Reinforcement learning applied to RTS games

Leonardo R. Amado

Potifical Catholic University of Rio Grande do Sul

Av. Ipiranga, 6681
Porto Alegre, Brazil
leonardo.amado@acad.pucrs.br

ABSTRACT

Reinforcement learning algorithms are often used to com-
pute agents capable of acting in environments without any
prior knowledge. However, these algorithms struggle to con-
verge in environments with large branching factors and their
large resulting state-spaces. In this paper, we develop an ap-
proach to compress the number of entries in a Q-value table
using a deep auto-encoder. We develop a set of techniques to
mitigate the large branching factor problem. We apply such
techniques in the scenario of a Real-Time Strategy (RTS)
game, where both state space and branching factor are a
problem. We empirically evaluate an implementation of the
technique to control agents in an RT'S game scenario where
classical reinforcement learning fails and point towards fu-
ture work.

CCS Concepts

eComputing methodologies — Multi-agent systems;

Keywords

Reinforcement Learning, Auto-encoder, Multi-agent

1. INTRODUCTION

Reinforcement learning (RL) is a subfield of machine learn-
ing that focuses on maximizing the total reward of an agent
through repeated interactions with a stochastic environment
[10]. This process occurs as an agent interacts with the en-
vironment multiple times, exploring the state-space of the
environment and evaluating the reward of executing differ-
ent actions. In order to converge to an optimal policy, an
agent using traditional reinforcement learning approaches
must explore the entire state space, executing every possi-
ble action. Consequently, these algorithms can take a long
time to to find optimal actions for all configurations of the
environment in environments where the state space, or the
number of possible actions in each state, is very large. How-
ever, this is intractable for complex problems such as multi-
player computer games. Here, the number of possible states
is large that there is neither sufficient storage capacity to
store, nor sufficient time to visit all possible states [11].

To avoid dealing with large state spaces, it is possible to
create a compact state representation of an environment, fo-
cusing only on the most important features. With compact
state representations, it is possible to learn complex tasks
in high-dimensional spaces, if the compact state represents
the most important features of the state. However, creat-
ing a compact state representation to represent huge state

Felipe Meneguzzi
Potifical Catholic University of Rio Grande do Sul
Av. Ipiranga, 6681
Porto Alegre, Brazil

felipe.meneguzzi@pucrs.br

spaces is a challenging task. There are currently two ways
two overcome this limitation. First, we can apply machine
learning techniques to generalize the state, assuming we can
define features capable of representing the state. Second, we
can map similar states into the same state so that an agent
can learn to act in states it has never visited using informa-
tion from such similar states. Recent developments on deep
learning [14] have yielded mechanisms to reduce dimension-
ality and find efficient encodings, using auto-encoders. In
this paper, we develop an approach that uses a deep auto-
encoder to compress the state-space and create an efficient
encoding capable of efficiently representing the state-space.
Even with a small state-space, agents must try every pair
of state and action multiple times before it has confidence
on a learned policy. This, in turn, subjects the system to a
combinatorial explosion when stored actions represent com-
binations of multiple agent’s actions, so the auto-encoder
technique alone does not ensure that the algorithm can visit
all combinations of actions from multiple agents. In this pa-
per we address this problem with by sharing the experience
of multiple similar agents spread over the state-space.

Thus, our contribution is a set of techniques to use re-
inforcement learning in environments with multiple agents,
and large state-space and branching factor. Recent research
applies reinforcement learning to simpler games that allow
the input to be the raw low resolution image output from
the game. However, these games have a relatively simple
state-space, which is not the case of RTS games. We thus
apply reinforcement learning using all available information
in a complex game where traditional reinforcement learning
algorithms are not viable. We evaluate these approaches
empirically in a multi-agent domain with a large state-space
generated by the scenario of a Real-time Strategy (RTS)
game called MicroRTS [7].

In this work, we aim to train an agent capable of playing
the game competitively against other artificial intelligence
players, using reinforcement learning techniques and a deep
auto-encoder. To do so, we must develop a state represen-
tation. We explain each detail necessary to ensure a that a
reinforcement learning algorithm can be converge and play
the RTS game competitively.

2. BACKGROUND
2.1 Q-Learning

Q-Learning is a model-free reinforcement learning algo-
rithm that does not need the transition function to learn the
optimal policy. The agent learns to act in the environment

by testing the possible results of performing an action in a
certain state, learning the utility of performing an action a
in a state s. The main idea of Q-Learning is to learn the util-
ity of executing an action when the agent is at a particular
state, rather than learning the utility of each state directly
and then computing a policy. The pair of state-action is
represented by a Q-Value. A Q-Value Q(a, s) contains the
utility of executing action a on the state s.

Since the agent does not know the transition function, the
agent will learn how to act through checking the possible
results of performing an action in a certain state, thus the
algorithm learns the utility of performing an action a in a
state s. The utility of a state can be described as the highest
reward that is possible to obtain in a state. The utility of a
state can be written as the following equation:

U(S) = maz.Q(a, s) (1)

we use equation 1 instead of Bellman equation, to update
a Q-Value, by removing the transition function from the
equation. The update rule of the state of the Q-Learning
algorithm can be written as the following equation:

Q(a,s) = Q(a, s)+a(R(s) +ymazaQ(a s) —Q(a, s)) (2)

were « is the learning rate, which ranges between 0 and 1.
When 0, nothing is learned, and when 1, the learned value
is fully considered. < is the discount factor, which ranges
between 0 and 1. When 0, future rewards are irrelevant,
and when 1, future rewards are fully considered. Equation 2
implements the Q-Learning update as part of Algorithm 1,
based on the specification from [15].

The Q-Learning algorithm requires a trade-off between ex-
ploration and exploitation. The algorithm can either choose
to continue exploring different actions on states, or exploit
the current computed policy to act in an environment. The
exploration function can differ in each implementation, such
as a balance between exploration and exploitation devel-
oped by [13], but in most cases it forces the agent to ex-
plore actions that were never tried in certain states, explor-
ing at least once every possible action in every state. The
exploration function controls how the agent behaves until
the algorithm converges. Since every Q-Value starts as null,
Q-Learning relies only on the exploration function to start
exploring the environment. We denote the exploration func-
tion in Algorithm 1 as function f.

The SARSA (State-Action-Reward-State-Action) [8] al-
gorithm is a variation of Q-learning, with a small change to
the update rule. SARSA learns action values relative to the
policy it follows, while Q-Learning does it relative to the
exploration policy. Under some conditions, they both con-
verge to the real value function, but at different rates. The
update rule for SARSA is represented as follows:

Q(a,s) = Q(a,s) + a(R(s) +1Q(a’,s) — Q(a,s)) (3)

where @’ is the action taken in state s’. The update rule is
applied at the end of each s a r s’ @’ quintuple. The SARSA
algorithm will act on the environment and update the policy
based on actions taken.

2.2 Artificial Neural Networks

Artificial Neural Networks are a group of models, loosely
inspired on the human brain, designed to recognize patterns.
ANNSs are composed of multiple nodes, organized in layers.
A node is an artificial neuron responsible for computing the

Algorithm 1: Q-Learning pseudo code.

Input: percept, a percept indicating the current state
s’ and reward signal 7’
Output: An action a.
Persistent: (), a table of action value indexed by state
and action, initially zero ;
Nsa, a table of frequencies for state-action pairs,
initially zero ;
s, the previous state, initially null;
a, the previous action, initially null ;
r, the previous reward, initially null;
if isTerminal(s’) then
| Qls', None] 1" ;
end
if s is not null then
Nls,a] + Nls,a] +1;
Qls a] Qls, a] + a(r +ymax Qls',] ~ Qls, a]) ;

end

s« sir—1;

a + argmax f(Qls',a'], NIs',a']) ;
a

return a

output. The nodes combines input from the data with a set
of coefficients (or weights) that amplifies our suppress an
input. An ANN contains three types of layers [1]:

1. An Input layer responsible for receiving the signal
(data) that feeds the neural network.

2. A Output layer responsible for receiving the signal
from the hidden layer (or input if there is no hidden
layer in the network) and producing the output of the
network. For example, in a classification problem, this
layer will output which class the input belongs to.

3. A Hidden layer responsible for receiving the signal
from the input layer. Every layer between the input
and the output layer is considered a hidden layer.

These layers are interconnected, sending information from
one layer to another subject to weights in the inter-layer
connections. Artificial Neural Networks solve multiple ma-
chine learning task problems, such as classification, regres-
sion and dimensionality reduction. To solve different tasks,
ANNSs can use supervised, unsupervised and reinforcement
learning algorithms.

A Deep Neural Network (DNN) is an ANN with multi-
ple hidden layers between the input and the output layers.
There are several types of DNNs, such as deep belief net-
works, deep auto-encoders, convolutional neural networks
and deep Boltzmann machines [18]. These types are defined
based on the architecture of these networks. In this work, we
use a deep auto-encoder to encode the values in the Q-table.

2.3 Deep auto-encoder

A deep auto-encoder is a type of deep neural network ca-
pable of converting inputs to a more compact representa-
tion of itself [14]. A deep auto-encoder is composed of two
connected symmetrical neural networks. The first network
encodes the input into an internal representation and the
second decodes the internal representation back to the orig-
inal input.

Compresed
Feature

Encoder Decoder

Figure 1: Deep auto-encoder architecture.

We illustrate the architecture of an auto-encoder in Fig-
ure 1, which comprises two neural networks connected by a
middle layer containing a compressed representation. Here,
X represents a variable number of nodes for both the input
and the output layers, N represents a variable number of
nodes for the layer that the connects both networks. Blue
nodes represent the nodes of the encoder network, trans-
forming the input in the compressed representation. The
green nodes represent the nodes where the input becomes
its compressed encoding. The red nodes represent the nodes
of the decoder network, which, from the encoded represen-
tation, incrementally transforms the encoded data back to
the original form.

Suppose we want to compress the encoding of an 28x28
image (a total of 784 pixels) into a compressed 30 pixel rep-
resentation. The image is fed to the neural network as an
array of binary values, where each pixel is fed to one of the
input nodes. A sketch of the encoder is determined as fol-
lows:

784 (input) — 1000 — 500 — 250 — 100 — 30

In this sketch, the first hidden layer has more nodes than the
actual image input. To represent the decoder, we provide
the following sketch:

30 — 100 — 250 — 500 — 1000 — 784(output)

Once we train a deep auto-encoder, the decoder network is
no longer necessary, since this part of the network is only
used to compute the error of the decoded data during train-
ing. Since it is impossible to know the expected output of
an encoder (we want the encoder to solve this problem), we
train the network to return the exact input as output. After
training the auto-encoder, we can retrieve the compressed
feature vector from the hidden layer in the middle of the
network, i.e. the green nodes in Figure 1.

2.4 MicroRTS

MicroRTS is a simple implementation of a Real-time Strat-
egy game, designed for the sole purpose of Al research. De-
veloped by Ontanién [7], MicroRTS is a well structured im-
plementation of an RTS game in Java. The advantage with
respect to using a full-fledged game like Starcraft, and the
main reason we choose MicroRTS, is the fact that MicroRTS
is much simpler, becoming a useful tool to quickly test the-
oretical ideas, before trying on to full-fledged RTS games.

Figure 2: MicroRTS game state.

MicroRTS consists of two players trying to eliminate every
single structure and unit of the enemy. Figure 2 illustrates
a game state of the MicroRTS. There are 4 types of units in
MicroRTS:

1. Worker. This unit is responsible for harvesting min-
erals and constructing structures. This unit can also
fight, but does very little damage. Represented by the
gray circles.

2. Light. Light units do little damage, but are extremely
fast. This type of unit can only attack.

3. Ranged. Ranged units are capable of ranged attacks.
They have moderate damage and moderate speed. This
unit can only attack.

4. Heavy. Hard units are heavy attack based units.
They do high damage, but are extremely slow. This
unit can only attack.

Units requires resources to be produced, but more than that,
they require structures. There are three types of structures
in the MicroRTS. Those are:

e Base. The main structure. This structure is responsi-
ble for producing workers. This structure is also where
the workers return the minerals they harvested. The
game starts with a base for each player. Can be at-
tacked. Represented by the white squares.

e Barracks. Auxiliary structure. This structure is re-
sponsible for producing light, ranged, and heavy units.
It can be built by the workers by using resources. Can
be attacked.

e Minerals. Minerals can be harvested by the workers
to obtain resources. Not an exactly structure, cannot
be attacked. Minerals are finite, and each player starts
with one source. Represented by the green squares.

The game is totally observable, so the player can see every
enemy action. With those components, MicroRTS provides
a good simplification of a full-fledged RTS game.

The decoder is not needed, as the objective is to encode
the state representation, with no necessity of decoding it
after. However, to train the Deep auto-encoder, it is neces-
sary to train the neural network with both the encoder and

Agents Tables

f—)ﬁ

i i Normalize
Agent2 Table

Agent1 of Role2 Agent3
of Role1 of Role1

S —

Role1
Table

Figure 3: Unit Q-learning Diagram

the decoder network. This is necessary because to train the
network, the expected output must be the same as the in-
put and the expected output. Since it is impossible to know
the expected output of an encoder (we want the encoder
to solve this problem), we train the network to return the
exact input as output. After training the auto-encoder, we
can retrieve the compressed feature vector from the hidden
layer in the middle of the network, as shown in Figure 1.

3. APPROACH

3.1 Unit Q-learning

Each unit in MicroRTS has approximately 5 possible ac-
tions in each state, so, even if this may be manageable for
relatively small state-spaces for a single agent, it can be-
come a problem when learning combinations of actions for
multiple agents simultaneously. For example, this becomes
an issue when ordering 10 units simultaneously, resulting in
9765625 possible actions, clearly a combinatorial explosion.
To avoid dealing with such huge branching factor, we ap-
ply Q-Learning to each unit individually, executing parallel
Q-Learning updates on each training episode, one for each
unit. At the end of the training episode, units with the same
role (such as workers) share their experience, building a new
set of Q-values. The algorithm updates the Q-values of the
units at the start of each training episode each iteration.
This process is illustrated in Figure 3, where the units are
the agents, the Agent table are the group of each table of the
each agent and the role table is the agent tables normalize.

The experience sharing between the units is accomplished
by merging the Q-tables of the units of the same role, by
normalizing the Q-values that both agents visited. We define
the normalization function as follows:

Sw28 Qi(s, a) * frequency(Qi(s, a))
frequency(Q(s, a))

Q(s,a) = (4)
where Q(s, a) is the new Q-value for all units for state s and
action a, and Q;(s, a) is the Q-value of unit ¢ for state s and
action a. The idea is that agents who visited more times a
Q-value pair, are more able to determine the value of such
Q-value. In Algorithm 2, the mergeT ables method imple-
ment the update described by the equation. The algorithm
consists of three steps:

e Assign a Q-table to a unit based on its type.

e Compose an action for the state, using one action for
each unit.

e In the terminal state, merge the Q-tables of the units
with the same type.

In Algorithm 2, the first for loop assigns the Type table
to each unit and defines the action for the state by selecting
each individual unit action. In the second for loop, if the
current state is a terminal state, we merge the tables of units
with the same type. Finally, in the last line of the algorithm,
we return the composed action.

Algorithm 2: Unit Q-learning pseudo code.

Input: s, The actual game state.
Output: An action Action.
Persistent: QT ables, a set containing one Q-table to
each unit type ;
U, set of player units ;
s, the previous state, initially null;
Action = 0 ;
for unit u € U do
if u.QTable = () then
‘ u.QTable := QT ables(u.type) ;
end
Action.add(QLearning(u,s)) ;
nd
f isTerminal(s) then
for type € U do
Q := mergeTables(type) ;
QTables(type) := Q ;
end

-

end
return Action

The worker unit of MicroRTS is specialized in harvest-
ing resources, but can be used to offensively to attack and
pressure the enemy. Since these two very distinct behaviors
would be put in the same Q-table, we propose separate roles.
We discuss how we implemented separate roles in Section 4.

3.2 State encoding

Our state encoding approach consists of 3 steps. First, we
design a binary representation for the state space we would
traditionally store in the Q-table, and call this representa-
tion raw encoding. Second, we design an auto-encoder that
takes as input the number of bits we chose for the raw en-
coding and narrows it into 15 number of neurons, creating
a canonical encoding. Finally, we train the network using
state samples. We execute Q-Learning using the canonical
encoding to store values in the Q-Table.

Our raw encoding consists of a binary representation of
156 bits. The 64 first bits store the player units position.
Each bit represents a position in the grid. Using Figure 2
as example, the following bit encoding represents the blue
units:

0 0 0 1 0 1 1 O]
001 0O0O0O0O
100 01 100
Blue — 000 O0O0O0O0TO O
001 0O0O0O0OTP O
000 O0O0O0TO0TP O
100 0 0 00O
0 0 0 000 0 0]

The next 64 bits are used to encode the enemy units, using
the same concept. We must also represent the health points
of the units, however, since it is hard to represent the health
points of each individual unit, we chose to represent only the
health points of the bases. We assign 4 bits to represent the
health points of the player base, and 4 bits to represent the
health points of the enemy base, since the base unit has 10
health points. To represent the resources a player has, we
use 5 bits, since the maximum possible number of resources
is 25. Five more bits must be used for the resources of the
enemy player. To represent the unit carrying a resource, we
design one bit if any unit is carrying a resource, and 1 bit
if any enemy unit is carrying a resource. We do not define
unit type in the representation. However, we design 1 bit to
represent if the player has a barracks, and 1 bit to represent
if the enemy has a barracks. The last 6 bits represent the
action executed in that state.

To avoid dealing with a large Q-Table and be able to
model Q-Learning in complex environments, we aim to build
a state representation that focuses on only the most im-
portant features of the environment. However, discovering
the most important features of an environment is not trivial
and completely changes as the environment changes since
features important in one domain may not be important or
even exist in another domain. To discover theses features, we
model a deep auto-encoder capable of reducing the state rep-
resentation to a compact form, representing only the most
important features.

The first layer of the network will receives a binary state-
representation corresponding to our raw encoding. The num-
ber of nodes in this layer will be referent to the number of
bits used to represent the state, 156 bits. Each bit represents
a feature of the state. The goal is to reduce this 156 bits
representation to a more compact one, which does not af-
fect Q-Learning convergence. Through empirical tests [12],
Tesauro recommends that the Q-Learning lookup table size
does not surpass 10000 entries. Since we are working with
binary representations, it would be ideal to compress to a
number of bits that represent less than 10000 states. The
number of bits to create a representation with less possibil-
ities than 10000 is 13 bits, as 2! is 8192 possible combina-
tions of state. Since many states are impossible to reach,
and will not be visited (since it depends on enemy behavior
to generate all states), we increased the canonical represen-
tation to 15. Given the fact that we now know the exact
number of bits to represent our compressed state, we model
an auto-encoder that compress the state representation to
a 15 bits representation. Having defined the canonical rep-
resentation size, and the raw encoding, we must define the
auto-encoder architecture.

We develop an auto-encoder to compress the 156 bit repre-
sentation into a smaller representation. To test the canonical
encoding, we developed an auto-encoder with the following

layer architect architecture:

156 — 160 — 100 — 50 — 25 — 15
— 25 — 50 — 100 — 160 — 156

where each number represents a layer and the number of
the nodes in this layer, and 15 is the size of the canonical
encoding. To train the network, we fed approximately 15000
states using the raw encoding. These states were generated
from matches from two random Als. We used random Als
matches because they are able to provide a much greater
variety of states.

4. IMPLEMENTATION AND EXPERIMENTS

4.1 Separate Roles

In the MicroRTS the worker unit has the ability to harvest
resources and deliver them to the players base. However,
this unit has also the ability to attack. Since the worker is
the only unit the player can produce without constructing
a barrack, it is a good unit for both harvesting and attack-
ing. This means we can have workers performing different
roles. If this strategy is to be followed, we must have workers
performing two distinct tasks: harvesting resources, attack-
ing the enemy base. We call them harvesters and attackers
respectively.

In the previous section, we explained how different units
have different Q-Tables. The same applies to different roles.
Since both attackers and harvesters units have completely
different tasks but are the same unit type, we must assign
different Q-Tables for these units. The workers is the only
unit that suffers from this problem, since other units have a
only purpose. We could make workers only harvesters, and
make the other units responsible for attacking. However,
this could lead our approach extremely vulnerable to rush
tactics, since there is a delay time to construct a barrack
and produce stronger units.

Since we are designed two separated roles, we must design
different reward functions for each of them. Each role must
have a reward that teaches how to properly perform such
role.

4.2 Experiments

Using the implementation described in the previous sec-
tion we now evaluate our approach in terms of its ability to
converge to a policy in the MicroRTS domain, and how com-
petitive the resulting policy is. To evaluate our encoding, we
test the ability to train both an attacker and harvester work.
To test this, we use our Al against a tweaked passive Al
The passive Al does not execute any action, however, our
tweaked passive Al produces one worker that moves ran-
domly through the map. The idea of this worker is to force
our approach to explore states where there are enemy units
besides the enemy base. We limit the amount of workers
our base can produce, to two workers of each type. In Fig-
ure 4, we present the convergence rate of both unit types.
The values represent how much the sum of all values of the
Q-Table has varied in one training step to another. As we
can see, the variance spikes at some points, possibly because
of a new state found with a very positive reward, or a very
negative one.

In Figure 5, we shown g-table size as the number of matches
increases. As we can see, both units have a very close g-table
size once it converges.

6000 T T T T

T T
Attacker
Harvester

5000

4000 B

3000 1

Variance

2000 b

1000 b

0 10 20 30 40 50 60 70
Matches

Figure 4: Convergence of Attacker and Harvester

4000 T T T T

T T
Attacker
Harvester

3500 |-
3000 [1
2500 - b
2000 - 1
1500

Q-Table Size

1000
500

0 1 1 1 1 1 1
0 10 20 30 40 50 60 70

Matches

Figure 5: Q-Table size of Attacker and Harvester

To test if our approach is competitive, we test it against
the following approaches:

e Passive: An approach that does not perform any ac-
tion. We use it to test convergence time.

e Random: An approach that selects a random action
for each unit.

e Random Biased: An approach that selects a random
action for each unit. However, this approach prioritizes
attacking and harvesting over the other actions.

e Heavy/Ranged/Light Rush: A hard-coded strategy that

builds a barracks, and then constantly produces “Heavy”,

“Ranged” and “Light” military units to attack the near-
est target (it uses one worker to mine resources).

e Worker Rush: This approach only uses worker units.
One worker is assigned to harvest resources while the
other workers attack. It is a very effective strategy due
to the very high pressure it applies to opponents very
early on in a match.

e Monte Carlo: An approach based on Monte Carlo tree
search [7].

e NaiveMCTS: The approach built by Ontafién [7]. We
use the default values set in MicroRT'S.

To evaluate our approach, we play a number of games us-
ing our approach against each of the approaches above. In

Table 1: Results against multiple Als

Al Wins | Draws | Losses | Win rate | Score
Passive Al 20 0 0 100% + 20
Random Al 20 0 0 100% + 20
Random Biased AI | 20 0 0 100% + 20
Heavy Rush 20 0 0 100% + 20
Light Rush 20 0 0 100% + 20
Ranged Rush 20 0 0 100% + 20
Worker Rush 9 4 7 45% + 2
Monte Carlo 17 3 0 85% + 17
NaiveMCTS 6 6 8 40% -2

each match, we trained our agent against the opposing ap-
proach by playing 200 matches. After the 200 matches, we
stopped learning new information and only followed the cur-
rent learned policy. After training our approach, we evalu-
ated 20 matches, analyzing wins, losses, draws, win rate and
the score. The score is the number of wins minus the num-
ber of losses. All games were played in the standard 8x8
grid, the same used in all images of MicroRTS in this paper.
Table 1, shows the results of our approach against each of
these approaches.

As we can see in Table 1, our approach consistently out-
performs all competing approaches besides Ontafnén’s NaiveM-
CTS, against which we lose slightly more often. Our AI
constantly defeated all Als that required building barracks,
due to high early pressure using workers as attackers. Most
draws were due to our workers were unable to follow a clear
policy to destroy the remaining units after destroying the
enemy base, and ended up dying fighting the remaining en-
emy units in single combat. Against Naive MCTS, we were
unable to train 200 matches due to the long time it takes to
complete a game. We trained using 200 matches against the
Worker Rush Al, and then 10 matches against the NaiveM-
CTS.

5. RELATED WORK

5.1 Distributed Reinforcement Learning

Q-Learning and SARSA algorithms ensure that they will
eventually compute an optimal policy [16]. However, in some
environments, this computation can take too long. In [4],
Mnih develops a new reinforcement learning architecture,
the Deep Q Network (DQN). Using a deep neural network
to encode images as input, DQN was able to outperform
a human professional in many Atari 2600 games. These
images are directly extracted from the Atari games, with
the purpose of feeding it to an agent capable of learning by
only receiving game image as the input, similar to a human
being. Training the DQN in a single machine took a long
time, on the order of 12-14 days to train an agent using a
GPU to play a single game.

To improve convergence time in complex environments,
In [6], Nair describes a distributed architecture that en-
ables to scale up DQN by exploiting massive computational
resources. This architecture, called Gorila (General Rein-
forcement Learning Architecture), is composed of four main
components:

e parallel actors consisting of agents responsible for per-
forming new actions on the environments, generating
new behavior;

e parallel learners consisting of agents trained from stored
experience obtained from the Parallel Actors;

e a distributed neural network to represent the behavior
policy; and

o a distributed replay memory to store the sequential acts
of each Parallel Actor.

To speed up convergence, multiple agents are instantiated
to act in multiple instances of the same environment. Each
agent is given a slightly different exploration policy, to en-
sure that the agents explore different states, providing more
useful data. After each episode, the data of each agent,
called replay memory, is stored on a distributed database.
With this procedure, more data is generated, due to the use
of multiple agents, and the state space is explored more ef-
ficiently, since the exploration policies are slightly different.

The work described in [5] and [6] share many similarities
with ours. We use deep neural networks to encode the state
space. However, in the scope of our problem, we do not use
the game image as state representation. Instead, we use a
pure binary representation we built, using a reward function
we designed. Additionally, we have multiple units as agents,
which vastly increases the number of possible actions. Our
approach is more centered around relaxing the problem to
fit reinforcement learning in, than emulating the difficulties
of playing with the same information a human player would
have.

5.2 Multi-agent Reinforcement Learning

Multi-agent reinforcement learning (MARL) is a technique
applied to environments where multiple agents interact with
each other and the environment. Such environments are
usually cooperative and include agents who have individual-
ized perceptions and policies. In cooperative environments,
the goal of reinforcement learning is to compute an optimal
policy that coordinates the actions of every agent. As the
number of agents increase, so does the number of possible
combinations of actions. The main difficulty of applying re-
inforcement learning in multi-agent systems is the need to
compute a global policy for all agents [2]. A global policy
is a policy that provides actions for every agent simultane-
ously in each possible state. Computing a policy that takes
account of every action of every agent can slow convergence
substantially in environments with multiple agent, because
the policy must compute every possible combination of ac-
tions.

In [17], each agent has its own policy, and coordinate to
compute a global policy. Each agent applies its own Q-
Learning algorithm, acquiring experience from acting in the
environment, without communication or coordination. This
is called independent learning [3]. With only independent
learning, it is impossible to ensure that an optimal policy
is going to be achieved. To illustrate the limitations of in-
dependent learning, Figure 6 illustrates a target tracking
problem consisting of four sensors. Each sensor can scan
in one of the four cardinal directions: North, South, West,
East. The objective is to track targets in one of the loca-
tions in Figure 6. Tracking a target in each location has a
reward. For locationl and location3 the reward is 40, and for
location2 the reward is 60. However, to track a target, two
sensors must be scanning the same area simultaneously. If
locationl, location2, and location3 always have targets to be

sensor 1 sensor 2 sensor 3 sensor 4

Figure 6: Tracking problem.

tracked, then, by using the independent learning approach,
sensor2 and sensor3 will potentially learn to sense location2,
which has average expected reward is 60. However, the opti-
mal policy is that sensorl and sensor2 always sense locationl
and sensor3 and sensor4 always sense location3, whose global
expected reward is 80. Therefore, without the coordination
of the sensors is not possible to ensure an optimal policy.

The MicroRTS case study properly fits the idea of this
work. However, we do not deal with coordinating multiple
agents. All agents have the same goal, and each agent type
have it’s own reward function. Our goal is not to coordi-
nate agents with different goals, but rather use techniques
to enable the use of reinforcement learning techniques, by
compressing the Q-table.

6. CONCLUSION

In this work, we developed a set of techniques to reduce
the number of entries in the Q-table of the Q-learning algo-
rithm. Recently, much research has been done to use deep
neural networks to improve the performance of reinforce-
ment learning algorithms. However, most such efforts [5, 4],
focus on transforming simpler domains in extremely complex
domains using only the image as agent perception, increasing
the similarity of how humans learn to act in such domains.
Our approach, however, focuses on a very complex domain
using all information available from the game, transforming
a very complex domain in a simpler one.

We believe we achieve promising results, at a substan-
tially lower computational cost, as our Al was competitive
throughout all of the tested opponent strategies. Although,
our approach requires training while others do not, the re-
sponse time of our learned agent was much faster than the
approaches that did not follow a hard-coded strategy.

We managed to use reinforcement learning in a very com-
plex domain using two approaches that mitigate the problem
of a large state-space combined with a combinatorially ex-
ploding number of actions due to multiple concurrent agents.
Both approaches could be used in other scenarios. The auto-
encoder can be used in any Q-learning scenario. And the
unit Q-learning, requires a multi-agent scenario where there
are roles defined for each agent.

For future work, we would like to address the following
problems:

e Use denoising stacked auto-encoders.
e Learn the reward function.

Our auto-encoder could be improved by using a denois-
ing stacked auto-encoder. Our auto-encoder is very simple,
and it is possible we would be to achieve better results if
we used a different type of auto-encoder. Furthermore, it
would interesting to use the image of the game as a state

representation. However, this is a very challenging task due
to the high dimensionality of the MicroRTS game image.

In our work, we currently design a complex reward func-
tion for each of the roles. This reward function can only be
crafted because we have a good understanding of the Mi-
croRTS domain. If we want to apply this set of techniques
to other domain, we must design new reward functions, that
in some domains can be even more complex. To avoid build
a new reward function, we could use inverse reinforcement
learning techniques to learn the reward function. Inverse
reinforcement learning is a study that focus on learning the
reward function of a domain by watching an agent perform
in such domain. In the MicroRTS case, we have many com-
puter controlled players already competitively playing the
game. Our own reinforcement learning AI became very sim-
ilar to the worker rush AI. We could use the worker rush
strategy to extract a reward function. However, using a sin-
gle reward function for both the harvester and the attacker
can be a challenge. Retrieving a reward function from such
scenario would be difficult challenge.

REFERENCES

[1] G. Cybenko. Approximation by superpositions of a
sigmoidal function. Mathematics of Control, Signals,
and Systems (MCSS), 2(4):303-314, Dec. 1989.

[2] C. Guestrin, M. G. Lagoudakis, and R. Parr.
Coordinated reinforcement learning. In Proceedings of
the Nineteenth International Conference on Machine
Learning, ICML ’02, pages 227234, San Francisco,
CA, USA, 2002. Morgan Kaufmann Publishers Inc.

[3] J. R. Kok and N. Vlassis. Collaborative multiagent
reinforcement learning by payoff propagation. J.
Mach. Learn. Res., 7:1789-1828, Dec. 2006.

[4] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves,

I. Antonoglou, D. Wierstra, and M. Riedmiller.
Playing atari with deep reinforcement learning. 2013.
cite arxiv:1312.5602Comment: NIPS Deep Learning
Workshop 2013.

[6] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu,
J. Veness, M. G. Bellemare, A. Graves, M. Riedmiller,
A. K. Fidjeland, G. Ostrovski, S. Petersen, C. Beattie,
A. Sadik, I. Antonoglou, H. King, D. Kumaran,
D. Wierstra, S. Legg, and D. Hassabis. Human-level
control through deep reinforcement learning. Nature,
518(7540):529-533, 02 2015.

[6] A. Nair, P. Srinivasan, S. Blackwell, C. Alcicek,
R. Fearon, A. D. Maria, V. Panneershelvam,
M. Suleyman, C. Beattie, S. Petersen, S. Legg,
V. Mnih, K. Kavukcuoglu, and D. Silver. Massively
parallel methods for deep reinforcement learning.
CoRR, abs/1507.04296, 2015.

[7] S. Ontandén. The combinatorial multi-armed bandit
problem and its application to real-time strategy
games. In G. Sukthankar and I. Horswill, editors,
AIIDE. AAAT, 2013.

[8] G. A. Rummery and M. Niranjan. On-line g-learning
using connectionist systems. Technical report, 1994.

[9] S. J. Russell and P. Norvig. Artificial Intelligence: A
Modern Approach. Pearson Education, 2 edition, 2003.

[10] R. S. Sutton and A. G. Barto. Introduction to
Reinforcement Learning. MIT Press, Cambridge, MA,
USA, 1st edition, 1998.

[11] G. Tesauro. Practical issues in temporal difference
learning. In Machine Learning, pages 257-277, 1992.

[12] G. Tesauro. Temporal difference learning and
td-gammon. Commun. ACM, 38(3):58-68, Mar. 1995.

[13] M. Tokic. Adaptive -greedy exploration in
reinforcement learning based on value differences. In
Proceedings of the 33rd Annual German Conference
on Advances in Artificial Intelligence, KI’'10, pages
203-210, Berlin, Heidelberg, 2010. Springer-Verlag.

[14] P. Vincent, H. Larochelle, Y. Bengio, and P.-A.
Manzagol. Extracting and composing robust features
with denoising autoencoders. In Proceedings of the
25th International Conference on Machine Learning,
ICML ’08, pages 1096-1103, New York, NY, USA,
2008. ACM.

[15] C. J. C. H. Watkins. Learning from Delayed Rewards.
PhD thesis, King’s College, Cambridge, UK, May
1989.

[16] C. J. C. H. Watkins and P. Dayan. Technical note:
g-learning. Mach. Learn., 8(3-4):279-292, May 1992.

[17] C. Zhang and V. Lesser. Coordinating multi-agent
reinforcement learning with limited communication. In
Proceedings of the 2013 International Conference on
Autonomous Agents and Multi-agent Systems,
AAMAS 13, pages 1101-1108, Richland, SC, 2013.
International Foundation for Autonomous Agents and
Multiagent Systems.

[18] J. Zhang and C. Zong. Deep neural networks in
machine translation: An overview. IEEE Intelligent
Systems, 30(5):16-25, 2015.

