highly desirable for metadata management to
have low overhead while also providing an efficient struc-
ture to index data within the storage. Optimizing metadata
for NVM file systems, for instance, must consider many
aspects, such as inefficiency of write operations, limited
endurance and byte granularity. We also include in this
section studies [33], [76], [105] that suggest the use of PM as
a metadata-only storage mixed with SSD in a hybrid architec-
ture, since they consider details like the high cost-per-byte of
pure PM devices in the near future and their byte-granularity
while designing their structures.

LiFS [3] also exploits the advantages of PM, in this case
to expand the capabilities of metadata to store more mean-
ingful information in these structures. It proposes a model
of extensible metadata that allows the creation of links and
relationships between multiple files and custom key-value
attributes implemented through hash tables and linked lists.
This additional information may be queried by operating
systems and applications for a variety of purposes including
indexing, semantics analysis and file history tracking.

The Aerie [130] file system architecture exposes PM to
user-mode programs so they can access files without ker-
nel interaction. By accessing file system data and metadata
directly from user-mode, Aerie file system can optimize inter-
face semantics and metadata operations to address specific
needs of the targeted class of applications. The implementa-
tion of the file system as a user-mode library can also avoid
the costs of calling into the kernel due to changing mode and
cache pollution.

5) CROSS-CUTTING COMPLEMENTARY INSIGHTS
Most storage solutions in the literature present some form
of atomic operation. In PM, where the storage is exposed
to the CPU and it is more error prone compared to disks,
atomic operations must take in considerations things like
hardware errors, data retention and reordering (e.g., in pro-
cessor cache and memory controller). These operations also
seek to provide better concurrency using data replication,
relaxed ordering constraints, per CPU metadata and lock-free
data structures. Using light fine-grained (subpage) versions
of traditional techniques such as shadow paging and redo
logging is also a popular alternative.

Regarding NVM access interface, at the OS level, most
studies deal with NVM-optimized object stores, file systems

VOLUME 7, 2019

and block drivers as the means to securely access NVM.
Additionally, novel PM OS layers like the Persistent Memory
Block Driver (PMBD) [19] help providing legacy application
and traditional file systems access to PM. However, POSIX
compliant file systems have a few inherent issues, such as
the cost of changing modes and cache pollution caused by
entering the OS code, that may significantly limit the per-
formance of accessing PM. On the application level, follow-
ing Mnemosyne, several works [8], [15], [24], [44] propose
higher-level NVM programming libraries, usually imple-
mented over a PM mapped area. User-level access to PM
may eliminate overheads related to OS storage layers but
makes implementing security, protection and interoperability
between systems challenging. Table 6 shows the syntax of
three of these libraries and their similarities. Internally, these
libraries require an NVM-aware file system allowing direct
access to files in PM via memory-mapping.

Metadata studies have basically three goals. First is adopt-
ing lightweight and byte-granularity structures commonly in
the form of B-trees and hash maps (inodes and inode tables).
Next is making storage structures more concurrency-friendly.
Finally, solutions may also target improvements specific for
memory-level storage such as contiguous address spaces to
optimize integration with page tables and the TLB.

B. NON-FUNCTIONAL - QUANTITATIVE

In contrast to the topics presented in Section IV-A, we clas-
sify the remaining studies as non-functional. In this context,
“non-functional” describes system characteristics (e.g., per-
formance, reliability, scalability) rather than its behavior. For
further characterization, we separate non-functional topics in
two subcategories. The first one is discussed in this section,
and targets subjects where improvements can be measured
and estimated, usually studies focused on optimizing per-
formance, energy consumption or device capacity usage.
The second is discussed in Section I'V-C.

1) MOUNTING TIME
One of the problems addressed by traditional SSD file sys-
tems concerns the file system mounting performance. Basi-
cally, the mounting process involves finding and reading
file system metadata structures (such as block tables and
superblocks) to build OS internal structures. In some cases,
e.g., mobile phones and digital cameras, the performance of
this process may be critical for the system’s usability. On the
one hand, since NVM technologies have endurance limita-
tions, keeping frequently updated data (such as superblocks
and inodes) in a fixed position in the device may not be a good
idea. On the other hand, since NVM may, eventually, scale
up to petabytes, scanning the whole NVM device is not an
option either. Thus, reducing scan time, the scanned area and
memory footprint may be somewhat challenging especially
in log-based file systems [57].

An efficient and simple way to deal with the mounting time
constraint is proposed by FRASH [57] and PFFS [105]. Both
are systems designed for hybrid storage models that use PM

25847

IEEE Access

G. O. Puglia et al.: NVM File Systems: A Survey

TABLE 6. Code example for some of the main solutions on PM API: atomically adding an item to a persistent list.

class List public NVObject {

DECLARE_POINTER_TYPES(List) ;
public:

}s
void persist ()
NV-Heaps {

AtomicBegin {

} AtomicEnd

//Macros generate NV—Heaps persistent pointers and atomic access methods

DECLARE _PTR_MEMBER(NVList :: NVPtr,

NVHeap #nv = NVHOpen("default.nvheap");
NVList:: VPtr root = nv—>GetRoot<NVList:: NVPtr>();

while (root. get_next() != NULL)
//Insert new item — NV—Heaps makes it persistent transparently
root—>set_next(new List());

next);

root = root.get_next();

struct list {
list #xnext;

}

void persist(list =list_head){
Mnemosyne list *new_item;
atomic {

list_head —>next = new_item;
}
}

// Allocate a persistent region
new_item = pmalloc(&list , sizeof(x1list));

struct list_item {

}

struct rootp {
list_item xhead;

} oxlist;

void persist (){
list_item =list_head;

SoftPM

list —>head = list_head;

pPoint(root);

//Allocate a persistent container to store the list
root = pCAlloc(&list , sizeof(x1list));
list_head = malloc(sizeof (xlist_item));

// Persists the container and the list

for metadata and indexes and SSD for general storage. This
approach has many advantages: the scanned area is smaller
(the amount of PM needed in this approach is just a small
fraction of the full size of the SSD), the scan for metadata
is faster due to PM low latency (compared to SSD) and
memory copies can be reduced, since metadata can be directly
accessed in PM.

2) SPACE EFFICIENCY

High capacity is among the first and most desirable character-
istics one might expect from a computer’s storage. File sys-
tems and techniques that focus on space allocation in storage

25848

are usually aimed for systems with limited physical storage,
like mobile and embedded systems [29], [71]. The most com-
mon methods of reducing space usage are compressing data
and simplifying metadata structures [31], [61], [126] such as
Muninn’s bloom filters that are designed to reduce the amount
of stored metadata.

MRAMES [126] is a file system designed to be space
efficient. It compresses file data as well as metadata, try-
ing to balance the trade-off between access performance
and compression level. A different approach is given by the
dynamic over-provisioning technique [53], which focuses on
efficiently using the additional space inside SSD to allow

VOLUME 7, 2019

G. O. Puglia et al.: NVM File Systems: A Survey

IEEE Access

FIGURE 3. MRAMFS method to capture the delta between original and modified versions of a block [68].

efficient out-of-place updates and garbage collection (over-
provisioning). This additional space is used by the dynamic
over-provisioning technique to store temporary data in the
cases of high storage demand. NVM Compression [31] is
a hybrid technique that combines application-level com-
pression with specialized Flash Translation Layer primitives
to efficiently perform block management tasks required by
compression.

3) WRITE AMPLIFICATION

Besides the atomicity solutions presented previously, other
NVM storage mechanisms like wear-leveling (Section V-B3),
shadow-paging (Section V-C2) and metadata updates in gen-
eral may introduce additional writes meaning that writing a
chunk of data to persistent storage may have side-effects and
require updating or moving other data blocks or metadata
around. In the file systems area, this phenomenon is com-
monly known as write amplification. Due to its performance
impact, minimizing the write amplification is one of the most
common goals of novel wear-leveling and consistency tech-
niques. Thus, most of the studies that tackle this particular
challenge are also intimately related to atomicity, consistency
and endurance improvement techniques.

OFTL (Object-based Flash Translation Layer) [92] uses
page level metadata and reverse indexes to allow the tree
structure of objects to be recovered in case of corruption of the
indexes. In OFTL, each object contains a tree structured index
where the leaf nodes contain the pages with the object’s data
and metadata. Each page contains data about which object
they belong to and the offset inside the object. Therefore, even
if the object’s index structure is corrupted, it can be recovered
using this information, hence, eliminating the need of jour-
naling or shadow paging, which are among the main sources
of write amplification in traditional systems. To reduce the

VOLUME 7, 2019

effort required to scan the device for these pages and recreate
the indexes, a window containing the most recently updated
blocks is maintained by OFTL. OFTL further reduces the
number of page write operations by grouping multiple small
writes (smaller than a page, for that matter) in a single page
before effectively writing them into the device.

The fine-grain log mechanism used to maintain consis-
tency by FSMAC [20] is an approach to minimize the impact
of write amplification in the file system. By writing only the
necessary metadata to the log, FSMAC reduces the overhead
of versioning and the amount of data replicated by additional
writes. The differentiated space allocation presented earlier,
uses the reverse index mechanism and over-provisioned space
to eliminate the necessity of journaling and garbage collector.
Since the mechanism allows a chunk of physical memory to
be overwritten in-place a certain number of times (thresh-
old), it reduces the replication of data using copy-on-write
techniques like other wear-leveling mechanisms. Another
technique called Delta Journaling [68] reduces the number
of writes required by persistent memory file system logging
by means of storing the delta of the changed blocks when
a high compression ratio can be attained. When a write is
issued (e.g., through a system call), it captures the differ-
ence between original and modified block and calculate the
compression rate (Figure 3). It then stores the compressed
difference in NVM so it can be securely flushed back to the
long-term storage (SSD).

4) CROSS-CUTTING COMPLEMENTARY INSIGHTS

Efforts towards reducing write amplification is more
commonly seen on SSD where metadata structures are
block-based and the physical device’s blocks must be erased
before they can be rewritten. These factors contribute to the
overhead of updating user data. Write amplification on PM on

25849

IEEE Access

G. O. Puglia et al.: NVM File Systems: A Survey

the other hand usually works with fine-grained metadata and
logs to minimize replication. Fine-grained and shared meta-
data structures may also benefit storage’s space efficiency.
Additional ways to improve space usage on small capacity
devices may include using PM for metadata and for hot data
only.

C. NON-FUNCTIONAL - QUALITATIVE

Similar to Section IV-B, this section presents topics related
to storage system’s non-functional studies. The difference in
this case is that qualitative topics, due to their nature, are
not measurable and thus their analysis follows descriptive
approaches to evaluate correctness and effectiveness.

1) FRAGMENTATION

In addition to the increased per-operation latency, write
amplification and out-of-place updates may also introduce
fragmentation issues. Although NVM present homogeneous
latency for both random and sequential access, fragmentation
may still become a challenge in some cases, specially in SSD.
For instance, scattering multiple pages of a file through differ-
ent erase blocks in SSD may cause an increase in the number
of block merges [76] and increase garbage collection over-
head (see Section IV-A3). In other cases, dealing with larger
page sizes (larger than the traditional 4 KB), or even seg-
ments, may cause problems of internal fragmentation [136].

Flash Translation Layer is a software layer between the
file system and SSD that implements address redirection
to provide support such as wear-leveling. The hybrid FTL
(Flash Translation Layer) design in [76] employs PM to store
critical storage-related metadata, such as allocation bitmaps
and page map tables. Furthermore, the solution uses virtual
blocks to keep track of logically related pages and their
physical addresses. The FTL then uses this information to
avoid placing logically related pages in different erase blocks,
prioritizing keeping related pages contiguously and clustering
large writes into contiguous physical address ranges. Also
using PM the fragmentation impact of the metadata itself
is minimized, since updates may be made in-place without
block merges.

When discussing fragmentation in NVM, most stud-
ies focus on the external fragmentation. The adoption of
superpages in SCMFS [136] (PMFS also implements huge
pages) brings with it an example of internal fragmentation.
Internal fragmentation happens when a block-based storage
allocates a larger chunk of physical NVM than it actually
needs. In this particular case, regular 4 KB pages are used for
fine-grained data, while large pages (2 MB) are used for big-
ger datasets. While for traditional 4-16 KB blocks it may not
represent a major issue, with huge pages that may be as large
as 2GB, it may cause significant waste of physical memory.
SCMEFS adopts the 2 MB superpages to improve the hit ratio
on TLB and speed up the address look-up process. Although
it benefits the performance of the address translation process,
this approach may present issues regarding paging complex-
ity (e.g., mechanisms to avoid fragmentation), moving and

25850

copying large pages (e.g., the overhead of moving an entire
page to access a single address is much larger now) and may
create internal fragmentation issues if not properly handled.

2) PARALLELISM

The growing parallelism in SSD architectures is rapidly
increasing, greatly improving the throughput of NVM-based
block devices. Additionally, everything from modern operat-
ing systems to programming models have been transitioning
towards a more concurrent environment. However, tradi-
tional file systems usually fail to take full advantage of such
parallelism wasting valuable resources [137]. PASS [85] is
a scheduler developed to take advantage of modern SSD
architecture and its parallelism. PASS divides the storage in
logical scheduling units, avoiding mutual interference caused
by concurrent operations and allowing multiple channels of
data at the same time.

3) TRANSPARENCY

Although the integration of PM technologies in the mem-
ory hierarchy may lead to ground-breaking developments
and paradigms switches in computer architecture, many
applications may greatly benefit from these technologies as
simple high-speed block devices. With this in mind, some
studies seek efficient methods to support legacy applications
(e.g., using POSIX file system operations) while also improv-
ing NVM usage and leveraging its performance. They try to
provide transparency for the upper layers of software, hiding
NVM specific details and implementations.

In order to provide transparency and a rich interface to
access PM, Muninn [61] presents an object-based storage
model. In this approach, data and metadata management are
delegated to an object-based storage device (analogous to a
block device), which exports an object interface. This inter-
face provides basic operations to manipulate variable-size
objects, like reading, writing and deleting objects from the
system. For more flexibility, Muninn allows file systems to
access the object-based storage device functionalities in a
publish-subscribe fashion, enabling the object-based devices
interface to be extended, offering device-specific operations
to the system. In this model, in order to maintain compati-
bility with legacy systems, an object-based file system can
be used to provide a POSIX interface to applications and
operating system. This file system is then responsible for
translating these POSIX-format requests to object semantics
and calling the appropriate object-based device operation.

4) CROSS-CUTTING COMPLEMENTARY INSIGHTS

Studies on external fragmentation issues related to PM are
practically inexistent, as PM does not suffer from the limi-
tations of SSDs, such as the need to erase before rewriting
blocks. In SSD, fragmentation solutions are already relatively
mature and implemented on most commercial devices, usu-
ally employing block remapping and write buffering on the
FTL. On the other hand, internal fragmentation of PM is more
of a potential issue. There is a tendency on exploring more

VOLUME 7, 2019

G. O. Puglia et al.: NVM File Systems: A Survey

IEEE Access

TABLE 7. Topics that are not exclusive to file system or storage.

Category Problem Studies
Block/Page [81, [69], [991, [100], [98], [111], [118], [136], [133], [138]
Functional Allocation
Memory [19], [37], [43], [100], [98], [129], [136], [138]
Protection
?’”ém”’ [41, [9]1, [211, [34], [46], [51], [60], [591, [65], [66], [711, [741, [771, [82], [911, [1331, [137], [144]
acne
fL‘Sym”fe”’C [4], [301, [49], [54], [71], [801, [78], [831, [901 , [931, [94], [104], [110], [124], [132], [133], [137], [141]
Non-Functional C‘Z;f}:l:y
(Quantitative) Optimizati (23], [25], [30], [69], [77], [109], [111], [132], [140]
)ptimization
(171, 1301, [501, [541, [61], [83], [92], [941, [101], [102], [105], [104], [110], [111], [124], [134], [135],
Endurance [133], [137]. [141]
Energy [4], [11], [29], [45], [65], [711, [86], [94], [106], [133], [137]
Efficiency
[81, [12], [147, [13], [L11, (151, [241, (251, (331, (441, (471, (48], [62], [99], [111], [117], [120], [119],
Software [123], [130], [136], [138], [140], [141]
Overhead
Reliability [51, 1431, [75], [88], [94T, 971, [111], [114], [125], [142]
Scalability [62], [109], [138]
. Cache [15], [24], [25], [371, [42], [44], [471, [56], [69], [67], [70], [129], [133], [144]
Non-Functional | Consistency
(Qualitative) o [51, [15], 201, [191, 241, 1251, 1297, [321, [37], [411, [43], [441, [48], [49], [54], [57], [61], [63], [63],
Consistency (661, [811, [75], [73], [79), [871, [92], [91], [94], [97], [102], [103], [111], [114], [115], [120], [119],
Guarantee [123], [124], [125], [127], [129], [131], [136], [133], [138], [143], [144]
Data [37], [67], [98], [100], [120], [119]
Duplication
Data [301, [36], [51], [62], [801, [781, [112], [116], [131], [141], [143]
Placement

flexible addressing models such as segmentation and large
pages to make addressing large PM ranges easier, but the
pitfalls of these methods, including internal fragmentation,
still demand study (more in Section VII-Q). Nevertheless,
the support for multiple page sizes is already implemented
in the Linux kernel and most PM file systems [37], [136].

While parallelism in SSD is more commonly discussed in
the literature, in PM it is not much explored. Parallelism may
be improved on PM on the memory controller level by, for
example, smart write scheduling or on the system level with
per processor metadata [138].

V. MAIN MEMORY AND GENERAL NVM

In this section we focus on issues that are not limited to
storage systems but may also affect other applications of
NVM, such as PM-based main memory or persistent buffers.
It is important to mention that, to some degree, all these
topics are also relevant to storage systems. The idea is to
separate storage related issues from more generic matters
that may apply to most diverse applications of emerging
NVM technologies. A list of common problems addressed by
studies in the area are shown in Table 7. In this section these
problems and their impact over the system are detailed. This
discussion is an extension of the one presented in Section IV
and therefore follows the same structure.

Finally, Figure 4 depicts how the topics presented here and
in Section IV relate to the applications and OS structures
in today’s systems. For each topic discussed in this survey,
the diagram intends to illustrate what component of the archi-
tecture it is more closely related to and at what level it is
more naturally addressed, according to the reviewed studies.

VOLUME 7, 2019

It is worth noting that the same challenges may be addressed
at multiple levels: for instance, consistency and reliability
mechanisms may be (and usually are) implemented at the
device driver level or they could be implemented by the file
system itself or even in a user level library (which could be a
user-level file system).

A. FUNCTIONAL

As discussed in Section IV-A, functional topics are related
to NVM software behavior and operations. Thus this section
explores challenges and requirements related to functionali-
ties such as memory allocation and memory protection.

1) BLOCK/PAGE ALLOCATION

Allocating blocks is one of the most common operations
of a file system and storage in general. In traditional file
systems, optimizing this process to reduce fragmentation
and to optimize disk access is critical and, thus, it carries
a high responsibility. However, as we further discuss in
Section V-BS, such an effort is unnecessary and represents a
bad practice in the use of the NVM technology. Furthermore,
NVM file system’s block allocation introduces new concerns
such as dealing with the devices limited lifetime and with
concurrency. Studies in this category aim to optimize block
allocation algorithms and policies to reduce its overhead and
explore the characteristics of both NVM and the in-memory
file system architecture.

SCMEFS [136], for example, uses space pre-allocation,
allocating blocks ahead within null files and allowing existing
files to keep extra space allocated. This mechanism makes
the file creation process, as well as future data updates and

25851

IEEE Access

G. O. Puglia et al.: NVM File Systems: A Survey

FIGURE 4. Diagram c ting the ch

appends, easier. The W-Buddy [118] algorithm, organizes
free memory space in a structure similar to a binary tree, and
uses allocation bitmaps and update counters to find the best fit
when allocating new chunks of memory. The binary search is
significantly faster than a sequential search, reducing the time
necessary to find an ideal page to allocate.

2) MEMORY PROTECTION

Stray writes (e.g., writes performed on an invalid pointer,
possibly referencing memory out of the process’ address
space) is a software issue that may be the result of bugs in the
kernel or in system’s drivers, and represent a serious threat to
data integrity [19]. If the data in question is stored in PM,
it may be permanently corrupted. The mechanism adopted
to avoid improper access to memory addresses by a process
is commonly known as memory protection. Some studies
propose different methods of memory protection designed
for PM to avoid improper access to non-volatile memory
pages [19], [37]. These methods may be implemented in soft-
ware or use specific hardware to enforce its policies.

A simple and common method to avoid protection issues is
to mark pages as read-only while mapping them into virtual
address space and marking only the pages to be updated as
writable when a write is issued. One possible solution [43]
is to explore a combination of the EVENODD error cor-
rection code algorithm and memory protection to improve
the security of storage systems. In that solution, pages are

25852

identified with the respective architecture levels that address them.

locked for read-only purposes, and are only unlocked when a
write is explicitly issued. PMFS [37] does something similar
to ensure memory protection, avoiding corruption caused
by stray writes (see Listing 1). The main issues with this
approach are that it still exposes memory to stray writes (only
in small windows of time) and that changing the read-write
bits of page table entries requires flushing the TLB, which is
a very expensive process.

void sxmem = pmfs_get_block (superblock ,
block_address);
size_t offset = pos & (superblock—>blocksize — 1);

// Enables writes to the file system
pmfs_xip_mem_protect(xmem + offset, count, 1);

// Writes data to block
_copy_from_user_inatomic_nocache (xmem + offset,
buf, count);

// Disables writes to the file system
pmfs_xip_mem_protect(xmem + offset, count, 0);

Listing. 1. PMFS code to write a block.

A more robust solution comes in the form of the Memory
Protection Keys (MPK) proposed by Intel (see Section VI-B).
This mechanism uses a set of new registers added to the
processor to allow systems to define up to 16 protection keys,
assign these keys to page addresses and choose which of

VOLUME 7, 2019

G. O. Puglia et al.: NVM File Systems: A Survey

IEEE Access

these keys are writable and which are read-only. These keys
provide an efficient method to lock a range of memory against
writes while also avoiding changes in page tables and the
TLB flush issue. In terms of process, the steps of protecting
memory using MPK should be similar to those performed
by EVENODD and PMFS: the system protects its data using
MPXK, allowing writing to it only during a small time window
(e.g., during a file system write call).

3) PERSISTENT CACHE

Given the challenges of integrating volatile caches with per-
sistent storage layers, some studies [9], [59], [71], [82], [144]
suggest the use of PM for caches and buffers. Since PM
(and NVM in general) retains data across power cycles,
PM buffers can be very useful in improving storage reliability
and security, while reducing the need for periodic flushes to
long-term storage. However, at their current state PM is not a
feasible replacement for SRAM on processor-level cache due
to endurance and latency limitations. The reflection of this is
that few papers actually explore the idea of persistent proces-
sor cache. Thus, the impacts of a persistent cache at the top of
the memory hierarchy and the requirements for appropriate
policies (e.g., locality, eviction and data placement) for such
cache are still unclear. Thus, studies that explore PM-based
cache management usually present metrics and policies to
take full advantage of these technologies and to predict access
patterns and improve their hit ratio while also studying their
impact in today’s systems (e.g., impact of cache retention).

TxCache [91] employs NVM as a disk cache and provides
a transaction model to allow consistent and versioned writes
to this cache. In order to support transactional semantics,
TxCache exports an extended SSD interface offering methods
to, for example, start, commit and rollback a transaction
(BEGIN, COMMIT and ABORT). Writing data into the
TxCache device using transactions guarantee atomicity and
consistency of write operations, because TxCache always
keeps a backup of older version of the pages being updated
by the transactions on the disk. Furthermore, pages being
updated through transactions (in the disk cache) will only
be written back to disk once their corresponding transactions
have already been committed. This guarantees that, if a trans-
action fails for some reason (e.g., system failure or power out-
age), either the most recent version (in disk cache) or the older
version (on disk) will be available for recovery. TxCache also
keeps track of all pages updated by a transaction using page
metadata, which speeds up the system recovery process in
case of crashes and may also help to enforce sequential writes
to the disk.

The persistent processor cache scheme in Kiln [144] has
similarities to TxCache transactions, however, modified to
work with last level processor cache policies instead of disk
caches. Data is transferred from volatile to non-volatile cache
in a transactional fashion and, once the transaction is com-
mitted, the cache controller flushes all dirty data relative to
the committed transaction that still resides in the volatile
cache to the persistent cache. Once all data is written to the

VOLUME 7, 2019

non-volatile cache, data is considered persistent. The same
assumption made by TxCache is used: PM-based cache will
always have the most up-to-date data, while the storage have
an older copy, and, therefore, no additional consistency mech-
anism is needed. Once the transaction is completed, cache
lines from the persistent cache are allowed to be written back
to the NVM storage by the cache eviction policies.

Mittal and Vetter [95] proposed an algorithm to cope with
PM limited lifetime on cache level. This algorithm keeps
a counter for each cache block, incrementing it for every
write received. Once the counter reaches a predetermined
threshold, the cache block is written back to memory and
invalidated. Also, its LRU (Least Recent Used) counter is not
updated. With this, it ensures that the hot data stored in that
cache block will be reassigned to a cold block due to the LRU
algorithm.

4) CROSS-CUTTING COMPLEMENTARY INSIGHTS

Like with most mechanisms in NVM systems, the main
requirement of an NVM block/page allocator is for it to
be simple and lightweight. Also, to cope with a high
allocation demand, concurrency-friendly structures are also
necessary [138]. With this in mind, many solutions seek
inspiration from traditional VM allocators rather than file
system block allocation methods. Other factors may also
come to influence NVM allocation such as the number of
times a physical block has been overwritten (endurance, see
Section V-B3).

Persistent cache and buffers may bring many benefits
for computing systems such as energy efficiency and fault-
tolerance. There are two main challenges to the adoption
of PM as cache. The first one is performing writeback to
the long-term storage atomically with minimum performance
impact. Traditional cache policies are not designed to deal
with transactions and persistence at memory-level. The sec-
ond is that to be used as processor cache, PM requires high
endurance. However, even if these technologies can endure
enough write cycles, there is still the fact that cache is very
locality sensitive and overwriting the same cache line multi-
ple times is in its very purpose. In this case, neither traditional
cache policies nor storage and main memory wear-leveling
solutions are properly fit to optimize persistent cache lifetime,
thus requiring specific solutions.

B. NON-FUNCTIONAL - QUANTITATIVE
In this section we present topics related to quantifiable
non-functional NVM system requirements such as minimiz-
ing power usage and processor overhead.

1) ASYMMETRIC LATENCY

Another common property shared by NVM technologies is
the asymmetry in the latency of their operations [4], [49],
[54], [83]. In these devices, write and erase operations are
much slower than read operations. Furthermore, in SSD,
data cannot be updated in-place as blocks need to be erased
before they are overwritten, which aggravates the problem.

25853

IEEE Access

G. O. Puglia et al.: NVM File Systems: A Survey

The impact of such slow write/erase operations may become
prohibitive to the adoption of NVM as either storage or main
memory, and strategies must be adopted to either reduce the
amount of writes that reach NVM (usually software level) or
to reduce the latency of these operations (in hardware). This
property is a key factor in the design of most NVM systems.

A common way to deal with the high cost of writes is by
simply employing DRAM either as a write buffer or as a part
of the main memory composing a hybrid memory layer. In a
hybrid memory model (DRAM and PM) [110], techniques
like lazy and fine-grained writes could reduce the amount of
writes to reach the PM device in order to reduce the impact of
asymmetric latency and to improve its lifetime. In this case,
DRAM acts like a traditional page cache and pages are only
written back to PM when dirty during the eviction process
executed by page replacement policies.

Another approach, named i-PCM [4], explores the fact that
the amount of energy and time needed to make a write to
PM is directly proportional to the duration of its persistence.
This means that higher latency and energy dissipation are
needed to make data durable in PM for longer periods. How-
ever, some pages may be updated very frequently (e.g., file
system metadata) while others may belong to temporary
files. In these cases, the persistence process may be relaxed,
reducing the durability of data but also the latency of write
operations. In one hand, i-PCM can distinguish hot and cold
files and apply different write intensities for each one, which,
since hot files usually dominate the accesses to storage, may
improve performance as well as energy efficiency signifi-
cantly. On the other hand, PM may need to be periodically
refreshed whenever the hot-cold prediction fails in order to
not lose data, a process that may degrade lifetime and increase
energy consumption.

Another interesting method to reduce write latency is the
read-before-write technique [86]. In this technique, before a
page of data is updated, the bitwise difference between the old
and the new data is calculated. The device then proceeds to
change only the necessary bits in the updated page, reducing
the amount of work performed and, consequently, the latency
of the write operation. The study further improves this tech-
nique by locating free pages that contain bit values similar to
the data being written. It keeps small bit samples for each free
page, uses a specific hardware to make bitwise comparisons
to the pages being written and select the page according to
the grade of similarity.

2) CACHE OPTIMIZATION

While the studies presented in Section V-C1 focus on pro-
viding cache and buffer consistency, others focus on tailoring
buffer management and cache policies to NVM storage and
main memory. These studies seek the optimization of cache
and buffers using NVM-aware algorithms. For example, tra-
ditional policies for disk buffers may expect random access
to be much slower than sequential access which is not true
for NVM. Furthermore, block-oriented write buffers may not
take full advantage of PM byte granularity that could be

25854

used to implement more complex fine-grained update mecha-
nisms in order to improve write performance [37], [49]. Thus,
NVM-aware policies and techniques are needed to make
these intermediary memory layers smarter and more efficient.

To avoid both periodic flush and write-through methods,
BPFS implements the concept of epoch barriers. In this
approach, additional control is added to caches to organize
cache lines in epochs. The epoch barriers are issued through
an epoch instruction, just like with mfence. The mfence
instruction is a barrier that ensures that all operations prior
to the mfence call will be performed before the instructions
that follow the mfence call. In the case of epoch barriers,
however, each cache line is marked as belonging to a specific
epoch and each epoch has a precedence (through a sequential
number, for example). In this case, if epoch A precedes epoch
B, the cache lines belonging to epoch B can only be evicted if
every cache line from epoch A has already been evicted. Thus,
cache is not flushed and data is only written to persistent
storage when evicted, potentially improving cache usage and
hit ratio. Another way to reduce flushes to memory is using
a non-volatile processor cache: since the PM cache is physi-
cally close to the volatile cache and does not compete for the
memory bus, there is no need to explicitly issue an ordering
instruction when writing between volatile and non-volatile
caches [144].

3) ENDURANCE

As mentioned before, the limited endurance of NVM devices
may cause some cells or blocks/pages to wear out faster
than others, since some data may be updated much more
frequently than others [61], [118], [135]. This results in per-
manent loss of these blocks, reduced storage capacity and
possibly in file corruption. While the level of endurance
required of an NVM depends greatly on its position in the
memory hierarchy, it is well known that the more you can
safely write to an NVM device without risking hardware
failures the better.

W-Buddy [118] is a wear-aware memory allocator that
extends the Buddy [55] memory allocation technique to con-
sider the endurance of memory pages and to provide wear-
leveling. In this technique, memory is organized in a binary
tree-like structure, where each level contains a different size
of memory chunk, the root node contains chunks of N bytes
(where N is the size of the biggest chunk allowed) and the sec-
ond level contains twice the number of chunks presented in
the root, and each chunk is (N/2) bytes long. Each chunk
stores a counter S representing the number of times that
the chunk was updated and a bitmap used to identify free
sub-chunks in the lower levels of the tree. When the system
needs to allocate a chunk of a certain size, the W-Buddy
allocator starts the search for the best fit by looking at the
root of the tree and run through the levels using the S counter
and the allocation bitmap to locate the less worn-out chunk
available.

Wu et al. [134], [135] use two different heuristics to iden-
tify if frequently updated (hot) files are present. For instance,

VOLUME 7, 2019

G. O. Puglia et al.: NVM File Systems: A Survey

IEEE Access

files that are marked as read-only, files belonging to specific
users that rarely log into the system, read-only operating
system files and files that are rarely accessed or are related
to processes that rarely run, are good candidates for cold
or frequently read files. On the other hand, database files
and logs are good example of hot data. These heuristics
are applied to the Android operating system and extensively
studied by Wu et al. [135], that explores file organization and
application-related metadata to identify hot and cold files.
This information is used to store hot data in physical blocks
with low write counters and cold data in more worn-out
blocks, interchanging them during the system life-cycle as
the blocks write counters increase. It should be noted that to
achieve higher lifetime in a hybrid memory architecture, hot
data could be also stored in a more resilient memory device
(e.g., DRAM) while cold data is kept in the device with lower
endurance.

4) ENERGY EFFICIENCY

In general, the concern about energy consumption in com-
puting has grown significantly, particularly in the past few
years, as the technology continuously allows machines to
scale to unprecedented proportions. In these cases, energy
consumption may become a limiting factor in designing more
powerful architectures and is a key factor to determine aspects
such as maintenance cost. Both main memory and storage are
among the main sources of energy consumption and therefore
are good candidates for optimization. On the other hand,
embedded and mobile systems based on NVM, with limited
or no access to long-term power source may also benefit from
a smarter more efficient usage of power [86].

Many solutions for energy efficient usage of NVM are
closely related to those presented in Section V-BI, since
reducing expensive write operations to NVM is the key to
reduce overall memory energy consumption [45], [65], [137].
Thus, approaches such as using volatile buffers are common
solutions to both latency and energy optimization, even
though volatile memories like DRAM and SRAM usually
consume more energy than PM while they are not being
accessed. In another method [71], PM is used as a cache for
instructions only, in order to leverage performance while also
improving the persistent memory’s lifetime by storing only
read-intensive data (in this case, instructions) in PM. PM is
a good candidate to store read-intensive data as reading is
cheaper in terms of both energy and time and also because
PM do not need periodic refreshes like DRAM. Copy-before-
write can also be used to change the minimum number of bits
in a page [86]. The algorithm is based on search among the
pages stored in the device for pages similar to the one being
written. When a page is selected, only the divergent bits are
flipped and, therefore, less work is performed.

5) SOFTWARE OVERHEAD

Since, in magnetic disks, sequential writes and reads are
much faster than random operations, great effort is made by
the file system to avoid fragmentation of a file and to reduce

VOLUME 7, 2019

disk seek times. However, while this additional processing
generated by the file system stack may be acceptable for
disk-based storage (CPU and main memory are thousands
of times faster than disk), on NVM-based storage, this pro-
cessing overhead may significantly degrade overall system
performance. Besides, for NVM storage, random access is
fast and file fragmentation does not represent a performance
penalty on itself (see Section IV-C1). To address these ques-
tions, many studies try to identify and eliminate functions and
layers of software that would no longer be necessary given the
properties of upcoming NVM technologies [13], [14], [136].

Some components of the storage subsystem are known
to present significant processing overhead, most notably the
device driver layer. Block drivers and schedulers tradition-
ally implement strategies to optimize disk accesses, such as
enqueuing and reordering I/O requests. During the design
of Moneta [12], multiple sources of overhead in this level
are identified including inefficient scheduling procedures,
copies from and to user address space and the processing of
interrupts. Moneta reports a significant per-operation latency
reduction when completely bypassing the scheduling process.
The issue with interrupts is also explored by Yang et al. [140]:
when the underlying block device is fast enough, accessing it
asynchronously is not always the best option due to the signif-
icant overhead of the block layer, especially when processing
I/O related interrupts in the CPU (I/O request is enqueued and
the CPU is interrupted when the operation is done). The study
reports that in many cases (e.g., smaller or fine-grained I/O
operations) simply performing I/O operations synchronously
and polling the device awaiting the I/O completion is more
efficient than performing I/O asynchronously.

Moneta-D [13] architecture moves file system’s and oper-
ating system’s permission checks and policy enforcement to
hardware. This architecture also allows accesses to NVM to
bypass I/O schedulers and avoid entering kernel mode. Data
is accessed through channels provided by a user-space library
that manages the low-level mechanisms of Moneta-D and
offers a POSIX-compatible interface for legacy systems. The
Moneta-D architecture also offers high parallelism through
the replication of hardware and memory controllers.

As mentioned in Section II-B, some file system
designs [120], [130] rely on user-space code to avoid the
overhead caused by the I/O stack of the operating system.
Building a file system at user level has some key advantages
to that end, such as minimizing the interaction with the
OS, bypassing unnecessary kernel space layers and allowing
more fine-grained data management. In SIMFS [119], the file
system further improves the performance to access data by
keeping the file mapping overhead to minimum by employing
the file virtual address space framework. In this framework,
every file has its own address space, as they are composed of
an index structure that mimics the structure of the kernel page
tables (see Figure 5). Therefore, when an application maps
a file, all the system has to do is to add a single entry into
the highest level of the application’s page table, pointing to
the file’s address space structure. Hence, the file is mapped

25855

IEEE Access

G. O. Puglia et al.: NVM File Systems: A Survey

FIGURE 5. SIMFS index structure [119]. (a) Basic OS page hierarchical page
table structure, (b) SIMFS file virtual address space index structure.

into the process address space, and the file’s pages may be
accessed directly with no further processing (for instance,
no page faults).

6) RELIABILITY

Another highly desirable storage characteristic is reliability.
Upcoming NVM technologies present some limitations in the
endurance and reliability aspects. Reliability, as it is used in
this paper, is related to loss of data caused by some physical
failure in the device. For example, as memory chips density
increase, the possibility of operations performed in the device
cells creating noises in other cells becomes more likely [88].
Other problems, related to bus communication, may become
a threat to reliability as well. For additional topics regard-
ing integrity on NVM, see Sections V-B3 (on endurance)
and V-A2 (on protection).

To improve the reliability of operations performed in
both PM and SSD, error-correction codes are usually the
solution [111]. These codes are used to verify the integrity of
data after performing write operations, similarly to the use of
Cyclic Redundancy Check (CRC) and checksums in network
communications.

A higher-level solution for reliability is the file system
snapshot mechanism. Snapshot techniques store older ver-
sions of the file system data and metadata ensuring its over-
all integrity through redundancy [75]. Thus even if data is
corrupted due to hardware failures, a valid version of this
persistent data may be recovered from a snapshot of an older
version. In this case, solutions aim to find a balance between
performance and reliability by, for example, adapting the
frequency and granularity in which the checkpoint procedure
is performed according to system parameters such as spatial
locality and access patterns [114].

25856

The Mojim system [142] improves reliability and
high-availability by means of replication of NVM file system
data across multiple nodes. It uses a two-tier architecture in
which the primary tier contains a mirrored pair of nodes and
the secondary tier contains one or more of secondary backup
nodes with weakly consistent copies of data. Data is repli-
cated across the network using an optimized RDMA-based
protocol.

7) SCALABILITY

One of the main advantages of novel PM technologies over
current volatile memories is their higher density. Combined
with its low energy leakage, this factor allows systems to have
large amounts of main memory (e.g., petabytes). However,
managing such a large main memory is not common in
today’s architectures and, to do it efficiently poses new chal-
lenges. For instance, providing address mechanisms for such
a memory is not trivial. On the one hand, issuing addresses
on a page granularity (which usually range from 4 to 16 KB
in current systems) may be inefficient as too many addresses
may take a toll on address translation performance [109].
On the other hand, using larger or multiple page sizes or
even segmentation may cause problems like internal fragmen-
tation, write amplification, protection issues and drastically
increase memory management complexity.

Qiu and Reddy [109] describe a problem with SCMFS
design, where access to the file system’s pages pollutes the
TLB, which increases the number of misses during address
translation. To alleviate this problem, SCMFS employs 2 MB
superpages, reducing the number of addresses needed to des-
ignate large portions of data, optimizing the usage of TLB
and its hit ratio. These superpages are used to address large
files, while regular pages are used for the remaining data to

VOLUME 7, 2019

G. O. Puglia et al.: NVM File Systems: A Survey

IEEE Access

TABLE 8. List of common approaches for lifetime optimization and wear-leveling.

Name Approach

Implemented Level

W-Buddy [118]

Remembering the number of writes per block

Memory Allocator

PM/NAND Flash Hybrid Architecture
[124]

Out-of-place writes/log-based structure

Block Driver/FTL

Marching-Based Wear=Leveling [17]

Out-of-place writes/indirect pointers

File System

EqualChance [95] addresses

Using logical address to rotate writes to physical

Processor Cache Policies

Fine-Grained Wear-Leveling [110]

addresses

Using logical address to rotate writes to physical

Memory Controller

maintain space efficiency. SCMFS initially allocates normal
pages for every file, and upgrades to superpages as the size of
the file increases. It is a relatively simple solution, however,
it may compromise space efficiency on a small scale, cause
write amplification, make memory protection more diffi-
cult and coarse-grained (larger pages means larger memory
regions that must be placed under the same protection region)
and adds overall complexity to the file system for the sake of
translation performance.

The NOVA file system [138] addresses scalability by
employing per-CPU metadata. Each CPU has its own journal
and inode table to leverage the system’s concurrency and to
avoid locking. The CPUs also have separate free-page lists
used by the memory allocator mechanism. Whenever a new
page is needed, the CPU first tries to allocate it from its
own page list before resorting to other CPU’s free pages.
It is important to note that locking mechanisms and critical
regions are still used in NOVA; however, the file system is
built to keep process locking to a minimum, exploring the
advantages of multiprocessors.

Kannan et al. [62] present pVM and discuss the draw-
backs of adopting the Virtual File System (VFS, a transition/
interface layer between the OS and the various file sys-
tem implementations) as basis for future PM storage, such
as scalability and flexibility limitations. According to their
study, the main issues are that PM cannot be transparently
allocated through the file system interface (e.g., when DRAM
is exhausted) and that file systems do not distinguish memory
allocated for persistent files and memory allocated to be used
as operating memory, extending the volatile RAM. Further-
more, additional pages allocated from the VFS are managed
by the file system, meaning that manipulating these pages
involves frequent updates of metadata structures including
superblocks, bitmaps and inodes that in turn has negative
impact on processor cache and TLB. Given these limita-
tions, pVM chooses to extend the kernel Virtual Memory
subsystem (VM), allowing applications to allocate persistent
memory through an API extension of the existing VM API
(e.g., malloc and free functions). In this design, pages may be
allocated across DRAM and PM seamlessly by the VM man-
ager. For temporary (volatile) data, PM may be allocated
transparently by the VM manager just like DRAM, without
the VFS-related overheads. For data storage, with a semantic
closer to that of a file system, pVM also provides an object
store that is accessible through a user-level library.

VOLUME 7, 2019

8) CROSS-CUTTING COMPLEMENTARY INSIGHTS

Most issues discussed in this section have a strong connec-
tion with the costly write operations and erase operations
characteristics of PM and SSD respectively. Since it is all
based on a technology limitation, a common solution in terms
of architecture is the hybrid memory approach, for instance,
using DRAM for frequently updated data, thus reducing the
impact of writes on NVM. In terms of system and soft-
ware, the challenge is to identify hot and cold data design
policies to ensure hot data is kept in more efficient (faster
or more resilient) memory. Another concern that usually
arises in hybrid memory is how to distinguish when PM
is accessed as main memory (temporary data) and when
PM is accessed as storage (long-term data). Distinguishing
these access may benefit things like scheduling writes in the
memory controller, reducing write latency for temporary data
and more efficiently predicting memory access patterns. The
challenges of software overhead and energy efficiency are
also related. For instance, some works that aim to reduce the
impact of software layers in traditionally storage systems,
study the impact of reduced processor activity and memory
footprint on power savings.

The most common method to work around NVM
endurance limitation is out-of-place updates. Log-based file
systems are a popular approach to the problem. These systems
are also designed to provide other benefits such as low cost
consistency and reliability. In general, out-of-place updates
are an effective and simple solution, but may incur write
amplification and garbage collection overhead. Therefore,
there is an array of alternative solutions available in the
literature, including hot/cold data filters and read-before-
write, some of which may also benefit energy and perfor-
mance (see Section V-C3). Table 8 enumerates most common
approaches.

In disk-based storage, data integrity and fault tolerance
are traditionally achieved through RAIDs and duplication.
These approaches, although feasible in PM storage, pose a
few new challenges since network and processor overhead
may turn into a bottleneck [142]. Furthermore, issues such
as endurance and byte-addressable interface must be taken
in consideration as well, making traditional replication tech-
niques incompatible with PM. Therefore, solutions in the area
use mechanisms such as DAX, mmap and RDMA to explore
byte-addressability and minimize overhead on replication
solutions.

25857

IEEE Access

G. O. Puglia et al.: NVM File Systems: A Survey

A common reliability issue is that of detecting and reco-
vering from errors in memory level. In general, the OS han-
dles errors and recovery in the memory level very differently
from the faults in the storage level, treating faults like pro-
tection errors as critical [38]. While ECC and checkpointing
may be helpful in some cases [5], additional mechanisms may
be needed to treat memory faults on a per-case basis with
more robustness.

The NVM scalability of a system may be limited by a series
of factors including energy consumption, address translation
limitations, cache inefficiency, concurrence limitation and
memory security and protection. The analyzed scalability
studies seek improvements on making address and protection
more cache and TLB friendly, allowing systems allocated
memory to grow transparently and partitioning of the entire
physical address space. Besides these points, other more com-
plex ideas are also described in studies such as decoupling
protection from translation and adopting capability-based
authorization [1]. At application level, object stores are usu-
ally the preferred solution for scalable storage instead of
NVM file systems, for example, this is due to their flat
name space and simpler structure and metadata [24] (see
Section IV-A1l).

C. NON-FUNCTIONAL - QUALITATIVE

This section explores topics on non-measurable require-
ments in NVM systems in general such as consistency and
reliability.

1) CACHE CONSISTENCY

While many studies explore data and metadata consistency in
terms of transactions and atomic updates (see Sections V-C2
and IV-A2) [37], [47], [144] some focus on a different type
of consistency: integrating PM with the other layers of the
memory hierarchy, most notably the processor cache. Since
cache and buffers are typically volatile, during writes to
PM data retained in cache lines may be lost upon system
failures, leaving data in PM only partially updated. Addi-
tionally, writes may be reordered before reaching the PM
layer, which in turn may compromise consistency mech-
anisms like journaling (e.g., if metadata is committed to
PM before the actual data is persisted and the system
crashes in the meantime). Hence, additional mechanisms are
needed to ensure that cached data is correctly written back
to PM.

The most common method for dealing with these problems
is by issuing (explicitly or not) barrier and flush commands
to the cache to ensure the persistence of cache lines and the
order in which data will be written to PM. SCMEFS [136],
HEAPO [48] and PMFS [37] use a combination of mfence
and clflush to ensure ordering and consistency. The clflush
operation evicts the cache lines, invalidating them and caus-
ing them to be written back to the memory. The order
in which data will become visible in the memory may be
defined by barriers through a memory fence instruction
(mfence). The increased traffic caused by periodic flushes

25858

plus the overhead of the ordering instructions may signifi-
cantly degrade performance [144].

2) CONSISTENCY GUARANTEE

In order to avoid system corruption and data loss through
multiple writes and erases, most storage solutions imple-
ment mechanisms to ensure consistency. This means that
data stored in a physical medium, by a file system, database
or object store, must be consistent at all times, in such a
way that if a power failure or system crash occurs during a
write operation, data will not be permanently lost. Common
mechanisms of consistency guarantee include journaling,
shadow paging, log-structured file systems and checkpoint-
ing. Although these techniques are very important in main-
taining overall consistency, they are among the main sources
of overhead in storage systems [14]. For instance, the sim-
plest method of performing journaling involves writing all
data in a pre-allocated space in storage, called journal, before
updating this data in the file system itself. This is known for
being extremely inefficient, as every write issued to the file
system incurs at least two writes to the physical device (write
amplification).

Consistency mechanism designs for PM file systems are
among the most abundant topics addressed by the studies
analyzed in this survey. Usually studies choose to adopt
traditional mechanisms, like journaling and shadow pag-
ing tailoring them to obtain improved performance in PM.
An example of fine-grain (e.g., 128 bytes per log entry)
metadata journaling is presented by Chen et al. [20]. FSMAC
creates multiple versions of the metadata before committing
data to in-place update, enabling the operation to be undone.
PMES [37] uses a similar method of fine-grain journaling
for metadata. A two-level logging scheme is proposed by
Hwang et al. [49], mixing a fine-grain journaling mechanism
with a log-based file system structure. In-memory Write-
ahead Logging IMWAL) [115] involves reusing the data log
to update the database file by remapping memory addresses:
it atomically updates metadata to point to newly updated
pages instead of performing two full copies (once to the log
and another to the original page). In cases where pages are
only partially updated, partial page copies are made to merge
new and old data in a single page. This approach, in turn,
reduces the number of writes required for a commit operation
when compared to traditional write-ahead logging methods.
It also proposes to make the in-memory file system the
only responsible for journaling, avoiding the “Journaling of
Journals” issue when both database manager and file system
perform logging separately.

In a more generic approach, Kiln’s [144] data is written
to a persistent cache before it reaches the long term NVM
storage (accessible through the memory bus). In this design,
data from volatile cache lines are written to a PM cache in
a transactional fashion. When the transaction is committed,
the remaining volatile cache lines belonging to that trans-
action are flushed to the PM cache and the transaction is
committed. When cache lines are evicted from the PM cache

VOLUME 7, 2019

G. O. Puglia et al.: NVM File Systems: A Survey

IEEE Access

they are copied back to the PM storage. This approach also
needs additional hardware and modifications to the cache
controller.

Non-volatile memory programming libraries such as
Mnemosyne and Atlas [16], [24], [129] also provide their
own built-in consistency methods. These methods usually
take advantage of fine-grained data management and the
high-level knowledge of the application to make consistency
smarter and therefore can be more efficient than more tra-
ditional file system approaches. It is also common for these
systems to use write-ahead logging combined with flushes to
persistent memory to provide transactions with ACID prop-
erties at application level.

3) DATA PLACEMENT

Another similar and common trend in hybrid memories is to
use fast memory (PM or DRAM) to store frequently accessed
data. In this case, the file system needs a strategy of block
placement to decide whether data (pages, blocks or files)
should be stored in fast and volatile memory or in slower,
higher-capacity persistent memory [30], [112], [116], [141].
This strategy must identify critical data and determine
whether they are temporary or must be persisted.

One example of block placement strategy is the
Rank-aware Cooperative Caching (RaCC) block placement
algorithm [112]. RaCC assumes an architecture featuring a
PM/DRAM hybrid cache and works to optimize its utilization
and performance. The algorithm uses multiple queues with
different priorities to store descriptors for each cached object.
These descriptors are used to keep track of the number
of times an object in the cache was referenced and when
it was last accessed. RaCC prioritizes the allocation of
volatile memory (DRAM) for the most popular objects, since
DRAM is assumed to be faster than current PM technologies.
When the number of accesses to an object cached in PM
reaches a certain threshold, it is moved to DRAM and vice-
versa. Objects can be released either when the cache is full
and new objects need to be cached or when the system
detects that an object was not accessed for a certain amount
of time.

In a more generic implementation, the algorithm shown
by Dai et al. [30] uses dynamic programming to track the
cost of each cached data block for each type of cache. This
includes the cost of moving blocks through different caches.
The algorithm then uses a couple of heuristics to minimize
the overall access cost and to find the optimal placement for
every cached block. The algorithm is polynomial in time and
space. Conquest [131] is a file system design for a PM/disk
hybrid storage. Conquest chooses a simple approach for data
placement: it assumes that small files are responsible for most
of the storage traffic. Using an arbitrary threshold (1 MB) to
distinguish “small” from “large” files, the file system priori-
tizes storing larger files sequentially in the disk and small files
in PM. It is relatively simple mechanism compared to other
block placement algorithms, which also means less overhead
and complexity on the storage management. The results show

VOLUME 7, 2019

that Conquest may be up to 28 times faster than traditional file
systems such as Ext2 and ReiserFS when performing random
access.

The pVM system [62], adopts the persistent virtual mem-
ory model allowing page allocation and data placement across
different memory technologies significantly easier. pVM
treats PM as a NUMA node to both account for the difference
in bandwidth between DRAM and PM and also to make
the transition to the pVM model simpler. This design allows
pVM to be extended to support more sophisticated data place-
ment policies suitable to different PM technologies. While
the system itself does not present data placement algorithms
or complex heuristics for page placement, it implements a
few flexible page allocation policy options: nvmreverts (allo-
cate NVM only when lacking DRAM pages), nvmpreferred
(favors allocation on PM over DRAM) and nvmbind (forces
the usage of PM space only).

X-Mem [36] considers the use of persistent memory to
expand the total memory footprint used by applications.
It allows users to define tags for allocated memory ranges
(through a xmalloc call) in order to distinguish between dif-
ferent types of data structures and their respective priorities.
Each data structure/tag is managed by its own specific alloca-
tor and is mapped into the application’s virtual address space.
From there, X-Mem uses a profiler to automatically deter-
mine whether these structures should be stored in DRAM
or PM. The profiler takes into consideration characteristics
such as access patterns (e.g., strided, sequential, random) and
frequency of access per tag/data structure. Figure 6 shows the
basic X-Mem structure as it manages the storage of 3 different
data types.

4) DATA DUPLICATION

In traditional systems, a single chunk of data may be repli-
cated at multiple levels of the memory hierarchy simulta-
neously (disk, disk cache, main memory, processor cache,
etc). Moving these copies around is necessary both for per-
formance reasons and because different layers address data
in different ways (blocks, pages and cache lines, for exam-
ple). In an NVM-enabled architecture, performing memory
to memory copy (e.g., for page and buffer cache), between
PM and DRAM would be a source of unnecessary overhead,
since data can be accessed directly from the PM device
with DRAM-like speed. The studies listed under this cate-
gory are concerned with reducing such redundancy in data,
identifying where it is still needed and where it can be
eliminated.

PMEFS [37] integrates the execute-in-place (XIP) [128]
functionality that allows data in persistent storage to be
accessed directly. XIP bypasses the page cache and I/O sched-
uler, eliminating unnecessary duplicates of data from the PM
to DRAM. The same applies to mapped files: page descriptors
are allocated and point to the mapped file in the PM storage,
but no pages are actually copied to the page cache. Data is
directly mapped in the process user space to be accessed and
updated by the processor.

25859

IEEE Access

G. O. Puglia et al.: NVM File Systems: A Survey

FIGURE 6. X-Mem structure [36]. Different types of data structured are handled differently by the

0S and spread through DRAM and PM (NVM).

TABLE 9. Main system designs of NVM storage and their approaches to ensure consistency.

Name Basic Consistency Approach Cache Consistency Approach

Mnemosyne [129] Journal/Logging/Shadow Paging Barrier and Flush Commands/ Write Through Cache
PMES [37] Journal/Logging Barrier and Flush Commands

BPFES [25] Copy-on-Write/Shadow Paging Epoch Barriers

NOVA [138] Log Structured Files Barrier and Flush Commands/ Write Through Cache
NV-Heaps [24] Checkpoint/Full copy None

5) CROSS-CUTTING COMPLEMENTARY INSIGHTS

Approaches for maintaining data consistency and integrity
are numerous in the papers analyzed and their details may
vary greatly. Table 9 presents how some of the main stor-
age solutions in the literature ensure their data consistency.
Consistency enforcement is one of the major differences
between in-memory file systems (file systems that reside in
volatile main memory, i.e., RAMFS) and NVM file systems.
Notably, the issue goes beyond traditional storage consistency
in PM file systems due to the cache consistency issue. Thus,
consistency solutions seek to: (a) integrate the consistency
mechanism with processor cache properly, (b) reduce pro-
cessor overhead (compared to traditional mechanisms) and
(c) minimize write amplification. Cache consistency in turn
aims to avoid invalidating and flushing cache lines period-
ically, which may harm the system performance. It usually
does this by means of relaxing ordering and dependency
constraints or simply bypassing the cache when writing data
back to memory. System-level solutions for the cache issue
are very limited since cache controlling is mostly a hardware
responsibility. Furthermore, more advanced solutions, such
as epoch barriers may require modified hardware.

As we discussed throughout this paper, hybrid mem-
ory combining DRAM and PM (sometimes PM and
SSD) is a popular approach to improve everything from
energy consumption to device lifetime (see Section V-B).

25860

Regardless of the goal of the hybrid architecture, data
placement policies are always a constant need. This is
because simply using DRAM as a cache is suboptimal [36]
and classic cache policies (LRU, LFU, etc.) cannot be
used efficiently in this architecture due to the lack
of information provided by hardware [80]. Overall the
goals of the proposed data placement algorithms are:
(a) to make the faster memory tier (DRAM or PM depending
on the architecture) absorb as much write traffic as possible,
(b) to distinguish temporary/main memory traffic from long-
term/storage traffic and (c) to optimize the usage of limited
amounts of fast memory.

Vi. INDUSTRY TRENDS
This section is dedicated to recent topics, trends and solutions
discussed in the computer industry regarding the adoption
of existing and upcoming PM technologies. We start by
understanding the industry needs that drive PM adoption. The
amount of data stored and exchanged by today’s applications
has been growing at an unprecedented rate, a growth that is
not expected to slow down in the coming years. The huge
latency gap between volatile main memory and persistent
storage imposes a big challenge on systems design.

In order to make the memory/storage stack more efficient,
it becomes necessary to consolidate the different stack layers,
reducing data copies and movement. This can be achieved

VOLUME 7, 2019

G. O. Puglia et al.: NVM File Systems: A Survey

IEEE Access

by new technologies introducing characteristics, such as low
latency, high density, low cost/bit, high scalability, reliability
and endurance. Despite the fact that no memory technology
today can provide all of these features [108], new NVM
technologies being developed promise to narrow the gap
between memory and storage. Driven by this perspective,
significant effort is being directed to create standards, inter-
faces, functions and programming models dedicated to allow
efficient adoption and usage of NVM by operating systems,
programming languages, and applications.

A. TOOLS AND STANDARDS

The ACPI (Advanced Configuration and Power Interface)
specification [2] is a standard used to allow operating sys-
tems to configure, manage and discover hardware compo-
nents. Version 6.0 added the NVDIMM Firmware Interface
Table (NFIT) to the standard to provide information about
features, configuration and addresses of PM devices. The
NFIT describes PM regions, provides hints to make efficient
use of cache flushes necessary to ensure durability of write
operations to these regions, and the definition of block data
window regions in case apertures are required to access the
PM. The JEDEC Byte Addressable Energy Backed Interface
standard [52] specifies the low-level access interface for PM
devices. It is intended to simplify BIOS and PM access and
to provide a single interface (that may have multiple imple-
mentations) to the operating system.

The Linux PMEM driver is a block driver based on the
Block RAM Diriver (also known as BRD used to create RAM
disks) designed to work with NVMDIMM [145]. PMEM was
developed by Intel and eventually incorporated into Linux
kernel 4.1. PMEM uses a memory addressing range reserved
by the system, similarly to ranges used to communicate with
I/0O devices. PMEM may be used to create and mount regular
file systems over memory regions, whether the memory is
persistent or not, allowing users to emulate persistent memory
with PMEM. Currently, the PMEM driver is being updated to
support the features of ACPI NFIT.

Another feature provided by PMEM is the block mode
access to PM. As the name suggests, in block mode data
is transferred to PM in blocks, in a similar fashion to
block drivers. The block-granularity access, despite inher-
ently slower than load/store based access, has a few key
advantages, for example, when it comes to handling memory
errors, which are more difficult to address when performing
direct access to PM. Accessing PM in block mode allows
errors during access (e.g., “‘bad blocks”) to be treated by the
kernel, while managing errors when accessing PM directly
with load/store instructions is much harder and might cause a
system crash. The block mode access also ensures atomicity
at block granularity, which may be useful in some cases.

Another Linux feature implemented to improve its
compatibility with PM is the DAX (Direct Access)
functionality [28]. The concept behind DAX is very similar
to the concept of XIP (eXecute In Place), employed by
some of the file systems discussed previously [37], [100].

VOLUME 7, 2019

The principle of DAX is to bypass Linux page cache, avoiding
additional copies of data that would only represent unneces-
sary overhead, considering that the storage is built over PM.
With DAX, PM can also be directly accessed by applications
through the mapping of memory regions in the address space
of user processes. In order to support DAX, file systems and
block drivers must implement a few functions that compose
the DAX interface, allowing the kernel to perform specific
operations, such as allocating pages using page frame num-
bers. To date, the file systems that offer DAX support are
Ext2, Ext4 and XFS. DAX combines improved PM access
mechanisms with modern and mature file systems designs.

B. ARCHITECTURE SUPPORT AND LIMITATIONS

Even though PM presents highly desirable attributes, such as
low latency and high density, architectural support for these
memories is still missing. A good example of this fact is
the limited physical addressing capacity of current proces-
sors. An address space containing tens of terabytes (or even
petabytes) of PM is well beyond what today’s processors are
capable of supporting [38]. Additional virtual and physical
address bits need to be implemented for large-scale memory.
Currently, the workarounds consist of mapping windows of
PM regions into the physical address space of CPUs. More
importantly, the overall implications of scaling memory to
that amount are still unclear: increased occurrence of TLB
and cache misses, increased overhead of memory zeroing
and copying large amounts of memory. Ultimately, memory
scaling is an open challenge that processors designs must
cope with.

The processor caches are also not optimized for PM,
some of which have already been discussed in Section VII-J.
Existing barrier and cache flush instructions, while useful to
mitigate these limitations, represent a performance drawback
as they are expensive operations and may serialize execution
within the processor pipeline. When flushing a cache line
with these instructions, there is usually no guarantee that data
is immediately written back to NVM. Hence, Intel introduced
a few instructions in their new processors, clwb, pcommit and
clflushopt. These instructions are similar to the clflush and
mfence instructions described earlier, except that they do not
invalidate cache lines, or stall the CPU and, in the case of
clflushopt, may be pipelined. The pcommit instruction’s goal
was to ensure that writes accepted by the memory controller
are committed to the persistent memory synchronously, how-
ever, it was deprecated since all upcoming memory con-
trollers will already have hardware mechanisms to enforce
this.

Another example of processor support for PM is the addi-
tion of memory protection keys (see Section V-A2). It adds
a 32 register to the processor that is used to define 16 sets
of 2-bit page access permissions (a read and a write bit).
Each set is mapped to a key that may be assigned to a
group of pages through their entries in the page table. MPK
allows for a more efficient implementation of mprotect, that
could be used to lock PM ranges and protect it from stray

25861

IEEE Access

G. O. Puglia et al.: NVM File Systems: A Survey

writes while avoiding TLB flushes and not compromising
performance. The TLB is yet another point of improvement in
current architecture. The address translation buffer is critical
to address translation (and, therefore, to the whole system’s
performance) and it is a scalability bottleneck on systems
with huge amounts of memory. Despite not being a new topic,
already a common issue in virtual memory management as
well, the emergence of huge memory systems and NVM file
systems put this challenge in a new perspective.

C. PROGRAMMING MODELS
As briefly discussed in Section VII-D, traditional access
methods and programming models may not be the best fit for
PM storage due to their unique characteristics, which led to
the proposal of new programming models and access methods
aiming to explore NVM features [96], [129]. The Storage and
Networking Industry Association (SNIA) has defined and
published the NVM Programming Model (NPM) specifica-
tion to provide some directions for developers to provide
common and extensible PM access model. The specification
is also useful for users to understand what can be expected
and what operations can be performed over PM systems.
The NPM defines multiple modes of access (e.g., file mode,
block mode), what they have in common, how they differ,
at what level of the architecture they operate and what kind of
operations and attributes should be supported by these modes.
The specification provides detailed information about meth-
ods to discover the supported operations provided by a spe-
cific implementation and the high-level description of these
operations (inputs, behavior, outputs, etc.). Finally, NPM
also provides a few use cases to illustrate the usage of the
specified operations and describes a few directions to make
programming interfaces compliant with the specification.
The NVM Library (NVML) [96] is a set of open libraries
designed to provide applications with easy and efficient
access to PM. The NVML follows the design principles that
are specified in the NPM, but also adds an array of specific
features to make development for memory storage more intu-
itive. It has tools to work with different abstractions such as
objects, files, append logs and blocks. It also exposes to users
low-level functions, like cache flushing, and optimized file
mapping. In higher-level libraries, NVML supports atomic
transactions, persistent pointers and lists, as well as synchro-
nization for multithreading. Finally, NVML also provides a
C++ version of the API, allowing more intuitive and robust
object-oriented programming over PM.

VII. FUTURE DIRECTIONS

This section is dedicated to analyzing the main trends that
are the most likely to be targeted for future advances in the
area of NVM file systems and to provide insights in their
relevance and their direction. We build this analysis based
on the amount of effort dedicated to each topic as well as
their content and our vision and opinion regarding the impact
of their proposals. The goal in this step of the study is to
identify areas of the NVM-based storage that may need more

25862

attention (that may represent research opportunities) as well
as the areas that are already saturated with research and that
(according to the retrieved studies) already seem to have a
few concrete solution models.

The conclusions presented here are based on the analy-
sis of the mapped studies, current non-academic works in
NVM area (like file system and block driver implementations
or kernel adaptations) and current market trends. Although
many aspects of NVM and many of its applications have been
studied throughout this paper, the focus of this discussion
is on the storage level and its responsibilities. Also, we tar-
get architectures where PM is located at the same level of
today’s DRAM (memory bus). Thus, some contributions like
user level programming models, SSD focused solutions and
alternative architectures may not be taken into account in this
discussion.

Table 10 shows different storage solutions that target NVM
and the issues they address. It provides a simple overview and
also a comparison between the main studied storage systems,
enumerating the problems that each of them addresses. For
this illustration we take the following systems:

o TMPEFS: a well-known in-memory file system usually
employed to store temporary files on (volatile) main
memory. It uses OS internal VES structures to allow
user-level code to manipulate in-memory data using file
system semantics [121].

o DAX: short for Direct Access. It is a mechanism imple-
mented in the Linux OS to allow traditional file systems
to bypass storage layers (for instance, the page cache)
when working with NVM [28].

e PMEFS: a file system designed by Intel to provide effi-
cient access to NVM storage using traditional file system
API [37].

e BPFS: an NVM file system that implements NVM
optimized consistency techniques such as short-circuit
shadow paging and epoch barriers [25].

o Mnemosyne: a user-level library that provides efficient
and reliable access to persistent memory through a more
memory-like interface, offering features such as persis-
tent regions and variables [129].

e Muninn: an object-based key-value store designed to be
a light and flexible solution to exploit NVM characte-
ristics while hiding its intricacies [61].

e HEAPO: an object-based persistent heap implemen-
tation designed for NVM with features such as
undo-logging and native memory protection [48].

o SCMFS: a lightweight NVM file system built over a
contiguous address space by extending the OS virtual
memory subsystem [136].

The last column of the table presents a simple conclusion
about the maturity of each specific topic. It helps to illustrate
the current level of development of each one of the topics
we have identified in this study, indicating which topics
need further exploration and which are closer to (or already)
presenting deployable, working solutions. Besides the con-
tributions listed in the table, we also take in account the

VOLUME 7, 2019

G. O. Puglia et al.: NVM File Systems: A Survey

IEEE Access

TABLE 10. Comparison of studied storage solutions.

NVM System Samples .

Problem - Maturity Level

TMPFS | DAX | PMFS | BPFS | Mnemosyne | Muninn | HEAPO | SCMFS
Consistency Guarantee NO HIGH
Atomicity NO NO HIGH
Endurance NO NO NO NO NO NO NO HIGH
Access NO NO NO NO NO MEDIUM
Interface
Asymmetric Latency NO NO NO NO NO NO NO NO MEDIUM
Metadata Management NO NO LOW
Software Overhead NO NO HIGH
Block/Page Allocation NO MEDIUM
Memory NO N/A N/A NO LOW
Protection
Cache NA | NO NO NO LOW
Consistency
Cache NO NO | NO NO NO NO NO MEDIUM
Optimization
Reliability NO NO NO NO NO HIGH
Write NO NO | NO NO NO NO MEDIUM
Amplification
Data NO NO | NO NO NO NO NO NO LOW
Placement
Access NO NO HIGH
Transparency
Data NO NO HIGH
Duplication
Scalability NO NO NO NO NO NO LOW

amount and quality (measured by citations) of the research
papers analyzed in this survey (see Figure 1) and the advances
in industry (see Section VI) to determine each topic’s
development level. We separate topics in three maturity
levels:

o High: issues that are at a relatively mature level of devel-
opment, having relevant papers published in the area and
satisfactory solutions already proposed and successfully
implemented. Most solutions to these problems seem to
follow the same patterns and employ the same ideas,
creating a clear model around which a concrete and
robust mechanism could be built.

o Medium: topics that have been extensively studied but
have no definitive solution in sight. Usually, these are
complex or poorly understood issues, that demand either
changes in the architecture or high effort and complex
solutions.

o Low: topics that are known to be relevant but have not
received as much attention as the others or have not been
extensively explored in the literature. These topics have
the most research potential and are the most likely to
drive innovative studies at the moment.

The remaining topics we consider to be non-critical,
(i.e., space efficiency, energy efficiency, garbage collection,
fragmentation, persistent cache, parallelism, and mounting
time). These issues are either expected to be solved when the
technology reaches a certain level of maturity, or they simply
do not represent a threat to an architecture where CPU access
NVM directly. These issues may eventually become points
of interest, as NVM-based systems evolve and change, but

VOLUME 7, 2019

for the foreseeable future, they do not seem to be critical
issues.

FIGURE 7. Target architecture - single address space model.

In spite of the studies discussed in this paper being related
to different architectures and having different technologies
as target, it would be extremely hard to point and discuss
the directions and trends in NVM related studies for all of
these distinct models. Furthermore, it seems clear that the
dominant approach to insert NVM in the current architecture
is by connecting it to the memory bus. Thus, Figure 7 presents
the target architecture. In this approach, memory is exposed
directly to the processor and may be accessed directly on
byte or word granularity (with load and store commands, for
example). From a performance point of view, this is one of
the most efficient ways to access persistent memory, but it
presents multiple challenges such as cache reordering and
persistence of stray writes.

25863

IEEE Access

G. O. Puglia et al.: NVM File Systems: A Survey

A. CONSISTENCY GUARANTEE

It is clear that there is still plenty of space for new methods of
improving file system consistency performance and reliabil-
ity. Nevertheless, there is already a large array of solutions
available in the literature. In fact, many of these solutions
are improvements over classic consistency methods, such
as fine-grained journaling, log-structured file systems and
short-circuit shadow paging. Furthermore, several studies
hint that methods of data consistency will evolve as the file
systems and metadata themselves evolve and this evolution
depends on other factors (such as metadata, addressing and
scalability), hence it might resurface as a hot topic in the
future. However, it seems that existing solutions cited previ-
ously already fill a major part of the requisites of an efficient
consistency mechanism and may be adopted in upcoming
NVM storages.

B. ATOMICITY

Atomicity is yet another topic that is reminiscent of tradi-
tional file systems and was again extensively explored on
SSD recently. The concepts of atomic operations and transac-
tions have been studied for decades and are relevant to most
storage models, including file systems and databases. Like the
methods to ensure consistency, methods of providing atomic
operations on NVM file systems are to a large extent based
on traditional mechanisms.

The issue of atomicity is closely related to that of file
system and (most precisely) user data consistency and, hence,
their developments are highly linked to each other. Fur-
thermore, the success of atomicity techniques depends on
other (arguably) more pressing matters such as ordered cache
flushes. Finally, current solutions, such as atomic mappings
and lightweight transactions may still have a long way to go,
but they already serve their purposes and show how atomicity
in an NVM environment should be treated.

C. ENDURANCE

Much research has already been dedicated to this matter (see
Figure 1) since the impact of limited endurance of NVM is
a critical factor for its adoption. Furthermore, as mentioned
in Section II-A, some types of NVM already present a satis-
factory endurance (for storage level usage) and the lifetime of
the remaining technologies is expected to be greatly improved
as they achieve a higher maturity level in their development.
Besides, NVM might still coexist with volatile technologies
like DRAM and SRAM in many architectures, which also
reduces the write frequency in persistent memories and the
risk of premature failures. And even so, while such dura-
bility is not provided by present day NVM technologies,
wear-leveling and other techniques can be decoupled from
file systems implementations by, for example, implement-
ing them under the memory management, or by adopting
specialized hardware (e.g., remapping logical to physical
addresses when necessary, similar to the solutions presented
in SSDs FTL). Therefore, we argue that it is relatively safe to
assume that, in the long term, dealing with endurance will not

25864

be as challenging as it was in the recent past and file systems
will be able to focus on the aspects that really matter to users,
such as performance, security and reliability.

D. ACCESS INTERFACE

Even though many PM file systems [25], [37] are POSIX
compliant and access to these systems are basically provided
by traditional functions (like read/write and mmap), it does
not seem that these are best fit to access memory-like devices.
Operating system optimizations (like XIP and direct map-
pings) as well as application-level directives (for example,
persistent regions and key-value access) have been proposed
to leverage the advantages of PM, but no definitive framework
or model exists at the moment. Furthermore, these solutions
often present some expressive trade-offs, like trading porta-
bility for simplicity or sharing for security. Many of these
solutions are based on today’s programming models and pat-
terns and as programming evolves and adapts to PM-enabled
environments, the storage interface and access methods must
evolve as well.

Re-evaluating the way storage is accessed is one the most
critical and interesting questions related to PM-enabled sys-
tems, and it has potential for innovation and reinvention such
as on file system semantics. This particular aspect of PM stor-
age is closely attached to the evolution of modern application
development and development frameworks that indicates that
this is a good time to review the role of file systems in current
and future applications. Furthermore, the adoption of PM
brings storage much closer to the main memory, opening new
possibilities for data management and enabling mechanisms
and models previously unfeasible. These are indicators that
the interface of applications to NVM will certainly be one
of the most relevant NVM-related topics and it will not be
restricted to the file system level.

E. ASYMMETRIC LATENCY

From an operating system perspective, currently there are
not many options available to reduce the impact of slow
write/erase operations on the system’s performance. Usu-
ally the solution for storage is found in minimizing write
amplification, and employing faster memories for buffering
writes to files. Assuming that the latency of upcoming NVM
technologies will not be improved naturally at hardware level,
optimizing the write performance of NVM should be con-
sidered a critical point as we aim for NVM-based storage to
get as close as possible to today’s volatile memory layers.
The number of factors that impact write performance are
numerous and their relationship must be carefully considered
on future studies as well.

F. METADATA MANAGEMENT

Upcoming PM introduces a lot of questions, like whether
hierarchical or flat name space would be a best fit and
whether files are even the best abstraction to work with on
memory-based storage. Despite the fair amount of research
that has been invested in metadata designs, most of them are,

VOLUME 7, 2019

G. O. Puglia et al.: NVM File Systems: A Survey

IEEE Access

at some level, based on structures developed for disks and
SSD, and many of the aforementioned questions remain with
no definitive answer.

Traditional metadata structures are designed for block-
based file systems, which may be appropriate for SSDs but
may become an issue in PM-based storage [62]. It impacts
almost every aspect of the file system design and raises
questions such as whether existing file abstractions are even
adequate for NVM [5]. Along with the improved interfaces
for future NVM-based storage, managing metadata is one
of the most flexible topics in this list and has a huge space
for exploration and experimentation. Hence, trying to predict
what NVM storage metadata will look like in the future is
speculative at this point. We do, however, agree with obser-
vation NVM should employ smaller metadata structures with
focus on fine-grained manipulation and interfere with the
application-data interaction as little as possible. It is also
likely that the concepts in storage metadata will get mixed
with OS and applications memory structures to bring persis-
tent data closer to applications and to provide more flexible
and efficient methods to manipulate data.

G. SOFTWARE OVERHEAD

Much of the software overhead in traditional file system
models has been already eliminated in NVM file systems by
simply avoiding layers like I/O schedulers and page cache.
Further performance improvement is possible by also bypass-
ing caching procedures and mapping pages directly to user
space, using existing mechanisms such as XIP [37], [67].
Additionally, more fine-tuned improvements may be imple-
mented by avoiding low-level procedures, like entering kernel
mode, avoiding switching permission levels using memory
mappings and performing synchronous operations rather than
using interrupts.

With major sources of overhead out of the way, we believe
that identifying and eliminating points of overhead from this
point onwards will be trickier as the critical path of accessing
PM moves to a more low-level and hard to optimize code
(e.g., page table walk). The file system overhead, is expected
to become less prohibitive for PM as expensive mechanisms,
such as consistency, block allocation and wear-leveling algo-
rithms evolve and become more sophisticated. On the kernel
side, the future of memory-related mechanisms, specially the
address translation process, that takes a major role in the
process of accessing data, is uncertain. Much like metadata,
it seems that in the most natural transition for PM storage
addressing from today’s model to the architecture presented
in Section 7, file address space may get mixed with OS and
process memory addressing (involving page tables). How-
ever, we argue that the addressing issue has a bigger impact on
other aspects of NVM, such as scalability, that are currently
more critical than OS overhead.

H. BLOCK ALLOCATION
Block allocation algorithms and policies for NVM storage are
numerous and well established, but there are still unexplored

VOLUME 7, 2019

issues regarding this process and others that may arise in
the future. As we have seen in this study, most NVM block
allocation algorithms and policies are designed to mitigate
fragmentation and improve lifetime. While dealing with these
matters in the allocation process may be redundant (if not
simply unnecessary), block allocation is one of the core con-
cepts of a file system. Optimizing it is essential when dealing
with most storage-related challenges, such as file system con-
currency and address translation. Existing solutions for these
problems are usually complex and their impact on the overall
system 1is still not completely clear. As the requirements of
NVM file systems become clearer over time, the responsi-
bilities of allocators might evolve and more robust solutions
will be needed. Even though these requirements are still being
investigated, solutions in this area will need to be lightweight,
highly concurrent and very flexible.

I. MEMORY PROTECTION

Memory protection is not a new challenge in the OS area,
however, it gains a completely new outlook when taking
persistence in consideration. Currently, the trend in protect-
ing PM exposed directly to the CPU seems to be switch-
ing the write permission of memory pages on and off by
exploring the protection bits of page table entries and pro-
cessor registers [27]. Others more recent approaches revisit
capability-based systems to provide efficient fine-grained
protection [1]. However, these methods do not seem organic
solutions for the problem, and while some of them may incur
significant overhead, others depend on hardware innova-
tions and experimental methods. Clearly, memory protection
should be seen as a critical issue and that a robust definitive
solution might involve rethinking OS and file system level
addressing structure and how they interact.

J. CACHE CONSISTENCY

In an ideal scenario, for the architecture in Figure 7, pro-
cessor caches would be persistent to avoid all the issues
and drawbacks of having a volatile cache interacting with
an NVM storage. However, due to current NVM limitations,
like endurance and latency, a persistent processor cache does
not seem to be feasible. While it would seem that using pro-
cessor operations to orderly flush data from volatile caches
to NVM and optimizing cache and processor to mitigate
the impact of doing such would be a reasonable solution,
the results show otherwise. One particular study that presents
a comparison of different cache modes [7] shows that in
some cases, using a combination of memory fence and flush
along with write-back cache mode performs twice as worse
as write-through and, in some scenarios, it may be worse than
not caching data at all. The fact is that this line of solution
does not seem to be very efficient and processor support for it
is still quite lacking. These impacts must be further explored
to fully understand the requirements and the impacts of the
relationship between volatile cache and NVM storage. This
knowledge is fundamental to properly design future cache
management algorithms and policies. Additionally, new and

25865

IEEE Access

G. O. Puglia et al.: NVM File Systems: A Survey

alternative mechanisms for more robust and transparent cache
management (e.g., the epoch barriers [25]) constitute promis-
ing research in the NVM area.

K. CACHE OPTIMIZATION

Cache and buffer optimizations are usually designed to
improve SSD storage. Hence, most of these optimizations
do not apply to PM file systems. In an architecture where
long-term storage is combined with main memory, the pro-
cessor cache is the main point for cache optimization. Thus,
techniques that try to enforce consistency between cache
and PM efficiently (see Section VII-E) represent the main
contribution in terms of optimizing cache usage. The other
potentially significant contributor to improvement is the TLB.
As we have already explored in this discussion, the address
translation and memory protection are among the most com-
plex and currently relevant topics that still deserve more
thorough study. The TLB mechanism takes a major role
in memory translation and therefore deserves special atten-
tion. Similarly to processor caches, the impact of novel
PM solutions over the TLB are not sufficiently clear, and
must be carefully considered in the design of future PM file
systems.

L. RELIABILITY

Most reliability studies are concerned with low-level fault-
tolerance such as error detection and correction codes and
hardware primitives since corruption of data in either PM or
SSD could be disastrous. Studies that do explore file system
level reliability usually do it in terms of checkpointing algo-
rithms and RAID-like solutions, which are both already well
known concepts in today’s industry. While it is clear that there
is space for more NVM friendly fault-tolerance mechanisms,
it does not seem like this is a particularly demanding field:
studies are more concerned with lightweight consistency
mechanisms and enforcing metadata consistency. This topic
is expected to attract more research in the future (especially
since data redundancy in NVM is still relatively unexplored to
date), perhaps as alternatives for more complex consistency
techniques. At its current state, reliability does not belong
among the most critical issues.

M. WRITE AMPLIFICATION

With the transition to a self-contained and simpler model,
NVM file systems already eliminate most of the write
amplification presented in traditional file systems by, for
instance, eliminating duplications and optimizing journal-
ing and garbage collection. Furthermore, as applications are
given more freedom to access persistent data directly and
interaction with OS and file systems is reduced, write amplifi-
cation will be reduced naturally. Techniques like fine-grained
logs, direct mappings and atomic in-place updates contribute
to reducing overall write amplification and may be used as
model for more sophisticated methods in the future. While
minimizing write amplification is important in terms of per-
formance and energy consumption, it will become less of

25866

an issue in the future as file system designs become more
flexible.

N. DATA PLACEMENT

In the target architecture, adopting a block placement policy
may be useful to work efficiently with multiple memory
layers or hybrid memory (DRAM combined with PM). While
copying data from memory to memory is certainly undesir-
able, exploring faster memories (like DRAM) for caching
frequently used data (like metadata) or as write buffer may
be interesting in some cases. While some studies explore
block placement techniques, only a few are actually designed
for a hybrid memory layer similar to our target architecture.
Understanding of the impacts, requirements and behavior of
hybrid memory systems is still lacking. Furthermore, poten-
tial solutions such as identifying hot and cold data, are highly
dependent on the type of application and their interaction with
NVM, which makes generalizing it a non-trivial job. With
that in mind, exploring the impacts of hybrid architectures
and block placement in file systems have great potential for
exploration and consider it to be a very interesting research
topic.

O. ACCESS TRANSPARENCY

In the context of this work, transparency is related to com-
patibility and legacy systems accessing NVM storage in an
efficient way with traditional interfaces. It should not be one
of file system’s concerns to ensure compatibility with tech-
nologies, but it is important for applications to rely on NVM
file systems for a consistent behavior. However, exploring
new ways of exposing data and bringing NVM closer to
applications is currently a more pressing matter. Furthermore,
as NVM devices enter the market, storage solutions to boost
existing application’s performance (with little or no modifi-
cation required) will become more popular, and transparency
will be an important requirement for these tools.

P. DATA DUPLICATION

In an architecture where the file system is merged with main
memory, the amount of data duplication will be naturally
reduced, since in this case many of the buffers, caches and
software layers that compose the traditional storage sys-
tem will no longer exist. Also, since file data is now in a
byte-addressable memory and may be accessed by the CPU
directly, processes may access persistent data directly without
the need for copies or page swaps. Furthermore, mechanisms
such as XIP that allow pages to be directly mapped into
user space represent a solution that involves little to no data
duplication at all. Therefore, state-of-the-art PM file systems
have already reached a good level of deduplication including
zero copy access to PM pages. The exception being cases
where data must be replicated for reliability and consistency
reasons, such as for out-of-place writes, for instance. In these
cases, the balance between the memory footprint and reliabil-
ity trade-off must be considered for each scenario.

VOLUME 7, 2019

G. O. Puglia et al.: NVM File Systems: A Survey

IEEE Access

Q. SCALABILITY

The impact of large amounts of PM on the memory bus and
overall architecture is very little addressed and understood.
When PM is attached to the memory bus, it will also use
memory management resources, such as the memory con-
troller, TLB, and other translation mechanisms. Additionally,
the VFS design can be inherently cache and TLB inefficient,
which makes in-memory file systems challenging to properly
scale [62]. Since PM availability is still limited and emulation
of PM-enabled environment is limited, it is unclear how these
mechanisms will perform with large pools (petabytes) of
memory.

Scalability is currently a very relevant topic and one of the
most lacking in terms of research. This is probably due the
fact that huge memory architectures are still not a concrete
possibility and simulated models are complex and not reliable
enough. Understanding the requirements for such architec-
tures is essential since higher density and larger memory
arrays are expected to be one of the biggest contributions
of PM technology for computing. Scalability will certainly
attract more attention in the future, even though robust scal-
able solutions might be more difficult to design and imple-
ment and might add significant complexity to the storage.

VIIl. RELATED WORK

A couple of related studies [94], [133] may further comple-
ment the results shown in this paper. We have identified that
these studies share some of our motivations and objectives,
although they present different approaches and obtain dif-
ferent results. Those results may also reinforce some of the
beliefs we present in this paper, including the relevance of
topics such as wear-leveling, consistency costs and energy
efficiency.

The survey presented in [94] provides an overview of
NVM technologies, highlighting their limitations, character-
istics and even presenting an extensive comparison between
the many available options for storage memory technology.
It also explores the implications and challenges of different
hybrid memory approaches such as combining Phase Change
Memory (PCM) with DRAM or NAND Flash. What is pos-
sibly the main contribution of the paper, however, is the
categorization of the reviewed studies according to their
objectives and/or used approaches, identifying challenges and
their proposed solutions, similar to the work presented in this
paper (see Section III-C) only with different parameters and
points of view.

Another study [133] explores the challenges of adopting
Phase-Change RAM (PCM) as storage, main memory and/or
processor cache, summarizing existing solutions and classi-
fying them. The survey first presents the main challenges of
adopting NVM in any level of memory hierarchy and pro-
ceeds to discuss the many approaches present in the literature
detailing the most relevant ones. The presentation of both
challenges and approaches are structured according to their
target level on the memory hierarchy (cache, main mem-
ory or long-term storage), similar to the summary depicted

VOLUME 7, 2019

in Figure 4 but in more details. It also provides a comparison
between the many techniques and models presented by the
surveyed studies according to their area of impact or topic.
Furthermore, although it presents relevant discussion on file
systems and storage in general, the study is not focused
on these particular approaches, choosing to contemplate a
broader area.

In summary, the work presented in this paper basically
differs from the previous papers by focusing on file system
level topics and design (although many studies that go beyond
file systems are also discussed) and by trying to give direc-
tions for researchers to identify topics that are currently hot
or lacking exploration. This paper also adopts a systematic
mapping structure, which may be useful for future research
and provides some degree of transparency on the survey
process.

IX. CONCLUSION

NVM technologies are a big promise in terms of high-
performance scalable storage: they not only close the gap
between block devices (HDDs and SSDs) and RAM but may
potentially replace both in favor of a single-level memory
hierarchy. They are also very flexible, as they can be used
as main memory, block-based I/O storage or even as an
in-memory storage. Thus, NVM is expected to be an effective
solution for many of today’s application challenges in data
handling by bringing data closer to the processing unit.

That being said, the understanding relative to the impacts
of a fast byte-addressable RAM storage on the overall archi-
tecture is still quite lacking. Operating system and hardware
support for such storage models are still in a very immature
state, even though many studies supporting NVM adoption
have been conducted in both academia and industry. This is
due to a number of factors: NVM availability is currently
limited both on the market and as prototypes; pressure of
large devices on memory bus is unprecedented; operating
systems are optimized for slow block-oriented storage; and
eliminating storage layers (such as block drivers and I/O
schedulers) as well as persistence in RAM level present a
series of security and reliability risks.

Furthermore, due to NVM’s byte-addressability and low
latency, the line between file systems and memory manage-
ment gets blurred. Thus, as persistent data (in whatever form,
e.g., files, objects, address ranges etc.) is integrated into the
OS, the concepts of structures that are traditionally volatile
and structures that are traditionally persistent usually get
confused. In addition, there seems to be a conflict between
the ideas of modeling data in NVM as memory structures
versus modeling it as traditional files. Using a memory-driven
approach avoids serialization of data from a programming
and memory-friendly model to a more traditional file or
database format. However, in some cases it may mean sa-
crificing things like portability, shareability and hierarchical
structures, which are natural characteristics of file systems.

On the other hand, byte-addressable NVM enables a
number of innovations such as persistent heaps, direct file

25867

IEEE Access

G. O. Puglia et al.: NVM File Systems: A Survey

mappings and smart metadata indexation. Despite these solu-
tions being in their early phase, it is possible to identify a
few interesting trends, such as mapping NVM regions directly
(XIP or DAX concept) or using user-level file systems to
reduce the overhead of entering the kernel.

As we mentioned previously in this work (Section I),
migrating current concepts and mechanics to an NVM-
enabled architecture is going to be an iterative three-step
process. While the NVM chips themselves are still not widely
available in the market and are mostly accessed through
adapted legacy interfaces (first step), there is already plenty of
research and development projects in industry and academia
that would fit the second and even the third steps described
in Section 1. As we have demonstrated in our results, much
effort has been dedicated to the design of NVM-improved
storage systems such as file system and object-based store
libraries, and there is much interest on mechanisms such as
mapping persistent memory in process space and orthogonal
persistence.

Although it may seem that NVM storage is a distant reality,
existing projects are already available and aim to transpa-
rently provide current systems access to persistent memories.
These are the first steps towards a more efficient and reliable
memory architecture that will explore interfaces beyond the
file system abstraction unleashing the full disruptive potential
of NVM systems.

REFERENCES

[11 R. Achermann et al., “Separating translation from protection in address
spaces with dynamic remapping,” in Proc. ACM Workshop Hot Topics
Oper. Syst., 2017, pp. 118-124.

[2] (2015). Advanced Configuration and Power Interface Specification.
[Online]. Available: http://uefi.org/specifications

[3]1 A.Ames et al., “Richer file system metadata using links and attributes,”
in Proc. 22nd IEEE/13th NASA Goddard Conf. Mass Storage Syst. Tech-
nol., Apr. 2005, pp. 49-60.

[4] S.Baek, D. Son, D. Kang, J. Choi, and S. Cho, “Design space exploration

of an NVM-based memory hierarchy,” in Proc. IEEE 32nd Int. Conf.

Comput. Design, Oct. 2014, pp. 224-229.

K. Bailey, L. Ceze, S. D. Gribble, and H. M. Levy, “Operating system

implications of fast, cheap, non-volatile memory,” in Proc. 13th USENIX

Conf. Hot Topics Oper. Syst., 2011, p. 2.

[6] O. Barbosa and C. Alves, “A systematic mapping study on software
ecosystems,” in Proc. Workshop Softw. Ecosyst., 2011, pp. 15-26.

[7]1 K. Bhandari, D. R. Chakrabarti, and H.-J. Boehm, ‘“Implications of
CPU caching on byte-addressable non—Volatile memory programming,”
HP Lab., Palo Alto, CA, USA, Tech. Rep. HPL-2012-236, 2012.

[8] K. Bhandari, D. R. Chakrabarti, and H.-J. Boehm, “Makalu: Fast recov-
erable allocation of non-volatile memory,” in Proc. ACM SIGPLAN Int.
Conf. Object-Oriented Program., Syst., Lang., Appl., 2016, pp. 677-694.

[9] P. Biswas and D. Towsley, ‘“Performance analysis of distributed file
systems with non-volatile caches,” in Proc. 2nd Int. Symp. High Perform.
Distrib. Comput., 1993, pp. 252-262.

[10] G. W. Burr, B. N. Kurdi, J. C. Scott, C. H. Lam, K. Gopalakrishnan, and
R. S. Shenoy, “Overview of candidate device technologies for storage-
class memory,” IBM J. Res. Develop., vol. 52, nos. 4-5, pp. 449-464,
2008.

[11] A.M. Caulfield and S. Swanson, “QuickSAN: A storage area network for
fast, distributed, solid state disks,”” in Proc. 40th Annu. Int. Symp. Comput.
Archit., 2013, pp. 464-474.

[12] A. M. Caulfield, A. De, J. Coburn, T. I. Mollow, R. K. Gupta, and
S. Swanson, “Moneta: A high-performance storage array architecture for
next-generation, non-volatile memories,” in Proc. 43rd Annu. IEEE/ACM
Int. Symp. Microarchitecture, Dec. 2010, pp. 385-395.

[5

25868

[13] A. M. Caulfield, T. I. Mollov, L. A. Eisner, A. De, J. Coburn, and
S. Swanson, “Providing safe, user space access to fast, solid state disks,”
ACM SIGARCH Comput. Archit. News, vol. 40, no. 1, pp. 387400,
Mar. 2012.

[14] A. M. Caulfield et al., “Understanding the impact of emerging non-
volatile memories on high-performance, 10-intensive computing,” in
Proc. ACM/IEEE Int. Conf. High Perform. Comput., Netw., Storage Anal.,
Nov. 2010, pp. 1-11.

[15] D. R. Chakrabarti, H.-J. Boehm, and K. Bhandari, “Atlas: Leveraging
locks for non-volatile memory consistency,” in Proc. ACM SIGPLAN Int.
Conf. Object-Oriented Program., Syst., Lang., Appl., 2014, pp. 433-452.

[16] D. R. Chakrabarti, H.-J. Boehm, and K. Bhandari, “Atlas: Leveraging
locks for non-volatile memory consistency,” ACM SIGPLAN Notices,
vol. 49, no. 10, pp. 433-452, 2014.

[17] H.-S. Chang, Y.-H. Chang, P-C. Hsiu, T.-W. Kuo, and H.-P. Li,
“Marching-based wear-leveling for PCM-based storage systems,” ACM
Trans. Design Autom. Electron. Syst., vol. 20, no. 2, p. 25, 2015.

[18] F. Chen, D. A. Koufaty, and X. Zhang, “Understanding intrinsic
characteristics and system implications of flash memory based solid
state drives,” ACM SIGMETRICS Perform. Eval. Rev., vol. 37, no. 1,
pp. 181-192, 2009.

[19] F. Chen, M. P. Mesnier, and S. Hahn, “A protected block device for
persistent memory,” in Proc. 30th Symp. Mass Storage Syst. Technol.,
2014, pp. 1-12.

[20] J. Chen, Q. Wei, C. Chen, and L. Wu, “FSMAC: A file system meta-
data accelerator with non-volatile memory,” in Proc. IEEE Symp. Mass
Storage Syst. Technol., May 2013, pp. 1-11.

[21] K. Chen, R. Bunt, and D. Eager, “Write caching in distributed
file systems,” in Proc. 15th Int. Conf. Distrib. Comput. Syst., 1995,
pp. 457-466.

[22] R.Chen, Y. Wang, J. Hu, D. Liu, Z. Shao, and Y. Guan, “Virtual-machine
metadata optimization for I/O traffic reduction in mobile virtualization,”
in Proc. Non-Volatile Memory Syst. Appl. Symp., 2014, pp. 1-2.

[23] Z. Chen, Y. Lu, N. Xiao, and F. Liu, “A hybrid memory built by SSD
and DRAM to support in-memory big data analytics,” Knowl. Inf. Syst.,
vol. 41, no. 2, pp. 335-354, 2014.

[24] J. Coburn et al., “Nv-heaps: Making persistent objects fast and safe with
next-generation, non-volatile memories,” SIGARCH Comput. Archit.
News, vol. 39, no. 1, pp. 105-118, 2011.

[25] J. Condit et al., “Better 1/O through byte-addressable, persistent mem-
ory,” in Proc. 22nd ACM Symp. Oper. Syst. Princ., 2009, pp. 133-146.

[26] J. Corbet. (2014). LFCS: Preparing Linux for Nonvolatile Memory
Devices. [Online]. Available: http://lwn.net/Articles/547903/

[27] J. Corbet. (2015). Memory Protection Keys. [Online]. Available:
http://lwn.net/Articles/643797/

[28] J. Corbet. (2014). Supporting Filesystems in Persistent Memory. [Online].
Available: http://lwn.net/Articles/610174/

[29] H. Dai, M. Neufeld, and R. Han, “ELF: An efficient log-structured flash
file system for micro sensor nodes,” in Proc. 2nd Int. Conf. Embedded
Netw. Sensor Syst., 2004, pp. 176-187.

[30] P. Dai, Q. Zhuge, X. Chen, W. Jiang, and E. H.-M. Sha, “Effective file
data-block placement for different types of page cache on hybrid main
memory architectures,” Des. Autom. Embedded Syst., vol. 17, nos. 3-4,
pp. 485-506, 2014.

[31] D.Das, D. Arteaga, N. Talagala, T. Mathiasen, and J. Lindstrom, “NVM
compression—Hybrid flash-aware application level compression,” in
Proc. 2nd Workshop Interact. NVM/Flash Oper. Syst. Workloads, 2014,
pp. 1-10.

[32] 1. H. Doh, J. Choi, D. Lee, and S. H. Noh, “An empirical study of
deploying storage class memory into the I/O path of portable systems,”
Comput. J., vol. 54, no. 8, pp. 1267-1281, Aug. 2011.

[33] 1. H. Doh, J. Choi, D. Lee, and S. H. Noh, “Exploiting non-volatile RAM
to enhance flash file system performance,” in Proc. 7th ACM/IEEE Int.
Conf. Embedded Softw., Sep. 2007, pp. 164—173.

[34] I.H.Doh et al., “Impact of NVRAM write cache for file system metadata
on I/O performance in embedded systems,” in Proc. ACM Symp. Appl.
Comput., 2009, pp. 1658-1663.

[35] M. Dong, Q. Yu, X. Zhou, Y. Hong, H. Chen, and B. Zang, “‘Rethinking
benchmarking for NVM-based file systems,” in Proc. 7th ACM SIGOPS
Asia—Pacific Workshop Syst., 2016, pp. 20:1-20:7.

[36] S.R. Dulloor et al., “Data tiering in heterogeneous memory systems,” in
Proc. 11th Eur. Conf. Comput. Syst., 2016, pp. 15:1-15:16.

[37] S. R. Dulloor et al., “System software for persistent memory,” in Proc.
9th Eur. Conf. Comput. Syst., 2014, pp. 1-15.

VOLUME 7, 2019

G. O. Puglia et al.: NVM File Systems: A Survey

IEEE Access

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

P. Faraboschi, K. Keeton, T. Marsland, and D. Milojicic, “Beyond
processor-centric operating systems,” in Proc. 15th Workshop Hot Topics
Oper. Syst., 2015, pp. 1-7.

R. F. Freitas and W. W. Wilcke, “Storage-class memory: The next
storage system technology,” IBM J. Res. Develop., vol. 52, nos. 4-5,
pp. 439-447, 2008.

M. M. Fu and P. Dasgupta, “A concurrent programming environment for
memory-mapped persistent object systems,” in Proc. 17th Int. Comput.
Softw. Appl. Conf., 1993, pp. 291-298.

E. Giles, K. Doshi, and P. Varman, “Bridging the programming gap
between persistent and volatile memory using WrAP,” in Proc. ACM Int.
Conf. Comput. Frontiers, 2013, pp. 1-10.

E. R. Giles, K. Doshi, and P. Varman, “SoftWrAP: A lightweight frame-
work for transactional support of storage class memory,” in Proc. 31st
Symp. Mass Storage Syst. Technol., May/Jun. 2015, pp. 1-14.

K. M. Greenan and E. L. Miller, “‘Reliability mechanisms for file systems
using non-volatile memory as a metadata store,” in Proc. 6th ACM/IEEE
Int. Conf. Embedded Softw., Oct. 2006, pp. 178-187.

J. Guerra, L. Marmol, D. Campello, C. Crespo, R. Rangaswami, and
J. Wei, “Software persistent memory,” in Proc. USENIX Conf. Annu.
Tech. Conf., 2012, p. 29.

J.-I. Han, Y.-M. Kim, and J. Lee, “Achieving energy-efficiency with a
next generation NVRAM-based SSD,” in Proc. Int. Conf. Inf. Commun.
Technol. Converg. (ICTC), 2014, pp. 563-568.

Y. Hu, T. Nightingale, and Q. Yang, “RAPID-cache reliable and inex-
pensive write cache for high performance storage systems,” IEEE Trans.
Parallel Distrib. Syst., vol. 13, no. 3, pp. 290-307, Mar. 2002.

J. Huang, K. Schwan, and M. Qureshi, “NVRAM-aware logging
in transaction systems,” Proc. VLDB Endowment, vol. 8, no. 4,
pp. 389-400, 2014.

T. Hwang, J. Jung, and Y. Won, “HEAPO: Heap-based persistent object
store,” ACM Trans. Storage, vol. 11, no. 1, pp. 3:1-3:21, 2015.

Y. Hwang, H. Gwak, and D. Shin, “Two-level logging with non-volatile
byte-addressable memory in log-structured file systems,” in Proc. 12th
ACM Int. Conf. Comput. Frontiers, 2015, p. 38.

S. Im and D. Shin, “Differentiated space allocation for wear leveling
on phase-change memory-based storage device,” IEEE Trans. Consum.
Electron., vol. 60, no. 1, pp. 45-51, Feb. 2014.

N. S. Islam, M. Wasi-Ur Rahman, X. Lu, and D. K. Panda, “High perfor-
mance design for HDFs with byte-addressability of NVM and RDMA,”
in Proc. Int. Conf. Supercomput., 2016, pp. 8:1-8:14.

(2015). JEDEC Byte-Addressable Energy Backed Interface. [Online].
Available: http://www.jedec.org/standards-documents/docs/jesd245

N. Jeremic, G. Miihl, A. Busse, and J. Richling, “Operating system
support for dynamic over-provisioning of solid state drives,” in Proc.
ACM Symp. Appl. Comput., 2012, pp. 1753-1758.

R. Jin, H.-J. Cho, S.-W. Lee, and T.-S. Chung, ‘Lazy-split B -tree:
A novel B -tree index scheme for flash-based database systems,” Design
Autom. Embedded Syst., vol. 17, no. 1, pp. 167-191, 2013.

T. Johnson and T. A. Davis, “Parallel buddy memory management,”
Parallel Process. Lett., vol. 2, no. 4, pp. 391-398, 1992.

A. Joshi, V. Nagarajan, M. Cintra, and S. Viglas, “Efficient persist
barriers for multicores,” in Proc. 48th Int. Symp. Microarchitecture, 2015,
pp. 660-671.

J. Jung, Y. Won, E. Kim, H. Shin, and B. Jeon, “FRASH: Exploiting
storage class memory in hybrid file system for hierarchical storage,” ACM
Trans. Storage, vol. 6, no. 1, pp. 3:1-3:25, 2010.

M. Jung et al., “Exploring the future of out-of-core computing with
compute-local non-volatile memory,” in Proc. 12th ACM Int. Conf. Com-
put. Frontiers, 2014, pp. 125-139.

D. Kang, S. Baek, J. Choi, D. Lee, S. H. Noh, and O. Mutlu, “Amnesic
cache management for non-volatile memory,” in Proc. 31st Symp. Mass
Storage Syst. Technol., 2015, pp. 1-13.

S. Kang, S. Park, H. Jung, H. Shim, and J. Cha, ‘‘Performance trade-offs
in using NVRAM write buffer for flash memory-based storage devices,”
IEEE Trans. Comput., vol. 58, no. 6, pp. 744-758, Jun. 2009.

Y. Kang, R. Pitchumani, T. Marlette, and E. L. Miller, “Muninn: A ver-
sioning flash key-value store using an object-based storage model,” in
Proc. Int. Conf. Syst. Storage, 2014, pp. 1-11.

S. Kannan, A. Gavrilovska, and K. Schwan, “pVM: persistent virtual
memory for efficient capacity scaling and object storage,” in Proc. 11th
Eur. Conf. Comput. Syst., 2016, p. 13.

VOLUME 7, 2019

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

[76]

[77]

[78]

[79]

[80]

[81]

[82]

[83]

[84]

[85]

[86]

[87]

S. Kannan, A. Gavrilovska, K. Schwan, D. Milojicic, and V. Talwar,
“Using active NVRAM for I/O staging,” in Proc. 2nd Int. Workshop
Petascal Data Anal., Challenges Opportunities, 2011, pp. 15-22.

S. Keele, “Guidelines for performing systematic literature reviews in
software engineering,” Ver. 2.3, EBSE Tech. Rep., 2007.

M. G. Khatib, P. H. Hartel, and H. W. Van Dijk, “Energy-efficient
streaming using non-volatile memory,” J. Signal Process. Syst., vol. 60,
no. 2, pp. 149-168, 2010.

D. Kim and S. Kang, “Dual region write buffering: Making large-scale
nonvolatile buffer using small capacitor in SSD,” in Proc. ACM Symp.
Appl. Comput., 2015, pp. 2039-2046.

H. Kim, “In-memory file system for non-volatile memory,” in Proc. Res.
Adapt. Convergent Syst. Conf., 2013, pp. 479-484.

J. Kim, C. Min, and Y. I. Eom, “‘Reducing excessive journaling overhead
with small-sized NVRAM for mobile devices,” IEEE Trans. Consum.
Electron., vol. 60, no. 2, pp. 217-224, May 2014.

Y. Kim, A. Gupta, and B. Urgaonkar, “A temporal locality-aware page-
mapped flash translation layer,” J. Comput. Sci. Technol., vol. 28, no. 6,
pp. 1025-1044, 2013.

A. Kolli et al,, “Delegated persist ordering,” in Proc. 49th Annu.
IEEE/ACM Int. Symp. Microarchitecture, Oct. 2016, pp. 1-13.

M. P. Komalan et al., “Design exploration of a NVM based hybrid instruc-
tion memory organization for embedded platforms,” Design Autom.
Embedded Syst., vol. 17, nos. 3—4, pp. 459-483, 2014.

M. H. Kryder and C. S. Kim, “After hard drives—What comes next?”
IEEE Trans. Magn., vol. 45, no. 10, pp. 3406-3413, 2009.

E. Lee, H. Bahn, and S. H. Noh, ““A unified buffer cache architecture that
subsumes journaling functionality via nonvolatile memory,” ACM Trans.
Storage, vol. 10, no. 1, pp. 1-17, 2014.

E. Lee, H. Kang, H. Bahn, and K. G. Shin, “Eliminating periodic flush
overhead of file I/O with non-volatile buffer cache,” IEEE Trans. Com-
put., vol. 65, no. 4, pp. 11451157, Apr. 2016.

E. Lee, S. Yoo, J. Jang, and H. Bahn, “WIPS: A write-in-place snapshot
file system for storage-class memory,” Electron. Lett., vol. 48, no. 17,
pp. 16-17, Aug. 2012.

H. G. Lee, “High-performance NAND and PRAM hybrid storage design
for consumer electronics,” IEEE Trans. Consum. Electron., vol. 56, no. 1,
pp. 112-118, Feb. 2010.

K. Lee, S. Ryu, and H. Han, “Performance implications of cache flushes
for non-volatile memory file systems,” in Proc. ACM Symp. Appl. Com-
put., 2015, pp. 2069-2071.

M. Lee, D. H. Kang, J. Kim, and Y. I. Eom, “M-clock: Migration-
optimized page replacement algorithm for hybrid dram and pcm memory
architecture,” in Proc. ACM Symp. Appl. Comput., 2015, pp. 2001-2006.
S. Lee, J. Kim, M. Lee, H. Lee, and Y. I. Eom, “Last block logging
mechanism for improving performance and lifetime on SCM-based file
system,” in Proc. 8th Int. Conf. Ubiquitous Inf. Manage. Commun., 2014,
pp. 38:1-38:4.

S. Lee, H. Bahn, and S. H. Noh, “CLOCK-DWF: A write-history-aware
page replacement algorithm for hybrid PCM and DRAM memory archi-
tectures,” IEEE Trans. Comput., vol. 63,no. 9, pp. 2187-2200, Sep. 2014.
Y. Lee, S. Jung, M. Choi, and Y. H. Song, “An efficient management
scheme for updating redundant information in flash-based storage sys-
tem,” Design Autom. Embedded Syst., vol. 14, no. 4, pp. 389-413, 2010.
D. Li, X. Liao, H. Jin, Y. Tang, and G. Zhao, “Writeback throttling in
a virtualized system with SCM,” Frontiers Comput. Sci., vol. 10, no. 1,
pp. 82-95, 2016.

G. Li, P. Zhao, L. Yuan, and S. Gao, “Efficient implementation of a
multi-dimensional index structure over flash memory storage systems,”
J. Supercomput., vol. 64, no. 3, pp. 1055-1074, 2011.

H. Liand Y. Chen, “An overview of non-volatile memory technology and
the implication for tools and architectures,” in Proc. Design, Autom. Test
Eur. Conf. Exhib., 2009, pp. 731-736.

H.-Y. Li, N.-X. Xiong, P. Huang, and C. Gui, “PASS: A simple, efficient
parallelism-aware solid state drive I/O scheduler,” J. Zhejiang Univ. Sci.
C, vol. 15, no. 5, pp. 321-336, 2014.

J. Li, Q. Zhuge, D. Liu, H. Luo, and E. H.-M. Sha, “A content-aware
writing mechanism for reducing energy on non-volatile memory based
embedded storage systems,” Design Autom. Embedded Syst., vol. 17,
nos. 3—4, pp. 711-737, 2014.

X. Li and K. Lu, “FCKPT:A fine-grained incremental checkpoint
for PCM,” in Proc. Int. Conf. Comput. Sci. Netw. Technol., 2011,
pp. 2019-2023.

25869

IEEE Access

G. O. Puglia et al.: NVM File Systems: A Survey

[88]

[89]

[90]

[91]

[92]

[93]

[94]

[95]

[96]

[97]

[98]

[99]

[100]

[101]

[102]

[103]

[104]

[105]

[106]

[107]

[108]

[109]

[110]

[111]

25870

Y. Li, Y. Wang, A. Jiang, and J. Bruck, “Content-assisted file decoding
for nonvolatile memories,” in Proc. Conf. Rec. Asilomar Conf. Signals,
Syst. Comput., 2012, pp. 937-941.

S.-H. Lim and M.-K. Seo, “Efficient non-linear multimedia editing for
non-volatile mobile storage,” in Proc. ACM Workshop Mobile Cloud
Media Comput., 2010, pp. 59-64.

R.-S. Liu, D.-Y. Shen, C.-L. Yang, S.-C. Yu, and C.-Y. M. Wang, “NVM
duet: Unified working memory and persistent store architecture,” ACM
SIGARCH Comput. Archit. News, vol. 42, no. 1, pp. 455-470, 2014.

Y. Lu, J. Shu, and P. Zhu, “TxCache: Transactional cache using byte-
addressable non-volatile memories in SSDs,” in Proc. Non-Volatile Mem-
ory Syst. Appl. Symp., 2014, pp. 1-6.

Y. Lu, E. Eleftheriou, R. Haas, I. Iliadis, and R. Pletka, “Extending the
lifetime of flash-based storage through reducing write amplification from
file systems,” in Proc. 11th USENIX Conf. File Storage Technol., 2009,
pp. 257-270.

J. S. Meena, S. M. Sze, U. Chand, and T.-Y. Tseng, “Overview of
emerging nonvolatile memory technologies,” Nanosc. Res. Lett., vol. 9,
no. 1, p. 526, 2014.

S. Mittal and J. S. Vetter, “A survey of software techniques for using non-
volatile memories for storage and main memory systems,” IEEE Trans.
Parallel Distrib. Syst., vol. 27, no. 5, pp. 1537-1550, May 2016.

S. Mittal and J. S. Vetter, “EqualChance: Addressing intra-set write vari-
ation to increase lifetime of non-volatile caches,” in Proc. 2nd Workshop
Interact. NVM/Flash Oper. Syst. Workloads, 2014, pp. 1-10.

(2016). NVM Library. [Online]. Available: http://github.com/
pmem/nvml/
S. Oikawa, “Independent kernel/process checkpointing on non-

volatile main memory for quick kernel rejuvenation,” in Proc. Archit.
Comput. Syst. (ARCS), vol. 8350. Cham, Switzerland: Springer, 2014,
pp. 233-244. [Online]. Available: https:/link.springer.com/
chapter/10.1007/978-3-319-04891-8_20

S. Oikawa, “Integration methods of main memory and file system man-
agement for non-volatile main memory and implications of file system
structures,” in Proc. IEEE 16th Int. Symp. Object/Component/Service-
Oriented Real-Time Distrib. Comput., Jun. 2013, pp. 1-8.

S. Oikawa, “Non-volatile main memory management methods based on
a file system,” SpringerPlus, vol. 2014, p. 494, Sep. 2014.

S. Oikawa and S. Miki, “File-based memory management for non-
volatile main memory,” in Proc. 37th IEEE Annu. Comput. Softw. Appl.
Conf., Jul. 2013, pp. 559-568.

P. Olivier, J. Boukhobza, and E. Senn, “Micro-benchmarking flash mem-
ory file-system wear leveling and garbage collection: A focus on initial
state impact,” in Proc. 15th IEEE Int. Conf. Comput. Sci. Eng., Dec. 2012,
pp. 437-444.

P. Olivier, J. Boukhobza, and E. Senn, “On benchmarking embedded
Linux flash file systems,” ACM SIGBED Rev., vol. 9, no. 2, pp. 43-47,
2012.

S. Park, T. Kelly, and K. Shen, “Failure-atomic msync(): A simple and
efficient mechanism for preserving the integrity of durable data,” in Proc.
8th ACM Eur. Conf. Comput. Syst., 2013, pp. 225-238.

Y. Park and K. H. Park, “High-performance scalable flash file system
using virtual metadata storage with phase-change RAM,” IEEE Trans.
Comput., vol. 60, no. 3, pp. 321-334, Mar. 2011.

Y. Park, S.-H. Lim, C. Lee, and K. H. Park, “PFFS: A scalable flash
memory file system for the hybrid architecture of phase-change RAM and
NAND flash,” in Proc. ACM Symp. Appl. Comput., 2008, pp. 1498-1503.
T. Perez, N. L. V. Calazans, and C. A. F. De Rose, “System-level impacts
of persistent main memory using a search engine,” Microelectron. J.,
vol. 45, no. 2, pp. 211-216, 2014.

K. Petersen, R. Feldt, S. Mujtaba, and M. Mattsson, ““Systematic mapping
studies in software engineering,” in Proc. 2th Int. Conf. Eval. Assessment
Softw. Eng., 2007, pp. 68-77.

Adrian Proctor. (2014). Storage in the DIMM Socket. [Online]. Available:
http://www.snia.org/forums/sssi/NVDIMM

S. Qiu and A. L. N. Reddy, “Exploiting superpages in a nonvolatile
memory file system,” in Proc. IEEE Symp. Mass Storage Syst. Technol.,
Apr. 2012, pp. 1-5.

M. K. Qureshi, V. Srinivasan, and J. A. Rivers, “Scalable high perfor-
mance main memory system using phase-change memory technology,”
ACM SIGARCH Comput. Archit. News, vol. 37, no. 3, pp. 24-33, 2009.
A. S. Ramasamy and P. Karantharaj, “File system and storage array
design challenges for flash memory,” in Proc. Int. Conf. Green Comput.
Commun. Elect. Eng., 2014, pp. 1-5.

[112]

[113]

[114]

[115]

[116]

[117]

[118]

[119]

[120]

[121]

[122]

[123]

[124]

[125]

[126]

[127]

[128]
[129]

[130]

[131]

[132]

[133]

[134]

[135]

[136]

L. Ramos and R. Bianchini, ‘“Exploiting phase-change memory in coop-
erative caches,” in Proc. Symp. Comput. Archit. High Perform. Comput.,
2012, pp. 227-234.

S. Raoux et al.,, “Phase-change random access memory: A scalable
technology,” IBM J. Res. Develop., vol. 52, nos. 4-5, pp. 465-479, 2008.
J. Ren, J. Zhao, S. Khan, J. Choi, Y. Wu, and O. Mutlu, “ThyNVM:
Enabling software-transparent crash consistency in persistent memory
systems,” in Proc. 48th Int. Symp. Microarchitecture, 2015, pp. 672-685.
S.Ryu, K. Lee, and H. Han, “In-memory write-ahead logging for mobile
smart devices with NVRAM,” IEEE Trans. Consum. Electron., vol. 61,
no. 1, pp. 39-46, Feb. 2015.

R. Salkhordeh and H. Asadi, “An operating system level data migration
scheme in hybrid dram-NVM memory architecture,” in Proc. Conf.
Design, Autom., Test Eur., 2016, pp. 936-941.

P. Sehgal, S. Basu, K. Srinivasan, and K. Voruganti, “An empirical
study of file systems on NVM,” in Proc. 31st Symp. Mass Storage Syst.
Technol., 2015, pp. 1-14.

D. Seo and D. Shin, “WAM: Wear wear-out-aware memory management
for SCRAM-based low power mobile systems,” IEEE Trans. Consum.
Electron., vol. 59, no. 4, pp. 803-810, Nov. 2013.

E. Sha, X. Chen, Q. Zhuge, L. Shi, and W. Jiang, “A new design of
in-memory file system based on file virtual address framework,” IEEE
Trans. Comput., vol. 65, no. 10, pp. 2959-2972, Oct. 2016.

E.H.-M. Sha, Y. Jia, X. Chen, Q. Zhuge, W. Jiang, and J. Qin, ““The design
and implementation of an efficient user-space in-memory file system,” in
Proc. 5th Non-Volatile Memory Syst. Appl. Symp., 2016, pp. 1-6.

P. Snyder, “tmpfs: A virtual memory file system,” in Proc. Autumn
EUUG Conf., 1990, pp. 241-248.

Y. Son, H. Kang, H. Han, and H. Y. Yeom, “An empirical evaluation and
analysis of the performance of NVM express solid state drive,” Cluster
Comput., vol. 19, no. 3, pp. 1541-1553, 2016.

Y. Son, N. Y. Song, H. Han, H. Eom, and H. Y. Yeom, “Design and
evaluation of a user-level file system for fast storage devices,” Cluster
Comput., vol. 18, no. 3, pp. 1075-1086, 2015.

G. Sun et al., “A Hybrid solid-state storage architecture for the perfor-
mance, energy consumption, and lifetime improvement,” in Proc. 16th
Int. Symp. High Perform. Comput. Archit. (HPCA), Jan. 2010, pp. 1-12.
J. Sun, X. Long, H. Wan, and J. Yang, “A checkpointing and instant-on
mechanism for a embedded system based on non-volatile memories,” in
Proc. IT Appl. Conf. Comput., Commun., 2014, pp. 173-178.

D. Tuteja, E. L. Miller, S. A. Brandt, and N. K. Edel, “MRAMFS:
A compressing file system for non-volatile RAM,” in Proc. 12th IEEE
Annu. Int. Symp. Modeling Anal., Simulation Comput. Telecommun. Syst.
(MASCOTS), Oct. 2011, pp. 596-603.

R. Verma et al., “Failure-atomic updates of application data in a Linux
file system,” in Proc. 13th USENIX Conf. File Storage Technol., 2015,
pp. 203-211.

D. Verneer, “Execute-in-place,” Memory Card Mag., Apr. 1991.

H. Volos, A. J. Tack, and M. M. Swift, “Mnemosyne: Lightweight
persistent memory,” Archit. Support Program. Lang. Oper. Syst., vol. 47,
no. 4, pp. 91-104, 2011.

H. Volos, S. Nalli, S. Panneerselvam, V. Varadarajan, P. Saxena, and
M. M. Swift, “Aerie: Flexible file-system interfaces to storage-class
memory,” in Proc. 9th Eur. Conf. Comput. Syst., 2014, pp. 14:1-14:14.
A.-I. Wang, P. L. Reiher, G. J. Popek, and G. H. Kuenning, “Conquest:
Better performance through a disk/persistent-RAM hybrid file system,”
in Proc. USENIX Annu. Tech. Conf., Gen. Track, 2002, pp. 15-28.

C. Wang and S. Baskiyar, “Extending flash lifetime in secondary stor-
age,” Microprocess. Microsyst., vol. 39, no. 3, pp. 167-180, 2015.

C. Wu, G. Zhang, and K. Li, “Rethinking computer architectures and
software systems for phase-change memory,” ACM J. Emerg. Technol.
Comput. Syst., vol. 12, no. 4, p. 33, 2016.

C. H. Wu, W. Y. Chang, and Z. W. Hong, “A reliable non-volatile
memory system: Exploiting file-system characteristics,” in Proc. 15th
IEEFE Pacific Rim Int. Symp. Dependable Comput. (PRDC), Nov. 2009,
pp. 202-207.

C. H. Wu, P. H. Wu, K. L. Chen, W. Y. Chang, and K. C. Lai, “A hotness
filter of files for reliable non-volatile memory systems,” IEEE Trans.
Dependable Secure Comput., vol. 12, no. 4, pp. 375-386, Jul. 2015.

X. Wu and A. L. N. Reddy, “SCMFS: A file system for storage class
memory,” in Proc. Int. Conf. High Perform. Comput., Netw., Storage
Anal., 2011, pp. 1-11.

VOLUME 7, 2019

G. O. Puglia et al.: NVM File Systems: A Survey

IEEE Access

[137] F. Xia, D.-J. Jiang, J. Xiong, and N.-H. Sun, “A survey of phase change
memory systems,” J. Comput. Sci. Technol., vol. 30, no. 1, pp. 121-144,
2015.

[138] J. Xu and S. Swanson, “NOVA: A log-structured file system for hybrid
volatile/non-volatile main memories,” in Proc. 14th USENIX Conf. File
Storage Technol., 2016, pp. 323-338.

[139] J.J. Yang, M. D. Pickett, X. Li, D. A. A. Ohlberg, D. R. Stewart, and
R. S. Williams, “Memristive switching mechanism for metal/oxide/metal
nanodevices,” Nature Nanotechnol., vol. 3, no. 7, pp. 429-433, 2008.

[140] J. Yang, D. B. Minturn, and F. Hady, ‘““When poll is better than interrupt,”
in Proc. 10th USENIX Conf. File Storage Technol., 2012, pp. 1-7.

[141] S.-K. Yoon, M.-Y. Bian, and S.-D. Kim, “An integrated memory-disk
system with buffering adapter and non-volatile memory,” Des. Autom.
Embedded Syst., vol. 17, nos. 3—4, pp. 609-626, 2013.

[142] Y. Zhang, J. Yang, A. Memaripour, and S. Swanson, ‘““Mojim: A reliable
and highly-available non-volatile memory system,” SIGARCH Comput.
Archit. News, vol. 43, no. 1, pp. 3-18, 2015.

[143] Z.Zhang, L. Ju, and Z. Jia, “Unified dram and NVM hybrid buffer cache
architecture for reducing journaling overhead,” in Proc. Conf. Design,
Autom., Test Eur., 2016, pp. 942-947.

[144] J. Zhao, S. Li, D. Yoon, Y. Xie, and N. Jouppi, “Kiln: closing the
performance gap between systems with and without persistence support,”
in Proc. 46th Annu. IEEE/ACM Int. Symp. Microarchitecture, 2013,
pp. 421-432.

[145] R. Zwisler. (2014). Add Persistent Memory Driver. [Online]. Available:
http://lwn.net/Articles/609755/

GIANLUCCA 0. PUGLIA received the B.Sc.
degree in computer science and the M.Sc. degree
in operating systems and parallel processing from
the Pontifical University of Rio Grande do Sul
(PUCRS), in 2013 and 2017, respectively. His
M.Sc. dissertation was on file system design
for non-volatile memories. From 2015 to 2017,
he was a Researcher of Hewlett-Packard research
projects with focus on non-modern operating sys-
tem designs and volatile memory storage, as part
of his scholarship. His main areas of research interests include parallel and
distributed systems, non-volatile memory, operating systems, and storage.

AVELINO FRANCISCO ZORZO received the
Ph.D. degree in computer science from
Newcastle University, UK., in 1999. In 2012,
he joined the Cybercrime and Computer Security
Centre, Newcastle University, where he held a
Postdoctoral position. He was the Dean of the Fac-
ulty of Informatics, Pontifical Catholic University
of Rio Grande do Sul, Brazil, where he is currently
a full-time Professor. His main research topics
include security, fault tolerance, software testing,
and operating systems. He was the Education Director of the Brazilian
Computer Society. He is also a Coordinator of professional postgraduate
accreditation with the Ministry of Education, Brazil.

VOLUME 7, 2019

CESAR A. F. DE ROSE received the B.Sc. degree
in computer science from the Pontifical Catholic
University of Rio Grande do Sul (PUCRS), Porto
Alegre, Brazil, in 1990, the M.Sc. degree in com-
puter science from PGCC, Federal University of
Rio Grande do Sul, Porto Alegre, in 1993, and
the Doctoral degree from the Karlsruhe Institute of
technology, Karlsruhe, Germany, in 1998. In 1998,
he joined the Faculty of Informatics, PUCRS,
as an Associate Professor and a member of the
Resource Management and Virtualization Group. In 2009, he founded the
High Performance Computing Laboratory, PUCRS, where is currently a
Senior Researcher. Since 2012, he has been a Full Professor with PUCRS.
His research interests include resource management, dynamic provisioning
and allocation, monitoring techniques (resource and application), application
modeling, scheduling and optimization in parallel and distributed environ-
ments (cluster, grid, and cloud), and virtualization.

TACIANO D. PEREZ received the M.Sc. and
Ph.D. degrees in computer science from the Pon-
tifical Catholic University of Rio Grande do
Sul, Brazil, in 2017. He is currently a Research
and Development Software Engineer with ASML,
Eindhoven, The Netherlands. He is with HP Labs,
Porto Alegre, Brazil, leading research programs on
non-volatile memory systems. His areas of exper-
tise are non-volatile memory, persistence sup-
port for programming languages, and operating
systems.

DEJAN MILOJICIC (F’10) received the B.Sc. and
M.Sc. degrees from Belgrade University, Serbia,
and the Ph.D. degree from Kaiserslautern Univer-
sity, Germany. He was with the OSF Research
Institute, Cambridge, MA, and also with the
Mihajlo Pupin Institute, Belgrade, Serbia. He was
the Technical Director of Open Cirrus Cloud
Computing Testbed, with academic, industrial,
and government sites in USA, Europe, and Asia.
He taught cloud management course with SJISU.
Since 1998, he has been a Distinguished Technologist with Hewlett Packard
Labs, Palo Alto, CA, leading system software teams over four continents and
projects with budgets of millions of U.S. dollars. He has published two books
and 180 papers. He holds 31 granted patents. He was an ACM Distinguished
Engineer, in 2008. He was on eight Ph.D. dissertation committees. As the
President of the IEEE Computer Society, in 2014, he started Tech Trends,
the top viewed CS news. As the Industry Engagement Chair, he started the
IEEE Infrastructure’ 18 Conference.

25871

	INTRODUCTION
	BASIC CONCEPTS
	NON-VOLATILE MEMORY TECHNOLOGIES
	FILE SYSTEMS

	SYSTEMATIC MAPPING STUDY
	DEFINING SCOPE
	ESTABLISHING RESEARCH QUESTIONS
	INCLUSION AND EXCLUSION CRITERIA
	RESEARCH STRATEGY AND SEARCH STRING

	APPLYING THE SEARCH STRING
	COLLECTING AND CLASSIFYING THE RESULTS

	STORAGE AND FILE SYSTEMS
	FUNCTIONAL
	ACCESS INTERFACE
	ATOMICITY
	GARBAGE COLLECTION
	METADATA MANAGEMENT
	CROSS-CUTTING COMPLEMENTARY INSIGHTS

	NON-FUNCTIONAL - QUANTITATIVE
	MOUNTING TIME
	SPACE EFFICIENCY
	WRITE AMPLIFICATION
	CROSS-CUTTING COMPLEMENTARY INSIGHTS

	NON-FUNCTIONAL - QUALITATIVE
	FRAGMENTATION
	PARALLELISM
	TRANSPARENCY
	CROSS-CUTTING COMPLEMENTARY INSIGHTS

	MAIN MEMORY AND GENERAL NVM
	FUNCTIONAL
	BLOCK/PAGE ALLOCATION
	MEMORY PROTECTION
	PERSISTENT CACHE
	CROSS-CUTTING COMPLEMENTARY INSIGHTS

	NON-FUNCTIONAL - QUANTITATIVE
	ASYMMETRIC LATENCY
	CACHE OPTIMIZATION
	ENDURANCE
	ENERGY EFFICIENCY
	SOFTWARE OVERHEAD
	RELIABILITY
	SCALABILITY
	CROSS-CUTTING COMPLEMENTARY INSIGHTS

	NON-FUNCTIONAL - QUALITATIVE
	CACHE CONSISTENCY
	CONSISTENCY GUARANTEE
	DATA PLACEMENT
	DATA DUPLICATION
	CROSS-CUTTING COMPLEMENTARY INSIGHTS

	INDUSTRY TRENDS
	TOOLS AND STANDARDS
	ARCHITECTURE SUPPORT AND LIMITATIONS
	PROGRAMMING MODELS

	FUTURE DIRECTIONS
	CONSISTENCY GUARANTEE
	ATOMICITY
	ENDURANCE
	ACCESS INTERFACE
	ASYMMETRIC LATENCY
	METADATA MANAGEMENT
	SOFTWARE OVERHEAD
	BLOCK ALLOCATION
	MEMORY PROTECTION
	CACHE CONSISTENCY
	CACHE OPTIMIZATION
	RELIABILITY
	WRITE AMPLIFICATION
	DATA PLACEMENT
	ACCESS TRANSPARENCY
	DATA DUPLICATION
	SCALABILITY

	RELATED WORK
	CONCLUSION
	REFERENCES
	Biographies
	GIANLUCCA O. PUGLIA
	AVELINO FRANCISCO ZORZO
	CÉSAR A. F. DE ROSE
	TACIANO D. PEREZ
	DEJAN MILOJICIC

