
PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO GRANDE DO SUL

FACULDADE DE INFORMÁTICA

PROGRAMA DE PÓS-GRADUAÇÃO EM CIÊNCIA DA COMPUTAÇÃO

SMART EXECUTION OF MOLECULAR
DOCKING SIMULATIONS OF A FULLY-

FLEXIBLE RECEPTOR MODEL

FÁBIO ANDRÉ FRANTZ

Thesis submitted to the Computer Science
Graduate Program of Pontifícia Universidade
Católica do Rio Grande do Sul – PUCRS as partial
fulfillment of the requirements for the degree of
Master in Computer Science

Advisor: Prof. Dr. Duncan Dubugras Alcoba Ruiz

Porto Alegre, May 2012.

F836s Frantz, Fábio André

Smart execution of molecular docking simulations of a fully-

flexible receptor model / Fábio André Frantz. – Porto Alegre,

2012.

93 f.

Diss. (Mestrado) – Fac. de Informática, PUCRS.

Orientador: Prof. Dr. Duncan Dubugras Alcoba Ruiz.

1. Informática. 2. Banco de Dados. 3. Biologia Molecular.

4. Biologia Computacional. I. Ruiz, Duncan Dubugras Alcoba. II.

Título.

CDD 005.74

Ficha Catalográfica elaborada pelo

Setor de Tratamento da Informação da BC-PUCRS

“Remembering that you are going to die is the
best way I know to avoid the trap of thinking you

have something to lose. You are already naked.
There is no reason not to follow your heart.”

Steve Jobs

ACKNOWLEDGEMENTS

I would like to thank, first and foremost, my advisor, Prof. Dr. Duncan Dubugras Alcoba

Ruiz for his guidance, suggestions and continuous support throughout my Master’s study and

completion of this thesis. I feel fortunate of being one of his research students throughout my

study, which provided me with a chance of being instructed by an inspiring and insightful

academic professor. Also thank you for all your support in my extracurricular life and for providing

me with a great experience in my life.

Also, I would like to thank Prof. Dr. Osmar Norberto de Souza for his guidance in many

stages of this work. His knowledge in Bioinformatics, especially in Molecular Docking, was

responsible for a concise work. Thank you for all your useful insights.

I would also like to thank all GPIN and LABIO researchers for friendship and help every

time I needed. In particular, I thank Renata de Paris, who was a great partner in the realization of

this thesis, as well as a co-author in some papers.

Thanks to HP R&D Brazil that provided a scholarship for my study and helped in different

times during these years of study.

Last, I am very grateful to my family for their support, in special to Maristela Trojahn, who

walked side by side during this long way. Thank you for your love, encouragement and support.

SMART EXECUTION OF MOLECULAR DOCKING SIMULATIONS OF A FULLY-FLEXIBLE
RECEPTOR MODEL

ABSTRACT

Molecular docking simulations of Fully-Flexible Receptor (FFR) models are coming of age.

However, they demand parallelization of computing activities for their executions and generate

huge amounts of data that needs to be analyzed. Many Task Computing (MTC) is an attractive

paradigm routinely applied to execute intensive tasks. In this work we propose an environment to

execute molecular docking simulations of FFR models to small molecules integrated with an MTC

middleware. This environment is based on a new pattern called Self-adapting Multiple Instances

(P-SaMI) that provide rules to reduce the number of experiments, providing a Reduced Fully-

Flexible Receptor (RFFR) model. The main contribution of this research is to prove that P-SaMI

rules can be used on Molecular Docking Simulations through a web environment integrated with

an MTC middleware.

Keywords: Molecular Docking, Bioinformatics, P-SaMI, MTC, RDD

EXECUÇÃO INTELIGENTE DE SIMULAÇÕES DE DOCAGEM MOLECULAR DE UM
MODELO DE RECEPTOR TOTALMENTE FLEXÍVEL

RESUMO

Simulações de docagem molecular com modelos de Receptores Totalmente Flexíveis

(FFR) estão adquirindo maturidade. No entanto, isto demanda atividades computacionais de

paralelização para geração e execução de grande volume de dados que precisam ser analizados.

Computação multi-tarefa é um paradigma atrativo e que vem sendo aplicado frequentemente

para executar tarefas intensivas. Neste trabalho propomos um ambiente para executar simulações

de docagem molecular no modelo FFR com pequenas moléculas integradas a um componente

MTC. Este ambiente é baseado no padrão Múltiplas Instâncias Autoadaptáveis (P-SaMI) que possui

regras para redução do número de experimentos, provendo um modelo de Receptores

Totalmente Flexíveis Reduzido (RFFR). A principal contribuição desta pesquisa está na

comprovação de que as regras do P-SaMI podem ser usadas em Simulações de Docagem

Molecular através de um ambiente web integrado com um componente MTC.

Palavras-Chave: Docagem Molecular, Bioinformática, P-SaMI, MTC, RDD

LIST OF FIGURES

FIGURE 1 – COMPARISON OF SCIENTIFIC WORKFLOWS AND BUSINESS WORKFLOWS [YIL09] ... 20
FIGURE 2 – SCIENTIFIC WORKFLOW LIFE CYCLE [LUD09] ... 21
FIGURE 3 – DATA INTERACTION: TASK TO ENVIRONMENT - PUSH [RUS04] .. 23
FIGURE 4 – FLOWCHART OF RATIONAL DRUG DESIGN. ADAPTED FROM [MAC11]. ... 27
FIGURE 5 – (A) SCHEMATIC 3D REPRESENTATION OF MOLECULAR DOCKING. THE PROTEIN IS REPRESENTED IN THE FORM

OF RIBBONS, IN GRAY, AND LIGAND IN (MAGENTA AND CYAN). (B) FLEXIBILITY OF INHA-NADH SYSTEM IN

DIFFERENT MOMENTS DURING THE MOLECULAR DYNAMICS SIMULATION. OVERLAP OF DIFFERENT CONFORMATIONS

OF INHA (CYAN, YELLOW, MAGENTA AND GREEN) GENERATED FOR MOLECULAR IN [SCH05]. PICTURE FROM

[MAC07] ... 28
FIGURE 6 – FINAL MODEL OF SCIENTIFIC WORKFLOW FREDOWS [MAC11A] .. 32
FIGURE 7 – P-SAMI: SELF-ADAPTING MULTIPLE INSTANCES PATTERN ... 34
FIGURE 8 – STATE TRANSITION DIAGRAM FOR POSSIBLE STATUS IN SNAPSHOT PROCESSING [HUB10] 36
FIGURE 9 – REPRESENTATION OF LOT GENERATION - ADAPTED FROM [HUB10] ... 37
FIGURE 10 – EXECUTION OF SNAPSHOTS FROM A GROUP - ADAPTED FROM [HUB10] ... 38
FIGURE 11 – SEPARATION OF LOTS FROM GROUPS AND REPRESENTATION OF INDIVIDUAL RESULTS FROM EACH SNAPSHOT

AND FROM ALL LOT [HUB10] .. 40
FIGURE 12 – ALGORITHM TO DEFINE PRIORITIES AND STATUS CHANGE ... 41
FIGURE 13 – W-FREDOW CONCEPTUAL ARCHITECTURE ... 44
FIGURE 14 – XML WITH GROUP OF SNAPSHOTS... 46
FIGURE 15 – DIRECTORIES STRUCTURE OF FILES OF THE MTC LAYER WORKSPACE .. 47
FIGURE 16 – OPERATIONS FLOWS AND FUNCTIONS HAVE BEEN PERFORMED BETWEEN CREATE QUEUE AND

DISPATCHER/MONITOR COMPONENTS ... 49
FIGURE 17 – FREDD FOR P-SAMI: DATA MODEL FOR W-FREDOW .. 51
FIGURE 18 – W-FREDOW UI: CLIENT LAYER .. 59
FIGURE 19 – W-FREDOW UI: SETUP MAIN GROUP. SOFTWARE DOCKING, CLUSTER, P-SAMI AND CONFIGURATION

WINDOWS. .. 60
FIGURE 20 – W-FREDOW UI: SETUP DOCKING-TEMPLATES GROUP. PREPARE FILES - GROUPS, TEMPLATE FOR PREPARE

RECEPTOR, DOCKING AND GRID WINDOWS. .. 61
FIGURE 21 – W-FREDOW: EXECUTE EXPERIMENT ... 62
FIGURE 22 – W-FREDOW: ANALYZE .. 62
FIGURE 23 – W-FREDOW: ANALYZE. (A) DETAILS FROM EXPERIMENT 197 FOR CLUSTER AND LOT. (B) RESULTS FOR

SNAPSHOTS FROM CLUSTER 0 IN EXPERIMENT 197. ... 63
FIGURE 24 – W-FREDOW: 3.100 SNAPSHOTS WITH A UNIQUE CLUSTER .. 66
FIGURE 25 – W-FREDOW: SETUP OF P-SAMI FOR A FULL EXECUTION. .. 67
FIGURE 26 – W-FREDOW: VALUES OF CONFIGURATION #5, USED IN TEST 1. ... 67
FIGURE 27 – W-FREDOW: PARAMETERS FOR TEST 1 EXPERIMENT EXECUTION. ... 68
FIGURE 28 – CRD AND PDBQT FILES USED TO CREATE SNAPSHOTS. .. 69
FIGURE 29 – PARTS OF GRID AND DOCKING TEMPLATES USED IN TEST 1. .. 70
FIGURE 30 – STRUCTURE OF FOLDERS CREATED FOR AN EXPERIMENT. ... 70
FIGURE 31 – EXPERIMENT 196 WITH 3100 SNAPSHOTS FINISHED. ... 72
FIGURE 32 – EVENTS FOR EXPERIMENT 196. ... 72
FIGURE 33 – CLOUD SETUP FOR COMMUNICATION BETWEEN W-FREDOW AND FREMI. .. 73
FIGURE 34 – FOUR DIFFERENT SETUPS FOR P-SAMI WITH ANALYSIS STARTING WITH 30%, 40%, 50% OR 70%. 73
FIGURE 35 – DIFFERENT CONFIGURATIONS THAT ARE USED ON EXPERIMENTS WITH ANALYSIS STARTING WITH 30%, 40%,

50% AND 70%.. 74
FIGURE 36 – ANALYSIS REALIZED IN EXPERIMENT 224. FOUR ROWS SELECTED TO SHOW THE CLUSTER 0 AND LOT 3,

WHERE THE FIRST HAD ITS PRIORITY DECREASED AND AT LAST WAS DISCARDED WITH 70% BASED ON THE AVG1

(ARITHMETIC AVERAGE) AND AVG2 (ESTIMATED AVERAGE) COMPARING WITH AVG3 (P-SAMI AVERAGE). 76
FIGURE 37 – HYDRA CONCEPTUAL ARCHITECTURE .. 83

LIST OF TABLES

TABLE 1 – QUANTITY OF CONFORMATIONS PER EACH GROUP, GENERATED FROM K-MEANS ALGORITHM FOR RMS AND

TCN_MULT2 SIMILARITY FUNCTIONS .. 35
TABLE 2 – FINAL RESULTS OF EXPERIMENT EXECUTIONS OF W-FREDOW CONSIDERING THE

RMS_LISTAGEM_CLUSTER_SNAP_MEANS_6_ALL_ATOMS AS SIMILARITY FUNCTION. 75
TABLE 3 – FINAL RESULTS OF EXPERIMENT EXECUTIONS OF W-FREDOW CONSIDERING THE

TCN_LISTAGEM_CLUSTER_SNAP_MEANS_6_ALL_ATOMS AS SIMILARITY FUNCTION. .. 77
TABLE 4 – FINAL RESULTS OF EXPERIMENT EXECUTIONS OF W-FREDOW CONSIDERING THE

GROUP_PATRICIA_FOR_NADH_K-MEANS AS SIMILARITY FUNCTION. ... 78
TABLE 5 – TIME SPENT TO EXECUTE MDOCK SIMULATIONS WITH W-FREDOW USING FREMI MIDDLEWARE. 78
TABLE 6 – FINAL STATUS OF SNAPSHOTS AFTER DOCKING WITH W-FREDOW USING FREMI MIDDLEWARE. 79

GLOSSARY

3D Tridimensional

DBMS Data Base Management System

FEB Free Energy of Binding

FFR Fully-Flexible Receptor

FReDD Flexible Receptor Docking Database

FReDoWS Flexible Receptor Docking Workflow System

GPIN Business Intelligent Research Group

HPC High Performance Computing

InhA Enzyme 2-trans-Enoil ACP (CoA) Reductase of Mycobacterium Tuberculosis

LABio Bioinformatics, Modeling, and Biosystems Simulation Laboratory

MDock Molecular Docking

MD Molecular Dynamic

MTC Many Task Computing

NADH Nicotinamida Adenina Dinucleotídeo, reduced form

WHO World Health Organization

P-SaMI Self-adapting Multiple Instances

PDB Protein Data Bank

PUCRS Pontifícia Universidade Católica do Rio Grande do Sul

RDD Rational Drug Design

RFFR Reduced Fully Flexible Receptor

RMSD Root Mean Squared Deviation

SQL Structured Query Language

SWfMS Scientific Workflow Management System

VM Virtual Machine

WfMC Workflow Management Coalition

WfMS Workflow Management System

W-FReDoW Web Flexible Receptor Docking Workflow

WSGI Web Server Gateway Interface

XML Extensible Markup Language

TABLE OF CONTENTS

1 INTRODUCTION .. 15

1.1 STATEMENT OF THE PROBLEM ... 15

1.2 RESEARCH QUESTION .. 16

1.3 GOALS ... 16
1.3.1 General Purpose ... 16
1.3.2 Specific Purposes .. 16

1.4 RESEARCH METHODS .. 17

1.5 ORGANIZATION OF THE WORK .. 17

2 LITERATURE REVIEW .. 19

2.1 SCIENTIFIC WORKFLOWS ... 19
2.1.1 Workflow patterns ... 22
2.1.2 Scientific Workflow Management System .. 23
2.1.3 Parallelism in Scientific Workflows .. 25
2.1.4 Provenance in Scientific Workflows .. 25

2.2 BIOINFORMATICS ... 26
2.2.1 Rational Drug Design ... 26
2.2.2 Molecular Docking .. 27
2.2.3 Flexibility of Receptor ... 29
2.2.4 Molecular Dynamics ... 29

2.3 LAST CHAPTER CONSIDERATIONS ... 29

3 PATTERN P-SAMI - SELF-ADAPTING MULTIPLE INSTANCES .. 31

3.1 FREDOWS .. 31

3.2 CONCEPT OF THE PATTERN .. 33
3.2.1 Similarity Function .. 34
3.2.2 P-SaMI Setup ... 35
3.2.3 P-SaMI: Lot Generation .. 37
3.2.4 P-SaMI: Processing .. 38
3.2.5 P-SaMI: Analyze ... 39
3.2.6 Formalism ... 42

3.3 LAST CHAPTER CONSIDERATIONS ... 42

4 W-FREDOW (WEB FLEXIBLE RECEPTOR DOCKING WOKFLOW) .. 43

4.1 THE CONCEPTUAL ARCHITECTURE .. 43

4.2 CLIENT LAYER ... 44

4.3 SERVER CONTROLLER LAYER ... 45

4.4 MTC LAYER .. 46

4.5 W-FREDOW: DETAILS OF IMPLEMENTATION .. 49
4.5.1 Database: FReDD for P-SaMI .. 50

4.5.1.1 Setup Tables .. 52
4.5.1.2 Execution Tables ... 53
4.5.1.3 Template Tables .. 55
4.5.1.4 Provenance Tables ... 57

4.5.2 Web Application Framework ... 57
4.5.3 UI – The Client Layer .. 58

5 W-FREDOW: TESTS & RESULTS ... 65

5.1 W-FREDOW TEST 1: WITHOUT A SIMILARITY FUNCTION .. 66

5.2 W-FREDOW TEST2: RMS_LISTAGEM_CLUSTER_SNAP_MEANS_6_ALL_ATOMS 73

5.3 W-FREDOW TEST3: TCN_LISTAGEM_CLUSTER_SNAP_MEANS_6_ALL_ATOMS 76

5.4 W-FREDOW TEST4: GROUP_PATRICIA_FOR_NADH_K-MEANS .. 77

5.5 LAST CHAPTER CONSIDERATIONS ... 78

6 RELATED WORK ... 81

6.1 ADVANCED DATA FLOW SUPPORT FOR SCIENTIFIC GRID WORKFLOW APPLICATIONS 81

6.2 MOLECULAR DOCKING SIMULATION OF FLEXIBLE RECEPTOR .. 82

6.3 DATA PARALLELISM IN BIOINFORMATICS WORKFLOWS .. 82

6.4 DOVIS: AN IMPLEMENTATION FOR HIGH-THROUGHPUT VIRTUAL SCREENING USING AUTODOCK 84

6.5 RELAXED COMPLEX SCHEME FOR RECEPTOR FLEXIBILITY IN COMPUTER-AIDED DRUG DESIGN 84

6.6 FREDD: SUPPORTING MINING STRATEGIES THROUGH A FLEXIBLE-RECEPTOR DOCKING DATABASE 84

7 CONCLUSIONS ... 87

7.1 FUTURE WORK .. 88

REFERENCES ... 89

15

1 INTRODUCTION

1.1 Statement of the Problem

The pharmaceutical industry has been seeking to reach ever-higher goals in relation to

the launch of new drugs to the market, with an estimated average of 14 years to obtain the

approval of an effective drug, and estimated costs of $800 million [CAS07]. In order to achieve

greater competitiveness, pharmaceutical companies are in a constant search for cost and time

reduction in their process of discovering new drugs.

The rational drug design (RDD) refers in the most specific sense to the systematic

exploration of the three-dimensional structures (3D) of a macromolecule of pharmacological

importance, in order to design potential ligands that will bind to the target with high affinity and

specificity [STO93]. During the RDD, the stage of molecular docking (MDock) is one of the most

important stages. This step is responsible for providing a better guide so that a molecule will bind

with another to form a stable complex [LEN96]. In general, molecular docking algorithms consider

receptors such as rigid structures. However, such receptors in the cellular environment are flexible

and not rigid as is the case in some algorithms. Although some algorithms already consider the

explicit flexibility of the receptor, the tools responsible for implementing and analyzing docking

experiments are still poor.

In order to map and execute the steps of RDD, we can cite FReDoWS (Flexible Receptor

Docking Workflow System) [MAC07], a workflow-based solution in which the information flows of

RDD. This workflow identifies the steps mentioned and also contributes to the automation of

manual procedures, such as execution of several shell scripts, which are tedious and time-

consuming procedures for manual execution. One of the needs related to FReDoWS is in the

molecular docking step, which has a high computational cost. The flexible receptors, used in

FReDoWS, are simulated by a set of snapshots, which represent different conformations of the

receptor.

For the development of workflows, there are two well-known patterns: control flow

[RUS06] and data pattern [RUS04]. In order to create a new pattern based on the data pattern,

able to properly handle RDD steps, we have the Self-adapting Multiple Instances pattern (P-SaMI)

16

[HUB10]. P-SaMI is a pattern created to be used with clusters of snapshots, where after an

execution of samples of molecular docking simulations of a cluster, it should be able to identify the

most promising clusters. Thus, with promising clusters identified, it can provide priority changes in

the execution, as well as discard those snapshots non-promising.

In this dissertation we create an environment able to execute the steps of RDD with focus

on Molecular Docking simulations; as mentioned, a costly process. For that, rules of P-SaMI were

used to achieve the benefits from this pattern. The pattern is not restricted to the RDD process.

However, its process was used to guide the design of this environment.

Although P-SaMI has been defined for Scientific Workflows, its implementation occurred

in a different context. The environment presented in this thesis is web-based and has

communication with a Many Task Computing (MTC) middleware, responsible for MDock

simulations in a High Performance Computing (HPC) environment. Thus we made the first

implementation of P-SaMI, executing MDock simulations of Fully-flexible Receptor (FFR) model in

order to reduce the quantity of dockings.

1.2 Research Question

Due to processing needs of high data volume in the Bioinformatics area, we have a

question we attempt to address in this research: “Is it possible to use a reduction experiments

pattern through the disposal of snapshots non-promising in molecular docking simulations of

Fully-flexible Receptor Model while sustaining a high level of accuracy?”

1.3 Goals

1.3.1 General Purpose

The overall objective is to enable the use of P-SaMI (Pattern Self-adapting Multiple

Instances) in molecular docking (MDock) simulations of a Fully-Flexible Protein Receptor (FFR)

model. Thus, characteristics presented in this pattern will contribute to reduce the total execution

time of molecular docking simulations through the disposal of snapshots without affecting the

quality of the FFR model. Also, we want to reduce the total time through integration with a

middleware responsible for running MDock simulation in Many Task Computing (MTC).

1.3.2 Specific Purposes

We want to achieve the following specific purposes:

17

 Enable P-SaMI in MDock simulations of Fully-Flexible Receptor (FFR) model

environment.

 Build a new environment for MDock simulations of FFR model based on FReDoWS

using the new version of molecular docking software;

 Create a new structure in FReDD (Flexible Receptor Docking Database) to store all

steps used during the execution of this new environment, keeping the provenance

of the molecular docking simulations. This structure will be the source of

information for analysis of P-SaMI;

 Communicate MDock simulations web environment with MTC (Many Task

Computing) middleware, sending and receiving in real time data about the

process. Thus, the execution of MDock simulations, a critical step from RDD, can

be executed as a multi-distributed process, providing gain of time to all RDD

processes;

1.4 Research Methods

To carry out this thesis some important steps have been undertaken: a mapping to

understand the steps of RDD existing in LABio (Bioinformatics, Modeling, and Biosystems

Simulation Laboratory); a literature review to understand the concepts involving SWf (Scientific

Workflows) and the patterns presented in P-SaMI; the creation of a new environment for MDock

simulations of FFR model based on FReDoWS integrated with a MTC environment. Finally, we

demonstrate the results of the execution of the environment, analyzing the use of P-SaMI and the

integration of MTC middleware in RDD workflow.

1.5 Organization of the Work

This thesis is organized as follows:

 In Chapter 2 we present a literature review about scientific workflows, showing

some patterns used to create a new environment. Furthermore, this chapter

presents important concepts in RDD (Rational Drug Design), based on the flow

presented in this thesis;

 The next chapter, Chapter 3, details P-SaMI (Pattern - Self-adapting Multiple

Instances), demonstrating rules of pattern, how it works and where it can be

applied;

18

 The new environment called W-FReDoW (Web Flexible Receptor Docking

Workflow) is discussed in Chapter 4. Each part of W-FReDoW architecture is

shown in details;

 Next, Chapter 5 elaborates on the results of experiments realized with W-

FReDoW, with analysis of the use of P-SaMI. These experiments are real

simulations of docking of FFR model. Some of them are shown in [HUB10] and can

be validated;

 In Chapter 6, related works are presented, as well as a comparison of differences

and improvements of this work;

 Finally, Chapter 7 provides final conclusions and future works related to this

thesis.

19

2 LITERATURE REVIEW

This chapter describes concepts related to scientific workflows, the foundation of this

thesis. These concepts were important to build the environment of this research, and to

understand the different workflow patterns and help achieve the main goals.

Moreover, this chapter also presents the field where the study was done, the

Bioinformatics. This multidisciplinary research area is the interface between informatics and

biology and has the characteristics to work with large datasets, one of the requirements of the

present work. Thus, throughout this chapter, the sections explain concepts of Bioinformatics that

are used in this thesis. Finally, last considerations about this chapter are presented.

2.1 Scientific Workflows

Before starting to explain scientific workflows we have to start with workflow. The

Workflow Management Coalition (WfMC) [WOR99] defines workflow as “The automation of a

business process, in whole or part, during which documents, information or tasks are passed from

one participant to another for action, according to a set of procedural rules”.

Workflows have been associated to business for many years. Yildiz et al. [YIL09] say

business workflows aim to automate and optimize organization’s processes fulfilled by human or

computer agents in an administrative context. The latter concerns agents, roles, manipulate

objects (resources) and, especially, the partial order or coordination among activities. The use of

business workflows is prevalent among insurance, banking, and health industries.

Yildiz et al. [YIL09] define the transition from business workflows to scientific workflows.

Claiming that when workflows move from the business place to the scientific laboratory,

supporting large-scale, complex, yet fault-tolerant and maintainable scientific processes, they

demand another systematic approach. This approach has been named as scientific workflows.

Scientific workflows, which have been around for more than ten years, aim to support scientists in

designing and implementing large-scale and complex e-science processes. Figure 1 shows a

comparison between scientific workflows and business workflows.

20

Figure 1 – Comparison of Scientific Workflows and Business Workflows [YIL09]

Barseghian et al. [BAR09] quote scientific workflows as representations of the processes

involved in accomplishing a scientific analysis. They combine data and computational procedures

into a configurable, structured set of steps that implement semi-automated computational

solutions to a scientific question. A scientific analysis, depending on its focus, can involve a number

of ad-hoc processes that a scientist may use to go from raw data to publishable results. Some

areas in which we can perceive the use of scientific workflows are Bioinformatics, Geoinformatics,

Cheminformatics, Biomedical Informatics and Astrophysics.

Figure 2 is a high-level representation of the scientific workflow life cycle [LUD09]. The life

cycle begins occurs with one of these two goals: a scientific hypothesis to be tested; or, with some

experimental goals one proposes to achieve. Then, the Workflow Design takes place, in which the

scientists generally reuse previous workflows and templates or try to perform some adaptations.

Following, there is the Preparation step, in which it is important to select the data sources and

parameters that will be used during the execution. Also, it is important to consider where the

21

workflow will run, local or remote, and if it will use a high-performance computing (HPC), GRID or

Cloud Computing.

Next, the Workflow Execution is where the data from the workflow are consumed and

others are created. As we are talking about large-scale computational science simulations

(executing data during hours, days or weeks at a time) the runtime monitoring has an important

role in the life cycle. It is important that the scientist is informed through a dashboard about the

status of the execution. Intermediate results and provenance are useful for any strategic decision

by the scientist, such as aborting or restarting the workflow, based on preliminary bad results, for

instance.

After the execution of experiments, the scientist must analyze the results. This occurs in

Post-Execution Analysis and some questions are normally asked: “do these results make sense?”,

“why did this step fail?“, and “which steps took the longest time?”. Based on these analyses, the

process can start again.

Figure 2 – Scientific Workflow Life Cycle [LUD09]

Following a study in many projects, Ludäscher et al. [LUD06] summarize a number of

common requirements and desirable of scientific workflows:

 Seamless access to resources and services: web services are a simple mechanisms

to deal with remote service execution and remote database access;

 Service composition & reuse and workflow design: the composition of services has

to be as easy as possible for the user, even for complex processes;

 Scalability: it is important for the large volume of data and computational

resources to be able to run in large parallel jobs on a cluster computer. To support

22

such data-intensive and compute-intensive workflows, suitable interfaces to Grid

middleware components (sometimes called Compute-Grid and Data-Grid,

respectively) are necessary;

 Detached Execution: the workflow engine has to be responsible for controling the

execution on background or on a remote server, allowing the scientist to do

another task;

 Reliability and fault-tolerance: to make a workflow more resilient in an inherently

unreliable environment, contingency actions must be specifiable, e.g., fail-over

strategies with alternate web services;

 User-interaction: sometimes the workflow requires user interaction in different

steps of the execution;

 “Smart” re-runs: provide the user with the opportunity to change some

parameters and re-run just a sub-flow, e.g., not executing from scratch;

 “Smart” (semantic) links: the scientific workflow system must be based on

semantics to facilitate the configuration by the user;

 Data provenance: the experiment executed must be reproducible and the steps,

parameters and data captured have to be logged for further analysis.

2.1.1 Workflow patterns

There are two types of patterns for workflow development: flow control pattern [RUS06]

and data pattern [RUS04]. The use of links & connections between tasks is the place where the

patterns occur [HUB10]. In summary, we have:

 In flow control pattern, the links represent control restrictions for tasks

performance. There are many control structures such as sequences, splits, joins

and loops;

 In data pattern, the links between tasks are dependencies of data, where data are

consumed and produced by these tasks.

Russel et al. [RUS04] classify solutions as the prospect of the data and their

characteristics. Among these perspectives are:

23

 Data visibility: data can be accessed by different components from a workflow

process;

 Data interaction: capture the various ways in which data elements can be passed

between components in a workflow process and how the characteristics of the

individual components can influence the manner in which the trafficking of data

elements occurs;

 Data transfer: focus on the form in which the actual transfer of data elements

occurs between one workflow component and another;

 Data-based routing: how data types can influence the operations and other

aspects of the workflow, mainly during the flow controls.

The workflow data pattern has 39 different elements that represent all possibilities from

the pattern [RUS04, HUB10]. As the goal of this thesis is not to explain every element, we

exemplify one of them. Figure 3 depicts pattern 15, in which tasks from the workflow

communicate with external environment.

Figure 3 – Data Interaction: Task to environment - Push [RUS04]

2.1.2 Scientific Workflow Management System

Nowadays, scientists from several areas find support for their researches through the use

of computational tools to get faster results, aiding in the process of analysis and discovery. These

researchers can contribute during different steps of the process in real time, despite being

geographically distant. A variety of tools can be used in the scientific process. With that, it is

essential to use a tool to manage all different steps of the process, which sometimes can run in

different places.

24

The use of SWfMS (Scientific Workflow Management System) in the process of

computational experiment (in-silico) provides an environment that simplifies the design,

implementation and documentation of experiments [LUD09]. Some of the advantages of using

SWfMS are: automation of repetitive tasks, explanation of process documentation, monitoring of

workflow execution, provenance record of results, optimization of the scientific process, as well as

efficient execution and, finally, possibility of reusing known artifacts.

Mattoso et al. [MAT09] represent in some steps the experiment life cycle showed by

[GOB07]. Each step is a categorization that represents parts of the experiment life cycle, as

workflows concept, workflows execution and workflows analysis. They are:

Workflows concept:

 Allow scientists and researchers to work in the core of the experiment in a

controlled and systematic reuse of knowledge;

 Support the modeling and record of knowledge from domain using ontologies;

 Support the protocol modeling of experiment, using ontologies and abstract and

concrete workflows;

 Allow a description of all packages used in the experiment, saving semantic

relationships, based to validate next executions.

Workflows execution:

 Keep the provenance, recording tasks used during the process;

 Provide support for an efficient execution of scientific workflows, allowing the

execution in GRID and distributed environments;

Workflows analysis:

 Provide information during the execution of the workflow tasks about the

parameters and results;

 Allow ad-hoc searches in the results of experiments, giving the provenance of

data, process and knowledge.

Currently, there are some SWfMS that have different focus, such as Vistrails [CAL06],

Kepler [ALT04] and Taverna [HUL06], which are strong in provenance support and concrete

workflow design but lack on HPC (High-performance Computing) support. On the other hand,

25

others SWfMS are strong to work with GRIDs [YUJ05], such as Pegasus [9], Swift [RAI07] and Triana

[TAY07], which perform well in HPC but do not provide version control to support, workflow

design with provenance.

2.1.3 Parallelism in Scientific Workflows

As mentioned, scientific workflows deal with a large amount of experiments. Normally

these experiments require high computational power to obtain faster results. Sequential

executions presented a first and easy solution, but with a diversity of parallel environments, their

use is almost mandatory.

Glatard et al. [GLA08] affirms that the first level of parallelism that can be accomplished is

the intrinsic workflows parallelism. Since asynchronous calls are possible, different processors can

execute different parts of the workflow. This possibility is present in most SWfMS. They also

present other 3 important possibilities for parallelism: data parallelism, services parallelism and

data synchronization barriers.

Data parallelism is the possibility to process any fragments of data simultaneously with a

minimal performance loss. This capability involves the processing of independent data on different

computing resources. The services parallelism denotes that the processing of different data sets by

different services is totally independent. Finally, data synchronization barriers are a limitation to

services parallelism and occur because some synchronization processors wait for all input data to

be processed before being executed.

2.1.4 Provenance in Scientific Workflows

Another specific topic in scientific workflows is the provenance. The automated tracking

and storage of provenance information promises to be a major advantage of scientific workflow

systems [DAV07].

Davidson et al. [DAV07] claims provenance is not only used for interpreting data and

providing reproducible results, but also for troubleshooting and optimizing efficiency.

Furthermore, the application of a scientific workflow specification to a particular data set may

involve tweaking parameter settings for the modules, and running the workflow many times

during this tuning process.

Davidson et al. [DAV07] also proposes that many scientific workflow systems (e.g.,

myGrid/Taverna) capture provenance information implicitly in an event log. For example, these

logs record events related to the start and end of particular steps in the run and corresponding

26

data read and write events. Using the (logical) order of events, dependencies between data

objects processed or created during the run can be inferred.

Chebotko et al. [CHE08] state that while exploring a workflow run provenance, a user may

be interested in data products that have been produced or consumed by only certain task runs.

Therefore, an abstraction mechanism is required in order to enable a user to focus on only

relevant provenance information.

2.2 Bioinformatics

This section presents a literature review on important aspects related to the

Bioinformatics area, in special related to Rational Drug Design (RDD), Molecular Docking and

Molecular Dynamics. All these subjects are related directly with this thesis, since they are steps

that are executed during the environment created and also serve to validate the pattern used.

One of the requirements of this thesis is to work with an area that has a large volume of

data. Coutinho et al. [COU10] affirms that for many years Bioinformatics scientists have

manipulated a large volume of data, and that their research is based on execution of experiments

through computer simulation (in-silico experiments) that demands a high processing capacity from

computers. Mattoso et al. [MAT08] say that in-silico experiments use several computational tools,

and when used concatenated, present characteristics of a scientific workflow.

2.2.1 Rational Drug Design

The execution of scientific experiments to discover an inhibitor, a future drug candidate,

has evolved with computing assistance. The possibility using computational resources in Biology

enables further accuracy and faster findings, forming a multidisciplinary area called Bioinformatics.

The reference to Rational Drug Design (RDD) comes from improvements in molecular biology and

the use of tools in in-silico simulations. There are 4 steps in RDD [KUN92]:

1. A target receptor structure (protein, DNA, RNA and others) is analyzed through its own

3D structure to identify probable ligand sites;

2. From the probable binding sites identified in the receptor, a group of potential ligand

candidates is selected, allowing that interactions ligand-receptor could be tested and evaluated

from simulation through the use of molecular docking software;

3. In theory, the ligands with the best interaction results with receptor are selected, for a

next step that is related to synthetizing and testing in biological assays;

27

4. Based on finding results, an inhibitor (drug candidate) is created. Otherwise, the first

step starts again.

These four steps from RDD described in [KUN92] are depicted in a flowchart in [MAC11].

Figure 4 depicts this flowchart.

Figure 4 – Flowchart of Rational Drug Design. Adapted from [MAC11].

2.2.2 Molecular Docking

In silico molecular docking simulation is one the main steps of RDD. During this step the

main goal is to find the best possibility to bind molecules to create a stable complex [LEN96].

Through the discovery of better targeting of these molecules, one can predict the strength of

association or binding affinity between them. It is during molecular docking that the best ligand fit

into the receptor becomes available [4]. To assess the quality of the ligand fitness, a large number

of evaluations are carried out to score and rank the best ligand conformation and orientation

inside the receptor-binding pocket.

During this process it is important that docking considers the flexibility of the ligand and

receptor. The ligand, usually a smaller molecule with few atoms, has ease flexibility. However, the

flexibility of the receptor, due to its size and complexity, in many cases is still not considered,

posing a challenge for the area of study. Figure 5 illustrates the molecular docking, including the

flexibility of the receptor.

Start
Search

Target-structure

Analyze

Target-structure

Select
Group of Ligands

Select
Group of Ligands

Group of
Ligands
Selected

Ligands with
Best Docking

Test
Experiments

Good
Experimental

Results?

Produce New Drug End

Protein Data
Bank

DB of Structures of
Proteins

ZINC
BD of Ligands

No

Yes

28

Figure 5 – (a) Schematic 3D representation of molecular docking. The protein is represented in the
form of ribbons, in gray, and ligand in (magenta and cyan). (b) Flexibility of InhA-NADH system in
different moments during the molecular dynamics simulation. Overlap of different conformations

of InhA (cyan, yellow, magenta and green) generated for molecular in [SCH05]. Picture from
[MAC07]

The molecular docking is executed with docking algorithms, which can generate a large

number of ligand-receptor complexes, where they can be assessed by free energy of bindings

(FEB). The more negative FEB, the better the interactions ligand-receptor. There are several

docking programs, such as DOCK [EWI01], AUTODOCK [MOR10, GOO96], GOLD [VER03, JOY06],

FLEXX [RAR96, KRA99], ZDOCK [CHE03], M-ZDOCK [PIE05], MS-DOCK [SAU08], Surflex [JAI03],

MCDOCK [LIU99] and others. Each molecular docking program is based on a specific algorithm

[DIA08] and can search for the best fit between two or more molecules, taking into account

several parameters, obtained from receptor and ligand input coordinates such as: geometrical

complementarity, regarding atomic Van der Waals radius and charge, receptor or ligand structure

flexibility; or considering interatomic interactions, such as hydrogen bonds and hydrophobic

contacts. As a result, docking applications return the predicted orientations (poses) of a ligand in

the target’s biding site. Usually the posing process returns several possible conformations. Scoring

functions, which are able to evaluate intermolecular binding affinity or binding free energy, are

employed in order to optimize and rank results, obtaining the best orientation after the docking

procedure.

Machado [MAC11] says that the process of analyzing the interaction ligand-receptor is

not easy. There are influences from many entropic and enthalpic factors, like the mobility from

receptor and ligand, the effect of the environment on the receptor, the load balance of ligand, and

other interactions from them with water that greatly complicates the description of this process.

29

2.2.3 Flexibility of Receptor

During the molecular docking the flexibility of ligand is an aspect that has been explored

from many molecular docking tools. However, the flexibility of receptors is still a big challenge

[TOT08]. Treating protein movements and active site flexibility is a double challenge, due to the

high dimension of conformation space and the complexity of energy function in use.

Nevertheless, Trotov et al. [TOT08] claim that the state-of-the-art of docking algorithms

predict an incorrect binding pose for about 50-70% of all ligands when only a single fixed receptor

conformation is considered. It is an interesting aspect to use the flexibility of receptor in molecular

docking. Moreover, the flexibility of receptor has been one of the topics worked on by scientists

[YUR10] in the last years.

2.2.4 Molecular Dynamics

Molecular Dynamics (MD) has been used to identify receptor flexibility. It was mentioned

before that protein flexibility is a subject that is investigated by many scientists. MD is one of the

computational techniques used for that.

In MD, atoms and molecules are allowed to interact over time at a given temperature

following the laws of classical mechanics and which provides a detailed description of atomic

motion [DOD08]. Cozzini et al. [COZ08] affirm MD simulations are an easier technique to execute

and has a reasonable cost to generate conformations of a receptor, the snapshots. MD

simulations, when combined with information from other techniques, open the path for the

understanding of genetic, thermodynamic and functional behavior of biological processes

[DOD08].

2.3 Last Chapter Considerations

This chapter presented the literature review on important concepts used in this thesis.

The subjects presented here are used during the other chapters and are a base for the

environment created to execute MDock simulations of FFR model.

First, the subject presented was scientific workflows. This topic has discussed the

characteristics of scientific workflows and also differences in regards to business workflows. Also,

the patterns were addressed. Patterns are the base of the study that is presented in the next

chapter.

The other subjects were bioinformatics, RDD, molecular docking and DM. This study field

was used in many steps of developing the environment that will be presented, such as validation

30

of the pattern, result analysis, setup, control and execution. Thus, we reproduce in this thesis a

workflow for RDD.

3 PATTERN P-SAMI - SELF-ADAPTING MULTIPLE INSTANCES

This chapter presents concepts on P-SaMI (Pattern - Self-adapting Multiple Instances)

[HUB10], a pattern able to manage a large volume of data, to optimize the process execution and

to identify promising data groups. Bioinformatics is the reference area used to create the pattern,

but it is not restricted to it, since the requirements to handle a large volume of data and the

possibility to group them are present in other fields.

Besides presenting the pattern, we also present FReDoWS (Flexible Receptor Docking

Workflow System) [MAC11a], a workflow system that motivates the creation of P-SaMI. Finally, we

state some last considerations about the chapter.

3.1 FReDoWS

The P-SaMI was created based on FReDoWS (Flexible Receptor Docking Workflow System)

[MAC11a]. FReDoWS is a scientific workflow developed in LABIO (Bioinformatics, Modeling, and

Biosystems Simulation Laboratory) and is used to execute molecular docking simulations in a FFR

model.

Figure 6 depicts activities by FReDoWS model. Each activity has a type that is represented

by different colors. Dark green are executed from the user, and activities in purple are subflows

with other activities inside. Light green activities are automated without user intervention and can

invoke one or more external applications. Pink activities are just used to synchronize the model

activities.

32

Figure 6 – Final Model of Scientific Workflow FReDoWS [MAC11a]

The main steps from FReDoWS execution are presented below [MAC07, MAC11]:

 Prepare macromolecule files: after the execution of MD, the files are prepared to

be used in molecular docking. Ptraj, a module from AMBER, is used, creating PDB

extension files based on DM;

 Prepare ligand: the ligand is placed in its first orientation for molecular docking

simulations;

 Choose type of process: the user chooses between Exhaustive and Selective; In

Exhaustive option all conformations from FFR model are used. In Selective, the

user has the option to pick the conformations up based on RMSD value informed

and a ranking of FEB results;

 Execute docking: notwithstanding the process type chosen, exhaustive or

selective, Autodock3.0.5 executes the molecular docking based on ligand and

receptor.

The Enhydra JaWE [ENH11] and Enhydra Shark [ENH11a] software tools were used to

model and execute the workflow, respectively. Thus Machado et al. [MAC07] describe three study

cases using 3.100 conformations from InhA receptor, generated from Schroeder et al. [SCH05],

and the ligands NADH [DES95], PIF [OLI94] and TCL [KUO03]. The study case gave an average

elapsed time of around 15 minutes per each molecular docking, with 775 hours as a total

33

sequence execution (exhaustive mode). These experiments for flexible receptor docking

experiments were executed on Pentium III PCs of 1GHz and 256 MB RAM.

Some improvements have been presented to reduce the number of conformations

[MAC11, MAC11a] added to FReDoWS. Through a Select module the scientist can filter the

number of conformations. Machado [MAC11] says the selection is based on the following thought:

“if a docking of a conformation resulted in value of FEB or RMSD, it is possible that this same

conformation, when interacting with a similar ligand, also get good values of FEB and RMSD”. The

steps to select the conformations are [MAC11]:

 User informs the total of conformations that he wants to pick up, a maximum

RMSD value and the exhaustive table for FFR model;

 The table is sorted by FEB;

 This table is shared in two new tables based on maximum RMSD value informed;

 If the total value of conformations on table within maximum RMSD is the same as

user conformations informed, the list of conformation to be used in selected

docking is ready, otherwise, conformations are added with docking values bigger

than the maximum RMSD informed.

3.2 Concept of the pattern

The pattern Self-adapting Multiple Instances (P-SaMI) came up from analyses related to

FReDoWS. It was observed that the execution of the workflow takes a long time. Based on

FReDOWS and in its long time execution, Hübler created P-SaMI, a pattern focused on scientific

workflows, since it uses basically data-flow elements.

Bioinformatics is not the only area where the pattern can be used. Although based on it,

the pattern can be used in any area. For that, Hübler [HUB10] mentions some features:

 Handling large volume of data;

 Data can be clustered from any similarity criteria;

 The result of each process data is a number;

 There is good value to be compared with process results.

34

Hübler [HUB10] quotes the pattern can manipulate large volume of data and optimize the

processing time, identifying promising groups, as a component of a scientific workflow. Figure 7

depicts P-SaMI in all stages of its use:

Figure 7 – P-SaMI: Self-adapting Multiple Instances pattern

There are some stages in which to use P-SaMI:

1. Create the data: this step occurs before the execution of P-SaMI; In this case we

represent these data through snapshots that were created from an MD;

2. Apply Similarity Function: next step is to cluster the data. Based on similar

characteristics, the snapshots are grouped;

3. Execute P-SaMI: with data clustered, the pattern can be used, controlling the

clusters in order to manage the most promising ones.

3.2.1 Similarity Function

This step is not defined in P-SaMI but its understating is fundamental to obtain good

results from the pattern. Before starting P-SaMI, the snapshots have already been created from

MD. After that, it is time to execute a function to group the snapshots. Any form of grouping

snapshots can be used. However, for this thesis, we are employing the one introduced by

Machado [MAC11].

P-SaMI

Snapshot
1

Snapshot
2

Snapshot
3

Snapshot
4

Snapshot
5

Snapshot
6

Snapshot
7

Snapshot
8

Snapshot
9

Snapshot
n

Snapshot
2

Snapshot
4

Snapshot
9

Snapshot
1

Snapshot
5

Snapshot
6

Snapshot
7

Snapshot
3

Snapshot
8

Snapshot
n

SETUP

LOT
GENERATION

PROCESS

ANALYZE RESULTS

Discard

Snapshot
Execute

Snapshot

Si
m
ila
ri
ty

Fu
n
ct
io
n

35

In order to validate P-SaMI [HUB10], Machado [MAC11] prepared the data to group all

the snapshots. For that, a TCN_Mult2 function is used with THT+NADH as entrance for K-means

algorithm, ALL for a set of atoms and 6 as a number of groups. Also, the same parameters were

used for RMS function. The ligand PIF was selected. Table 1 shows the groups and the quantity of

snapshots in each group for RMS and TCN_Mult2 similarity functions.

Table 1 – Quantity of conformations per each group, generated from K-means algorithm for RMS
and TCN_Mult2 similarity functions

Groups Quantity of RMS conformations Quantity of TCN_Mult2 conformations

0 291 293

1 474 379

2 801 1

3 507 1.011

4 522 807

5 505 609

The execution of the similarity function is not part of this work, but it has great value to

achieve the results of P-SaMI. The pattern design and tests were performed with the results

presented in table 1 and are presented in chapter 5. It is important to emphasize that P-SaMI does

not restrict the area, neither the way that the data is grouped. It means that P-SaMI can be used

not just in RDD process, but also in other processes with similar characteristics.

One question proposed by Hübler in her thesis was regarding the quality of how the data

are grouped. The question “The similarity function applied is directly related with the success of

the pattern execution?” was one of the questions that Hübler was attempting to answer. Then,

after analyzing the results through some test tables, the author concluded that similarity function

has great importance in the use of this pattern.

3.2.2 P-SaMI Setup

The pattern does not define a setup task. However, for a better understanding, we

created this task to facilitate the description about some rules that need to be defined before an

execution of P-SaMI. Before explaining it, some important concepts need to be defined:

 Snapshot: identify the snapshot number;

 Group: identify the group of snapshots generated from a similarity function;

 Lot: created from P-SaMI, identify the lot of snapshots contained in a group;

36

 Status: Identify the snapshot status during the flow; the possible values are: A

(Active and waiting for execution), F (Finalized/Executed), D (Discarded based on

bad result from the Group) and P (Priority changed).

A state transition diagram in figure 8 depicts all the possibilities defined for P-SaMI during

the execution of the workflow.

Figure 8 – State transition diagram for possible status in snapshot processing [HUB10]

After some names of P-SaMI are defined, it is possible to start the setup. Some

requirements have to be defined before the workflow execution. There are two parameters:

 Minimum amount: this represents the minimum amount to create a lot with

snapshots. If not defined, 50 is the default number. The default value was based

on tests.

 Sampling: a percentage to create a lot with snapshots. If not defined, 30% is the

default number. The default value was based on tests.

Besides that, other parameters have to be defined: best value and worst value. During the

execution of P-SaMI, these criteria correspond to a range to analyze the results of each execution.

During the execution of molecular docking, one result that can be used is FEB (Free Energy of

Binding). In this case, lower FEB is a better result. The priorities and status of execution are based

on results and these two parameters.

To set up the values for best value and worst value in P-SaMI, there is a way other than

the user definition. Both can be set up automatically for the workflow through a random test with

some snapshots, obtaining the best result and the worst result. Thus, there are two possibilities to

set these values.

37

3.2.3 P-SaMI: Lot Generation

The Lot Generation is a step that runs in the beginning, before starting the execution of

the workflow. A lot is a subgroup of group with snapshots. Thus, when the P-SaMI parameters are

defined, the lot generation is ready to start.

Hübler [HUB10] affirms that lots are an important characteristic of P-SaMI, since their use

occurs in preliminary and intermediate analysis. The number of lots per group can vary in quantity

and is defined in execution time, based on parameters minimum_amount and sampling. Hübler

[HUB10] justifies the use of lots based on some tests that proved better results could be obtained

from sets with fewer snapshots. Moreover, the use of both parameters gives more flexibility to the

pattern.

Figure 9 represents three test tables for lot generation. All of them have 100 snapshots

and have different parameters defined for minimum_amount and sampling.

test execution sampling minimum_amount total_snapshots_group lot

1 1 40% 30 100 40

1 2 40% 30 60 30

1 3 40% 30 30 30

test execution sampling minimum_amount total_snapshots_group lot

2 1 70% 30 100 70

2 2 70% 30 30 30

test execution sampling minimum_amount total_snapshots_group lot

3 1 40% 40 100 40

3 2 40% 40 60 60

Figure 9 – Representation of lot generation - Adapted from [HUB10]

In figure 9, test represents the number of test tables; execution represents each lot

created; and sampling is a percent value used to create lots; minimum_amount is the minimum of

quantity to create lots; total_snapshots_group is total of snapshots from group and; lot is the

quantity of snapshots in a lot.

In the first test, after three executions, three lots are created. For the first execution the

criteria used is sampling (40%) and 40 snapshots are grouped in the first lot. The second execution

used minimum_amount (30), because 40% of 60 snapshots are 24, less than 30. The third

execution uses the same criteria and creates a lot with last 30 snapshots.

38

In the second test the value for minimum amount is 30 and sampling is 70%. In the first

execution, 70% of 100 snapshots are 70, greater than 30. In the second execution, 70% of 30

snapshots are 21, but the minimum is 30, then this lot will contain 30 snapshots.

At last, the third test has minimum amount with 40% and sampling with 40. The first

execution used 40%. The second execution should have 40 snapshots, but then the next execution

will have 20 snapshots, which is not allowed because there must be the minimum of 40. Then the

second execution has 60 (40+20).

3.2.4 P-SaMI: Processing

After distributing the snapshots in lots, the pattern is ready to execute the experiments.

Each execution can be treated as an instance of the process, and each snapshot can be submitted

to the scientific workflow. Figure 10 depicts the execution of snapshots.

Figure 10 – Execution of snapshots from a group - Adapted from [HUB10]

Hübler [HUB10] explains figure 10 as follows: (a), (b) and (c) are snapshots from a same

group submitted to a scientific workflow. The result value is “Execution Result“, which is stored in

a “Shared Memory Space”, a place that is not in the workflow, e. g., a database. Then this value is

analyzed based on best_value and worst_value, parameters of P-SaMI. Thus, the value result

closed by worst_value has better chances for docking.

The execution and analysis of the snapshots can happen in sequence or parallel. Although

the test tables from Hübler [HUB10] show a sequence test, the author also says that a parallel

approach can be used. Thus, in a parallel process more than one group can be executed at the

39

same time and the results have to be stored for analysis, a step that gives a great flexibility and

gain of processing to the pattern.

3.2.5 P-SaMI: Analyze

The analysis is a stage that occurs after the execution of snapshots. The pattern aims to

execute the maximum of snapshots with results close to the parameter best_value. As the

snapshots are being processed, P-SaMI starts some analyses to identify the most promising groups

and lots. This identification can occur in different moments of the execution, but always taking

into account the percentage executed for group per lot.

Figure 11 depicts the results and analysis that occur in lots and groups of P-SaMI. Hübler

[HUB10] explains it as follows:

 R1’, R1’’, R1’’’, R2’, R2’’, R3’, R4’ and R4’’ correspond to final result from each

snapshot;

 R11, R21, R31, R41 correspond to the average result of all snapshots of a lot of a

group.

The letters “A” and “B” correspond to a possibility of analysis in two ways:

 Horizontal (B): Analysis of each result of snapshots from each lot and the

possibility of continuing executing other lots from the same group comparing with

the average of results of the same lot;

 Vertical (A): Analysis comparing the average results from a lot of a group with lots

from other groups.

40

Figure 11 – Separation of lots from groups and representation of individual results from each
snapshot and from all lot [HUB10]

The analysis uses average of execution to change the status or priority of the execution of

lots and groups. Those averages are calculated in real time, as soon as each docking is executed.

Three different averages are used:

 average_setup: arithmetic average from best_value and worst_value set up before

the execution;

 average_execution: arithmetic average from all snapshots executed in a lot;

 average_estimated: this is an average estimated from a lot. The base are the

snapshots that are not yet executed. The standard deviation from that one

executed is used to calculate this average.

The rule for average estimated was adapted from a rule of thumb [LAR09]. Hübler

[HUB10] quotes the reason for this adaptation in overestimating the probability of good results.

Equation 1 represents the rule of thumb used for Hübler:

41

∑

∑

 ()

(())

(()) ()

For the understanding of equation 1:

 f = quantity of snapshots not yet processed;

 m = arithmetic average from snapshots processed;

 s = sampling standard deviation;

 t = total quantity of snapshots;

 n = quantity of snapshots processed;

During the execution of snapshots the analysis can increase or decrease a priority of a lot

or change the status. Figure 12 presents the algorithm to change the priorities and status of

snapshots. The methods increase_priority_group and decrease_priority_group increase and

decrease, respectively, the priority of execution of group. Method discard_group changes the

status of the snapshots not yet processed to “D”, discarded.

 Figure 12 – Algorithm to define priorities and status change

Hübler [HUB10] says that the analysis can be done in lots or groups. The difference occurs

in process or no more lots from the same group. If the analysis is taken by lot, then:

 the other snapshots from the lot will be discarded: go to the next lot and the

snapshots from this lot will not be processed;

 the other snapshots from the lot will have the priority decreased: go to the next

lot but, before that, the snapshots not processed have to be processed.

On the other hand, if the analysis is taken by group, then:

42

 the other lots from the group will be discarded: go to the next group and the

snapshots from all lots of this group will not be processed;

 the other lots from the group will have the priority decreased: go to the next

group, but the snapshots from this group need to be processed later.

One step that occurs when a snapshot is processed is to set it as “F“. Thus, this snapshot

can be considered in the average calculations and will never be executed again.

3.2.6 Formalism

Hübler [HUB11] says P-SaMI, formally, is a tuple P_SaMI = {C, L, s, P.S, MP.S, PP.S}, where:

 C = {C1, C2, ..., Cm} finite set of groups of snapshots;

 L = {L1, L2, ..., Lm} finite set of lots created from an individual group of snapshots;

 s is the snapshot contained in a lot from a group

o s L | L C

 P.S = {P.S1, P.S2, ..., P.Sm} finite set with results of each snapshot processing;

 MP.S is the best value from a sample of snapshots processed:

o MP.S P.S

 PP.S is the worst value from a sample of snapshots processed:

o PP.S P.S

 MP.S PP.S

3.3 Last Chapter Considerations

This chapter presented P-SaMI, a new pattern to execute experiments in scientific

workflows. This pattern aims to reduce the execution time by discarding non-promising snapshots.

The rules of the pattern were addressed here.

The pattern was validated through table tests [HUB10] where the efficiency could be

proved. Unfortunately, the use of manual tests did not show all possible benefits from the pattern,

such as parallel executions, and the communication with other environments, like communication

with an MTC. Thus, building an environment where the rules of P-SaMI can be validated is one of

the challenges of this thesis.

43

4 W-FREDOW (WEB FLEXIBLE RECEPTOR DOCKING WOKFLOW)

In this chapter we introduce W-FReDoW (Web Flexible Receptor Docking Workflow), an

environment built to execute MDock simulations of FFR model through the web integrated with

MTC environment, and using P-SaMI to achieve an FFR reduced model. The environment consists

of several components, such as a database, web server, MTC middleware, P-SaMI, web front-end

and Autodock4.2. All these aspects are presented in this chapter.

4.1 The Conceptual Architecture

This section describes the conceptual architecture of the environment designed for this

thesis. We call it W-FReDoW, an acronym to Web Flexible Receptor Docking Workflow. W-

FReDoW is an environment designed to execute MDock simulations of FFR model in order to

achieve a Reduced FFR (RFFR) model. Thus, in order to achieve a RFFR model, W-FReDoW was

guided by P-SaMI.

W-FReDoW architecture is based on the interactions between three layers: Client, Server

Controller and MTC. It also has the support of a database. The interactions involve all layers, but

always with the Server Controller in the middle. Client layer is a web interface for setup, execution

and analysis of the workflow. Server Controller has a Web Server that controls the pages and also

has P-SaMI algorithms that manipulate the execution of docking by MTC. MTC layer deals with

distribution and parallelization of dockings. FReDD for P-SaMI is the database that keeps data to

provenance and support P-SaMI algorithms. Figure 13 illustrates the layers of the conceptual

model.

44

Figure 13 – W-FReDoW Conceptual Architecture

The interactions between layers take place in different ways. Client layer interacts with

Server Controller through AJAX requests. The interaction between Server Controller and MTC

occurs in two ways: SFTP and HTTP POST. The SFTP protocol is used from Server Controller and

sends the files to MTC, while HTTP POST is the way MTC sends the results from each docking to

Server Controller. Throughout all the workflow, Server Controller records data on database.

4.2 Client Layer

The Client Layer is a web interface in which the domain specialist has the possibility to

configure, start and get information on the MDock simulations. During these steps, every

communication is done with the Server Controller Layer through Ajax. This layer has 3 main

groups: Setup, Execute and Analyze.

The Setup group is divided in three steps that configure the environment. The Molecular

Docking is responsible for the configuration of the parameters that Autodock4.2 will use during

the execution process, as defined in [MOR09]. MTC sets the information related with the

credentials used in the remote server. P-SaMI is responsible for the configuration of the pattern, a

paramount process to achieve the RFFR model.

MTC Layer

Server Controller Layer Client Layer

P-SaMI

HPC
Environment

Molecular
Docking

Parser/Transfer

Create Queue

Dispatcher/
Monitor

Server Controller
Repository

FReDD for P-SaMI

Execution

Scientist

Prepare
Receptor

Prepare
Ligand

Prepare Grid

Prepare Docking

Prepare Files

Uploader

Data Analyzer

Provenance

Execute

Analyze

Molecular Docking

P-SaMI
MTC

Configuration

MTC Repository

Priorities/
Groups

Input/Output
Files

 Control Flow Data Flow

 SFTP

 SFTP

HTTP
POST AJAX

 AJAX

AJAX

 SFTP

Setup

45

Once the Setup has been done, it is time to Execute. The Execute component starts the

process. This component communicates with the Server Controller Layer letting it know about the

configuration chosen for the whole process.

The last component in this layer is Analyze. Here the scientist can get information about

the execution of the process, accessing the provenance task in the Server Controller Layer that

provides, in real time, data about the status of executions.

4.3 Server Controller Layer

This layer is the core of the environment realizing the communication with the other two

layers. The components are responsible for many parts of the workflow to MDock simulations,

executing important tasks during the whole process. There are three groups that are part of this

layer: Configuration, Molecular Docking and P-SaMI.

Configuration is a unique component that is responsible for storing data from the Setup

group in the Client Layer. Basically, it works as a middle area, employed to save the data that other

steps will make use of during their activities.

Molecular Docking is a group responsible for the preparation of the MDock simulation.

The first component, Prepare Files, is responsible for organizing the snapshots in groups [MAC11],

through similar characteristics of snapshots. After this task is finished, two parallel components

are executed: Prepare Receptor and Prepare Ligand. Both components are part of Autodock4.2,

just like the next two components. Prepare Grid and Prepare Docking are two important tasks for

MDock simulation, because the results are parameter files that will be used during the MTC Layer.

First, Prepare Grid prepares the grid parameter files (extension GPF), and then Prepare Docking

creates the docking parameter files (extension DPF). Both steps are essential in the process of

MDock simulations [MOR10].

Once the Prepare Docking execution is completed, it is time to start the group P-SaMI

that is related with the standard to achieve RFFR model. The first task, Uploader, generates lots for

each group as mentioned in [HUB10]. After that, an XML file is stored in Web Server Repository of

MTC Layer, with the structure used for an initial setup of the MTC. Figure 14 shows the structure

of the XML, where there are groups of snapshots generated for the component Prepare Files.

Besides, there are two other elements in the XML file that correspond to the status and priority of

the group and snapshots. The last task from Uploader is to start the execution of MDock

simulations in the MTC Layer by calling the component Execution.

46

Figure 14 – XML with group of snapshots

4.4 MTC Layer

The MTC Layer handles a large amount of data and controls the distribution of tasks for

parallel execution in HPC environment. The scope of this layer is part of Renata de Paris’ thesis, my

partner in achieving the results of W-FReDoW. The MTC uses two main functions, on’e heuristic

function for creating queue of tasks, and another function that shares out the parallel execution of

the tasks on a cluster. The layer has eight components: Execution, Parser/Transfer, Create Queue,

Dispatcher/Monitor, Server Controller Repository, Priorities/Groups, Input/Output Files, and HPC

Environment. The components Execution, Parser/Transfer, Create Queue and Dispatcher/Monitor

have been developed as a library of the programming language C, and the others just store the

files on directories.

Server Controller Repository component stores all files uploaded by Web Server Layer.

Web Server Layer prepares these files. They are input files to execute on the Autogrid4 and

Autodock4. The XML file is on Priorities/Groups component and it is updated and uploaded by the

Data Analyzer component during the execution time. This file contains information on the groups

of the snapshots, such as priority and classification, and it identifies the group that belongs to each

snapshot. Therefore, the Create Queue component uses an XML file to create the balanced queue

of tasks. The Input/Output Files component has files, which are used by MTC Layer functions.

Firstly, the Web Server Layer uploads these files on the Web Server Repository component. Then,

they are managed by the Parser/Transfer component. Finally they are sent to the workspace of

the MTC Layer. Priorities/Groups and Input/Output files components are within MTC Repository

because both have files, which are organized on MTC workspace (see Figure 15).

47

parameter

job

result
Project

temp

pending

queue

Figure 15 – Directories structure of files of the MTC Layer workspace

The Execute Component creates the workspace for execution of the MTC Layer and

organizes the files used during the execution. It performs two different functions: (i) start the

execution of MTC Layer and; (ii) create the directory structure of the project. The directory

structure (see Figure 15) of the workspace has four main directories to store files. Directories job

and parameter store input files for execution of the autogrid4 and autodock4, and the directories

result and temp store output files from parallel execution of the HPC environment. The directory

job stores the snapshot files from FFR model (pdbqt format). The directory pending stores

snapshot files, which are waiting for insertion in the queue of tasks. The directory queue stores

snapshot files that have already been processed by HPC environment. The directory parameter

stores the ligand (pdbqt format), and the input files for the execution of autogrid4 (gpf format)

and autodock4 (dpf format). The directory result stores output files of the autodock4 (dlg format).

At last, the directory temp stores temporary files, which are used just in execution time by HPC

environment and, after the execution, they are deleted.

The Parser/Transfer is the component responsible for handling and organizing the files

received by Web Service Layer for the workspace of the MTC Layer. Then, the files prepared in

Web Service Layer are sent to the Data Repository Component, and the Parser/Transfer

component transfers these files to the directories structure of files (see Figure 15).

The Create Queue component is responsible for applying the heuristic function. It

employes the priorities of the different groups of snapshots to create balanced task queues. This

component performs three main functions: (i) read XML files; (ii) insert snapshots pending in the

task queue and; (iii) create the queue of tasks to be executed in the HPC environment.

For the HPC environment a task is the execution of the Autogrid4 and Autodock4 in a

single snapshot that makes up an FFR model. Then, a queue of tasks is made of a vector of

snapshots created in the Create Queue component, and this vector is sent to the

Dispatcher/Monitor component for handing out the tasks on nodes and cores of the HPC

environment. The amount of snapshots inserted in queue depends on the size of the queue that is

calculated based on nodes and cores allocated on HPC. The queue of tasks determines the amount

48

of snapshots, which are inserted in queue. For that, the heuristic function counts the number of

nodes and cores allocated in HPC environment. Thus, for a homogeneous cluster, the quantity of

the queue is calculated as follows:

 (1)

A balanced task queue keeps one or more snapshots from each activated group. In order

to do that, we use P-SaMI to set the amount of snapshots that each active group inserts in queue.

Then, with the priorities of the P-SaMI, it is possible to determine the percentage of snapshots

that each group inserts in a queue of tasks. Thus, if a group holds high priority, then it has a

greater amount of snapshots in the queue; on the other hand, if a group holds low priority, then it

has fewer snapshots in the queue. The amount that each group of snapshots inserts in a queue of

tasks is calculated according to the equation:

 (

∑

) (2)

 is the quantity of snapshots of each group, is the result of the equation (1),

 is the priority of the group, and the sum of the priorities of every group on the denominator

of the equation. Hence, from the sum of the outcome of equation (2) the queue of tasks is created

with the following function:

 ∑

 (3)

Due to intrinsic characteristics of the P-SaMI, which perform changes constantly on status

and priority attributes of the different groups of snapshots during the execution time, it is

necessary to create task queues balanced and updated according to the attributes of each group

of snapshots. Then, the analysis of these attributes is performed to result in files processed by the

HPC environment in the Web Server Layer by P-SaMI. Furthermore, Server Controller Layer

updates the result analysis, as priorities and status, in XML file, and the MTC Layer reads it at the

moment of to creating a new queue of tasks. A rule determines that the maximum size of each

queue of tasks is equal to the maximum number of tasks which the cluster can execute in parallel.

A new queue is created whenever a node is idle and there are no tasks in the queue. Figure 16

shows the operation flow between a Create Queue and Dispatcher/Monitor component. The first

uses heuristic function and calls get_property() and get_snapshots() functions to create the

balanced queues of tasks; while the other component controls the tasks to execute in parallel by

HPC environment.

49

The Dispatcher/Monitor component is responsible for invoking an external scheduling to

execute the queue of tasks in HPC environment. The hierarchical hardware design of the HPC

environment has shared memory nodes with several multi-core CPUs, which are connected via a

network infrastructure. For this reason, we employ a hybrid-programming model, which uses

OpenMP for parallelization inside the node and MPI for message transmission between nodes.

Furthermore, the use of master-slave paradigm is applied to setup the tasks used for each cluster

node. Figure 16 shows the operation flow of the Dispatcher/Monitor component. The code

involves a main function, called the function master on 1 node and the slave functions on all other

nodes selected by the user. The master node performs three main functions: (1) manage the task

distribution among the slave nodes; (2) send request for creating new queues of tasks in the

Create Queue component when the queue is empty and; (3) execute tasks of the queue of tasks.

The slaves just execute the tasks of the queue of tasks.

Figure 16 – Operations flows and functions have been performed between Create Queue and
Dispatcher/Monitor components

4.5 W-FReDoW: Details of implementation

There are many important aspects that are under the construction of the environment

and have been highlighted during this chapter. The database, the web server, the program

language and the communication with MTC are important features in the environment and must

to be explored.

50

4.5.1 Database: FReDD for P-SaMI

We defined the architecture in three layers as shown in figure 13. An important

component is the database used. This is called FReDD for P-SaMI, an extension of FReDD (Flexible

Receptor Docking Database) [WIN10, MAC11] following the rules in P-SaMI pattern. The focus of

the original FReDD is to keep the results of MDock simulations of FFR model to be used for data

mining. Therefore, with this thesis, we extend the FReDD data model, creating a new structure

that stores all steps used during the execution of the experiment. Also, with the use of P-SaMI, a

database to store the data is a requirement since the calculation in real time needs to be done to

different methods and keeping the results of experiments in memory is not a good idea.

FReDD for P-SaMI is a database responsible for storing all steps during the process of

running MDock simulations in an FFR model to achieve an RFFR model, and capturing the

provenance of the process. The communication with the database happens always with the Server

Controller Layer (see Figure 13). During the execution some tables store the results individually, for

example for each snapshot, as well as grouped, for example for cluster of snapshots, to be used

for P-SaMI methods.

Figure 17 shows the data model for FReDD for P-SaMI (design with Microsoft Visio). The

tables are separated in four main areas: Setup, Execution, Template and Provenance tables.

51

Figure 17 – FReDD for P-SaMI: Data Model for W-FReDoW

The FReDD for P-SaMI was created in PostgreSQL. PostgreSQL is an object-relational

database management system (ORDBMS) based on POSTGRES, version 4.2, which was developed

at the University of California at Berkeley Computer Science Department [POS11]. PostgreSQL

supports a large SQL (Structured Query Language) and features complex queries, foreign keys,

triggers, transactional integrity, etc.

52

There are two reasons for FReDD for P-SaMI to use PostgreSQL. The first is because its

license can be distributed for any purpose, be it private, commercial or academic. The second

reason is to keep the same database used in FReDD, and to store the data in a unique database.

This database presents 19 tables. The data inserted comes from UI Interface or is

manually uploaded, in case of static data. The next subchapters explain about tables, attributes

and the goals related with W-FReDoW.

4.5.1.1 Setup Tables

These tables have the characteristics of storing data that hardly changes. The data stored

are fundamental for the execution of the environment, i. e., P-SaMI parameters and cluster path.

Part of this group of tables is: Software_Docking, Cluster, Type_Docking_Result, PMIA,

Configuration and Pmia_Status.

The W-FReDoW was thought of with the idea of running different kinds of experiments,

since it contains the requirements of P-SaMI. For MDock simulations it would be possible to use

different software for docking, like Autodock 3.0.5, Autodock 4.2, Vina, etc. Thus,

Software_Docking table stores the type of MDock simulations that can be chosen during the

configuration of experiment execution.

The execution of MDock simulations occurs in another environment and, in order to

setup the parameters for the communication with MTC, the Cluster table stores the

communication data necessary for such. Therefore, this parameter can be set up before starting

the workflow.

As presented in chapter 3, P-SaMI needs some configuration parameters to start its

execution and result analysis. The Type_Docking_Result table stores the type of result that will be

analyzed, i. e., “FEB“ and “RMSD“. W-FReDoW does not restrict only for this two result types, but

for any type; even a formula can be considered. Following the characteristics of P-SaMI, the

PMIA_STATUS table stores the different status of each snapshot (“A“ for Active; “F“ for Finalized,

“D“ for Discarded and “P“ for Priority change). Another table related with P-SaMI is PMIA. PMIA

stores P-SaMI rules, essential for execution of W-FReDoW, and has the following fields:

 id_pmia and id_type_dock_res: id_pmia is the primary key and

id_type_docking_res is the foreign key to Type_Docking_Result table;

 best_value and worst_value: refer to the range for the pattern during the

execution. Both attributes are criteria used to analyze the group results;

53

 minimum_amount and sampling: the lots are created based on minimum_amount,

which is related with the minimum value for lot, and sampling correspond to this

minimum value, but in percent value;

 start_analysis and new_analysis_after: during the execution of the process, the

analysis occurs during some moments of execution. start_analysis field is this first

moment and new_analysis_after is the others moments, in percent value, in

which the analysis has to occur. In order to illustrate this, we can start the analysis

with 30% (start_analysis) and after every additional 10% (new_analysis_after),

meaning 40%, 50%, 60% until 90%, and the analysis of P-SaMI is done.

The last setup table is Configuration. This table contains data on the other setup tables

and is used to start an execution of W-FReDoW. There are data related to cluster, P-SaMI and path

that will be used during the execution of experiments. The following fields can be found:

 id_configuration, description_short and description_long: fields used for

identification of configuration;

 id_soft_dock and id_pmia: fields that correspond to foreign keys for type of

docking and P-SaMI setup used;

 path_server, path_repository, path_job, path_parameter, path_result and

path_temp: these fields are parameters used to create a local structure to store

data during the execution;

 id_cluster, cluster_user, cluster_pwd and cluster_allocate: data about the

parameters used to access the cluster to execute the experiments;

4.5.1.2 Execution Tables

The W-FReDoW has some tables where records are created when a new execution starts.

The first table to be created is Experiment, which stores data related to a new execution. After

that, the snapshots that will be used in the execution are stored in the Docking table. This table

stores the relationship between ligand and receptor that are based on four tables: Ligand,

Conformation_Lig, Receptor and Conformation_Rcpt. During the execution, when a snapshot

changes its status, this table is the first to be updated. Also, the Pmia_Cluster_Processing and

Pmia_Lot_Processing are tables that are updated whenever a snapshot is docked and have the

goal of helping the analyses of P-SaMI, since they keep the total average during the process.

54

As mentioned before, the first table that has data inserted in is Experiment. Each row in

the Experiment table corresponds to a unique execution of W-FReDoW, storing all parameters for

that. They are:

 id_experiment : created when the execution of the process starts;

 id_configuration: foreign key for the configuration used in experiment execution;

 date_ini and date_end: start and end date/time of execution;

 docking_dt_ini and docking_dt_end: start and end date/time of cluster execution;

 template_pr_id, template_pl_id, template_pg_id and template_pd_id: foreign

keys for receptor, ligand, grid and docking templates;

 standard_group : foreign key to similarity function used in the process;

 id_exp_receptor : foreign key to another experiment. It indicates that the

experiment created was based in another existent experiment.

Some tables store data on ligand and receptor: Ligand and Receptor tables, respectively.

Also, other two tables store the flexibility of each one that is Conformation_Lig and

Conformation_Rcpt. Today we are testing with 3.100 receptors from InhA protein, but there is no

limitation for the number of conformations.

The Docking table stores the relationship between ligand and receptor for MDock

simulations. When the workflow is running, some attributes are updated; i. e., status and priorities

of snapshots can change. This table has the following attributes:

 id_experiment: the rows in this table are linked to one experiment;

 ligcode and n_conf_lig: ligand code and number of its conformation;

 pdbcode and n_conf_rcpt: receptor name and conformation number;

 server_cluster_info: field used to keep information about the specific place where

the snapshot was docked. This information is provided from MTC (FReMI) and can

store, for example, virtual machine, cluster or node used;

 cluster and cluster_lot: cluster and lot refer to one group and lot for each

snapshot. The cluster is generated for similarity function [MAC11] and lot for P-

SaMI [HUB10], based on minimum_amount and sampling criteria;

55

 id_pmia_status and priority: status and priority of each snapshot during the

process. Status in related with the PMIA_STATUS table and priority is a number

between 1 and 3, which mean low, medium and high priority;

 best_feb, rmsd_best_feb, best_rmsd and feb_best_rmsd: these fields are captured

in the results files of autodock execution and correspond to best run;

 autogrid_dt_ini and autogrid_dt_end: start and end date/time of autogrid

execution;

 autodock_dt_ini and autodock_dt_end: start and end date/time of autodock

execution;

 snapshot: reference to the number of the snapshot;

The next two tables, Pmia_Cluster_Processing and Pmia_Lot_Processing have almost the

same attributes and the same reason: totalize the snapshots for cluster and lot for P-SaMI rules

execution and real time status. Whenever a snapshot is docked, after updating the Docking table,

these two tables are also updated, totalizing the results per group and lot.

During the execution of P-SaMI, the criteria to change the priority or status of a group

during its execution are based on standard deviation, average or estimated average.

Pmia_Cluster_Processing and Pmia_Lot_Processing store these data to facilitate, in real time, the

action taken from W-FReDoW.

4.5.1.3 Template Tables

To execute the MDock simulations for Autodock4.2, some tables were created to store

data related with templates used during the process. These template tables can store either a path

to a template file or the data inside each template, important to create the snapshots or

parameter files to Autogrid and Autodock executions. The following tables belong to this group:

Template_Default, Template_Md, Template_Md_Params and Standard_Groups.

The Template_Md table stores a reference for different templates used in W-FReDoW. It

keeps linked data like the template used for a Ptraj file, in case of PR (Preparation of Receptor), for

example. This table has the following fields:

 id and description: fields to identify the template

56

 template_type: identify the type of this template. Today there are some

possibilities: PG (Preparation of GRID), PD (Preparation of docking) or PR

(Preparation of Receptor).

 path: path to template file that is the reference for other files.

 original_file: This is used for PR, where an Amber file is the file that contains the

trajectories used to create the files.

The Template_Md_Params stores all parameters necessary to create a .DPF or a .GPF file.

This table contains the details about Template_Md, in case this table does not have a physical file

as a template. Thus all data in the parameter files (DPF and GPF extensions) that will be created

are stored in Template_Md_Params, which contains the attributes:

 id and description: these are the identification of the template and can be

visualized when the user chooses the template in W-FReDoW;

 template_type: identify where this template can be used. Today there are two

possibilities: PD (Preparation of GRID) and PG (Preparation of docking);

 param_name, param_value and param_description : data stored inside the files

generated. These three fields correspond to one row in the parameter file and

specify the name, value and description (comment) of each parameter;

 nr and visible: nr identify the row where the parameter will be written in the file

and visible, whether it is written or not;

 template_md_id: this is a foreign key to the Template_Md table. This identifies

each template the parameters are related to.

The Template_Default stores the default parameters for creation of .DPF and .GPD. It has

the same fields that Template_Md_Params table and it is used to show in UI interface the

parameters that the user can choose to execute with W-FReDoW. After chosen, data are saved in

Template_Md_Params table.

The Standard_Groups table contains snapshots, the reference for their groups and the

method used to cluster them in these groups. This data are generated from a similarity function

[MAC11]. This table is used in the beginning of W-FReDoW execution, updating the snapshots with

the groups that are saved in the Standard_Groups table.

57

4.5.1.4 Provenance Tables

The last group consists of only one table called Event. This table is responsible for keeping

the provenance of the execution and saving the information of actions executed during the W-

FReDoW. As a scientific workflow, W-FReDoW provides information about the steps executed,

helping the scientist analyze all the process chronologically.

The Event table has 4 attributes. The first is id_event, which is a primary key of this table.

Second is id_experiment, which keeps the integrity of the experiment. The last two attributes are

dt, which saves datetime of the action, and info, which saves a description of each step executed.

4.5.2 Web Application Framework

The initial idea was to build the environment under a scientific workflow. But the need of

portability and communication between the Server Controller and MTC led to the development of

W-FReDoW with a web approach, where the scientists can run their experiments from anywhere.

Another reason was the portability to run in different Operating Systems.

Then, with a web approach chosen, some features were identified as requirements for W-

FReDoW: (1) The use of dynamic websites, which allow a better manipulation of the front-end and

a fast development; (2) Web server, that keeps the application on the web; and (3) Web service,

which allows the communication between the server and MTC to get the results of MDock

simulations. Based on these features, we decided to use a specific web application framework.

As there are several web application frameworks available, we chose the one built under

Python, a widely used program language in Bioinformatics. Python is an easy to learn, powerful

programming language. It has efficient high-level data structures and a simple but effective

approach to object-oriented programming. Python’s elegant syntax and dynamic typing, together

with its interpreted nature, make it an ideal language for scripting and for rapid development in

many areas on most platforms [PYT11].

Then, for W-FReDoW, Flask was chosen. Flask is a Python web framework also called a

”microframework” [FLK11] whose idea is to keep the core simple but extensible. There is no

database abstraction layer or an object relational mapper, nor a form validation because Flask is

not a full stack framework. However, there are several extensions for Flask, like those mentioned.

Flask depends on two external libraries, Werkzeug [WER11] and Jinja2 [JIN11]. Werkzeug

is a toolkit for WSGI [JAM09], the standard Python interface between web applications and a

variety of servers for both development and deployment. Jinja2 renders templates.

58

As Flask does not have a native database adapter, we decided to use Psycopg2 [PSY11].

Psycopg is a PostgreSQL database adapter for the Python programming language. A relevant

characteristic for this thesis is that Psycopg is thread safe (threads can share connections) and was

designed for heavily multi-threaded applications that create and destroy lots of cursors and make

a large number of concurrent inserts or updates in database. This feature is strongly used when

MTC sends back to W-FReDoW the results of MDock simulations, since these results are different

POSTs processed for a parallel execution in MTC.

The Python methods created in Flask for W-FReDoW handle jointly with the algorithm for

P-SaMI, analyzing HTTP POST sent from MTC. They also handle the communication with database,

keeping the provenance during the workflow execution. Moreover, Flask renders several

templates used in Client Layer, the front-end interface for the scientist.

4.5.3 UI – The Client Layer

The User Interface (UI) is the front-end for the scientist. In W-FReDoW it is called Client

Layer. The UI is based on different templates that Flask, through Jinja2, renders to the browser. All

steps executed in the workflow are started from the UI, and the scientist can handle them.

Flask implements RESTful through Routing and W-FReDoW uses the path requested by

the browser to identify the correspondent method in the framework. After processing the

method, through JINJA2, the results are passed to be rendered in template, which is so-called

context of the template.

From browser, a request can be sent as a HTTP GET or HTTP POST to web server. The

request from HTTP POST arrives from an http form method to the server. HTTP GET requests are

sent with Ajax, from JQuery (using version 1.6). All front-end interfaces are developed using HTML

and JQuery in JINJA2 templates that are always rendered from Flask.

The Client Layer is shared in three groups: Setup, Execute and Analyze. These groups are

placed in the menu on the left side of the site. In Setup, there is a Main Setup, composed of

Software Docking, Cluster, P-SaMI Rules and Configuration links. Also, there is a Setup for Docking

and Templates, where it is possible to Prepare Files, Receptor, Ligand, Reference Ligand, Grid and

Docking. In Execute there appears the Experiment link, for the execution of new experiments.

Finally, the last group, Analyze, has a link with the same name. Figure 18 presents the UI of W-

FReDoW and it is possible to see the menu options on the left side.

59

Figure 18 – W-FReDoW UI: Client Layer

Setup Main is the general setup of the W-FReDoW. The first link, Software Docking, refers

to the software used for MDock simulations. Today we are using Autodock4.2 for our

environment, but others can be used. The next link is Cluster, where the scientist has the

possibility of setting up the path for the place where MDock simulations will run. P-SaMI Rules

refers to pattern rules, required when the environment starts the execution. In this link, the

scientist chooses which result will be used for analysis, informs the best and worst value for P-

SaMI analysis, fills minimum amount and sampling that is responsible for creating several

snapshots and, at last, informs the starting analysis and next analysis, steps that serve as a

reference for the workflow to control when the analysis has to occur.

60

Finally, the last link in Setup Main is Configuration. First, the scientist chooses the docking

software for preparation of files during the workflow execution. After that, s/he has to choose the

P-SaMI rules configured before. Also, s/he has to setup the paths (server, repository, job,

parameter, result and temp), structures of folders that are created to store files used in workflow.

Cluster information is the last step and the scientist has to inform the place and credentials for

remote execution.

Figure 19 shows windows for the four links inside Setup Main explained before.

Figure 19 – W-FReDoW UI: Setup Main group. Software Docking, Cluster, P-SaMI and
Configuration windows.

Another group is Setup Docking-Templates. This group is responsible for keeping the

templates used for docking or to cluster the snapshots for P-SaMI. All links here start with

“Prepare” because they are responsible for the preparation of files in the workflow. They are Files,

Receptor, Ligand, Reference Ligand, Grid and Docking. Figure 20 shows these windows.

61

Figure 20 – W-FReDoW UI: Setup Docking-Templates group. Prepare Files - Groups, Template for
Prepare Receptor, Docking and Grid windows.

Prepare Files comes from results of similarity functions [MAC11]. This data are updated

through Python scripts. Prepare Receptor involved two files. The first contains a template for

snapshots file. The second one is the CRD file, generated by PTRAJ, a tool from AMBER, which sets

the trajectories in different positions. In our test case, there are 3.100 different trajectories. The

combination between template and CRD will result in 3.100 snapshot files with extension PDBQT;

default extension in Autodock4.2. Prepare Grid has the parameters for a GPF (Grid Parameter File)

extension for each snapshot and is divided in three columns: parameter name, parameter value

and parameter description. The result of these columns will create the file. Like Prepare Grid,

Prepare Docking has three columns that are part of DPF (Docking Parameter File) extension files.

The column “template name“ helps identify both grid and docking templates.

The Execute is the main activity that the scientist can perform. Once in the Execute

Experiment screen, s/he can choose the parameters for a new experiment execution. Figure 21

shows the Execute Experiment screen, where the scientists, at first, must choose the

configuration. Configuration has all parameters for P-SaMI, Cluster and paths needed for W-

FReDoW. Next, a method for preparing files (based on similarity function) has to be chosen to

group the snapshots. In Templates, one must choose a template or other experiment that is a

reference for this new experiment that is being created. Thus, 3.100 snapshots, or those they are

defined, are created. Ligand indicates the ligand used for docking. Templates for GRID and Docking

also have to be chosen and are important to create the GPF and DPF extension files. At the end,

62

when the user clicks on Execute docking Experiment, the workflow starts, the files are created, the

database are updated and FReMI is called.

Figure 21 – W-FReDoW: Execute Experiment

In Analyze, the scientist has the possibility to see the status from any experiment that has

been executed, even the ones in execution. Figure 22 shows the Analyze screen with experiments,

dates when the execution started and finished (initial and end columns), molecular docking

execution started and finished in FReMI and summary snapshots per status.

Figure 22 – W-FReDoW: Analyze

If the scientist decides to see more summaries about the snapshots s/he can always click

on the detail button. Figure 23 (a) shows the results of snapshots processed per cluster and lot,

whereas figure 23 (b) shows the results of each snapshot execution.

63

Figure 23 – W-FReDoW: Analyze. (a) Details from Experiment 197 for Cluster and Lot. (b) Results
for Snapshots from Cluster 0 in Experiment 197.

As mentioned before, the client layer of W-FReDoW is the UI, where the scientist can

setup paths about the cluster, P-SaMI rules and create new templates to execute experiments for

MDock simulations of an FFR model. Thus, with the rules from P-SaMI setup and during the

execution, the scientist can see what it is happening with the experiment.

64

65

5 W-FREDOW: TESTS & RESULTS

After presenting W-FReDoW, an environment for smart execution of MDock simulations

of FFR model, this chapter focuses on tests and results realized with W-FReDoW. The main goal of

this chapter is to prove that the environment can present good results and, for that, the samples

presented here show, step by step, the W-FReDoW in use.

With P-SaMI in use, the environment becomes a smart environment, because it applies

rules that will reduce the amount of snapshots executed, getting better result time to finish all

experiments. The result of tests is directly related with similarity criteria used by Karina Machado

[MAC11], who organizes groups of snapshots with the same characteristics based on the FFR

model.

All tests were executed using the same machine configuration for W-FReDoW and for

middleware FReMI to ensure the same conditions to make comparisons between them. Thus, W-

FReDoW was setup on a MacBook Pro, running Mac OS X, with 2.7 GHz Intel Core i7 and 8 GB 1333

MHz DDR3. The Web Server from Server Controller Layer of W-FReDoW was set up on this

computer. The middleware FReMI, responsible for docking executions, was setup to run on HPC

Cloud on Amazon. The cloud was set up by Renata de Paris, sponsor of FReMI. The cloud has 5

VMs (Virtual Machines) that receive 32 jobs per VM. Thus, 160 jobs can run simultaneously. Each

virtual machine has the same configuration, runs under an Ubuntu 10.04, with 8 virtual cores per

node and with about 2.13 Ghz/core.

To validate W-FReDoW with P-SaMI, four different tests were done. For all tests, 3.100 ps

of InhA receptor were considered [MAC11]. Also, we always used Triclosan (TCL400) [KUO03] as

the ligand for docking. The ligand was initially positioned in the region close to its protein binding

pocket and contains two rotatable bonds. In the first test, no similarity function was used. Thus, all

3.100 snapshots are grouped in only one group and a full execution was realized. The goal for this

test was to measure the execution of all snapshots without any validation of P-SaMI and to get the

total time. Also, in this test we detail each step to execute the experiment.

For the three other tests, a full configuration of P-SaMI was employed. The same

snapshots were grouped in 6 clusters based on similarity functions generated in [MAC11] and also

66

presented in [HUB10]. Each test used a specific similarity function, which means that a specific

snapshot could be grouped in different clusters, and it was executed different times to validate the

use of P-SaMI. Thus, the analyses were setup to start with 30%, 40%, 50% and 70% when a lot of

snapshots was finished. Following, we present considerations about this chapter.

5.1 W-FReDoW test 1: Without a similarity function

One important criterion from P-SaMI is the similarity function used to group the

snapshots. This function groups similarity snapshots that, during W-FReDoW, are executed in

parallel and can be analyzed in real time. During the execution, groups can have their priority

changed to further the most promising groups to finish before others. Also, snapshots with the

worst results can perform that and their respective groups could be discarded.

In this first test, we are setting up the environment not to use the analysis that P-SaMI is

responsible for doing. Our goal is to execute all snapshots in a unique group, without considering

rules to analyze the results during the MDock simulations. Thus, W-FReDoW was configured for

this purpose.

Before starting the execution, we created the configuration that this first test needs. First,

we grouped 3.100 snapshots in only one cluster. Figure 24 shows the group OneGroup that was

created for this test.

Figure 24 – W-FReDoW: 3.100 Snapshots with a Unique Cluster

After creating and grouping snapshots, P-SaMI was configured for a full execution without

any analysis during the MDock simulation. Figure 25, shows the setup created for this purpose,

with a FEB analysis, considering a “-99“ and “+99“ as best and worst values. These parameters are

required, and we are using large numbers to be sure that there are no results out of this range.

The Lot was configured to have all snapshots, with 3.100 snapshots, and the analysis starts only

when all snapshots are finished, meaning that no analysis will be executed. Figure 25 shows a row

that corresponds with the values mentioned.

67

Figure 25 – W-FReDoW: Setup of P-SaMI for a full execution.

To finalize W-FReDoW Setup, the last step is to create a new configuration. The

configuration uses Autodock 4.2, and it has the reference to P-SaMI id 7 (illustrated in Figure 25)

and two groups of parameters. The first group is related to path and corresponds to folders that

are created to store the files for FReMI execution. This structure of folders is created locally, to

store parameter files and XML by group, status and priorities of snapshots, and remotely, for

execution of MDock simulations. The other group is related to connection with Cluster, the remote

server where the MDock simulation is executed. In our test, we are using a remote server

configured on Amazon. For our part of the thesis, the important issue is to have access to the

server: thus, FReMI is activated to execute the experiments as soon W-FReDoW finishes its initial

preparation. Figure 26 shows the configuration for test 1.

Figure 26 – W-FReDoW: Values of Configuration #5, used in test 1.

Once finished the configuration, it is time to create the experiment to start the execution.

Figure 27 shows the values created for this test. First, we associated the configuration and group

68

that were created before and presented above in figures 24, 25 and 26. Moreover, the receptor,

ligand, grid and docking templates are informed.

Figure 27 – W-FReDoW: Parameters for test 1 experiment execution.

The Receptor template used is called “1ENY_NADH_ChargesGasteiger”. This template is a

combination of a PDBQT extension file and a CRD extension file. The first one, PDBQT file, is a

template created based on InhA protein receptor, used as a model to create all 3.100 snapshots.

The other value, CRD file, is a result file generated by Ptraj, a module from Amber, where the

coordinates of the InhA protein trajectories are distributed inside the file. Figure 28 shows parts of

both files. On the top is the CRD file with X, Y and Z coordinates for each atom. Down is the PDBQT

file with 4.008 atoms for a snapshot. It is also presented the place the coordinates will be

positioned.

69

Figure 28 – CRD and PDBQT files used to create snapshots.

Some attributes from grid and docking templates used for this experiment are shown in

figure 29. These templates are stored in the database, are created in W-FReDoW and are based on

ADT Tools. The template “Prepare Grid“ refers to a “GPF” file extension used on Autodock4.2

process while “Prepare Docking“ template refers to “DPF” file extension. For an experiment it is

necessary to do the changes on these templates and save them. Thus, during the execution, W-

FReDoW creates 3.100 “GPF” and “DPF” based on both definitions. The parameters that reference

snapshots must be dynamic, because they are modified during W-FReDoW execution. For

example, the “map” parameter that appears on both templates has “%s” concatenated to its

value. When the file “snap000001.dpf“ is created, tags with “%s” are modified for “000001“ to

keep a same file reference. In this case, the value for “map“ parameter on “Prepare Grid“ will be

set to “snap000001.A.map“.

70

Figure 29 – Parts of grid and docking templates used in test 1.

Before starting the execution, MTC has to be setup. For this test, FReMI was setup to run

on HPC Cloud on Amazon. The cloud was set up by Renata de Paris, sponsor of FReMI. The cloud

has 5 VMs (Virtual Machines) that receive 32 jobs per VM. Thus, 160 jobs can run simultaneously.

Each virtual machine has the same configuration, runs under an Ubuntu 10.04, with 8 virtual cores

per node with about 2.13 Ghz/core.

After the configuration of W-FReDoW and MTC environment (FReMI) for a new

experiment, the scientist can start the execution. Next step occurs completely in the Server

Controller layer of W-FReDoW. W-FReDoW first creates a new experiment and the structure of

folders under this new experiment. Every experiment is kept physically in the computer and also

stored in the database. This step is responsible for a preparation of files for MDock simulations.

Also, it stores in FReDD for P-SaMI database all information of this new experiment that was

created. The experiment 196, created for this test, and its structure of folders and files are shown

in figure 30.

Figure 30 – Structure of folders created for an experiment.

In Molecular Docking preparation, the files of experiments are created. For this test,

Server Controller creates 3.100 PDBQTs (snapshots), 3.100 GPF (parameters for Autogrid) and

3.100 DPF (parameters for Autodock) files. These files are created based on templates setup. So,

9300 files are created and saved in “/experiment/repository/” folder.

71

Other step of preparation is related with P-SaMI. With all data saved in the database, and

grouped, the lot generation starts. For this test, just one group and 1 lot were created, and both

have all 3.100 snapshots inside. Moreover, with 9.100 files created, the last one, called

“grupoSnap.xml“, is created. This file contains all snapshots and their respective groups. This file is

also saved under the repository folder with other files of Server Controller (see figure 30).

After the creation of files in Server Controller, the Uploader sends “grupoSnap.xml“ file to

FReMI. This occurs through an SSH connection with the remote server. The file is sent by SFTP

(Secure File Transfer Protocol). Thus, FReMI starts its execution, based on this setup inside this file.

The Preparation and Uploader steps of W-FReDoW are very fast. For these 9.101 files the

time is 1:08 minutes. The web server of W-FReDoW is setup in MacBook Pro, running Mac OS X,

with 2.7 GHz Intel Core i7 and 8 GB 1333 MHz DDR3.

After sending files to the remote server, the Data Analyzer, component from Server

Controller, waits for requests. As presented, Data Analyzer is a method that waits for GETs or

POSTs requests. In default configuration, the requests are sent as an HTTP POST. For the

experiment 196, snapshot 1, this is a request sample with a result of MDock simulation, sent from

FReMI to Server Controller:

“http://127.0.0.1/update_docking_status?id_experiment=196&snapshot=”snap000001”&

best_feb=6.5300&rmsd_best_feb=4.6300&best_rmsd=3.1100&feb_best_rmsd=-5.5800&

autogrid_dt_ini="2011-12-21 15:30:29”&autogrid_dt_end="2011-12-21 15:31:26"&

autodock_dt_ini="2011-12-21 15:31:26"&autodock_dt_end="2011-12-21 15:32:37"

As soon as a new request comes, Data Analyzer, first, validates the parameters. For

example, a snapshot that was already processed cannot have its status changed again. Start date

of Autogrid cannot be less than finish date.

As mentioned, experiment 196 was setup to execute all snapshots without any analysis

for P-SaMI. Thus, whenever an HTTP POST from FReMI comes to Analyzer, its status of snapshots

is updated in the database. Figure 31 shows, in Analyze, the final results of experiment 196.

72

Figure 31 – Experiment 196 with 3100 snapshots finished.

The Analyze helps the scientist observe, in real time, a status from execution. For

experiment 196, the execution has already finished (see figure 31). The Preparation step was

executed in 1:08 minute. This time is the difference between “Initial“ and “Docking Ini“ columns.

“Docking Ini“ corresponds to the beginning of execution from FReMI, while “Docking End” is the

last snapshot processed on MTC and analyzed from Data Analyzer. Therefore, the difference

between “Docking End“ and “Docking Ini“ is the total time that the 3.100 experiments took to

finish; for this experiment, it took 6:02 hours. The total time of execution is the difference

between “End“ and “Initial“ and here it was of 6:03 hours. This was the total time for this

execution.

A last consideration about this experiment is related to events. Each event is information

about some step executed on the W-FReDoW flow. Figure 32 depicts what happened in the

begging of experiment 196.

Figure 32 – Events for Experiment 196.

73

5.2 W-FReDoW test2: RMS_listagem_cluster_snap_means_6_ALL_ATOMS

For this second test, we intend to depict the use of P-SaMI rules during the execution of

steps of W-FReDoW. Thus, we can prove that P-SaMI can be used in an environment for MDock

simulations for an FFR model considering the prioritization and discard of snapshots.

The first step was to setup the Cluster. This corresponds to the place where the MDock

simulations will be running during the process. In our tests, we used, as mentioned, a Cloud on

Amazon. Figure 33 shows the setup used during the execution of W-FReDoW to send data to

FReMI. The Hostname parameter is the server location, Path Key is the key to access Amazon

Cloud and open a connection, and Path Repository is the folder path where the files will be added

for FReMI execution.

Figure 33 – Cloud setup for communication between W-FReDoW and FReMI.

Next step is to setup all P-SaMI rules used in this test. We are using four different setups

for each experiment executed as shown in Figure 34. Also, this figure shows other parameters:

Best Value and Worst Value, that represent the best and worst result values to get the average

between them; in this case the average is “-6.0”; Minimum Value and Sampling, that are

parameters used on lot creation; Start Analysis and Next Analysis, which are the only parameter

values that changed between each P-SaMI id. In id “6”, Start Analysis is “30%” and Next Analysis is

“10%”. It means that for an execution using this id, the analysis starts with 30% of snapshots

finished per lot and always 10% after the first analysis (40%, 50%, … 90%). For id “9”, for example,

the analysis starts with 50% and more 4 analyses for the same lot are executed (60%, 70%, 80%

and 90%).

Figure 34 – Four different setups for P-SaMI with analysis starting with 30%, 40%, 50% or 70%.

74

Following the steps for a new execution on the environment, it is necessary to create

different configurations for each execution. In figure 35 the ids 6, 7, 8 and 9 represent four

different setups to be used during the execution of experiments. The only difference between

them is the use of different “Id P-SaMI”, “Desc Short” and ”Desc Long” for each configuration. The

column “Id P-SaMI” is a link to P-SaMI rules used and presented in figure 34.

Figure 35 – Different configurations that are used on experiments with analysis starting with 30%,
40%, 50% and 70%.

The last step before starting the execution is to setup an experiment and start the process

execution. This step is based on Experiment window, mentioned on Figure 27, which allows to the

scientist the possibility of setting up the data. For this test we are using the four configurations

created and the similarity function RMS_listagem_cluster_snap_means_6_ALL_ATOMS, which was

presented by Machado [MAC11].

Following all setup, this experiment was executed 6 times with different setups. Table 2

presents the results of each experiment executed. The ids 220, 221 and 222 were executed with

the same configuration and have very similar results. They started to analyze the results with 30%.

The other ids started the analysis in different moments.

75

Table 2 – Final results of experiment executions of W-FReDoW considering the
RMS_listagem_cluster_snap_means_6_ALL_ATOMS as similarity function.

No of
experiment

Initial
Analysis

(%)

Preparation
Time

FReMI
Time

Amount
Finished

Amount
Discarded

220 30% 00:01:02 04:02:17 2249 851

221 30% 00:01:03 04:02:01 2249 851

222 30% 00:01:01 04:00:19 2249 851

224 40% 00:01:28 04:16:42 2407 693

225 50% 00:01:04 04:25:25 2495 605

226 70% 00:01:03 05:01:35 2819 281

Also, table 2 presents other information about each experiment executed. First, the “No

of experiment” is the experiment executed with an individual setup. “Initial Analysis” represents in

percent value the beginning of analysis. “Preparation Time” is the total time to create the 9.300

files and send the XML configuration file to the cloud. “FReMI time” is the total time to finish all

3.100 MDock simulations. “Amount Finished” is the amount of snapshots finished on the

experiment. “Amount Discarded” is the amount of snapshots that were discarded based on the

rules of P-SaMI setup for the experiment. These snapshots were not executed on FreMI.

The “Preparation time” is a very fast execution step and is not a bottleneck process of the

whole. This step does not depend on the configuration of the experiment. In other words, “FReMI

time” is totally related with the configuration used. When the “Initial Analysis” starts earlier, the

FReMI finishes its execution earlier too. This happens because of the number of snapshots

discarded. When more snapshots were discarded, FReMI spent less time to finish the experiment.

When the analysis starts with 70%, i.e., less snapshots were discarded and more time was spent to

finish the whole experiment.

During the process, W-FReDoW records all moments when a status or priority of a lot

changes. Figure 36 shows some results from P-SaMI analysis about experiment 224. A red line

indicates the cluster 0 and lot 3. In the first row, when “snap000167” is processed, 40% of this

cluster/lot was already executed and the analysis starts. Thus, based on the averages (-5.9760, -

6.1091 and -6.0000) the priority is changed from 2 to 1; it means that this cluster/lot had its

priority decreased on FReMI. The AVG1 (-5.9760) corresponds to the arithmetic average from

results of snapshots of the cluster/lot already executed. The AVG2 (-6.1091) corresponds to the

estimated average for the rest of snapshots from this cluster/lot. The AVG3 is the arithmetic

average from Best Value (-7.2) and Worst Value (-4.8) setup on P-SaMI parameters. Then, as the

AVG1 is lower than AVG3 and AVG2 is higher than AVG3, the priority changes to “decrease”. It is

76

possible to observe on the other rows selected that the analysis keeps trying to decrease this lot,

until the analysis with 70% is executed and the cluster 0 and lot 3 are discarded, because AVG1

and AVG2 are lower than AVG3.

Figure 36 – Analysis realized in experiment 224. Four rows selected to show the cluster 0 and lot 3,

where the first had its priority decreased and at last was discarded with 70% based on the Avg1

(Arithmetic Average) and Avg2 (Estimated Average) comparing with Avg3 (P-SaMI Average).

5.3 W-FReDoW test3: TCN_listagem_cluster_snap_means_6_ALL_ATOMS

For this third test, we depict the results obtained by using a different similarity function

from the test before. The setup presented on sub-chapter 5.2 was the same. The only change is

the similarity function used to group the snapshots for this test. Then, for this third test, the

similarly function used was TCN_listagem_cluster_snap_means_6_ALL_ATOMS, presented by

Machado [MAC11].

The process to setup the environment was created for test2 and can be reused on this

experiment. Thus, just the Experiment page (Figure 27) was setup to use a different way to

prepare files. The preparation of the files is related to how the files (snapshots) were grouped. This

test was based on TCN_listagem_cluster_snap_means_6_ALL_ATOMS. After this configuration, it

is time to execute the MDock simulations.

As presented on test 2, here on this test different experiments were executed. Table 3

shows four different experiments, where the rules of P-SaMI have started with 30% on experiment

227, 40% on experiment 228, 50% on experiment 229 and 70% on experiment 230. The

77

preparation time between them was around 01:09 minute. For experiment 227, FReMI Time was

03:59:02 hours, 2210 snapshots were docked and 890 snapshots were discarded. For experiment

228, FReMI Time was 04:18:28 hours, 2423 snapshots were docked and 677 snapshots were

discarded. For experiment 229, FReMI Time was 04:30:04 hours, 2514 snapshots were docked and

586 snapshots were discarded. On the last experiment using this similarity function, experiment

230, FReMI Time was 05:06:59 hours, 2868 snapshots were docked and 232 snapshots were

discarded.

Table 3 – Final results of experiment executions of W-FReDoW considering the
TCN_listagem_cluster_snap_means_6_ALL_ATOMS as similarity function.

No of
experiment

Initial
Analysis

(%)

Preparation
Time

FReMI
Time

Amount
Finished

Amount
Discarded

227 30% 00:01:10 03:59:02 2210 890

228 40% 00:01:09 04:18:28 2423 677

229 50% 00:01:05 04:30:04 2514 586

230 70% 00:01:13 05:06:59 2868 232

5.4 W-FReDoW test4: Group_Patricia_for_NADH_K-means

After presenting two tests using similarity functions from Machado [MAC11], this test

presents experiments that were used by Hubler [HUBLER10]. The grouping used by Hubler is

referred to in this thesis as Group_Patricia_for_NADH_K-means. The steps to setup were the same

as in the two tests before. The only difference was to inform this similarity function on Preparation

Files field on Experiment page (Figure 27).

Again, we executed four experiments based on this similarity. Table 4 shows four

different experiments where the rules of P-SaMI were started with 30% on experiment 231, 40%

on experiment 232, 50% on experiment 233 and 70% on experiment 234. The preparation time

between them was around 01:24 minute. For experiment 231, FReMI Time was 04:00:33 hours,

2264 snapshots were docked and 836 snapshots were discarded. For experiment 232, FReMI Time

was 04:16:49 hours, 2377 snapshots were docked and 723 snapshots were discarded. For

experiment 233, FReMI Time was 04:42:37 hours, 2537 snapshots were docked and 563 snapshots

were discarded. On the last experiment using this similarity function, experiment 234, FReMI Time

was 05:03:02 hours, 2818 snapshots were docked and 282 snapshots were discarded.

Table 4 – Final results of experiment executions of W-FReDoW considering the
Group_Patricia_for_NADH_K-means as similarity function.

No of
experiment

Initial
Analysis

(%)

Preparation
Time

FReMI
Time

Amount
Finished

Amount
Discarded

231 30% 00:01:14 04:00:33 2264 836

232 40% 00:01:28 04:16:49 2377 723

233 50% 00:01:26 04:42:37 2537 563

234 70% 00:01:30 05:03:02 2818 282

5.5 Last Chapter Considerations

This chapter presented four tests performed with W-FReDoW. The first test showed a

complete setup of the environment to run the experiments. For the other tests, only the results

were shown. For all tests, a real environment was used. First, the parameters are set up on W-

FReDoW, the preparation files are executed, the communication with the middleware FReMI

(cloud on Amazon) and P-SaMI is performed, and the dockings are analyzed since the moment

they arrived on W-FReDoW (web server).

Thus, based on the results presented on each test, table 5 shows the total time for each

test executed for each experiment. The lines show the tests. The columns show the percentage

used for W-FReDoW to start the analysis of results of snapshots through P-SaMI rules. The cells

present the total time spent to dock the snapshots by FReMI.

Table 5 – Time spent to execute MDock simulations with W-FReDoW using FReMI middleware.

Test 30% 40% 50% 70% 100%

Test 1 - - - - 06:02:00

Test 2 04:02:17 04:16:42 04:25:25 05:01:35 -

Test 3 03:59:02 04:18:28 04:30:04 05:06:59 -

Test 4 04:00:33 04:16:49 04:42:37 05:03:02 -

The first test, presented on table 5, has the total time of 06:02 hours to execute all

experiments. Tests 2, 3 and 4 presented very similar results for each analysis of P-SaMI performed.

For example, starting the analysis of P-SaMI with 30% of finalized snapshots from lot, test 2

finished in 04:02:17 hours, test 3 finished in 03:59:02 hours and test 4 finished in 04:00:33 hours.

Thus, we can observe that the time difference is very low, with a maximum of around three

minutes of difference between the best and worst times.

Following this analysis, it is possible to say that the three similarity functions

(RMS_listagem_cluster_snap_means_6_ALL_ATOMS, TCN_listagem_cluster_snap_means_6_ALL_ATOMS

79

and Group_Patricia_for_NADH_K-means) have very similar results when used with P-SaMI rules. Also,

the other analysis has similar times to finish the MDock simulations.

On the other hand, we can observe a gain of time when comparing test 1 with other tests.

Test 1 spent 6:02 hours, while the other tests spent less time because snapshots were discarded.

Also, it is possible to say that the early the analysis starts, the faster the experiment is finished.

Always for the same test, when analysis started earlier, for example with 30%, the time to finish

was of around 4 hours, while with 50% around 4:30 hours.

Another comparison is made and shown in table 6. The lines represent the tests and the

columns the experiments with analysis of snapshots starting in different moments. Also for each

analysis column “F” represents Snapshots Finished and “D” Snapshots Discarded. For example, in

test 1 3.100 snapshots were finished without one discarded. As presented on test 1, the purpose

of this test was to execute dockings of all snapshots to obtain the total time. Test 2 presented

2.249 snapshots finished (docked) and 851 snapshots discarded (not executed) when analysis

started with 30%. When starting with 40%, 2.407 snapshots were finished and 693 were discarded.

Table 6 – Final status of snapshots after docking with W-FReDoW using FReMI middleware.

Test 30% 40% 50% 70% 100%

F D F D F D F D F D

Test 1 - - - - - - 3100 -

Test 2 2249 851 2407 693 2495 605 2819 281 - -

Test 3 2210 890 2423 677 2514 586 2868 232 - -

Test 4 2264 836 2377 723 2537 563 2818 282 - -

Another consideration involves the time to execute each snapshot by FReMI. For the

experiments mentioned on this chapter, FReMI spent, on average, 50 seconds for Autogrid and

1:16 minute for Autodock for each snapshot docked. Therefore, we have an average of 2:06

minutes for each MDock simulation on FReMI using Autodock 4.2. The use of W-FReDoW does not

interfere on the time executed by FReMI. If FReMI executes the docking without communication

with W-FReDoW, the time to execute each docking is the same. Some time is spent by FReMI to

handle nodes and allocating them, whenever necessary. This loss of time is shown in Renata de

Paris’ thesis.

At last, as the Server Controller is based on a Web Server and FReMI is a middleware that

runs in another server, it will be possible to parallelize different experiments. We could have an

experiment based on an MD with 3.100 snapshots running on FReMI set up to Amazon Cloud, and

80

another MD based on 6.200 snapshots running in another cloud, or in another machine that must

have to be Internet access to communicate with the Server Controller. For this thesis we did not

test experiment parallelization because we only had access to one cloud on Amazon.

81

6 RELATED WORK

This chapter surveys previous work in some subjects related with this thesis. Some

common subjects in several parts of this work are:

 Use of a data pattern in Bioinformatics;

 Tools used for execution of MDock simulations;

 Integration with MTC in Scientific Workflows;

 Database to store real time data for MDock simulations of FFR model;

6.1 Advanced Data Flow Support for Scientific Grid Workflow Applications

Qin and Fahringer [QIN07] affirm there is a lack to flexible dataset-oriented data flow

mechanisms to meet the complex requirements of scientific Grid workflow applications. This

complexity comes through scientists and engineers who need to manage and process large

datasets on distributed Grid resources. Then, they present a sophisticated approach to address

this problem by introducing a data collection concept and the corresponding collection

distribution constructs, applied to Grid workflow applications.

The authors also claim that a Grid workflow application can be seen as a collection of

computational tasks that are processed in a well-defined order to accomplish a specific goal. Many

control flow constructs have been identified and developed in Grid workflow systems to enable

users to define the exact execution order of tasks. There are four categories: sequential, parallel,

conditional and iterative constructs. Data flows in scientific Grid workflow applications are

commonly complex because datasets are involved.

Similarity to this thesis, Qin and Fahringer also work with large volume of data and groups

of data. Another common approach occurs in execute experiments in parallel. But the way

datasets and the corresponding data elements can be specified in data flow links, especially how

datasets can be distributed onto the parallel loop iterations, is a problem not sufficiently

82

addressed by most Grid workflow languages. The authors also work with a reduction of

experiments.

Although this thesis does not work with Grid, we addressed the parallelization through

the integration with an MTC environment that manages this question.

6.2 Molecular docking simulation of flexible receptor

FreDoWS [MAC07, MAC11a] has already been presented in this thesis as an important

workflow system for MDock simulations of FFR model. First, the WS aimed at the execution of all

conformations [MAC07], but the possibility to reduce the number of conformations for MDock

was already addressed [MAC07, MAC11a].

The criteria added to FReDoWS to pick up conformations based on the idea that, if a

result docking with a conformation has a good FEB and RMSD, it is possible that this same

conformation, in an interaction with a similar ligand, can also present good FEB and RMSD. Trying

to check the efficiency of this idea, Machado [MAC11, MAC11a] concluded through some tests

that for ligands from the same class it is not necessary to use all conformations of the FFR model.

The way the conformations are picked up in FReDoWS presented good results.

FReDoWS has a strong connection with this thesis. The workflow defined in [MAC07] was

used to create W-FReDoW. However, the use of the dynamism through P-SaMI in W-FReDoW

proves that both theses have different approaches to work with fewer conformations. While

FReDoWS works with a mechanism to pick up the conformations manually, W-FReDoW works with

a pattern to discard conformations based on the analysis of groups with similar characteristics.

Another difference between both is the environment where the MDock simulations on

FFR model occur. FReDOWS is a scientific workflow modeled through the JaWe editor, and is

executed by Enhydra Shark. It uses AutoDock 3.05 for the docking simulations. W-FReDoW uses a

web server to communicate between web client and the MTC environment and uses Autodock 4.2

for docking simulations.

At last, W-FReDoW executes parallel docking simulations. The environment presented in

this thesis communicates with an MTC environment that manages those snapshots to be

executed, e.g., in a HPC or Cloud. FReDoW does not implement parallel execution.

6.3 Data parallelism in Bioinformatics workflows

Coutinho et al. [COU10] say that Bioinformatics activities within a workflow often involve

large-scale data processing and several data conversions using shimming activities. Each one of the

83

workflow activities may receive huge amounts of data to be processed. This large scale processing

may be unfeasible if scientists do not run their experiments in high performance environments

and using parallelism techniques such as data fragmentation.

Based on these concepts, Coutinho et al. [COU10] developed Hydra. Hydra is a

middleware that provides a set of components to be included in the workflow specification of any

SWfMS to control parallelism of activities following the MTC paradigm. Hydra is based on a

homogeneous cluster environment and relies on a centralized scheduler (such as Torque). Using

Hydra, the MTC parallelism strategy can be registered, reused, and provenance may be uniformly

gathered during the execution of workflows. Hydra still lacks on data parallelism mechanisms

coupled to provenance facilities. Figure 37 shows Hydra conceptual architecture.

Figure 37 – Hydra Conceptual Architecture

Hydra has great relevance for this thesis. It presents common characteristics such as

exploring Bioinformatics area and large data processing. The environment is separated on layers

that can be coupled, like Hydra middleware. Another similar feature, and one of the challenges, is

the parallelism through MTC paradigm. It also allows keeping the provenance of the execution of

84

workflow. Hydra goes deep into data fragmentation, something that W-FReDoW does not support

yet. We did not identify the use of a pattern that can reduce the number of experiments, one of

the main approaches of this thesis.

6.4 DOVIS: an implementation for high-throughput virtual screening using AutoDock

Zhang et al. [ZHA08] worked on techniques to use HPC platforms for execution of high

data processing from molecular docking experiments. The authors say the development of

molecular docking tools with HPC system is not trivial. Thus, an application called DOVIS was

developed to use AutoDock (version 3), running in parallel on a Linux cluster. The authors claim

DOVIS can efficiently dock large numbers (millions) of small molecules (ligands) to a receptor,

screening 500 to 1,000 compounds per processor per day.

W-FReDoW has a broader scope than DOVIS, since it works with an MTC environment as

a module integrated with it. Neither the approach to execute MDock simulations of FFR model nor

to achieve an RFFR model is implemented in DOVIS.

6.5 Relaxed Complex Scheme for Receptor Flexibility in Computer-aided Drug Design

Amaro et al. [AM08] affirm that while ligand flexibility is well accounted for in

computational drug design, the effective inclusion of receptor flexibility remains an important

challenge. The relaxed complex scheme (RCS) is a promising computational methodology that

combines the advantages of docking algorithms with dynamic structural information provided by

molecular dynamics (MD) simulations, therefore explicitly accounting for the flexibility of both the

receptor and the docked ligands.

The authors discuss new extensions and improvements of RCS methodology that include

virtual screening, and methods to improve its computational efficiency by reducing the receptor

ensemble to a representative set of configurations.

Therefore the methods used for Amaro et al. propose the same aim as the present thesis:

to reduce the number of receptors. Amaro used some methods to reach this reduction. On the

other hand, this thesis presents a pattern that helps in this activity.

6.6 FReDD: Supporting Mining Strategies through a Flexible-Receptor Docking Database

FReDD is an acronym to Flexible-Receptor Docking Database. FReDD repository stores all

features of the receptor snapshots, the ligands, and the docking simulation of MDock simulations

of the FFR model [WIN09]. This repository allows easy retrieval of its information to produce

comprehensive data to be mined. Wink et al. [WIN09] say the use of this database helps

85

concentrate efforts on data mining to explore the docking results in order to accelerate the

identification of promising ligands against the InhA target.

The database presented in this thesis, FReDD for P-SaMI, is an extension of FReDD.

Although both store data from MDock simulations of FFR model, they have different focuses.

While FReDD stores data for mining process, FReDD for P-SaMI maintains the provenance of W-

FReDoW. In FReDD, data are stored after the execution of workflow. FReDD for P-SaMI stores data

in real time, during the setup, execution and analysis of W-FReDoW.

87

7 CONCLUSIONS

This study presented a new environment for MDock simulations of the FFR model. First,

literature reviews about Bioinformatics and Scientific Workflows (SW) are presented. The first one

proved important for the understanding of the workflow for RDD. The other, SW, was paramount

to understand the flow control and data pattern used in this environment. Workflow concepts

helped understanding the use of P-SaMI, a data pattern for Scientific Workflows.

One of the artifacts of this research is a new environment built using rules of P-SaMI

called W-FReDoW (Web Flexible Receptor Docking Workflow). With W-FReDoW the domain

specialist can run docking experiments using a web front-end interface. So the docking files are

prepared and submitted to an MTC environment. After docking, the results from each group of

conformations are analyzed based on P-SaMI rules. Finally, non-promising groups are discarded.

Another deliverable from this thesis is FReDD for P-SaMI. This database is designed to

support MDock simulations of an FFR model based on P-SaMI. The tables and attributes store all

data during the workflow of the process and are an important support of analysis of P-SaMI. Also,

FReDD for P-SaMI provides all the provenance of the execution to the domain specialist.

The scalability of the environment is another topic achieved with the different

components from W-FReDoW. First, W-FReDoW can scale simply by increasing the number of

Virtual Machines or Clusters used by FReMI. Thus, it is possible to parallelize more dockings.

Furthermore, the environment is not limited to execute just one experiment at a time. W-FReDoW

was built to support parallel executions of different experiments. Each experiment has a unique ID

with a corresponding set up, allowing a parallel execution with different treatments per

experiment.

The communication between Server Controller and MTC is an important achievement.

Besides providing a fast communication, here executed by SFTP and HTTP POST, the MTC should

understand rules from P-SaMI, like discard, increase or decrease a lot of snapshots. Then an

algorithm was developed from Renata de Paris thesis to use these rules. The heuristic is presented

in her thesis, demonstrating how FReMI deals with allocation of snapshots on MTC environment.

88

We understand the environment created has a great contribution to RDD. Considering the

flexibility of receptor on molecular docking is a subject from researches, the computational time

an obstacle for scientists, we developed a smart molecular docking, through the use of a MTC and

validation of promising groups of conformations.

We can say that the research question “Is it possible to use a reduction experiments

pattern through the disposal of snapshots non-promising in molecular docking simulations of

Fully-flexible Receptor Model keeping a high level of accuracy?” is answered positively in this

thesis. W-FReDoW was designed under P-SaMI concepts reducing the number of conformations

for docking through promising groups.

Based on the results of this thesis, the use of W-FReDoW really targets the reduction of

the number of conformations. This achievement only happens with the use of P-SaMI, because

without it, all snapshots will be docked. Then, it is possible to say that a RFFR model was achieved

by W-FReDoW.

7.1 Future Work

An important contribution is the use of W-FReDoW in a different workflow area. For that,

it is important that the new workflow presents same characteristics P-SaMI uses. So W-FReDoW

can be validated as a multi-area environment. Also, another contribution is to create modules in

W-FReDow for those different workflows. Thus, scientists can setup each type of experiment that

will be executed.

The grouping of snapshots process could be automatized. Today, W-FReDoW loads results

generated from Karina Machado’s [MAC11] thesis to create groups of snapshots with similar

characteristics. The Data Mining used for her thesis results in entrance data to W-FReDoW. This

process is manual and could be automatized.

The most important improvements for the system will naturally be related with molecular

modeling steps. Thus, the use of different molecular docking tools (today we are docking with

Autodock4.2), can be a differential in the flexibility of the environment.

To finish the list of future works, an interesting area that can be explored is KDD

(Knowledge Discovery and Data Mining) using FReDD for P-SaMI database. The decision to execute

a new experiment could be defined from a KDD process. Today this process is manual, through the

parameter changes to a new experiment.

89

REFERENCES

 [ALT04] I. Altintas, C. Berkley, E. Jaeger, M. Jones, B. Ludascher, and S. Mock. Kepler: an
extensible system for design and execution of scientific workflows, In: 16th SSDBM, p.
423- 424, Santorini, Greece, 2004.

[AMA08] R. E. Amaro, R. Baron, and J. A. McCammon. An improved relaxed complex scheme
for receptor flexibility in computer-aided drug design. J. Comput. Aided Mol. Des.,
22:693–705, 2008.

[BAR09] D. Barseghian, I. Altintas, M. B. Jones, D. Crawl, N. Potter, J. Gallagher, P. Cornillon,
M. Schildhauer, E. T. Borer, E. W. Seabloom, and P. R. Hosseini. Workflows and
extensions to the Kepler scientific workflow system to support environmental sensor
data access and analysis, Ecol. Inform. (2009), doi:10.1016/j.ecoinf.2009.08.008,
2010, p. 42-50.

[CAL06] S. P. Callahan, J. Freire, E. Santos, C. E. Scheidegger, C. T. Silva, and H. T. Vo. VisTrails:
visualization meets data management, In: Proceedings of the 2006 ACM SIGMOD, p.
745-747, Chicago, IL, USA, 2006.

[CAS07] C. T. Caskey. The Drug Development Crisis: Efficiency and Safety. Annual Review of
Medicine 2007, 58:1-16.

[CHE03] R. Chen, L. Li, and Z. Weng. Proteins, 52(1), 80-87, 2003.

[CHE08] A. Chebotko, S. Chang, S. Lu, F. Fotouhi, and P. Yang. 2008. Scientific Workflow
Provenance Querying with Security Views. In Proceedings of the 2008 The Ninth
International Conference on Web-Age Information Management (WAIM '08). IEEE
Computer Society, Washington, DC, USA, 349-356.

[COU10] F. Coutinho, E. Ogasawara, D. de Oliveira, V. Braganholo, A. A. B. Lima, A. M. R.
Dávila, M. Mattoso. “Data parallelism in bioinformatics workflows using Hydra”. In
19th ACM international Symposium on High Performance Distributed Computing,
2010, pp. 507-515.

[DAV07] S. Davidson, S. C. Boulakia, A. Eyal, B. Lud scher, T. McPhillips, S. Bowers, M. .
Anand, and J. Freire. Provenance in scientific workflow systems. IEEE Data Eng. Bull.,
30(4):44–50, 2007.

[DEE07] E. Deelman, G. Mehta, G. Singh, M. Su, and K. Vahi, 2007, "Pegasus: Mapping Large-
Scale Workflows to Distributed Resources", Workflows for e-Science, Springer, p.
376-394.

[DES95] A. Dessen, A. Quemard, J. S. Blanchard, W. R. Jacobs, J. R. Sacchettini, and J. C.
Sacchettini. “Crystal structure and function of the isoniazid target of Mycobacterium
tuberculosis”. Science, vol. 267-5204, 1995, pp. 1638-1641.

90

[DIA08] R. Dias and W. F. de Azevedo Jr. "Molecular Docking Algorithms", Porto Alegre, Rio
Grande do Sul, Brazil, 2008.

[DOD08] G. G. Dodson, D. P. Lane, and C. S. Verma. Molecular simulations of protein dynamics:
new windows on mechanisms in biology. EMBO Reports, 9(2):144–150, 2008.

[ENH11] Enhydra JaWE (Java Workflow Editor). Captured in:
http://sourceforge.net/projects/jawe/, December of 2011.

[ENH11a] Enhydra Shark. Captured in: http://sourceforge.net/projects/sharkwf/, December of
2011.

[EWI01] T. J. Ewing, S. Makino, A. G. Skillman, and I. D. Kuntz. DOCK 4.0: search strategies for
automated molecular docking of flexible molecule databases. J Comput Aided Mol
Des 2001, 15 (5):411–428.

[FLK11] A. Ronacher. Flask Documentation – Flask: web development, one drop at a time.
Release 0.8, 2011. Captured in http://flask.pocoo.org/docs/flask-docs.pdf. December
of 2011.

[GLA08] T. Glatard, J. Montafnat, D. Lingrand, X. Pennec. “Flexible and efficient workflow
deployment of data-intensive applications on grids with MOTEUR”. International
Journal of High Performance Computing and Applications, vol. 22-3, 2008, pp.347-
360.

[GOB07] C. Goble, D. de Roure. “myExperiment: social networking for workflow-using e-
scientists”. In: WOR S, Monterey, California, USA.
http://eprints.ecs.soton.ac.uk/15095/, 2007.

[GOO96] D. S. Goodsell, G. M. Morris, and A. J. Olson. Automated docking of flexible ligands:
applications of AutoDock. J. Mol. Recognit., 9(1), 1-5, 1996.

[HUB10] P. N. Hübler. P-SaMI: self-adapting multiple instances – a data pattern to scientific
workflows (in portuguese: P-MIA: padrão de múltiplas instâncias autoadaptáveis –
um padrão de dados para workflows científicos). PhD Thesis. PPGCC – PUCRS. Porto
Alegre, RS, Brasil (2010).

[HUL06] D. Hull, K. Wolstencroft, R. Stevens, C. Goble, M. R. Pocock, P. Li, and T. Oinn, 2006,
Taverna: a tool for building and running workflows of services, Nucleic Acids
Research, v. 34, n. Web Server issue, p. 729-732.

[JAI03] A. N. Jain. Surflex:  Fully Automatic Flexible Molecular Docking Using a Molecular
Similarity-Based Search Engine. J. Med. Chem., 46(4), 499-511, 2003.

[JAM09] G. James. The Web Server Gateway Interface (WSGI). In: The Definitive Guide to
Pylons. Apress, 2009, p. 369-388.

[JIN11] A. Ronacher. Jinja2 Documentation. Release 2.7, 2011. Captured in
http://jinja.pocoo.org/docs/jinja-docs.pdf. December of 2011.

[JOY06] S. Joy, P. S. Nair, R. Hariharan, and M. R. Pillai. Detailed comparison of the protein-
ligand docking efficiencies of GOLD, a commercial package and ArgusLab, a licensable
freeware. In Silico Biology. 2006. 6, 601-605.

[KRA99] B. Kramer, M. Rarey, and T. Lengauer. Evaluation of the FlexX Incremental
Construction Algorithm for Protein-Ligand Docking. PROTEINS: Structure, Function
and Genetics 37 (1999) 228-241.

91

[KUN92] I. D. Kuntz. “Structure-based Strategies for Drug Design and Discovery.” Science, vol.
257, 1992, pp.1078–1082.

[KUO03] M. R. Kuo, H. R. Morbidoni, D. Alland, S. F. Sneddon, B. B. Gourlie, M. M. Staveski, M.
Leonard, J. S. Gregory, A. D. Janjigian, C. Yee, J. M. Musser, B. Kreiswirth, H. Iwamoto,
R. Perozzo, W. R. Jacobs Jr., J. C. Sacchettini, and D. A. Fidock. “Targeting tuberculosis
and malaria through inhibition of Enoyl reductase: compound activity and structural
data”. J. Biol. Chem., vol. 278, 2003, pp20851–20859.

[LAR09] R. Larson, B. Farber. “Estatística Aplicada”. São Paulo: Editora Pearson, 4º. Edição,
2009, 476p.

[LEN96] T. Lengauer, M. Rarey. Computational methods for biomolecular docking. Curr. Opin.
Struct. Biol., 6 (1996), 402-406.

[LIU99] M. Liu and S. Wang. MCDOCK: a Monte Carlo simulation approach to the molecular
docking problem. J Comput Aided Mol Des 1999, 13(5): 435–451.

[LUD06] B. Ludäscher, I. Altintas, C. Berkley, D. Higgins, E. Jaeger, M. Jones, E. A. Lee, J. Tao, Y.
Zhao. “Scientific Workflow Management and the epler System”. Concurrency and
Computation: Practice & Experience, vol.18-10, 2006, pp.1039-1065.

[LUD09] B. Ludäscher, M. Weske, T. McPhillips, S. Bowers. “Scientific Workflows: Business as
Usual?”. Lecture Notes in Computer Science, vol. 5701, 2009, pp.31-47.

[MAC07] K. S. Machado, E. K. Schroeder, D. D. Ruiz, and O. N. de Souza. “Automating molecular
docking with explicit receptor flexibility using scientific workflows”. In: Brazilian
Symposium On Bioinformatics, 2., 2007, Angra dos Reis. Proceedings… Heidelberg:
Lecture Notes in Computer Science (4643), Set. 2007, p.1-11.

[MAC07a] K. S. Machado. “Um Workflow Científico para a Modelagem do Processo de
Desenvolvimento de Fármacos Assistido por Computador Utilizando Receptor
Flexível.” Dissertação (Mestrado em Ciência da Computação) – Faculdade de
Informática – PUCRS, Porto Alegre, 2007, 75p.

[MAC11] K. S. Machado. Eficient Selection of Conformations of Flexible Receptor in Molecular
Docking Simulations. PhD Thesis. PPGCC – PUCRS. Porto Alegre, RS, Brazil (2011).

[MAC11a] K. S. Machado, E. K. Schroeder, D. D. Ruiz, E. M. L. Cohen, and O. N. de Souza.
Fredows: a method to automate molecular docking simulations with explicit receptor
flexibility and snapshots selection. BMC Genomics, vol. 12, 2011, pp. 2-13.

[MAT09] M. Mattoso, C. Werner, G. Travassos, V. Braganholo, L. Murta, E. Ogasawara, F.
Oliveira, W. Martinho. "Desafios no Apoio à Composição de Experimentos Científicos
em Larga Escala". In: SEMISH - CSBC, Bento Gonçalves, RS – Brasil, 2009, 15p.

[MOR09] G. M. Morris, R. Huey, W. Lindstrom, M. F. Sanner, R. K. Belew, D. S. Goodsell, A. J.
Olson. AutoDock4 and AutoDockTools4: Automated docking with selective receptor
flexibility. J. Comput. Chem. 30 (2009), 2785-2791.

[MOR10] G. M. Morris, D. S. Goodsell, M. E. Pique, W. Lindstrom, R. Huey, S. Forli, W. E. Hart, S.
Halliday, R. Belew, and A. J. Olson. AutodDock Version 4.2 User’s Guide - AutoDock:
Automated Docking of Flexible Ligands to Flexible Receptors. Version 4.2., 2010.

[OLI04] J. S. Oliveira, E. H. S. Sousa, L. A. Basso, M. Palaci, R. Dietze, D. S. Santos, I. S. Moreira.
“An inorganic iron complex that inhibits wild-type and an isoniazid-resistant mutant

92

2-transenoyl-ACP (CoA) reductase from Mycobacterium tuberculosis”. Chem.
Commun., vol. 3, 2004, pp.312–313.

[PIE05] B. Pierce, W. Tong, and Z. Weng. M-ZDOCK: a grid-based approach for Cn symmetric
multimer docking. Bioinformatics 21, 1472–1478, 2005.

[POS11] The PostgreSQL Global Development Group. PostgreSQL 9.0.6 Documentation, 2011.
Captured in: http://www.postgresql.org/docs/9.0/interactive/, November 2011.

[PSY11] F. Di Gregorio. Psycopg: PostgreSQL database adapter for Python. Release 2.4.4.
Captured in http://initd.org/psycopg/docs. December of 2011.

[PYT11] Python Software Foundation. The Python Tutorial, 2011. Captured in:
http://docs.python.org/tutorial/index.html, December of 2011.

[QIN07] J. Qin and T. Fahringer. “Advanced data flow support for scientific grid workflow
applications”. In: Proceedings of the ACM/IEEE conference on Supercomputing (SC),
ACM, 2007, pp.1–12.

[RAI07] I. Raicu, Y. Zhao, C. Dumitrescu, I. Foster, and M. Wilde. Falkon: a Fast and Light-
weight tasK executiON framework, In: 2007 ACM/IEEE conference on
Supercomputing, p. 1-12, Reno, Nevada, 2007.

[RAR96] M. Rarey, B. Kramer, T. Lengauer, and G. Klebe. A Fast Flexible Docking Method Using
an Incremental Construction Algorithm. J. Mol. Biol. 261, 470-489, 1996.

[RUS04] N. Russel, A. ter Hofstede, D. Edmond, W. van der Aalst. “Workflow data patterns.”
Technical Report FIT-TR-2004-01, Queensland Univ. of Techn., 2004, 75p.

[RUS06] N. Russel, A. H. M. ter Hofstede, W. M. P. van der Aalst, N. Mulyar. “Workflow
Control-Flow Patterns - A Revised View”. s.l. : BPM Center Report, BPM-06-22, 2006,
pp.6-22.

[SAU08] N. Sauton, D. Lagorce, B. O. Villoutreix, and M. A. Miteva. BMC Bioinformat., 9, 184-
196, 2008.

[SCH05] E. K. Schroeder, L. A. Basso, D. S. Santos, and O. N. Souza. “Molecular dynamics
simulation studies of the Wild-Type, I21V, and I16T Mutants of Isoniazid-Resistant
Mycobacterium tuberculosis Enoyl Reductase (InhA) in Complex with NADH.” Toward
the Understanding of NADH-InhA Different Affinities. Biophys. J, vol.89, 2005, pp.876-
884 (2005).

[STO93] B. L. Stoddard and D. E. Koshland Jr. Molecular Recognition Analyzed by Docking
Simulations: The Aspartate Receptor and Isocitrate Dehydrogenase from Escherichia
coli. Proc. Natl. Acad. Sci., 90 (1993), 1146-115.

[TAY07] I. Taylor, M. Shields, I. Wang, and A. Harrison, 2007, "The Triana Workflow
Environment: Architecture and Applications", Workflows for e-Science, Springer, p.
320-339.

[TOT08] M. Totrov and R. Abagyan. Flexible ligand docking to multiple receptor conforma-
tions: a practical alternative. Current Opin. Struct. Biol., 18(2):178–184, 2008.

[VER03] M. L. Verdonk, J. C. Cole, M. J. Hartshorn, C. W. Murray, and R. D. Taylor.Improved
protein-ligand docking using GOLD. Proteins, 52(4), 609-623, 2003.

[WER11] A. Ronacher. Werkzeug: The Python WSGI Utility Library. Release 0.9, 2011. Captured
in http://werkzeug.pocoo.org/docs. December of 2011.

93

[WIN09] A. T. Winck, K. Machado, O. N. Souza, and D. D. Ruiz. “FReDD: supporting mining
strategies though a flexible-receptor docking database”. In: IV Brasilian Symposium
on Bioinformatics, 2009, Porto Alegre. Advances in Bioinformatics and Computational
Biology. Berlin : Springer, 2009, pp.143-146.

[WIN10] A. T. Winck, K. S. Machado, O. N. de Souza, and D. D. Ruiz. “Supporting Intermolecular
Interaction Analyses of Flexible-Receptor Docking Simulations”. In: IADIS
International Conference Applied Computing, 2010, Timisoara. Applied Computing,
2010, p. 183-190.

[WOR99] WOR FLOW Management Coalition. “The Workflow Management Coalition
Specification – Terminology & Glossary”. Document Number WFMC-TC-1011, Feb
1999, 65 p.

[YIL09] U. Yildiz, A. Guabtni, and A. H. H. Ngu. "Business versus scientific workflow: A
comparative study," University of California, Tech. Rep. 3, 2009.

[YUJ05] J. Yu and R. Buyya. A Taxonomy of Workflow Management Systems for Grid
Computing, Journal of Grid Computing, v. 34, n. 3-4, p. 171-200, 2005.

[YUR10] E. Yuriev, M. Agostino, and P. A. Ramsland. Challenges and advances in
computational docking: 2009 in review. J. Mol. Recognit., 2011, 24(2), 149-164.

 [ZHA08] S. Zhang, K. Kumar, X. Jiang, A. Wallqvist, J. Reifman. DOVIS: an implementation for
high-throughput virtual screening using Autodock. BMC Bioinformatics 9 (2008), 126.

