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“Remembering that you are going to die is the 
best way I know to avoid the trap of thinking you 

have something to lose. You are already naked. 
There is no reason not to follow your heart.” 
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SMART EXECUTION OF MOLECULAR DOCKING SIMULATIONS OF A FULLY-FLEXIBLE 
RECEPTOR MODEL 

 

 

 

ABSTRACT 

 

Molecular docking simulations of Fully-Flexible Receptor (FFR) models are coming of age. 

However, they demand parallelization of computing activities for their executions and generate 

huge amounts of data that needs to be analyzed. Many Task Computing (MTC) is an attractive 

paradigm routinely applied to execute intensive tasks. In this work we propose an environment to 

execute molecular docking simulations of FFR models to small molecules integrated with an MTC 

middleware. This environment is based on a new pattern called Self-adapting Multiple Instances 

(P-SaMI) that provide rules to reduce the number of experiments, providing a Reduced Fully-

Flexible Receptor (RFFR) model. The main contribution of this research is to prove that P-SaMI 

rules can be used on Molecular Docking Simulations through a web environment integrated with 

an MTC middleware. 
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EXECUÇÃO INTELIGENTE DE SIMULAÇÕES DE DOCAGEM MOLECULAR DE UM 
MODELO DE RECEPTOR TOTALMENTE FLEXÍVEL 

 

 

 

RESUMO 

 

Simulações de docagem molecular com modelos de Receptores Totalmente Flexíveis 

(FFR) estão adquirindo maturidade. No entanto, isto demanda atividades computacionais de 

paralelização para geração e execução de grande volume de dados que precisam ser analizados. 

Computação multi-tarefa é um paradigma atrativo e que vem sendo aplicado frequentemente 

para executar tarefas intensivas. Neste trabalho propomos um ambiente para executar simulações 

de docagem molecular no modelo FFR com pequenas moléculas integradas a um componente 

MTC. Este ambiente é baseado no padrão Múltiplas Instâncias Autoadaptáveis (P-SaMI) que possui 

regras para redução do número de experimentos, provendo um modelo de Receptores 

Totalmente Flexíveis Reduzido (RFFR). A principal contribuição desta pesquisa está na 

comprovação de que as regras do P-SaMI podem ser usadas em Simulações de Docagem 

Molecular através de um ambiente web integrado com um componente MTC. 
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1 INTRODUCTION 

1.1 Statement of the Problem 

The pharmaceutical industry has been seeking to reach ever-higher goals in relation to 

the launch of new drugs to the market, with an estimated average of 14 years to obtain the 

approval of an effective drug, and estimated costs of $800 million [CAS07]. In order to achieve 

greater competitiveness, pharmaceutical companies are in a constant search for cost and time 

reduction in their process of discovering new drugs. 

The rational drug design (RDD) refers in the most specific sense to the systematic 

exploration of the three-dimensional structures (3D) of a macromolecule of pharmacological 

importance, in order to design potential ligands that will bind to the target with high affinity and 

specificity [STO93]. During the RDD, the stage of molecular docking (MDock) is one of the most 

important stages. This step is responsible for providing a better guide so that a molecule will bind 

with another to form a stable complex [LEN96]. In general, molecular docking algorithms consider 

receptors such as rigid structures. However, such receptors in the cellular environment are flexible 

and not rigid as is the case in some algorithms. Although some algorithms already consider the 

explicit flexibility of the receptor, the tools responsible for implementing and analyzing docking 

experiments are still poor. 

In order to map and execute the steps of RDD, we can cite FReDoWS (Flexible Receptor 

Docking Workflow System) [MAC07], a workflow-based solution in which the information flows of 

RDD. This workflow identifies the steps mentioned and also contributes to the automation of 

manual procedures, such as execution of several shell scripts, which are tedious and time-

consuming procedures for manual execution. One of the needs related to FReDoWS is in the 

molecular docking step, which has a high computational cost. The flexible receptors, used in 

FReDoWS, are simulated by a set of snapshots, which represent different conformations of the 

receptor. 

For the development of workflows, there are two well-known patterns: control flow 

[RUS06] and data pattern [RUS04]. In order to create a new pattern based on the data pattern, 

able to properly handle RDD steps, we have the Self-adapting Multiple Instances pattern (P-SaMI) 
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[HUB10]. P-SaMI is a pattern created to be used with clusters of snapshots, where after an 

execution of samples of molecular docking simulations of a cluster, it should be able to identify the 

most promising clusters. Thus, with promising clusters identified, it can provide priority changes in 

the execution, as well as discard those snapshots non-promising. 

In this dissertation we create an environment able to execute the steps of RDD with focus 

on Molecular Docking simulations; as mentioned, a costly process. For that, rules of P-SaMI were 

used to achieve the benefits from this pattern. The pattern is not restricted to the RDD process. 

However, its process was used to guide the design of this environment.  

Although P-SaMI has been defined for Scientific Workflows, its implementation occurred 

in a different context. The environment presented in this thesis is web-based and has 

communication with a Many Task Computing (MTC) middleware, responsible for MDock 

simulations in a High Performance Computing (HPC) environment. Thus we made the first 

implementation of P-SaMI, executing MDock simulations of Fully-flexible Receptor (FFR) model in 

order to reduce the quantity of dockings. 

1.2 Research Question 

Due to processing needs of high data volume in the Bioinformatics area, we have a 

question we attempt to address in this research: “Is it possible to use a reduction experiments 

pattern through the disposal of snapshots non-promising in molecular docking simulations of 

Fully-flexible Receptor Model while sustaining a high level of accuracy?”   

1.3 Goals 

1.3.1 General Purpose 

The overall objective is to enable the use of P-SaMI (Pattern Self-adapting Multiple 

Instances) in molecular docking (MDock) simulations of a Fully-Flexible Protein Receptor (FFR) 

model. Thus, characteristics presented in this pattern will contribute to reduce the total execution 

time of molecular docking simulations through the disposal of snapshots without affecting the 

quality of the FFR model. Also, we want to reduce the total time through integration with a 

middleware responsible for running MDock simulation in Many Task Computing (MTC). 

1.3.2 Specific Purposes 

We want to achieve the following specific purposes:  
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 Enable P-SaMI in MDock simulations of Fully-Flexible Receptor (FFR) model 

environment. 

 Build a new environment for MDock simulations of FFR model based on FReDoWS 

using the new version of molecular docking software; 

 Create a new structure in FReDD (Flexible Receptor Docking Database) to store all 

steps used during the execution of this new environment, keeping the provenance 

of the molecular docking simulations. This structure will be the source of 

information for analysis of P-SaMI; 

 Communicate MDock simulations web environment with MTC (Many Task 

Computing) middleware, sending and receiving in real time data about the 

process. Thus, the execution of MDock simulations, a critical step from RDD, can 

be executed as a multi-distributed process, providing gain of time to all RDD 

processes; 

1.4 Research Methods 

To carry out this thesis some important steps have been undertaken: a mapping to 

understand the steps of RDD existing in LABio (Bioinformatics, Modeling, and Biosystems 

Simulation Laboratory); a literature review to understand the concepts involving SWf (Scientific 

Workflows) and the patterns presented in P-SaMI; the creation of a new environment for MDock 

simulations of FFR model based on FReDoWS integrated with a MTC environment. Finally, we 

demonstrate the results of the execution of the environment, analyzing the use of P-SaMI and the 

integration of MTC middleware in RDD workflow.  

1.5 Organization of the Work 

This thesis is organized as follows: 

 In Chapter 2 we present a literature review about scientific workflows, showing 

some patterns used to create a new environment. Furthermore, this chapter 

presents important concepts in RDD (Rational Drug Design), based on the flow 

presented in this thesis; 

 The next chapter, Chapter 3, details P-SaMI (Pattern - Self-adapting Multiple 

Instances), demonstrating rules of pattern, how it works and where it can be 

applied; 
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 The new environment called W-FReDoW (Web Flexible Receptor Docking 

Workflow) is discussed in Chapter 4. Each part of W-FReDoW architecture is 

shown in details; 

 Next, Chapter 5 elaborates on the results of experiments realized with W-

FReDoW, with analysis of the use of P-SaMI. These experiments are real 

simulations of docking of FFR model. Some of them are shown in [HUB10] and can 

be validated; 

 In Chapter 6, related works are presented, as well as a comparison of differences 

and improvements of this work;  

 Finally, Chapter 7 provides final conclusions and future works related to this 

thesis. 
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2 LITERATURE REVIEW 

This chapter describes concepts related to scientific workflows, the foundation of this 

thesis. These concepts were important to build the environment of this research, and to 

understand the different workflow patterns and help achieve the main goals.  

Moreover, this chapter also presents the field where the study was done, the 

Bioinformatics. This multidisciplinary research area is the interface between informatics and 

biology and has the characteristics to work with large datasets, one of the requirements of the 

present work. Thus, throughout this chapter, the sections explain concepts of Bioinformatics that 

are used in this thesis. Finally, last considerations about this chapter are presented. 

2.1 Scientific Workflows 

Before starting to explain scientific workflows we have to start with workflow. The 

Workflow Management Coalition (WfMC) [WOR99] defines workflow as “The automation of a 

business process, in whole or part, during which documents, information or tasks are passed from 

one participant to another for action, according to a set of procedural rules”. 

Workflows have been associated to business for many years. Yildiz et al. [YIL09] say 

business workflows aim to automate and optimize organization’s processes fulfilled by human or 

computer agents in an administrative context. The latter concerns agents, roles, manipulate 

objects (resources) and, especially, the partial order or coordination among activities. The use of 

business workflows is prevalent among insurance, banking, and health industries. 

Yildiz et al. [YIL09] define the transition from business workflows to scientific workflows. 

Claiming that when workflows move from the business place to the scientific laboratory, 

supporting large-scale, complex, yet fault-tolerant and maintainable scientific processes, they 

demand another systematic approach. This approach has been named as scientific workflows. 

Scientific workflows, which have been around for more than ten years, aim to support scientists in 

designing and implementing large-scale and complex e-science processes. Figure 1 shows a 

comparison between scientific workflows and business workflows. 
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Figure 1 – Comparison of Scientific Workflows and Business Workflows [YIL09] 

Barseghian et al. [BAR09] quote scientific workflows as representations of the processes 

involved in accomplishing a scientific analysis. They combine data and computational procedures 

into a configurable, structured set of steps that implement semi-automated computational 

solutions to a scientific question. A scientific analysis, depending on its focus, can involve a number 

of ad-hoc processes that a scientist may use to go from raw data to publishable results. Some 

areas in which we can perceive the use of scientific workflows are Bioinformatics, Geoinformatics, 

Cheminformatics, Biomedical Informatics and Astrophysics. 

Figure 2 is a high-level representation of the scientific workflow life cycle [LUD09]. The life 

cycle begins occurs with one of these two goals: a scientific hypothesis to be tested; or, with some 

experimental goals one proposes to achieve. Then, the Workflow Design takes place, in which the 

scientists generally reuse previous workflows and templates or try to perform some adaptations. 

Following, there is the Preparation step, in which it is important to select the data sources and 

parameters that will be used during the execution. Also, it is important to consider where the 
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workflow will run, local or remote, and if it will use a high-performance computing (HPC), GRID or 

Cloud Computing. 

Next, the Workflow Execution is where the data from the workflow are consumed and 

others are created. As we are talking about large-scale computational science simulations 

(executing data during hours, days or weeks at a time) the runtime monitoring has an important 

role in the life cycle. It is important that the scientist is informed through a dashboard about the 

status of the execution. Intermediate results and provenance are useful for any strategic decision 

by the scientist, such as aborting or restarting the workflow, based on preliminary bad results, for 

instance. 

After the execution of experiments, the scientist must analyze the results. This occurs in 

Post-Execution Analysis and some questions are normally asked: “do these results make sense?”, 

“why did this step fail?“, and “which steps took the longest time?”. Based on these analyses, the 

process can start again.  

 

Figure 2 – Scientific Workflow Life Cycle [LUD09] 

Following a study in many projects, Ludäscher et al. [LUD06] summarize a number of 

common requirements and desirable of scientific workflows: 

 Seamless access to resources and services: web services are a simple mechanisms 

to deal with remote service execution and remote database access; 

 Service composition & reuse and workflow design: the composition of services has 

to be as easy as possible for the user, even for complex processes; 

 Scalability: it is important for the large volume of data and computational 

resources to be able to run in large parallel jobs on a cluster computer. To support 
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such data-intensive and compute-intensive workflows, suitable interfaces to Grid 

middleware components (sometimes called Compute-Grid and Data-Grid, 

respectively) are necessary;  

 Detached Execution: the workflow engine has to be responsible for controling the 

execution on background or on a remote server, allowing the scientist to do 

another task; 

 Reliability and fault-tolerance: to make a workflow more resilient in an inherently 

unreliable environment, contingency actions must be specifiable, e.g., fail-over 

strategies with alternate web services; 

 User-interaction: sometimes the workflow requires user interaction in different 

steps of the execution; 

 “Smart” re-runs: provide the user with the opportunity to change some 

parameters and re-run just a sub-flow, e.g., not executing from scratch; 

 “Smart” (semantic) links: the scientific workflow system must be based on 

semantics to facilitate the configuration by the user; 

 Data provenance: the experiment executed must be reproducible and the steps, 

parameters and data captured have to be logged for further analysis.   

2.1.1 Workflow patterns 

There are two types of patterns for workflow development:  flow control pattern [RUS06] 

and data pattern [RUS04]. The use of links & connections between tasks is the place where the 

patterns occur [HUB10]. In summary, we have: 

 In flow control pattern, the links represent control restrictions for tasks 

performance. There are many control structures such as sequences, splits, joins 

and loops; 

 In data pattern, the links between tasks are dependencies of data, where data are 

consumed and produced by these tasks. 

Russel et al. [RUS04] classify solutions as the prospect of the data and their 

characteristics. Among these perspectives are: 
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 Data visibility: data can be accessed by different components from a workflow 

process; 

 Data interaction: capture the various ways in which data elements can be passed 

between components in a workflow process and how the characteristics of the 

individual components can influence the manner in which the trafficking of data 

elements occurs; 

 Data transfer: focus on the form in which the actual transfer of data elements 

occurs between one workflow component and another; 

 Data-based routing: how data types can influence the operations and other 

aspects of the workflow, mainly during the flow controls. 

The workflow data pattern has 39 different elements that represent all possibilities from 

the pattern [RUS04, HUB10]. As the goal of this thesis is not to explain every element, we 

exemplify one of them. Figure 3 depicts pattern 15, in which tasks from the workflow 

communicate with external environment. 

 

Figure 3 – Data Interaction: Task to environment - Push [RUS04] 

2.1.2 Scientific Workflow Management System 

Nowadays, scientists from several areas find support for their researches through the use 

of computational tools to get faster results, aiding in the process of analysis and discovery. These 

researchers can contribute during different steps of the process in real time, despite being 

geographically distant. A variety of tools can be used in the scientific process. With that, it is 

essential to use a tool to manage all different steps of the process, which sometimes can run in 

different places. 
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The use of SWfMS (Scientific Workflow Management System) in the process of 

computational experiment (in-silico) provides an environment that simplifies the design, 

implementation and documentation of experiments [LUD09]. Some of the advantages of using 

SWfMS are: automation of repetitive tasks, explanation of process documentation, monitoring of 

workflow execution, provenance record of results, optimization of the scientific process, as well as 

efficient execution and, finally, possibility of reusing known artifacts. 

Mattoso et al. [MAT09] represent in some steps the experiment life cycle showed by 

[GOB07]. Each step is a categorization that represents parts of the experiment life cycle, as 

workflows concept, workflows execution and workflows analysis. They are: 

Workflows concept: 

 Allow scientists and researchers to work in the core of the experiment in a 

controlled and systematic reuse of knowledge; 

 Support the modeling and record of knowledge from domain using ontologies; 

 Support the protocol modeling of experiment, using ontologies and abstract and 

concrete workflows; 

 Allow a description of all packages used in the experiment, saving semantic 

relationships, based to validate next executions. 

Workflows execution: 

 Keep the provenance, recording tasks used during the process; 

 Provide support for an efficient execution of scientific workflows, allowing the 

execution in GRID and distributed environments; 

Workflows analysis: 

 Provide information during the execution of the workflow tasks about the 

parameters and results; 

 Allow ad-hoc searches in the results of experiments, giving the provenance of 

data, process and knowledge. 

Currently, there are some SWfMS that have different focus, such as Vistrails [CAL06], 

Kepler [ALT04] and Taverna [HUL06], which are strong in provenance support and concrete 

workflow design but lack on HPC (High-performance Computing) support. On the other hand, 
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others SWfMS are strong to work with GRIDs [YUJ05], such as Pegasus [9], Swift [RAI07] and Triana 

[TAY07], which perform well in HPC but do not provide version control to support, workflow 

design with provenance. 

2.1.3 Parallelism in Scientific Workflows 

As mentioned, scientific workflows deal with a large amount of experiments. Normally 

these experiments require high computational power to obtain faster results. Sequential 

executions presented a first and easy solution, but with a diversity of parallel environments, their 

use is almost mandatory. 

Glatard et al. [GLA08] affirms that the first level of parallelism that can be accomplished is 

the intrinsic workflows parallelism. Since asynchronous calls are possible, different processors can 

execute different parts of the workflow. This possibility is present in most SWfMS. They also 

present other 3 important possibilities for parallelism: data parallelism, services parallelism and 

data synchronization barriers. 

Data parallelism is the possibility to process any fragments of data simultaneously with a 

minimal performance loss. This capability involves the processing of independent data on different 

computing resources. The services parallelism denotes that the processing of different data sets by 

different services is totally independent. Finally, data synchronization barriers are a limitation to 

services parallelism and occur because some synchronization processors wait for all input data to 

be processed before being executed. 

2.1.4 Provenance in Scientific Workflows 

Another specific topic in scientific workflows is the provenance. The automated tracking 

and storage of provenance information promises to be a major advantage of scientific workflow 

systems [DAV07]. 

Davidson et al. [DAV07] claims provenance is not only used for interpreting data and 

providing reproducible results, but also for troubleshooting and optimizing efficiency. 

Furthermore, the application of a scientific workflow specification to a particular data set may 

involve tweaking parameter settings for the modules, and running the workflow many times 

during this tuning process. 

Davidson et al. [DAV07] also proposes that many scientific workflow systems (e.g., 

myGrid/Taverna) capture provenance information implicitly in an event log. For example, these 

logs record events related to the start and end of particular steps in the run and corresponding 
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data read and write events. Using the (logical) order of events, dependencies between data 

objects processed or created during the run can be inferred. 

Chebotko et al. [CHE08] state that while exploring a workflow run provenance, a user may 

be interested in data products that have been produced or consumed by only certain task runs. 

Therefore, an abstraction mechanism is required in order to enable a user to focus on only 

relevant provenance information. 

2.2 Bioinformatics 

This section presents a literature review on important aspects related to the 

Bioinformatics area, in special related to Rational Drug Design (RDD), Molecular Docking and 

Molecular Dynamics. All these subjects are related directly with this thesis, since they are steps 

that are executed during the environment created and also serve to validate the pattern used. 

One of the requirements of this thesis is to work with an area that has a large volume of 

data. Coutinho et al. [COU10] affirms that for many years Bioinformatics scientists have 

manipulated a large volume of data, and that their research is based on execution of experiments 

through computer simulation (in-silico experiments) that demands a high processing capacity from 

computers. Mattoso et al. [MAT08] say that in-silico experiments use several computational tools, 

and when used concatenated, present characteristics of a scientific workflow. 

2.2.1 Rational Drug Design 

The execution of scientific experiments to discover an inhibitor, a future drug candidate, 

has evolved with computing assistance. The possibility using computational resources in Biology 

enables further accuracy and faster findings, forming a multidisciplinary area called Bioinformatics. 

The reference to Rational Drug Design (RDD) comes from improvements in molecular biology and 

the use of tools in in-silico simulations. There are 4 steps in RDD [KUN92]: 

1. A target receptor structure (protein, DNA, RNA and others) is analyzed through its own 

3D structure to identify probable ligand sites; 

2. From the probable binding sites identified in the receptor, a group of potential ligand 

candidates is selected, allowing that interactions ligand-receptor could be tested and evaluated 

from simulation through the use of molecular docking software;  

3. In theory, the ligands with the best interaction results with receptor are selected, for a 

next step that is related to synthetizing and testing in biological assays; 
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4. Based on finding results, an inhibitor (drug candidate) is created. Otherwise, the first 

step starts again. 

These four steps from RDD described in [KUN92] are depicted in a flowchart in [MAC11]. 

Figure 4 depicts this flowchart. 

 

Figure 4 – Flowchart of Rational Drug Design. Adapted from [MAC11]. 

2.2.2 Molecular Docking 

In silico molecular docking simulation is one the main steps of RDD. During this step the 

main goal is to find the best possibility to bind molecules to create a stable complex [LEN96]. 

Through the discovery of better targeting of these molecules, one can predict the strength of 

association or binding affinity between them. It is during molecular docking that the best ligand fit 

into the receptor becomes available [4]. To assess the quality of the ligand fitness, a large number 

of evaluations are carried out to score and rank the best ligand conformation and orientation 

inside the receptor-binding pocket. 

During this process it is important that docking considers the flexibility of the ligand and 

receptor. The ligand, usually a smaller molecule with few atoms, has ease flexibility. However, the 

flexibility of the receptor, due to its size and complexity, in many cases is still not considered, 

posing a challenge for the area of study. Figure 5 illustrates the molecular docking, including the 

flexibility of the receptor. 
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Figure 5 – (a) Schematic 3D representation of molecular docking. The protein is represented in the 
form of ribbons, in gray, and ligand in (magenta and cyan). (b) Flexibility of InhA-NADH system in 
different moments during the molecular dynamics simulation. Overlap of different conformations 

of InhA (cyan, yellow, magenta and green) generated for molecular in [SCH05]. Picture from 
[MAC07] 

The molecular docking is executed with docking algorithms, which can generate a large 

number of ligand-receptor complexes, where they can be assessed by free energy of bindings 

(FEB). The more negative FEB, the better the interactions ligand-receptor. There are several 

docking programs, such as DOCK [EWI01], AUTODOCK [MOR10, GOO96], GOLD [VER03, JOY06], 

FLEXX [RAR96, KRA99], ZDOCK [CHE03], M-ZDOCK [PIE05], MS-DOCK [SAU08], Surflex [JAI03], 

MCDOCK [LIU99] and others. Each molecular docking program is based on a specific algorithm 

[DIA08] and can search for the best fit between two or more molecules,  taking into account 

several parameters, obtained from receptor and ligand input coordinates such as: geometrical 

complementarity, regarding atomic Van der Waals radius and charge, receptor or ligand structure 

flexibility; or considering interatomic interactions, such as hydrogen bonds and hydrophobic 

contacts. As a result, docking applications return the predicted orientations (poses) of a ligand in 

the target’s biding site. Usually the posing process returns several possible conformations. Scoring 

functions, which are able to evaluate intermolecular binding affinity or binding free energy, are 

employed in order to optimize and rank results, obtaining the best orientation after the docking 

procedure. 

Machado [MAC11] says that the process of analyzing the interaction ligand-receptor is 

not easy. There are influences from many entropic and enthalpic factors, like the mobility from 

receptor and ligand, the effect of the environment on the receptor, the load balance of ligand, and 

other interactions from them with water that greatly complicates the description of this process.  
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2.2.3 Flexibility of Receptor 

During the molecular docking the flexibility of ligand is an aspect that has been explored 

from many molecular docking tools. However, the flexibility of receptors is still a big challenge 

[TOT08]. Treating protein movements and active site flexibility is a double challenge, due to the 

high dimension of conformation space and the complexity of energy function in use. 

Nevertheless, Trotov et al. [TOT08] claim that the state-of-the-art of docking algorithms 

predict an incorrect binding pose for about 50-70% of all ligands when only a single fixed receptor 

conformation is considered. It is an interesting aspect to use the flexibility of receptor in molecular 

docking. Moreover, the flexibility of receptor has been one of the topics worked on by scientists 

[YUR10] in the last years.  

2.2.4 Molecular Dynamics 

Molecular Dynamics (MD) has been used to identify receptor flexibility. It was mentioned 

before that protein flexibility is a subject that is investigated by many scientists. MD is one of the 

computational techniques used for that. 

In MD, atoms and molecules are allowed to interact over time at a given temperature 

following the laws of classical mechanics and which provides a detailed description of atomic 

motion [DOD08]. Cozzini et al. [COZ08] affirm MD simulations are an easier technique to execute 

and has a reasonable cost to generate conformations of a receptor, the snapshots. MD 

simulations, when combined with information from other techniques, open the path for the 

understanding of genetic, thermodynamic and functional behavior of biological processes 

[DOD08]. 

2.3 Last Chapter Considerations 

This chapter presented the literature review on important concepts used in this thesis. 

The subjects presented here are used during the other chapters and are a base for the 

environment created to execute MDock simulations of FFR model. 

First, the subject presented was scientific workflows. This topic has discussed the 

characteristics of scientific workflows and also differences in regards to business workflows. Also, 

the patterns were addressed. Patterns are the base of the study that is presented in the next 

chapter. 

The other subjects were bioinformatics, RDD, molecular docking and DM. This study field 

was used in many steps of developing the environment that will be presented, such as validation 
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of the pattern, result analysis, setup, control and execution. Thus, we reproduce in this thesis a 

workflow for RDD. 



 

 

 

3 PATTERN P-SAMI - SELF-ADAPTING MULTIPLE INSTANCES 

This chapter presents concepts on P-SaMI (Pattern - Self-adapting Multiple Instances) 

[HUB10], a pattern able to manage a large volume of data, to optimize the process execution and 

to identify promising data groups. Bioinformatics is the reference area used to create the pattern, 

but it is not restricted to it, since the requirements to handle a large volume of data and the 

possibility to group them are present in other fields. 

Besides presenting the pattern, we also present FReDoWS (Flexible Receptor Docking 

Workflow System) [MAC11a], a workflow system that motivates the creation of P-SaMI. Finally, we 

state some last considerations about the chapter. 

3.1 FReDoWS 

The P-SaMI was created based on FReDoWS (Flexible Receptor Docking Workflow System) 

[MAC11a]. FReDoWS is a scientific workflow developed in LABIO (Bioinformatics, Modeling, and 

Biosystems Simulation Laboratory) and is used to execute molecular docking simulations in a FFR 

model.  

Figure 6 depicts activities by FReDoWS model. Each activity has a type that is represented 

by different colors. Dark green are executed from the user, and activities in purple are subflows 

with other activities inside. Light green activities are automated without user intervention and can 

invoke one or more external applications. Pink activities are just used to synchronize the model 

activities. 
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Figure 6 – Final Model of Scientific Workflow FReDoWS [MAC11a] 

The main steps from FReDoWS execution are presented below [MAC07, MAC11]: 

 Prepare macromolecule files: after the execution of MD, the files are prepared to 

be used in molecular docking. Ptraj, a module from AMBER, is used, creating PDB 

extension files based on DM; 

 Prepare ligand: the ligand is placed in its first orientation for molecular docking 

simulations; 

 Choose type of process: the user chooses between Exhaustive and Selective; In 

Exhaustive option all conformations from FFR model are used. In Selective, the 

user has the option to pick the conformations up based on RMSD value informed 

and a ranking of FEB results; 

 Execute docking: notwithstanding the process type chosen, exhaustive or 

selective, Autodock3.0.5 executes the molecular docking based on ligand and 

receptor. 

The Enhydra JaWE [ENH11] and Enhydra Shark [ENH11a] software tools were used to 

model and execute the workflow, respectively. Thus Machado et al. [MAC07] describe three study 

cases using 3.100 conformations from InhA receptor, generated from Schroeder et al. [SCH05], 

and the ligands NADH [DES95], PIF [OLI94] and TCL [KUO03]. The study case gave an average 

elapsed time of around 15 minutes per each molecular docking, with 775 hours as a total 
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sequence execution (exhaustive mode). These experiments for flexible receptor docking 

experiments were executed on Pentium III PCs of 1GHz and 256 MB RAM. 

Some improvements have been presented to reduce the number of conformations 

[MAC11, MAC11a] added to FReDoWS. Through a Select module the scientist can filter the 

number of conformations. Machado [MAC11] says the selection is based on the following thought: 

“if a docking of a conformation resulted in value of FEB or RMSD, it is possible that this same 

conformation, when interacting with a similar ligand, also get good values of FEB and RMSD”. The 

steps to select the conformations are [MAC11]: 

 User informs the total of conformations that he wants to pick up, a maximum 

RMSD value and the exhaustive table for FFR model; 

 The table is sorted by FEB; 

 This table is shared in two new tables based on maximum RMSD value informed; 

 If the total value of conformations on table within maximum RMSD is the same as 

user conformations informed, the list of conformation to be used in selected 

docking is ready, otherwise, conformations are added with docking values bigger 

than the maximum RMSD informed. 

3.2 Concept of the pattern 

The pattern Self-adapting Multiple Instances (P-SaMI) came up from analyses related to 

FReDoWS. It was observed that the execution of the workflow takes a long time. Based on 

FReDOWS and in its long time execution, Hübler created P-SaMI, a pattern focused on scientific 

workflows, since it uses basically data-flow elements. 

Bioinformatics is not the only area where the pattern can be used. Although based on it, 

the pattern can be used in any area. For that, Hübler [HUB10] mentions some features:  

 Handling large volume of data; 

 Data can be clustered from any similarity criteria; 

 The result of each process data is a number; 

 There is good value to be compared with process results. 
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Hübler [HUB10] quotes the pattern can manipulate large volume of data and optimize the 

processing time, identifying promising groups, as a component of a scientific workflow. Figure 7 

depicts P-SaMI in all stages of its use: 

 

Figure 7 – P-SaMI: Self-adapting Multiple Instances pattern 

There are some stages in which to use P-SaMI: 

1. Create the data: this step occurs before the execution of P-SaMI; In this case we 

represent these data through snapshots that were created from an MD; 

2. Apply Similarity Function: next step is to cluster the data. Based on similar 

characteristics, the snapshots are grouped; 

3. Execute P-SaMI: with data clustered, the pattern can be used, controlling the 

clusters in order to manage the most promising ones. 

3.2.1 Similarity Function 

This step is not defined in P-SaMI but its understating is fundamental to obtain good 

results from the pattern. Before starting P-SaMI, the snapshots have already been created from 

MD. After that, it is time to execute a function to group the snapshots. Any form of grouping 

snapshots can be used. However, for this thesis, we are employing the one introduced by 

Machado [MAC11]. 
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In order to validate P-SaMI [HUB10], Machado [MAC11] prepared the data to group all 

the snapshots. For that, a TCN_Mult2 function is used with THT+NADH as entrance for K-means 

algorithm, ALL for a set of atoms and 6 as a number of groups. Also, the same parameters were 

used for RMS function. The ligand PIF was selected. Table 1 shows the groups and the quantity of 

snapshots in each group for RMS and TCN_Mult2 similarity functions. 

Table 1 – Quantity of conformations per each group, generated from K-means algorithm for RMS 
and TCN_Mult2 similarity functions  

Groups Quantity of RMS conformations Quantity of TCN_Mult2 conformations 

0 291 293 

1 474 379 

2 801 1 

3 507 1.011 

4 522 807 

5 505 609 

 

The execution of the similarity function is not part of this work, but it has great value to 

achieve the results of P-SaMI. The pattern design and tests were performed with the results 

presented in table 1 and are presented in chapter 5. It is important to emphasize that P-SaMI does 

not restrict the area, neither the way that the data is grouped. It means that P-SaMI can be used 

not just in RDD process, but also in other processes with similar characteristics.  

One question proposed by Hübler in her thesis was regarding the quality of how the data 

are grouped. The question “The similarity function applied is directly related with the success of 

the pattern execution?” was one of the questions that Hübler was attempting to answer. Then, 

after analyzing the results through some test tables, the author concluded that similarity function 

has great importance in the use of this pattern. 

3.2.2 P-SaMI Setup 

The pattern does not define a setup task. However, for a better understanding, we 

created this task to facilitate the description about some rules that need to be defined before an 

execution of P-SaMI. Before explaining it, some important concepts need to be defined: 

 Snapshot: identify the snapshot number; 

 Group: identify the group of snapshots generated from a similarity function; 

 Lot: created from P-SaMI, identify the lot of snapshots contained in a group; 
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 Status: Identify the snapshot status during the flow; the possible values are: A 

(Active and waiting for execution), F (Finalized/Executed), D (Discarded based on 

bad result from the Group) and P (Priority changed). 

A state transition diagram in figure 8 depicts all the possibilities defined for P-SaMI during 

the execution of the workflow. 

 

Figure 8 – State transition diagram for possible status in snapshot processing [HUB10] 

 

After some names of P-SaMI are defined, it is possible to start the setup. Some 

requirements have to be defined before the workflow execution. There are two parameters: 

 Minimum amount: this represents the minimum amount to create a lot with 

snapshots. If not defined, 50 is the default number. The default value was based 

on tests. 

 Sampling: a percentage to create a lot with snapshots. If not defined, 30% is the 

default number. The default value was based on tests. 

Besides that, other parameters have to be defined: best value and worst value. During the 

execution of P-SaMI, these criteria correspond to a range to analyze the results of each execution. 

During the execution of molecular docking, one result that can be used is FEB (Free Energy of 

Binding). In this case, lower FEB is a better result. The priorities and status of execution are based 

on results and these two parameters. 

To set up the values for best value and worst value in P-SaMI, there is a way other than 

the user definition. Both can be set up automatically for the workflow through a random test with 

some snapshots, obtaining the best result and the worst result. Thus, there are two possibilities to 

set these values. 
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3.2.3 P-SaMI: Lot Generation 

The Lot Generation is a step that runs in the beginning, before starting the execution of 

the workflow. A lot is a subgroup of group with snapshots. Thus, when the P-SaMI parameters are 

defined, the lot generation is ready to start.  

Hübler [HUB10] affirms that lots are an important characteristic of P-SaMI, since their use 

occurs in preliminary and intermediate analysis. The number of lots per group can vary in quantity 

and is defined in execution time, based on parameters minimum_amount and sampling. Hübler 

[HUB10] justifies the use of lots based on some tests that proved better results could be obtained 

from sets with fewer snapshots. Moreover, the use of both parameters gives more flexibility to the 

pattern. 

Figure 9 represents three test tables for lot generation. All of them have 100 snapshots 

and have different parameters defined for minimum_amount and sampling. 

test execution sampling minimum_amount total_snapshots_group lot

1 1 40% 30 100 40

1 2 40% 30 60 30

1 3 40% 30 30 30

test execution sampling minimum_amount total_snapshots_group lot

2 1 70% 30 100 70

2 2 70% 30 30 30

test execution sampling minimum_amount total_snapshots_group lot

3 1 40% 40 100 40

3 2 40% 40 60 60  

Figure 9 – Representation of lot generation - Adapted from [HUB10] 

In figure 9, test represents the number of test tables; execution represents each lot 

created; and sampling is a percent value used to create lots; minimum_amount is the minimum of 

quantity to create lots; total_snapshots_group is total of snapshots from group and; lot is the 

quantity of snapshots in a lot. 

In the first test, after three executions, three lots are created. For the first execution the 

criteria used is sampling (40%) and 40 snapshots are grouped in the first lot. The second execution 

used minimum_amount (30), because 40% of 60 snapshots are 24, less than 30. The third 

execution uses the same criteria and creates a lot with last 30 snapshots. 
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In the second test the value for minimum amount is 30 and sampling is 70%. In the first 

execution, 70% of 100 snapshots are 70, greater than 30. In the second execution, 70% of 30 

snapshots are 21, but the minimum is 30, then this lot will contain 30 snapshots. 

At last, the third test has minimum amount with 40% and sampling with 40. The first 

execution used 40%. The second execution should have 40 snapshots, but then the next execution 

will have 20 snapshots, which is not allowed because there must be the minimum of 40. Then the 

second execution has 60 (40+20). 

3.2.4 P-SaMI: Processing 

After distributing the snapshots in lots, the pattern is ready to execute the experiments. 

Each execution can be treated as an instance of the process, and each snapshot can be submitted 

to the scientific workflow. Figure 10 depicts the execution of snapshots. 

 

Figure 10 – Execution of snapshots from a group - Adapted from [HUB10] 

Hübler [HUB10] explains figure 10 as follows: (a), (b) and (c) are snapshots from a same 

group submitted to a scientific workflow. The result value is “Execution Result“, which is stored in 

a “Shared Memory Space”, a place that is not in the workflow, e. g., a database. Then this value is 

analyzed based on best_value and worst_value, parameters of P-SaMI. Thus, the value result 

closed by worst_value has better chances for docking. 

The execution and analysis of the snapshots can happen in sequence or parallel. Although 

the test tables from Hübler [HUB10] show a sequence test, the author also says that a parallel 

approach can be used. Thus, in a parallel process more than one group can be executed at the 
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same time and the results have to be stored for analysis, a step that gives a great flexibility and 

gain of processing to the pattern. 

3.2.5 P-SaMI: Analyze 

The analysis is a stage that occurs after the execution of snapshots. The pattern aims to 

execute the maximum of snapshots with results close to the parameter best_value. As the 

snapshots are being processed, P-SaMI starts some analyses to identify the most promising groups 

and lots. This identification can occur in different moments of the execution, but always taking 

into account the percentage executed for group per lot.  

Figure 11 depicts the results and analysis that occur in lots and groups of P-SaMI. Hübler 

[HUB10] explains it as follows: 

 R1’, R1’’, R1’’’, R2’, R2’’, R3’, R4’ and R4’’ correspond to final result from each 

snapshot; 

 R11, R21, R31, R41 correspond to the average result of all snapshots of a lot of a 

group. 

The letters “A” and “B” correspond to a possibility of analysis in two ways: 

 Horizontal (B): Analysis of each result of snapshots from each lot and the 

possibility of continuing executing other lots from the same group comparing with 

the average of results of the same lot; 

  Vertical (A): Analysis comparing the average results from a lot of a group with lots 

from other groups. 
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Figure 11 – Separation of lots from groups and representation of individual results from each 
snapshot and from all lot [HUB10] 

The analysis uses average of execution to change the status or priority of the execution of 

lots and groups. Those averages are calculated in real time, as soon as each docking is executed. 

Three different averages are used: 

 average_setup: arithmetic average from best_value and worst_value set up before 

the execution; 

 average_execution: arithmetic average from all snapshots executed in a lot; 

 average_estimated: this is an average estimated from a lot. The base are the 

snapshots that are not yet executed. The standard deviation from that one 

executed is used to calculate this average. 

The rule for average estimated was adapted from a rule of thumb [LAR09]. Hübler 

[HUB10] quotes the reason for this adaptation in overestimating the probability of good results. 

Equation 1 represents the rule of thumb used for Hübler: 
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For the understanding of equation 1: 

 f = quantity of snapshots not yet processed; 

 m = arithmetic average from snapshots processed; 

 s = sampling standard deviation; 

 t = total quantity of snapshots; 

 n = quantity of snapshots processed; 

During the execution of snapshots the analysis can increase or decrease a priority of a lot 

or change the status. Figure 12 presents the algorithm to change the priorities and status of 

snapshots. The methods increase_priority_group and decrease_priority_group increase and 

decrease, respectively, the priority of execution of group. Method discard_group changes the 

status of the snapshots not yet processed to “D”, discarded.  

 

 

 Figure 12 – Algorithm to define priorities and status change  

 

Hübler [HUB10] says that the analysis can be done in lots or groups. The difference occurs 

in process or no more lots from the same group. If the analysis is taken by lot, then: 

 the other snapshots from the lot will be discarded: go to the next lot and the 

snapshots from this lot will not be processed; 

 the other snapshots from the lot will have the priority decreased: go to the next 

lot but, before that, the snapshots not processed have to be processed. 

On the other hand, if the analysis is taken by group, then: 
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 the other lots from the group will be discarded: go to the next group and the 

snapshots from all lots of this group will not be processed; 

 the other lots from the group will have the priority decreased: go to the next 

group, but the snapshots from this group need to be processed later. 

One step that occurs when a snapshot is processed is to set it as “F“. Thus, this snapshot 

can be considered in the average calculations and will never be executed again. 

3.2.6 Formalism 

Hübler [HUB11] says P-SaMI, formally, is a tuple P_SaMI = {C, L, s, P.S, MP.S, PP.S}, where: 

 C = {C1, C2, ..., Cm} finite set of groups of snapshots; 

 L = {L1, L2, ..., Lm} finite set of lots created from an individual group of snapshots; 

 s is the snapshot contained in a lot from a group 

o s  L | L  C 

 P.S =  {P.S1, P.S2, ..., P.Sm} finite set with results of each snapshot processing; 

 MP.S is the best value from a sample of snapshots processed: 

o MP.S  P.S   

 PP.S is the worst value from a sample of snapshots processed: 

o PP.S  P.S   

 MP.S  PP.S  

3.3 Last Chapter Considerations 

This chapter presented P-SaMI, a new pattern to execute experiments in scientific 

workflows. This pattern aims to reduce the execution time by discarding non-promising snapshots. 

The rules of the pattern were addressed here. 

The pattern was validated through table tests [HUB10] where the efficiency could be 

proved. Unfortunately, the use of manual tests did not show all possible benefits from the pattern, 

such as parallel executions, and the communication with other environments, like communication 

with an MTC. Thus, building an environment where the rules of P-SaMI can be validated is one of 

the challenges of this thesis. 
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4 W-FREDOW (WEB FLEXIBLE RECEPTOR DOCKING WOKFLOW) 

In this chapter we introduce W-FReDoW (Web Flexible Receptor Docking Workflow), an 

environment built to execute MDock simulations of FFR model through the web integrated with 

MTC environment, and using P-SaMI to achieve an FFR reduced model. The environment consists 

of several components, such as a database, web server, MTC middleware, P-SaMI, web front-end 

and Autodock4.2. All these aspects are presented in this chapter.  

4.1 The Conceptual Architecture 

This section describes the conceptual architecture of the environment designed for this 

thesis. We call it W-FReDoW, an acronym to Web Flexible Receptor Docking Workflow. W-

FReDoW is an environment designed to execute MDock simulations of FFR model in order to 

achieve a Reduced FFR (RFFR) model. Thus, in order to achieve a RFFR model, W-FReDoW was 

guided by P-SaMI. 

W-FReDoW architecture is based on the interactions between three layers: Client, Server 

Controller and MTC. It also has the support of a database. The interactions involve all layers, but 

always with the Server Controller in the middle. Client layer is a web interface for setup, execution 

and analysis of the workflow. Server Controller has a Web Server that controls the pages and also 

has P-SaMI algorithms that manipulate the execution of docking by MTC. MTC layer deals with 

distribution and parallelization of dockings. FReDD for P-SaMI is the database that keeps data to 

provenance and support P-SaMI algorithms. Figure 13 illustrates the layers of the conceptual 

model.  
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Figure 13 – W-FReDoW Conceptual Architecture  

 

The interactions between layers take place in different ways. Client layer interacts with 

Server Controller through AJAX requests. The interaction between Server Controller and MTC 

occurs in two ways: SFTP and HTTP POST. The SFTP protocol is used from Server Controller and 

sends the files to MTC, while HTTP POST is the way MTC sends the results from each docking to 

Server Controller. Throughout all the workflow, Server Controller records data on database.  

4.2 Client Layer 

The Client Layer is a web interface in which the domain specialist has the possibility to 

configure, start and get information on the MDock simulations. During these steps, every 

communication is done with the Server Controller Layer through Ajax. This layer has 3 main 

groups: Setup, Execute and Analyze.  

The Setup group is divided in three steps that configure the environment. The Molecular 

Docking is responsible for the configuration of the parameters that Autodock4.2 will use during 

the execution process, as defined in [MOR09].  MTC sets the information related with the 

credentials used in the remote server. P-SaMI is responsible for the configuration of the pattern, a 

paramount process to achieve the RFFR model. 
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Once the Setup has been done, it is time to Execute. The Execute component starts the 

process. This component communicates with the Server Controller Layer letting it know about the 

configuration chosen for the whole process. 

The last component in this layer is Analyze. Here the scientist can get information about 

the execution of the process, accessing the provenance task in the Server Controller Layer that 

provides, in real time, data about the status of executions. 

4.3 Server Controller Layer 

This layer is the core of the environment realizing the communication with the other two 

layers. The components are responsible for many parts of the workflow to MDock simulations, 

executing important tasks during the whole process. There are three groups that are part of this 

layer: Configuration, Molecular Docking and P-SaMI. 

Configuration is a unique component that is responsible for storing data from the Setup 

group in the Client Layer. Basically, it works as a middle area, employed to save the data that other 

steps will make use of during their activities. 

Molecular Docking is a group responsible for the preparation of the MDock simulation. 

The first component, Prepare Files, is responsible for organizing the snapshots in groups [MAC11], 

through similar characteristics of snapshots. After this task is finished, two parallel components 

are executed: Prepare Receptor and Prepare Ligand. Both components are part of Autodock4.2, 

just like the next two components. Prepare Grid and Prepare Docking are two important tasks for 

MDock simulation, because the results are parameter files that will be used during the MTC Layer. 

First, Prepare Grid prepares the grid parameter files (extension GPF), and then Prepare Docking 

creates the docking parameter files (extension DPF). Both steps are essential in the process of 

MDock simulations [MOR10]. 

Once the Prepare Docking execution is completed, it is time to start the group P-SaMI 

that is related with the standard to achieve RFFR model. The first task, Uploader, generates lots for 

each group as mentioned in [HUB10]. After that, an XML file is stored in Web Server Repository of 

MTC Layer, with the structure used for an initial setup of the MTC. Figure 14 shows the structure 

of the XML, where there are groups of snapshots generated for the component Prepare Files. 

Besides, there are two other elements in the XML file that correspond to the status and priority of 

the group and snapshots. The last task from Uploader is to start the execution of MDock 

simulations in the MTC Layer by calling the component Execution. 
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Figure 14 – XML with group of snapshots  

4.4 MTC Layer 

The MTC Layer handles a large amount of data and controls the distribution of tasks for 

parallel execution in HPC environment. The scope of this layer is part of Renata de Paris’ thesis, my 

partner in achieving the results of W-FReDoW. The MTC uses two main functions, on’e heuristic 

function for creating queue of tasks, and another function that shares out the parallel execution of 

the tasks on a cluster. The layer has eight components: Execution, Parser/Transfer, Create Queue, 

Dispatcher/Monitor, Server Controller Repository, Priorities/Groups, Input/Output Files, and HPC 

Environment. The components Execution, Parser/Transfer, Create Queue and Dispatcher/Monitor 

have been developed as a library of the programming language C, and the others just store the 

files on directories. 

Server Controller Repository component stores all files uploaded by Web Server Layer. 

Web Server Layer prepares these files. They are input files to execute on the Autogrid4 and 

Autodock4. The XML file is on Priorities/Groups component and it is updated and uploaded by the 

Data Analyzer component during the execution time. This file contains information on the groups 

of the snapshots, such as priority and classification, and it identifies the group that belongs to each 

snapshot. Therefore, the Create Queue component uses an XML file to create the balanced queue 

of tasks. The Input/Output Files component has files, which are used by MTC Layer functions. 

Firstly, the Web Server Layer uploads these files on the Web Server Repository component. Then, 

they are managed by the Parser/Transfer component. Finally they are sent to the workspace of 

the MTC Layer. Priorities/Groups and Input/Output files components are within MTC Repository 

because both have files, which are organized on MTC workspace (see Figure 15).  
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Figure 15 – Directories structure of files of the MTC Layer workspace  

 

The Execute Component creates the workspace for execution of the MTC Layer and 

organizes the files used during the execution. It performs two different functions: (i) start the 

execution of MTC Layer and; (ii) create the directory structure of the project. The directory 

structure (see Figure 15) of the workspace has four main directories to store files. Directories job 

and parameter store input files for execution of the autogrid4 and autodock4, and the directories 

result and temp store output files from parallel execution of the HPC environment. The directory 

job stores the snapshot files from FFR model (pdbqt format). The directory pending stores 

snapshot files, which are waiting for insertion in the queue of tasks. The directory queue stores 

snapshot files that have already been processed by HPC environment. The directory parameter 

stores the ligand (pdbqt format), and the input files for the execution of autogrid4 (gpf format) 

and autodock4 (dpf format). The directory result stores output files of the autodock4 (dlg format). 

At last, the directory temp stores temporary files, which are used just in execution time by HPC 

environment and, after the execution, they are deleted. 

The Parser/Transfer is the component responsible for handling and organizing the files 

received by Web Service Layer for the workspace of the MTC Layer. Then, the files prepared in 

Web Service Layer are sent to the Data Repository Component, and the Parser/Transfer 

component transfers these files to the directories structure of files (see Figure 15). 

The Create Queue component is responsible for applying the heuristic function. It 

employes the priorities of the different groups of snapshots to create balanced task queues. This 

component performs three main functions: (i) read XML files; (ii) insert snapshots pending in the 

task queue and; (iii) create the queue of tasks to be executed in the HPC environment. 

For the HPC environment a task is the execution of the Autogrid4 and Autodock4 in a 

single snapshot that makes up an FFR model. Then, a queue of tasks is made of a vector of 

snapshots created in the Create Queue component, and this vector is sent to the 

Dispatcher/Monitor component for handing out the tasks on nodes and cores of the HPC 

environment. The amount of snapshots inserted in queue depends on the size of the queue that is 

calculated based on nodes and cores allocated on HPC. The queue of tasks determines the amount 
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of snapshots, which are inserted in queue. For that, the heuristic function counts the number of 

nodes and cores allocated in HPC environment. Thus, for a homogeneous cluster, the quantity of 

the queue is calculated as follows: 

                                                                                                     (1) 

A balanced task queue keeps one or more snapshots from each activated group. In order 

to do that, we use P-SaMI to set the amount of snapshots that each active group inserts in queue. 

Then, with the priorities of the P-SaMI, it is possible to determine the percentage of snapshots 

that each group inserts in a queue of tasks. Thus, if a group holds high priority, then it has a 

greater amount of snapshots in the queue; on the other hand, if a group holds low priority, then it 

has fewer snapshots in the queue. The amount that each group of snapshots inserts in a queue of 

tasks is calculated according to the equation: 

                (
      

∑       
 
   

)                                                                          (2) 

       is the quantity of snapshots of each group,        is the result of the equation (1), 

       is the priority of the group, and the sum of the priorities of every group on the denominator 

of the equation. Hence, from the sum of the outcome of equation (2) the queue of tasks is created 

with the following function: 

         ∑       
 
                                                                                      (3) 

Due to intrinsic characteristics of the P-SaMI, which perform changes constantly on status 

and priority attributes of the different groups of snapshots during the execution time, it is 

necessary to create task queues balanced and updated according to the attributes of each group 

of snapshots. Then, the analysis of these attributes is performed to result in files processed by the 

HPC environment in the Web Server Layer by P-SaMI. Furthermore, Server Controller Layer 

updates the result analysis, as priorities and status, in XML file, and the MTC Layer reads it at the 

moment of to creating a new queue of tasks. A rule determines that the maximum size of each 

queue of tasks is equal to the maximum number of tasks which the cluster can execute in parallel. 

A new queue is created whenever a node is idle and there are no tasks in the queue. Figure 16 

shows the operation flow between a Create Queue and Dispatcher/Monitor component. The first 

uses heuristic function and calls get_property() and get_snapshots() functions to create the 

balanced queues of tasks; while the other component controls the tasks to execute in parallel by 

HPC environment.  
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The Dispatcher/Monitor component is responsible for invoking an external scheduling to 

execute the queue of tasks in HPC environment. The hierarchical hardware design of the HPC 

environment has shared memory nodes with several multi-core CPUs, which are connected via a 

network infrastructure. For this reason, we employ a hybrid-programming model, which uses 

OpenMP for parallelization inside the node and MPI for message transmission between nodes. 

Furthermore, the use of master-slave paradigm is applied to setup the tasks used for each cluster 

node. Figure 16 shows the operation flow of the Dispatcher/Monitor component. The code 

involves a main function, called the function master on 1 node and the slave functions on all other 

nodes selected by the user. The master node performs three main functions: (1) manage the task 

distribution among the slave nodes; (2) send request for creating new queues of tasks in the 

Create Queue component when the queue is empty and; (3) execute tasks of the queue of tasks. 

The slaves just execute the tasks of the queue of tasks.  

 

Figure 16 – Operations flows and functions have been performed between Create Queue and 
Dispatcher/Monitor components  

 

4.5 W-FReDoW: Details of implementation 

There are many important aspects that are under the construction of the environment 

and have been highlighted during this chapter. The database, the web server, the program 

language and the communication with MTC are important features in the environment and must 

to be explored. 
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4.5.1 Database: FReDD for P-SaMI 

We defined the architecture in three layers as shown in figure 13. An important 

component is the database used. This is called FReDD for P-SaMI, an extension of FReDD (Flexible 

Receptor Docking Database) [WIN10, MAC11] following the rules in P-SaMI pattern. The focus of 

the original FReDD is to keep the results of MDock simulations of FFR model to be used for data 

mining. Therefore, with this thesis, we extend the FReDD data model, creating a new structure 

that stores all steps used during the execution of the experiment. Also, with the use of P-SaMI, a 

database to store the data is a requirement since the calculation in real time needs to be done to 

different methods and keeping the results of experiments in memory is not a good idea.  

FReDD for P-SaMI is a database responsible for storing all steps during the process of 

running MDock simulations in an FFR model to achieve an RFFR model, and capturing the 

provenance of the process. The communication with the database happens always with the Server 

Controller Layer (see Figure 13). During the execution some tables store the results individually, for 

example for each snapshot, as well as grouped, for example for cluster of snapshots, to be used 

for P-SaMI methods. 

Figure 17 shows the data model for FReDD for P-SaMI (design with Microsoft Visio). The 

tables are separated in four main areas: Setup, Execution, Template and Provenance tables. 
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Figure 17 – FReDD for P-SaMI: Data Model for W-FReDoW  

The FReDD for P-SaMI was created in PostgreSQL. PostgreSQL is an object-relational 

database management system (ORDBMS) based on POSTGRES, version 4.2, which was developed 

at the University of California at Berkeley Computer Science Department [POS11]. PostgreSQL 

supports a large SQL (Structured Query Language) and features complex queries, foreign keys, 

triggers, transactional integrity, etc. 
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There are two reasons for FReDD for P-SaMI to use PostgreSQL. The first is because its 

license can be distributed for any purpose, be it private, commercial or academic. The second 

reason is to keep the same database used in FReDD, and to store the data in a unique database. 

This database presents 19 tables. The data inserted comes from UI Interface or is 

manually uploaded, in case of static data. The next subchapters explain about tables, attributes 

and the goals related with W-FReDoW. 

4.5.1.1 Setup Tables 

These tables have the characteristics of storing data that hardly changes. The data stored 

are fundamental for the execution of the environment, i. e., P-SaMI parameters and cluster path. 

Part of this group of tables is: Software_Docking, Cluster, Type_Docking_Result, PMIA, 

Configuration and Pmia_Status. 

The W-FReDoW was thought of with the idea of running different kinds of experiments, 

since it contains the requirements of P-SaMI. For MDock simulations it would be possible to use 

different software for docking, like Autodock 3.0.5, Autodock 4.2, Vina, etc. Thus, 

Software_Docking table stores the type of MDock simulations that can be chosen during the 

configuration of experiment execution. 

The execution of MDock simulations occurs in another environment and, in order to 

setup the parameters for the communication with MTC, the Cluster table stores the 

communication data necessary for such. Therefore, this parameter can be set up before starting 

the workflow. 

As presented in chapter 3, P-SaMI needs some configuration parameters to start its 

execution and result analysis. The Type_Docking_Result table stores the type of result that will be 

analyzed, i. e., “FEB“ and “RMSD“. W-FReDoW does not restrict only for this two result types, but 

for any type; even a formula can be considered. Following the characteristics of P-SaMI, the 

PMIA_STATUS table stores the different status of each snapshot (“A“ for Active; “F“ for Finalized, 

“D“ for Discarded and “P“ for Priority change). Another table related with P-SaMI is PMIA. PMIA 

stores P-SaMI rules, essential for execution of W-FReDoW, and has the following fields: 

 id_pmia and id_type_dock_res: id_pmia is the primary key and 

id_type_docking_res is the foreign key to Type_Docking_Result table; 

 best_value and worst_value: refer to the range for the pattern during the 

execution. Both attributes are criteria used to analyze the group results; 
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 minimum_amount and sampling: the lots are created based on minimum_amount, 

which is related with the minimum value for lot, and sampling correspond to this 

minimum value, but in percent value; 

 start_analysis and new_analysis_after: during the execution of the process, the 

analysis occurs during some moments of execution. start_analysis field is this first 

moment and new_analysis_after is the others moments, in percent value, in 

which the analysis has to occur. In order to illustrate this, we can start the analysis 

with 30% (start_analysis) and after every additional 10% (new_analysis_after), 

meaning 40%, 50%, 60% until 90%, and the analysis of P-SaMI is done. 

The last setup table is Configuration. This table contains data on the other setup tables 

and is used to start an execution of W-FReDoW. There are data related to cluster, P-SaMI and path 

that will be used during the execution of experiments. The following fields can be found: 

 id_configuration, description_short and description_long: fields used for 

identification of configuration; 

 id_soft_dock and id_pmia: fields that correspond to foreign keys for type of 

docking and P-SaMI setup used; 

 path_server, path_repository, path_job, path_parameter, path_result and 

path_temp: these fields are parameters used to create a local structure to store 

data during the execution; 

 id_cluster, cluster_user, cluster_pwd and cluster_allocate: data about the 

parameters used to access the cluster to execute the experiments; 

4.5.1.2 Execution Tables 

The W-FReDoW has some tables where records are created when a new execution starts. 

The first table to be created is Experiment, which stores data related to a new execution. After 

that, the snapshots that will be used in the execution are stored in the Docking table. This table 

stores the relationship between ligand and receptor that are based on four tables: Ligand, 

Conformation_Lig, Receptor and Conformation_Rcpt. During the execution, when a snapshot 

changes its status, this table is the first to be updated. Also, the Pmia_Cluster_Processing and 

Pmia_Lot_Processing are tables that are updated whenever a snapshot is docked and have the 

goal of helping the analyses of P-SaMI, since they keep the total average during the process. 
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As mentioned before, the first table that has data inserted in is Experiment. Each row in 

the Experiment table corresponds to a unique execution of W-FReDoW, storing all parameters for 

that. They are: 

 id_experiment : created when the execution of the process starts; 

 id_configuration: foreign key for the configuration used in experiment execution; 

 date_ini and date_end: start and end date/time of execution; 

 docking_dt_ini  and docking_dt_end: start and end date/time of cluster execution; 

 template_pr_id, template_pl_id, template_pg_id and template_pd_id: foreign 

keys for receptor, ligand, grid and docking templates; 

 standard_group : foreign key to similarity function used in the process; 

 id_exp_receptor : foreign key to another experiment. It indicates that the 

experiment created was based in another existent experiment. 

Some tables store data on ligand and receptor: Ligand and Receptor tables, respectively. 

Also, other two tables store the flexibility of each one that is Conformation_Lig and 

Conformation_Rcpt. Today we are testing with 3.100 receptors from InhA protein, but there is no 

limitation for the number of conformations. 

The Docking table stores the relationship between ligand and receptor for MDock 

simulations. When the workflow is running, some attributes are updated; i. e., status and priorities 

of snapshots can change. This table has the following attributes: 

 id_experiment: the rows in this table are linked to one experiment; 

 ligcode  and n_conf_lig: ligand code and number of its conformation; 

 pdbcode  and n_conf_rcpt: receptor name and conformation number; 

 server_cluster_info: field used to keep information about the specific place where 

the snapshot was docked. This information is provided from MTC (FReMI) and can 

store, for example, virtual machine, cluster or node used; 

 cluster  and cluster_lot: cluster and lot refer to one group and lot for each 

snapshot. The cluster is generated for similarity function [MAC11] and lot for P-

SaMI [HUB10], based on minimum_amount and sampling criteria; 
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 id_pmia_status and priority: status and priority of each snapshot during the 

process. Status in related with the PMIA_STATUS table and priority is a number 

between 1 and 3, which mean low, medium and high priority; 

 best_feb, rmsd_best_feb, best_rmsd and feb_best_rmsd: these fields are captured 

in the results files of autodock execution and correspond to best run; 

 autogrid_dt_ini and autogrid_dt_end: start and end date/time of autogrid 

execution; 

 autodock_dt_ini and autodock_dt_end: start and end date/time of autodock 

execution; 

 snapshot: reference to the number of the snapshot; 

The next two tables, Pmia_Cluster_Processing and Pmia_Lot_Processing have almost the 

same attributes and the same reason: totalize the snapshots for cluster and lot for P-SaMI rules 

execution and real time status. Whenever a snapshot is docked, after updating the Docking table, 

these two tables are also updated, totalizing the results per group and lot. 

During the execution of P-SaMI, the criteria to change the priority or status of a group 

during its execution are based on standard deviation, average or estimated average. 

Pmia_Cluster_Processing and Pmia_Lot_Processing store these data to facilitate, in real time, the 

action taken from W-FReDoW. 

4.5.1.3 Template Tables 

To execute the MDock simulations for Autodock4.2, some tables were created to store 

data related with templates used during the process. These template tables can store either a path 

to a template file or the data inside each template, important to create the snapshots or 

parameter files to Autogrid and Autodock executions. The following tables belong to this group: 

Template_Default, Template_Md, Template_Md_Params and Standard_Groups. 

The Template_Md table stores a reference for different templates used in W-FReDoW.  It 

keeps linked data like the template used for a Ptraj file, in case of PR (Preparation of Receptor), for 

example. This table has the following fields: 

 id and description: fields to identify the template 
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 template_type: identify the type of this template. Today there are some 

possibilities: PG (Preparation of GRID), PD (Preparation of docking) or PR 

(Preparation of Receptor).  

 path: path to template file that is the reference for other files.  

 original_file: This is used for PR, where an Amber file is the file that contains the 

trajectories used to create the files. 

The Template_Md_Params stores all parameters necessary to create a .DPF or a .GPF file. 

This table contains the details about Template_Md, in case this table does not have a physical file 

as a template. Thus all data in the parameter files (DPF and GPF extensions) that will be created 

are stored in Template_Md_Params, which contains the attributes: 

 id  and description: these are the identification of the template and can be 

visualized when the user chooses the template in W-FReDoW; 

 template_type: identify where this template can be used. Today there are two 

possibilities: PD (Preparation of GRID) and PG (Preparation of docking); 

 param_name, param_value and param_description : data stored inside the files 

generated. These three fields correspond to one row in the parameter file and 

specify the name, value and description (comment) of each parameter;  

 nr and visible: nr identify the row where the parameter will be written in the file 

and visible, whether it is written or not; 

 template_md_id: this is a foreign key to the Template_Md table. This identifies 

each template the parameters are related to. 

The Template_Default stores the default parameters for creation of .DPF and .GPD. It has 

the same fields that Template_Md_Params table and it is used to show in UI interface the 

parameters that the user can choose to execute with W-FReDoW. After chosen, data are saved in 

Template_Md_Params table. 

The Standard_Groups table contains snapshots, the reference for their groups and the 

method used to cluster them in these groups. This data are generated from a similarity function 

[MAC11]. This table is used in the beginning of W-FReDoW execution, updating the snapshots with 

the groups that are saved in the Standard_Groups table.  
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4.5.1.4 Provenance Tables 

The last group consists of only one table called Event. This table is responsible for keeping 

the provenance of the execution and saving the information of actions executed during the W-

FReDoW. As a scientific workflow, W-FReDoW provides information about the steps executed, 

helping the scientist analyze all the process chronologically. 

The Event table has 4 attributes. The first is id_event, which is a primary key of this table. 

Second is id_experiment, which keeps the integrity of the experiment. The last two attributes are 

dt, which saves datetime of the action, and info, which saves a description of each step executed. 

4.5.2 Web Application Framework 

The initial idea was to build the environment under a scientific workflow. But the need of 

portability and communication between the Server Controller and MTC led to the development of 

W-FReDoW with a web approach, where the scientists can run their experiments from anywhere. 

Another reason was the portability to run in different Operating Systems. 

Then, with a web approach chosen, some features were identified as requirements for W-

FReDoW: (1) The use of dynamic websites, which allow a better manipulation of the front-end and 

a fast development; (2) Web server, that keeps the application on the web; and (3) Web service, 

which allows the communication between the server and MTC to get the results of MDock 

simulations. Based on these features, we decided to use a specific web application framework. 

As there are several web application frameworks available, we chose the one built under 

Python, a widely used program language in Bioinformatics. Python is an easy to learn, powerful 

programming language. It has efficient high-level data structures and a simple but effective 

approach to object-oriented programming. Python’s elegant syntax and dynamic typing, together 

with its interpreted nature, make it an ideal language for scripting and for rapid development in 

many areas on most platforms [PYT11]. 

Then, for W-FReDoW, Flask was chosen. Flask is a Python web framework also called a 

”microframework” [FLK11] whose idea is to keep the core simple but extensible. There is no 

database abstraction layer or an object relational mapper, nor a form validation because Flask is 

not a full stack framework. However, there are several extensions for Flask, like those mentioned. 

Flask depends on two external libraries, Werkzeug [WER11] and Jinja2 [JIN11]. Werkzeug 

is a toolkit for WSGI [JAM09], the standard Python interface between web applications and a 

variety of servers for both development and deployment. Jinja2 renders templates. 
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As Flask does not have a native database adapter, we decided to use Psycopg2 [PSY11]. 

Psycopg is a PostgreSQL database adapter for the Python programming language. A relevant 

characteristic for this thesis is that Psycopg is thread safe (threads can share connections) and was 

designed for heavily multi-threaded applications that create and destroy lots of cursors and make 

a large number of concurrent inserts or updates in database. This feature is strongly used when 

MTC sends back to W-FReDoW the results of MDock simulations, since these results are different 

POSTs processed for a parallel execution in MTC. 

The Python methods created in Flask for W-FReDoW handle jointly with the algorithm for 

P-SaMI, analyzing HTTP POST sent from MTC. They also handle the communication with database, 

keeping the provenance during the workflow execution. Moreover, Flask renders several 

templates used in Client Layer, the front-end interface for the scientist. 

4.5.3 UI – The Client Layer 

The User Interface (UI) is the front-end for the scientist. In W-FReDoW it is called Client 

Layer. The UI is based on different templates that Flask, through Jinja2, renders to the browser. All 

steps executed in the workflow are started from the UI, and the scientist can handle them. 

Flask implements RESTful through Routing and W-FReDoW uses the path requested by 

the browser to identify the correspondent method in the framework. After processing the 

method, through JINJA2, the results are passed to be rendered in template, which is so-called 

context of the template. 

From browser, a request can be sent as a HTTP GET or HTTP POST to web server. The 

request from HTTP POST arrives from an http form method to the server. HTTP GET requests are 

sent with Ajax, from JQuery (using version 1.6). All front-end interfaces are developed using HTML 

and JQuery in JINJA2 templates that are always rendered from Flask. 

The Client Layer is shared in three groups: Setup, Execute and Analyze. These groups are 

placed in the menu on the left side of the site. In Setup, there is a Main Setup, composed of 

Software Docking, Cluster, P-SaMI Rules and Configuration links. Also, there is a Setup for Docking 

and Templates, where it is possible to Prepare Files, Receptor, Ligand, Reference Ligand, Grid and 

Docking. In Execute there appears the Experiment link, for the execution of new experiments. 

Finally, the last group, Analyze, has a link with the same name. Figure 18 presents the UI of W-

FReDoW and it is possible to see the menu options on the left side. 
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Figure 18 – W-FReDoW UI: Client Layer  

Setup Main is the general setup of the W-FReDoW. The first link, Software Docking, refers 

to the software used for MDock simulations. Today we are using Autodock4.2 for our 

environment, but others can be used. The next link is Cluster, where the scientist has the 

possibility of setting up the path for the place where MDock simulations will run. P-SaMI Rules 

refers to pattern rules, required when the environment starts the execution. In this link, the 

scientist chooses which result will be used for analysis, informs the best and worst value for P-

SaMI analysis, fills minimum amount and sampling that is responsible for creating several 

snapshots and, at last, informs the starting analysis and next analysis, steps that serve as a 

reference for the workflow to control when the analysis has to occur. 
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Finally, the last link in Setup Main is Configuration. First, the scientist chooses the docking 

software for preparation of files during the workflow execution. After that, s/he has to choose the 

P-SaMI rules configured before. Also, s/he has to setup the paths (server, repository, job, 

parameter, result and temp), structures of folders that are created to store files used in workflow. 

Cluster information is the last step and the scientist has to inform the place and credentials for 

remote execution. 

Figure 19 shows windows for the four links inside Setup Main explained before. 

 

Figure 19 – W-FReDoW UI: Setup Main group. Software Docking, Cluster, P-SaMI and 
Configuration windows. 

 

Another group is Setup Docking-Templates. This group is responsible for keeping the 

templates used for docking or to cluster the snapshots for P-SaMI. All links here start with 

“Prepare” because they are responsible for the preparation of files in the workflow. They are Files, 

Receptor, Ligand, Reference Ligand, Grid and Docking. Figure 20 shows these windows. 
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Figure 20 – W-FReDoW UI: Setup Docking-Templates group. Prepare Files - Groups, Template for 
Prepare Receptor, Docking and Grid windows. 

Prepare Files comes from results of similarity functions [MAC11]. This data are updated 

through Python scripts. Prepare Receptor involved two files. The first contains a template for 

snapshots file. The second one is the CRD file, generated by PTRAJ, a tool from AMBER, which sets 

the trajectories in different positions. In our test case, there are 3.100 different trajectories. The 

combination between template and CRD will result in 3.100 snapshot files with extension PDBQT; 

default extension in Autodock4.2. Prepare Grid has the parameters for a GPF (Grid Parameter File) 

extension for each snapshot and is divided in three columns: parameter name, parameter value 

and parameter description. The result of these columns will create the file. Like Prepare Grid, 

Prepare Docking has three columns that are part of DPF (Docking Parameter File) extension files. 

The column “template name“ helps identify both grid and docking templates. 

The Execute is the main activity that the scientist can perform. Once in the Execute 

Experiment screen, s/he can choose the parameters for a new experiment execution. Figure 21 

shows the Execute Experiment screen, where the scientists, at first, must choose the 

configuration. Configuration has all parameters for P-SaMI, Cluster and paths needed for W-

FReDoW. Next, a method for preparing files (based on similarity function) has to be chosen to 

group the snapshots. In Templates, one must choose a template or other experiment that is a 

reference for this new experiment that is being created. Thus, 3.100 snapshots, or those they are 

defined, are created. Ligand indicates the ligand used for docking. Templates for GRID and Docking 

also have to be chosen and are important to create the GPF and DPF extension files. At the end, 
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when the user clicks on Execute docking Experiment, the workflow starts, the files are created, the 

database are updated and FReMI is called. 

 

Figure 21 – W-FReDoW: Execute Experiment  

 

In Analyze, the scientist has the possibility to see the status from any experiment that has 

been executed, even the ones in execution. Figure 22 shows the Analyze screen with experiments, 

dates when the execution started and finished (initial and end columns), molecular docking 

execution started and finished in FReMI and summary snapshots per status. 

 

Figure 22 – W-FReDoW: Analyze   

If the scientist decides to see more summaries about the snapshots s/he can always click 

on the detail button. Figure 23 (a) shows the results of snapshots processed per cluster and lot, 

whereas figure 23 (b) shows the results of each snapshot execution. 
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Figure 23 – W-FReDoW: Analyze. (a) Details from Experiment 197 for Cluster and Lot. (b) Results 
for Snapshots from Cluster 0 in Experiment 197. 

 

As mentioned before, the client layer of W-FReDoW is the UI, where the scientist can 

setup paths about the cluster, P-SaMI rules and create new templates to execute experiments for 

MDock simulations of an FFR model. Thus, with the rules from P-SaMI setup and during the 

execution, the scientist can see what it is happening with the experiment. 
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5 W-FREDOW: TESTS & RESULTS 

After presenting W-FReDoW, an environment for smart execution of MDock simulations 

of FFR model, this chapter focuses on tests and results realized with W-FReDoW. The main goal of 

this chapter is to prove that the environment can present good results and, for that, the samples 

presented here show, step by step, the W-FReDoW in use. 

With P-SaMI in use, the environment becomes a smart environment, because it applies 

rules that will reduce the amount of snapshots executed, getting better result time to finish all 

experiments. The result of tests is directly related with similarity criteria used by Karina Machado 

[MAC11], who organizes groups of snapshots with the same characteristics based on the FFR 

model. 

All tests were executed using the same machine configuration for W-FReDoW and for 

middleware FReMI to ensure the same conditions to make comparisons between them. Thus, W-

FReDoW was setup on a MacBook Pro, running Mac OS X, with 2.7 GHz Intel Core i7 and 8 GB 1333 

MHz DDR3. The Web Server from Server Controller Layer of W-FReDoW was set up on this 

computer. The middleware FReMI, responsible for docking executions, was setup to run on HPC 

Cloud on Amazon. The cloud was set up by Renata de Paris, sponsor of FReMI. The cloud has 5 

VMs (Virtual Machines) that receive 32 jobs per VM. Thus, 160 jobs can run simultaneously. Each 

virtual machine has the same configuration, runs under an Ubuntu 10.04, with 8 virtual cores per 

node and with about 2.13 Ghz/core. 

To validate W-FReDoW with P-SaMI, four different tests were done. For all tests, 3.100 ps 

of InhA receptor were considered [MAC11]. Also, we always used Triclosan (TCL400) [KUO03] as 

the ligand for docking. The ligand was initially positioned in the region close to its protein binding 

pocket and contains two rotatable bonds. In the first test, no similarity function was used. Thus, all 

3.100 snapshots are grouped in only one group and a full execution was realized. The goal for this 

test was to measure the execution of all snapshots without any validation of P-SaMI and to get the 

total time. Also, in this test we detail each step to execute the experiment. 

For the three other tests, a full configuration of P-SaMI was employed. The same 

snapshots were grouped in 6 clusters based on similarity functions generated in [MAC11] and also 
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presented in [HUB10]. Each test used a specific similarity function, which means that a specific 

snapshot could be grouped in different clusters, and it was executed different times to validate the 

use of P-SaMI. Thus, the analyses were setup to start with 30%, 40%, 50% and 70% when a lot of 

snapshots was finished. Following, we present considerations about this chapter. 

5.1 W-FReDoW test 1: Without a similarity function 

One important criterion from P-SaMI is the similarity function used to group the 

snapshots. This function groups similarity snapshots that, during W-FReDoW, are executed in 

parallel and can be analyzed in real time. During the execution, groups can have their priority 

changed to further the most promising groups to finish before others. Also, snapshots with the 

worst results can perform that and their respective groups could be discarded. 

In this first test, we are setting up the environment not to use the analysis that P-SaMI is 

responsible for doing. Our goal is to execute all snapshots in a unique group, without considering 

rules to analyze the results during the MDock simulations. Thus, W-FReDoW was configured for 

this purpose. 

Before starting the execution, we created the configuration that this first test needs. First, 

we grouped 3.100 snapshots in only one cluster. Figure 24 shows the group OneGroup that was 

created for this test. 

 

Figure 24 – W-FReDoW: 3.100 Snapshots with a Unique Cluster 

After creating and grouping snapshots, P-SaMI was configured for a full execution without 

any analysis during the MDock simulation. Figure 25, shows the setup created for this purpose, 

with a FEB analysis, considering a “-99“ and “+99“ as best and worst values. These parameters are 

required, and we are using large numbers to be sure that there are no results out of this range. 

The Lot was configured to have all snapshots, with 3.100 snapshots, and the analysis starts only 

when all snapshots are finished, meaning that no analysis will be executed. Figure 25 shows a row 

that corresponds with the values mentioned. 
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Figure 25 – W-FReDoW: Setup of P-SaMI for a full execution. 

To finalize W-FReDoW Setup, the last step is to create a new configuration. The 

configuration uses Autodock 4.2, and it has the reference to P-SaMI id 7 (illustrated in Figure 25) 

and two groups of parameters. The first group is related to path and corresponds to folders that 

are created to store the files for FReMI execution. This structure of folders is created locally, to 

store parameter files and XML by group, status and priorities of snapshots, and remotely, for 

execution of MDock simulations. The other group is related to connection with Cluster, the remote 

server where the MDock simulation is executed. In our test, we are using a remote server 

configured on Amazon. For our part of the thesis, the important issue is to have access to the 

server: thus, FReMI is activated to execute the experiments as soon W-FReDoW finishes its initial 

preparation. Figure 26 shows the configuration for test 1. 

 

Figure 26 – W-FReDoW: Values of Configuration #5, used in test 1. 

Once finished the configuration, it is time to create the experiment to start the execution. 

Figure 27 shows the values created for this test. First, we associated the configuration and group 
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that were created before and presented above in figures 24, 25 and 26. Moreover, the receptor, 

ligand, grid and docking templates are informed.  

 

Figure 27 – W-FReDoW: Parameters for test 1 experiment execution. 

 

The Receptor template used is called “1ENY_NADH_ChargesGasteiger”. This template is a 

combination of a PDBQT extension file and a CRD extension file. The first one, PDBQT file, is a 

template created based on InhA protein receptor, used as a model to create all 3.100 snapshots. 

The other value, CRD file, is a result file generated by Ptraj, a module from Amber, where the 

coordinates of the InhA protein trajectories are distributed inside the file. Figure 28 shows parts of 

both files. On the top is the CRD file with X, Y and Z coordinates for each atom. Down is the PDBQT 

file with 4.008 atoms for a snapshot. It is also presented the place the coordinates will be 

positioned. 
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Figure 28 – CRD and PDBQT files used to create snapshots. 

 

Some attributes from grid and docking templates used for this experiment are shown in 

figure 29. These templates are stored in the database, are created in W-FReDoW and are based on 

ADT Tools. The template “Prepare Grid“ refers to a “GPF” file extension used on Autodock4.2 

process while “Prepare Docking“ template refers to “DPF” file extension. For an experiment it is 

necessary to do the changes on these templates and save them. Thus, during the execution, W-

FReDoW creates 3.100 “GPF” and “DPF” based on both definitions. The parameters that reference 

snapshots must be dynamic, because they are modified during W-FReDoW execution. For 

example, the “map” parameter that appears on both templates has “%s” concatenated to its 

value. When the file “snap000001.dpf“ is created, tags with “%s” are modified for “000001“ to 

keep a same file reference. In this case, the value for “map“ parameter on “Prepare Grid“ will be 

set to “snap000001.A.map“. 
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Figure 29 – Parts of grid and docking templates used in test 1. 

 

Before starting the execution, MTC has to be setup. For this test, FReMI was setup to run 

on HPC Cloud on Amazon. The cloud was set up by Renata de Paris, sponsor of FReMI. The cloud 

has 5 VMs (Virtual Machines) that receive 32 jobs per VM. Thus, 160 jobs can run simultaneously. 

Each virtual machine has the same configuration, runs under an Ubuntu 10.04, with 8 virtual cores 

per node with about 2.13 Ghz/core. 

After the configuration of W-FReDoW and MTC environment (FReMI) for a new 

experiment, the scientist can start the execution. Next step occurs completely in the Server 

Controller layer of W-FReDoW. W-FReDoW first creates a new experiment and the structure of 

folders under this new experiment. Every experiment is kept physically in the computer and also 

stored in the database. This step is responsible for a preparation of files for MDock simulations. 

Also, it stores in FReDD for P-SaMI database all information of this new experiment that was 

created. The experiment 196, created for this test, and its structure of folders and files are shown 

in figure 30. 

 

Figure 30 – Structure of folders created for an experiment. 

In Molecular Docking preparation, the files of experiments are created. For this test, 

Server Controller creates 3.100 PDBQTs (snapshots), 3.100 GPF (parameters for Autogrid) and 

3.100 DPF (parameters for Autodock) files. These files are created based on templates setup. So, 

9300 files are created and saved in “/experiment/repository/” folder. 
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Other step of preparation is related with P-SaMI. With all data saved in the database, and 

grouped, the lot generation starts. For this test, just one group and 1 lot were created, and both 

have all 3.100 snapshots inside. Moreover, with 9.100 files created, the last one, called 

“grupoSnap.xml“, is created. This file contains all snapshots and their respective groups. This file is 

also saved under the repository folder with other files of Server Controller (see figure 30). 

After the creation of files in Server Controller, the Uploader sends “grupoSnap.xml“ file to 

FReMI. This occurs through an SSH connection with the remote server. The file is sent by SFTP 

(Secure File Transfer Protocol). Thus, FReMI starts its execution, based on this setup inside this file. 

The Preparation and Uploader steps of W-FReDoW are very fast. For these 9.101 files the 

time is 1:08 minutes. The web server of W-FReDoW is setup in MacBook Pro, running Mac OS X, 

with 2.7 GHz Intel Core i7 and 8 GB 1333 MHz DDR3. 

After sending files to the remote server, the Data Analyzer, component from Server 

Controller, waits for requests. As presented, Data Analyzer is a method that waits for GETs or 

POSTs requests. In default configuration, the requests are sent as an HTTP POST. For the 

experiment 196, snapshot 1, this is a request sample with a result of MDock simulation, sent from 

FReMI to Server Controller: 

“http://127.0.0.1/update_docking_status?id_experiment=196&snapshot=”snap000001”& 

best_feb=6.5300&rmsd_best_feb=4.6300&best_rmsd=3.1100&feb_best_rmsd=-5.5800& 

autogrid_dt_ini="2011-12-21 15:30:29”&autogrid_dt_end="2011-12-21 15:31:26"& 

autodock_dt_ini="2011-12-21 15:31:26"&autodock_dt_end="2011-12-21 15:32:37" 

As soon as a new request comes, Data Analyzer, first, validates the parameters. For 

example, a snapshot that was already processed cannot have its status changed again. Start date 

of Autogrid cannot be less than finish date. 

As mentioned, experiment 196 was setup to execute all snapshots without any analysis 

for P-SaMI. Thus, whenever an HTTP POST from FReMI comes to Analyzer, its status of snapshots 

is updated in the database. Figure 31 shows, in Analyze, the final results of experiment 196.  
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Figure 31 – Experiment 196 with 3100 snapshots finished. 

The Analyze helps the scientist observe, in real time, a status from execution. For 

experiment 196, the execution has already finished (see figure 31). The Preparation step was 

executed in 1:08 minute. This time is the difference between “Initial“ and “Docking Ini“ columns.  

“Docking Ini“ corresponds to the beginning of execution from FReMI, while “Docking End” is the 

last snapshot processed on MTC and analyzed from Data Analyzer. Therefore, the difference 

between “Docking End“ and “Docking Ini“ is the total time that the 3.100 experiments took to 

finish; for this experiment, it took 6:02 hours. The total time of execution is the difference 

between “End“ and “Initial“ and here it was of 6:03 hours. This was the total time for this 

execution.  

A last consideration about this experiment is related to events. Each event is information 

about some step executed on the W-FReDoW flow. Figure 32 depicts what happened in the 

begging of experiment 196. 

 

Figure 32 – Events for Experiment 196. 
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5.2 W-FReDoW test2: RMS_listagem_cluster_snap_means_6_ALL_ATOMS  

For this second test, we intend to depict the use of P-SaMI rules during the execution of 

steps of W-FReDoW. Thus, we can prove that P-SaMI can be used in an environment for MDock 

simulations for an FFR model considering the prioritization and discard of snapshots. 

The first step was to setup the Cluster. This corresponds to the place where the MDock 

simulations will be running during the process. In our tests, we used, as mentioned, a Cloud on 

Amazon. Figure 33 shows the setup used during the execution of W-FReDoW to send data to 

FReMI. The Hostname parameter is the server location, Path Key is the key to access Amazon 

Cloud and open a connection, and Path Repository is the folder path where the files will be added 

for FReMI execution. 

 

Figure 33 – Cloud setup for communication between W-FReDoW and FReMI. 

 

Next step is to setup all P-SaMI rules used in this test. We are using four different setups 

for each experiment executed as shown in Figure 34. Also, this figure shows other parameters: 

Best Value and Worst Value, that represent the best and worst result values to get the average 

between them; in this case the average is “-6.0”; Minimum Value and Sampling, that are 

parameters used on lot creation; Start Analysis and Next Analysis, which are the only parameter 

values that changed between each P-SaMI id. In id “6”, Start Analysis is “30%” and Next Analysis is 

“10%”. It means that for an execution using this id, the analysis starts with 30% of snapshots 

finished per lot and always 10% after the first analysis (40%, 50%, … 90%). For id “9”, for example, 

the analysis starts with 50% and more 4 analyses for the same lot are executed (60%, 70%, 80% 

and 90%). 

 

Figure 34 – Four different setups for P-SaMI with analysis starting with 30%, 40%, 50% or 70%. 
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Following the steps for a new execution on the environment, it is necessary to create 

different configurations for each execution. In figure 35 the ids 6, 7, 8 and 9 represent four 

different setups to be used during the execution of experiments. The only difference between 

them is the use of different “Id P-SaMI”, “Desc Short” and ”Desc Long” for each configuration. The 

column “Id P-SaMI” is a link to P-SaMI rules used and presented in figure 34. 

 

 

Figure 35 – Different configurations that are used on experiments with analysis starting with 30%, 
40%, 50% and 70%. 

 

The last step before starting the execution is to setup an experiment and start the process 

execution. This step is based on Experiment window, mentioned on Figure 27, which allows to the 

scientist the possibility of setting up the data. For this test we are using the four configurations 

created and the similarity function RMS_listagem_cluster_snap_means_6_ALL_ATOMS, which was 

presented by Machado [MAC11]. 

Following all setup, this experiment was executed 6 times with different setups. Table 2 

presents the results of each experiment executed. The ids 220, 221 and 222 were executed with 

the same configuration and have very similar results. They started to analyze the results with 30%. 

The other ids started the analysis in different moments. 
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Table 2 – Final results of experiment executions of W-FReDoW considering the  
RMS_listagem_cluster_snap_means_6_ALL_ATOMS as similarity function. 

No of 
experiment 

Initial 
Analysis 

(%) 

Preparation 
Time 

FReMI 
Time 

Amount 
Finished 

Amount 
Discarded 

220 30% 00:01:02 04:02:17 2249 851 

221 30% 00:01:03 04:02:01 2249 851 

222 30% 00:01:01 04:00:19 2249 851 

224 40% 00:01:28 04:16:42 2407 693 

225 50% 00:01:04 04:25:25 2495 605 

226 70% 00:01:03 05:01:35 2819 281 

 

Also, table 2 presents other information about each experiment executed. First, the “No 

of experiment” is the experiment executed with an individual setup. “Initial Analysis” represents in 

percent value the beginning of analysis. “Preparation Time” is the total time to create the 9.300 

files and send the XML configuration file to the cloud. “FReMI time” is the total time to finish all 

3.100 MDock simulations. “Amount Finished” is the amount of snapshots finished on the 

experiment. “Amount Discarded” is the amount of snapshots that were discarded based on the 

rules of P-SaMI setup for the experiment. These snapshots were not executed on FreMI. 

The “Preparation time” is a very fast execution step and is not a bottleneck process of the 

whole. This step does not depend on the configuration of the experiment. In other words, “FReMI 

time” is totally related with the configuration used. When the “Initial Analysis” starts earlier, the 

FReMI finishes its execution earlier too. This happens because of the number of snapshots 

discarded. When more snapshots were discarded, FReMI spent less time to finish the experiment. 

When the analysis starts with 70%, i.e., less snapshots were discarded and more time was spent to 

finish the whole experiment. 

During the process, W-FReDoW records all moments when a status or priority of a lot 

changes. Figure 36 shows some results from P-SaMI analysis about experiment 224. A red line 

indicates the cluster 0 and lot 3. In the first row, when “snap000167” is processed, 40% of this 

cluster/lot was already executed and the analysis starts. Thus, based on the averages (-5.9760, -

6.1091 and -6.0000) the priority is changed from 2 to 1; it means that this cluster/lot had its 

priority decreased on FReMI. The AVG1 (-5.9760) corresponds to the arithmetic average from 

results of snapshots of the cluster/lot already executed. The AVG2 (-6.1091) corresponds to the 

estimated average for the rest of snapshots from this cluster/lot. The AVG3 is the arithmetic 

average from Best Value (-7.2) and Worst Value (-4.8) setup on P-SaMI parameters. Then, as the 

AVG1 is lower than AVG3 and AVG2 is higher than AVG3, the priority changes to “decrease”. It is 
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possible to observe on the other rows selected that the analysis keeps trying to decrease this lot, 

until the analysis with 70% is executed and the cluster 0 and lot 3 are discarded, because AVG1 

and AVG2 are lower than AVG3. 

 

Figure 36 – Analysis realized in experiment 224. Four rows selected to show the cluster 0 and lot 3, 

where the first had its priority decreased and at last was discarded with 70% based on the Avg1 

(Arithmetic Average) and Avg2 (Estimated Average) comparing with Avg3 (P-SaMI Average). 

5.3 W-FReDoW test3: TCN_listagem_cluster_snap_means_6_ALL_ATOMS 

For this third test, we depict the results obtained by using a different similarity function 

from the test before. The setup presented on sub-chapter 5.2 was the same. The only change is 

the similarity function used to group the snapshots for this test. Then, for this third test, the 

similarly function used was TCN_listagem_cluster_snap_means_6_ALL_ATOMS, presented by 

Machado [MAC11]. 

The process to setup the environment was created for test2 and can be reused on this 

experiment. Thus, just the Experiment page (Figure 27) was setup to use a different way to 

prepare files. The preparation of the files is related to how the files (snapshots) were grouped. This 

test was based on TCN_listagem_cluster_snap_means_6_ALL_ATOMS. After this configuration, it 

is time to execute the MDock simulations. 

As presented on test 2, here on this test different experiments were executed. Table 3 

shows four different experiments, where the rules of P-SaMI have started with 30% on experiment 

227, 40% on experiment 228, 50% on experiment 229 and 70% on experiment 230. The 
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preparation time between them was around 01:09 minute. For experiment 227, FReMI Time was 

03:59:02 hours, 2210 snapshots were docked and 890 snapshots were discarded. For experiment 

228, FReMI Time was 04:18:28 hours, 2423 snapshots were docked and 677 snapshots were 

discarded. For experiment 229, FReMI Time was 04:30:04 hours, 2514 snapshots were docked and 

586 snapshots were discarded. On the last experiment using this similarity function, experiment 

230, FReMI Time was 05:06:59 hours, 2868 snapshots were docked and 232 snapshots were 

discarded. 

Table 3 – Final results of experiment executions of W-FReDoW considering the 
TCN_listagem_cluster_snap_means_6_ALL_ATOMS as similarity function. 

No of 
experiment 

Initial 
Analysis 

(%) 

Preparation 
Time 

FReMI 
Time 

Amount 
Finished 

Amount 
Discarded 

227 30% 00:01:10 03:59:02 2210 890 

228 40% 00:01:09 04:18:28 2423 677 

229 50% 00:01:05 04:30:04 2514 586 

230 70% 00:01:13 05:06:59 2868 232 

 

5.4 W-FReDoW test4: Group_Patricia_for_NADH_K-means 

After presenting two tests using similarity functions from Machado [MAC11], this test 

presents experiments that were used by Hubler [HUBLER10]. The grouping used by Hubler is 

referred to in this thesis as Group_Patricia_for_NADH_K-means. The steps to setup were the same 

as in the two tests before. The only difference was to inform this similarity function on Preparation 

Files field on Experiment page (Figure 27). 

Again, we executed four experiments based on this similarity. Table 4 shows four 

different experiments where the rules of P-SaMI were started with 30% on experiment 231, 40% 

on experiment 232, 50% on experiment 233 and 70% on experiment 234. The preparation time 

between them was around 01:24 minute. For experiment 231, FReMI Time was 04:00:33 hours, 

2264 snapshots were docked and 836 snapshots were discarded. For experiment 232, FReMI Time 

was 04:16:49 hours, 2377 snapshots were docked and 723 snapshots were discarded. For 

experiment 233, FReMI Time was 04:42:37 hours, 2537 snapshots were docked and 563 snapshots 

were discarded. On the last experiment using this similarity function, experiment 234, FReMI Time 

was 05:03:02 hours, 2818 snapshots were docked and 282 snapshots were discarded. 

 

 

 



 

 

 

Table 4 – Final results of experiment executions of W-FReDoW considering the 
Group_Patricia_for_NADH_K-means as similarity function. 

No of 
experiment 

Initial 
Analysis 

(%) 

Preparation 
Time 

FReMI 
Time 

Amount 
Finished 

Amount 
Discarded 

231 30% 00:01:14 04:00:33 2264 836 

232 40% 00:01:28 04:16:49 2377 723 

233 50% 00:01:26 04:42:37 2537 563 

234 70% 00:01:30 05:03:02 2818 282 

 

5.5 Last Chapter Considerations 

This chapter presented four tests performed with W-FReDoW. The first test showed a 

complete setup of the environment to run the experiments. For the other tests, only the results 

were shown. For all tests, a real environment was used. First, the parameters are set up on W-

FReDoW, the preparation files are executed, the communication with the middleware FReMI 

(cloud on Amazon) and P-SaMI is performed, and the dockings are analyzed since the moment 

they arrived on W-FReDoW (web server). 

Thus, based on the results presented on each test, table 5 shows the total time for each 

test executed for each experiment. The lines show the tests. The columns show the percentage 

used for W-FReDoW to start the analysis of results of snapshots through P-SaMI rules. The cells 

present the total time spent to dock the snapshots by FReMI. 

Table 5 – Time spent to execute MDock simulations with W-FReDoW using FReMI middleware. 

Test 30% 40% 50% 70% 100% 

Test 1 - - - - 06:02:00 

Test 2 04:02:17 04:16:42 04:25:25 05:01:35 - 

Test 3 03:59:02 04:18:28 04:30:04 05:06:59 - 

Test 4 04:00:33 04:16:49 04:42:37 05:03:02 - 

 

The first test, presented on table 5, has the total time of 06:02 hours to execute all 

experiments. Tests 2, 3 and 4 presented very similar results for each analysis of P-SaMI performed. 

For example, starting the analysis of P-SaMI with 30% of finalized snapshots from lot, test 2 

finished in 04:02:17 hours, test 3 finished in 03:59:02 hours and test 4 finished in 04:00:33 hours. 

Thus, we can observe that the time difference is very low, with a maximum of around three 

minutes of difference between the best and worst times. 

Following this analysis, it is possible to say that the three similarity functions 

(RMS_listagem_cluster_snap_means_6_ALL_ATOMS, TCN_listagem_cluster_snap_means_6_ALL_ATOMS 
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and Group_Patricia_for_NADH_K-means) have very similar results when used with P-SaMI rules. Also, 

the other analysis has similar times to finish the MDock simulations. 

On the other hand, we can observe a gain of time when comparing test 1 with other tests. 

Test 1 spent 6:02 hours, while the other tests spent less time because snapshots were discarded. 

Also, it is possible to say that the early the analysis starts, the faster the experiment is finished. 

Always for the same test, when analysis started earlier, for example with 30%, the time to finish 

was of around 4 hours, while with 50% around 4:30 hours. 

Another comparison is made and shown in table 6. The lines represent the tests and the 

columns the experiments with analysis of snapshots starting in different moments. Also for each 

analysis column “F” represents Snapshots Finished and “D” Snapshots Discarded. For example, in 

test 1 3.100 snapshots were finished without one discarded. As presented on test 1, the purpose 

of this test was to execute dockings of all snapshots to obtain the total time. Test 2 presented 

2.249 snapshots finished (docked) and 851 snapshots discarded (not executed) when analysis 

started with 30%. When starting with 40%, 2.407 snapshots were finished and 693 were discarded.  

Table 6 – Final status of snapshots after docking with W-FReDoW using FReMI middleware. 

Test 30% 40% 50% 70% 100% 

F D F D F D F D F D 

Test 1 - - - - - -   3100 - 

Test 2 2249 851 2407 693 2495 605 2819 281 - - 

Test 3 2210 890 2423 677 2514 586 2868 232 - - 

Test 4 2264 836 2377 723 2537 563 2818 282 - - 

 

Another consideration involves the time to execute each snapshot by FReMI. For the 

experiments mentioned on this chapter, FReMI spent, on average, 50 seconds for Autogrid and 

1:16 minute for Autodock for each snapshot docked. Therefore, we have an average of 2:06 

minutes for each MDock simulation on FReMI using Autodock 4.2. The use of W-FReDoW does not 

interfere on the time executed by FReMI. If FReMI executes the docking without communication 

with W-FReDoW, the time to execute each docking is the same. Some time is spent by FReMI to 

handle nodes and allocating them, whenever necessary. This loss of time is shown in Renata de 

Paris’ thesis. 

At last, as the Server Controller is based on a Web Server and FReMI is a middleware that 

runs in another server, it will be possible to parallelize different experiments. We could have an 

experiment based on an MD with 3.100 snapshots running on FReMI set up to Amazon Cloud, and 
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another MD based on 6.200 snapshots running in another cloud, or in another machine that must 

have to be Internet access to communicate with the Server Controller. For this thesis we did not 

test experiment parallelization because we only had access to one cloud on Amazon. 
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6 RELATED WORK 

This chapter surveys previous work in some subjects related with this thesis. Some 

common subjects in several parts of this work are: 

 Use of a data pattern in Bioinformatics; 

 Tools used for execution of MDock simulations; 

 Integration with MTC in Scientific Workflows; 

 Database to store real time data for MDock simulations of FFR model; 

6.1 Advanced Data Flow Support for Scientific Grid Workflow Applications 

Qin and Fahringer [QIN07] affirm there is a lack to flexible dataset-oriented data flow 

mechanisms to meet the complex requirements of scientific Grid workflow applications. This 

complexity comes through scientists and engineers who need to manage and process large 

datasets on distributed Grid resources. Then, they present a sophisticated approach to address 

this problem by introducing a data collection concept and the corresponding collection 

distribution constructs, applied to Grid workflow applications. 

The authors also claim that a Grid workflow application can be seen as a collection of 

computational tasks that are processed in a well-defined order to accomplish a specific goal. Many 

control flow constructs have been identified and developed in Grid workflow systems to enable 

users to define the exact execution order of tasks. There are four categories: sequential, parallel, 

conditional and iterative constructs. Data flows in scientific Grid workflow applications are 

commonly complex because datasets are involved. 

Similarity to this thesis, Qin and Fahringer also work with large volume of data and groups 

of data. Another common approach occurs in execute experiments in parallel. But the way 

datasets and the corresponding data elements can be specified in data flow links, especially how 

datasets can be distributed onto the parallel loop iterations, is a problem not sufficiently 
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addressed by most Grid workflow languages. The authors also work with a reduction of 

experiments. 

Although this thesis does not work with Grid, we addressed the parallelization through 

the integration with an MTC environment that manages this question. 

6.2 Molecular docking simulation of flexible receptor 

FreDoWS [MAC07, MAC11a] has already been presented in this thesis as an important 

workflow system for MDock simulations of FFR model. First, the WS aimed at the execution of all 

conformations [MAC07], but the possibility to reduce the number of conformations for MDock 

was already addressed [MAC07, MAC11a]. 

The criteria added to FReDoWS to pick up conformations based on the idea that, if a 

result docking with a conformation has a good FEB and RMSD, it is possible that this same 

conformation, in an interaction with a similar ligand, can also present good FEB and RMSD. Trying 

to check the efficiency of this idea, Machado [MAC11, MAC11a] concluded through some tests 

that for ligands from the same class it is not necessary to use all conformations of the FFR model. 

The way the conformations are picked up in FReDoWS presented good results. 

FReDoWS has a strong connection with this thesis. The workflow defined in [MAC07] was 

used to create W-FReDoW. However, the use of the dynamism through P-SaMI in W-FReDoW 

proves that both theses have different approaches to work with fewer conformations. While 

FReDoWS works with a mechanism to pick up the conformations manually, W-FReDoW works with 

a pattern to discard conformations based on the analysis of groups with similar characteristics. 

Another difference between both is the environment where the MDock simulations on 

FFR model occur. FReDOWS is a scientific workflow modeled through the JaWe editor, and is 

executed by Enhydra Shark. It uses AutoDock 3.05 for the docking simulations. W-FReDoW uses a 

web server to communicate between web client and the MTC environment and uses Autodock 4.2 

for docking simulations. 

At last, W-FReDoW executes parallel docking simulations. The environment presented in 

this thesis communicates with an MTC environment that manages those snapshots to be 

executed, e.g., in a HPC or Cloud. FReDoW does not implement parallel execution. 

6.3 Data parallelism in Bioinformatics workflows 

Coutinho et al. [COU10] say that Bioinformatics activities within a workflow often involve 

large-scale data processing and several data conversions using shimming activities. Each one of the 
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workflow activities may receive huge amounts of data to be processed. This large scale processing 

may be unfeasible if scientists do not run their experiments in high performance environments 

and using parallelism techniques such as data fragmentation. 

Based on these concepts, Coutinho et al. [COU10] developed Hydra. Hydra is a 

middleware that provides a set of components to be included in the workflow specification of any 

SWfMS to control parallelism of activities following the MTC paradigm. Hydra is based on a 

homogeneous cluster environment and relies on a centralized scheduler (such as Torque). Using 

Hydra, the MTC parallelism strategy can be registered, reused, and provenance may be uniformly 

gathered during the execution of workflows. Hydra still lacks on data parallelism mechanisms 

coupled to provenance facilities. Figure 37 shows Hydra conceptual architecture. 

 

 

Figure 37 – Hydra Conceptual Architecture 

 

Hydra has great relevance for this thesis. It presents common characteristics such as 

exploring Bioinformatics area and large data processing. The environment is separated on layers 

that can be coupled, like Hydra middleware. Another similar feature, and one of the challenges, is 

the parallelism through MTC paradigm. It also allows keeping the provenance of the execution of 
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workflow. Hydra goes deep into data fragmentation, something that W-FReDoW does not support 

yet. We did not identify the use of a pattern that can reduce the number of experiments, one of 

the main approaches of this thesis. 

6.4 DOVIS: an implementation for high-throughput virtual screening using AutoDock 

Zhang et al. [ZHA08] worked on techniques to use HPC platforms for execution of high 

data processing from molecular docking experiments. The authors say the development of 

molecular docking tools with HPC system is not trivial. Thus, an application called DOVIS was 

developed to use AutoDock (version 3), running in parallel on a Linux cluster. The authors claim 

DOVIS can efficiently dock large numbers (millions) of small molecules (ligands) to a receptor, 

screening 500 to 1,000 compounds per processor per day. 

W-FReDoW has a broader scope than DOVIS, since it works with an MTC environment as 

a module integrated with it. Neither the approach to execute MDock simulations of FFR model nor 

to achieve an RFFR model is implemented in DOVIS. 

6.5 Relaxed Complex Scheme for Receptor Flexibility in Computer-aided Drug Design 

Amaro et al. [AM08] affirm that while ligand flexibility is well accounted for in 

computational drug design, the effective inclusion of receptor flexibility remains an important 

challenge. The relaxed complex scheme (RCS) is a promising computational methodology that 

combines the advantages of docking algorithms with dynamic structural information provided by 

molecular dynamics (MD) simulations, therefore explicitly accounting for the flexibility of both the 

receptor and the docked ligands.  

The authors discuss new extensions and improvements of RCS methodology that include 

virtual screening, and methods to improve its computational efficiency by reducing the receptor 

ensemble to a representative set of configurations. 

Therefore the methods used for Amaro et al. propose the same aim as the present thesis: 

to reduce the number of receptors. Amaro used some methods to reach this reduction. On the 

other hand, this thesis presents a pattern that helps in this activity. 

6.6 FReDD: Supporting Mining Strategies through a Flexible-Receptor Docking Database 

FReDD is an acronym to Flexible-Receptor Docking Database. FReDD repository stores all 

features of the receptor snapshots, the ligands, and the docking simulation of MDock simulations 

of the FFR model [WIN09]. This repository allows easy retrieval of its information to produce 

comprehensive data to be mined. Wink et al. [WIN09] say the use of this database helps 
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concentrate efforts on data mining to explore the docking results in order to accelerate the 

identification of promising ligands against the InhA target. 

The database presented in this thesis, FReDD for P-SaMI, is an extension of FReDD. 

Although both store data from MDock simulations of FFR model, they have different focuses. 

While FReDD stores data for mining process, FReDD for P-SaMI maintains the provenance of W-

FReDoW. In FReDD, data are stored after the execution of workflow. FReDD for P-SaMI stores data 

in real time, during the setup, execution and analysis of W-FReDoW. 
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7 CONCLUSIONS 

This study presented a new environment for MDock simulations of the FFR model. First, 

literature reviews about Bioinformatics and Scientific Workflows (SW) are presented. The first one 

proved important for the understanding of the workflow for RDD. The other, SW, was paramount 

to understand the flow control and data pattern used in this environment. Workflow concepts 

helped understanding the use of P-SaMI, a data pattern for Scientific Workflows. 

One of the artifacts of this research is a new environment built using rules of P-SaMI 

called W-FReDoW (Web Flexible Receptor Docking Workflow). With W-FReDoW the domain 

specialist can run docking experiments using a web front-end interface. So the docking files are 

prepared and submitted to an MTC environment. After docking, the results from each group of 

conformations are analyzed based on P-SaMI rules. Finally, non-promising groups are discarded. 

Another deliverable from this thesis is FReDD for P-SaMI. This database is designed to 

support MDock simulations of an FFR model based on P-SaMI. The tables and attributes store all 

data during the workflow of the process and are an important support of analysis of P-SaMI. Also, 

FReDD for P-SaMI provides all the provenance of the execution to the domain specialist. 

The scalability of the environment is another topic achieved with the different 

components from W-FReDoW. First, W-FReDoW can scale simply by increasing the number of 

Virtual Machines or Clusters used by FReMI. Thus, it is possible to parallelize more dockings. 

Furthermore, the environment is not limited to execute just one experiment at a time. W-FReDoW 

was built to support parallel executions of different experiments. Each experiment has a unique ID 

with a corresponding set up, allowing a parallel execution with different treatments per 

experiment. 

The communication between Server Controller and MTC is an important achievement. 

Besides providing a fast communication, here executed by SFTP and HTTP POST, the MTC should 

understand rules from P-SaMI, like discard, increase or decrease a lot of snapshots. Then an 

algorithm was developed from Renata de Paris thesis to use these rules. The heuristic is presented 

in her thesis, demonstrating how FReMI deals with allocation of snapshots on MTC environment. 
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We understand the environment created has a great contribution to RDD. Considering the 

flexibility of receptor on molecular docking is a subject from researches, the computational time 

an obstacle for scientists, we developed a smart molecular docking, through the use of a MTC and 

validation of promising groups of conformations. 

We can say that the research question “Is it possible to use a reduction experiments 

pattern through the disposal of snapshots non-promising in molecular docking simulations of 

Fully-flexible Receptor Model keeping a high level of accuracy?” is answered positively in this 

thesis. W-FReDoW was designed under P-SaMI concepts reducing the number of conformations 

for docking through promising groups. 

Based on the results of this thesis, the use of W-FReDoW really targets the reduction of 

the number of conformations. This achievement only happens with the use of P-SaMI, because 

without it, all snapshots will be docked. Then, it is possible to say that a RFFR model was achieved 

by W-FReDoW. 

7.1 Future Work 

An important contribution is the use of W-FReDoW in a different workflow area. For that, 

it is important that the new workflow presents same characteristics P-SaMI uses. So W-FReDoW 

can be validated as a multi-area environment. Also, another contribution is to create modules in 

W-FReDow for those different workflows. Thus, scientists can setup each type of experiment that 

will be executed. 

The grouping of snapshots process could be automatized. Today, W-FReDoW loads results 

generated from Karina Machado’s [MAC11] thesis to create groups of snapshots with similar 

characteristics. The Data Mining used for her thesis results in entrance data to W-FReDoW. This 

process is manual and could be automatized. 

The most important improvements for the system will naturally be related with molecular 

modeling steps. Thus, the use of different molecular docking tools (today we are docking with 

Autodock4.2), can be a differential in the flexibility of the environment. 

To finish the list of future works, an interesting area that can be explored is KDD 

(Knowledge Discovery and Data Mining) using FReDD for P-SaMI database. The decision to execute 

a new experiment could be defined from a KDD process. Today this process is manual, through the 

parameter changes to a new experiment. 
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