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Abstract—Nowadays, there are several different architectures
available not only for the industry, but also for normal consumers.
Traditional multicore processors, GPUs, accelerators such as the
Sunway SW26010, or even energy efficiency-driven processors
such as the ARM family, present very different architectural
characteristics. This wide range of characteristics presents a
challenge for the developers of applications. Developers must
deal with different instruction sets, memory hierarchies, or even
different programming paradigms when programming for these
architectures. Therefore, the same application can perform well
when executing on one architecture, but poorly on another
architecture. To optimize an application, it is important to have a
deep understanding of how it behaves on different architectures.
The related work in this area mostly focuses on a limited analysis
encompassing execution time and energy. In this paper, we
perform a detailed investigation on the impact of the memory
subsystem of different architectures, which is one of the most
important aspects to be considered. For this study, we performed
experiments in the Broadwell CPU and Pascal GPU, using
applications from the Rodinia benchmark suite. In this way, we
were able to understand why an application performs well on
one architecture and poorly on others.

Index Terms—Performance evaluation; Manycore systems;
Memory subsystem; Cache memory; HPC

I. INTRODUCTION

Traditional multicore architectures currently have dozens of

cores, as well as a complex memory hierarchy to alleviate

memory latency for all threads. These architectures rely on

both instruction level parallelism (ILP) and thread level par-

allelism (TLP) to achieve high performance, as in the Intel

Xeon Broadwell architecture [1]. Another type of architecture,

which introduces different concepts, is the GPU. GPUs have

thousands of simple cores, which alone are less powerful than

the multicore ones, such that the GPU performance depends

mostly on TLP. Although GPUs can achieve more performance
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01/2017-ARD project PARAELASTIC (No. 17/2551-0000871-5), School of
Technology from PUCRS and Petrobras under project 2016/00133-9.

than multicore architectures, they have some drawbacks: fewer

types of applications can be executed efficiently on GPU, and

the parallel programming APIs available for GPUs, such as

CUDA [2], [3], present added complexity to the developer.

The usage of parallel and heterogeneous architectures poses

several challenges for high-performance computing [4]. Ap-

plications need to be coded considering the particularities

and constraints of each environment, as well as considering

their distinct architectural characteristics [5]. For example, in

the memory hierarchy, the presence of several cache memory

levels, some shared and others private, introduces non-uniform

access times, which impact applications’ performance [6]. It

is even more critical in heterogeneous architectures since each

accelerator can have its own, distinct, memory hierarchy. Also,

in heterogeneous architectures, the number of functional units

may vary between different accelerators, and the instruction

set itself may not be the same. In this context, it is important

to analyze the performance and behavior of parallel and

heterogeneous architectures, in order to provide better support

for developers, so they can optimize their applications for the

target system.

This work aims to perform a detailed analysis of the impact

of the memory subsystem used in different architectures.

We used hardware performance counters to gather accurate

measurements of the actual impact of different factors that

influence the memory access. We analyzed counters that

measure the cache memory usage, main memory, intercon-

nection traffic, among others. By doing so, we obtained a

detailed understanding of how different aspects of the memory

hierarchy impact the performance of applications. Such a study

can serve as a basis for developers of parallel applications to

optimize their applications.

This article is organized as follows. Section II contains

the description of the experimental methodology. Section III

shows the results and analysis. Section IV presents a summary

of the related work in the area. Finally, Section V presents
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concluding remarks and future work.

II. METHODOLOGY

The experiments were performed in the Broadwell and

Pascal system environments. The Broadwell system is com-

posed of two Intel Xeon E5-2699 v4 processors, where each

processor consists of 22 physical cores, allowing execution of

88 threads with Hyper-Threading. The Pascal is a Tesla P100

GPU, where we used one of the GPUs with 3584 CUDA cores.
The benchmark suite Rodinia was chosen since it imple-

ments a set of applications with distinct parallel execution

characteristics and contains implementations for multicore

processors and GPU boards. For Broadwell we used the

OpenMP implementation of Rodinia. On Pascal, we used the

CUDA implementation.
The experiments shown in Section III present the average

of 30 random executions. The standard deviation presented

is given by the t-Student distribution with a 95% confidence

interval. Moreover, we also investigate other metrics such

as rate of core usage, bandwidth and cache hit ratio in the

memory subsystem. The Intel PCM [7] and Intel VTune [8]

tools were used to obtain data for the Broadwell executions,

while for the Pascal GPU, we used the nvprof [9] tool.

III. EXPERIMENTS

The performance of each application depends on the archi-

tecture. This motivates the study of applications and architec-

tural characteristics, aimed to understand why a benchmark

performs better in one architecture and how to improve its

performance. Thus, the following subsections present perfor-

mance analyses of Rodinia benchmarks. The benchmarks were

executed in the Broadwell and Pascal architectures, in order

to identify the distinct memory hierarchy characteristics that

impact the performance of parallel applications.

A. Broadwell (CPU)
The Broadwell architecture obtains data by accessing the

private L1 and L2 caches of each core, the L3 cache shared by

all cores of the same processor, or the main memory. Figure 1

shows the L1 and L2 hit ratios. Figure 2 shows the L3 and

combined hit rate, which is the amount of memory transactions

serviced by any cache. The x-axis presents the name of each

application ordered by the IPC (smaller shown first), and the

y-axis indicates the hit ratio in percentage. The L1 cache is

the fastest and smallest memory and is private to each core.

The average L1 hit ratio was 96.1%. Even with an average

close to 100%, small variations in the L1 hit ratio implies in

significant variations in performance, and therefore it is not a

good predictor of IPC by itself. Applications such as lavaMD,

nw, nn, hotspot3D and bfs have L1 hit rates up to 99.9% due

to their data accesses pattern. On the other hand, applications

such as backprop, srad, and particleFilter, have lower hit rates

(86.4% in particleFilter), affecting their performance because

they access slower memories more frequently.
The L2 cache is also private to each core. nn, leukocyte,

heartwall and particleFilter are applications that take advan-

tage of the cache and thus have better performance results.
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Fig. 1. L1 and L2 Cache hit ratio - Broadwell.
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Fig. 2. L3 and Combined hit ratio - Broadwell.

The L2 hit ratios in these applications were up to 98.9%. The

L3 cache, the last-level cache in the Broadwell architecture, is

shared between all cores of the same processor. It helps several

applications by reducing the accesses in the main memory.

The applications leukocyte, b+tree and particleFilter have a

L3 hit ratio greater than 80%, which means that almost their

entire data fit in the L3. On the other hand, hotspot3D has a

L3 hit equals to 9.4%, which is low compared to the average

(52.5%), and yet the application performs above average when

compared to the other applications. Most likely, the majority

of its accesses were already filtered by the higher level caches.

We can observe, in the combined hit ratio, that the ap-

plications with the highest hit ratios are the ones with the

highest IPCs, which clearly indicates that the cache memories

have a big impact in the performance. It shows that any

cache memory servicing a transaction is more important than

simply having a hit in an upper level, lower latency cache.

For instance, particleFilter has the best IPC even without

the highest L1 hit ratio, but it has a very high combined

hit ratio. To improve the performance, techniques such as

loop interchange and loop tiling can be used. Using these

techniques, more data is fetched to the cache memories, the

data reuse in the caches increase, and cache line prefetchers

can fetch data from the main memory more accurately.

Figures 3 and 4 show results of dynamic random-access
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Fig. 3. DRAM transactions - Broadwell.
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Fig. 4. Transactions across the QPI - Broadwell.

memory (DRAM) transactions per second and Quickpath

Interconnect (QPI) transactions per second. Applications with

low cache hit ratios have a large number of DRAM and

QPI transactions, which reduce their performance by accesses

to local and remote memories. The DRAM transactions per

second was in average 15.5 GT/s, which is 5.5 times less than

the maximum value of 84.9 GT/s. The applications srad, lud
and cfd have the highest values of transactions per second,

which limit their performance. Transactions across the QPI

also reduce the performance of applications.

If we divide the applications in Figures 3 and 4 in the half,

we can observe the applications on the left side have, on aver-

age, more DRAM and QPI transactions than the applications

on the right side. Since the applications are shown ordered

by their IPC, this indicates a tendency for applications that

need less DRAM or QPI accesses to have better performance.

We can also observe that applications with less cache hits

(Figure 2) tend to have more DRAM and QPI traffic.

B. Pascal (GPU)

Section III-A discussed the performance of Broadwell mem-

ory subsystem. The GPU memory hierarchy has different

design characteristics than this. Broadwell has large caches

aimed at reducing the long latency of the main memory to

smaller latencies of cache levels closer to the processor. GPUs

target throughput, allowing the load of multiple operands per

unit of time. Pascal architecture offer memories with different
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Fig. 5. The utilization level of the L1/texture cache relative to the theoretical
peak utilization - Pascal.
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Fig. 6. The utilization level of the L2 cache relative to the theoretical peak
utilization - Pascal.
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Fig. 7. The utilization level of the device memory relative to the theoretical
peak utilization - Pascal.

characteristics. L1/texture (read-only) and shared memories

are the fastest and smallest ones. Both can be used automat-

ically or handled by the programmer. The texture memory is

a read-only memory used to reuse data from the stack or the

global memory. The L1 can be used to keep data of stack and
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register spill.

Figure 5 shows the utilization of these memories relative to

the theoretical peak usage. The utilization rate is low in both

memories, with an of average 22.4% of the peak utilization. In

the case of L1/texture, the max utilization level was 60.0% in

the leukocyte.dilate kernel, which uses the L1/texture memory

and also has the high IPC. There are ways to improve the usage

of these memories and therefore applications performance,

either by using the CUDA intrinsic lgd(), which indicates that

the data should be stored in the texture memory.

The L2 cache and the device memory are larger but have

lower speeds than shared and L1/texture. Figures 6 and 7

show the use of these memories. Another difference between

Broadwell and Pascal memory subsystem is that, in Pascal,

the global memory data accessed is first searched in L2

cache instead L1 cache. The average utilization of L2 was

14.8%. This means that most applications do not use the

L2 cache. Applications such as cfd and eukocyte have a

utilization of 30%, which reduces its accesses to the slow

global memory. The average utilization of global memory was

33.7%, explaining why the L2 utilization is also low.

IV. RELATED WORK

A memory model to analyze algorithms for many-core

systems is presented in [10]. Analyzing their study, we observe

that it is essential to have a thorough understanding of the be-

havior of the applications because the performance alone does

not allow us to comprehend the bottlenecks of an application

or architecture. Mei et al. [11] analyzed the characteristics

of the memory subsystem in 3 different GPU architectures:

Fermi, Kepler, and Maxwell. The authors conclude that the

Kepler architecture planning was aggressive in its memory

bandwidth, which has often been underused, and that, in the

Maxwell architecture, more resources were invested in shared

memory, generating a more efficient and balanced system.

Serpa et al. [12] study the impact of thread and data

strategies, revealing that, with smart mapping policies, one can

indeed significantly improve memory performance on multi-

core architectures. Satish et al. [13] analyze the performance

gap between simple and highly optimized code in modern mul-

ticore and manycore architectures. They propose optimizations

to the source code that can make better use of the memory

hierarchy and the vectorization instructions.

The related work demonstrates that, by taking into ac-

count the different features of each architecture, developers

can vastly improve an application’s performance. Our work

goes beyond a scalability analysis and looks for a greater

understanding of the impact of different applications on differ-

ent systems, measured from hardware counters. The analysis

of the related work demonstrates how in-depth knowledge

of the application behavior at the architectural level allows

developing techniques to gain performance. In this context,

the focus of this article is to study the effects of different

memory subsystems of CPU and GPU architectures in parallel

applications, and thus to analyze the impact that each memory

subsystem characteristic has on the applications.

V. CONCLUSIONS AND FUTURE WORK

The wide range of architectures presents a challenge for

developers when optimizing the applications due to their dif-

ferent characteristics. This work analyzed the impact of one of

the most important characteristics: the memory subsystem. The

Broadwell and Pascal architectures were evaluated. Related

work in this area focus solely in the performance or energy

consumption, while our work perform a deeper analysis of the

behavior of the memory hierarchy. For this, hardware counters

were employed to measure statistics such as cache misses,

main memory transactions, prefetch accuracy, among others.
The results show that, in the architectures, the main per-

formance limit are the accesses to main memory. In Pascal

architecture, the overall memory utilization rate is directly

linked to application performance. The best case is that there

is little use of global memory and much utilization of the

cache memories. In the Broadwell architecture, applications

with high hit rates in the cache have the best performance.

More specifically, results show that it is more important to

have a high cache hit ratio in any cache level than simply

having a high cache hit rate in upper levels such as L1.
Future work includes a study of the energy efficiency of

different architectures.
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