
Towards High-Resolution
Face Pose Synthesis

Douglas M. Souza
Pontifı́cia Universidade Católica

do Rio Grande do Sul
Av. Ipiranga, 6681

Porto Alegre, RS, Brazil
douglas.souza.002@acad.pucrs.br

Duncan D. Ruiz
Pontifı́cia Universidade Católica

do Rio Grande do Sul
Av. Ipiranga, 6681

Porto Alegre, RS, Brazil
duncan.ruiz@pucrs.br

Abstract—Synthesizing different views of a face image is a
challenging task that can potentially help in several computer
graphics and computer vision applications. In this work, we
present a novel approach to address this task. We leverage the
power of Generative Adversarial Networks (GANs) to synthesize
face poses in a high-resolution and realistic fashion. We control
the rotation of synthesized faces along the three axes of space
(roll, pitch, yaw). We start by estimating the pose of each face
in the training set and storing a vector containing the rotation
angles. Then, we use the images along with the angles to train a
conditioned version of a state-of-the-art GAN. Our experiments
show image synthesis with a high-realistic finish, plus the absolute
control of the pose of synthesized face images.

I. INTRODUCTION

Processing face images are accompanied by a series of
complexities, like variation of pose, light, face expression, and
make up. Although all aspects are important, the one that
impacts the most face-related computer vision applications
is pose. In face recognition, for example, it has been long
desired to have a method capable of bringing faces to the
same pose, usually a frontal view, in order to ease recognition.
Synthesizing different views of a face is still a great challenge,
mostly because in non-frontal face images there are loss of
information when one side of the face occludes the other
(also known as self-occlusion). Several methods to address
face pose synthesis were proposed [1]–[3], but the results still
look artificial. Recently, a new generative method is helping to
push forward the quality of face pose synthesis, this method
is the Generative Adversarial Networks (GANs) [4].

GANs are a recent class of methods able to learn generative
models over complex data distributions. They have shown
remarkable results. Their capacity of learning very complex
data distributions and their ability to generate high quality data
samples attracted attention of both academia and industry. The
power of GANs becomes evident when they are used to learn
generative models over images, where they are able to syn-
thesize sharper images when compared with other generative
methods. The adversarial training introduced by GANs can
be adapted to perform tasks beyond image synthesis. Some
impressive results have been seen in tasks such as image-to-
image translation [5]–[8], image inpainting [9], image editing
[10], image super resolution [11], among others.

The idea behind using a GAN-based method for face pose
synthesis is quite simple. Instead of taking care of all aspects
related to the synthesis, like compensating for the information
loss due to self-occlusion, we let the model learn a face
representation and generalize to overcome issues like these.
The most successful recent methods on pose synthesis are
GAN-based [12]–[14]. In this case, GANs attempt to learn
a disentangled representation of the face. Where we put some
constraints on some dimensions of the learned representation,
so we could control some features of synthesized images. We
could, for example, choose to synthesize a face with or without
sunglasses. There are different approaches to achieve feature
disentanglement in GAN training. It is usually required the use
of kind of supervision during training. In some cases this could
be an issue, since labeled data may not be available. Ideally,
we would like to have a way of synthesizing different views
of a face having absolute control. Additionally, achieving such
a solution having to use few or no labeled data at all, would
be a leap of improvement.

In this work, we take advantage of the power of GANs to
learn a disentangled representation of faces: we apply a con-
ditioning method to control the rotation of synthesized faces
along the three axes of space. First we estimate the rotation
of the camera used to capture the image in Euler angles (roll,
pitch, yaw). We use the angles to train a conditioned version
of a high-resolution state-of-the-art GAN. To the best of our
knowledge, all previous work on face pose synthesis treat the
pose as discrete feature. Public datasets, like Multi-PIE [15],
provide annotations of the angle of the pose of each face in
the dataset as discrete feature, like 90◦, 45◦, 0◦. We, on the
other hand, treat the pose as a continuous feature, with angles
varying from −75◦ to 75◦. The great advantage of having the
pose as a continuous feature is that we have absolute control
over the pose we would like to synthesize. Furthermore, we
compute the pose using standard landmark locations, which
can be extracted by face landmarks detectors, such as MTCNN
[16], leaving behind the need of labeled data. Finally, our
method can be applied in a variety of domains. It can be easily
applied to perform data augmentation to improve training of
face recognition algorithms, ease the job of face recognition
systems in face matching, and even help in law enforcement.

978-1-5090-6014-6/18/$31.00 ©2018 IEEE

II. BACKGROUND

A. Generative Adversarial Network (GANs)

Generative Adversarial Networks (GANs) [4] is a class
of generative methods that learns generative models via an
adversarial training process. In its traditional form, GANs
are composed of two differentiable functions (e.g. neural
networks), namely a Generator G and a Discriminator D.
The generator and the discriminator are set to play a two-
player minimax game. From an input noise z sampled from
a simple, prior distribution pz(z) (e.g. uniform or Gaussian),
the generator maps a sample G(z) to the data space aiming
to learn its own distribution pg over the real data distribution
pdata(x). The z space is also known as the latent space. The
discriminator D, on the other hand, takes an input data x and
outputs a scalar, which is the probability that the input came
from the real data pdata(x) rather than from pg . D is then
trained to maximize the probability of assigning the correct
class label for both the real data x and the fake data G(z). The
generator is trained simultaneously to make the discriminator
mistakenly think that the data generated by the generator came
from the real data distribution. In its classic form, the GAN
objective is given by:

min
G

max
D

V (D,G) = Ex∼pdata(x) [log(D(x))] +

Ez∼pz(z) [log(1−D(G(z)))]
(1)

As showin in Eq. 1, each player aims to change the other
player’s cost function and they can change only their own pa-
rameters, therefore, this scenario is better described as a game
rather than an optimization problem [17]. Because finding
the solution for GAN training requires finding an equilibrium
in high-dimensional space, GAN training is accompanied by
a series of difficulties, such as non-convergence and mode
collapse. Non-convergence is consequence of using gradient
descent to finding the equilibrium of the game. If the capacity
of G and D are not well balanced, it is possible that one of
them wins easily, resulting in poor learning. Mode collapse,
on the other hand, is one the most important issues in GAN
research. During training, the generator may end up learning
just one mode of the data, because it is more likely to fool
the discriminator. In practice, complete mode collapse is rare,
but partial mode collapse happens commonly. Since its first
appearance, several successful improvements to GAN training
have been proposed, including the Deep Convolutional GAN
(DCGAN) [18], InfoGAN [19], LSGAN [20], Wasserstein
GAN [21], among others.

B. Conditional GANs

In some cases, it may be desirable to have control over
the data generated by the GAN generator (e.g. generate a
face with a given face expression). This can be achieved
by restricting some dimensions of the latent space to hold
meaningful information. For a GAN trained in a dataset of
faces, for example, some dimension of latent space could
control hair color, while other could control face expression,

G

xyyz

D

real/fake

Fig. 1. Conditional GAN Scheme.

and so on. In order to have this control, we need to learn
a disentangled latent representation. Formally, we would like
to provide a conditioning factor y for the generator alongside
with the regular noise z and generate a sample G(z|y) that
correlates with the conditioning factor y.

Currently, there are different approaches to train conditional
GANs. One that is simple and proved to be very effective is
the Conditional GAN (CGAN) [22] approach. In a CGAN,
no additional loss term is required. The only difference to
regular GAN training is that both generator and discriminator
are provided side information during training. In Fig. 1, it is
shown the CGAN scheme. The generator is fed with both a
random noise z and a conditioning factor y and outputs a fake
sample. The discriminator is trained to distinguish between the
fake sample alongside with the conditioning factor y and the
real sample alongside with the same conditioning factor y. In
practice, the discriminator has more information to work with
and, in order to the generator fool the discriminator, it has not
only to generate a realistic sample, but also generate samples
that correlate with the conditioning factor y.

C. Progressive Growing of GANs

Issues like non-convergence and mode collapse present
in GAN training become even more evident when training
models at high-resolutions. Most previous works [17], [18],
[21], [23] were able to reach resolutions up to 128×128 pixels.
Recently, a new methodology for GAN training introduced by
Karras et. al. [24] improved on these issues, allowing training
of GANs of resolutions up to 1024×1024 pixels. The key idea
is to progressively grow the generator and discriminator as
training progresses. Training starts at a low resolution as 4×4
pixels. As training progresses, new layers are added on both
discriminator and generator while all previous layers remain
trainable. More layers are added until the target resolution for
the model is reached. In a certain way, progressive growing,
resembles layer-wise training of autoencoders [25].

Specifically, in progressive GAN, training alternates be-
tween two phases: fade in of new layers and stabilization

2018 International Joint Conference on Neural Networks (IJCNN)

4x4

NN Up

8x8

toRGBtoRGB

fromRGB

fromRGB

8x8

Avg pool

4x4

Avg pool

(a) Fading in a new layer in the generator.
4x4

2x

8x8

toRGBtoRGB

fromRGB

fromRGB

8x8

Avg pool

4x4

Avg pool

(b) Fading in a new layer in the discriminator.

Fig. 2. Growing the progressive GAN networks.

of added layers. In order to preserve stability and not shock
the networks, new layers are faded in smoothly. During a
transition to a higher resolution, the networks operate at both
the lower and higher resolution at the same time using a
skip connection between layers. Fig. 2a and Fig. 2b show
a transition from a 4 × 4 resolution to 8 × 8 resolution for
the generator and discriminator, respectively. The weight α of
the skip connection increases linearly until the transition is
complete. After a transition is complete, the skip connection
is discarded and the stabilization phase begins, where the
networks are trained for more iterations before new layers
could be added.

In the example of Fig. 2a, the toRGB layer projects the
generator’s output to 3 channels to form the RGB output
image and NN Up is a layer that performs upsampling using
nearest neighbor interpolation. In Fig. 2b, fromRGB is a layer
that projects the RGB input image to the same number of
channels as the next current convolutional layer and Avg pool
is downsampling performed by average pooling. Both toRGB
and fromRGB are usually composed by convolutions with
filters of size 1× 1.

III. PROPOSED METHOD

A. Pose Estimation

We start by approximating the camera matrix used to cap-
ture each image in the training set. We do so by seeking 2D-
3D correspondences between face landmarks in the training

75 50 25 0 25 50 75
Pose Angle

0

2000

4000

6000

8000

10000

Nu
m

be
r o

f S
am

pl
es

Fig. 3. Poses present in CelebA regarding y-axis (yaw). In this case, 0◦

means a complete frontal view of the face.

images and the same landmarks detected on the surface of a
generic 3D face model provided by [1]. We approximate the
camera matrix using standard camera calibration techniques.
Once we compute the camera matrix, we extract the rotation
matrix and convert it to Euler angles, yielding a vector
containing the rotation along each axis of space (rx, ry, rz)

T .
Finally, we apply this vector as a conditioning factor to our
Generative Adversarial Network.

B. Training Strategy

In order to synthesize high resolution images, we follow the
steps of Karras et. al. [24] and extend a progressive growing
GAN to be conditioned using the Conditional GAN method.
We start training with images of size 4 × 4 pixel and carry
out training doubling the resolution until we reach images of
size 256 × 256 pixels. We apply the The Wasserstein GAN
(WGAN) [21] training strategy. The WGAN brought a leap
of improvement over previous training methodologies. The
idea is to minimize the Earth-Mover distance (also known
as Wasserstein-1) between the distribution of the real data
pdata(x) and generated data pg . Another nice property is that
we can train the WGAN discriminator (also known as critic,
as it does not perform classification) to optimality under a
Lipschitz continuity constraint. In the WGAN, this constraint
was enforced by clipping the weights of the discriminator
to fall in a compact space. Although it showed promising
results, weight clipping leads to over-simplified functions. The
Improved Wasserstein GAN (WGAN-GP) [23] improved on
these issues. Instead of enforcing the Lipschitz constraint via
weight clipping, the WGAN-GP achieves that using by adding
a gradient penalty term to the discriminator loss function.
Therefore, we chose the WGAN-GP loss function as it has
been demonstrated to be stable and present very good results.
The WGAN-GP loss function for the discriminator LD is
given by:

2018 International Joint Conference on Neural Networks (IJCNN)

LD = E[D(G(z))]− E[D(x)]

+ λGPE[(‖∇x̂D(x̂)‖2 − 1)2] + εdriftE[D(x)2],
(2)

where x̂ is gradient penalty input term, which is given by a
point sampled along straight lines between real and generated
data:

x̂ = εx+ (1− ε)G(z). (3)

Specifically, the value ε is randomly sampled from a uniform
distribution U [0, 1]. An additional term E[D(x)2] is also added
to LD with small weight εdrift to avoid the loss drifting away
from zero.

The loss for the generator LG given by:

LG = −E[D(G(z))] (4)

It is important to note, however, that in Wasserstein GANs,
D(x) does not represent the probability that the input come
from the real distribution as in traditional GAN loss (Eq. 1),
D(x) simple represents the raw output for the discriminator,
where E[D(G(z))] − E[D(x)] represent an estimate of the
Wasserstein distance between the distribution of the real and
generated data.

Rewriting the WGAN-GP loss to accommodate the condi-
tioning factor we have the final objective for the discriminator
as:

LD = E[D(G(z|y), y)]− E[D(x, y)]

+ λE[(‖∇x̂D(x̂, y)‖2 − 1)2] + εdriftE[D(x, y)2]
(5)

And for the generator:

LG = −E[D(G(z|y), y)] (6)

Additionally, as in [24], we apply the following strategies
to stabilize training and enforce diversity in the generator:

1) Equalized Learning Rate: In order to improve on poor
weight initialization, weights are initialized using the method
from He et. al. [26] and scaled by the c constant from the
initialization method at runtime. This avoids the scenario
where some weights have large dynamic range than others,
which may cause the learning rate to be too small and to high
at the same time.

2) Pixelwise Normalization in the Generator: In order to
discourage unhealthy competition between the generator and
discriminator, a pixelwise normalization is applied after every
convolutional layer in the generator.

3) Minibatch of statistics: GANs naturally have difficulty
to capture all the variance in the training data. Several methods
have been proposed to improve on this and, therefore, improve
the diversity of the samples from the generator. By default, the
discriminator look at each sample individually. Some strategies
try to enforce diversity by allowing the discriminator look at
an entire minibatch of samples and encourage the minibatch
to have a high variance, the Minibatch discrimination from

TABLE I
GENERATOR

Layer Filter Size
/ Stride

Padding Output Shape # Params

Input (z, y) - - 1× 1× 515 0
Conv1 4× 4/1 3 4× 4× 512 4,219,392
Conv2 3× 3/1 1 4× 4× 512 2,359,808
NN Up. - - 8× 8× 512 0
Conv3 3× 3/1 1 8× 8× 512 2,359,808
Conv4 3× 3/1 1 8× 8× 512 2,359,808
NN Up. - - 16× 16× 512 0
Conv5 3× 3/1 1 16× 16× 512 2,359,808
Conv6 3× 3/1 1 16× 16× 512 2,359,808
NN Up. - - 32× 32× 512 0
Conv7 3× 3/1 1 32× 32× 512 2,359,808
Conv8 3× 3/1 1 32× 32× 512 2,359,808
NN Up. - - 64× 64× 512 0
Conv9 3× 3/1 1 64× 64× 512 2,359,808
Conv10 3× 3/1 1 64× 64× 512 2,359,808
NN Up. - - 128× 128× 512 0
Conv11 3× 3/1 1 128× 128× 256 1,179,904
Conv12 3× 3/1 1 128× 128× 256 590,080
NN Up. - - 256× 256× 256 0
Conv13 3× 3/1 1 256× 256× 128 295,040
Conv14 3× 3/1 1 256× 256× 128 147,584
Conv15 1× 1/1 0 256× 256× 3 387
Total 27,670,659

TABLE II
DISCRIMINATOR

Layer Filter Size
/ Stride

Padding Output Shape # Params

Input (x, y) - - 256× 256× 6 0
Conv1 1× 1/1 0 256× 256× 64 448
Conv2 3× 3/1 1 256× 256× 64 36,928
Avg. Pool - - 128× 128× 64 0
Conv3 3× 3/1 1 128× 128× 128 73,856
Conv4 3× 3/1 1 128× 128× 128 147,584
Avg. Pool - - 64× 64× 128 0
Conv5 3× 3/1 1 64× 64× 256 295,168
Conv6 3× 3/1 1 64× 64× 256 590,080
Avg. Pool - - 32× 32× 256 0
Conv7 3× 3/1 1 32× 32× 512 1,180,160
Conv8 3× 3/1 1 32× 32× 512 2,359,808
Avg. Poo - - 16× 16× 512 0
Conv9 3× 3/1 1 16× 16× 512 2,359,808
Conv10 3× 3/1 1 16× 16× 512 2,359,808
Avg. Pool - - 8× 8× 512 0
Conv11 3× 3/1 1 8× 8× 512 2,359,808
Conv12 3× 3/1 1 8× 8× 512 2,359,808
Avg. Pool - - 8× 8× 512 0
MB stats - - 4× 4× 513 0
Conv13 3× 3/1 1 4× 4× 512 2,359,808
Conv14 4× 4/1 0 1× 1× 512 4,203,008
Flatten - - 512 0
FC - - 1 513
Total 20,686,681

Salimans et. al. [27] is an example. A simpler solution,
however, is proposed in [24], where the standard deviation
for each feature in each spatial location is computed and then
averaged, yielding a single number, which is replicated to
form an additional feature map that is inserted at end of the
discriminator. This solution seems effective to enforce some
diversity to the generator. Without this trick, however, we
found partial mode collapse to happen during training.

2018 International Joint Conference on Neural Networks (IJCNN)

Fig. 4. Random samples from the generator.

C. Model Architecture

We use architectures with a decaying number of convolu-
tional filters in the discriminator and generator. The architec-
ture for both is identical, except that the generator has more
convolutional filters. The generator has about 27M parameters
while the discriminator have about 20M.

1) Generator: The generator input is a noise tensor z ∈
R1×1×512 sampled from a prior normal distribution N (0, 1).
The tensor z is concatenated with a conditioning tensor
y ∈ R1×1×3 that represents the rotation (rx, ry, rz)

T of
the face along the three axes of space, yielding a tensor of
dimension 1 × 1 × 515. Unlike a common setup in GANs
where a fully connected layer is used to project z to higher
dimensional space and form 3-dimensional convolutional vol-
ume, the generator starts by applying convolutions direct to z
using padding to compensate to the small spatial dimensions
of the z tensor. We start with many small feature maps, then
a series of convolutions and upsampling operations convert
this high level representation to a 256 × 256 pixel image.
Upsampling is performed by Nearest Neighbour interpolation.
Every convolutional layer is followed by a Leaky Rectified
Linear Unit (Leaky Relu) activation with a leaky factor of 0.2,
except the last one, which is not followed by any activation.
The complete architecture for the generator is shown in
Table I.

2) Discriminator: The discriminator has as inputs real
images x and generated images G(z|y), both concatenated
with a conditioning vector y ∈ R1×1×3. We concatenate the
conditioning vector in the feature map axis of the discriminator
input, therefore, an RGB image with dimensions 4 × 4 × 3
would result in a 4× 4× 6 dimensional volume. This volume
is followed by a series of convolutions. Downsampling is
performed by average pooling. Each average pooling layer
reduces the spatial dimensions by half. Every convolutional
layer is followed by a Leaky Relu activation. Finally, in
the last block, we concatenate the minibatch of statics in

the feature map axis of the input for the first convolutional
layer. After the last convolution, the volume is reshaped and
linearly projected to form the discriminator output, which is
512-dimensional representation. The complete discriminator
architecture is shown in Table II.

IV. EXPERIMENTS

A. Dataset

We use the aligned version of CelebA Dataset [28] for
training. CelebA is composed of 202,055 images of 10,177
identities. Along with the images, annotations for 40 binary
attributes and 5 landmark location for each face are provided.
We use the full dataset as training set. As a form of compen-
sating for biases in pose, we add to the dataset a horizontally
flipped version of each image. Along with the images, for
each one, we compute the rotation vector, (rx, ry, rz)T using
landmark annotations provided in the dataset. Fig. 3 shows
the distributions of poses along the y-axis of space (yaw).
The rotation vector is then scaled to be in the range [0, 1]. In
order to bring the images to a square format and maintain the
aspect ratio, we perform a center crop in the images of the
size of its smallest dimension. We then resize the images to
match the current size being used in training. Finally, we scale
the pixel values of all images to be in the range [−1, 1].

B. Implementation Details

We train the generator and discriminator using simultaneous
gradient descent. In other words, at each training step we
update the weights of D and G, respectively. We use Adam
optimizer [29] with a learning rate of 0.001, β1 = 0 and
β2 = 0.99 for both G and D. The weight for the gradient
penalty term λGP is set to 10 and drift penalty εdrift is set
to 0.001. We show the discriminator 800k real images for the
stabilizing phase and 800k real images for the fade in phase.
We grow the networks until we reach the target resolution of
256 × 256 pixels. During training, we generate images every

2018 International Joint Conference on Neural Networks (IJCNN)

(a) Rotating a face by fixing the noise and evenly changing the conditioning factor from −75◦ to 75◦.

(b) Results from Masi et. al. [3] at 0◦, 40◦, 75◦

Fig. 5. Results.

2018 International Joint Conference on Neural Networks (IJCNN)

Fig. 6. Interpolation between two random faces in latent space.

500 steps for visual inspection reasons. Training time was
6 days, reported on a single NVIDIA 1080 Ti GPU using
PyTorch framework.

C. Inverse Mapping of the Generator

GANs are generative models that learn an implicit distri-
bution pg over the real data distribution pdata(x), meaning
that there is no direct mapping from an input x to latent
space z. In this sense, it is not possible to directly map a
face from a given person to latent space, modify the pose and
reconstruct. A natural approach would be to train an encoder
network to learn the mapping fθ : x 7→ z. The ICGAN [30]
approach at temps to learn that mapping for conditional GANs,
specifically, with two encoders, one to map fθ : x 7→ z and
another to map fθ : x 7→ y, where y is the conditioning factor.
In our experiments, such approach did not work. We believe
that there are two main reasons why it did not succeeded.
First, prior GAN training used to employ latent space of lower
dimensional size (e.g. 128-dimensional or smaller) as opposed
as ours (512-dimensional). Learning a mapping to small latent
space is a lot easier. Secondly, a consequence of progressive
growing training is that generator becomes a highly non-linear
function, meaning that is non-trivial to train another network
to approximate its inverse. Finally, it is possible to use gradient
descent to approximate the latent tensor z that would generate
a given image x by minimizing the L1 reconstruction error
of the generator (|G(z)− x|). This is an approach that is not
practical for real world applications, but should give a fair
reconstruction of the given image x. In our experiments, we
used Adam to approximate the z tensor for test images, but
surprisingly, it had difficulty to do so, taking a long time to
approximate and not yielding good results. Our experience
showed to be difficult to perform the inverse mapping of the
progressive GAN generator. To the best of our knowledge,
there are no previous work that tackles this problem. We
believe this is an issue that requires an in-depth investigation.

D. Evaluation

A great challenge in working with generative models is that
there is not a clear way of how to perform a quantitative eval-
uation. Usually, generative models are used as part of another
application, where we can measure the overall impact on the
final application only. In our case, we perform a qualitatively
evaluation employing visual inspection on generated samples.
First we show that our learned latent representation is coher-
ent. Fig. 6 shows interpolation in latent space between two
randomly generated faces. Furthermore, in Fig. 5a we show
our method can indeed learn a disentangled representation. We
fix the input noise z and by varying the conditioning factor we
can rotate the face preserving the identity of the person. A key
aspect is that the CelebA dataset is composed mostly of near
frontal faces (as shown in Fig. 3), and even so, our model
can generalize and generate poses in more extreme angles.
Altough we capture the rotation of the face along the three
axes of space, we found rotation along other axes to have
very low variety in the training set (it is rare for people to be
looking up or down, for example). Therefore, rotation along
other axes do not present sharp results. Compared to previous
methods (Fig. 5b), our method can synthesize better looking
images, preserving semantics of the face. As noted previously,
a drawback is that there is not a way to perform the inverse
mapping of the generator, especially in the case of progressive
GANs.

V. RELATED WORK

Synthesizing face poses has been long desired in face-
related computer vision tasks. Most of prior work focus on
synthesizing a frontal view of the face, also known as face
frontalization, aiming to aid face recognition. In this sense,
previous works [1], [2] make use of classic computer graphics
algorithms to bring faces to a frontal view. The challenging
part of such methods is that they need to take care of
compensating for information loss due to self-occlusion, which

2018 International Joint Conference on Neural Networks (IJCNN)

may compromise the quality of final results. More recently,
other methods that employ Deep Learning have been proposed
[12]–[14]. These methods brought a leap of improvement but
still lack the ability to generate realistic images. Generating a
frontal view of the face may aid face recognition. However, we
argue that generating faces in different poses may help face
recognition even further. In [3], for example, it is proposed
a method to synthesize faces in different poses. Although
the goal was to perform data augmentation for training face
recognition algorithms, the synthesis at test time showed
promising results in helping improving face matching.

VI. CONCLUSION

We present a novel method for face pose synthesis: we apply
a conditioning method to control the rotation of synthesized
faces along the three axes of space (roll, pitch, yaw). We
compute the angles of the face in space and use the angles
to train a conditioned version of a state-of-the-art GAN. We
treat the pose as a continuous feature, with angles varying
from −75◦ to 75◦. The great advantage of having the pose
as a continuous feature in latent space is that we have
absolute control over the pose we would like to synthesize.
Furthermore, our method does not require training data to
have annotations of any kind, we can estimate the pose using
standard face landmark detectors. Finally, this method can
be easily applied to perform data augmentation to improve
training of face recognition algorithms, ease the job of face
recognition systems in face matching, and even help in law
enforcement.

REFERENCES

[1] T. Hassner, S. Harel, E. Paz, and R. Enbar, “Effective face
frontalization in unconstrained images,” in IEEE Conf. on Computer
Vision and Pattern Recognition (CVPR), June 2015. [Online]. Available:
http://www.openu.ac.il/home/hassner/projects/frontalize

[2] X. Zhu, Z. Lei, J. Yan, D. Yi, and S. Z. Li, “High-fidelity pose
and expression normalization for face recognition in the wild,” in
Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2015, pp. 787–796.

[3] I. Masi, A. T. Trn, T. Hassner, J. T. Leksut, and G. Medioni, “Do we
really need to collect millions of faces for effective face recognition?”
in European Conference on Computer Vision. Springer, 2016, pp. 579–
596.

[4] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial nets,” in
Advances in neural information processing systems, 2014, pp. 2672–
2680.

[5] P. Isola, J.-Y. Zhu, T. Zhou, and A. A. Efros, “Image-to-image translation
with conditional adversarial networks,” arXiv preprint, 2017.

[6] Y. Choi, M. Choi, M. Kim, J.-W. Ha, S. Kim, and J. Choo, “Stargan:
Unified generative adversarial networks for multi-domain image-to-
image translation,” arXiv preprint arXiv:1711.09020, 2017.

[7] T.-C. Wang, M.-Y. Liu, J.-Y. Zhu, A. Tao, J. Kautz, and B. Catanzaro,
“High-resolution image synthesis and semantic manipulation with con-
ditional gans,” arXiv preprint arXiv:1711.11585, 2017.

[8] J.-Y. Zhu, T. Park, P. Isola, and A. A. Efros, “Unpaired image-to-image
translation using cycle-consistent adversarial networks,” arXiv preprint
arXiv:1703.10593, 2017.

[9] D. Pathak, P. Krahenbuhl, J. Donahue, T. Darrell, and A. A. Efros,
“Context encoders: Feature learning by inpainting,” in Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, 2016,
pp. 2536–2544.

[10] J.-Y. Zhu, P. Krähenbühl, E. Shechtman, and A. A. Efros, “Generative
visual manipulation on the natural image manifold,” in European Con-
ference on Computer Vision. Springer, 2016, pp. 597–613.

[11] C. Ledig, L. Theis, F. Huszár, J. Caballero, A. Cunningham, A. Acosta,
A. Aitken, A. Tejani, J. Totz, Z. Wang et al., “Photo-realistic single
image super-resolution using a generative adversarial network,” arXiv
preprint arXiv:1609.04802, 2016.

[12] L. Tran, X. Yin, and X. Liu, “Representation learning by rotating your
faces,” arXiv preprint arXiv:1705.11136, 2017.

[13] X. Yin, X. Yu, K. Sohn, X. Liu, and M. Chandraker, “Towards large-
pose face frontalization in the wild,” arXiv preprint arXiv:1704.06244,
2017.

[14] R. Huang, S. Zhang, T. Li, and R. He, “Beyond face rotation: Global
and local perception gan for photorealistic and identity preserving frontal
view synthesis,” arXiv preprint arXiv:1704.04086, 2017.

[15] R. Gross, I. Matthews, J. Cohn, T. Kanade, and S. Baker, “Multi-pie,”
Image and Vision Computing, vol. 28, no. 5, pp. 807–813, 2010.

[16] K. Zhang, Z. Zhang, Z. Li, and Y. Qiao, “Joint face detection and
alignment using multitask cascaded convolutional networks,” IEEE
Signal Processing Letters, vol. 23, no. 10, pp. 1499–1503, Oct 2016.

[17] I. Goodfellow, “Nips 2016 tutorial: Generative adversarial networks,”
arXiv preprint arXiv:1701.00160, 2016.

[18] A. Radford, L. Metz, and S. Chintala, “Unsupervised representation
learning with deep convolutional generative adversarial networks,” arXiv
preprint arXiv:1511.06434, 2015.

[19] X. Chen, Y. Duan, R. Houthooft, J. Schulman, I. Sutskever, and
P. Abbeel, “Infogan: Interpretable representation learning by informa-
tion maximizing generative adversarial nets,” in Advances in Neural
Information Processing Systems, 2016, pp. 2172–2180.

[20] X. Mao, Q. Li, H. Xie, R. Y. Lau, Z. Wang, and S. P. Smolley, “Least
squares generative adversarial networks,” in 2017 IEEE International
Conference on Computer Vision (ICCV). IEEE, 2017, pp. 2813–2821.

[21] M. Arjovsky, S. Chintala, and L. Bottou, “Wasserstein gan,” arXiv
preprint arXiv:1701.07875, 2017.

[22] M. Mirza and S. Osindero, “Conditional generative adversarial nets,”
arXiv preprint arXiv:1411.1784, 2014.

[23] I. Gulrajani, F. Ahmed, M. Arjovsky, V. Dumoulin, and
A. Courville, “Improved training of wasserstein gans,” arXiv preprint
arXiv:1704.00028, 2017.

[24] T. Karras, T. Aila, S. Laine, and J. Lehtinen, “Progressive growing
of gans for improved quality, stability, and variation,” arXiv preprint
arXiv:1710.10196, 2017.

[25] Y. Bengio, P. Lamblin, D. Popovici, and H. Larochelle, “Greedy layer-
wise training of deep networks,” in Advances in neural information
processing systems, 2007, pp. 153–160.

[26] K. He, X. Zhang, S. Ren, and J. Sun, “Delving deep into rectifiers:
Surpassing human-level performance on imagenet classification,” in
Proceedings of the IEEE international conference on computer vision,
2015, pp. 1026–1034.

[27] T. Salimans, I. Goodfellow, W. Zaremba, V. Cheung, A. Radford, and
X. Chen, “Improved techniques for training gans,” in Advances in Neural
Information Processing Systems, 2016, pp. 2234–2242.

[28] Z. Liu, P. Luo, X. Wang, and X. Tang, “Deep learning face attributes
in the wild,” in Proceedings of International Conference on Computer
Vision (ICCV), December 2015.

[29] D. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
arXiv preprint arXiv:1412.6980, 2014.

[30] G. Perarnau, J. van de Weijer, B. Raducanu, and J. M. Álvarez,
“Invertible conditional gans for image editing,” arXiv preprint
arXiv:1611.06355, 2016.

2018 International Joint Conference on Neural Networks (IJCNN)

