
Bandit-Based Automated Machine Learning

Silvia Nunes das Dôres, Duncan Ruiz
Escola Politécnica

PUCRS

Porto Alegre, Brazil

Email: silvia.dores@acad.pucrs.br

Email: duncan.ruiz@pucrs.br

Carlos Soares
FEUP

Universidade do Porto

Porto, Portugal

Email: csoares@fe.up.pt

Abstract—Machine Learning (ML) has been successfully ap-
plied to a wide range of domains and applications. Since the
number of ML applications is growing, there is a need for tools
that boost the data scientist’s productivity. Automated Machine
Learning (AutoML) is the field of ML that aims to address
these needs through the development of solutions which enable
data science practitioners, experts and non-experts, to efficiently
create fine-tuned predictive models with minimum intervention.
In this paper, we present the application of the multi-armed
bandit optimization algorithm Hyperband to address the Au-
toML problem of generating customized classification workflows,
a combination of preprocessing methods and ML algorithms
including hyperparameter optimization. Experimental results
comparing the bandit-based approach against Auto ML Bayesian
Optimization methods show that this new approach is superior to
the state-of-the-art methods in the test evaluation and equivalent
to them in a statistical analysis.

I. INTRODUCTION

The process of Knowledge Discovery in Databases involves

several steps, such as selecting a subset of data, cleaning and

transforming data, extracting features, choosing appropriate

data mining techniques for pattern extraction, evaluating and

interpreting results, and implementing such results [1]. To

select methods and algorithms that performs well for a given

task it is usually required deep domain expertise, brute-

force and/or laborious hand-tuning [2]. Since the demand

for Machine Learning (ML) algorithms grows faster than the

supply of machine learning experts, there is an increasing need

for methods to automatically select, combine and configure

algorithms to the task at hand.

Automated Machine Learning (AutoML) is the area that

merges research efforts to automation of Machine Learning,

which includes algorithm selection, model selection and hyper-

parameter optimization [3]. Automatic workflow selection is

the area of AutoML that groups these various challenges, i.e.,

it aims to design and recommend an optimized combination of

preprocessing methods and machine learning algorithms, in-

cluding their hyperparameter configuration, to specific learning

tasks without much dependency on user knowledge. Figure 1

shows an overview of AutoML tasks.

Currently, the big challenge in automatic workflow selection

area is the potentially large size of the search space, especially

when it includes hyperparameter optimization. The number of

possible hyperparameter combinations increases exponentially

with the number of components in a workflow (methods and

algorithms) and in most cases it is not computationally feasible

to evaluate all of them [4].

In this paper, we address the problem of automatic workflow

selection with the application of the multi-armed bandit based

algorithm, Hyperband. Initially proposed by [5], Hyperband

had as its main focus only the hyperparameter optimization.

In this work, we present an extension of this algorithm

that supports the optimization of workflows, which includes

preprocessing methods, learning algorithms and their respec-

tive hyperparameters. The framework generated from this

approach, named Auto-Band (AUTOmated Machine Learning

using BANDdit-Based Optimization), includes a wide variety

of classification algorithms and preprocessing methods from

the popular machine learning library Weka [6].

To demonstrate the efficiency of Auto-Band to automatic

workflow selection, we present a comparison with the most

prominent Bayesian Optimization (BO) methods, Auto-Weka

and Auto-Sklearn. Results show that this new AutoML ap-

proach performed better than the baselines when compared

to the classification error. On the other hand, statistical tests

show that there is an equivalence between the approaches.

Based on these results, it is also possible to extract insights

for the evolution of the proposed approach, which includes the

addition of new operators as well as a metalearning strategy.

The paper is organized as follow. Section 2 presents the

definition of Automatic Workflow Selection. Section 3 presents

the related work. Section 4 present the Hyperband algorithm

and details it application in automatic workflow selection. In

Section 5, we show the comparison between Auto-Band and

the state-of-the-art BO solutions. A general discussion and the

conclusions are provided in Section 6.

II. BACKGROUND

Automatic workflow selection problem was initially formal-

ized by Thornton et al. [7], as Combined Algorithm Selection

and Hyperparameter optimization (CASH) problem:

Definition 1: Given A = {A(1), ..., A(R)} as a set of

learning algorithms with associated hyperparameter spaces

Λ(1), ...,Λ(R), Dtrain = {(x̂1, y1), ..., (x̂n, yn)} as a training

dataset split into k-cross validation folds {D(1)
valid, ..., D

(k)
valid}

and {D(1)
train, ..., D

(k)
train} such that D

(i)
train = Dtrain

D
(i)
valid

for

i = 1, ..., k and L(A
(j)
λ , D

(i)
train, D

(i)
valid) as the result of an

121

2018 7th Brazilian Conference on Intelligent Systems

978-1-5386-8023-0/18/$31.00 ©2018 IEEE
DOI 10.1109/BRACIS.2018.00029

Fig. 1. Automated Machine Learning Tasks

objective function that algorithm A(j) achieves on D
(i)
valid

when trained on D
(i)
train with hyperparameters λ.

The problem consists of finding the joint algorithm A∗ and

hyperparameter setting λ∗ that optimizes an objective function

L (Equation 1 minimizes the k-fold-cross-validation error):

A∗λ∗ = min
A(j)∈A,λ∈Λ(j)

1

K

K∑
i=1

L(A
(j)
λ , D

(i)
train, D

(i)
valid) (1)

Address the CASH problem with classical solutions as grid

search, i.e. an exhaustive search over all the possible com-

binations of discretized parameters, can be computationally

prohibitive in large search spaces or with big datasets. Instead,

a simpler mechanism like random search, where the search

space is randomly explored in a limited amount of time, has

been shown to be more effective in high-dimensional spaces.

Novel approaches gaining popularity in the recent years are

based on a Bayesian Optimization methods [7] [8].

III. RELATED WORK

Auto-Weka [7] and Auto-Sklearn [8] are the most prominent

AutoML systems to address the automatic workflow selection

problem. Both use Bayesian Optimization method, that fits

a probabilistic model to capture the relationship between

hyperparameter settings and their measured performance; it

then uses this model to iteratively select and evaluate the most

promising hyperparameter setting, the trade off exploration of

new parts of the space vs. exploitation in known good regions

[8].

Auto-WEKA [7] was the first AutoML system proposed to

address the CASH problem. As optimization strategies it uses

two Bayesian Optimization algorithms: Sequential Model-

based Algorithm Configuration (SMAC) and Tree-structured

Parzen Estimator (TPE). Both algorithms are based in Sequen-

tial Model-Based Optimization [9], a stochastic optimization

framework that can work explicitly with both categorical and

continuous hyperparameters, and that can exploit hierarchi-

cal structure stemming from conditional parameters. In the

experimental setup they consider feature selection techniques

(combining 3 searchers and 8 evaluators methods) and all

classification approaches implemented in WEKA, spanning

2 ensemble methods, 10 meta-methods, 27 base classifiers,

and hyperparameter settings for each classifier. Kotthoff et

al. [10] describe the new version of Auto-WEKA, the Auto-

Weka 2.0. The improvements with respect to Auto-WEKA 0.5

are: i) support regression algorithms, expanding Auto-WEKA

beyond its previous focus on classification; ii) support the

optimization of all performance metrics WEKA supports; iii)

natively support parallel runs (on a single machine) to find

good configurations faster and save the N best configurations

of each run instead of just the single best.

Feurer et al. [8] introduce a AutoML system based on

Scikit-learn, Auto-Sklearn. It improves on existing AutoML

methods by automatically taking into account past perfor-

mance on similar datasets, and by constructing ensembles

from the models evaluated during the optimization. First, it

searches across datasets to identify instantiations of machine

learning frameworks that perform well on a new dataset and

warmly start Bayesian Optimization with them. Second, it

automatically constructs ensembles of the models considered

by Bayesian Optimization. The authors design a parameterized

machine learning framework from classifiers and preproces-

sors implemented in the machine learning framework Scikit-

learn [11]. They also perform an empirical analysis using a

diverse collection of datasets to demonstrate the performance

of Auto-Sklearn system. Auto-Sklearn uses the same Bayesian

optimizer as Auto-WEKA, but comprises a smaller space

of models and hyperparameters, since Scikit-learn does not

implement as many different machine learning techniques as

WEKA.

IV. HYPERBAND TO AUTOMATIC WORKFLOW SELECTION

The optimization of the hyperparameters of the operators

(methods and algorithms) is the biggest challenge in the

workflow selection area. Since the hyperparameters values can

effectively affect the final workflow performance, the problem

is not only dealing with the size of the search space but also

to manage the time needed to evaluate every possible solution

[4].

Existing solutions, based on Bayesian Optimization, offer

efficiency in this area by adaptively choosing new workflows

configurations to train. These solutions focus in the config-
uration selection, i.e., to identify promising workflows con-

figurations more quickly than standard baselines, like random

search and grid search. Although these methods have shown

efficiency in comparison to the random search, a big challenge

122

faced by them is the problem of simultaneously fitting and

optimizing a high-dimensional space, with include non-convex

functions and noise evaluation. To address this problem, the

BO methods apply heuristics to model the objective function or

speed up resource subroutines. However, adaptive configura-

tion selection methods are intrinsically sequential and difficult

to parallelize [5].
In this sense, Li et al. [5] proposed Hyperband, a method

that formulates the hyperparameter optimization as a pure-

exploration adaptive resource allocation problem. In contrast

with existing methods, this new approach focuses in speeding

up configuration evaluation, i.e., it adaptively allocate more

resources to promising configurations while eliminating poor

ones. These resources can be different elements such as, time

of execution, number of features and number of iterations

(for iterative algorithms). In the workflow selection context

we assume resources as datasets examples (instances). By

exploring this perspective, they report better results than the

Bayesian Optimization methods, for hyperparameters opti-

mization problems.
The Hyperband approach builds upon Successive-Halving

(SH) algorithm [12], which allocates a budget to a set of

uniformly sampled configurations, evaluate the performance of

all configurations and prunes the worst half, until a single best

configuration remains. Thus, the algorithm allocates exponen-

tially more resources to more promising configurations. As the

overall performance of Successive-Halving critically depends

on the initial allocated computational resources, Hyperband

use a infinitely-many armed bandit approach on the space of

number of configurations to be considered in parallel.

1 input : R, η
2 initialization: smax =

⌊
logη(R)

⌋
, B = (smax + 1)R

3 for s ∈ {smax, ..., 0} do
4 n =

⌈
B
R

ηs

(s+1)

⌉
, r = Rη−s

5 T = get configurations(n)
6 for i ∈ {0, ..., s do
7 ni =

⌈
nη−i

⌉
8 ri = rηi

9 L = {performance evaluation(t, ri : t ∈ T)

10 T = top k(T, L,
⌊
ni

η

⌋
)

end
end

11 return Configuration with better performance evaluation

seen so far

Algorithm 1: Hyperband Algorithm, adapted from [5]

The Hyperband algorithm is described in Algorithm 1,

where: R is the maximum amount of resource that can be

allocated to a single configuration, and η is the parameter

that controls the proportion of discarded configurations in

each round of SH. These inputs dictated the number of SH

executions, s. The function get configurations returns a set

of n sampled configurations according to a fixed distribution.

The function performance evaluation takes a configuration

t and a resource allocation r and returns the validation loss

after training the configuration for the resources. Finally, the

function top k returns the top k best configurations.

Although Hyperband was initially designed to address only

the hyperparameter optimization problem, we can extend it to

deal with workflow selection, that is the aim of this work.

For this, we extend the search space, so that the function

get configurations initially sample workflows (methods of

preprocessing + machine learning algorithm), and, for each

sampled workflow, the hyperparameters for each component

will be selected. We named the Hyperband to AutoML as

Auto-Band.

A. Auto-Band Configuration

To design the Auto-Band system we choose Weka [6],

because it is one of the most widely applied ML Library

and contains a variety of preprocessing methods and ML

algorithms that is superior to other libraries, like Scikit-learn

[11]. Currently, we use 33 machine learning algorithms, 9

preprocessing methods from Weka.

Table 1 shows a list of the available classifiers algorithms,

which has a total of 115 hyperparameters. These algorithms are

heterogeneous to represent the different categories of machine

learning algorithms, such as nearest neighbor (KNN, KStar),

probabilistic (NaiveBayes, BayesNet, NaiveBayes Multino-

mial), decision trees (HoeffdingTree, J48, REPTree, Ran-

domTree, M5P, DecisionStump, LMT) , optimization-based

(MultilayerPerceptron, SGD, SVM, Logistic, Simple Logis-

tic, Voted Perceptron), rule generator (JRip, OneR, ZeroR,

Decision Table, PART) and ensemble (AdaBoost M1, Ran-

domForest, RandomSubset, RandomCommitte, Vote, Stacking,

Bagging, LogitBoost).

As preprocessing, we choose Feature Selection (FS) and

Feature Extraction (FE) methods, because data with extremely

high dimensionality has presented one of the most prominent

challenges to existing learning methods [13], and these are the

most widely employed techniques for reducing dimensionality

[14]. The FS methods aims to select a subset of variables

from the input data which can efficiently describe these data.

To obtain more generalisable results, we evaluate FS methods

with different measures of importance such as correlation,

information gain and distance. Unlike FS methods, Feature

Extraction methods do not select a portion of the original

data, but transform this data to a new robust representation. In

addition to the methods, we also optimize the hyperparameters

of three types of searches, that define how the features will be

combined [15]: Best First, Greedy Stepwise and Ranker. Table

2 presents the complete list of preprocessing methods. In total,

28 hyperparameters were optimized, between evaluators (E)

and searchers (S).

V. COMPARING AUTO-BAND WITH AUTO-SKLEARN AND

AUTO-WEKA

To demonstrate the efficiency of the proposed approach to

automatic workflow selection problem, we perform a compar-

123

TABLE I
CLASSIFIERS ALGORITHMS AVAILABLE IN AUTO-BAND AND THE NUMBER

OF HYPERPARAMETERS FOR EACH ONE.

name #hp categorical numerical
AdaBoost M1 4 1 3
Bagging 4 1 3
BayesNet 2 2 0
DecisionStump 1 1 0
DecisionTable 4 4 0
HoeffdingTree 6 0 6
J48 8 6 2
JRip 3 2 1
KNN 4 2 2
KStar 3 2 1
LMT 7 5 2
LogitBoost 5 1 4
Logistic 1 0 1
LWL 3 3 0
Multilayer Perceptron 8 4 4
M5P 4 3 1
M5R 4 3 1
NaiveBayesMultinomial 0 0 0
Naive Bayes 2 2 0
OneR 1 0 1
PART 4 2 2
Random Forest 3 0 3
Random Tree 5 1 4
Random Subset 3 0 3
Random Committe 2 0 2
REPTree 4 1 3
Stacking 2 0 2
SimpleLogistic 3 3 0
Stochastic Gradient Descent 5 2 3
SVM 4 2 2
Vote 2 1 1
Voted Perceptron 3 0 3
ZeroR 1 1 0

TABLE II
PREPROCESSING METHODS AVAILABLE IN AUTO-BAND AND THE NUMBER

OF HYPERPARAMETERS FOR EACH ONE.

name Type #hp categorical numerical
CFS Subset Eval E 3 2 1
Classifier Attribute Eval E 1 1 0
Gain Ratio Eval E 1 1 0
Info Gain Eval E 2 2 0
OneR Attribute Eval E 3 1 2
PCA E 3 1 2
RELIEF Eval E 4 1 3
Symmetrical Uncert E 1 1 0
Wrapper Sub Eval E 4 2 2
Best First S 2 0 2
Greedy Stepwise S 3 3 0
Ranker S 1 0 1

ison with two state-of-the-art Bayesian Optimization methods:

Auto-Weka and Auto-Sklearn.

We based our experiments on the experimental setup intro-

duced in Auto-Weka paper [7] and replicate in Auto-Sklearn

paper [8]. Table 3 shows the detailed description of the 21

benchmark datasets used: 15 datasets from UCI repository

[16]; ”Convex”, MNISTBasic and MNISTRotated from [17];

”KDD09-Appetency” from [18]; Cifar10 and Cifar-10-Small

from [19]. For these datasets, we use the original train/test split

proposed in [7]: the train data were split in 80% training and

20% validation, and the test data was only used to evaluate

TABLE III
DATASETS USED TO COMPARISON, FROM [7]. NUMBER OF CONTINUOUS

ATTRIBUTES, NUMBER OF NUMERIC ATTRIBUTES, NUMBER OF TRAINING

SAMPLES AND NUMBER OF TEST SAMPLES

name #cont. #num. #classes #training #test
Abalone 7 1 26 2924 1253
Amazon 10000 0 50 1050 450
Car 0 6 4 1210 518
Cifar10 3072 0 10 50000 10000
Cifar-10-Small 3072 0 10 10000 10000
Convex 784 0 2 8000 50000
Dexter 20000 0 2 420 180
Dorothea 100000 0 2 805 345
GermanCredit 7 13 2 700 300
Gisette 5000 0 2 4900 2100
KDD09-Appetency 192 38 2 35000 15000
KR-vs-KP 0 36 2 2238 958
Madelon 500 0 2 1820 780
MNISTBasic 784 0 10 12000 500000
MNISTRotated 784 0 10 12000 500000
Secom 590 0 2 1097 470
Semeion 256 0 10 1116 477
Shuttle 9 0 7 43500 14500
Waveform 40 0 3 3500 1500
Wine Quality White 11 0 7 3429 1469
Yeast 8 0 10 1039 445

the workflows found in the optimization phase.

We impose a 5GB memory limit, 6-minute timeout for

each workflow configuration and a one-hour time window to

evaluate each strategy on each dataset. Ten trials on each

search were performed per dataset. We run Auto-band with

η = 3, i.e. each run of Successive Halving discard 2/3 of

the arms and keeps the remains 1/3. R is set to equal the

training set and nmax = max{12, R/700}. All experiments

use Auto-Weka 2.6, Weka 3.9 and Auto-Sklearn 0.3.0.

The experiments were ran on two Intel Core i7-4770 eight-

core processors with 3.40GHz and 12 GB of RAM.

A. Experimental Results

Table 4 shows the test set classification error of Auto-Band

(AB), Auto-Sklearn (AS) and Auto-Weka (AW). We show the

average error across 10 runs of each approach.

All approaches had ”memory out” problem for the

”KDD09-Appetency” and ”Dorothea” datasets, considering

the proposed RAM configuration of 5GB, so the results

in these datasets are not considered. Auto-Sklearn also had

”memory out” problem for the ”Cifar10”. Our results are

slightly different from those presented in [7] and [8], we

believe that it is because of the different versions used of Auto-

Weka and Auto-Sklearn, since for these experiments we used

the current versions of both frameworks.

The results show that Auto-Band performs better than Auto-

Sklearn and Auto-Weka in the average classification error, for

the 19 datasets computed. Compared with Auto-Sklearn, Auto-

Band won in 12/19 datasets, lost against 9 and tied for 1/19.

In relation to Auto-Weka, Auto-Band won in 11/19 cases,

and lost in 8 cases. In a overview, Auto-Band performs better

in 8/19 cases, Auto-Weka in 8/19 and Auto-Sklearn in 4/19,

considering the ties. These results show that, on average, Auto-

124

TABLE IV
TEST SET CLASSIFICATION ERROR OF AUTO-BAND (AB), AUTO-SKLEARN (AS) AND AUTO-WEKA (AW).

Abalone Amazon Car Cifar10
Cifar10
Small

Convex Dexter
German
Credit

Gisette KRvsKP

AB 0.768 0.640 0.100 0.679 0.765 0.320 0.112 0.284 0.033 0.001
AS 0.963 0.897 0.025 - 0.831 0.288 0.053 0.295 0.035 0.008
AW 0.753 0.597 0.005 0.681 0.708 0.458 0.269 0.290 0.045 0.044

Madelon
MNIST
Basic

MNIST
Rot

Secom Semeion Shuttle Waveform
Wine
Quality

Yeast

AB 0.268 0.137 0.672 0.079 0.084 0.000 0.175 0.456 0.407
AS 0.128 0.393 0.853 0.085 0.103 0.000 0.145 0.449 0.764
AW 0.269 0.107 0.756 0.001 0.116 0.078 0.139 0.353 0.410

Fig. 2. Critical Difference diagram (with α = 0.05) of the comparison between
Auto-Band with Auto-Sklearn and Auto-Weka

Band performance is quite close to Auto-weka, although our

results are slightly higher.

This is emphasized in a statistical evaluation, where we can

see that, although there is a difference between the Auto-Weka,

Auto-Sklearn and Auto-Band, this difference is not statistically

significant. These tests were carried out using the methodology

proposed by Demšar [20]: Friedman rank test with Nemenyi

test for post-hoc multiple comparisons, and presented in Figure

2. AutoML approaches are sorted by their average ranking

(lower is better), and those connected by a horizontal line are

statistically equivalent.

In addition, we identified the best workflows generated for

each dataset, which are presented in Table 5. To improve the

visualization of the information, we did not include the values

of the hyperparameters in the table, only the preprocessing

methods and the learners.

The workflows generated by Auto-Sklearn contains data

preprocessing methods to replace categorical features, imputa-

tion of missing values, rescaling features and balancing class.

Since Auto-Band only contains feature selection and feature

extraction methods, one possibility for improvement would be

the inclusion of these methods, which would generate complex

chains of operators.

On the other hand, the most current version available of

Auto-Weka (2.6) contains only the CFS Sub Eval method as a

pre-processing method. Therefore, all workflows are composed

of it or only by the learning algorithm.

We can see that Auto-Band found the best workflow for

most cases (8/19). In the cases of the datasets Amazon,

MNISTBasic and Secom, Auto-Band found the workflow with

better performance, but in the average results was exceeded by

Auto-Weka. We also note that only one workflow generated

by Auto-Band has a preprocessing method.

The original Hyperband starts uniformly sampling the con-

figurations to be evaluated, because there is no previous

information about which ones will work well to the current

problem. Although it follows a defined distribution (for ex-

ample, uniform), this sampling of configurations is random,

and since the search space grows (in this case the possibilities

of combination of operators is of 1,150) many non-promising

configurations are tested, which behavior varies largely as the

algorithm runs several times. Thus, if there was the possibility

of using supplementary information (such as meta-data from

previous experiences), Hyperband’s choices could be directed

to the most promising configurations, making performance

more stable.

VI. DISCUSSION AND CONCLUSIONS

In this paper, we present and evaluate the application

of Hyperband Algorithm to address the AutoML workflow

selection problem, an approach that we named Auto-Band.

When we consider that the initial search space of Hyperband

only included hyperparameters for a single algorithm, we can

see that our proposed work configures a more complex and

robust application of the Hyperband algorithm.

Using this multi-armed bandit algorithm with adaptive re-

source to automatic workflow selection, we obtained equiva-

lent results in comparison with state-of-the-art Bayesian Op-

timization methods. These results are particularly interesting

when we consider that the baseline methods have a superior set

of preprocessing methods and ML algorithms, which allows

the generation of more robust workflows. As future improve-

ments in Auto-Band, we intend to extend the set of operators to

aggregate all preprocessing methods and supervised machine

learning algorithms available in Weka, which will allow us to

build complex chains of operators and to fulfill the regression

task.

An additional improvement to Auto-Band effectiveness is to

include a metalearning step. This metalearning approach will

use meta-data of previous experiences in similar datasets to

suggest which methods can achieve better performance in the

current data. With this, we intend to improve the quality of

the generated solutions.

REFERENCES

[1] U. Fayyad, G. Piatetsky-Shapiro, and P. Smyth, “From data mining to
knowledge discovery in databases,” AI magazine, vol. 17, no. 3, p. 37,
1996.

125

TABLE V
BEST WORKFLOW OPTIMIZED FOR EACH DATASET.

Data Workflow Error Framework

Abalone
prep: None
learner: MultilayerPerceptron

0.729 AW

Amazon
prep: None
learner: SVM

0.564 AB

Car
prep: CFS Sub Eval
learner: SVM

0.000 AW

Cifar10
prep: None
learner: SVM

0.600 AB

Cifar-10-Small
prep: Imputation Most Frequent, Feature Agglomeration Linkage
learner: K-NN

0.687 AS

Convex
prep: Rescaling Standardize, Fast ICA
learner: Extra Trees (Extremely Randomided Trees)

0.213 AS

Dexter
prep: One Hot Encoding, Imputation Mean
learner: LibSVM

0.044 AS

GermanCredit
prep: Balancing Weighting, Imputation Most Frequent, Feature Agglomeration
learner: Extra Trees

0.273 AS

Gisette
prep: None
learner: SVM

0.022 AB

KR-vs-KP
prep: CFS Sub Eval
learner: AdaBoostM1

0.003 AW

Madelon
prep: One Hot Encoding, Extra Trees Preprocessors for Classification
learner: K-NN

0.112 AS

MNISTBasic
prep: None
learner: K-NN

0.055 AB

MNISTRotated
prep: None
learner: RandomSubset

0.627 AB

Secom
prep: Wrapper Sub Eval
learner: Simple Logistic

0.078 AB

Semeion
prep: None
learner: Random Committe

0.079 AB

Shuttle
prep: None
learner: Random Forest

0.000 AB

Waveform
prep: CFS Sub Eval
learner: Multilayer Perceptron

0.137 AW

Wine Quality White
prep: CFS Sub Eval
learner: Random Forest

0.333 AW

Yeast
prep: CFS Sub Eval
learner: Bagging

0.373 AW

[2] A. G. de Sá, W. J. G. Pinto, L. O. V. Oliveira, and G. L. Pappa, “Recipe:
a grammar-based framework for automatically evolving classification
pipelines,” in European Conference on Genetic Programming. Springer,
2017, pp. 246–261.

[3] I. Guyon, K. Bennett, G. Cawley, H. J. Escalante, S. Escalera, T. K.
Ho, N. Macia, B. Ray, M. Saeed, A. Statnikov et al., “Design of the
2015 chalearn automl challenge,” in Neural Networks (IJCNN), 2015
International Joint Conference on. IEEE, 2015, pp. 1–8.

[4] M. M. Salvador, M. Budka, and B. Gabrys, “Automatic composition
and optimisation of multicomponent predictive systems,” arXiv preprint
arXiv:1612.08789, 2016.

[5] L. Li, K. Jamieson, G. DeSalvo, A. Rostamizadeh, and A. Talwalkar,
“Hyperband: A novel bandit-based approach to hyperparameter opti-
mization,” arXiv preprint arXiv:1603.06560, 2016.

[6] I. H. Witten, E. Frank, M. A. Hall, and C. J. Pal, Data Mining: Practical
machine learning tools and techniques. Morgan Kaufmann, 2016.

[7] C. Thornton, F. Hutter, H. H. Hoos, and K. Leyton-Brown, “Auto-weka:
Combined selection and hyperparameter optimization of classification
algorithms,” in Proceedings of the 19th ACM SIGKDD international
conference on Knowledge discovery and data mining. ACM, 2013, pp.
847–855.

[8] M. Feurer, A. Klein, K. Eggensperger, J. Springenberg, M. Blum,
and F. Hutter, “Efficient and robust automated machine learning,” in
Advances in Neural Information Processing Systems, 2015, pp. 2962–
2970.

[9] F. Hutter, H. H. Hoos, and K. Leyton-Brown, “Sequential model-based
optimization for general algorithm configuration.” LION, vol. 5, pp. 507–
523, 2011.

[10] L. Kotthoff, C. Thornton, H. H. Hoos, F. Hutter, and K. Leyton-

Brown, “Auto-weka 2.0: Automatic model selection and hyperparameter
optimization in weka,” Journal of Machine Learning Research, vol. 17,
pp. 1–5, 2016.

[11] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vander-
plas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duch-
esnay, “Scikit-learn: Machine learning in Python,” Journal of Machine
Learning Research, vol. 12, pp. 2825–2830, 2011.

[12] K. Jamieson and A. Talwalkar, “Non-stochastic best arm identification
and hyperparameter optimization,” in Artificial Intelligence and Statis-
tics, 2016, pp. 240–248.

[13] J. Tang, S. Alelyani, and H. Liu, “Feature selection for classification: A
review,” Data Classification: Algorithms and Applications, p. 37, 2014.

[14] Q. Yang and X. Wu, “10 challenging problems in data mining research,”
International Journal of Information Technology & Decision Making,
vol. 5, no. 04, pp. 597–604, 2006.

[15] A. R. S. Parmezan, H. D. Lee, and F. C. Wu, “Metalearning for
choosing feature selection algorithms in data mining: Proposal of a new
framework,” Expert Systems with Applications, vol. 75, pp. 1–24, 2017.

[16] A. Asuncion and D. Newman, “Uci machine learning repository,” 2007.
[17] J. Bergstra and Y. Bengio, “Random search for hyper-parameter opti-

mization,” Journal of Machine Learning Research, vol. 13, no. Feb, pp.
281–305, 2012.

[18] “Kdd cup 2009: Customer relationship prediction,” 2009.
[19] A. Krizhevsky and G. Hinton, “Learning multiple layers of features from

tiny images,” 2009.
[20] J. Demšar, “Statistical comparisons of classifiers over multiple data sets,”

Journal of Machine learning research, vol. 7, no. Jan, pp. 1–30, 2006.

126

