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Abstract

We present a novel approach for face pose synthesis. We
leverage the power of Generative Adversarial Networks to
synthesize face poses in a realistic fashion. We apply a con-
ditioning method to control the rotation of synthesized faces
along the three axes of space (roll, pitch, yaw). We start by es-
timating the pose of each face in the training set and storing
a vector containing the rotation angles. Then, we use the im-
ages along with the angles to train a conditioned version of a
state-of-the-art Generative Adversarial Network. Our experi-
ments show image synthesis with state-of-the-art quality, plus
the absolute control of the pose of synthesized face images.

1 Introduction

Processing face images are accompanied by a series of com-
plexities, like variation of pose, light, face expression, and
make up. Although all aspects are important, the one that
impacts the most face-related computer vision applications
is pose. In face recognition, for example, it has been long
desired to have a method capable of bringing faces to the
same pose, usually a frontal view, in order to ease recogni-
tion. Synthesizing different views of a face is still a great
challenge, mostly because in non-frontal face images there
are loss of information when one side of the face occludes
the other (also known as self-occlusion). Several methods
to address face pose synthesis were proposed (Hassner et al.
2015; Zhu et al. 2015), but the results still look synthetic. Re-
cently, a new generative method is helping to push forward
the quality of face pose synthesis, this method is the Genera-
tive Adversarial Networks (GANs) (Goodfellow et al. 2014).

GANs are a recent class of methods able to learn gen-
erative models over complex data distributions. They have
shown remarkable results, it is safe to say that currently they
are one of the most popular topics in the Deep Learning
field. Their capacity of learning very complex data distri-
butions and their ability to generate high quality data sam-
ples attracted attention of both academia and industry. The
power of GANs becomes evident when they are used to
learn generative models over images, where they are able to
synthesize sharper images when compared with other gen-
erative methods. Furthermore, GANs are a framework rela-
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tively easy to extend. Several works apply GANs with differ-
ent settings for a great variety of applications. An important
aspect in GANs is that we can extend it to use supervision,
allowing us to control some features of the latent space.

The idea behind using a GAN-based method for face pose
synthesis is quite simple. Instead of taking care of all as-
pects related to the synthesis, like compensating for the in-
formation loss due to self-occlusion, we let the model learn
a face representation and generalize to overcome issues like
these. The most successful recent methods on pose synthe-
sis are GAN-based (Tran, Yin, and Liu 2017; Yin et al. 2017;
Huang et al. 2017). Generally, GANs are trained to learn a
disentangled representation of the face. In other words, it is
desired to put meaningful information in some dimensions
of the latent space, so we can control some features of syn-
thesized images. We could, for example, choose to synthe-
size a face with or without sunglasses. Even though it is pos-
sible, in some cases, to learn disentangled representations in
a complete unsupervised manner (Chen et al. 2016), most
works achieve feature disentanglement using supervision.

In this work, we leverage the power of GANs to learn a
disentangled representation of faces: we apply a condition-
ing method to control the rotation of synthesized faces along
the three axes of space. First we estimate the camera matrix
used to capture the image, we then extract the rotation ma-
trix and convert it to Euler angles (roll, pitch, yaw). We use
the angles to train a conditioned version of a state-of-the-art
GAN. To the best of our knowledge, all previous work on
face pose synthesis treat the pose as discrete feature. Public
datasets, like Multi-PIE (Gross et al. 2010), provide anno-
tations of the angle of the pose of each face in the dataset
as discrete feature, like 90◦, 45◦, 0◦. We, on the other hand,
treat the pose as a continuous feature, with angles varying
from −75◦ to 75◦. The great advantage of having the pose
as a continuous feature in latent space is that we have ab-
solute control over the pose we would like to synthesize.
Furthermore, our method does not require training data to
have annotations of any kind to estimate the pose. We can
perform pose estimation using a standard face landmark de-
tector like MTCNN (Zhang et al. 2016). Finally, this method
can be applied in a variety of domains. It can be easily ap-
plied to perform data augmentation to improve training of
face recognition algorithms, ease face matching, and even
help in law enforcement.
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2 Related Work

2.1 Generative Adversarial Network (GANs)

In recent developments in Deep Learning, Generative Ad-
versarial Networks (GANs) (Goodfellow et al. 2014) were
introduced. Generative adversarial nets are composed of two
differentiable functions, namely a Generator G and a Dis-
criminator D. The generator and the discriminator are set
to play a two-player minimax game. From an input noise z
sampled from a prior pz(z), the generator maps a sample
G(z) to the data space aiming to learn its own distribution
pg over the real data x. The discriminator D takes an in-
put data x and outputs a scalar, which is the probability that
the input came from the real data x rather than from pg . D
is then trained to maximize the probability of assigning the
correct class label for both the real data x and the fake data
G(z). The generator is trained simultaneously to make the
discriminator mistakenly think that the data generated by the
generator came from the real data distribution. In its classic
form, the GAN objective is given by:

min
G

max
D

V (D,G) = Ex∼pdata(x) [log(D(x))] +

Ez∼pz(z) [log(1−D(G(z)))]
(1)

As each player aims to change the other player’s cost
function and they can change only their own parameters,
this scenario is better described as a game rather than an
optimization problem (Goodfellow 2016). Since its first ap-
pearance, several successful extensions have been proposed,
including the Deep Convolutional GAN (DCGAN) (Rad-
ford, Metz, and Chintala 2015), InfoGAN (Chen et al. 2016),
Wasserstein GAN (Arjovsky, Chintala, and Bottou 2017),
and others.

2.2 Pose Synthesis

Synthesizing face poses has been long desired in face-related
computer vision tasks. Most of prior work focus on syn-
thesizing a frontal view of the face, also known as face
frontalization, aiming to aid face recognition. In this sense,
some works (Hassner et al. 2015; Zhu et al. 2015) make
use of classic computer graphics algorithms to bring faces
to a frontal view. The challenging part of such methods is
that they need to take care of compensating for information
loss due to self-occlusion, which may compromise the qual-
ity of final results. More recently, other methods that em-
ploy Deep Learning have been proposed (Yin et al. 2017;
Tran, Yin, and Liu 2017; Huang et al. 2017). These meth-
ods brought a leap of improvement but still lack the ability
to generate realistic images. Generating a frontal view of the
face may aid face recognition. However, we argue that gen-
erating faces in different poses may help face matching even
further. In (Masi et al. 2016), for example, it is proposed
a method to synthesize faces in different poses. Although
the goal was to perform data augmentation for training face
recognition algorithms, the synthesis at test time helped im-
proving face matching.

Figure 1: The Conditional BEGAN Model.

3 Proposed Method

In order to learn a disentangled representation and control
face rotation along the three axes of space (roll, pitch, yaw),
we first compute the extrinsic camera parameters using a
generic 3D face model, then we use the camera rotation an-
gles as labels to train a Conditional Generative Adversarial
Network (Mirza and Osindero 2014).

3.1 Pose Estimation

We start by approximating the camera matrix used to capture
each image in the training set. We do so by seeking 2D-3D
correspondences between face landmarks in the training im-
ages and the same landmarks detected on the surface of a
generic 3D face model provided by (Hassner et al. 2015).
We approximate the camera matrix using standard camera
calibration techniques. Once we compute the camera ma-
trix, we extract the rotation matrix and convert it to Euler
angles, yielding a vector containing the rotation along each
axis of space (rx, ry, rz)T . Finally, we apply this vector as a
conditioning input to our Generative Adversarial Network.

3.2 Training Strategy

We build our method over the recent Boundary Equilib-
rium Generative Adversarial Network (BEGAN) (Berthelot,
Schumm, and Metz 2017). The BEGAN framework intro-
duces a successful equilibrium enforcing method that helps
stabilizing training while allowing to control the trade-off
between generated image quality and diversity. We extend
the BEGAN framework to be conditioned using the Condi-
tional Adversarial Network (CGAN) (Mirza and Osindero
2014) method. In this sense, we define our generator G
as a regular Convolutional Neural Network (CNN) and the
discriminator D as a Convolutional Auto-encoder (CAE)
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(Masci et al. 2011). We extend the generator to be condi-
tioned to a y vector. Therefore, from an input noise z sam-
pled from a prior distribution, and a conditioning vector y,
the generator maps a sample G(z|y) to the data space x. The
discriminator takes as input the real data x and the generated
data G(z|y), both along with a conditioning vector y, and
outputs the autoencoder reconstruction for both the real data
D(x, y) and the generated data D(G(z|y), y), respectively.
The Conditional BEGAN (CBEGAN) model is shown in Fig
1. In order to define the cost function for the CBEGAN, first
let’s consider a simple pixel-wise reconstruction loss for a
CAE:

L(x) = |x−D(x)| (2)
where x is training example and D(x) is the CAE function

that produces an output with same dimension as x. Adapting
the CAE loss to accommodate the conditioning vector y we
have:

L(x, y) = |(x, y)−D(x, y)| (3)
Therefore, we can define the CBEGAN objective function

as follows:

{LD = L(x, y; θD)− L(G(z|y; θG), y; θD) for θD
LG = −LD for θG

(4)

where LD is the loss for the discriminator, LG is the loss
for the generator, θD and θG are the discriminator and the
generator parameters, respectively. For simplicity we abbre-
viate and omit the parameters θG and θD for G and D. In
the BEGAN framework the equilibrium is relaxed through
a new hyper-parameter γ ∈ [0, 1] that controls the trade-off
between image quality and diversity. For example, when γ is
close to 1, quality is high and variety is low, when γ is close
to 0, quality is low and variety is high. Thus, we consider
our CBEGAN to be at equilibrium when:

γ =
E [L(G(z|y), y)]

E [L(x, y)] (5)

To ensure the equilibrium shown in Eq. 5, BEGAN ap-
plies Proportional Control Theory through a variable kt.
This variable dynamically adjusts the emphasis needed to
put in the generator. Adding the equilibrium method above,
we have complete CBEGAN objective function:

⎧⎨
⎩
LD = L(x, y)− ktL(G(z|y), y)
LG = L(G(z|y), y)
kt+1 = kt + λk(γL(x, y)− L(G(z|y), y))

(6)

where kt ∈ [0, 1] controls how much emphasis is put
in the generator during gradient descent at a step t, and
λk ∈ [0, 1] controls the update size for k. At the initial step,
k0 is set to 0. Usually, in the beginning of GAN training
the discriminator is not able to distinguish well between real
samples and fake samples, which results in small gradients
for the generator and, consequently, poor learning. The equi-
librium method introduced by BEGAN ensures that more

Table 1: Discriminator
Layer Filter Size

/ Stride
Output Shape # Params

Input (x, y) - 128× 128× 6 0
Conv1 3× 3/1 128× 128× 128 7,040
Conv2 3× 3/1 128× 128× 128 147,584
Conv3 3× 3/1 128× 128× 128 147,584
Conv4 3× 3/2 64× 64× 128 147,584
Conv5 3× 3/1 64× 64× 128 147,584
Conv6 3× 3/1 64× 64× 128 147,584
Conv7 3× 3/2 32× 32× 128 147,584
Conv8 3× 3/1 32× 32× 128 147,584
Conv9 3× 3/1 32× 32× 128 147,584
Conv10 3× 3/2 16× 16× 128 147,584
Conv11 3× 3/1 16× 16× 128 147,584
Conv12 3× 3/1 16× 16× 128 147,584
Conv13 3× 3/2 8× 8× 128 147,584
Conv14 3× 3/1 8× 8× 128 147,584
Conv15 3× 3/1 8× 8× 128 147,584
Reshape - 8192 0
FC1 - 128 1,048,704
FC2 - 8192 1,056,768
Reshape - 8× 8× 128 0
Conv16 3× 3/1 8× 8× 128 147,584
Conv17 3× 3/1 8× 8× 128 147,584
NN Up. - 16× 16× 128 0
Conv18 3× 3/1 16× 16× 128 147,584
Conv19 3× 3/1 16× 16× 128 147,584
NN Up. - 32× 32× 128 0
Conv20 3× 3/1 32× 16× 128 147,584
Conv21 3× 3/1 32× 16× 128 147,584
NN Up. - 64× 64× 128 0
Conv22 3× 3/1 64× 16× 128 147,584
Conv23 3× 3/1 64× 16× 128 147,584
NN Up. - 128× 128× 128 0
Conv24 3× 3/1 128× 128× 128 147,584
Conv25 3× 3/1 128× 128× 128 147,584
Conv26 3× 3/1 128× 128× 6 6,918
Total 5,661,446

emphasis is put to the discriminator in the beginning, so bal-
ancing the generator and the discriminator losses becomes a
less critical issue.

3.3 Model Architecture

We use architectures almost identical as BEGAN, except
that we use a constant number of convolutional filters in
the discriminator. The reason to use less filters in the dis-
criminator is to reduce the number of parameters and, con-
sequently, training time. In our experiments, this reduction
did not seem to impact the overall results. We train two mod-
els, one that generates 64 × 64 pixel images and other that
generates 128× 128 pixel images. The architecture for both
is identical, except that 64× 64 pixel model has less convo-
lutional layers, 2 in the generator and 6 in the discriminator.
Our 128 × 128 model has around 8.3M parameters in total,
while a similar BEGAN model has around 19M parameters.

Generator The generator input is a noise vector z ∈ R
128

sampled uniformly from a prior distribution in the range
[−1, 1]. The vector z is concatenated with a conditioning
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Figure 2: Interpolation in latent space between two randomly sampled faces at 128× 128 pixels.

vector y ∈ R
3 that represents the rotation (rx, ry, rz)

T of
the face along the three axes of space. The generator input
is then linearly projected to a higher dimensional space us-
ing a fully connected layer, which is then reshaped to form
3-dimensional convolutional volume. We start with many
small feature maps, then a series of convolutions and up-
sampling operations convert this high level representation
to a 128 × 128 pixel image. Upsampling is performed by
Nearest Neighbour interpolation. Every convolutional layer
is followed by an Exponential Linear Unit (ELU) (Clevert,
Unterthiner, and Hochreiter 2015) activation, except the last
one, which is not followed by any activation. The complete
architecture for the generator is shown in Table 2.

Discriminator The discriminator is a Convolutional
Auto-encoder (CAE), which is composed of an encoder and
a decoder. The encoder has as inputs real images x and gen-
erated images G(z|y), both concatenated with a condition-
ing vector y ∈ R

3. We concatenate the conditioning vector
in the feature map axis of the discriminator input, therefore,
an RGB image with dimensions 128 × 128 × 3 would re-
sult in a 128 × 128 × 6 dimensional volume. This volume
is followed by a series of convolutions. Downsampling is
performed with strided convolutions. Each convolution with
stride 2 reduces the spatial dimensions by half. Every con-
volutional layer is followed by an ELU activation. Finally
the volume is reshaped and linearly projected to form 128-
dimensional intermediate representation. The decoder part
is identical to the generator architecture. It maps the 128-
dimensional representation to a 128 × 128 × 6 volume, the
same dimensions as encoder input. The complete discrimi-
nator architecture is shown in Table 1.

4 Experiments

4.1 Setup

Training Set We train our models using the aligned ver-
sion of CelebA Dataset (Liu et al. 2015). CelebA is com-
posed of 202,055 images of 10,177 identities. Along with
the images, annotations for 40 binary attributes and 5 land-
mark location for each face are provided. We use the full
dataset as training set. As a form of compensating for biases
in pose, we add to the dataset a horizontally flipped version
of each image. Along with the images, for each one, we
compute the rotation vector, (rx, ry, rz)T using landmark
annotations provided in the dataset. The rotation vector is
then scaled to be in the range [−1, 1]. We perform a center
crop in the images according to a fixed bounding box around
the face. We then resize the image to match the size of the

Table 2: Generator
Layer Filter Size

/ Stride
Output Shape # Params

Input (z, y) - 131 0
FC - 8192 1,081,344
Reshape - 8× 8× 128 0
Conv1 3× 3/1 8× 8× 128 147,584
Conv2 3× 3/1 8× 8× 128 147,584
NN Up. - 16× 16× 128 0
Conv3 3× 3/1 16× 16× 128 147,584
Conv4 3× 3/1 16× 16× 128 147,584
NN Up. - 16× 16× 192 0
Conv5 3× 3/1 32× 32× 128 147,584
Conv6 3× 3/1 32× 32× 128 147,584
NN Up. - 64× 64× 128 0
Conv7 3× 3/1 64× 64× 128 147,584
Conv8 3× 3/1 64× 64× 128 147,584
NN Up. - 128× 128× 128 0
Conv9 3× 3/1 128× 128× 128 147,584
Conv10 3× 3/1 128× 128× 128 147,584
Conv11 3× 3/1 128× 128× 3 3,459
Total 2,560,643

images we want to synthesize. Finally, we scale the pixel
values of all images to be in the range [−1, 1] as well.

4.2 Implementation Details

We train the generator and discriminator using simultane-
ous gradient descent. In other words, at each training step
we update the weights of D and G, respectively. We use
Adam optimizer (Kingma and Ba 2014) with a learning rate
of 0.0008, β1 = 0.9 and β2 = 0.99 for both G and D. The
weights are initialized using the Xavier method (Glorot and
Bengio 2010). We set the quality/diversity ratio parameter
γ = 0.5 and the learning rate of the equilibrium method pa-
rameter λk = 0.001. We carry out training for 20 epochs
using minibatches of size of 64 for the network that pro-
duces 64×64 pixel images, and 11 epochs with minibatches
of size 32 for the network that produces 128× 128 pixel im-
ages. We generate images every 500 steps for visual inspec-
tion reasons. Training time was 2 days for the 64× 64 pixel
model and 6 days for 128 × 128 pixel model, both reported
on a single NVIDIA Titan X (Pascal) GPU using Tensorflow
framework.

4.3 Evaluation

A great challenge in working with generative models is that
there is not a clear way of how to perform a quantitative
evaluation. Instead, we evaluate qualitatively employing vi-
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Figure 3: On each row: samples generated with a fixed z at 64 × 64 pixels varying only the code for pose with evenly spaced
degrees from −75◦ to 75◦.

Figure 4: On each row: samples generated with a fixed z at 128× 128 pixels varying only the code for pose with evenly spaced
degrees from −75◦ to 75◦.

Figure 5: Results from (Masi et al. 2016). On each column group: pose generated at 0◦, 40◦ and 75◦, respectively.

sual inspection on generated samples. First we show that our
learned latent representation is coherent. Fig. 2 shows in-
terpolation in latent space between two randomly generated
faces. Furthermore, in Fig. 3 and 4 we show our method can

indeed learn a disentangled representation. We fix the input
noise z and by varying the pose code we can rotate the face
preserving the identity of the person. A key aspect is that the
CelebA dataset is composed mostly of near frontal faces,
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and even so, our model can generalize and generate poses
in more extreme angles. Although we apply rotation along
three axes of space, we found that rotation along the x-axis
and z-axis have a very low variation in the training data (it is
rare for people in the training set to look up/down, for exam-
ple) and therefore, changes along those axes do not yield the
same level of quality. Compared to previous methods (Fig.
5), our method can synthesize better images, preserving se-
mantics of the face. A downside of our method is that there
is no direct way of mapping a face image to its respective
z, meaning that we cannot generate poses of a given face
directly. It is possible, however, to use gradient descent to
approximate a noise z that would generate a given face, but
this is not practical for real world applications.

5 Conclusion

We present a novel method for face pose synthesis: we ap-
ply a conditioning method to control the rotation of synthe-
sized faces along the three axes of space (roll, pitch, yaw).
We compute the angles of the face in space and use the an-
gles to train a conditioned version of a state-of-the-art GAN.
We treat the pose as a continuous feature, with angles vary-
ing from −75◦ to 75◦. The great advantage of having the
pose as a continuous feature in latent space is that we have
absolute control over the pose we would like to synthesize.
Furthermore, our method does not require training data to
have annotations of any kind to estimate the pose. Finally,
this method can be applied in a variety of domains. It can be
easily applied to perform data augmentation, aid face recog-
nition, and even help in law enforcement.
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