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Abstract

Computer-based human activity recognition of daily living
has recently attracted much interest due to its applicability to
ambient assisted living. Such applications require the auto-
matic recognition of high-level activities composed of mul-
tiple actions performed by human beings in an environment.
In this work, we address the problem of activity recognition
in an indoor environment, focusing on a kitchen scenario.
Unlike existing approaches that identify single actions from
video sequences, we also identify the goal towards which the
subject of the video is pursuing. Our hybrid approach com-
bines a deep learning architecture to analyze raw video data
and identify individual actions which are then processed by a
goal recognition algorithm that uses a plan library describing
possible overarching activities to identify the ultimate goal of
the subject in the video. Experiments show that our approach
achieves the state-of-the-art for identifying cooking activities
in a kitchen scenario.

1 Introduction

Plan recognition can be understood as the task of recogniz-
ing agent goals and plans based on observed interactions in
an environment. These observed interactions can be either
events provided by sensors or actions/activities performed
by an agent. An activity can be understood as an indepen-
dent set of actions that generates an interpretation to the
movement that is being performed (Poppe 2010). Activity
and plan recognition algorithms capable of handling real-
world data are a fundamental component in many applica-
tions, such as public security (Popoola and Wang 2012), traf-
fic monitoring (Pynadath and Wellman 1995), etc.

Although much research effort focuses on activity and
plan recognition as separate challenges, comparatively less
effort focused on attempting to identify higher-level plans
from activities in video sequences (Sukthankar et al. 2014),
i.e., try to understand the overarching goal of subjects within
a video and make the correct inference from the observed
activities (Section 2). In order to address this challenge, in
Section 3 we develop a hybrid approach that comprises both
activity and plan recognition that identifies, from a set of
candidate plans, which plan a human subject is pursuing

Copyright c© 2017, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

based exclusively on still-camera video sequences. To recog-
nize such plan, we employ an activity recognition algorithm
based on convolutional neural networks (CNN), which gen-
erates a sequence of activities that are checked for tempo-
ral consistency against a plan library using a symbolic plan
recognition approach modified to work with a CNN.

We evaluate our approach empirically using an existing
kitchen-centered dataset in Section 4 showing that our ar-
chitecture achieves good results in activities that contain a
large number of frames. Finally, in Section 5 we compare
our activity recognition approach to related work and point
towards future work in Section 6. As supplemental material
we provide a video demonstration of our architecture1.

2 Background on Activity and Plan

Recognition

Activity recognition from video sequences has been the fo-
cus of much research in the last decades (Turaga et al. 2008;
Poppe 2010). Traditional approaches for activity recogni-
tion rely on hand-crafted features and domain-specific image
processing algorithms and often result in limited accuracy
(Bansal et al. 2013; Weinland, Ronfard, and Boyer 2006;
Gorelick et al. 2007). Deep convolutional neural networks
(CNNs) solve this problem by performing automatic repre-
sentation learning, i.e., they are capable of transforming the
raw data into a set of features that properly discriminate the
concepts needed for detection or classification. CNNs and
similar deep approaches represent the world as a nested hi-
erarchy of concepts, with each concept defined in relation
to simpler concepts, and more abstract representations com-
puted in terms of less abstract ones (LeCun et al. 1998).
Thus, given the input image, the first layer can easily iden-
tify oriented edges and similar simple concepts, whereas the
subsequent hidden layers can accurately search for corners,
extended contours, up to entire parts of specific objects. This
final description of the image in terms of the object parts
it contains can be used to a variety of tasks, such as rec-
ognizing the objects present in the image or the activities
that are happening in a sequence of frames (Bengio and
Courville 2016). CNNs attracted the attention of the com-
puter vision community due to their power to classify im-
ages (Krizhevsky, Sutskever, and Hinton 2012) and videos

1https://youtu.be/BoiLjU1vg3E
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(Karpathy et al. 2014), outperforming hand-crafted features
by a significant margin.

Plan recognition is the task of recognizing how agents
achieve their goals based on a set of observed interactions in
an environment. These interactions can be a number of pos-
sible observed events performed by an agent in an environ-
ment, as well as actions/activities (e.g., a simple movement,
cook, drive), and changing properties in an environment
(e.g., at home, at work, resting). Recognizing agent goals
and plans is important to monitor and anticipate the agent
behavior, such as in stories and life understanding (Charniak
and Goldman 2013), and educational environments (Uzan et
al. 2015). Most plan recognition approaches require knowl-
edge of the agent’s possible plans to represent its typical be-
havior. In other words, this knowledge represents a set of
recipes on how agents have to achieve their goals. These
recipes are often encoded in plan libraries, and are used
as input for most plan recognition approaches (Geib and
Goldman 2005; Avrahami-Zilberbrand and Kaminka 2005;
Mirsky et al. 2016). A plan library is single-root directed
acyclic connected graph in which the root-node represents
the top-level goal, nodes represent plan-steps, and edges that
can be represented by decomposition (e.g., disjunctive steps)
and sequential edges. Activity recognition differs from plan
recognition as the former aims to discover and extract in-
teresting patterns in sensory data that can be interpreted as
meaningful activities, while the latter concentrates on identi-
fying high-level complex goals and intents by exploiting re-
lationships between primitive action steps that are elements
of the plan. Thus, the distinction between them is the differ-
ence between recognizing a single activity and recognizing
the relationships between a set of such activities that result
in a complete plan (Sukthankar et al. 2014).

3 A Hybrid Architecture for Activity and

Plan Recognition

Our hybrid architecture is divided in two main parts: i)
CNN-based activity recognition, and ii) CNN-backed sym-
bolic plan recognition. Figure 1 illustrates the processing
pipeline of our architecture, where CNN is a Convolu-
tional Neural Network we use to recognize activities, and
SBR is a modification of the Symbolic Behavior Recogni-
tion (Avrahami-Zilberbrand and Kaminka 2005) to recog-
nize plans. As a machine learning technique, our approach
is divided into three phases: training, validation and test
phases. In training phase, the CNN receives video frames
as input and learns features that represent each activity. The
validation phase we use the validation data to identify the
best model to use in the test phase. In particular, we observe
the influence of several hyper-parameters in the network, se-
lecting the ones that improve the performance of the model.
We select and apply on test data the model that best per-
forms on the validation data. In test phase our architecture
receives video frames and a plan library containing the do-
main model. For each frame, the CNN identifies the activity
being performed in the image. Based on the identified ac-
tivity the plan recognizer returns a set of possible plans that
are temporally consistent with what is recognized from the

input frames. In what follows, we further detail each of the
components of our approach.

Figure 1: Pipeline of the hybrid architecture for activity and
plan recognition.

3.1 CNN-based Activity Recognition

In recent years, CNNs greatly improved performance for ac-
tivity recognition tasks, outperforming results achieved by
the use of hand-crafted features (Karpathy et al. 2014). Re-
searchers have developed a number of CNN architectures
(Simonyan and Zisserman 2014a; 2014b; Karpathy et al.
2014), but the architecture we make use in this paper is based
on GoogLeNet (Szegedy et al. 2015), mainly due to its re-
duced number of parameters. GoogLeNet is a 22-layer deep
network based on the Inception module, which contains con-
volutional filters with different sizes, covering different clus-
ters of information. As CNN uses supervised learning to find
the best features that represent the input data, we have three
steps to follow: training, validation and test phases. For all
phases, we resize the input images to 256x256.

In the training phase, the CNN learns features from im-
ages using part of the dataset. The network features are
learned using the mini-batch stochastic gradient descent us-
ing 0.9 of momentum. For each iteration, a mini-batch of
128 samples is constructed by randomly sampling. A ran-
dom crop is applied on the input image, generating a sub-
image of 224x224. A random horizontal flipping of the im-
age is applied and each pixel is subtracted by the mean
pixel of all training images. All the convolutions, including
the ones inside the Inception modules, use the rectified lin-
ear activation (ReLU). For the weight initialization, we use
the Xavier (Glorot and Bengio 2010) algorithm that auto-
matically determines the scale of initialization based on the
number of input neurons. To reduce over-fitting, we apply
dropout on the fully-connected layers with a probability of
0.7. Learning rate is set to 10−3 and we drop it by a factor
of 50 every epoch. Training stops after 43.5k iterations (30
epochs).

In validation phase we select the model that achieves the
highest accuracy. It is important to note that while we test
several parameters on validation data to adjust the model,
the test phase occurs only once using the model with the
highest accuracy in the validation phase.

In test phase, the CNN classifies each frame from input as-
signing to the image a probability score for each class (soft-
max output). The CNN may classify an image into two or
more classes with exactly the same (or very close) proba-
bilities (e.g.two classes containing 50% of probability). In
this case, when the difference of the probabilities is lower
than a threshold (θ), we apply a heuristic to choose the class
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for the current frame. This heuristic consists of assigning
the class of the last frame to the current frame if one of the
two classes is equal to the class of the last frame. Algorithm
3.1 formalize this heuristic. The function receives as input
the class of the last frame (clast , the current frame (F ) and
a value of threshold (θ). Feeding the CNN with the current
frame (F ) generates a vector (C) containing the probability
of the image to belong to each class. In case the difference
between the two highest probabilities is less than the thresh-
old, the function verifies whether one of the class with the
highest probabilities is equal to the class of the last frame
(clast ). If so, the class of the current frame (c) receives the
same class as the last frame (clast ). Otherwise, the current
frame receives the class that contains the highest probability
(the argument with the maximum score in C).

Algorithm 1 Selecting the class for the current frame.
1: function SELECTCLASSCURRENTFRAME(clast , F, θ)
2: C ← CNN(F ) � C is a vector of probabilities
3: if ∃i, j C(i)− C(j) < θ ∧ C(i) = argmaxx C(x) then
4: if i = clast ∨ j = clast then
5: c ← clast
6: else
7: c ← i
8: end if
9: else

10: c ← argmaxx C(x)
11: end if
12: return c
13: end function

3.2 CNN-backed Symbolic Plan Recognition

To perform the task of plan recognition, we use a sym-
bolic plan recognition approach called Symbolic Behavior
Recognition (SBR). Proposed by Avrahami-Zilberbrand and
Kaminka in (2005), SBR is a plan recognition approach that
takes as input a plan library and a sequence of observations,
in this case, a sequence of observed feature values. Feature
values are used as a set of conditions to execute a plan-step
in a plan library. To match observed features with plan-steps
in a plan library, Avrahami-Zilberbrand and Kaminka pro-
pose an efficient matching step that maps observed features
with matching plan-step nodes in a plan library. To do so,
they use a feature decision tree (FDT) that maps observable
features to plan-steps in a plan library. As output, SBR re-
turns set of hypotheses plans such that each hypothesis rep-
resents a plan that achieves a top-level goal in a plan library.

Instead of using the FDT to match observations with con-
sistent plan-steps in the plan library, we modify the SBR and
replace the FDT with the CNN-backed Activity Recogni-
tion. For instance, given a video frame, the CNN-backed Ac-
tivity Recognition returns which activity such video frame
corresponds, and subsequently, we take this activity as in-
put to the SBR, as shown in Figure 1. Note that to recognize
goals and plans using the SBR, we must model a plan library
containing a set of possible sequence of activities (i.e., plan)
that achieves goals. In this paper, a plan library corresponds
to a model that contains a set of plans to achieve cooking
menus.

4 Experiments and Results
In this section we describe the data used in the experiments
(Section 4.1), how we model the plan library (Section 4.2)
and the results achieved for activity (Section 4.3) and plan
recognition (Section 4.4).

4.1 Dataset

For the experiments, we use the activities from ICPR 2012
Kitchen Scene Context based Gesture Recognition dataset
(KSCGR2) (Shimada et al. 2013). The context aims to rec-
ognize cooking motions in video sequences. The dataset
contains video sequences of five menus for cooking eggs
in Japan: Ham and Eggs, Omelet, Scrambled Egg, Boiled
Egg, and Kinshi-Tamago. Each menu is performed by 7 sub-
jects: 5 actors in training datasets and 2 actors in evaluation
datasets, i.e., 5 cooking scenes are available for each train-
ing menu. The ground truth data contains the id of the frame
and the activity being performed in the frame. Eight cook-
ing gestures composes the dataset: breaking, mixing, bak-
ing, turning, cutting, boiling, seasoning, peeling, and none,
where none means that there is not an activity being per-
formed in the current frame. Figure 2 illustrates the timeline
of the Boiled Egg recipe with the corresponding activities
to make the recipe. We chose the KSCGR dataset instead
of popular datasets for activity recognition such as UCF-
101 (Soomro, Zamir, and Shah 2012) or HMDB51 (Kuehne
et al. 2011) because KSCGR dataset contains the activity
being performed in each frame (e.g., breaking, baking and
turning) as well as the goal achieved in the whole video se-
quence (e.g., preparing Ham and Eggs, Omelet, Scrambled
Egg, etc.). Thus, we can carry out activity recognition us-
ing activities performed in each frame and plan recognition
using the steps to achieve the recipe in each video.

Figure 2: Timeline containing the frame/activity sequence
for the Boiled-Egg menu.

We divided the dataset into training, validation, and test
sets. The training set contains 4 subjects, each of them per-
forming 5 recipes, i.e., 20 videos and 139,196 frames in to-
tal. We use the validation set to obtain the model configura-
tion that best fits to the training data, i.e., the configuration
with the highest accuracy. This set contains 1 subject per-
forming 5 recipes with 32,897 frames in total. We use the
test set to assess the accuracy of the selected model in un-
seen data. This set contains 2 subjects, each performing 5
recipes, i.e., 10 videos with 55,781 frames in total.

2http://www.murase.m.is.nagoya-u.ac.jp/KSCGR/
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4.2 Plan Library Modeling

For recognizing goals and plans, we model a plan library
containing knowledge of the agent’s possible goals and plans
based on the KSCGR dataset (Shimada et al. 2013). We
model each recipe as a top-level goal in the plan library.
Videos in the Shimada et al. (2013), correspond to sequences
of cooking gestures that result in a menu (recipe). Based on
videos from the training set, we model all possible plans for
achieving each possible menu (i.e., top-level goal). We con-
sider that a sequence of cooking gestures is analogous to
a sequence of plan-steps, i.e., a plan in the plan library. Fig-
ure 3 shows part of the plan library that we model, represent-
ing the set of plans and plan-steps to achieve the top-level
goals Boiled Egg and Kinshi-Egg.

Figure 3: Set of plans to achieve the menus Boiled Egg and
Kinshi-Egg.

4.3 Activity Recognition Results

To evaluate the activity recognition module, we select the
CNN model that achieves the best accuracy using the val-
idation set. The best model of the GoogLeNet architecture
achieved 76% of accuracy in the validation dataset after
43,500 iterations (30 epochs). Our experiment consists in
evaluating the performance of the trained network on the test
set. We measure the performance of the system in terms of
Accuracy (ACC), Precision (P ), Recall (R) and F-measure
(F ) for each activity. Accuracy is the number of correctly
classified images over the total number of images in the test
set, Precision of a class is the true positive values divided by
the total number of predicted values to that class, Recall is
the true positive values divided by the total number of true
values, and F-measure is a harmonic mean of Precision and
Recall given by F = 2×P×R

P+R .
Table 1 shows the precision, recall, F-measure and accu-

racy scores for each activity. As we can see that the highest
value of precision (89%) is achieved by Seasoning. A high
value of precision means that the CNN can adjust very well
the features to identify the class, while low values means that
the CNN can not identify relevant features to identify the
class among other classes. For example, Breaking achieved
the lowest precision score (44%), which means that the fea-

Table 1: Precision, Recall, F-measure and Accuracy for each
activity using the KSCGR test data.

Activity Precision Recall F-measure Accuracy

None 0.65 0.97 0.78 0.64
Breaking 0.44 0.41 0.42 0.27
Mixing 0.67 0.34 0.45 0.29
Baking 0.74 0.88 0.80 0.67
Turning 0.77 0.38 0.51 0.34
Cutting 0.87 0.63 0.73 0.58
Boiling 0.61 0.34 0.43 0.28
Seasoning 0.89 0.37 0.52 0.35
Peeling 0.72 0.10 0.18 0.09

tures of the class Breaking are not so evident as the features
of Seasoning. A possible reason that these features are not so
evident is due to the number of examples given to the CNN
with the true label Breaking.

Using the output of the CNN we perform an analysis to
see how predicted classes are classified in relation to the true
classes. In order to perform this analysis we generate a nor-
malized confusion matrix, depicted in Figure 4, where rows
represent the true classes and columns the predicted classes.
The value of each cell is represented by shades of blue going
chromatically from a dark blue for higher values to a light
blue for lower values. All values are normalized, i.e., pre-
dicted values are divided by the total number of true values
for each cell. The main diagonal means the correct predicted
labels and values out of the main diagonal are incorrect pre-
dicted labels.

Analyzing the results in Figure 4 for Breaking we can ob-
serve that the system classify wrongly the activity as Peel-
ing. The misclassification cna be explained because both ac-
tivities occur in the same region of the frame using the same
objects (e.g., in Breaking activity, the egg is broken on the
bowl and the white egg and yolk fall down to the bowl on
the left corner of the scene, while in Peeling activity, the

Figure 4: Normalized confusion matrix for the activity
recognition task.
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egg is peeled on the bowl and the eggshell falls down to
the bowl on the same left corner of the scene. Other classes
such as None and Baking are wrongly classified with many
other classes. Although both activities have high values in
the main diagonal, the precision is smoothed with the mis-
classification to other classes. For example, Baking is classi-
fied many times as Turning. As occurred with Breaking and
Peeling, this misclassification can be understood since both
activities occur in the same region of the scene with the same
objects and little details are changed between activities.

The activity None achieved the highest recall (97%), fol-
lowed by Baking (88%). The high recalls may be due to the
unbalanced nature of the dataset, since the None activity has
the largest number of frames (29% of total) followed by Bak-
ing (25% of total). This unbalancing in the dataset makes the
CNN learns much more features about these classes than the
other classes. Unlike the Baking activity that has almost a
standard behavior in the scene (e.g., the egg baking inside
the pan), the None activity is classified as anything but any
other activity. The None activity includes frames where the
subject is preparing kitchen utensils, moving pans, etc.and
inter-activity frames such as removing the egg from boiling
to peeling. The low variability in regions of the scene and
the large number of frames is the possible reason for Bak-
ing to achieve the highest F-measure (80%). Although the
unbalanced nature of the dataset, the values of accuracy fol-
low the F-measure scores, having the lowest value obtained
by Peeling and the highest value obtained Baking. The total
accuracy of the model in test set achieves 69%.

Following the work by Bansal et al. (2013) we apply the
idea that some activities only occur in consequence of pre-
vious activities. For example, the cooker cannot mixing an
egg (Mixing) without having broken the egg (Breaking) be-
fore. Thus, we need to learn the sequence of activities from
training phase and in test phase only accept sequences of ac-
tivities that occur in training phase. In order to do that, we
create a directed graph (digraph) containing the sequence of
activities learned from each recipe in training phase. Each
node of the graph corresponds to an activity and the edge
between two nodes corresponds to the direct sequence of
activities in training set. For example, in Figure 5 we can
see a direct edge between Boiling and Peeling (red edge),
meaning that in training phase the Peeling activity succeed
the Boiling activity.

Unlike Bansal et al. (2013) that achieved an increase of
7% in accuracy when applied this filtering process, the im-
provement is not very substantial in our experiments. Our
total accuracy increased about 1% when applied such filter-
ing process, achieving 70% of accuracy. The lower improve-
ment in our experiments when compared with the work by
Bansal et al. might be due to a better identification of activ-
ities that occur in sequence by the CNN.

4.4 Plan Recognition Results

We evaluated the whole pipeline using the number of cor-
rect recipes yield by the plan recognizer. In order to do so,
we feed the recognizer with activities predicted by the CNN
and calculate the rate of correct predictions. This rate is cal-
culated counting the number of correct recipes divided by

Figure 5: Digraph containing the sequence of activities in
training dataset.

the total number of recipes yield by the SBR. For example,
if the plan recognizer outputs two possible recipes in the end
of the pipeline and one of them is the correct recipe, we as-
sign 0.5 to its correctness. In case where the plan recognizer
yields four recipes and none of them is the target recipe, the
score is set to 0. The final score corresponds to the sum of
all values divided by the total number of recipes. Table 2
presents the two parts of the test set with their true recipes
followed by the recipes predicted by the plan recognizer and
their scores.

Analysing Table 2, we observe that some plans obtained
zero score. When comparing the activity sequence from
training set and test set we observe that some activity se-
quences occur only in test set and not in training set. For
example, the plan for Kinshi-Egg in test set 11 contains the
activity sequence: Breaking → Mixing → Baking → Turning
→ Baking → Cutting, while in all training set the Turning
activity is never associated with the plan Kinshi-Egg. Specif-
ically, there are 3 plans in test set that do not appear in train-
ing set, and thus, leading the recognizer to errors. Analysing
the sequences of activities we observe that some sequences
occur in more than one recipe. For example, both Scramble
Egg and Omelette recipes contain the same sequence of ac-
tivities: breaking → cutting → seasoning → mixing → bak-
ing → mixing → baking. When calculating the correctness

Table 2: True and predicted labels for recipes according for
each testing set.

# True Recipe Predicted Recipes Score

Boild-Egg Scramble-Egg, Omelette, Ham-Egg 0.00
Ham-Egg Scramble-Egg, Omelette 0.00

10 Kinshi-Egg Kinshi-Egg 1.00
Omelette Scramble-Egg, Omelette 0.50
Scramble-Egg Ham-Egg 0.00

Boild-Egg Kinshi-Egg, Omelette, Ham-Egg 0.00
Ham-Egg Scramble-Egg 0.00

11 Kinshi-Egg Scramble-Egg, Omelette, Ham-Egg 0.00
Omelette Kinshi-Egg, Scramble-Egg, Omelette, Ham-Egg 0.25
Scramble-Egg Kinshi-Egg 0.00

Total: 0.18
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of such sequence we do not consider that both recipes are
correct, but instead consider that the output of the plan rec-
ognizer should yield the correct recipe, i.e., the true recipe.
We understand that there are some drawbacks of using plan
libraries to recognized goals and plans. First, designing plan
libraries requires much design effort, and therefore, we ar-
gue that for encoding a plan library that contains results for
all goals and plans that can be encountered in a non-trivial
domain is impossible or intractable to be designed. Second,
symbolic plan libraries are not flexible enough to deal with
noisy data in input. For example, consider the excerpt pre-
sented in Figure 3 where the correct sequence of activities
in the plan library is described as Boiling → Peeling → Cut-
ting. If the output of the CNN yields at least one frame out of
this sequence, the plan library would not identify the correct
recipe.

5 Related work
Much research effort has been made for recognize activities
in video frames (Gorelick et al. 2007; Shimada et al. 2013;
Bansal et al. 2013; Simonyan and Zisserman 2014a; Karpa-
thy et al. 2014). Simonyan and Zisserman (2014a) propose
the two-stream convolutional network architecture, incor-
porating spatial and temporal networks. Spatial network is
composed by still images while the temporal network is
composed by hand-crafted features that encode the temporal
domain, such as optical flow. Karpathy et al. (2014) extends
the idea of Simonyan and Zisserman providing an architec-
ture that processes the input at two different spatial reso-
lutions. In that paper, several methods of two-stream net-
work fusion are tested. A survey by Poppe (2010) provides
a complete overview on methods that use hand-crafted fea-
tures to recognize activities in video frames. A work closely
related to ours is the one by Bansal et al. (2013) that per-
form daily life cooking activity recognition based on hand-
crafted features for hand movements and object use. Their
method first detects hand regions through color segmenta-
tion and skin identification. Since objects may give hints
of the activity (e.g., the use of the knife may indicate the
cutting activity), objects are identified as “Not in use” and
“In use”. A dynamic Support Vector Machine (SVM) and
Hidden Markov Model (HMM) hybrid model combines the
structural and temporal information to jointly infer the activ-
ity. In experiments, Bansal et al. achieving 64% of accuracy
using the KSCGR dataset (Shimada et al. 2013). In order
to improve the performance of the system, they propose a
post-processing of the output, removing noise frames, i.e.,
frames that are classified wrongly among a cluster of cor-
rectly classified frames. A smoothing operation using ma-
jority voting removes the noise frames, re-classifying them
according to their neighborhood. As some activities are tem-
porally dependent of others, e.g., peeling only occurs after
boiling, they create a context grammar to select the the most
likely guess for misclassified frames. Using the post process-
ing, Bansal et al. increased about 7% of the accuracy for
the activity recognition, achieving a final accuracy of 71%.
Holtzen et al. (2016) propose a method to infer a human’s
intent from partially observed RGBD videos. They represent
intents as a probabilistic And-Or graph structure which de-

scribes a relationship between activities and plans. The main
idea of their work is to construct an And-Or graph that ex-
plains the observed sequence of actions performed in a con-
tinuous 2D plane.

6 Conclusion and Future Work

In this work we proposed a hybrid architecture for activ-
ity and plan recognition. The pipeline of the architecture in-
cludes a deep learning algorithm called Convolutional Neu-
ral Network (CNN) to extract features from images and clas-
sify unseen frames. Experiments showed that the CNN can
learn features automatically for activity recognition using
the kitchen scene KSCGR dataset, achieving results compa-
rable to work that employs hand-crafted features. We modify
a symbolic plan recognition approach called Symbolic Be-
havior Recognition (SBR) to work with the CNN and iden-
tify the goal that describes the sequence of activities. As
some sequences of activities occur only in testing phase and
not in training phase, we observed the limitations of using
plan library as plan recognizer.

As future work, we intend to employ other deep learning
architectures such as Long-Short Term Memory networks
(LSTM) (Hochreiter and Schmidhuber 1997) or two-stream
CNNs (Simonyan and Zisserman 2014a) since they can en-
code temporal features better than spatial CNNs as the one
used in this work. As the plan library have limitations such
as modeling the entire domain before testing, we intend to
use a more flexible approach for plan recognition, i.e., a
planning-based plan recognition approach, such as (Ramı́rez
and Geffner 2009; 2010; Pereira and Meneguzzi 2016;
Pereira, Oren, and Meneguzzi 2017). Planning-based plan
recognition approaches do not limit recognition capabilities
to unknown plans (while library-based approaches do, e.g.,
SBR), since such approaches do not have to represent all
plans to achieve all goals. To do so, such approaches use a
planning domain definition (a set of predicates and actions),
an initial state, a set of candidate goals, and observations (ac-
tions or properties). The object identification may also be ex-
plored and translated to predicates, since they can give clues
of movements being performed by the subject. For example,
the presence of a knife in the hand of the subject may indi-
cate that a cutting activity is being performed, representing a
set of properties in an observed state. Using object recogni-
tion, a plan recognizer that use such properties may be em-
ployed, improving the identification of the recipes.
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