
ESCOLA         POLITÉCNICA

PROGRAMA         DE         PÓS-GRADUAÇÃO         EM         CIÊNCIA         DA         COMPUTAÇÃO
DOUTORADO         EM         CIÊNCIA         DA         COMPUTAÇÃO

JEAN         CARLO         HAMERSKI

SUPPORT         TO         RUN-TIME         ADAPTATION         BY         A         PUBLISH-SUBSCRIBE         BASED
MIDDLEWARE         FOR         MPSOC         ARCHITECTURES

Porto         Alegre

2019



PONTIFICAL CATHOLIC UNIVERSITY OF RIO GRANDE DO SUL
SCHOOL OF TECHNOLOGY

GRADUATE PROGRAM IN COMPUTER SCIENCE

SUPPORT TO RUN-TIME
ADAPTATION BY A

PUBLISH-SUBSCRIBE BASED
MIDDLEWARE FOR MPSOC

ARCHITECTURES

JEAN CARLO HAMERSKI

Thesis presented as partial requirement for
obtaining the degree of Ph. D. in Computer
Science at Pontifical Catholic University of
Rio Grande do Sul.

Advisor: Prof. Alexandre de Morais Amory

Porto Alegre
2019













AGRADECIMENTOS

O caminho percorrido durante o doutorado é longo e cheio de incertezas. É com o apoio
dos amigos, familiares e professores que seguimos adiante. Por isso, quero agradecer a todos que
de alguma forma tiveram parte na finalização do meu doutorado.

Primeiramente quero agradecer aos meus pais, que desde cedo me incentivaram nos es-
tudos. Se chego à conclusão do doutorado, é porque lá no início da minha formação escolar tive
a percepção enraizada de que é através do estudo que abrimos os horizontes. Um agradecimento
especial a minha mãe Arlete, que, quando professora, me possibilitou desde muito cedo viver o
ambiente escolar e seu potencial de transformação de vidas.

Ao meu orientador, Alexandre Amory, obrigado pelo guiamento nos momentos de dúvida
e suporte intelectual nos caminhos tomados durante a pesquisa do doutorado.

Aos demais professores do programa de pós-graduação, pelas aulas, dicas e apoio em
eventuais reuniões, em especial aos professores Fernando Moraes e César Marcon.

Aos amigos que fiz durante o doutorado, obrigado pelos momentos de descontração e
pelo apoio nas atividades de pesquisa. Obrigado Caimi, Gustavo, André, Jurinha, Fochi, Ruaro,
Anderson, Felipe, Ost, Geancarlo e todos os demais amigos do sagrado futebol semanal.

Ao Instituto Federal do Rio Grande do Sul e aos programas de fomento à pesquisa e
capacitação de professores pelo necessário suporte e auxílio.

Por fim quero agradecer a minha esposa que foi uma incrível parceira nesses 4 anos. Paula,
teu espaço de escuta, carinho e sempre sábias palavras foram indispensáveis. E também a minha
filha, Isabela, que com sua alegria foi uma válvula de espace aos momentos de tensão. Amo vocês!





SUPORTE À ADAPTAÇÃO EM TEMPO DE EXECUÇÃO ATRAVÉS
DE UM MIDDLEWARE BASEADO EM PUBLISH-SUBSCRIBE PARA

ARQUITETURAS MPSOC

RESUMO

As aplicações embarcadas têm migrado de sistemas baseados em um único processador
para uma comunicação de dados intensiva que exige sistemas multiprocessados. O desempenho
exigido por estas aplicações motivam o uso de arquiteturas multiprocessadas em um único chip
(MPSoCs). Mudanças em tempo de execução na qualidade do serviço prestada pela plataforma
MPSoC para as aplicações motivam a implementação de plataformas MPSoCs auto-adaptativas.
As plataformas MPSoCs auto-adaptativas empregam sistemas compostos por arquiteturas ricas
em sensores-atuadores que observam as mudanças no ambiente de execução e adaptam o sistema
balanceando dinamicamente múltiplos objetivos em vários níveis de arquitetura. Esses sistemas
auto-adaptativos requerem modelos de comunicação/programação bem adaptados à característica
distribuída do ambiente para coordenar a comunicação entre os elementos que o compõem. Esta Tese
investiga os atuais modelos de programação/comunicação em MPSoC e outros domínios correlatos
com relação ao acoplamento entre os elementos comunicantes e a infraestrutura de hardware e
software adjacente. A hipótese levantada é que é necessário usar um modelo que, além de abstrair
a complexidade da comunicação, também forneça um acoplamento mais flexível entre os elementos
comunicantes do sistema auto-adaptativo. Adicionalmente, nós argumentamos que as abordagens
atualmente utilizadas para incorporar sistemas auto-adaptativos em plataformas MPSoCs seguem
uma metodologia de desenvolvimento não sistematizada, o que impacta na qualidade de software
relacionada ao reuso de código e manutenabilidade. Sendo assim, esta Tese propõe aplicar o modelo
publish-subscribe em uma abordagem de desenvolvimento baseada em middleware visando melhorar
a qualidade do software de sistemas auto-adaptativos enquanto minimiza impactos indesejados da
abordagem proposta sobre o sistema. A Tese é suportada através de um estudo de caso em que
implementamos um sistema auto-adaptativo utilizando a abordagem proposta e comparamos os
resultados com um sistema auto-adaptativo base, de acordo com métricas de desempenho, energia
e qualidade do software. Os resultados mostram que o modelo empregado em uma abordagem
de desenvolvimento baseada em middleware melhorou a qualidade do software do sistema auto-
adaptativo de 33% até 47.8%, dependendo da métrica avaliada, com um reduzido overhead em
relação à métricas de desempenho (4.5%) e energia (5.9%). Mostramos também que os requisitos
para o middleware são adequados para plataformas MPSoCs caracterizadas por restrições de uso de
memória.



Palavras-Chave: MPSoC, múltiplos núcleos, modelo de programação, modelo de comunicação,
publish-subscribe, middleware, sistemas auto-adaptativos, gerenciamento de recursos.



SUPPORT TO RUN-TIME ADAPTATION BY A PUBLISH-SUBSCRIBE
BASED MIDDLEWARE FOR MPSOC ARCHITECTURES

ABSTRACT

Embedded applications have been migrating from single processor-based systems to in-
tensive data communication requiring multi-processing systems. The performance demanded by
applications motivate the use of Multi-Processor System-on-Chip (MPSoC) architectures. Run-time
changes in the quality of service provided by the MPSoC platform to the applications motivate the
implementation of self-adaptive MPSoC platforms. Self-adaptive MPSoC platforms employ systems
composed of sensor-actuator rich architectures that observe the changes in the execution environ-
ment and adapt the system dynamically balancing the multiple objectives across multiple architecture
levels. These self-adaptive systems require communication/programming models well suited to the
distributed characteristic of the environment in order to coordinate communication between the
elements that compose it. This Thesis investigates current programming/communication models on
MPSoC and other correlated domains regarding the coupling between the communicating elements
and the adjacent hardware and software infrastructure. The hypothesis raised is that it is necessary
to use a model that, besides abstracting the communication complexity, provides a more flexible
coupling between the communicating elements of the self-adaptive system. Additionally, we argue
that the current approaches used to incorporate self-adaptive systems in MPSoC platforms follow
a non-systematic development methodology, which impacts the quality of software related to code
reuse and maintainability. Therefore, this Thesis proposes to apply the publish-subscribe model in
a middleware-based development approach to perform the communication employed between the
elements of a self-adaptive MPSoC platform and to improve software quality of self-adaptive sys-
tems while minimizing undesired impacts of the proposed approach on the system. The Thesis is
supported through a case study where we implement a self-adaptive system following the proposed
approach and compare the results with a baseline self-adaptive system according to performance,
energy and software quality metrics. The results show that the proposed model employed on a mid-
dleware based development approach has improved the software quality of the self-adaptive system
by 33% to 47.8%, depending on the metrics evaluated, with a reduced overhead regarding metrics of
performance (4.5%) and energy spent (5.9%). We also show that the requirements for middleware
are suitable for MPSoC platforms with memory usage constraints.



Keywords: MPSoC, many-core systems, programming model, communication model, publish-
subscribe, middleware, self-adaptive systems, resource management.



LIST OF FIGURES

2.1 General scheme representing an MPSoC architecture containing hardware/software
components on the left (SW-SS) and purely hardware components on the right (HW-
SS), interconnected by a Communication Infrastructure (adapted from [PRJW10]). . 30

2.2 General scheme representing a basic version of the RPC model communication flow. 33
2.3 General scheme representing a basic version of the MPI model communication flow. 34
2.4 General scheme of a publish-subscribe system. . . . . . . . . . . . . . . . . . . . . 35
2.5 Comparison of (a) traditional and (b) self-adaptive systems (adapted from [Hof13]). 36
3.1 Research design of the Thesis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.1 FreeRTOS-based MPSoC 4x4 platform instance [AMR+16] . . . . . . . . . . . . . 55
4.2 DTW task graph with a) MPI and b) PUB-SUB primitives. . . . . . . . . . . . . . 57
4.3 Sequence diagram of the MQSoCAdvertise primitive. . . . . . . . . . . . . . . . . . 61
4.4 Sequence diagram of the MQSoCUnadvertise primitive. . . . . . . . . . . . . . . . 61
4.5 Sequence diagram of the MQSoCSubscribe primitive. . . . . . . . . . . . . . . . . . 61
4.6 Sequence diagram of the MQSoCUnsubscribe primitive. . . . . . . . . . . . . . . . 62
4.7 Sequence diagram of the MQSoCPublish primitive. . . . . . . . . . . . . . . . . . . 62
4.8 Sequence diagram of the MQSoCYield primitive. . . . . . . . . . . . . . . . . . . . 62
4.9 Modified FreeRTOS-based MPSoC 4x4 platform instance, adapted from [AMR+16]. 63
4.10 DTW execution time using MPI and PUB-SUB. . . . . . . . . . . . . . . . . . . . 63
4.11 MPI vs PUB-SUB time spent in System Calls and NIs. . . . . . . . . . . . . . . . . 64
4.12 OO-MQSoC Architecture. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
4.13 PublishersManager Component. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
4.14 SubscribersManager Component. . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
4.15 Broker Manager Component. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
4.16 Protocol Stack Fabric Component. . . . . . . . . . . . . . . . . . . . . . . . . . . 73
4.17 Protocol Stack and Packet Format. . . . . . . . . . . . . . . . . . . . . . . . . . . 73
4.18 Receiving a packet in the Protocol Stack used in the Middleware. . . . . . . . . . . 74
4.19 Transmitting a packet in the Protocol Stack used in the Middleware. . . . . . . . . 76
4.20 Task graph of the a) MPEG, b) PROD-CONS, and c) DTW applications. . . . . . . 76
4.21 Application execution time for C and C++ scenarios. . . . . . . . . . . . . . . . . . 77
4.22 Data structures used within the experiment. . . . . . . . . . . . . . . . . . . . . . 81
4.23 Serialization and deserialization execution time for each evaluated library and serial-

ized data structs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
4.24 Code snippet of the YAS serialization process and required schema. AppData object

contains an InstrCnt member corresponding to the Struct B. . . . . . . . . . . . . . 83
4.25 Code snippet of MsgPuck serialization process for the Struct B. . . . . . . . . . . . 83
5.1 Examples of self-adaptive system models: a) SAS={S={s1}, M={m1}, D={d1={m1,a1}},

A={a1}, E={e1}, T={t1, t2}, SM={{s1,m1,t1}}, AE={{a1,e1,t2}}}; b) SAS={S={s1,s2},
M={m1,m2}, D={d1={{m1,m2},{a1,a2}}}, A={a1,a2}, E={e1,e2}, T={t1,t2,t3,t4},
SM={{s1,m1,t1}}, {{s2,m2,t2}}, AM={{a1,e1,t3}},{{a2,e2,t4}}} . . . . . . . . . . 85

5.2 OO-MQSoC architecture enhanced with the Modules middleware extension. . . . . . 86



5.3 Sequence diagram of the enable() atomic operation of a hypothetical: a) Sensor ; b)
Monitor ; c) Actuator ; d) Effector. . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.4 Sequence diagram of the update() atomic operation of a hypothetical Sensor object
named ExampleASensor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.5 Sequence diagram for receiving a sensor data message in a hypothetical monitor
object named ExampleAMonitor. . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.6 Sequence diagram of the drive() atomic operation of a hypothetical actuator object
named ExampleAActuator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.7 Sequence diagram for receiving a actuator data message in a hypothetical effector
object named ExampleAEffector. . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.8 Topic-name scheme employed in this Thesis following the hierarchical graph. . . . . 95
5.9 Components of the adaptive service implemented as example. . . . . . . . . . . . . 96
5.10 Experiment setup: a) AES task graph; b) 3x3 MPSoC platform setup; c) Evaluated

adaptive service. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
5.11 CPU utilization over time for the PE 1. . . . . . . . . . . . . . . . . . . . . . . . . 100
5.12 CPU utilization over time for the PE 4. . . . . . . . . . . . . . . . . . . . . . . . . 100
6.1 Baseline HeMPS MPSoC: (a) system architecture; (b) PE architecture [RM18, p. 35].101
6.2 General MORM overview [MdSR+19, p. 4]. . . . . . . . . . . . . . . . . . . . . . . 102
6.3 Classification of actuation methods adopted by MORM . . . . . . . . . . . . . . . 107
6.4 Secure voltage/frequency pairs [MM18, p. 74]. . . . . . . . . . . . . . . . . . . . . 107
6.5 General Schema of the MORM Inter-Cluster Decision-Making Method. . . . . . . . 109
6.6 MORM-MQSoC Adaptative Service for the Global Master PE. . . . . . . . . . . . . 113
6.7 MORM-MQSoC Adaptative Service for the Local Master PE. . . . . . . . . . . . . 113
6.8 General MORM overview for the MORM-C and MORM-MQSoC implementations. . 114
6.9 Code snippet of the serialize and deserialize methods of the MormSlaveType class,

and the updateStatus method of the MormSlaveSensor class. . . . . . . . . . . . . 115
6.10 DvfsActuator Class Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
6.11 Code snippet of the doit method of the DvfsEffector class. . . . . . . . . . . . . . 117
6.12 Code snippet of the serialize and deserialize methods of the MormLocalMasterType

class, and the updateStatus method of the MormLocalMasterSensor class. . . . . . 118
6.13 ClusterPowerModeActuator Class Diagram. . . . . . . . . . . . . . . . . . . . . . . 119
6.14 Code snippet of the doit method of the ClusterPowerModeEffector class. . . . . . . 119
6.15 Average power results for MORM-C and MORM-MQSoC running typical workload. . 121
6.16 Average Slack Time for MORM-C and MORM-MQSoC running typical workload. . . 122
6.17 Task mapping showing the cluster mode and vf-pair at each snapshot (Same behavior

for both MORM-C and MORM-MQSoC). . . . . . . . . . . . . . . . . . . . . . . . 123
6.18 Time spent by each component of the intra-cluster adaptive service for: a) MORM-

MQSoC b) MORM-C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
6.19 Time spent by each component of the inter-cluster adaptive service for: a) MORM-

MQSoC b) MORM-C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
6.20 Router Injection (%), presented in the Y-axis. . . . . . . . . . . . . . . . . . . . . . 125
6.21 Router Congestion (%), presented in the Y-axis (note that the scale of the Y-axis is

not the same for better viewing purpose). . . . . . . . . . . . . . . . . . . . . . . . 126



6.22 Dif Time (Kticks), presented in the Y-axis, showing the arrival delay of the sensor
data messages from SPs to LMs. . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

6.23 Box Plot of the summarized Dif Time for transmission of the SP’s sensor data. . . . 128
6.24 Result of the evaluation considering performance, energy and software quality metrics

for the MORM-MQSoC self-adaptive system compared to MORM-C. . . . . . . . . 131





LIST OF TABLES

1.1 Overview of the main contributions of this Thesis. . . . . . . . . . . . . . . . . . . 28
2.1 Decoupling level in each communication model [EFGK03]. . . . . . . . . . . . . . . 35
3.1 RPC-based communication primitives proposed by [CCJ+14]. . . . . . . . . . . . . 38
3.2 MPI-based communication primitives proposed by [GWHB11, GHHDB10]. . . . . . 38
3.3 Pthread-based primitives proposed in [GOB+13] and [GBO+16]. . . . . . . . . . . . 39
3.4 MPI-based communication primitives proposed by [CCM14]. . . . . . . . . . . . . . 39
3.5 MPI-based communication primitives proposed by [JBA+13]. . . . . . . . . . . . . . 40
3.6 MPI-based communication primitives proposed by [AJMH13]. . . . . . . . . . . . . 40
3.7 MPI-based communication primitives proposed by [DCT+13]. . . . . . . . . . . . . 41
3.8 MPI-based communication primitives proposed by [MLIB08]. . . . . . . . . . . . . . 41
3.9 MPI-based communication primitives proposed by [MOS09]. . . . . . . . . . . . . . 42
3.10 MPI-based communication primitives proposed by [RRPS16]. . . . . . . . . . . . . 42
3.11 MPI-based communication primitives proposed by [MSHH11]. . . . . . . . . . . . . 43
3.12 Middleware comparison for MPSoCs. . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.13 Middleware comparison for other application domains related to embedded software. 53
4.1 Primitives of the proposed experimental PUB-SUB middleware. . . . . . . . . . . . 59
4.2 Related Works Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
4.3 Total Memory Footprint (Kernel+Middleware) improvement . . . . . . . . . . . . . 77
4.4 Memory size for each analyzed library. . . . . . . . . . . . . . . . . . . . . . . . . . 83
6.1 Power characterization results and energy estimation for each instruction class of the

processor. Library CORE65GPSVT (65nm), 1.1V, 25ºC (T=4ns). . . . . . . . . . . 104
6.2 Router Average Power. Library CORE65GPSVT (65nm), 1.1V@4ns, 25ºC. . . . . . 105
6.3 CACTI-P Report for a Scratchpad Memory (65nm, 1.1V, 25ºC). . . . . . . . . . . . 105
6.4 Applications Execution Time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
6.5 Performance and energy results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
6.6 MORM-C Memory Footprint. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
6.7 MORM-MQSoC Memory Footprint. . . . . . . . . . . . . . . . . . . . . . . . . . . 124
6.8 Software Quality Results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130





LIST OF ACRONYMS

AES – Advanced Encryption Standard
API – Application Programming Interface
ASIC – Application Specific Integrated Circuits
CC – Cyclomatic Complexity
CM – Cluster Manager
CPSOC – Cyber Physical System-on-Chip
CPI – Cycles Per Instruction
CPU – Central Processing Unit
CSM – Centralized Shared Memory
DDS – Data Distribution Service
DMA – Direct Memory Access
DMNI – Direct Memory Network Interface
DRE – Distributed Real-Time and Embedded
DSM – Distributed Shared Memory
DSP – Digital Signal Processor
DTW – Dynamic Time Warping
DVFS – Dynamic Voltage and Frequency Scaling
ELOC – Effective Lines of Code
ETL – Embedded Template Library
FC – Function Complexity
FIFO – First In, First Out
FPGA – Field-Programmable Gate Array
GM – Global Manager
HAL – Hardware Abstraction Layer
HSAL – Hardware/Software Abstraction Layer
HW – Hardware
IC – Interface Complexity
IOT – Internet of Things
LM – Local Manager
LOC – Lines of Code
MCAPI – Multicore Communication API
MORM – Multi-Objective Resource Management
MPEG – Moving Picture Experts Group
MPI – Message Passing Interface
MPSOC – Multi-Processor System-on-Chip
MQSOC – Message-Queuing System-on-Chip
MQTT – Message Queuing Telemetry Transport
NOC – Network-on-Chip
ODA – Observe-Decide-Act



OO-MQSOC – Object-Oriented Message-Queuing System-on-Chip
OOP – Object-Oriented Programming
OS – Operating System
PC – Personal Computer
PDSM – Partially Distributed Shared Memory
PE – Processing Element
PSLAYER – Publish-Subscribe Layer
PUB-SUB – Publish-Subscribe
QM – Quality Metric
QOS – Quality of Service
RAM – Random Access Memory
ROS – Robot Operating System
RPC – Remote Procedure Call
RTL – Register Transfer Level
RTOS – Real-Time Operating System
SOC – System-on-Chip
SP – Slave Process
SS – Subsystem
SW – Software
VF – Voltage-Frequency
VHDL – VHSIC Hardware Description Language
VHSIC – Very High Speed Integrated Circuit
WSN – Wireless Sensor Networks
XML – Extensible Markup Language



CONTENTS

1 INTRODUCTION 24
1.1 THESIS STATEMENT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
1.2 THESIS GOAL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

1.2.1 THESIS SPECIFIC GOALS . . . . . . . . . . . . . . . . . . . . . . . . . . 26
1.3 THESIS CONTRIBUTIONS AND ORIGINALITY . . . . . . . . . . . . . . . . . . . 26
1.4 DOCUMENT STRUCTURE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2 BACKGROUND 29
2.1 MPSOC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.1.1 MEMORY ORGANIZATION . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.1.2 COMMON PARALLEL PROGRAMMING MODELS FOR MPSOCS . . . . . 31

2.2 MIDDLEWARE DESIGN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.3 COMMUNICATION MODELS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.3.1 REMOTE PROCEDURE CALL - RPC . . . . . . . . . . . . . . . . . . . . 32
2.3.2 MESSAGE PASSING INTERFACE - MPI . . . . . . . . . . . . . . . . . . . 33
2.3.3 PUBLISH/SUBSCRIBE . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.4 SELF-ADAPTIVE SYSTEMS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3 STATE OF THE ART 37
3.1 MIDDLEWARES FOR MPSOCS . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.1.1 MIDDLEWARE COMPARISON FOR MPSOCS . . . . . . . . . . . . . . . . 44
3.2 MIDDLEWARE FOR OTHER FIELDS RELATED TO EMBEDDED SOFTWARE . . 46

3.2.1 MIDDLEWARE FOR ROBOTICS . . . . . . . . . . . . . . . . . . . . . . . 46
3.2.2 MIDDLEWARE FOR INTERNET OF THINGS . . . . . . . . . . . . . . . . 48
3.2.3 MIDDLEWARE FOR DISTRIBUTED REAL-TIME AND EMBEDDED SYS-

TEMS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.2.4 MIDDLEWARE FOR WIRELESS SENSOR NETWORK . . . . . . . . . . . 51
3.2.5 MIDDLEWARE COMPARISON FOR OTHER FIELDS RELATED TO EM-

BEDDED SOFTWARE . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4 MIDDLEWARE COMMUNICATION 54
4.1 FREERTOS-BASED MPSOC PLATFORM . . . . . . . . . . . . . . . . . . . . . . 54
4.2 PROPOSED PUBLISH-SUBSCRIBE PROTOCOL FOR MPSOC ENVIRONMENTS 56

4.2.1 MOTIVATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.2.2 DESIGNING AN APPLICATION FROM MPI TO PUBLISH-SUBSCRIBE . . 57
4.2.3 PROPOSED PUBLISH-SUBSCRIBE PROTOCOL . . . . . . . . . . . . . . 57
4.2.4 EXPERIMENTAL SETUP AND RESULTS . . . . . . . . . . . . . . . . . . 60

4.3 OBJECT-ORIENTED MIDDLEWARE . . . . . . . . . . . . . . . . . . . . . . . . . 64



4.3.1 MOTIVATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
4.3.2 RELATED WORKS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
4.3.3 BEST PRACTICES IMPLEMENTED IN THE PROPOSED MIDDLEWARE 66
4.3.4 PROPOSED OO-MQSOC MIDDLEWARE . . . . . . . . . . . . . . . . . . 69
4.3.5 EVALUATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.4 SERIALIZATION/DESERIALIZATION INTO THE MIDDLEWARE . . . . . . . . . 78
4.4.1 MOTIVATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
4.4.2 RELATED WORKS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
4.4.3 SERIALIZATION LIBRARIES . . . . . . . . . . . . . . . . . . . . . . . . . 79
4.4.4 EVALUATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
4.4.5 RESULTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5 MIDDLEWARE EXTENSION FOR SELF-ADAPTIVE SYSTEMS 84
5.1 SELF-ADAPTIVE SYSTEM MODEL . . . . . . . . . . . . . . . . . . . . . . . . . 84
5.2 MIDDLEWARE EXTENSION: MODULES . . . . . . . . . . . . . . . . . . . . . . 84

5.2.1 MODULES COMPONENT . . . . . . . . . . . . . . . . . . . . . . . . . . 86
5.2.2 MODULES BASE CLASSES . . . . . . . . . . . . . . . . . . . . . . . . . 87
5.2.3 ATOMIC OPERATIONS AMONG SENSORS, MONITORS, ACTUATORS

AND EFFECTORS OBJECTS . . . . . . . . . . . . . . . . . . . . . . . . . 90
5.3 TOPIC-NAME SCHEME . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
5.4 CREATING THE OBJECTS OF THE ADAPTIVE SERVICE . . . . . . . . . . . . . 95

5.4.1 SENSOR/MONITOR PAIR AND TYPE CLASSES . . . . . . . . . . . . . . 96
5.4.2 ACTUATOR/EFFECTOR PAIR AND TYPE CLASSES . . . . . . . . . . . 97
5.4.3 DECISOR CLASS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
5.4.4 EXPERIMENT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

6 CASE STUDY OF A SELF-ADAPTIVE SYSTEM 101
6.1 BASELINE PLATFORM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

6.1.1 BASELINE SELF-ADAPTIVE SYSTEM . . . . . . . . . . . . . . . . . . . . 102
6.1.2 OBSERVATION METHODS . . . . . . . . . . . . . . . . . . . . . . . . . 103
6.1.3 ACTUATION METHODS . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
6.1.4 DECISION MAKING METHODS . . . . . . . . . . . . . . . . . . . . . . . 108

6.2 SELF-ADAPTIVE SYSTEM EMBEDDED IN THE MIDDLEWARE . . . . . . . . . 113
6.2.1 MORM-MQSOC ADAPTATIVE SERVICE FOR THE LOCAL MASTER PE. 114
6.2.2 MORM-MQSOC ADAPTATIVE SERVICE FOR THE GLOBAL MASTER PE.117

6.3 EVALUATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
6.3.1 PERFORMANCE/ENERGY METRICS . . . . . . . . . . . . . . . . . . . . 120
6.3.2 PERFORMANCE/ENERGY RESULTS . . . . . . . . . . . . . . . . . . . . 120
6.3.3 SOFTWARE QUALITY METRICS . . . . . . . . . . . . . . . . . . . . . . 127
6.3.4 SOFTWARE QUALITY RESULTS . . . . . . . . . . . . . . . . . . . . . . 129

7 CONCLUSION 132



7.1 FUTURE WORKS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
7.1.1 KERNEL SERVICES ON THE MIDDLEWARE . . . . . . . . . . . . . . . . 133
7.1.2 TOPIC NAME DICTIONARY . . . . . . . . . . . . . . . . . . . . . . . . . 134
7.1.3 SECURITY PUBLISH-SUBSCRIBE OPERATIONS . . . . . . . . . . . . . . 134
7.1.4 BROKER FAULT-TOLERANCE PROTOCOL . . . . . . . . . . . . . . . . 134
7.1.5 HIGH-LEVEL MODELING FOR DECISION-MAKING LOGIC . . . . . . . . 134
7.1.6 ISSUES REGARDING DISTRIBUTED DECISION-MAKING . . . . . . . . . 134
7.1.7 SUPPORT TO REAL-TIME APPLICATIONS AND SERVICES . . . . . . . 135

REFERENCES 136

APPENDIX A – List of base primitives of the HSAL 144

APPENDIX B – Diagram class of the Modules extension classes from Section 5.2 145

APPENDIX C – Header and source files of the classes detailed in Section 5.4 149

APPENDIX D – Directory tree of Modules extension of the middleware 154

APPENDIX E – Base Directory tree of a Modules port 155

APPENDIX F – A tool to automate the creation of objects of an adaptive service 156

APPENDIX G – Directory tree of the MORM-MQSoC adaptive service 157



24

1. INTRODUCTION

Current embedded applications have migrated from single processor-based systems to in-
tensive data communication requiring multi-processing systems, composed by multiple processor
cores. Modern System-on-Chip (SoC) design shows a clear trend toward integration of multiple
processor cores [PRJW10]. A SoC is an integrated circuit with the components necessary to execute
embedded applications forming an entirely electronic system. The system may contain memory,
Processing Elements (PEs), specialized logic, buses, and other digital functions [JW04].

As a SoC derivative, an Multi-Processor System-on-Chip (MPSoC) contains multiple pro-
cessing elements and memory components interconnected by complex communication infrastruc-
tures, such as multiple buses or Network-on-Chip (NoC). Integrated with hardware elements, a
software programmable subsystem aims to cope with the underlying hardware and software design
complexity. The software subsystem is usually tailored in a layered design approach. Typically, the
interface between the different layers is performed by an Application Programming Interface (API)
that abstracts the complexity of underlying levels. Middleware is a software component that links
the application layer with the communication infrastructure [PRJW10]. It is the “middle” of an
end-to-end transaction between applications or services running in a distributed environment, bring-
ing benefits such as abstraction of coordination details and reducing design costs through software
reuse [SR14].

Customizing MPSoC platforms according to application requirements and system con-
straints can be done statically or dynamically. In a static way, the MPSoC platform is configured at
design time exclusively for a particular application, not allowing the execution of other constrained
applications. When dynamic, the programming environment must provide the designer with a degree
of system’s observability and configurability, in order to develop the system with self-adaptability
property. Self-adaptability is related to the system ability of adapt itself at run-time based on its
state. Observability is related to the system ability of providing run-time observation of possible
information through sensors and other elements of the architecture. Configurability is related to the
system ability of driving configuration commands to configurable system resources. A monitoring
and actuating infrastructure is provided to enable observability and configurability properties for
the designer [FDLP11] [DJS16]. Future SoC will be monitor-rich in order to perform the system
monitoring, employing a network of interconnected sensors that will span circuit, micro-architecture,
and software layers [DJS16]. The monitoring infrastructure is necessary to observe the state of the
system in terms of transactions, energy, temperature, network load, faults, etc. [FDLP11]. The
actuating infrastructure is used for system management purposes and acting in order to achieve
adaptability [FDLP11].

The need for handling demanding applications while reducing the software design com-
plexity of embedded devices fuels the MPSoC revolution [NVC10]. Some challenges to reduce this
complexity are: (i) programming models that allow the implementation of software in an efficient
manner [PRJW10]; (ii) effective schemes of data distribution, synchronization and control among
the system elements [PRJW10]; (iii) self-adaptive systems to deal with run-time changing on envi-
ronment conditions [NVC10]; (iv) monitoring and management of run-time mechanisms that give
support to self-adaptive systems coordination [FDLP11] [DJS16].

Until recently, the programming environments were not concerned with MPSoC dynamic
adaptation, since the MPSoC hardware/software architecture was statically configured in order to
achieve the application requirements. Run-time changes in the Quality of Service (QoS) provided
by the platform to the applications and the need for resilient systems motivate the implementation
of self-adaptive systems. Run-time changes in the environment can be caused by a variety of
factors, such as the load of applications at run-time [NVC10], and failures occasioned by advances



25

in fabrication technologies [CNG10]. Self-adaptive systems perform techniques that observe the
changes in the environment and adapt the system dynamically balance the multiple objectives across
multiple architecture levels [DJS16]. The adaptive techniques typically follow a closed-loop scheme
and they are composed of monitors, decision makers, and actuators [Hof13].

This Thesis argues the existence of two fundamental problems related to the design of
self-adaptive systems in MPSoC. Firstly, this Thesis argues the need for less coupling between the
elements of the self-adaptive system and both the kernel software and the communication infras-
tructure. A tightly-coupled code makes it difficult to be extensible and portable to other platforms.
Additionally, this Thesis argues that the approaches currently used to incorporate self-adaptive sys-
tems in MPSoC platforms are designed following a non-systematic development methodology, which
decreases the software quality related to code reuse and maintainability aspects. We support our
arguments describing a middleware to achieve desired decoupling and proposing a middleware ex-
tension to help the development of self-adaptive systems that are implemented over the middleware
to incorporate the observability and configurability properties to the system in a systematic way.

To address the fundamental problems, this Thesis investigates current programming/com-
munication models in MPSoC and other correlated domains like Robotic, Wireless Sensor Networks,
Internet of Things and Distributed Real-time Embedded Systems. To check existing distributed
programming/communication models that could contribute to the design of the middleware, this
Thesis classifies these models for the coupling between the communicating elements and the adjacent
hardware and software infrastructure. The state of the art shows that most programming/commu-
nication models for MPSoC still use heavily coupled approaches for communicating purpose, such
as MPI (Message Passing Interface) or ad-hoc1 protocols. MPI presents coupling in synchronization
levels (blocking/not-blocking send/receive), time (communication elements must be active at the
same time in the system), and space (a communication element must know who is its communi-
cation pair) [EFGK03]. With ad-hoc protocols, the protocol phases are hard-coded to the kernel
software, does not offering a systematic way for including new protocol phases or even abstracting
platform-specific communication aspects.

The publish-subscribe model has gained interest in performing data exchange in distributed
environments. As we discuss further, this model enables complete decoupling in the communication
between the elements of the system and the underlying hardware/software architecture. We argue
in this Thesis that it is necessary to use a model that, besides abstracting the communication
complexity, also provides a more flexible coupling between the communicating elements. Thus,
this Thesis proposes to apply the publish-subscribe model in MPSoC environments to perform the
communication employed among the elements of a self-adaptive system, facilitating the development
of adaptive services which consider multiple sensors and actuators.

In summary, this Thesis proposes a new development approach consisting of publish-
subscribed-based middleware and API for the design of both applications and self-adaptive
systems in MPSoC platforms. As a research methodology, we employ case studies to evaluate the
protocol and middleware on two different MPSoC platforms: FreeRTOS-based MPSoC [AMR+16]
and HeMPS [MM18]. We provide a self-adaptive system model and middleware extension supporting
the development of self-adaptive systems.

1Ad-hoc - adjective made up of the Latin word “ad” meaning “towards” and of the demonstrative “hoc” meaning “this”: “toward this purpose” or “suitable for a specific use”
[Lab10].



26

1.1. Thesis Statement

Faced with current programming/communication models and the need for self-
adaptation of the MPSoC systems that meet the application requirements while comply-
ing with system constraints, the use of a publish-subscribe model along with a middleware-
based approach can improve the software quality of self-adaptive systems while minimizing
the middleware impact on the system performance, memory usage and energy spend.

1.2. Thesis Goal

The strategic goal of this Thesis is the proposition of a middleware to support the run-time
adaptation of resources by providing a publish-subscribe protocol, middleware and API for MPSoC
architectures.

1.2.1. Thesis Specific Goals

The specific goals of the Thesis are the following:

1. Design a new communication protocol based on publish-subscribe model for NoC-based plat-
forms;

2. Incorporate the new communication protocol and underlying structures to a middleware-based
development approach;

3. Validate the middleware and underlying structures at instruction and clock cycle accurate
abstraction levels;

4. Provide an API for the development of applications and self-adaptive systems;
5. Implement a self-adaptive system as a case study in order to evaluate the use of the proposed

middleware.

1.3. Thesis Contributions and Originality

Table 1.1 presents an overview of the main contributions of this Thesis along with the
main aspects that involve the research methodology. The main contributions of this Thesis are the
following:

1. Publish-Subscribe programming model for MPSoC platforms following a middleware based
approach (Section 4.2)2;

2. Design-pattern based middleware following the object-oriented programming approach (Sec-
tion 4.3)3;

3. Benchmark of serialization libraries in an MPSoC platform (Section 4.4)4;
4. Self-adaptive system model and middleware extension supporting the development of self-

adaptive systems (Chapter 5)
2Published in part at ISCAS’17 [HAR+17]
3Published in part at SBCCI’18 [HAR+18]
4Published in part at ICECS’18 [HDFGM18]



27

1.4. Document Structure

The remaining of the document is organized as follows. Chapter 2 provides relevant
background information about concepts that will be extended in the following chapters. Chapter
3 presents some relevant works about middleware architectures in MPSoC and other embedded
software domains such as Robotics, Internet of Things, Distributed Real-time Embedded Systems
and Wireless Sensor Networks. Chapter 4 presents the provided middleware related to communication
aspects, such as protocol phases (Section 4.2), middleware design based on OOP (Object-Oriented
Programming) (Section 4.3) and incorporated serialization feature (Section 4.4). Chapter 5 presents
the middleware extension that provides the support for the development of self-adaptive systems.
Chapter 6 presents a case study where we develop a self-adaptive system using the middleware and
compare the results with the baseline self-adaptive system according to performance, energy and
software quality metrics. Finally, Chapter 7 presents the conclusion of this Thesis and the future
works that can be extended from the current state of the research.



28Table 1.1: Overview of the main contributions of this Thesis.

Main Contribution Sec. Research Questions Hypothesis Evaluation Methodology
L1 P2 PL3 Method Workload Metrics

Publish-Subscribe
programming model
for MPSoC platforms
following a middleware

based approach
[HAR+17]

4.2

1. Are there works that
use the middleware design
approach in MPSoC Envi-
ronments?
2. Publish-Subscribe
model has already been
used as programming
model in MPSoC plat-
forms?

1. Considering an application execution
time metric, a publish-subscribe program-
ming model presents similar performance re-
sults compared to an MPI solution on a given
platform.
2. The memory resources required by the
publish-subscribe based middleware do not
exceed the memory available on an MPSoC
platform with a maximum of 512KB.

ILP4
FreeRTOS-
based
MPSoC

C

Case study comparing
the proposed

publish-subscribe-based
middleware with an

MPI programming API
at same platform

DTW Ap-
plication

1. Memory Footprint
2. Application Execu-
tion Time

Design-patterns based
middleware following
the OOP approach

[HAR+18]

4.3

1. Is OOP feasible to de-
sign systems in the MPSoC
domain?
2. What are the tech-
niques for circumventing
the memory resources re-
quired by the compiler?

1. The memory footprint can be significantly
reduced by the use of design-level optimiza-
tion techniques and compiler options on an
MPSoC platform.
2. OOP along with design-patterns improves
the performance of applications in an MP-
SoC platform.

ILP4
FreeRTOS-
based
MPSoC

C++

Case study comparing
the proposed new

middleware with the
previous middleware
implementation

DTW,
Producer-
Consumer

and
MPEG
Applica-
tions.

1. Memory Footprint
2. Application Execu-
tion Time

Benchmark of
serialization libraries in
an MPSoC platform

[HDFGM18]

4.4

1. Are there works that
evaluate serialization li-
braries in context of MP-
SoC environment?
2. Which serialization li-
braries could be ported to
an MPSoC platform?

1. The use of schemas can impact code size
and performance of serialization libraries on
an MPSoC platform.
2. The ease of use of serialization libraries
can increase the code size on an MPSoC
platform.

ILP4
FreeRTOS-
based
MPSoC

C++

Benchmark comparison
between ported

serialization libraries
into middleware
architecture

Different
Data
Structs

1. Data Size
2. Code Size
3. Serialization time
4. Deserialization time

Self-adaptive system
model and middleware
extension supporting
the development of
self-adaptive systems

5

1. Are there works that
aim to modularize self-
adaptive systems in MP-
SoC?
2. What is the impact
on software quality and
performance when using
the middleware-based de-
sign approach to the de-
velopment of self-adaptive
systems?

1. The use of middleware-based design
approach improves the quality of the self-
adaptive system software.

2. The overhead implied by the middleware-
based design approach for the development
of a self-adaptive system has low impact on
the applications performance and the energy
spent by the system.

CCP5 HEMPS C++

Case Study comparing
the proposed

development approach
with an baseline

self-adaptive system

DTW,
AES,
MPEG,
and

Synthetic
Applica-
tions

1. Memory Footprint
2. Application Execu-
tion Time
3. Application Execu-
tion energy
4. System Execution
Time
5. System Energy
6. Cyclomatic Complex-
ity
7. Interface Complexity
8. Function Complexity
9. Lines of Code
10. Parameters

1
Level of simulation

2
Platform

3
Programming Language

4
Instruction Level Precision

5
Clock Cycle Precision



29

2. BACKGROUND

In this chapter, we present the necessary background required to understand the concepts
related to the middleware design on the MPSoC domain. This chapter is organized starting with basic
concepts about the MPSoC1 domain (Section 2.1), following with details about Middleware Design
(Section 2.2), related Communication Models (Section 2.3) and basic concepts about Self-Adaptive
Systems (Section 2.4).

2.1. MPSoC

MPSoC architectures can be classified as homogeneous and heterogeneous. An MPSoC is
homogeneous when it presents processors with the same set of instructions. It is heterogeneous when
there are at least two processors with a distinct set of instructions or still when there are different
processing elements composing the architecture, such as FPGAs (Field-Programmable Gate Array)
or ASICs (Application Specific Integrated Circuit) [PRJW10]. A general scheme representing an
MPSoC architecture is showed in Figure 2.1.

A software subsystem (SW-SS) is a programmable subsystem that includes computing/s-
torage resources (e.g. processor and memory) and a Communication Interface used to interconnect
the different resources in the MPSoC. A software subsystem enables applications to be run. It can
include a Hardware Abstraction Layer (HAL), an Operating System (OS), and a middleware/API.
HAL is a layer that abstracts the complexity of the hardware for the upper layers of software in-
cluding OS, middleware, and application. The middleware provides an API with communication
primitives to the application layer. It could manage several communication models/schemes (e.g.,
MPI, RPC, publish-subscribe, blocking or non-blocking) and provide an interface to the configu-
ration of the lowest level parameters (e.g., OS and hardware). A middleware can have a HAL to
facilitate its portability on different platforms. The design of a middleware/API layer is a trade-off
between abstraction it provides and the overhead it causes [MSHH11]. It is necessary to consider
the level of abstraction, the programming paradigm, and the interface type. The level of abstraction
refers to how the middleware user views the system. The programming paradigm deals with the
model for programming the applications or services [RMJPC16]. Details about middleware design
are described in Section 2.2.

A hardware subsystem (HW-SS) is a custom hardware, without software elements, that
can be composed of specific hardware components such as sensors, ASICs or FPGAs.

The Communication Infrastructure interconnects SW-SS and HW-SS. The Communication
Infrastructure can be a performed by dedicated wires (point-to-point), a bus or a network-on-chip
(NoC). In this thesis, we target NoC-based MPSoCs.

2.1.1. Memory Organization

Regarding memory organization, this Thesis considers the following models for the MPSoC
domain: Centralized Shared Memory, Distributed Shared Memory, and Distributed Private Memory.

The Centralized Shared Memory (CSM) organization has a single memory component
accessible by all processors [BJR11]. The communication between the processors occurs implicitly

1The MPSoC concepts here presented are strongly based on the Book "Embedded Software Design and Programming of Multiprocessor System-on-Chip" [PRJW10].



30

Communication Subsystem 

Intra-SubSyst Comm. 

CPU Peripherals 

HAL 

HAL API 

Comm OS 

HDS API 

APP1 APP2 APPn 

Intra-SubSyst Comm. 

Hardware Component 

Intra-SubSyst Comm. 

Hardware Component 

Intra-SubSyst Comm. 

Hardware Component 

Intra-SubSyst Comm. 

Hardware Component 

Intra-SubSyst Comm. 

CPU Peripherals 

HAL 

HAL API 

Comm OS 

HDS API 

APP1 APP2 APPn 

Intra-SubSyst Comm. 

CPU Peripherals 

HAL 

HAL API 

Comm OS 

HDS API 

APP1 APP2 APPn 

Communication Interface 

Processor Memory 

HAL 

HAL API 

Comm OS 

Middleware / API 

APP1 APP2 APPn 

Communication Interface 

Hardware Component 

SW-SS 
HW-SS 

Figure 2.1: General scheme representing an MPSoC architecture containing hardware/software com-
ponents on the left (SW-SS) and purely hardware components on the right (HW-SS), interconnected
by a Communication Infrastructure (adapted from [PRJW10]).

through a global shared memory space. Any processor can read or write a word in the memory by
just performing READ/LOAD and WRITE/STORE instructions. Additionally, each processor may
have its own local memory, not shared [DJS16]. The CSM is not very useful when the number of
processors becomes large, as centralized memory scheme produces a large bottleneck [DRA10].

The Distributed Shared Memory (DSM) organization share the same memory address
space, but it is composed of memory elements physically distributed on the hardware architecture
[BJR11]. The aim is reducing the bottleneck regarding a centralized scheme. The access to the
memory remains being done by READ/LOAD and WRITE/STORE instructions. A memory man-
agement system is responsible for abstracting the distributed memory organization to the application
level. This memory management system must guarantee cache coherence between the distributed
shared cache system [DRA10].

In the Distributed Private Memory (DPM) organization, the processors have their physical
private memory (instruction and data). There is no memory address space shared between the
processors. A processor can address directly only its local memory. To access the memory of
another processor, the program code must explicitly contain a message passing declaration [BJR11].
The DPM organization scales well, but the software development is more complex due to the need
of synchronizing the interprocessor communication in the application level [DRA10].



31

2.1.2. Common Parallel Programming Models for MPSoCs

A parallel programming model specifies how parts of the application running in parallel
exchanges data to one another and what synchronization operations are available to coordinate the
activities. Applications are written in a programming model. Examples of parallel programming
models are as follows [PRJW10]: shared address space and message passing. In the shared address
space, the communication is performed by reading and writing shared memory locations. This
programming model provides special atomic operations for the synchronization and data protection.
In the message passing programming model, the communication is performed between a specific
sender and a specific receiver. There are no shared locations accessible for all processors. Variants
of send and receive are the most common communication primitives used in this programming
model.

A number of parallel programming models have been defined recently, such as: OpenMP
[Cha01] and PThreads [But97] for shared memory architectures, and MPI [MPI15] for message pass-
ing architectures. OpenMP [Cha01] is a pragma-based programming model that allows the compiler
and run-time system to exploit the hardware complexities thus abstracting these details from the
programmer. Hence the performance of applications is highly dependent on efficient compiler and
run-time implementations. OpenMP assumes a shared memory model, with all the threads having
access to the same, globally shared memory [PRJW10]. PThreads [But97] or Portable Operating
System Interface (POSIX) Threads is a programming model for creating and manipulating each of
the workers called threads [KMZS08]. The programmer must to explicitly create and destroy the
threads by making use of API primitives. PThreads API provides mutex (mutual exclusion) and
semaphore mechanisms to protect the portion of code that accesses shared data. MPI [MPI15] is a
message-passing library interface that includes a set of primitives for point-to-point communication
with message passing, collective communication, process creation and management, one-sided com-
munications, and external interfaces [PRJW10]. More details regarding MPI communication aspects
will be treated in Section 2.3.2.

The message passing programming models can be divided in three types regarding syn-
chronization [PRJW10]: synchronous, asynchronous blocking, and asynchronous non-blocking. At
the synchronous, when the source executes a send operation (or equivalent) and the destination
has not yet executed a receive operation (or equivalent), the source is blocked until the destination
executes the receive operation. At the asynchronous blocking, the source is not blocked when the
destination has not yet executed a receive operation. Therefore, it can continue its processing.
However, when the destination executes a receive operation (or equivalent), it is blocked until the
reception is completed. At the asynchronous non-blocking, both the source and destination are not
blocked when executing the send and receive operations.

There are a number of communication models that could be performed by a message
passing programming model. They are different in aspects of synchronization and coupling. We
explore in this Thesis the following communication models, detailed in the respective sections:
MPI (Section 2.3.2), Remote Procedure Call (RPC) (Section 2.3.1), and publish-subscribe (Section
2.3.3).

2.2. Middleware Design

The management of the MPSoC complexity can be maintained transparent to the pro-
grammer through the use of a middleware. The concept of “middleware” is used in distributed



32

systems in general. Middleware establishes a new software layer that standardizes the infrastruc-
ture’s heterogeneity through a well-defined distributed communication/programming model [ICG07].
A middleware could define:

• An API for specifying data types and primitives of networked hardware/software resources;
• An high-level addressing scheme for location resources;
• An communication model for achieving coordination;
• A naming/discovery protocol, registry structure and matching relation for publishing and

discovering the resources available in the network.
The design of a middleware for any environment is an important step since it will define

which features will be provided. The work of [PG14] cites some features that can be incorporated to
a middleware: (i) communication - abstraction of the low-level details related to communications;
(ii) components - enables the systems development by assembling reusable software modules; (iii)
adaptive - enables the reconfiguration of the both hardware and software architecture to modify the
provided services; (iv) context-aware - interacts with the environment where applications are run,
and take itself action to make changes at run-time.

2.3. Communication Models

The communication models classified in this Thesis differ in the level of decoupling between
the communicating pair (source and destination). The decoupling level can be decomposed in three
dimensions [EFGK03]:

• Space: the destination does not know who is the source, and vice versa;
• Time: the communicating pair does not need to be active at the same time in the system; the

source can generate data or invocations while the destination is disconnected and vice-versa;
• Synchronization: both source and destination are not blocked when the communication prim-

itives are called.
The decoupling in one or more of these three levels makes the resulting communication

infrastructure more scalable [EFGK03]. Following, we describe the classified communication models.

2.3.1. Remote Procedure Call - RPC

RPC is based on the client/server scheme interaction, where a client (source) requests a
service through a method invocation to a server (destination) and waits for a response. In its basic
version, the RPC model presents strong coupling at both time (both source and destination need to
be active at the same time), synchronization (the source is blocked until it receives the response)
and space (since a method invocation holds a remote reference to each invocation when more than
one is performed) levels [EFGK03].

Figure 2.2 shows the communication flow performed by RPC model in its basic version.
When the source invokes (1 in Figure 2.2) a remote method at the application level, the kernel (or
middleware when existing) generates a packet through the NoC (2) to the destination. This packet
is received (3) and forwarded to application level that executes the respective local method (4).
After ended, a response (5) is generated and sent (6) to the source through the NoC. The kernel
level at the source receives the packet and forwards it (7) to the application level that was blocked
waiting for the response.



33

Dest. Node

Kernel Level

Source Node

Kernel Level

Source Node 

APP level

Dest. Node

APP Level

request() sendPacket()

method()

2
3

4

1

request()

response()
sendPacket()

6

5

response()
7

NoC Level

invoking
thread

Figure 2.2: General scheme representing a basic version of the RPC model communication flow.

Some RPC implementations of this model use replicated servers to the same method in
order to achieve reliability. Asynchronous RPC implementations, like CORBA [OMG11], removes
synchronization coupling on the source side, avoiding the blocking. CORBA has a variant where a
remote invocation is a handle through which the response will be processed when returned. With
this approach, the invoking thread can continue processing other code and return to the invocation
thanks to the handle. The RPC model fits with systems that have centralized data model or that
are service oriented [SF09].

2.3.2. Message Passing Interface - MPI

MPI represents a low-level way of communication where the participants (source and
destination) communicate by simply sending and receiving messages through two basic primitives:
send(dst_id) and receive(src_id). Both the source must call the send(dst_id) primitive and the
destination must call the receive(src_id) primitive to perform the communication. They also must
inform the identification of each communicating pair (src_id and dst_id).

There are several implementations of MPI model. Generally, it is used an MPI variant
(basic version) where the communication is asynchronous for the source and synchronous for the
destination. In this case, a buffer is used (at the source or destination) to store the packet until
the destination consumes it. Figure 2.3 shows the communication flow performed by this MPI
variant. In this example, with buffer at the source, the source generates the send(dst_id) primitive
before the destination generates the receive(src_id) primitive (could be the inverse). When the
source generates the send(dst_id) primitive (1 in Figure 2.3), the message is buffered (2) at the
source kernel (or where the buffer was implemented) waiting to be consumed by destination. After
a time, the destination generates the receive(src_id) primitive (3). This generates a request packet
(4) to the source through the NoC. As the message had already been buffered, it is packed and
sent to the destination through the NoC (5). When received, the message is delivered (6) to the
destination application. Note that the destination thread is blocked until the message is delivered.
If the message has not been buffered yet, the thread would be blocked for longer.

Other variations of MPI synchronization are implemented, differing in buffer location at the
source or destination, or blocking/non-blocking schemes. In all variations of MPI implementation,
the source and destination are coupled in time (both need to be active at the same time) and space
(the source knows who is the destination).

The MPI implementations can provide other features such as collective communication
and both process creation and management. An example of MPI implementation is the standard for
multi-processor architectures in general [MPI15]. This standard and their predecessors are consid-
ered hard to implement in embedded devices because of their code size. However, there are several
implementations for embedded devices that will be treated in Section 3.1. A particular implemen-



34

Dest. Node

Kernel Level

Source Node

Kernel Level

Source Node 

APP level

Dest. Node

APP Level

send(dst_id)
2

3

1

receive(src_id)

deliver() 6

NoC Level

request()

bu�()

4

send_packet()
5

Figure 2.3: General scheme representing a basic version of the MPI model communication flow.

tation of MPI for closely distributed embedded systems is the MCAPI (Multicore Communication
API) standard [MCA12]. It implements a reduced set of the MPI standard API [MPI15]. The MPI
maps well systems that can be modeled as a set of dataflows transferred in a concurrent way.

2.3.3. Publish/Subscribe

The Publish/Subscribe is a model broadly used in highly distributed environment that
requires a demand for more flexible communication models and systems [EFGK03]. This model
implements discovery and message passing features, beyond presenting decoupling property in space,
time and synchronization between the communication performed by applications and the underlying
hardware/software architecture. The discovery feature is necessary as the nodes do not know who
is their communicating pair. A middleware performs the role of data location management in the
communication architecture.

In this model, the source (publisher) and destination (subscriber) participants communi-
cate with each other by exchanging messages. A subscriber manifests interest in a particular data or
event, identified by a topic (subscribe step). The subscriber is notified when this topic is generated
(publish step). The publisher node must register itself in the system (advertise step) as the topic
generator, so that future subscribers interested in this topic can receive notifications asynchronously.
A broker node mediates the advertise, publish, and subscribe steps.

The decoupling between the communication performed by applications and the underlying
HW/SW architecture occurs in: (i) space: a subscriber does not know who is the topic publisher,
and a publisher does not know who consumes the topic generated by it; (ii) time: the nodes do
not need to be active at the same time in the system; a publisher can generate topics while a
subscriber is disconnected and vice-versa;(iii) synchronization: both publishers and subscribers
are not blocked while they are generating or receiving topics; the subscribers are asynchronously
notified when the topic of interest is received, and are processed via callback function.

A typical PUB-SUB system has multiple publishers, subscribers, brokers, and topics. Figure
2.4 shows a general scheme with two publishers, three subscribers, three topics, and one broker. A
single topic can be published by one or more publishers and subscribed by one or more subscribers.

When the system has more than one broker, a synchronization protocol is required between
them for maintaining the list of publishers and subscribers updated in each broker. This approach
is useful for reducing the bottleneck in the broker access, and it also provides data redundancy in
case of a fault in a broker.



35

Publisher 1

Publisher 2

Topic A Subscriber 1

Subscriber 2

Subscriber 3

Broker

Topic B

Topic C

Figure 2.4: General scheme of a publish-subscribe system.

Table 2.1: Decoupling level in each communication model [EFGK03].

Communication Model
Decoupling level

Space Time Synchronization

RPC No No Destination-side
Asynchronous RPC No No Yes

MPI No No Source-side
PUB-SUB Yes Yes Yes

Summarizing the three treated models of communication, the Table 2.1 shows the decou-
pling level of each communication model.

2.4. Self-Adaptive Systems

The demand by a SoC that responds to the need for adaptability of the system is growing.
It is becoming impracticable that the application programmers to have the systems knowledge nec-
essary to manage all the possibilities of configuration that a system provides in design-time [Hof13].
In addition, design-time adaptive techniques are not efficient in a dynamic workload environment
[JSHP14]. Run-time adaptive techniques have been proposed to guarantee higher performance
[MFRC15] [CCM14], lower power dissipation [JSHP14], and reliability [TR13] for MPSoC environ-
ments prone to dynamic workload or failures.

A system that responds by itself to changes in the environment is called in the literature
by terms such as adaptive systems, autonomic systems, self-* systems, goal-oriented systems, etc.
[Hof13] [DJS16].

Figure 2.5 shows a comparison of traditional and self-adaptive systems. Traditional systems
make actions without flexibility to change its behavior according to system response. In contrast,
self-adaptive systems are capable of observing their environment, and changing their policies at
run-time (altering a decision made earlier) in a closed loop [Hof13].

We do not find in the literature terms that represent the property related to the function
of “Observe” and “Act” in self-adaptive systems. Therefore, we define here two terms that are used
in this Thesis:

• Observability2 - A system with the property of observability means that it provides real-time
observation of possible information provided by sensors and other elements of the architecture.

• Configurability - A system with the property of configurability means that it provides a way
to drive control actions to the configurable elements of the architecture.

2We emphasize that the “observability” term is different from that found in control theory [SD14].



36

Traditional System

Configurable
HW or SW
Element

Self-Adaptive System

Monitors

Actuators

Process

Decision maker 
(Machine Learning, 

Control Theory, 
etc.)

a) b)

Acting

ActDecide

Observe

Figure 2.5: Comparison of (a) traditional and (b) self-adaptive systems (adapted from [Hof13]).



37

3. STATE OF THE ART

The research topic of middleware is very vast, with several hundreds of relevant papers in
many areas of the Computer Science. In order to guide the review of the state of the art of this
topic, we have defined a research design that also guided the entire process of research, development
and evaluation of the activities covered by this Thesis.

The research design, as illustrated in Figure 3.1, is composed of three macro phases:
exploratory, development and evaluation.

Set of 
definitions 

and 
features.

7

State of Art Review

Middleware including 
programming model and 
support for development 

of adaptive systems

Middleware
on 

OVP Level

MIddleware 
on 

SystemC/VHDL Level

Middleware 
SW

Functional 
Validation
(instruction 
accurate)

Experimental 
Analysis

(cycle accurate)

1

2

3

4

5

6

Exploratory Phase Development Phase Evaluation Phase

Thesis 
Statement

Test

MPSoC Middlewares

Robotic Middlewares

DRE Systems Middlewares

WSN Middlewares

IoT Middlewares

Figure 3.1: Research design of the Thesis.

In the exploratory phase, we do the review of the state of the art, where the goal is to
perform a wide theoretical and technical interpretation about middleware in MPSoC domain, detailed
in Section 3.1. We also expand the search to other similar application domains such as Robotics
(Section 3.2.1), Internet of things (Section 3.2.2), Distributed Real-Time and Embedded Systems
(Section 3.2.3) and Wireless Sensor Networks (Section 3.2.4).

In the development phase, we follow an evolutionary design of the proposed middleware.
The development and evaluation phases are detailed in Chapters 4, 5 and 6. The related chapters
may also present an incremental study of the state of the art.

3.1. Middlewares for MPSoCs

This section details the state of the art on the topic of middleware for MPSoCs. Chapter
2 detailed the main programming/communication models used in the various domains. Each of the
papers found in the state of the art study is described and classified according to their programming
models. In each work, we highlight the presence of an API and its respective primitives as a property
that allows the extension of the proposal for the development of applications and/or services over



38

the proposed API. In addition, we highlight the presence of communication and adaptive features.
Table 3.12 shows an overview of the collected works.

The “middleware” term is not commonly used in the MPSoC domain. We understand
middleware for this domain as an existing layer between the application level and the operating
system (or directly hardware when without operating system).

The RPC-based communication scheme (more detail about RPC, see Section 2.3.1) is used
by some works in the MPSoC domain. Cassano et al. [CCJ+14] present an inter-processor communi-
cation interface for data-flow-centric heterogeneous embedded multiprocessor systems. This model
enables applications invoking functions and passing parameters from another application executing
on a different processor. The proposed communication interface implements a point-to-point and
half-duplex communication. The communication is structured into flows, where client nodes send
request messages to server nodes to invoke functions and send parameters, and server nodes send
response messages to client nodes to send back the results. Table 3.1 shows the communication
primitives available on this work. Another work that uses RPC-like communications is presented in
[HLLL08], specially designed for streaming programming. However, the platform case study is very
simple (an ARM PE and one DSP), and the scalability is not evaluated.

Table 3.1: RPC-based communication primitives proposed by [CCJ+14].

Primitive Description
create client queue (opID, serverID) Client allocates the queue to receive replays.
remote invocation (opID, serverID,
seqNumber)

Client creates, initializes and sends the remote function invo-
cation.

close flow (opID, serverID, seqNum-
ber)

Client or server deallocates the queue of the flow

create server queue (opID, queueSize) Server allocates the queue to receive requests.
wait remote invocations (opID) Server waits for remote invocations of a given functionality and

pop a message from the queue associated with the function
remote invocation replay (opID, clien-
tID, data)

Server replays to a remote invocation.

Several works present approaches in order to include support for MPI in specific MPSoC
architectures. In [GHHDB10], the most frequently used MPI primitives are available through an API
to allow the execution of any MPI compatible software in the RAMPSoC framework [GB10]. The
RAMPSoC framework is an MPSoC with a distributed memory approach consisting of a combination
of heterogeneous processors. In [GWHB11], the authors adapt an embedded Linux kernel to extend
support to its MPI API, allowing multitasking and multithreading processing. Table 3.2 presents
some of the available API primitives.

Table 3.2: MPI-based communication primitives proposed by [GWHB11, GHHDB10].

Primitive Description
MPI_init() Initialize an application

MPI_Finalize() Finalize an application
MPI_Send() Send a message (ex.: ELF code) to a remote address
MPI_Recv() Request and receive a message (ex.: result of a computation)

of a remote address
MPI_Bcast() Send a broadcast message for all remote addresses



39

Garibotti et al. [GOB+13] implement an open-source and customizable NoC-based MPSoC
platform at RTL (Register Transfer Level). The main characteristic of this platform is its ability
to enable the creation of clusters according to a CSM architecture. Each cluster is composed of
a shared memory and tiles. Applications mapped onto a cluster share memory through the host
tile while those mapped onto different clusters transfer data via message-passing. It consists of a
tiled multicore platform comprising: embedded MicroBlaze cores; a NoC router based on Hermes
[MCM+04]; and an internal scratchpad memory to store application code and microkernel. Pthreads
are used with a shared-memory parallel programming model. Recently, the work has incorporated
DSM capabilities [GBO+16], with modifications in the microkernel and software stack allocation.
The microkernel was modified to support a different memory address space configuration. The
software stack allocation splits the object code over the system. The legacy CSM multithreaded
code can be ported over to the DSM architecture. A subset of the widely used Pthread API has
been ported into the microkernel, as shown in Table 3.3.

Table 3.3: Pthread-based primitives proposed in [GOB+13] and [GBO+16].

Primitive Description
pthread_create() Creates a new thread in the calling process
pthread_exit() Terminates the calling thread
pthread_join() Waits for the specified thread to terminate

pthread_mutex_init() Initializes the specified mutex
pthread_mutex_destroy() Destroys the specified mutex
pthread_mutex_lock() Locks the mutex object

pthread_mutex_unlock() Unlocks the mutex object
pthread_barrier_init() Initializes a barrier object
pthread_barrier_wait() Synchronizes participating threads at the barrier pointed to by

the barrier argument

Carara et al. [CCM14] present an approach that enables differentiated communication
services in the application level onto NoC-Based MPSoCs. A communication API exposes the
communication services offered by the NoC to the application developer. This work assumes that
the multiple applications on the same platform have a distinct set of communication requirements.
Therefore, each of which may benefit from distinct network communication services provided by
programming API. The proposed NoC offers the following services: prioritization (at message level);
connection establishment (at NoC level); differentiated routing (deterministic or adaptive routing);
and collective communication (multicast). Two MPSoC distributions are modified to incorporate
the proposed API: HeMPS [CdOCM09] and HS-Scale [ASB+09]. Table 3.4 shows the primitives
available in the developed API.

Table 3.4: MPI-based communication primitives proposed by [CCM14].

Primitive Description
Send(Message; target; priority); Message transmission with priority (HIGH or LOW) for HeMPS
MPISend(Message; target; priority); Message transmission with priority (HIGH or LOW) for HS-

Scale
Connect(target); Connection establishment
Close(); Connection release
Multicast (Message; target list); Multicast message

Joven et al. [JBA+13] present a QoS-driven reconfigurable parallel computing framework.
The aim is to hide hardware many-core complexity and support parallel programming on scalable



40

NoC-based clustered MPSoCs. A customized on-chip MPI (ocMPI) library was presented supporting
a distributed shared memory with no cache coherency protocol. Two QoS services are available to
meet application requirements: prioritization (at message level - up to eight levels) and connection
establishment (at NoC level). Table 3.5 shows the primitives available on ocMPI API.

Table 3.5: MPI-based communication primitives proposed by [JBA+13].

Type Primitive
Management ocMPI_Init(), ocMPI_Finalize(), ocMPI_Initialized(),

ocMPI_Finalized(), ocMPI_Comm_size(),
ocMPI_Comm_rank(), ocMPI_Get_processor_name(),
ocMPI_Get_version()

Profiling ocMPI_Wtick(), ocMPI_Wtime()
Point-to-point Communication ocMPI_Send(), ocMPI_Recv(), ocMPI_SendRecv()
Advanced and Collective Communica-
tion

ocMPI_Broadcast(), ocMPI_Barrier(), ocMPI_Gather(),
ocMPI_Scatter(), ocMPI_Reduce(), ocMPI_Scan(),
ocMPI_Exscan(), ocMPI_Allgather(), ocMPI_Allreduce(),
ocMPI_Alltoall()

QoS - set up an end-to-end circuit uni-
directional or full duplex

ni_open_channel(uing32_t address, bool full_duplex)

QoS - tear down a circuit ni_close_channel(uing32_t address, bool full_duplex)
QoS - set high-priority in all w/r pack-
ets between an processor and a mem-
ory

setPriority(int PROC_ID, int MEM_ID, int level)

QoS - reset priority resetPriority(int PROC_ID, int MEM_ID)
QoS - reset priority of a specific pro-
cessor

resetPriorities(int PROC_ID)

QoS - reset all priorities on the system resetAllPriorities()

Aguiar et al. [AJMH13] present the HellfireFW framework that allows the configuration
of the customizable RTOS and the communication protocol. With the framework, the designer
can manually explore the platform design space by defining initially the application model with data
of period, worst-case execution time, deadline, and workload of the application. Furthermore, the
designer chooses an initial HW/SW platform configuration. After, this configuration is performed
resulting several graphical results for the designer to analyze and to reconfigure the platform in case
of the results were not satisfactory. This approach relies on expertise and intuition of the designer,
what could be considered a disadvantage. Further, the application behavior must be known in design
time, what is a restriction for dynamic applications. Table 3.6 shows the communication primitives
available on HellfireOS. These primitives are implemented following the MPI communication model
and each task has a circular reception queue, with configurable size to hold incoming packets. During
the receiving process, whenever the receiving queue is empty, the task is either blocked (in case of
a blocking primitive) or kept in the primitive call until a timeout occurs.

Table 3.6: MPI-based communication primitives proposed by [AJMH13].

Primitive Description
HF_Send(processor_id, task_id, buffer, size_msg) Message transmission.

HF_Receive(processor_id, task_id, buffer, size_msg) Message reception.

Ruaro et al. [RCM14] present a NoC-based MPSoC framework with an API to support run-
time adaptive QoS management technique. The communication between homogeneous processing



41

elements is based on blocking send/receive MPI primitives. A set of others primitives is available to
set the tasks QoS constraints, obtained through application profile step in design-time. With these
constraints, the OS actuates in the processor scheduling priority or/and in the task migration to
achieve the constraints. The available API primitives are not listed.

A similar work that emphasis on run-time system adaptability and fault-tolerance is pro-
posed in [DCT+13]. It is presented the MADNESS project, where an MPSoC framework is available
with a middleware infrastructure in order to achieve run-time migration of processes among tiles, and
exploit reconfiguration strategies in the case of faults involving processing elements. No more details
about the primitives API are accessible. Table 3.7 shows the communication primitives available on
the API.

Table 3.7: MPI-based communication primitives proposed by [DCT+13].

Primitive Description
send(receiver_id, message, tag) Sends a message with “tag” to “receiver_id” (destination pro-

cessor, or process in case of multithread).
receive(sender_id, tag) Receives a message with “tag” from “sender_id” (sender pro-

cessor, or process in case of multithread).

Mahr et al. [MLIB08] present an another message passing library for MPSoC, supporting
the use of several networks. The library is integrated into a high-level synthesis flow, where an
FPGA-based MPSoC is created from a specific parallel program. Table 3.8 shows the communication
primitives available on the library.

Table 3.8: MPI-based communication primitives proposed by [MLIB08].

Primitive Description
MPI_Send Sends a message.
MPI_RSend Sends in ready mode.
MPI_BSend Sends in buffered mode.
MPI_SSend Sends in synchronous mode.
MPI_Recv Receives a message.

MPI_SendRecv Combines a Send and a Recv call in one call.
MPI_Bcast Broadcasts a message to a set of nodes.
MPI_Gather Collect multiple message segments into one.
MPI_Scatter Delivers message segments to multiple receiver.

Minhass et al. [MOS09] present a reduced version of MPI for MPSoC. The case-study
platform consists of four Altera FPGA boards, with each FPGA device hosting a Quad-Core NoC.
The used processor is the Nios II. A 10kB on-chip memory has been provided to each processor in
order to store the software executable file. The NoC platform supports four standard communication
MPI-based primitives (blocking receive), listed in Table 3.9.

Motakis et al. [MKC11] present an abstract API on the Spidergon STNoC platform
to explore the management of the NoC services aiming to adapt the hardware resources through
software techniques. A library named libstnoc is available to enable dynamic reconfiguration and
access to information services such as energy management, routing, and security. Although the API
improves the dynamic adaptation of NoC resources according to the state of the system, it cannot
be extended to hardware or software elements beyond the NoC. The available API primitives are not
listed.



42

Table 3.9: MPI-based communication primitives proposed by [MOS09].

Primitive Description
NOC_MPI_SEND(buffer_s,
msg_len, dest)

Sends a message to “dest”.

NOC_MPI_RECV(buffer_r,
msg_len_r, source, multiple_source)

Receives a message from “source” or “multiple_source”.

NOC_MPI_PID_SEND(s_pid,
d_pid, dest, buffer_s, msg_len_s)

Sends a message to the process “d_pid” into “dest”.

NOC_MPI_PID_RECV(self_pid, de-
sired_pid, desired_source, buffer_r,
msg_len_r)

Receives a message from the specific process “desided_pid”
into “desired_source”.

Khemaissia et al. [KMKL16] present a middleware that handles run-time reconfiguration
regarding mapping and migration of tasks on an MPSoC platform named RMPSoC. The middleware
is based on master and slaves agents. The master agent controls the evolution of the whole system
before applying software or hardware reconfiguration. A slave agent checks the power consumption
and compliance with constraints of each processor. The middleware listens for input reconfigurations,
arranges the parameters of tasks and monitors the traffic on the NoC. The work does not provide
an API for middleware programming to allow, for example, the addition of other reconfiguration
mechanisms.

Ross et al. [RRPS16] demonstrate a programming model for the Epiphany many-core
platform based on MPI standard. The Epiphany platform is a 2D tiled mesh Network-on-Chip
(NoC) of low-power RISC cores with minimal functionality. The provided MPI-based API enables
MPI codes to execute on the RISC array processor with little modification. A minimal subset of
the MPI standard, shown in Table 3.10, was implemented. The goal of the work is to highlight the
importance of fast inter-core communication for the architecture. However, no additional features
regarding the adaptability of the platform are provided.

Table 3.10: MPI-based communication primitives proposed by [RRPS16].

Primitives
MPI_Init MPI_Cart_coords

MPI_Finalize MPI_Cart_shift
MPI_Comm_size MPI_Sendrecv_replace
MPI_Comm_rank MPI_Send
MPI_Cart_create MPI_Send
MPI_Comm_free MPI_Recv

Kim et al. [KKKH16] present a software platform, named SoPHy+, for hybrid resource
management that can be ported to various many-core accelerators. The platform provides run-time
environment for adaptive resource management by performing task remapping according to dynamic
behaviors of concurrent applications. The platform was implemented on Xeon Phi coprocessor and
Epiphany platforms. SoPHy+ provides a design flow across design-time and run-time stages. At
design-time, a programming front-end module automatically generates platform-dependent func-
tion codes from dataflow specification of applications and makes mapping and scheduling of tasks
following Pareto-optimal solutions. At run-time, SoPHy+ performs task remapping to adapt the
platform following a hybrid scheme that performs task migration and check-pointing according to
pre-computed results made at the design-time stage. No further details are provided about the
software platform extension capability.



43

Sarma et al. [SDG+15] present the Cyber Physical SoC (CPSoC) that is an MPSoC
platform that deploys an high-level paradigm to self-aware embedded systems combining a sensor-
actuator-rich architecture and the closed loop computing model to achieve adaptability. CPSoC
employs a middleware layer to control the manifestations of computations (e.g., aging, overheating,
parameter variability etc.) on the physical characteristics of the chip itself and the outside interact-
ing environment. Despite providing a comprehensive infrastructure of virtual/physical sensors and
actuators, the approach is intrinsically part (hard-coded) of the MPSoC fabric designed by the same
research group [SDV+13]. The authors do not provide details about the availability of an API for
middleware programming to customize new adaptive techniques or other enhancements.

Automated generation of parallel application is an alternative to providing abstraction at
the application level. The CAP (Communication Aware Programming) [HZZ+14] is a framework
composed of hardware architecture and a language programming that aims efficient communication
for NoC architectures. It uses the X10 language [SBP+09] to build resource aware applications.
From application communication requirements defined in the software code, the NoC hardware is
configured aiming application speedup, low NoC utilization and power consumption. Virtual channels
guarantee throughput and latency for individual applications. The available API primitives added to
original X10 language are not listed in this work. Other similar approaches are used by [CCS+08]
and [CPC10]. However, all these proposals need to change the compiler in order to generate the
parallel applications.

Some works use the Multicore Communication API (MCAPI) standard [MCA12] aiming
portability in different platforms that support this standard. A variation of the MCAPI for a hetero-
geneous MPSoC platform is presented by [MSHH11], named FUNCAPI. The purpose is to provide
a standard programming API to different processor and OS types as well as hardware IP-blocks.
The case study is a platform composed of two processing elements (NIOS) and an external memory
interconnected by a HIBI (Heterogeneous IP Block Interconnection) network. The architecture is in
an FPGA connected via PCIe to a PC (Personal Computer). The application code can be trans-
ferred to FPGA or distributed among PC and FPGA processors. The transport layer communication
is performed by MCAPI standard. It supports the channels and message passing (connection-less)
MCAPI communication types, without broadcast and multicast features. Table 3.11 shows the
communication primitives available on this platform, based on MCAPI functions. A similar work is
presented in [RLC15], reporting lower memory footprint, but only makes use of channels MCAPI
communication.

Table 3.11: MPI-based communication primitives proposed by [MSHH11].

Primitive Description
msg_send Sends a (connectionless) message.
msg_recv Receives a (connectionless) message. Blocks until the whole

message has arrived.
pktchan_send Sends a (connected) packet on a channel.
pktchan_recv Receives a data packet on a (connected) channel.

wait Waits for a non-blocking operation to complete
connect_pktchan Connects send and receive side endpoints with a channel (non-

blocking function)



44

3.1.1. Middleware Comparison for MPSoCs

Table 3.12 shows the comparison between the works cited in this state of the art review.
We classify each work according to its model of communication, programming, memory scheme
(visible to application), used operating system, and available QoS/communication features. We use
some abbreviations in the table, listed following:

• MP: Message Prioritization;
• CS: Circuit Switching Establishment;
• AR: Adaptive Routing;
• TM: Task Migration
• SP: Processor Scheduling Priority;
• MC: Multicast;
• BC: Broadcast;
• BA: Bandwidth Allocation;
• CSM: Centralized Shared Memory;
• DSM: Distributed Shared Memory;
• DPM: Distributed Private Memory;
• X*: Partially;
• X": Inherited from the underlying platform;
• API: Availability of API.



45

Table 3.12: Middleware comparison for MPSoCs.

Middleware Model Programming Memory OS
QoS/Communication Features

MP CS AR TM SP MC BC BA API

[CCJ+14] RPC-like Multithread DPM Without OS X
[HZZ+14] X10 Multithread DPM in-house OS X
[MSHH11] MCAPI Single-thread DPM Without OS X X
[GOB+13] Pthread Multithread CSM in-house RTOS X
[GBO+16] Pthread Multithread DSM in-house RTOS X
[MLIB08] MPI-like Single-thread DPM Without OS X X
[MOS09] MPI-like Multithread DPM Without OS X X
[GWHB11] MPI-like Multithread DPM embedded Linux X X
[DCT+13] MPI-like Multithread DPM Xilkernel (Xilinx) X X
[JBA+13] MPI-like Single-thread DSM in-house OS X X X X
[AJMH13] MPI-like Multithread DPM in-house RTOS X
[CCM14] MPI-like Single-thread NORMA in-house OS X X X X X
[RRPS16] MPI-like Multithread DPM in-house OS X
[MKC11] ad-hoc Multithread DPM embedded Linux X
[RCM14] ad-hoc Multithread DPM in-house OS X X* X X
[SDG+15] ad-hoc Multithread DPM in-house OS X X X X X X
[KMKL16] ad-hoc Multithread DPM in-house OS X
[KKKH16] ad-hoc Multithread DSM in-house OS X
This Thesis PUB-SUB Multithread DPM Any X" X" X" X" X" X" X" X" X



46

Analyzing the Table 3.12, most works present variations of the MPI model or use ad-hoc
protocols to perform the communication. In most of the works, the operating system is based on
an in-house implementation, being some of them real-time operating system. QoS features are
generally present in the most recent works. The works that present adaptive techniques (CS, AR,
TM, SP and BA) use hardware or software monitors. The data from the monitors are used to
adapt the system to its dynamic behavior, maintaining the desired level of QoS. The communication
scheme to distribute the monitor data in the system and apply actuations to configurable elements
is commonly coupled in the kernel space (ad-hoc model), in a non-standardized way. In this thesis,
we present a publish-subscribe middleware that can be ported to any operating system by adapting
the hardware/software abstraction layer. In this way, the middleware inherits the QoS features of
the underlying MPSoC platform. In addition, an API is provided for both usability and extensibility
of the proposed middleware. In the case studies to be presented in the Chapters 4, 5 and 6, we have
ported the middleware to a MPSoC platform based on FreeRTOS and another MPSoC platform
based on an in-house OS.

3.2. Middleware for other Fields Related to Embedded Software

This section describes features of existing middleware in domains correlated to the MPSoC
domain, characterized mainly by memory usage restrictions: Robotics (Section 3.2.1), Internet of
things (Section 3.2.2), Distributed Real-Time and Embedded Systems (Section 3.2.3) and Wireless
Sensor Networks (Section 3.2.4). The purpose of this section is not to compare the middleware of
the correlated domains with the middleware proposed in this Thesis. Instead, we analyze and collect
possible features that was applied in the design of the middleware proposed in this Thesis or that
can be used in future extensions of the middleware.

3.2.1. Middleware for Robotics

Modern robots are complex distributed systems consisting of a number of integrated hard-
ware and software modules. The modules can be sensors, actuators, and controllers, acting together
to achieve specific tasks [MAJJ08]. The robotics domain has several sophisticated middlewares that
were already surveyed by [MAJJ08] [CPS14] [ES12] [MSK15].

In the robotic domain, the middleware is viewed as a user programming interface that
provides the high-level constructs of the programming language translating them to operating system
level, and executes applications [MAJJ08]. It should manage heterogeneity of the hardware, facilitate
the communication, improve software quality, code reuse among different robots, reduce time and
costs to build new applications, allow robots to be self-configuring, self-adaptive and self-optimizing
to environment changes [CPS14].

The literature lists desired attributes of middlewares for robotics. We select some of these
attributes that could be applied to MPSoC environments, listed next:

• Durable data storage [CPS14]: mechanisms that allow to persist data from sensors and other
devices of the system. This is important for saving taken decisions and data forwarding for
nodes that enter lately in the system or in case of communication failures.

• Robustness to failures [CPS14]: the middleware could be aware of failures in order to continue
performing their tasks in a degraded mode until the system has recovered from the failure.



47

• Management and monitoring [CPS14]: mechanisms provided to manage, debug, configure
and monitor the middleware components. It is important to offer a complete vision of the
sensors, actuators and other components status.

• Multi-robot coordination services [CPS14]: mechanisms to make consensus over network
shared values, to elect a leader node or to assign specific tasks.

• Simulation environment [ES12]: Important for fast prototyping and educational purposes.
• Real-Time Capability [ES12]: a real-time system guarantees the reactiveness of a node by

providing real-time capabilities in the system communication and computation.
• Dynamic Wiring [ES12]: dynamic configuration of connections between services of components

at run-time, making both control flow and the data flow configurable.
• Automatic resource discovery and configuration [MAJJ08]: services and devices can be dy-

namically available/unavailable in the system. Automatic and dynamic resource discovery and
configuration are important in order to support mechanisms of self-adapting, self-configuring,
and self-optimizing.

ROS

One of the middlewares most popular in the robotic domain is ROS [QCG+09], chosen
by Chitic [CPS14] as the most suitable middleware for multi-robot systems. ROS [QCG+09] is a
component-based framework with a message oriented communication model. It provides, among
other features: (i) design of distributed applications using the publisher-subscriber and RPC models
(services); (ii) automatic definition of message types; (iii) graph resource topic names; (iv) run-time
programming environment.

In the design of distributed applications using the publisher-subscriber model, ROS is based
on concepts like nodes, messages, topics, and services. Nodes are processes, which could perform
various tasks, communicating with each other via messages. Messages are data structures, which
consist of primitive data types (ex. like integer, float, boolean, and others), arrays of primitive types,
or sets of other messages. Nodes send their messages by assigning them to topics, represented as
strings. Nodes receive messages when subscribing to one or more topic.

In the ROS, the publish-subscribe model is efficient but can not handle synchronous pro-
cesses [MSK15]. Based on RPC communication model, the concept of services was introduced to
solve this problem. These services are represented by a string and a pair of messages: request and
response. A node requests the execution of a service located on a remote node. After the remote
node executes the service, a response is generated and sent to the node that originated the request.
The nodes can request services only from one node [MSK15]. A node can make a persistent connec-
tion to a service, which enables higher performance at the cost of less robustness to service provider
changes [ROS16b].

Both ROS publisher-subscriber and services models have an associated a message type
declaration that is defined in an easy way through one “.msg” file for publisher-subscriber or “.srv”
file for services. The ROS programming environment automatically generates all the resulting source
code necessary to handle this message type. An example of “.msg” file, where a message is structured
with three interleaved data type, is showed next.
string first_name
string last_name
uint8 age

An example of “.srv” file, where the request message is structured by two “integer” and
the response message is structured by one “integer”, is showed next.



48

int64 a
int64 b
—
int64 sum

ROS present a Graph Resource Names mechanism for providing resource encapsulation.
Graph Resource Names uses a hierarchical naming structure that is tracked for all resources such
as Nodes, Parameters, Topics, and Services. For example, when a node wants to provide a service,
the respective service is defined as a system resource within a namespace. The resource name is
explicitly defined in the node source code. The resource name is shared in the ROS system and
accessible through available tools in ROS programming environment. In general, nodes can create
resources within their namespace and they can access resources within or above their namespace
[ROS16b]. Alternatively, it can be defined global and private resource names.

ROS also provides a programming environment for application development in run-time.
This programming environment contains several command line tools that are used to interact with
the system at run-time. Among other features, the command line tools could be used to know what
services/topics are currently available in the system and what are the types of messages related to
each service/topic.

3.2.2. Middleware for Internet of Things

The Internet of Things (IoT) comprises an environment with a wide variety of physical
devices or things such as home appliances, surveillance cameras, monitoring sensors, actuators,
displays, vehicles, machines and so on. IoT applications are applied in many different domains,
such as home automation, industrial automation, medical aids, mobile health-care, intelligent en-
ergy management and smart grids, automotive, traffic management, smart cities, and many others
[RMJPC16]. The IoT is very rich in terms of survey papers, such as [RMJPC16] [CM12] [Fer15].
A middleware for IoT provides an abstract layer interposed between the IT infrastructure and the
applications. It aims to hide the technological details to enable the application developers to focus
on the development of the IoT applications [CM12].

Some characteristics of IoT domain present similarities with the MPSoC domain [RMJPC16]:
• Heterogeneous devices: the “things” in IoT are naturally different in capacity, features, mul-

tivendor products and application requirements, getting the middleware the responsibility to
hide this complexity from the programmer;

• Resource-constrained: Embedded computing and sensors present limitations about their pro-
cessing, memory, and communication capacity;

• Dynamic network: IoT devices leave or join the network according to unexpected behavior;
• Context-aware: Context-awareness plays a vital role in the adaptive and autonomous behavior

of the things in the IoT, eliminating human-centric mediation.
Middleware requirements for the IoT could be categorized as both functional and non-

functional. Functional requirements capture the services or functions which a middleware provides,
and non-functional requirements capture QoS support or performance issues [RMJPC16]. Some
functional requirements listed in [RMJPC16] could also be applied to the MPSoC domain:

• Resource discovery: Involves the automatic discovery of new services or applications that enter
the network; each device must announce its presence and report the features it offers;

• Resource management: The use of resources by applications need to be monitored, allocated
and provisioned in a fair way; the architecture should potentially have the ability to reconfigure
itself to meet the needs of the applications;



49

• Event management: Transforms simple observed events into meaningful events.
Some non-functional requirements listed in [RMJPC16] and [Fer15] could also be applied

to the MPSoC domain:
• Scalability: The middleware needs to be scalable to accommodate the growing number of

devices, applications and services;
• Reliability: A middleware should remain operational even in the presence of failures;
• Availability: Even if there is a failure somewhere in the system, its recovery time and failure

frequency must be small enough to achieve the desired availability;
• Security/Privacy: The middleware must consider the context-aware property in situations

where a device could disclose confidential information (e.g., the location of an object or
person) that should not be available to all devices;

• Ease-of-deployment: The application design should not require expert knowledge or support;
• Adaptative: A middleware needs to be adaptive so that it can evolve to fit itself into environ-

ment changes.

Mosquitto

Mosquitto [Ecl16] is a broker that implement the MQTT (Message Queuing Telemetry
Transport) protocol [MQT99], based on publish-subscribe communication model. Mosquitto enables
communication between subscribers and publishers through a topic subscription. It inherits some
features of the MQTT protocol: three level of QoS regarding message delivery; retained messages for
late subscriptions; durable connections that store messages to forwarding in case of short subscriber
disconnection.

Mosquitto also provides the use of two wildcards in subscriptions, in addition to allowing
clients to subscribe to specific topics. A wildcard can be used to automatically subscribe to adjacen-
t/subsequent topics in a hierarchical topic structure. The available wildcards are “+” and “#”. The
“+” is the wildcard used to match a single level of hierarchy. For example, for a topic “a/b/c/d”,
some examples of subscriptions are:
+/b/c/d –> subscription in all topics of the first level of hierarchy
a/+/c/d –> subscription in all topics of the second level of hierarchy
a/+/+/d –> subscription in all topics of the second and third level of hierarchy
+/+/+/+ –> subscription in all topics in all levels of hierarchy

The “#” is the wildcard used to match all subsequent levels of hierarchy. For example,
for a topic “a/b/c/d”, some examples of subscriptions are:
# –> subscription in all topics in all levels of hierarchy
a/# –> subscription in all topics of the second, third and fourth level of hierarchy
a/b/# –> subscription in all topics of the third and fourth level of hierarchy
+/b/# –> subscription in all topics of the first, third and fourth level of hierarchy

Hermes

Hermes [Pie04] is a middleware created for large-scale distributed applications based on
events. It is appropriated in systems where mobility and failures are common. The events can be
either type-based or attribute-based, following the publish-subscribe model. It uses fault-tolerance
mechanisms that can tolerate different kinds of failures in the middleware. It addresses interop-
erability and reliability requirements. The middleware consists of several modules that implement
features such as fault-tolerance, reliable event delivery, event-type discovery, and security.



50

3.2.3. Middleware for Distributed Real-Time and Embedded Systems

A real-time system is defined as a special kind of system whose logical correctness is based
on both the correctness of the outputs and their timeliness. The applications must satisfy particular
timing constraints [PG14]. In the case of real-time distributed systems, the timeliness must be guar-
anteed to take into account complex dependencies among data or processes allocated in different
processors. The delay induced by the network needs to be considered. General-purpose middle-
wares present several potential sources of indeterminism, such as transmission/reception queues for
network messages and delays in transport service or dispatching of requests. Real-time middle-
wares aim to solve these issues by implementing support of QoS parameters [SR14] and predictable
mechanisms, such as the use of special-purpose real-time communication networks or the manage-
ment of scheduling parameters [PG14]. The following survey papers of middlewares for Distributed
Real-Time and Embedded Systems (DRE) were studied [SR14] [PG14].

DDS

DDS (Data Distribution Service) [Par03] was the first open international standard directly
addressing publish/subscribe middleware for real-time systems. It provides fine control of QoS
parameters, that includes reliability, bandwidth control, delivery deadlines, message prioritization,
and resource limits. This control is tuned per-node or per-stream basis. In other words, each
publisher/subscriber pair or even a specific topic can establish independent QoS agreements. DDS
is well suited for dynamic systems, quickly discovering new nodes, new participants on those nodes,
and new data topics between participants [SF09]. DDS has already been deployed in several real-
time scenarios such as Defense [SC08], Automation [RR08], or Space [GLH+12]. The set of QoS
parameters available in DDS allows several aspects of data, networks and computing resources to
be configured at application level. It may be classified in the following categories [PG14]:

• Data Availability: controlling queuing policies and data storage parameters such as durability,
lifespan and history;

• Data Delivery: delivery parameters that represent the way that data will be presented to the
application, such as presentation, reliability, partition, destination order, and ownership;

• Data Timeliness: latency parameters in the distribution of data, such as deadline, latency
budget, and transport priority;

• Maximum Resources: limits the amount of resources that may be used in the system through
parameters such as resource limits or time-based filter.

RT-CORBA

RT-CORBA (Real-Time Common Object Request Broker Architecture) [OMG05] is an
extension of the CORBA (Common Object Request Broker Architecture) specification for real-time
systems, adding new interfaces and mechanisms that aim to increase the predictability of distributed
applications. CORBA [OMG11] is a middleware that follows the RPC paradigm. Although CORBA
provides comprehensive support for distributed objects, this standard does not include support for
real-time applications. RT-CORBA incorporates real-time features enabling applications to configure
and control the system resources explicitly [PG14]. RT-CORBA allows applications to configure and
control resources of: (i) processor, via thread pools, priority mechanisms, intra-process mutexes,
and a global scheduling service; (ii) communication, via protocol properties and explicit bindings;
(ii) memory, via buffering requests in queues and bounding the size of thread pools [SK00].



51

3.2.4. Middleware for Wireless Sensor Network

A Wireless Sensor Network (WSN) consists a collection of different sensors nodes which
are connected through wireless channels and which can be used to build different distributed system
for data collection and processing [SKL11]. WSNs are used in many industrial and consumer appli-
cations, such as industrial process monitoring and control, and machine health monitoring [LM14].
Implementing applications for WSN domain is non-trivial due to the high distribution, dynamic
properties, and heterogeneity of the devices. Incorporating a middleware layer is a used approach
to meet the design and implementation issues of WSN applications, such as integration, scalability,
reliability, security, usability, QoS, and operational issues [LBP15]. The following survey papers
describe middlewares for WSN domain: [LBP15] [LM14] [SKL11].

PS-QUASAR

PS-QUASAR [CDRT13] is a middleware based on publish/subscribe model that provides
QoS support (reliability, deadline, priority) and an API to applications. It presents features that
enable multicast techniques, energy efficient, sensor/actuator support, and broker-less routing. The
broker-less routing is implemented by maintaining in each node a routing table, using the Bell-
man–Ford algorithm [Bel58, FF62, Moo59] to build a routing tree. The routing protocol dynamically
adapts its behavior to the neighbor status to route the packets using different paths and allows the
information to be transmitted with certain QoS policies. It handles priority, deadline and reliability
requirements in the communication between nodes. The routing scheme is built at the expense of
memory resources of the sensors.

MQTT-S

MQTT-S [HTSC08] is an IBM publish-subscribe protocol extended from MQTT [MQT99]
protocol. It is adapted for constrained devices, and low-bandwidth, high-latency or unreliable net-
works. The system that uses the MQTT-S protocol is composed by brokers that use the original
MQTT implementation. The publisher and subscriber nodes communicate with the broker using
the MQTT-S protocol. Reliability QoS is implemented on three levels: (i) best effort (sends just
once either successfully received or not); (ii) retransmits until the message is acknowledged (may
incur redundancy, since messages are delivered, but they may arrive multiple times at the destination
because of the retransmissions); (iii) assures no redundancy, since it assures not only the reception
of the messages, but also that they are delivered only once on the destination side [SARM16].

UPSWSN-MM

UPSWSN-MM (Ubiquitous Publish/Subscribe platform for WSN with Mobile Mules) [TN12]
is an application-specific pub/sub middleware for ubiquitous WSN with Mobile Mules. The Internet
users can access WSN data anytime, from anywhere (Ubiquitous). The system is composed of
sensors distributed over a monitored area. The sensors publish data (such as temperature, humidity,
light intensity, and hiking speed) for mobile phones, which are then sent to interested subscribers
(Internet customers) via mobile phone networks (wifi, 3G). The system is not suitable for real-time
systems due to the need to acknowledge in the sent messages. It also has no other QoS mechanisms
as priority and deadline.



52

TinyDDS

TinyDDS [BS10] is the DDS version for WSN. It allows WSN applications to have fine
control over non-functional properties, allowing the system adaptation according to the application
requirements. The middleware provides data aggregation, event filtering, routing, among others
features. TinyDDS performs event publication in an adaptive way according to dynamic network
conditions, balancing its performance among conflicting objectives (by evolutionary multi-objective
optimization mechanism) [SARM16].

PRISMA

PRISMA [SDP+14] is a resource-oriented publish/subscribe middleware for WSN. It pro-
vides features such as the resource discovery and QoS mechanisms to meet applications constraints.
The system architecture is composed by distributed brokers, where each broker is responsible for
receiving and forwarding the data sensors. The energy is saved by using a topology algorithm, where
the subscription messages are not broadcasted, but it is forwarded only to the nodes that are active
and relevant to the topic.

3.2.5. Middleware Comparison for other Fields Related to Embedded Software

Table 3.13 shows the comparison between the works of correlated domains cited in Section
3.2. The works are classified according to its model of communication, domain, and additional
features present in each of them. We use some abbreviations in the table, listed as follows:

• P/S: Publish/Subscribe Model;
• RPC: Remote Procedure Call Model;
• SF (Set Frequency of Update): Publisher can indicate the maximum rate that data can be

sent in a time interval for agreement purpose;
• RN (Reliability in Network Level): Allows set differing level of reliable delivery (e.g. best-effort

and in-order) in the network level;
• TN (Timeleness in Network Level): Allows management on one or more timing parameters in

the network level (e.g. delay and jitter);
• PH (Publication History): Publishers can store published data for late-joining subscribers;
• PM (Priority in Message Level): Determines the processing priority that a message will be

processed for routing purposes in the network;
• CT (Compound types): It is possible to define compound data types by use of primary data

types;
• PS (Priority in System Level): Determines the processing priority that a requisition will be

processed in the system level (Operating System);
• BA (Band Allocation): Allows band allocation in the network level for the application flow;
• PC (Private connection): Allows configure end-to-end private connection in the network level,

non-multiplexed;
• SC (Secure Connectivity): Allows one or more features related to secure connectivity in the

network level (e.g. authentication, encryption and access control);
• PE (Publication Expiry Interval): Allows set a time in that a publication message is valid;
• DN (Disconnect Notification): A notification message is sent when a client is disconnected by

some cause.



53

Table 3.13: Middleware comparison for other application domains related to embedded software.

Middleware Model Domain
Additional Features

SF RN TN PH PM CT PS BA PC SC PE DN

ROS [QCG+09] P/S, RPC Robotic X
DDS [Par03] P/S DRE X X X X X X

RT-CORBA [OMG05] RPC DRE X X X X X
Hermes [Pie04] P/S IoT X X X X X

Mosquitto [Ecl16] P/S IoT X X X X
PS-QUASAR [CDRT13] P/S WSN X X X X
MQTT-S [HTSC08] P/S WSN X X X

UPSWSN-MM [TN12] P/S WSN X
TinyDDS [BS10] P/S WSN X X X

PRISMA [SDP+14] P/S WSN X X

Analyzing the Table 3.13, we verified that the presence of QoS features is practically a
constant, with some middlewares covering more features than others. Network-level reliability (RN)
is implemented in almost all middlewares, since they are often used in unreliable physical channels
or transport protocols. Therefore, the middleware must be able to guarantee the delivery of the
end-to-end messages. Network-level timeliness (TN) attributes are also present in most middlewares,
which allows temporal predictability in the communication between different elements of the network.
Message-level prioritization (PM) is also used, allowing applications that need a higher level of QoS
to have priority in messages multiplexing process on best-effort networks. Security-related features
are not frequently exploited in these middlewares.



54

4. MIDDLEWARE COMMUNICATION

This chapter presents the Message-Queuing System-on-Chip (MQSoC) Middleware, which
is the main contribution of this thesis, highlighting the management of the publish-subscribe com-
munication protocol. MQSoC Middleware, called in the next sections just as “middleware”, follows
an evolutionary design incorporating (i) a proposed publish-subscribe protocol, (ii) design based on
object-oriented techniques and design patterns, and (iii) serialization/deserialization feature to de-
liver a new programming API for communication between tasks of an application. The middleware’s
communication protocol described in this chapter will also be used in the middleware support for
development of self-adaptive services detailed in Chapter 5.

Section 4.1 presents the FreeRTOS-based MPSoC platform used to validate (i), (ii) and
(iii) which are detailed in Sections 4.2, 4.3 and 4.4, respectively. Section 4.2 presents the proposed
publish-subscribe protocol phases implemented into a middleware design based on non-object ori-
ented programming. As a case study, we present a comparison with an MPI-based programming
model for MPSoC architectures. The contributions detailed in Section 4.2 have been published in
part at ISCAS’17 [HAR+17]. Section 4.3 presents the object-oriented middleware design, published
in part at SBCCI’18 [HAR+18]. Section 4.4 presents a performed benchmark on available libraries
for data serialization for embedded systems with small memory, aiming flexible data encapsulation.
The contributions detailed in Section 4.4 have been published in part at ICECS’18 [HDFGM18].

4.1. FreeRTOS-based MPSoC Platform

This section presents the adopted platform used to validate the middleware features de-
tailed in Sections 4.2, 4.3 and 4.4. This platform was presented in [AMR+16] along with an
MPI-based programming API. Figure 4.1 illustrates an instance of the adopted platform composed
of a 4x41 NoC-based MPSoC platform, with homogeneous processing elements (PEs) organized in
clusters of 2x2 size. Each PE includes a Cortex-M4F processor, private random access memory
(RAM), network interface, DMA and router. RAM stores the system (kernel) and applications.
Each PE runs an extended FreeRTOS kernel independently, which uses cluster-based distributed
management with dynamic task mapping feature. The MPSoC hardware infrastructure, including
NoC and PE, was described using OVPSIM APIs2 by Imperas, which provides an instruction accurate
simulation framework. A timing model presented in [ROR+14] ensures the instruction accurate by
capturing the executed instructions for each PE, estimating an execution time from total executed
instructions.

In this platform, each PE has functions of Global Manager (GM), Local Manager (LM),
or Slave PE (SP). The LM is responsible for mapping application tasks onto SP PEs belonging to
its cluster. The GM, in addition to the LM functions, assumes global functions such as application-
to-cluster mapping and controlling the access to application repository. Note that GM is the only
PE that has access to the application repository. The SP executes the application tasks. The
applications enter in the system in an order and time instant defined at design time. Always that a
new application must enter in the system, the application repository generates an interruption that
is treated by the kernel present in the GM.

In this programming model, the applications are modeled as a task graph. Figure 4.2-a
shows the DTW (Dynamic Time Warping) application following this programming model. A directed

1The size of this MPSoC instance is only for representation in the figure. The experiments performed in the next sections could use another configuration.
2http://www.ovpworld.org/technology_ovpsim



55

SP SP

LM SP

SP

LM SP

SP SP

GM SP

SP SP

LM SP

MAPPING

Initial Task

Task

App Path

Cluster

Message Passing

Legend:

Application Repository

C
L
U
S
T
E
R

Processor

DMAN
et

w
o

rk
In

te
rf

ac
e

PE

Tn

.

.

.

T1

T0

FreeRTOS

R
A

M

SP
Application Level

FreeRTOS Kernel

ROUTER

System Calls

Figure 4.1: FreeRTOS-based MPSoC 4x4 platform instance [AMR+16]

arrow between two tasks (blocks in the figure) means that the first task sends data to the second
one.

Abich et al. [AMR+16] have modified a FreeRTOS kernel to support the exchange of
messages through the NoC incorporating a Task Manager (TM) with a Task Management Structure
(TMS), a Communication Buffer (CB), and a Task Location Buffer (TLB). TMS contains for each
task the local ID, the global application ID, the task relationship ID, and the CB. CB stores the
outgoing task messages. TLB stores the pair task ID and PE physical address to know where the
application tasks are allocated.

The SP kernel supports multitasking using a paging mechanism, which divides the memory
into fixed-size pages. The number and size of pages are defined at design-time. For single-task
processing, the number of pages must equal one. For multitasking, the number of pages should be
greater than one (one page for each task). For example, when the number of pages is set to 2, the
SP could handle up to two tasks.

The MPI-based API includes two communication primitives: MPI_Send and MPI_Receive,
which are used to transfer data dedicated to inter-task communication. A communication buffer at
sender PE stores the message whenever an MPI_Send is invoked, and it suspends the sender task
when the buffer overflows. When a task invokes the MPI_Receive, the kernel blocks the task until
the data are available at the buffer of the sender PE. The MPI_Send and MPI_Receive primitives
are atomic, that is, for each call to MPI_Receive on the receiver task, there should be a call to
MPI_Send on the respective sender task.

The OVPSim simulator framework supports the customization of the MPSoC platform,
being possible to define: platform size, GM position, cluster size, the maximum number of tasks
(pages) per PE, CB size and application set to execute. All the experiments that we have performed
in this platform use the Nearest Neighbor (NN) mapping heuristic [MCS+15]. The NN heuristic
algorithm tries to map the communicating tasks as near as possible. The algorithm tests all n-hop
neighbor PEs, n varying between 1 and the NoC limits (or cluster limits, when clusterized) in a spiral
way, stopping when the first free PE with free page is found.

In the mapping request for an application, GM searches for a cluster with free resources
(pages) to receive the application. If no resources are available, the application is scheduled to run
later. Otherwise, GM sends the application header to the LM of the selected cluster. The LM
performs the mapping heuristics to select the SPs that will receive the application’s initial tasks



56

(identified in the application modeling). The LM then communicates with the selected SPs, which
request the GM to send the object code of the task. The other tasks are mapped on demand when
a task wants to communicate with another one not yet mapped. When the tasks are finished, the
LM releases the allocated resources. When an application is finished, the LM reports the resources
available to the GM, which can map another incoming application or finalize the execution of the
system.

4.2. Proposed Publish-Subscribe Protocol for MPSoC environments

This section describes the proposed publish-subscribe protocol for MPSoC environments
incorporated into a middleware-based design. The middleware is evaluated in the FreeRTOS-based
MPSoC platform detailed in Section 4.1. Section 4.2.1 explains the motivation of using the publish-
subscribe programming model into MPSoC environments. Section 4.2.2 shows how an applica-
tion initially modeled in MPI programming model can be ported to the publish-subscribe program-
ming model. Section 4.2.3 presents the publish-subscribe protocol phases implemented into the
middleware-based design along with the provided API to perform the communication between tasks
of an application. Finally, Section 4.2.4 describes the evaluation of the proposed publish-subscribe
protocol presenting the results compared to the MPI programming model.

4.2.1. Motivation

The MPSoC programming is based on shared or distributed memory models. The shared
memory model is easier to program based on threads, but it is potentially less scalable. The dis-
tributed memory model is scalable, but the software development is more complex due to strong
coupling and synchronization between communicating elements [EFGK03]. MPSoC programming
frameworks have evolved in terms of functionality, but they are still based on the same main pro-
gramming model: MPI [RCM, GWHB11, CCM14, GBO+16].

Concerning widely distributed embedded system, on-chip or not, several authors argue that
traditional programming models are not appropriate to deal with ever-increasing unpredictable and
dynamic applications’ behaviors [EFGK03, DDF+06]. These models are based on static assumptions
as conventional communication and synchronization, usually defined in design time. Therefore, the
applications adaptation is hard in a dynamic environment with unpredictable changes, such load
fluctuations. Also, it is assumed that the nodes are on the same network at the same time, and
that each node knows its communicating pair. The publish-subscribe (PUB-SUB) programming
model has been used in middlewares for highly distributed domains, such as: MQTT3 for sensors
networks and mobile devices domains; DDS4 for real-time systems domains; and ROS5 for robotics
domains. All these middlewares evolved to provide properties, such as reliability, security, low power
consumption, and QoS [BCR14].

We bring the foundations of the publish-subscribe model to the context of MPSoC envi-
ronments. Therefore, we present protocol phases to implement the publish-subscribe programming
model following a middleware-based design. The middleware-based project is due to the concern
that the proposed solution can be ported to other MPSoC platforms with lower cost. The main con-
tribution here is developing a middleware based on publish-subscribe, which can be used to improve

3http://mqtt.org/documentation
4http://www.omg.org/spec/DDS/1.4/
5http://www.ros.org



57

the programmability of distributed private memory NoC-based MPSoCs. For evaluation purpose,
developed middleware has been incorporated into FreeRTOS-based kernel embedded in an MPSoC
platform. The proposed publish-subscribe protocol allows: i) unicast/multicast-like communication,
abstracting the NoC protocols and infrastructure; ii) decoupling in the time, space, and synchro-
nization dimensions. The experiments compare the use of MPI API and proposed publish-subscribe
API to perform the communication between the tasks of the DTW application.

4.2.2. Designing an Application from MPI to Publish-Subscribe

A general definition of publish-subscribe and MPI communication models can be found in
Sections 2.3.3 and 2.3.2, respectively.

Bringing the foundations of the publish-subscribe model to the MPSoC domain, we support
that the model can be used to perform the communication between tasks of an application, being able
to replace the MPI model commonly used in MPSoC platforms. For example, the communication
elements that want to produce data assume the function of publishers, and those who want to
consume data are the subscribers. The topics represent the atomic data, which could be information
about sensors, node, kernel, buffer, or any other information that needs to be made available to one
or more elements interested in receiving them.

As an example, Figure 4.2 shows the DTW (Dynamic Time Warping) application with ten
tasks (Bank, P1-P8 workers, and Recognizer) [RCM] represented through a task graph with MPI
(a) and PUB-SUB (b) communication primitives. A directed arrow between two tasks (blocks in
the figure) means that the first task sends data to the second one.

Bank

P1

Recognizer

taskID=1

send(3)

a)

P2

..

.

P8

taskID=2

taskID=3

taskID=4

taskID=10

send(4)

..

.

send(10)

rcv(1)

rcv(1)

rcv(1)

send/rcv(3)

send/rcv(4)

..

.

send/rcv(10)

send/rcv(2)

send/
rcv(2)

send/rcv(2)

Bank

P1

Recognizer

pub(A)

P2

..

.

P8

sub(A)

to
p

ic
 A

sub(A)

sub(A)

pub(B)
sub(C)

pub(B)
sub(C)

pub(B)
sub(C)

sub(B)
pub(C)

to
p

ic
 B

/C

b)

Figure 4.2: DTW task graph with a) MPI and b) PUB-SUB primitives.

In the example, the MPI primitives of the DTW application are replaced by PUB-SUB
primitives. The sender side defines a topic ID for the flow, registers itself in the system as the
publisher of that topic and publishes the data. The receiver side registers itself as a subscriber of
that topic, setting a callback function to treat the incoming data.

4.2.3. Proposed Publish-Subscribe Protocol

We present the publish-subscribe model as an alternative to perform the communication
between participants (tasks) of a parallel application. As in the publish-subscribe systems used in
other domains, in our proposal the sender task (publisher) does not implicitly send messages to
a specific receiver task (subscriber), what happens in the MPI programming model. Instead, the
messages are classified into topics of interest, and a subscriber receives messages only of those topics



58

to which it has subscribed. Publishers send messages to topics without knowledge of which are the
subscribers since the publish-subscribe system coordinates the communication between publishers
and subscribers at system-level. In our proposal, a middleware-design approach assumes functions of
coordination, specifically in a component named Broker. The middleware also contains components
present in the clients’ middleware to communicate with the broker, named Publishers Management
and Subscribers Management.

In this context, we present a set of protocol phases to accomplish the publish-subscribe
system coordination, that are: (i) BrokerAdvertise - the Publishers Management announces a
new topic to the Broker ; (ii) BrokerUnadvertise - the Publishers Management makes a topic
unavailable to the Broker ; (iii) BrokerSubscribe - the Subscribers Management announces to the
Broker that it wants to receive data from a specific topic; (iv) BrokerUnsubscribe - the Subscribers
Management announces to the Broker that it no long wants to receive data from the topic; (v)
PublisherSubscribe - the Broker informs to the Publishers Management the subscriber network
address to which the message must be sent in a given topic; (vi) PublisherUnsubscribe - the
Broker informs to the Publishers Management that the subscriber identified by the network address
no longer wants to receive message in a topic; (vii) Publish - the Publishers Management sends
data to a specific topic that is received for all subscribed clients. The protocol phases (i) to (iv)
presents, optionally, acknowledgment phases, as explained next. The protocol phases (i) to (iv) are
performed from the client to the broker. The optional acknowledgment phases are performed in the
reverse way. The protocol phase (v) and (vi) is performed from the broker to the publisher client.
The protocol phase (vii) is performed from the publisher client directly to the subscriber client since
the protocol phase (v) informs to the publisher the network address of the subscriber client.

The set of protocol phases are triggered in our middleware-based implementation when an
application task performs one of the API primitives provided by the middleware. Table 4.1 shows the
list of primitives available on the API. Figures 4.3 to 4.8 show the sequence diagrams representing
the protocol phases and processes performed by each primitive in the middleware level and NoC.

When an application task calls the MQSoCAdvertise(topicID) primitive (1 in Figure 4.3),
the PublishersManager in the middleware level stores the data of identification of both task and topic
in its Publishers table (2), and sends a message of type BrokerAdvertise to the broker informing these
data (3). The broker then stores this data into its Publishers table and checks if there are subscriber
tasks not yet applied (4), necessary to treat cases where the broker receives a BrokerSubscribe
message before the BrokerAdvertise message. In this case, the broker sends a message of type
PublisherSubscribe back to the publisher client with the network address of the subscriber client
for each subscriber not yet applied. The middleware in the publisher client then stores this data
in the Subscribers table (6). Optionally, when the acknowledgment feature is enabled, the broker
generates a message of type BrokerAdvertiseAck back to the publisher client (7), which sets the
respective index in the Publishers table as acknowledged (8) and resumes the task to continue its
processing (9). In parallel, the middleware could resend the BrokerAdvertise message to the broker
if the acknowledgment message is not received after a defined timeout. When the acknowledgment
feature is enabled, note that the task is suspended after calling the MQSoCAdvertise(topicID)
primitive, being resumed when the acknowledgment message is received.

When an application task calls the MQSoCUnadvertise(topicID) primitive (1 in Figure
4.4), the middleware erases the data of identification of the publisher task and topic in its Publishers
table (2) only if the acknowledgment feature is disabled. Otherwise, it sends a message of type
BrokerUnadvertise to the broker informing these data (3) and only erases the data of identification
of the publisher task and topic in its Publishers table when the acknowledgment message is received
(6). At receiving of the BrokerUnadvertise message, the broker erases the respective index into
its Publishers table (4). Optionally, when the acknowledgment feature is enabled, the broker and



59

Table 4.1: Primitives of the proposed experimental PUB-SUB middleware.

Primitive Used by Description
MQSoCAdvertise(topicID) Publisher Advertises the system that the respective

client is the publisher of the topic identified
by topicID.

MQSoCUnadvertise(topicID) Publisher Unadvertises the system that the respective
client is the publisher of the topic identified
by topicID.

MQSoCPublish(topicID, payload) Publisher Sends the payload data to the topic identi-
fied by topicID.

MQSoCSubscribe(topicID, callbackf) Subscriber Subscribes to the topic identified by topicID
passing the pointer to the function that will
process the message when it arrives.

MQSoCUnsubscribe(topicID) Subscriber Unsubscribes to the topic identified by top-
icID.

MQSoCYield(timeout, cnt_rcv, suspend) Subscriber Generates a loop that verifies in a timeout
frequency whether a message was received;
the callback function defined inMQSoCSub-
scribe primitive is executed whether there is
a message to the respective topic; the loop
is finished when all cnt_rcv messages are re-
ceived; the task is suspended when suspend
is set and no message is received (it is re-
sumed when a message arrives).

PublishersManager in the middleware level perform the same acknowledgment phases and processing
as accomplished in the BrokerAdvertise protocol phase, detailed before.

When an application task performs a MQSoCSubscribe(topicID, callBackFunction) prim-
itive (1 in Figure 4.5), the SubscribersManager in the middleware level stores the identification of
both task and topic in its Subscribers table (2), and sends a message of type BrokerSubscribe to
the broker informing these data (3). The broker then stores this data into its Subscribers table and
checks if there is a publisher registered to this topic in its Publishers table (4). If no publisher is
found, the subscription is marked as not applied in the Subscribers table, waiting for an advertise
to that topic (5). Otherwise, the broker sends a message of type PublisherSubscribe to the fetched
publisher client with the network address of the subscriber client along with both topic and task iden-
tification (6). The middleware in the publisher client then stores this data in the Subscribers table
(7). Optionally, when the acknowledgment feature is enabled, the broker and SubscribersManager
in the middleware level performs the same acknowledgment phases and processing as accomplished
in the BrokerAdvertise protocol phase, detailed before.

When an application task calls theMQSoCUnsubscribe(topicID) primitive (1 in Figure 4.6),
the middleware erases the data of both task and topic identification in its Subscribers table (2) only
if the acknowledgment feature is disabled. Otherwise, it sends a message of type BrokerUnsubscribe
to the broker informing these data (3) and only erases the data of identification of the publisher task
and topic in its Subscribers table when the acknowledgment message is received (8). At receiving
of the emphBrokerUnadvertise message, the broker erases the respective index into its Subscribers
table (4) and sends a message of type PublisherUnsubscribe to the fetched publisher client with
the network address of the subscriber client along with both topic and task identification (6). The
middleware in the publisher client then erases this data in its Subscribers table (7). Optionally, when



60

the acknowledgment feature is enabled, the respective acknowledgment phases and processing are
accomplished.

When an application task performs a MQSoCPublish(topicID, payload) primitive (1 in in
Figure 4.7), the middleware searches by subscriber clients to the respective topic in its Subscribers
table (2). If there is a subscriber to that topic, then the middleware sends a message of type Publish
to the fetched subscriber clients with the identification of both topic and task (3). At receiving in
the subscriber client, the middleware adds the message to the buffer (4).

When an application task performs a MQSoCYield(timeout, cnt_rcv, suspend) primitive
(1 in Figure 4.8), the middleware verifies whether there is a message to the task in its message
buffer (2). In this case, the middleware invokes the respective callback function informed in the
MQSoCSubscribe(topicID, callBackFunction) primitive that process the message payload (3). Oth-
erwise, the task could be suspended until a message is received (if suspend is true), or the task
could execute any other part of its software after a number of verifications defined by cnt_rcv and
spaced for a time interval defined by timeout.

The experiment described in Section 4.2.4 does not use the acknowledgment phases of the
proposed publish-subscribe protocol. The acknowledgment feature is useful in scenarios with faults,
which is not the case of the evaluated scenarios. A particular study where we use the acknowledgment
feature was published at SBCCI’18 [DHA18] in a proposal of a lightweight extension of the publish-
subscribe model with a fault recovery method for the broker structures.

4.2.4. Experimental Setup and Results

This section describes the evaluation of the proposed publish-subscribe programming model
comparing the results with an MPI programming model. The platform was implemented and vali-
dated using the platform described in Section 4.1. We incorporate the middleware structure com-
posed by C-based source code files to the platform, building an intermediate level between the kernel
and application levels. Figure 4.9 shows the modified platform.

The experiments are based on the DTW application (Figure 4.2-b). This application has
been chosen because it uses a communication pattern of 1:N and N:1 (N is the number of workers).
This application uses eight workers. We analyze three scenarios: MPI-all, MPI-dem, and PUB-
SUB. The first two scenarios use the MPI primitives with all the tasks mapped at the beginning
of the execution (MPI-all), or tasks mapped on demand (MPI-dem), where only the initial tasks
are mapped at the begin of the execution and the other tasks are mapped as soon as there is a
communication among them. The PUB-SUB scenario uses the proposed publish-subscribe primitives
and middleware, with all the tasks mapped at the begin of the execution. All scenarios use a single-
cluster 5x5 MPSoC, with each PE executing a single task to stimulate the NoC communication
between the tasks and evaluate the middleware protocol.

Figure 4.21 shows the results of DTW application execution time. PUB-SUB reduces the
execution time from 2.6% to 29.9% as the number of patterns (iterations) is increased, respectively,
from 16 to 256. Compared to MPI, the PUB-SUB model requires an initial setup time to advertise
the topics. Besides, the PUB-SUB application object code is lightly bigger, taking more time to finish
the task mapping. Therefore, the MPI has advantages for small communication volumes. However,
the MPI model presents the drawback of generating more system calls and network interruptions
caused by the messages, as detailed next.

Figure 4.11 is a detailed view of the results obtained for 64 patterns, presented in Figure
4.21. The X axis represents the order of System Calls or NIs (Network Interruptions) generated
in the system, and the Y axis represents the instant of time (timestamp) in which each of them



61

Middleware: 
Broker

Middleware: 
Publishers Manager

Application 
Task

MQSoCAdvertise(topicID)
stores pair (topicID, pageID) 
and sets as 
unacknowledged

BrokerAdvertise(topicID, nodeID)

MQSoCAdvertise Primitive (performed only once by each publisher in a topic)

stores pair (topicID, 
nodeID) and checks if 
there are subscribers not 
yet applied to this topic

BrokerAdvertiseAck(topicID)

set as acknowledged 
(topicID)

PublisherSubscribe(topicID, 
pageID, nodeID)

stores pair (topicID, nodeID)

O
pt

io
na

l

1

2

3 4

5

6

7

8Resumes the task
9

O
nl

y 
if 

th
er

e 
ar

e 
su

bs
cr

ib
er

s 
no

t 
ye

t 
ap

pl
ie

d

Legend:
API primitive

Protocol phase

Application Level

Kernel/Middleware Level

Figure 4.3: Sequence diagram of the MQSoCAdvertise primitive.

Middleware: 
Broker

Middleware: 
Publishers Manager

Application 
Task

MQSoCUnadvertise(topicID)
erases pair (topicID, pageID) or 
sets as unacknowledged

BrokerUnadvertise(topicID, nodeID)
Legend:

MQSoCUnadvertise Primitive (performed only once by each publisher in a topic)

erases pair (topicID, 
nodeID) 

BrokerAdvertiseAck(topicID)

erases pair (topicID, 
pageID) and set as 
acknowledged (topicID)

API primitive

Protocol phase

O
pt

io
na

l

Application Level

Kernel/Middleware Level

1

2

3 4

5

6

7
Resumes the task

Figure 4.4: Sequence diagram of the MQSoCUnadvertise primitive.

MQSoCSubscribe Primitive (performed only once by each subscriber in a topic)

Middleware: 
Subscribers Manager

Application 
Task

MQSoCSubscribe(topicID, 
callBackFunction)

stores pair (topicID, pageID) 
and sets as 
unacknowledged

BrokerSubscribe(topicID, pageID, 
nodeID)

1
2

3

Middleware: 
Broker

stores data (topicID, 
pageID, nodeID) and 
checks if there is a 
publisher to this topic

Middleware: 
Publishers Manager

PublisherSubscribe(topicID, 
pageID, nodeID)

stores data (topicID, 
pageID, nodeID)

O
nl

y 
if 

th
er

e 
is

 a
 

pu
bl

is
he

r 
to

 t
he

 
to

pi
c

BrokerSubscribeAck(topicID)

set as acknowledged 
(topicID)

O
pt

io
na

l

Resumes the task

Legend:

API primitive

Protocol phase

Application Level

Kernel/Middleware Level

sets the subscription as 
not applied

O
nl

y 
if 

th
er

e 
is

 n
o 

pu
bl

is
he

r 
to

 t
he

 
to

pi
c

4

5

6
7

Figure 4.5: Sequence diagram of the MQSoCSubscribe primitive.



62

MQSoCUnsubscribe Primitive (performed only once by each subscriber in a topic)

Middleware: 
Subscribers Manager

Application 
Task

MQSoCUnsubscribe(topicID)

erases pair (topicID, pageID) 
or sets as unacknowledged

BrokerUnsubscribe(topicID, 
pageID, nodeID)

1
2

3

Middleware: 
Broker

erases data (topicID, 
pageID, nodeID) and 
checks if there is a 
publisher to this topic

Middleware: 
Publishers Manager

PublisherUnsubscribe(topicID, 
pageID, nodeID)

erases data (topicID, 
pageID, nodeID)

O
nl

y 
if 

th
er

e 
is

 a
 

pu
bl

is
he

r 
to

 t
he

 
to

pi
c

BrokerUnsubscribeAck(topicID)

O
pt

io
na

l

Resumes the task
Legend:

API primitive

Protocol phase

Application Level

Kernel/Middleware Level

4

6
7

8
erases pair (topicID, 
pageID) and set as 
acknowledged (topicID)

Figure 4.6: Sequence diagram of the MQSoCUnsubscribe primitive.

MQSoCPublish Primitive (performed every publication by publisher)

Middleware: 
Publishers Manager

Application 
Task

Middleware: 
Subscribers Manager

MQSoCPublish(topicID, 
payload)

1 searches by subscriber 
clients to the topic

2

Publish(topicID, pageID, payload)

3

adds the message 
to the buffer

4

Legend:

API primitive

Protocol phase

Application Level

Kernel/Middleware Level

Figure 4.7: Sequence diagram of the MQSoCPublish primitive.

Middleware: 
Subscribers Manager

Aplication 
Task

MQSoCYield Primitive (performed in user-defined frequency)

MQSoCPublish(timeout, cnt_rcv, 
suspend)

checks by message 
in the buffer

2

Calls callBackFunction(message)

O
nl

y 
if 

th
er

e 
is

 a
 

m
es

sa
ge

 
in

 t
he

 
bu

ff
er

1

3

Legend:

API primitive

Protocol phase

Application Level

Kernel/Middleware Level

Figure 4.8: Sequence diagram of the MQSoCYield primitive.



63

Figure 4.9: Modified FreeRTOS-based MPSoC 4x4 platform instance, adapted from [AMR+16].

Figure 4.10: DTW execution time using MPI and PUB-SUB.

was executed. The figure also presents two lines representing the MPI and the PUB-SUB execution
trace. Since both MPI-all and MPI-dem had the same behavior, only one is illustrated. The figure
is divided into the three main phases of DTW application: setup, data fork, and data join.

The setup phase for MPI is the time between the first (1) and last (3) task allocation.
The setup phase for PUB-SUB is longer because it allocates the tasks (1 to 2), and it also performs
the topic advertisement, concluded at (4).

The data fork phase represents the time the bank task sends the first message to a worker.
The PUB-SUB (4) starts later than MPI (3) due to the advertisement time. This graph shows that,
once PUB-SUB starts the data fork phase (4), it starts to present advantage because the bank task
performs only one System Call to send the message to all workers. On the other hand, the bank
task of the MPI version waits for an NI caused by a message request from each worker, then the
message is sent to the worker that requested it.

The data join phase represents the time between the first and the last message received
by the recognizer task from a worker task. In the MPI version, when the recognizer task executes
an MPI_receive(target from) primitive, it sends a message request to a single worker, going to a
suspended mode until the message is received. The message request causes an NI at the worker.
If the data is ready, the data message is sent by worker to the recognizer task, causing another
NI at the destination. However, if the data is not ready, the recognizer task remains in suspended
mode. These steps are repeated for each worker. On the other hand, in the PUB-SUB version, all
workers publish on the same topic, and the recognizer task has a callback function to treat these
messages. The stair case behavior observed in (5) is repeated whenever the recognizer task goes to
suspended mode. It is resumed when a new message arrives. The recognizer task does not need to



64

Figure 4.11: MPI vs PUB-SUB time spent in System Calls and NIs.

request data, and it does not need to block waiting any worker. The application is finished in (6)
to PUB-SUB and (7) to MPI.

Although the PUB-SUB advertisement step adds some initial latency to start the task
communication, this pays off because both publishers and subscribers know that the broker connects
each other when they are ready to start. This way, the message request-response and the blocking
receive executed in the MPI for each transaction are not required. Furthermore, when the application
has collective communication patterns, PUB-SUB generates fewer system calls.

In terms of memory footprint, the proposed publish-subscribe middleware with FreeRTOS
kernel has 23kB, which corresponds to a 7kB increase compared to the MPI-based FreeRTOS kernel.

In this initial design of the middleware proposed in this thesis, we implement all the middle-
ware logic in C programming language, without any object-oriented technique or design pattern. The
next evolutionary design of the middleware derives the publish-subscribe protocol phases, the API
primitives and the general aspect of the non-object oriented middleware implementation presented
in this section.

4.3. Object-Oriented Middleware

This section describes the design and evolution of the middleware designed following the
object-oriented programming paradigm. Although following the initial publish-subscribe protocol
phases detailed in Section 4.2.3, the middleware source code is fully re-factored in C++ programming
language, making use of already widespread design patterns to become the software more modular
and reusable. These software characteristics will explored in the support for the development of
self-adaptive systems to be detailed in Chapter 5. The middleware is evaluated in the FreeRTOS-
based MPSoC platform detailed in Section 4.1. Section 4.3.1 explains the motivation of using the
proposed object-oriented middleware for the development of applications and self-adaptive systems.
Section 4.3.2 presents related works. Section 4.3.3 provides recommended design patterns and best
practices regarding the middleware design. Section 4.3.4 presents the the proposed object-oriented
middleware architecture. Section 4.3.5 presents the experimental setup and discusses the results
compared to the middleware implementation presented in Section 4.2.



65

4.3.1. Motivation

The constant increase of applications’ complexity along with technologies constraints (e.g.,
power and memory wall) influenced the evolution of the embedded systems from a single core to
multiprocessor architectures. MPSoC architectures provide parallel processing capabilities, aiming
at covering the increasing requirements of emerging applications. Resulting complexity calls for a
flexible and self-adaptive system, which must handle critical design constraints to address multiple
complex applications competing for resources in the multiprocessor system.

Self-adaptive approaches have been proposed to cover the requirements of operating sys-
tems and applications at runtime [RC10, AS15, BBS15, LF15, SKK+14, AMM+17]. Software modu-
larity, object-oriented programming, and software design patterns are examples of techniques used to
provide systems with self-adaptive property. The software modularity aims to separate the software
design from the other system elements that are architecture dependents. Object-oriented program-
ming provides known advantages such as code reuse and encapsulation. Software design patterns
are widespread solutions to common problems in operating systems, which rely on portable code that
can be reused in many different situations. Some works target to improve the software adaptability
in embedded systems, focusing on software development [LF15] and security issues [AMM+17]. Al-
though well-known in several segments, the applicability of these techniques is not well explored in
the multiprocessor systems domain.

Middleware approaches leverage patterns and techniques to bridge the gap between the
functional requirements of applications and the underlying architecture [SB03]. This approach is
used by solutions in the most diverse distributed environments, such as the DDS6 for real-time sys-
tems environments and ROS7 for robotic environments. Although the client nodes are designed to
memory-constrained environments, these solutions typically make use of more burdensome infras-
tructure for centralized management roles (e.g., broker), which are usually hosted on a node without
memory restrictions.

In this context, we present a new middleware architecture aiming to provide more modular
software and replaces the previous middleware implementation. In this way, the new middleware
provide the same API for communication between the tasks of an application. The modular charac-
teristic for the software designed using the middleware is achieved by incorporating best practices of
object-oriented programming, the publish-subscribe programming model, and design patterns which
are suitable to MPSoCs with small memory.

4.3.2. Related Works

Several approaches have proposed the use of design patterns and modular techniques
to address software modularity and support for development of self-adaptive services in different
computing systems.

The authors in [RC10] conduct a study comprising project implementations to harvest
adaptation-oriented design patterns that support the development of adaptive systems in general
domains. A subset of collected design patterns is evaluated in an adaptive news web-server case
study. In this context, the authors in [AS15] propose a set of design patterns for modeling and
designing self-adaptive software systems based on IBM MAPE-K multiple control loop issues. To
evaluate the applicability of the design patterns implemented in the environment, they present

6http://www.omg.org/spec/DDS/
7http://www.ros.org



66

Table 4.2: Related Works Comparison

Reference Domain Approach Case Study Impact Study

[RC10] General Collection of adaption patterns for self-
adaptation expertise reuse.

News Web Server No

[AS15] General Collection of design patterns for self-
adaptive systems based on IBM MAPE-
K multiple control loop issues.

E-learning Web
Server

No

[BBS15] General Collection of design patterns for develop-
ing policies for self-adaptive systems at
multiple levels of abstraction.

Smart Home Sys-
tem

No

[LF15] Embedded Sys-
tems

Collection of design patterns with focus
on software development for embedded
applications.

No No

[SKK+14] Embedded Sys-
tems

Propose five patterns to model a self-
adaptive system, comprising the Moni-
tor, Analyzer, Decision-Making, Acting
and Assessing patterns.

Object Tracking and
Resource Allocation
Control Engine

No

[AMM+17] Embedded Sys-
tems

Systematic pattern-based approach that
interlinks safety and security pattern en-
gineering workflow.

Automotive System No

OO-MQSoC (this
work)

MPSoC Middleware based on collection of Design
Patterns and best practices of object-
oriented programming for embedded sys-
tems, with focus on MPSoC domain.

Homogeneous MP-
SoC

Applications Execution
Time and Memory Foot-
print

some case studies through an e-learning system. Furthermore, Berkane et al. [BBS15] present an
approach based on design patterns for developing policies for self-adaptive systems at multiple levels
of abstraction. Such system considers feedback loops modeled in a modular way, and evaluates the
execution in a smart home case study scenario. Although these works [RC10, AS15, BBS15] present
innovated approaches to achieve reusable design, they are designed with the focus on particular
software development which comprises specific resource constraints.

Recent works propose the use of design patterns along with adaptive techniques to address
the hard design constraints of embedded systems. Lakhani and Faisal [LF15] present a review
regarding the evolution of design patterns developed for building architectures to diverse applications
with a special focus on software development for embedded systems. Aiming to achieve performance
and to cover real-time constraints, Said et al. [SKK+14] propose five design patterns used to
model a loop-based self-adaptive embedded system. Further, Amorim et al. [AMM+17] present a
systematic design patterns-based approach that interlinks safety and security patterns, considering
an automotive use case scenario. All these approaches consider embedded systems and target
particular designs that cover specific design constraints. However, none of them focus on embedded
MPSoC platforms. While these platforms provide parallel capabilities, the constraints include all
embedded design restrictions, even more strict, increased by the complexity of management of
multiple resources and applications.

Table 4.2 shows a comparison between the proposed approach and related works, em-
phasizing the performed impact at each work in the respective domain. Our main contribution is
to present a middleware designed using design patterns and object-oriented languages aiming to
improve software modularity in the MPSoC domain.

4.3.3. Best Practices Implemented in the Proposed Middleware

The usage of design patterns allows the reuse of established solutions for known problems.
In this section, we introduce the design patterns and best practices in object-oriented programming



67

for embedded systems that we have used in the design of the new middleware structure that will be
detailed in Section 4.3.4.

Selected Design Patterns

Aiming design flexibility, the Container design pattern comprises a holder object that
stores a collection of other objects (its elements). Containers are implemented as class templates,
supporting several data types. We have used two categories of containers: Sequence Container
and Associative Container. Sequence Container stores objects and its elements in a strict linear
order, providing an interface for accessing them. Examples of Sequence Container implementations
are List, Queue and Deque. Associative Container stores objects based on keys (indexes), differing
from sequence container since it does not provide insertion at a specific position. Examples of
Associative Container implementations are Map, Multimap, Flat-map and Flat-multimap. We use
the Queue container to implement the Message Buffer component and the Flat-map and Flat-
multimap containers to implement the managed topic tables in the proposed middleware (see Figure
4.12).

Regarding design patterns for self-adaptive systems, the Factory design pattern [RC10]
allows the decoupling of high-level elements (e.g., monitors, decision makers and actuators) from
those elements that are target-dependent (e.g., processing elements and other low-level hardware/-
software components). This design pattern creates a standard interface that can be called in order
to, for example, require information of a distributed monitoring infrastructure. We use the Factory
design pattern to implement the Sensor/Decision Maker/Actuator interfaces detailed in Chapter
5. The Broker design pattern [Tar12] decouples the communication between the communicating
elements in a publish-subscribe system. The Observer design pattern [Tar12] defines a one-to-many
dependency in a system with multiple both monitoring and actuation services. With it, all dependent
objects are notified about a changing of a state in an object under observation. We use the Broker
and Observer design patterns to implement the publish-subscribe programming model.

Regarding software modularity, the Hardware Abstraction Layer (HAL) pattern [EHL+09]
abstracts the underlying hardware/software structure from the rest of the system by implementing
a driver with an abstract interface. We use the HAL pattern to enable portability in the proposed
middleware.

Selected Programming Language

Most of the operating systems or middlewares for embedded systems use C programming
language because of the run-time efficiency and the high availability of compilers for a wide range
of processors. Although design patterns can be implemented in a non-object oriented programming
language [Dou10], it leads to an awkward code, difficult to maintain. Recently, there have been
efforts to use C++ in embedded systems [Whi11, Mia15, Kor18]. Most recent versions of C++, such
as C++118 and C++149 standards, have enhanced features like type traits, operator overloading,
static assertion, constant expression and concurrency support, enabling part of the C++ language
support for embedded systems. The use of C++ in embedded systems with severe memory limitation
(about tens or few hundreds of KBytes per processor) requires the use of techniques and best
practices to reduce the code size generated by the compiler on the target platform. Following, we
present some of these techniques applied to the proposed middleware. The impact of using these
techniques is demonstrated in the Sec 4.3.5.

8https://www.iso.org/standard/50372.html
9https://www.iso.org/standard/64029.html



68

Static Memory Allocation

Dynamic memory allocation is another issue in environments with constrained memory
size. The Fixed Memory Allocation technique [EHL+09] allows the static allocation of the memory,
with its maximum size defined at compilation time, avoiding unexpected behavior at runtime. We
use this technique to improve runtime predictability and reduce the software code size when the
dynamic allocation and adjacent library are used to compile the source code.

Placement new

The default new operator in C++ allocates memory in the kernel heap area and constructs
an object in the allocated memory in runtime. This approach is usually not suitable for embedded
systems. The new operator can cause unpredictable behavior in the lack of available heap memory
space. Limiting the object’s maximum allocation space to a fixed amount of memory at compile
time is an alternative approach. Besides that, the default new operator increases the code size
generated by the addition of all inherent methods of this operator, such as malloc, mallocr and free.
Placement new approach [Gun16] reimplements the new operator passing a pre-allocated memory
area pointer and building the object in the given memory at compile time.

Avoid Exception Handling

Exception C++ feature adds to the code a large number of functions even when the
exception feature is not used. So, in addition to not explicitly use exception handling in the code,
it is advisable to include “-fno-exceptions” in the compiler options to disable this feature.

Compiler Optimization Options

The GCC and G++ compilers provide a set of options to control sorts of optimization.
When used, they attempt to improve the performance and/or code size. The available set of
optimization options depends on the target and how the compiler is configured. For example, when
the primary goal is small memory size, the compiler could be instructed to optimize for size using the
“-Os” flag in the compilation command. Other options are “-O1”, “-O2” and “-O3” to performance
optimization in exchange, generally, for large code size.

Embedded Template Library

The Standard Template Library10 offers a set of well-tested design patterns implementa-
tions. However, it does not fit well in platforms with limited resource requirements. The Embedded
Template Library11 (ETL) is a worthwhile alternative designed for environments with restrict mem-
ory resources, since it provides containers with fixed capacity and static memory allocation. In the
middleware presented in this section, we use the following ETL containers patterns: queue; map;
multimap; and its alternatives aiming size memory optimization - flat_map and flat_multimap.

10https://www.sgi.com/tech/stl/
11http://www.etlcpp.com



69

4.3.4. Proposed OO-MQSoC Middleware

The proposed middleware, named Object-Oriented Message-Queuing System-on-Chip (OO-
MQSoC), incorporates the publish-subscribe protocol phases presented in Section 4.2.3. In addition,
we are proposing a new middleware structure based on an object-oriented approach improved with
design patterns and programming best practices for embedded systems. The middleware structure
also includes a Hardware/Software Abstraction Layer (HSAL), decoupling the middleware from the
Operating System (OS) kernel and the hardware components.

Figure 4.12 shows the OO-MQSoC architecture, which is focused on middleware commu-
nication, containing the basic components that can be used to implement services and applications
on the middleware. From the previous implementation of middleware detailed in Section 4.2, we
only derived the phases of the publish-subscribe protocol. The rest of the middleware structure has
been completely redesigned. The proposed middleware presents modules related to the management
of publishers, subscribers and brokers, detailed in the following. Containers represent data struc-
tures that store the data of the topics handled by each management module. A message buffer,
implemented through the Queue Container, retains incoming messages before delivering them to the
application layer.

The Middleware Application API presents primitives that can be used to design applications
using the publish-subscribe programming model. The applications run at the application level.
Section 4.3.5 presents an experiment where we evaluate three applications that use this API.

The Middleware Extension API presents primitives that can be used for development of
middleware extensions modules (named “Middleware Extension” in Figure 4.12) using the publish-
subscribe programming model. These extension modules run at the middleware level. Chapter 5
presents an implementation of a middleware extension which provides the support for the develop-
ment of self-adaptive systems on the middleware.

The Hardware/Software Abstraction Layer (HSAL) presents a set of primitives that aims
to facilitate the middleware portability in other platforms. It assures the middleware portability by
the implementation of a specific driver for the target platform. The middleware code remains the
same. The proposed HSAL has standardized functions to interface with the Kernel (i.e., to create,
destroy, suspend, and resume system tasks), NoC (to write or read in the NoC interface) and MPSoC
manager (i.e., to know if a node is the broker of the system). APPENDIX A describes the minimal
list of primitives of the HSAL that need to be provided to incorporate the middleware to a given
platform, including kernel and hardware modules.

The Kernel is responsible for features like low-level communication primitives, task schedul-
ing, DMA, and treatment of software system call and hardware interruption. The middleware is
responsible for features like publish-subscribe protocol management, publish-subscribe messages de-
livery guarantees (QoS Manager), and interface with application level, Distributed Services, and
kernel level.

From the general description of the middleware architecture, we detail as follows each one
of the OO-MQSoC components regarding the middleware’s communication and their interfaces.

PublishersManager

The PublishersManager component has an interface that enables other architecture com-
ponents to publish a message to a topic. Note that before a publisher component publishes a
message to a topic, it must advertise the topic, as explained in Section 4.2.3. Figure 4.13 shows the
class diagram of the PublishersManager component (PublishersManager).



70

Network-On-Chip InterfaceMemory Processor

OS Kernel

Broker 
Manager

Containers

 Middleware Application API

Message Queue

APP1 APP2 APPn

Protocol Stack Fabric

Hardware/Software 
Abstraction Layer (HSAL)

HSAL 
Communicating API

 Middleware 
Extension

API

Middleware 
Communication

Subscribers 
Manager

Publishers 
Manager

Middleware 
Extension

Application 
Level

Middleware
Level

Kernel/HW
Level

Middleware 
Extension

Middleware 
Extension

Figure 4.12: OO-MQSoC Architecture.

The other components of the middleware use the PublishersManager methods to adver-
tise/unadvertise a topic and publish messages to a topic. The Publisher Manager also processes
subscription and unsubscription requests came from Broker Manager (Section 4.3.4).

The table of publishers (publishers) contains a register for each element that has called
the advertiseHandler method. The index of this table is the topic identification. The Publish-
ersManager uses the table of publishers to manage the advertise message acknowledgment feature.
Also, when a component calls the unadvertiseHandler method, the PublishersManager erases
the respective register in the table of publishers. Only one publisher can advertise a given topic.
Therefore, the etl::flat_map library implements the table of publishers.

The table of subscribers (subscribers) contains the set of subscriber clients that have
requested subscription in the topics advertised by the publisher clients of the current node. The
index of this table is the topic identification. External components call the subscriptionHandler
method to request a subscription in a topic. When this happens, the PublishersManager inserts a
new register in the table of subscribers. In the same way, the PublishersManager erases a register
when receives an unsubscriptionHandler method calling. There may be more than one subscriber
node for the same topic. In this way, the table of subscribers must allow the insertion of more
than one register with the same index (topic), accomplished by the library etl::flat_multimap. The
publishHandler method publishes a message in a topic encapsulating the given message payload
and the specific message header for this type of message (see Figure 4.17). The publishHandler



71

PublishersManager

+ advertiseHandler(...) : void
+ advertiseAckHandler(...) : void
+ unadvertiseHandler(...) : void
+ unadvertiseAckHandler(...) : void
+ publishHandler(...) : void
+ subscriptionHandler(...) : void
+ unsubscriptionHandler(...) : void

etl::flat_map

+ insert(mapped_parameter_t value) : iterator
+ find(key_parameter_t key) : iterator
+ erase(TIterator element) : iterator 
+ size() : size_t
+ begin() : iterator
+ end() : iterator

- publishers
etl::flat_multimap

+ insert(mapped_parameter_t value) : iterator
+ find(key_parameter_t key) : iterator
+ erase(TIterator element) : iterator 
+ size() : size_t
+ begin() : iterator
+ end() : iterator

- subscribers

Figure 4.13: PublishersManager Component.

method searches by subscriber clients in the table of subscribers to know whom to send the message.
The messages are sent directly to the subscriber node.

SubscribersManager

The SubscribersManager component has an interface that enables other architecture com-
ponents to subscribe to a topic. Figure 4.14 shows the class diagram of the SubscribersManager
component (SubscribersManager).

SubscribersManager

+ subscribeHandler(...) : void
+ unsubscribeHandler(...) : void
+ yieldHandler(...) : void
+ subscribeAckHandler(...) : void
+ unsubscribeAckHandler(...) : void
+ receiveHandler(...) : void
+ deliverMsgToKernel(...) : void

etl::flat_map

+ insert(value : mapped_parameter_t) : iterator
+ find(key : key_parameter_t) : iterator
+ erase(element : TIterator) : iterator 
+ size() : size_t
+ begin() : iterator
+ end() : iterator

- kernelMsgHandler

etl::flat_map

+ insert(value : mapped_parameter_t) : iterator
+ find(key : key_parameter_t) : iterator
+ erase(element : TIterator) : iterator 
+ size() : size_t
+ begin() : iterator
+ end() : iterator

- subscribers
MessageQueue

+ Add(msg : MSG_TYPE) : void
+ Get(msg : MSG_TYPE*) : void
+ GetLength() : int
+ GetAvailable() : int
+ GetMaxSize() : int
+ GetEmpty() : bool

- msgQueue

Figure 4.14: SubscribersManager Component.

The other components of the middleware use the SubscribersManager methods to sub-
scribe/unsubscribe to a topic and to check for received messages. The SubscribersManager has
methods to handle network interruption (NI) events generated by the PSLayer component. The
receiveHandler method handles received messages in a subscribed topic. When the received mes-
sage is addressed to a topic subscribed by an application task, the method stores the message in the
MessageQueue component. When to a service running in the kernel level, the method calls the
respective function callback to process the message. The subscribeHandler method stores in the
table of Kernel Handlers (kernelMsgHander) the function callback informed by the kernel service
in the method parameter. Only one subscriber kernel service can subscribe to a given topic. In this
way, the etl::flat_map library implements the table of Kernel Handlers. The subscribeAckHan-
dler and unsubscribeAckHandler methods handle messages acknowledgment for the subscription
and unsubscription protocol phases. The yieldHandler method verifies if there is some message in
the MessageQueue for a given topic and consumes them.

The table of subscribers (subscribers) contains a register for each element that has called
the subscribeHandler method. The index of this table is the topic identification. The Subscribers-
Manager uses the table of subscribers to manage the subscribe message acknowledgment feature.



72

Also, when a component calls the unsubscribeHandler, the respective register in the table of sub-
scribers is erased. Only one subscriber can advertise a given topic. In this way, the etl::flat_map
library implements the table of subscribers.

Broker Manager

The Broker Manager component has an interface that enables the synchronization of
the topics in all the publish-subscribe system. Figure 4.15 shows the class diagram of the Broker
Manager component (Broker). The Broker Manager methods interact with the methods of the
PublishersManager and SubscribersManager components. The advertiseHandler and unadver-
tiseHandler methods perform inserting and erasing of topic registers in the table of the publishers
(publishers). These methods are consequences of the calls to the advertiseHandler and unad-
vertiseHander methods of the PublishersManager component (Section 4.3.4). In the same way,
the subscribeHandler and unsubscribeHandler methods perform inserting and erasing of topic
registers in the table of the subscribers (subscribers). These methods are consequences of the calls
to the subscribeHandler and unsubscribeHander methods of the SubscribersManager compo-
nent (Section 4.3.4). The tables of publishers and subscribers can store topics of the same index.
In this way, the etl::flat_multimap library implements both tables.

Broker

+ advertiseHandler(...) : void
+ unadvertiseHandler(...) : void
+ subscribeHandler(...) : void
+ unsubscribeHandler(...) : void

- publishers- subscribers
etl::flat_multimap

+ insert(mapped_parameter_t value) : iterator
+ find(key_parameter_t key) : iterator
+ erase(TIterator element) : iterator 
+ size() : size_t
+ begin() : iterator
+ end() : iterator

etl::flat_multimap

+ insert(mapped_parameter_t value) : iterator
+ find(key_parameter_t key) : iterator
+ erase(TIterator element) : iterator 
+ size() : size_t
+ begin() : iterator
+ end() : iterator

Figure 4.15: Broker Manager Component.

Protocol Stack Fabric

The Protocol Stack Fabric component composes the elements of the protocol stack used in
the middleware. Figure 4.16 shows the class diagram of the Protocol Stack Fabric component. The
ProtocolStackFabric class performs the external interface of the Protocol Stack Fabric component.
In order to become the implementation of protocol layers more flexible, the Protocol Stack Fabric
component uses three design patterns12 to perform the protocol stack: Protocol Stack, Protocol
Layer, and Protocol Packet. Two protocol layers are organized in adjacent layers (upper and lower),
and there are no dependencies between them. In the future, new layers can be developed and added
to the protocol stack without interventions at existent layers.

The Protocol Stack design pattern implemented by the ProtocolStack class maintains a
doubly linked list of protocol layers. It provides an interface composed of the following methods:
Transmit (invoked by an external element to send messages using the protocol stack); Receive
(invoked by the kernel to pass received messages to the protocol stack); Add_Layer (invoked by
the ProtocolStackFabric to add a protocol layer at a specific position in the protocol stack);
Remove_Layer (invoked by the ProtocolStackFabric to remove a layer from the protocol stack).

The Protocol Layer design pattern implemented by the ProtocolLayer class aims to
decouple adjacent protocol layers. It provides a standard interface for implementing different layers of
a protocol stack. We implement two protocol layers in the middleware: PSLayer (Publish-Subscribe
Layer) and NetworkLayer. Figure 4.17 shows the layers that compose the protocol stack and the

12https://www.eventhelix.com/RealtimeMantra/PatternCatalog/



73

ProtocolStack

+ Handle_Transmit(p_Packet : ProtocolPacket*) : void
+ Handle_Receive(p_Packet : ProtocolPacket*) : void
+ Add_Layer(p_Layer : ProtocolLayer*, placement : 
Placement, p_Existing_Layer : ProtocolLayer*) : void
+ Remove_Layer(p_Layer : ProtocolLayer*) : void

- pstack

MessageQueue

+ Add(msg : MSG_TYPE) : void
+ Get(msg : MSG_TYPE*) : void
+ GetLength() : int
+ GetAvailable() : int
+ GetMaxSize() : int
+ GetEmpty() : bool

- networkLayer

- msgQueue

ProtocolLayer

+ Transmit(p_Packet : ProtocolPacket*) : void
+ Handle_Receive(p_Packet : ProtocolPacket*) : void
+ Set_Upper_Layer(p_Layer : ProtocolLayer*) : void
+ Set_Lower_Layer(p_Layer : ProtocolLayer*) : void
+ Get_Upper_Layer() : ProtocolLayer* 
+ Get_Lower_Layer() : ProtocolLayer*

NetworkLayer

+ Transmit(p_Packet : ProtocolPacket*) : void
+ Handle_Receive(p_Packet : ProtocolPacket*) : void
- addMsgBuff(p_Packet : ProtocolPacket*) : void
+ ForwardMsgs() : void

PSLayer

+ Transmit(p_Packet : ProtocolPacket*) : void
+ Handle_Receive(p_Packet : ProtocolPacket*) : void

ProtocolStackFabric

+ Handle_Receive(p_Packet : ProtocolPacket*) : void
+ ForwardMsgs() : void

- psLayer

Protocol Packet

+ Add_Header(int length,addr : PACKETDATAT*) : void
+ Add_Trailer(length : int, addr : PACKETDATAT*) : void
+ Extract_Header(length : int) : void
+ Extract_Trailer(length : int) : void
+ Get_Header() : PACKETDATAT* 
+ Get_Body() : PACKETDATAT* 
+ Get_Trailer() : PACKETDATAT* 
+ Get_Length() : size_t 

Figure 4.16: Protocol Stack Fabric Component.

format of the handled packet. The layers implement the virtual methods of the ProtocolLayer class:
Transmit and HandleReceive. The ProtocolStack class invokes the Transmit method of a lower
layer to pass a packet to the upper layer. The ProtocolStack class invokes the HandleReceive
method of an upper layer to pass a packet to the upper layer.

PSLayer

NetworkLayer

PSLayer Service (4)
Node-Identifier (4)

Optional 1 (4)
Optional 2 (4)

Topic-Identifier 
(32 bytes)

4 bytes

Payload 
(512 bytes)

...

PSLayer
Header

NetworkLayer 
Header

PSLayer

NetworkLayer

Application Application Payload

Destination Address (4)

Payload

Network-on-Chip

Payload

Payload

Payload

Payload

Node A Node B

b) Packet Format

...

NetworkLayer Service (4)

a) Protocol Stack 

Handle_Receive
(packet)

Transmit 
(packet)

Handle_Receive
(packet)

Transmit 
(packet)

Handle_Receive
(packet)

Transmit 
(packet)

Handle_Receive
(packet)

Transmit 
(packet)

Figure 4.17: Protocol Stack and Packet Format.

The PSLayer class implements in the Handle_Receive method the network service
handlers managed by the publish-subscribe protocol, one for each phase of the protocol. Both
the PublishersManager, SubscribersManager and Broker Manager components of the middleware
use the Transmit method of the PSLayer class to send messages through the publish-subscribe
protocol. In the same way, the service handlers implemented in the Handle_Receive method call
the respective methods in those components.



74

The Protocol Packet design pattern implemented by the ProtocolPacket class handles
the packet encapsulation, providing an interface for adding and removing of headers and trailers in
the packet. The packet size is updated whenever headers and trailers are added or removed. The
ProtocolPacket class contains a raw buffer that is dynamically handled across the layers. The
goal is to reduce the overhead that could be occasioned by buffer copies in each layer. Instead, the
packet buffer location remains the same throughout the protocol stack, and only the header, body,
and trailer pointers are manipulated while the packet is forwarded between the layers. We do not
use the trailer region to implement the Publish-Subscribe header. Figure 4.17-b shows the packet
format used by the Publish-Subscribe Layer. The first four bytes comprise the physical address of
the destination node. The kernel defines the physical address from a given network address. The
PUB-SUB Service field identifies the message type for multiplexing service handler purposes. The
Node-Identifier comprises the identification of the source node. The Optional 1 and 2 are additional
fields used by the service handlers. The Topic-Identifier field identifies the publish-subscribe topic of
the message. The size of this field is parameterizable at design-time. As detailed in Section 5.3, the
topic is represented as a string, where each character occupies 1 byte. Therefore, the size of this
field defines the maximum number of characters of the topic. The following 512 bytes (configurable
size) represent the load region encapsulated by the serialization process.

Figure 4.18 shows a sequence diagram for the receiving of a packet in the middleware
protocol stack. When receiving, an external component (e.g. Kernel) calls the Handle_Receive
method of the ProtocolStackFabric class passing the packet as parameter (1). The ProtocolStack-
Fabric class calls the Handle_Receive method of the ProtocolStack class (2), which checks for the
lowest layer of the protocol stack (3) and forward the packet for the NetworkLayer class calling
the Handle_Receive method (4). The Handle_Receive method extracts its respective header and
checks who is the following layer to forward the packet by checking the NetworkLayer Service field
of the header (5). In this example, the message is addressed for the PSLayer, who receives the
message through its Handle_Receive method (6). The PSLayer class extracts the PSLayer header
and verifies who is the service handler to deliver the body message by checking the PSLayer Service
field of the header (7). In this example, the body message is addressed for the AdvertiseHandler
method of the Broker class (8), who receives the body message and process it (9).

NetworkLayerProtocolStackProtocolStackFabric

external call to 
Handle_Receive 
(packet) method

Handle_Receive 
(packet)

Handle_Receive 
(packet)

Checks for 
lowest layer

Checks for 
upper layer and 
extract 
NetworkLayer 
header

PSLayer

Handle_Receive 
(packet)

Extracts 
PSLayer 
header and 
forward 
message body 
for service 
handler

Broker

AdvertiseNIHan
dler(...)

Message
body 
processing

1
2

3

4

5

6

7

8

9

Figure 4.18: Receiving a packet in the Protocol Stack used in the Middleware.

Figure 4.17-b shows the Packet Format. The PSLayer Service field of a PSLayer packet
contains the type of the message, corresponding to the publish-subscribe protocol phases detailed
in Section 4.2.3. The PSLayer Class implements the service handlers for each message type, that



75

are: BrokerAdvertise, PublisherAdvertiseAck, BrokerUnadvertise, PublisherUnadvertiseAck, Broker-
subscription, SubscriberSubscriptionAck, BrokerUnsubscription, SubscriberUnsubscriptionAck, and
SubscriberRcv. This field is checked always that the PSLayer receives a packet (step 7 in Figure
4.18. Both the Node-Identifier and Topic-Identifier header fields are used by all types of messages.
However, the Optional 1 and Optional 2 header fields differ according to the message type. Each
message type is associated to a phase of the publish-subscribe protocol. Next, we describe the
characteristics of each message type in turn:
BrokerAdvertise - When a publisher node advertises a topic, the advertiseHandler method in the
PublshersManager class generates a BrokerAdvertise message that is forwarded to the respective
broker node and processed by the advertiseHandler method in the Broker class.
PublisherAdvertiseAck - To acknowledge the receiving of the BrokerAdvertise message, the adver-
tiseHandler method in the Broker class generates a PublisherAdvertiseAck message that is processed
by the advertiseAckHandler method in the PublishersManager class.
BrokerUnadvertise - When a publisher node unadvertises a topic, unadvertiseHandler method
in the PublshersManager class generates a BrokerUnadvertise message that is forwarded to the
respective broker node and processed by the unadvertiseHandler method in the Broker class.
PublisherUnadvertiseAck - To acknowledge the receiving of the BrokerUnadvertise message, the
unadvertiseHandler method in the Broker class generates a PublisherUnadvertiseAck message that
is processed by the unadvertiseAckHandler method in the PublishersManager class.
BrokerSubscription - When a subscriber node subscribes to a topic, the subscribeHandler method
in the SubscribersManager class generates a BrokerSubscription message that is forwarded to the
respective broker node and processed by the subscribeHandler method in the Broker class.
SubscriberSubscriptionAck - To acknowledge the receiving of the BrokerSubscription message,
the subscribeHandler method in the Broker class generates a SubscriberSubscriptionAck message
that is processed by the subscribeAckHandler method in the SubscribersManager class.
BrokerUnsubscription - When a subscriber node unsubscribes a topic, the unsubscribeHandler
method in the SubscribersManager class generates a BrokerUnsubscription message that is forwarded
to the respective broker node and processed by the unsubscribeHandler method in the Broker class.
SubscriberUnsubscriptionAck - To acknowledge the receiving of the BrokerUnsubscription mes-
sage, the unsubscribeHandler method in the Broker class generates a SubscriberUnsubscriptionAck
message that is processed by the unsubscribeAckHandler method in the SubscribersManager class.

Figure 4.19 shows the sequence diagram for the transmission of a packet in the middle-
ware protocol stack. A component must call the Transmit method of the PSLayer class to send a
packet (1). The PSLayer class adds the PSLayer header using the parameters passed in the method
call, checks for the lower layer (2) and forwards the packet to it calling the respective Transmit
method (3). The NetworkLayer class, that is the lower layer of the PSLayer class, adds the Net-
workLayer header (4) and send the packet (5) using the HSAL_OS_COMM_send function of the
Hardware/Software Abstraction Layer. The HSAL_OS_COMM_send function implements the low
level primitive to send the packet through the NoC.

4.3.5. Evaluation

We present in this section a middleware comparison contrasting the proposed middleware
and the previous middleware implementation.



76

HSALNetworkLayerPSlayer

Mounts the 
PSLayer 
header/body and 
call Transmit 
(packet) method

Transmit (packet)

Adds 
PSLayer 
header, 
check for 
lower layer 
and forward 
the packet

Adds 
NetworkLayer 
header and 
forward the 
packet

HSAL_OS_COMM_
send(packet) Sends the 

packet through 
the network

1
2

3

4

5

6

Figure 4.19: Transmitting a packet in the Protocol Stack used in the Middleware.

Experimental Setup

In order to compare the proposed middleware with the previous middleware implementation,
we have used a benchmark composed of the MPEG, Producer-Consumer (PROD-CONS) and DTW
(Dynamic Time Warping) applications. Figure 4.20 shows these applications represented through
a task graph using the publish-subscribe programming model. A directed arrow between two tasks
(blocks in the figure) means that the first task sends data to the second one. A message encapsulates
the data transferred between two tasks with a maximum payload size of 512 bytes in the experiments.
The number of exchanged messages by an application depends on the workload data configured at
compile time, in the test scenario.

We compare two equivalent implementations of the middleware: a previous middleware
implemented using C programming language (detailed in Section 4.2); and the proposed C++ based
middleware (respectively C MIDD and C++ MIDD in Figure 4.21). Both implementations use the
same base platform and programming model. The evaluated key metrics are memory footprint and
application execution time. The used compilers are the arm-none-eabi-gcc and arm-none-eabi-g++,
version 4.9.3. All scenarios use a single-cluster 4x4 MPSoC, with each PE executing a single task.
Tasks are mapped in the same PE in both C and C++ evaluation scenarios.

a) Bank

P8

Recognizer

pub(A)

P2 . . .P1

topic A

sub(B) pub(C)

topic B

b)

Start IVLC

IQUANT

IDCT

PRINT

pub(A) sub(A)

pub(B)

sub(B)

sub(C)

pub(D)sub(D)

to
pi

c 
A

to
pi

c 
B

to
pi

c 
C

to
pi

c 
D

pub(C)

c)

Consumer

pub(A) sub(A)

to
pi

c 
A

Producer

sub(A)
pub(B)
sub(C)

topic C

Figure 4.20: Task graph of the a) MPEG, b) PROD-CONS, and c) DTW applications.

Results

The first experiment evaluates the achieved memory footprint size (kernel + middleware)
of the C++ middleware implementation by using each technique and best practices for embedded



77

C++, as presented in Section 4.3.3. Table 4.3 shows the footprint size of the initial version with
no optimization (first line) and the footprint size achieved after using each technique, in the order
in which they appear in the table. The total memory footprint size achieved in the final version
of C++ the middleware is 17.03KB, being 11.06KB related to the kernel size and 5.97KB related
to middleware size. Compared to the C-based middleware detailed in Section 4.2 which has been
recompiled using the same features present in the C++ middleware, the proposed C++ middleware
represents an overhead of 1.37 KB (8.7%).

Table 4.3: Total Memory Footprint (Kernel+Middleware) improvement

Version Footprint (KB) Reduction

No optimization (INITIAL VERSION) 106 -
+ Using “-Os” 75.29 29%

+ Using “-fno-exceptions” 75.01 0.4%
+ Replacing Map/Multimap by

Flat-map/Flat-Multimap 72.32 3.6%
+ Using “Placement new” (FINAL VERSION) 17.03 76.4%

The second experiment evaluates the application execution time measured through a timing
model [AMR+16] that capture the executed instructions for each processor, generating an execution
time from total executed instructions. For this experiment, we use the final version (last line in Tab.
4.3) of the C++ middleware, which incorporates all cited optimizations. The execution time of both
DTW, MPEG and PROD-CONS applications were evaluated ranging the workload data from 8 to
64 packets. Figure 4.21 shows the results for each scenario. In all the simulated scenarios the C++
middleware presents better application execution time. Figure 4.21 also shows the percentage of
gain obtained in the C++ middleware implementation compared with the C implementation (minor
graph). It reduces the execution time ranging from 4% to 13.4% in DTW, from 3.4% to 19.5% in
PROD-CONS, and from 3% to 6.7% in MPEG, depending on the workload. The gain decreases
when the workload increases because the highest gain is obtained on topic advertise/subscribe steps,
which occurs at the beginning of the application execution. In these steps, the use of containers
reduces the time spent with the insertion and search of objects in the managed topic tables.

0

2

4

6

8

10

12

14

16

8 16 32 64

A
p

p
lic

at
io

n
 E

xe
cu

ti
o

n
 T

im
e

 
(1

06
 C

lo
ck

 C
yc

le
s)

 

Workload (Number of Packets) 

DTW/C++ MIDD

DTW/C MIDD

PROD-CONS/C++ MIDD

PROD-CONS/C MIDD

MPEG/C++ MIDD

MPEG/C MIDD
0

5

10

15

20

25

8 16 32 64

G
ai

n
 (P

er
ce

n
ta

ge
) 

DTW
PROD-CONS
MPEG

Figure 4.21: Application execution time for C and C++ scenarios.



78

The performed experiments demonstrate that the proposed middleware is well tailored to
MPSoC domain since it presents low memory usage and improved applications execution time.

4.4. Serialization/Deserialization into the Middleware

This section describes a key additional feature of the middleware that is the incorporation of
the serialization/deserialization feature into the middleware in order to ease the encapsulation of data
transferred between components of self-adaptive services. This new feature has been incorporated to
the previous object-oriented middleware presented in Section 4.3. The contributions detailed in this
section have been published in part at ICECS’18 [HDFGM18]. Section 4.4.1 explains the motivation
of using the serialization-deserialization feature into the middleware design. Section 4.4.2 presents
related works. Section 4.4.3 presents the list of serialization libraries and discusses some of their
applicability in the context of this work. Section 4.4.4 presents the experimental setup used to
compare the evaluated serialization libraries. Section 4.4.5 presents the results and discussion.

4.4.1. Motivation

In MPSoCs, the memory organization is usually based on the No Remote Memory Ac-
cess (NoRMA) approach, where the embedded processors indirectly access the remote address via
messages sent via a NoC. As any other distributed system based on NoRMA, the communication
infrastructure and protocol stack play an essential role in the system architecture.

Although the community widely debated on-chip physical communication infrastructure
in the past [BM06], discussions about how to build a protocol stack for MPSoCs are rarer to be
found. Regardless of the type of distributed domain, in typical protocol stacks, each of the layers
has a set of protocols, which provide different services to the upper layer. The uppermost layer
is the application layer while the lowermost one is the physical layer. Layers in between physical
and application layers may vary from system to system. For instance, the OSI model suggests the
implementation of five other layers: data link, network, transport, session, and presentation.

Despite the many different typical services for a protocol stack, serialization service is one
of the most common among them. Two approaches for serialization are commonly found in the
literature: binary and textual. In both, some serialization service is responsible for transforming
some applications data structure into serial data, which can be either a stream of bytes (binary
serialization) or merely a string (e.g., XML, JSON). Deserialization is the reverse process, where a
stream of bytes (or a string) is received and converted to a copy of the data structure that originated
it. It is important to note that serialization and deserialization are often called serialization, for short.
We use this terminology for the rest of this Thesis.

There are dozens of serialization libraries available. However, these libraries are designed
for a particular application domain that has requirements to be met. For example, application
domains related to mobile phones they require interoperability, low power consumption, among
others. Another example is web applications where, usually, textual serialization formats (e.g.,
XML, YAML, and JSON) are preferred. Thus, the approach for serialization methods is bound to
the domain of application.

In MPSoCs, where the amount of memory available for each PE is minimal (about tens
or hundreds of KBytes), some programming platforms (e.g., Java, Python) cannot be used. It also
excludes approaches that rely on large external dependencies (e.g., LibBoost). Besides, serialized



79

data must be as smaller as possible to save bandwidth in the NoC, reducing network contention and
energy consumption. For these reasons, string-based serialization (e.g., XML, JSON) are not valid
options. Lastly, the serialization and deserialization must be fast, because the MPSoCs are usually
based on small and simple processors. For instance, such processors work with 32-bit data path,
fixed-point arithmetic, and three or five pipeline stages. Lastly, some applications have real-time
constraints, although we do not address them in this Thesis.

The requirements for MPSoC excludes a substantial number of available serialization meth-
ods. We present an evaluation of the performance and resource usage of the few adequate solutions
we could find, against the requirements mentioned before. As given in Section 4.4.2, only a few
studies present similar comparisons, but the solutions they evaluate have no use for MPSoCs since
the domains of applications are radically different and less constrained when compared to the MPSoC
domain.

4.4.2. Related Works

Although some studies on the comparison of serialization libraries exist in the literature,
none of them are focused on serialization for highly memory constrained embedded platforms such as
MPSoCs. The most related works evaluates serialization with a focus on the Internet of Things do-
main [PBYP17]. However, they assume the Beagle Bone Black (https://beagleboard.org/black) or
Odroid (https://www.hardkernel.com) hardware platforms. Both platforms have more than 512MB
of memory and use a complete Linux-based OS, which has much more resources than the individual
processors of our target MPSoC architecture. Thus, most of the evaluated serialization methods
cannot be applied for MPSoCs because, for instance, the evaluated methods require from 1MB to
22MB of memory, which is more memory than the total amount of memory available for individual
processors in the target MPSoC platform.

Maeda [Mae11, Mae12] presented similar studies comparing several serialization libraries for
Java. The requirement of languages such as Java and Python is also a limitation for processors with
few KBytes of memory. Also, most of the serializers work with textual formats such as XML, YAML,
and JSON. Even though these formats present advantages concerning readability and interoperability,
they present the drawback of bigger serialized data size compared to the binary data formats. In
the MPSoC domain, bandwidth usage in the NoC is much more important than readability. For this
reason, binary serialization is more suitable for MPSoC.

Sumaray and Makki [SM12] present a similar comparison for data size, serialization speed
and ease of use of serialization libraries. However, they focus on Android-based platforms, which
fall on the same issues as the previous references.

Our main contribution is to present an experiment-based comparison of serialization li-
braries applied to the context of embedded platform highly constrained in memory.

4.4.3. Serialization Libraries

In programming languages such as Java and C#, serialization is implemented by extending
some interface of the built-in API. In other programming languages, such as C and C++, serialization
must be implemented almost from scratch. The community developed several libraries, in the hope
of mitigating efforts during the implementation of serialization.

https://beagleboard.org/black
https://www.hardkernel.com


80

Most of the libraries support both serializations of basic types and complex types. For
the later, the support mostly is provided through schemas, which approach varies from library to
library. Depending on the approach, the required resources may go over the available for resource
constrained platforms. In our comparison we considered the following libraries.

MsgPack-c (version 2.1.5) is an implementation of the MsgPack (msgpack.org) seri-
alization format with support to C and C++ language. MsgPack-c requires both a C++03 or
C++11 compatible compiler and code annotation. MsgPack-c is available at github.com/msgpack/
msgpack-c.

MsgPuck (v. 2.0) is a compact implementation of MsgPack library, written in C. MsgPuck
repository announces interesting characteristics like zero-cost abstractions and zero overhead. All
necessary library code is written in a pair of .c and .h files. In addition to support the base types,
MsgPuck also has support to arrays as representation of a sequence of objects and maps for key-
value pairs of objects. MsgPuck requires a C89+ or C++03 compatible compiler and it does not
use schemas or code annotation. Available at github.com/rtsisyk/msgpuck.

MPack (v. 0.8.2) is a third implementation of MsgPack format, also written in C, without
libc requirement. MPack does not use schemas or code annotation. Available at github.com/
ludocode/mpack.

FlatBuffers (v. 1.8.0) allows that the data can be accessed without unpacking serialized
data. But this features does not come without a cost, as we show in the results discussed in Section
4.4.5. Flatbuffers is based on Protocol Buffer format (github.com/google/protobuf), also known
as ProtoBuf. FlatBuffers requires both a C++11 compatible compiler and schemas definition.
Available at github.com/google/flatbuffers.

NanoPB (v. 0.3.9) is an implementation of ProtoBuf that targets embedded systems.
The serialization rely on schemas. Schemas of NanoPB are written into proto files, and their
syntax is very similar to C’s struct syntax. Nanopb should compile with most ansi-C compatible
compilers, but it requires implementations of the strlen, memcpy and memset functions. Available
at github.com/nanopb.

YAS (v. 5.0.1) is a replacement for Boost Serialization library (www.boost.org). Ad-
vantages of YAS include it is header-only library and does not depends on external libraries and
endianess. It requires both a C++11 compatible compiler and schemas definition. Available at
github.com/niXman/yas.

4.4.4. Evaluation

We perform the experiments in FreeRTOS-based MPSoC Plataform detailed in Section
4.1. The network infrastructure counts with a three-layer protocol stack that interacts with the
underlying NoC by system calls to the kernel. In the first layer resides application-level protocols.
These protocols are supported by a middleware implemented over the publish-subscribe programming
model.

Application Case Study

The experiments use a Producer-Consumer application, which contains two tasks: a pro-
ducer and a consumer. The pub-sub middleware is used to perform the communication between the
two tasks. A topic identifies the message flow. We use three distinct data types that represent the
application data in each test scenario. The goal is to evaluate each serialization library using from
straightforward to more complex data types. Figure 4.22 shows the used data types. The size of

msgpack.org
github.com/msgpack/msgpack-c
github.com/msgpack/msgpack-c
github.com/rtsisyk/msgpuck
github.com/ludocode/mpack
github.com/ludocode/mpack
github.com/google/protobuf
github.com/google/flatbuffers
github.com/nanopb
www.boost.org
github.com/niXman/yas


81

the structs A, B and C is, respectively, 8, 60 and 92 bytes, not considering the size of types that
are dynamically sized. In our experiments, the size of all vectors is 1, that is, each vector has only 1
inserted element. The application data is delivered to the middleware level by using the provided API
[HAR+17]. The middleware serializes the application data using a serialization library and transfers
the serialized payload to the low level of the protocol stack until it is transmitted over the NoC. One
message is sent by producer to consumer task in all scenarios.
/* Struct A */
struct Temperature{

int32_t timestamp;
float temp;};

/* Struct B */
struct InstrCnt{

char[32] name;
int32_t arith;
int32_t logical;
int32_t branch;
int32_t jump;
int32_t load;
int32_t store;
int32_t nop;};

enum TempLevel{High=1,Medium,Low};

/* Struct C */
struct AllSensors{
std::string name;
Temperature temp;
float calib;
int16_t processor_usage;
int16_t processor_usage;
std::vector<uint8_t> occupancy;
TempLevel tempLevel;
std::vector<InstrCnt> processors;
InstrCnt instrCnt;
std::vector<Temperature> History;};

Figure 4.22: Data structures used within the experiment.

Metrics

Three metrics are extracted from each scenario: serialization and deserialization execution
time, data size, and code size. A scenario is a combination of a serialization library and one of
the three structures presented in Figure 4.22. Thus, a total of 16 scenarios were run, since YAS
and NanoPB do not support the serialization of vectors, which are used in Struct C. Although
the MsgPuck and MPack libraries do not directly support vectors, the available API allows you to
serialize the vectors as object arrays and include them in the serialized data.

The serialization execution time corresponds to the total time spent by the producer
process to perform the serialization of data. The deserialization execution time is the time spent
by the consumer process to perform the deserialization of the received data. The measurement unit
is the number of clock cycles measured through a timing model [ROR+14] that capture the executed
instructions for each processor, generating an execution time from total executed instructions. The
data size (DS) corresponds to the number of bytes required to encapsulate the serialized object into
the packet payload, that is, the total size of the payload data of the application layer. The code size
(CS) corresponds to the amount of memory required in PE to store the software code. This metric
considers the size of kernel, middleware and serialization library, together. The measurement unit is
bytes. For comparison purposes, the size of the software code (kernel plus middleware) without any
serialization library is 22.5KB.



82

267 

827 

3301 

93 132 

1624 

944 

1745 
2352 

4908 

2772 

7170 

245 
700 

2455 2583 

3956 

23 
297 

2131 

384 

1586 

568 

2029 

3572 

2241 

6579 

757 

2125 

7724 

0

1.000

2.000

3.000

4.000

5.000

6.000

7.000

8.000

Struct A Struct B Struct C Struct A Struct B Struct C Struct A Struct B Struct A Struct B Struct C Struct A Struct B Struct A Struct B Struct C

MsgPack-c MsgPuck YAS FlatBuffers NanoPB MPack

C
lo

ck
 C

yc
le

s 

   

Ser. Time Des. Time

12830 
... 

15927 
... 

Figure 4.23: Serialization and deserialization execution time for each evaluated library and serialized
data structs.

4.4.5. Results

The performed experiment evaluates memory code size (CS) and payload data size (DS)
achieved at each data struct type. Table 4.4 shows the results. Regarding CS and DS, the MsgPuck
library has achieved the fittest result for all three data structures. All libraries present a larger
code size for Struct C because this struct has elements with standard types to represent vectors
and strings (std::vector and std::string). Consequently, the code size is significantly increased with
additional methods to handle these types. An alternative to representing these object types would be
the use of specialized libraries for embedded system, such as Embedded Template Library (http://
www.etlcpp.com). FlatBuffers library needs a larger number of bytes to represent the serialized
data, in addition to presenting the largest code size. FlatBuffers stores metadata of complex types
into memory in a way that it serves as pointers to parts of the serialized data. In general, libraries
that use schemas to represent data structures end up producing a larger code size. They use a
run-time type identification (RTTI), which is a feature of the C++ programming language that
exposes information about an object’s data type at runtime. On the other hand, the libraries with
smaller generated code size are those that require the explicit definition of the serialize/deserialize
method for each object that composes the struct. We observe a trade-off between ease of use of
the library and the amount of memory necessary to store the software. The system designer must
keep this in mind when choosing the serialize library that fits into your design.

In order to demonstrate an example of ease of use, we show the code snippet necessary to
serialize the Struct B in both the YAS library (Figure 4.24), that uses schemas, and the MsgPuck
library (Figure 4.25), that requires the explicit declaration of serialization process for each struct
element.

We observed that some serialization libraries (MsgPack-c, MsgPuck and MPack) consume
more clock cycles for deserialization than serialization. In the Producer-Consumer application, specif-
ically, this is very undesired, since, if the producer process is faster than the consumer, there will be
a point in application’s lifetime in which the consumer buffer will be full, and thus the producer will
be unable to produce and deliver more packets. This behavior may slow the system, which is not
tolerable in some domains (e.g. real-time applications). When the serialization time is greater than
the deserialization time, the system is also slowed, but the node that hosts the consumer application
will not be compromised in case it has other tasks to care of.

http://www.etlcpp.com
http://www.etlcpp.com


83

Table 4.4: Memory size for each analyzed library.

Library Struct A Struct B Struct C
CS1 DS2 CS1 DS2 CS1 DS2

MsgPack-c 168.7 9 269.1 15 272.6 67
MsgPuck 22.7 8 23 14 263.2 62

YAS 328.9 15 329.7 49 N/S3 N/S3
Flatbuffers 333.6 24 334 72 336 224
NanoPB 33.6 10 33.7 24 N/S3 N/S3
MPack 34.8 9 35 15 272.3 67

1 CS = Memory Code Size (in KBytes)
2 DS = Data Size of the message payload (in
Bytes)

3 N/S = No support for vector of structs

yas::mem_ostream os;
yas::binary_oarchive<yas::mem_ostream> oa(os);
oa & AppData;
this->message.msg_len = os.get_intrusive_buffer().size;
this->message.msg = (char*) os.get_intrusive_buffer().data;
----------------------------------------------------------
template<typename Ar>
void serialize(Ar &ar, const AppDataClass &t) {
ar & YAS_OBJECT_NVP( "InstCnt", ("n",t.InstrCnt.name),
("a",t.InstrCnt.arith), ("l",t.InstrCnt.logical),
"b",t.InstrCnt.branch), ("j",t.InstrCnt.jump),
("ld",t.InstrCnt.load), ("s",t.InstrCnt.store),
("n",t.InstrCnt.nop)); }

Figure 4.24: Code snippet of the YAS serialization process and required schema. AppData object
contains an InstrCnt member corresponding to the Struct B.

char buf[MAX_PAYLOAD_SIZE];
char *w = buf;
w = mp_encode_str(w, AppData.InstrCnt.name,
strlen(AppData.InstrCnt.name));
w = mp_encode_int(w, AppData.InstrCnt.arith);
w = mp_encode_int(w, AppData.InstrCnt.logical);
w = mp_encode_int(w, AppData.InstrCnt.branch);
w = mp_encode_int(w, AppData.InstrCnt.jump);
w = mp_encode_int(w, AppData.InstrCnt.load);
w = mp_encode_int(w, AppData.InstrCnt.store);
w = mp_encode_int(w, AppData.InstrCnt.nop);
this->message.msg_len = strlen(buf);
this->message.msg = buf;

Figure 4.25: Code snippet of MsgPuck serialization process for the Struct B.



84

5. MIDDLEWARE EXTENSION FOR SELF-ADAPTIVE SYSTEMS

This chapter presents extension of the middleware that provides support for the develop-
ment of self-adaptive systems in MPSoC platforms. Section 5.1 describes the model of self-adaptive
system that we are proposing. Section 5.2 presents the extension of the middleware that imple-
ments the proposed model providing the support for development self-adaptive systems. A set of
classes and features comprises this extension, called Modules, separating the functional logic of the
self-adaptive system from the adaptive logic. Functional logic refers to the composition of the basic
components that orchestrate the communication between the elements of the self-adaptive system.
We have already detailed in Section 4.3.4 the functional logic of the middleware. Adaptive logic
refers to the final logic for which the adaptive system is developed, that is related to the system
adaptability, without concern with aspects of communication. Additionally, we present in Section
5.3 the topic name scheme used in the Modules extension. Finally, in Section 5.4, we present the
basic guidelines for creating the objects of a self-adaptive system, together with a tool to automate
this process.

5.1. Self-Adaptive System Model

A self-adaptive system is modeled in our proposal following the Observe-Decide-Act loop
computing paradigm (see Section 2.4). We describe a self-adaptive system (SAS) as the set
SAS={ASE1, ASE2, ..., ASEn}, where ASE={S, M, D, A, E, T, SM, AE} is the adaptive ser-
vice set. In the set ASE, S={s1, s2, ..., sn} is the sensor set, M={m1, m2, ..., mn} is the monitor
set, D={d1, d2, ..., dn} is the decisor1 set, A={a1, a2, ..., an} is the actuator set, E={e1, e2, ..., en}
is the effector set, and T={t1, t2, ..., tn} is the topic set. The set SM={{si,mi,ti}, {sj,mj,tj}, ...,
{sn,mn,tn}} represents the relations between the sensor/monitor pairs (e.g. {si,mi}) identified by a
given topic (e.g. {ti}). The set AE={{ai,ei,ti}, {aj,ej,tj}, ..., {an,en,tn}} represents the relations
between the actuator/effector pairs (e.g. {si,mi}) identified by a given topic (e.g. {ti}). Each
decisor di={M, A} has your own set of monitors M and actuators A. This means that a decisor
composites one or more monitors and actuators. A decisor has no topic identification since the
programming model abstract it. A self-adaptive system composes one or more adaptive services.
Each adaptive service performs adaptation for a desired objective2. Figure 5.1 shows two examples
of Self-Adaptive System models.

In the proposed model, the set of sensors (S) and effectors (E ) makes the interface with
local observable and configurable resources (hardware or software) in the MPSoC platform. The
set of monitors (M) and actuators (A) are the respective components that a decisor (placed at any
place of the architecture) uses to communicate with sensors and effectors.

5.2. Middleware Extension: Modules

The Modules is an extension of the middleware that implements the Self-Adaptive System
model described in Section 5.1. It provides a way for the development of adaptive services composed
of software and/or hardware elements distributed by the network-on-chip composed a set of sensors,

1To simplify, we call the decision-making component as “decisor”.
2Additional mechanisms not included in the model should address issues of multi-objective adaptability or when there are distributed decision-making (more than one decisor for

the same set of actuators).



85

Sensor s 1

Monitor m 1

Topic t1

Effector e 1

Actuator a 1

Topic t2

Decisor d 1

Sensor s 1

Monitor m 1

Topic t1

Effector e 1

Actuator a 1

Topic t3

Decisor d 1

Sensor s 2

Monitor m 2

Topic t2

a)

Effector e 2

Actuator a 2

Topic t4

b)

Observable 
HW/SW Resource

Configurable 
HW/SW Resource

Observable 
HW/SW Resource

Configurable 
HW/SW Resource

Configurable 
HW/SW Resource

Observable 
HW/SW Resource

MPSoC Platform
Adaptive System

Figure 5.1: Examples of self-adaptive system models: a) SAS={S={s1}, M={m1},
D={d1={m1,a1}}, A={a1}, E={e1}, T={t1, t2}, SM={{s1,m1,t1}}, AE={{a1,e1,t2}}};
b) SAS={S={s1,s2}, M={m1,m2}, D={d1={{m1,m2},{a1,a2}}}, A={a1,a2}, E={e1,e2},
T={t1,t2,t3,t4}, SM={{s1,m1,t1}}, {{s2,m2,t2}}, AM={{a1,e1,t3}},{{a2,e2,t4}}}

decision-making methods, and actuators. Note that it is not the purpose of this Thesis to provide a
set of adaptive services or a set of sensors, decision-making methods, and actuators. Nevertheless,
we provide a middleware to make developing self-adaptive systems easier, more extensible, easier
to maintain and decoupled from kernel software and the underlying hardware level (making it easily
portable). A case study of a self-adaptive system using this middleware extension is presented in
Chapter 6.

Figure 5.2 shows the OO-MQSoC architecture enhanced with the extension Modules, rep-
resented in the figure by the component named “Modules”. The Modules component presents a set
of classes and object-oriented techniques that applied together give support for the development of
adaptive services. The set of classes are designed following an object-oriented paradigm and imple-
ments the five components of the Self-Adaptive System model: Sensor, Monitor, Decisor, Actuator
and Effector. The publish-subscribe paradigm is explored to perform the communication between
the communicating pairs. A topic identifies the communication performed by a communicating pair.
As detailed in Section 5.1, the communicating pair can be a pair of sensors and monitors or a pair of
actuators and effectors. Note that there is two types of components named monitors and effectors.
A monitor is a component that subscribes to data from a sensor at the publish-subscribe system.
That is, for every sensor component, there must be a monitor component. The same happens for
the effector, which is a component that subscribes to the data of an actuator. Different topics
identify the communication between the sensor/monitor pair and actuator/effector pair. A decisor
that wants to receive data from a given sensor, it must instance the respective monitor component
and then use the sensor data as a local variable of the monitor object. To apply a given system
configuration, a decisor must instantiate the respective actuator component, store the decision in
a local variable of the actuator object and call a primitive that will trigger the actuation over the
NoC via publish-subscribe protocol. A decisor can instantiate one or more monitors and actuators
(Figure 5.1-b). The remaining logic of the publish-subscribe protocol is performed by middleware.
We detail this mechanism in the following sections.

The main advantage of using Modules is that the user3 does not need to know details
of the communication primitives of the middleware communication API. Instead, the user handles
the ODA components as local variables. The base classes of the Modules component perform all
the underlying communication with the lower-level components of the middleware architecture (e.g.

3We call as “user” the programmer of the adaptive service.



86

Network-On-Chip InterfaceMemory Processor

OS Kernel

Broker 
Manager

Containers

Modules Manager

 Middleware Application API

Message Queue

Protocol Stack Fabric

HSAL 
Sensor API

Hardware/Software 
Abstraction Layer (HSAL)

HSAL 
Actuator API

HSAL 
Communicating API

Adaptive Service 1

 Middleware 
Extension

API
Modules

(Middleware Extension)

Adaptive Service 2

Adaptive Service n

Middleware 
Communication

Subscribers 
Manager

Publishers 
Manager

Middleware
LevelAdaptive Service 1

Kernel/HW
Level

APP1 APP2 APPn

Sensor

Decisor

Effector
Sensor

Sensor
Sensor

Effector
Effector
Effector

sensors

Monitor
Actuator

Actuator
Actuator
Actuator

 effectors

actuators

Application 
Level

Figure 5.2: OO-MQSoC architecture enhanced with the Modules middleware extension.

PublishersManager, SubscribersManager, Broker, ProtocolStack). Following, we describe the base
class of the Modules component.

5.2.1. Modules Component

The Modules component (Modules class, in gray in the class diagram showed in Figure
APPENDIX B.1), composes the set of derived classes that represent the elements of a given self-
adaptive system. The self-adaptive system could be composed of one or more adaptive services.
The derived classes are based on the following base classes: Sensor, Monitor, Actuator, Effector,
and Decisor. The base classes contain virtual methods (those highlighted in bold) that must be
implemented in their derived classes. Figure APPENDIX B.1 shows the class diagram of the Modules
Component. The ModuleInterface<T> class is a template class that performs communication
with low level primitives of the middleware, defining invariant properties of the adaptive service
components. The ModuleInterface<T> class has a specialized implementation for each one of the
base classes: ModuleInterface<Sensor>,ModuleInterface<Monitor>,ModuleInterface<Actuator>,
and ModuleInterface<Effector>. Following we explain each one of these specialized classes. The
Decisor class has no implementation of ModuleInterface<> because a decisor does not need to use
the communication primitives of the middleware. A derived class from Decisor is fully decoupled
from the middleware logic, referring only to which monitors and actuators it uses, as explained in
the decisor example in Section 5.4.3. The Modules class presents a set of methods, as follows:

• enable() - General code to be run when the Modules object is enabled.
• enableSensors() - Enables the set of sensors.
• enableMonitors() - Enables the set of monitors.



87

• enableActuators() - Enables the set of actuators.
• enableEffectors() - Enables the set of effectors.
• enableDecisors() - Enables the set of decisors.
• updateSensors() - Calls the update method of the set of sensors. The Algorithm 1 shows a

pseudo-code of the updateSensors() method, where sensorsset is the set of sensors.
• updateDecisors() - Calls the decide method of the set of decisors. The Algorithm 2 shows a

pseudo-code of the updateDecisors() method, where decisorsset is the set of decisors.

Algorithm 1 updateSensors() method pseudo-code
1: Input: sensorsset
2: for each sensori ∈ sensorsset do
3: if sensori.isEnabled() then
4: sensori.update()
5: end if
6: end for

Algorithm 2 updateDecisors() method pseudo-code
1: Input: decisorsset
2: for each decisorsi ∈ decisorsset do
3: if decisorsi.isEnabled() then
4: decisori.decide()
5: end if
6: end for

5.2.2. Modules Base Classes

In this section we detail the base classes used by Modules component detailed in Section
5.2.1, as follows:

ModuleInterface<Sensor>

The ModuleInterface<Sensor> class is a specialized template class of the ModuleInter-
face<T> class presenting the composition of the methods necessary to implement a sensor object in
the middleware. Figure APPENDIX B.2 shows the class diagram of the ModuleInterface<Sensor>
class. It is a derived class from both Sensor and ModuleInterfacePublisher classes. The ModuleIn-
terfacePublisher class contains methods to interface with low-level communication primitives of
the middleware, detailed in Section 5.2.2. In Figure APPENDIX B.2, ExampleASensor and Ex-
ampleBSensor are effective implementations of sensors, that must implement their own update()
method - derived from theSensor class - and updateStatus() method - derived from the ModuleIn-
terface<Sensor> class. Section 5.4.1 describes an example of how implement an effective sensor
class. The ModuleInterface<Sensor> class contains two public methods described as follows:



88

• updateStatus() - Virtual method declaration that must be implemented in the derived sensor
class; the implementation must update the sensor data with current values using HSAL primi-
tives in order to access kernel or hardware sensors or any other method to access the observed
sensor data;

• updateData(data : ModuleType) - Virtual method implementation that: i) calls the updateS-
tatus method to update the sensor data with current value; ii) serializes the updated sensor
data calling the serialize method of the derived ModuleType class; iii) and calls the transmit
method of the ModuleInterfacePublisher class to invoke underlying publish communicating
primitive.

ModuleInterface<Monitor>

The ModuleInterface<Monitor> class is a specialized template class of the ModuleInter-
face<T> class. The ModuleInterface<Monitor> class presents the composition of the methods
necessary to implement a monitor object in the middleware. Figure APPENDIX B.3 shows the
class diagram of the ModuleInterface<Monitor> class. It is a derived class from both Monitor
and ModuleInterfaceSubscriber classes. The ModuleInterfaceSubscriber class contains the methods
to interface with low-level communication primitives of the middleware, detailed in Section 5.2.2.
Figure APPENDIX B.2, ExampleAMonitor and ExampleBMonitor are effective implementations of
monitors, that must implement their own enable method derived from the Monitor class and doit
method derived from the Callback class. Section 5.4.1 describes an example of how implement
an effective monitor class. The ModuleInterface<Monitor> class does not contain any particular
method, only derives the methods of the base classes.

ModuleInterface<Actuator>

The ModuleInterface<Actuator> class is a specialized template class of the ModuleIn-
terface<T> class. This class presents the composition of the methods necessary to implement an
actuator object in the middleware. Figure APPENDIX B.4 shows the class diagram of the ModuleIn-
terface<Actuator> class. It is a derived class from both Actuator and ModuleInterfacePublisher
classes. The ModuleInterface<Actuator> class contains a public method described as follows:

• driveData(data : ModuleType) - Virtual method implementation that: i) serializes the up-
dated actuator data calling the serialize method of the derived ModuleType class; ii) calls the
transmit method of the ModuleInterfacePublisher class to invoke underlying publish commu-
nicating primitive

.

ModuleInterface<Effector>

The ModuleInterface<Effector> class is a specialized template class of the ModuleInter-
face<T> class. The ModuleInterface<Effector> class presents the composition of the methods
necessary to implement an effector object in the middleware. Figure APPENDIX B.5 shows the
class diagram of the ModuleInterface<Effector> class. It is a derived class from both Effector and
ModuleInterfaceSubscriber classes. In Figure APPENDIX B.2, ExampleAEffector and ExampleB-
Effector are effective implementations of effector objects, that must implement their own enable
method derived from the Effector class and doit method derived from the Callback class. Section
5.4.2 describes an example of how implement an effective effector class.



89

ModuleInterfacePublisher

The ModuleInterfacePublisher class contains the methods necessary to handle the commu-
nication primitives of the middleware as a publisher client. Figure APPENDIX B.6 shows the class
diagram of the ModuleInterfacePublisher class. It also contains private member variables represent-
ing the message to be transmitted and the topic that identifies the data flow. Both ModuleInter-
face<Actuator> and ModuleInterface<Sensor> are derived classes from ModuleInterfacePublisher
class. TheModuleInterfacePublisher class derives the methods of the Publisher class (Section 5.2.2),
which presents the last level of abstraction before calling the PublishersManager class methods. The
ModuleInterfacePublisher class contains two public methods described as follows:

• transmit() - Virtual method implementation that calls the publish method of the derived
Publisher class passing the topic and message variable members as parameter;

• enableAsPublisher() - Virtual method implementation that calls the advertise method of the
derived Publisher class passing the topic variable member as parameter.

ModuleInterfaceSubscriber

The ModuleInterfaceSubscriber class contains the methods necessary to handle the com-
munication primitives of the middleware as a subscriber client. Figure APPENDIX B.7 shows the
class diagram of the ModuleInterfaceSubscriber class. It contains private member variables repre-
senting the message to be received and the topic that identifies the data flow. Both ModuleIn-
terface<Monitor> and ModuleInterface<Effector> are derived classes from ModuleInterfaceSub-
scriber class. The ModuleInterfaceSubscriber class derives the methods of the Subscriber class,
which presents the last level of abstraction before calling the SubscribersManager class methods.
The ModuleInterfaceSubscriber class contains one public method described as follows:

• enableAsSubscriber(callBackP : CallbackPtr) - Virtual method implementation that calls the
subscribe method of the derived Subscriber class passing callBackP as parameter for Call-
backPtr.

Publisher

The Publisher class implements the last level of abstraction before calling the Publish-
ersManager class methods. Therefore, the Publisher class is responsible for performing, at last
level, the communication with the middleware for components of an adaptive service modeled as a
publisher client. The Publisher class contains two public methods described as follows:

• advertise(t : Topic) - Virtual method implementation that calls the advertiseHandler method
of the PublishersManager class passing the t as parameter for Topic ;

• publish(t : Topic, mqMessage : MQSoCMessage) - Virtual method implementation that calls
the publishHandler method of the PublishersManager class passing the t as parameter for
Topic and mqMessage as parameter for MQSoCMessage.

Subscriber

The Subscriber class implements the last level of abstraction before calling the Subscribers-
Manager class methods. Therefore, the Subscriber class is responsible for performing, at last level,
the communication with the middleware for components of an adaptive service modeled as a sub-
scriber client. The Subscriber class contains one public method described as follows:



90

• subscribe(t : Topic, callBackP : CallBackPtr) - Virtual method implementation that calls the
subscribeHandler method of the SubscribersManager class passing the t as parameter for
Topic and callBackP as parameter for pointer to CallBackPtr. This pointer to a method of
the subscriber node is called by the SubscribersManager class when it receives a message to
respective topic.

UpDownActuator

The UpDownActuator class is design pattern implementation that handles a special set
of actuation commands in an adaptive service. It standardizes the interface for a set of actuators
that has the following behavior: sends actuation commands which can be represented by different
levels of actuation. To use the UpDownActuator class, the levels of actuation of a given actuator
must be able to be represented as an enumerator class. The enumerator class must implement
both operator++ and operator-- methods that are handled by the UpDownControl class. The
UpDownControl class implements the standard interface provided by the UpDownActuator class.
Figure APPENDIX B.8 shows the class diagram of the UpDownActuator class. As represented, the
UpDownActuator class is a derived class from ModuleInterface<Actuator> and UpDownControl
classes. The UpDownActuator is implemented as a template class that receives from its derived
class the enumerator class type declaration and the values that represent the first, last and initial
values of this enumerator class. The UpDownActuator class contains the following public methods
derived from their base classes:

• up() - Increases the actual value of the enumerator class by one level;
• down() - Decreases the actual value of the enumerator class by one level;
• get() - Returns the actual enumerator class value;
• advance(n : int) - Increases (positive n value) or decreases (negative n value) the actual value

of the enumerator class by n levels;
• to_first() - Advances to the first value defined for the enumerator class;
• to_last() - Advances to the last value defined for the enumerator class;
• at_first() - Returns true if the actual value corresponds to the first value defined for the

enumerator class;
• at(val : T) - Returns true if the actual value corresponds to val.

5.2.3. Atomic Operations among Sensors, Monitors, Actuators and Effectors Objects

External components (e.g. Modules component) can invoke the following atomic opera-
tions of objects of an adaptive service, detailed as follows: a) Sensor - enable() and update(); b)
Monitor - enable(); c) Actuator - enable() and drive(); d) Effector - enable(). We show as follows
the operations triggered when these methods are called.

Enabling a Sensor, Monitor, Actuator or Effector object

Figure 5.3-a shows the sequence diagram representing what happens when an external
component calls the enable() method (1 in Figure) of a hypothetical Sensor object named Exam-
pleASensor. The atomic operation invokes the respective methods (2 and 3) of the base classes
detailed earlier until performing the sensor enabling through the call of the advertiseHandler (topic)



91

method of the PublishersManager component (4). The same happens for enabling the objects of a
Monitor (Figure 5.3-b), an Actuator (Figure 5.3-c), and an Effector (Figure 5.3-d).

PublisherModuleInterfacePublisherExampleASensor

1

4
3

enable() enableAsPublisher()
advertise(topic)

PublisherNodeMgt

2
advertiseSCHandler(
topic)

PublisherModuleInterfacePublisherExampleAActuator

1

4
3

enable() enableAsPublisher()
advertise(topic)

PublisherNodeMgt

2
advertiseSCHandler(
topic)

SubscriberModuleInterfaceSubscriberExampleAMonitor

1

4
3

enable()

subscribe(topic)

PublisherNodeMgt

2 subscribeSCHandler(
topic)

SubscriberModuleInterfaceSubscriberExampleAEffector

1

4
3

enable()
enableAsSubscriber(
&doit(MQSoCMessage*)) subscribe(topic)

PublisherNodeMgt

2 subscribeSCHandler(
topic)

enableAsSubscriber(
&doit(MQSoCMessage*))

a)

b)

c)

d)

Figure 5.3: Sequence diagram of the enable() atomic operation of a hypothetical: a) Sensor ; b)
Monitor ; c) Actuator ; d) Effector.

Updating the data of Sensor object

Figure 5.4 shows the sequence diagram representing what happens when an external com-
ponent calls the update () method (1 in Figure) of a hypothetical sensor object named Exam-
pleASensor. The update method of the sensor object calls the updateData method (2) of the Mod-
uleInterface<Sensor> base class, passing the sensor data as parameter. The updateData method
calls the updateStatus method (3) of the ExampleASensor object to update the sensor data with
an actual value (4). Then, the updateData method calls the serialize method (5) of the sensor
type defined in the example by the ExampleAModuleType class in order to serialize the sensor data
into the message payload (6). After the serialization process, the updateData method calls the
transmit method (7) of the ModuleInterfacePublisher base class, which invokes the publish method
(8) of the Publisher base class. Finally, the publish method in the Publisher base class calls the
publishHandler method of the PublishersManager component passing the topic and the message
as parameters. The publishHandler method is responsible for performing the underlying message
processing before transmit the message (e.g., adds the message header).



92

PublisherModuleInterface<Sensor>ExampleASensor

1

9

update() updateData(data)

publish(topic,
message)

PublisherNodeMgt

2

publishSCHandler(
topic, message)

updateStatus()

ExampleAModuleType

3Updates the 
sensor data 
from HSAL 
primitives or 
other one

Serializes the 
sensor data 
using the 
serialization 
library

serialize(&message)

ModuleInterfacePublisher

transmit()

4
5

6

7

8

Figure 5.4: Sequence diagram of the update() atomic operation of a hypothetical Sensor object
named ExampleASensor.

Receiving a monitored sensor data in a Monitor object

Figure 5.5 shows what happens when the message with the sensor data is delivered to the
SubscribersManager component through a call from the receiveHandler method (1 in Figure). Note
that this method could be called by the PSLayer component whether the message is received from
the NoC, or by the PublishersManager component whether the message is received locally. The
receiveHandler method checks the received message topic, searches for the callback pointer of that
topic in its records, and calls the respective callback method named doit passing the message as
parameter (2). The doit method, implemented in the monitor object named the ExampleAMonitor,
calls the deserialize method (3) implemented in the respective monitor type defined in the example
as the ExampleAModuleType class (the same module type class of the respective sensor pair). After
deserialized (4), the local variable of the ExampleAMonitor object contains the current value of the
monitored sensor data (5).

ExampleAMonitorSubscriberNodeMgt

1

receiveNIHandler(...)

doit(message)

2

ExampleAModuleType

Deserializes the 
message  using 
the serialization 
library

deserialize(&message)

3

Verifies the topic of 
the received 
message and calls 
its callback pointer

4

The monitored sensor data 
is available in the local 
variable member to be 
used as appropriate

5

Figure 5.5: Sequence diagram for receiving a sensor data message in a hypothetical monitor object
named ExampleAMonitor.



93

Actuating in an actuator data of an Actuator object

Figure 5.6 shows the sequence diagram representing what happens when an external com-
ponent calls the drive() method (1 in Figure) of a hypothetical actuator object named ExampleAAc-
tuator. The drive method of the sensor object calls the driveData method (2) of the ModuleInter-
face<Actuator> base class, passing the sensor data as parameter. The driveData method calls the
serialize method (3) of the actuator type defined in the example by the ExampleAModuleType class
in order to serialize the actuator data into the message payload (4). After the serialization process,
the driveData method calls the transmit method (5) of the ModuleInterfacePublisher base class.
From here, the message transmission follows the same steps of the sensor data transmission. The
transmit method (5) of the ModuleInterfacePublisher base class calls the publish method (6) of the
Publisher base class. Then, the publish method in the Publisher base class calls the publishHandler
method of the PublishersManager component passing the topic and the message as parameters.
The publishHandler method delivers the message for the destination subscriber node.

PublisherModuleInterface<Actuator>ExampleAActuator

1

7

drive() driveData(data)

publish(topic,
message)

PublisherNodeMgt

2

publishSCHandler(
topic, message)

ExampleAModuleType

Serializes the 
actuator data 
using the 
serialization 
library

serialize(&message)

ModuleInterfacePublisher

transmit()

3

4

5

6

Figure 5.6: Sequence diagram of the drive() atomic operation of a hypothetical actuator object
named ExampleAActuator.

Receiving an actuator data in an Effector object

Figure 5.7 shows what happens when the message with the actuator data is delivered to
the SubscribersManager component through a call from the receiveHandler method (1 in Figure).
Likewise receiving a monitored sensor data in a monitor object, the receiveHandler method could
be called by the PSLayer component whether the message is received from the NoC, or by the
PublishersManager component whether the message is received locally. The receiveHandler method
checks the received message topic, searches for the callback pointer of that topic in its records, and
calls the respective callback method named doit passing the message as parameter (2). The doit
method, implemented in the effector object named ExampleAEffector, calls the deserialize method
(3) implemented in the respective module type defined in the example as the ExampleAModuleType
class (the same module type class of the respective actuator pair). After deserialized (4), the local
variable of the ExampleAEffector object contains the current value of the actuator data and can be
used to effect a given configuration of the system (5).

5.3. Topic-Name Scheme

A monitor-rich system presents a large amount of different information to be made avail-
able. Likewise, system elements need to know about the existence of resources on the network.
In the publish-subscribe model, a topic represents the atomic information made available in the



94

ExampleAEffectorSubscriberNodeMgt

1

receiveNIHandler(...)

doit(message)

2

ExampleAModuleType

Deserializes the 
message  using 
the serialization 
library

deserialize(&message)

3

Verifies the topic of 
the received 
message and calls 
its callback pointer

4

Effect the received 
configuration 
paramenters using 
HSAL primitives or 
other one

5

Figure 5.7: Sequence diagram for receiving a actuator data message in a hypothetical effector object
named ExampleAEffector.

system (e.g. energy spent by a processing element). An organized way of maintaining a topic index
available for query and subscription is used by the ROS environment [ROS16b], which manages a
hierarchical graph of resource names [ROS16a]. In this way, we implement a method of registration
of resources (topics) names based on ROS, organized in the form of a hierarchical graph. In addition,
we implement a wildcard-based subscription method based on Mosquitto environment [Ecl16]. With
these two methods, nodes can subscribe to one or more topics with a single call to subscribe. For
subscription on more than one topic of the same hierarchy level or underlying hierarchy level, the
user may use the wildcards “+” or “#”, respectively. For example, for a topic graph with four levels
of hierarchy (Figure 5.8), the following subscriptions could be performed:
/temperature/pe1 –> subscription in temperature topic of the processing element 1
/temperature/+ –> subscription in temperature topics of all processing elements
/msg_lost_cnt/router1/w –> subscription in the counter of lost messages of router1 west port
/msg_lost_cnt/router1/+ –> subscription in all counters of lost messages of all router1 ports
/msg_lost_cnt/# –> subscription in all counters of lost messages of all routers
/# –> subscription in all topics of the system

The topic-name scheme must be refined according to the purpose of the publish-subscribe
system. However, the developer must follow the hierarchical graph to name the topics of the
system, where the different levels are separated by the symbol “/”. Figure 5.8 shows the topic-
name scheme used in this work, following a four-level hierarchical graph. The first level identifies
if the topic is a sensor or an actuator topic. The second and third level are related to the location
of the sensor or actuator topic, could be one of this locations: pe (processor element), memory,
router or cluster. The third level is the identification of that location. For example, a topic named
“/sensor/pe/3/.” is related to the processor element sensor identified by 3. In the same way, a topic
named “/sensor/pe/6/...” is related to the sensor of the processor element identified by 6. The
fourth level defines the type of sensor or actuator topic: i) slacktime and energy for a pe sensor;
ii) injection, congestion, and energy for a router sensor; iii) energy for a cluster sensor; iv) DVFS
(Dynamic Voltage and Frequency Scaling) for a PE actuator; v) powerMode for a cluster actuator.



95

/

sensor actuator

pe memory router pe clustercluster

<id> <id> <id> <id> <id> <id>

slacktime energy injection congestionenergy energy energy dvfs powerMode

Figure 5.8: Topic-name scheme employed in this Thesis following the hierarchical graph.

Additionally, we have developed a topic domain scheme to define the reach of a topic. In
this way, a topic name is always related to a topic domain. Aiming the use of the middleware in
clusterized MPSoCs, we define two domains: i) intra-cluster, for communication between elements
within the same cluster; ii) inter-clusters, for communication between elements that are not in the
same cluster. When a publisher or subscriber node advertises or subscribes to a topic, it must
also inform which is the domain of that topic. For this purpose, we have defined two domains:
i) SLAVES (for intra-cluster communication); ii) MANAGERS (for inter-cluster communication).
The middleware implements a broker structure by domain to handle the advertise and subscribe
requests in the topics. The local master node of the each cluster handles the broker structure in the
“SLAVES” domain. For the “MANAGERS” domain, global master PE handles the broker structure.
Note that while the “SLAVES” domain balances the broker processing by taking advantage of the
clusterization feature, the “MANAGERS” domain has a scalability issue because the broker of this
domain centralizes all the communication of the advertise and subscribe operations. In this way, the
“MANAGERS” domain must be used carefully concerning the issue scalability.

5.4. Creating the Objects of the Adaptive Service

This section describes the classes and methods that the user must create to implement an
adaptive service following the ODA model in the middleware. First, we describe in Sections 5.4.1,
5.4.2, and 5.4.3 how to create the necessary classes and their methods manually. Additionally, we
present in APPENDIX F a tool to automate the process of creating the necessary classes and their
methods. With the tool, the user needs to manipulate only the content of the methods, incrementing
them as desired.

Firstly, it is essential to understand the directory structure of the Modules extension of
the middleware. The Modules extension directory, showed in APPENDIX D, contains all class
files that build the Modules extension. At the first level of the hierarchy, the Modules extension
directory named modules contains the common directory, which holds the base classes detailed in
Section 5.2.2, and the modules_ports directory. The modules_ports contains the specific class
implementations to perform an adaptive service into a given platform. That is, modules_ports
contains the classes that will be customized from one implementation to another. The user must
create a new directory inside modules_ports for each adaptive service.

In the example showed in APPENDIX D, the directory named dvfs represents an adaptive
service of a DVFS mechanism. Figure 5.9 shows the components of the adaptive service implemented
in this example. Sections 5.4.1, 5.4.2 and 5.4.3 demonstrate how to create the Sensor, Monitor,
Decisor, Actuator, Effector, and Types classes that represent this example.



96

STSensor

STMonitor

/sensor/pe/id/slacktime

DvfsEffector

DvfsActuator

/actuator/pe/id/dvfs

SimpleDecisor

Figure 5.9: Components of the adaptive service implemented as example.

5.4.1. Sensor/Monitor pair and Type classes

We show as follows how to manually create the variable and methods of the Sensor,
Monitor and Type classes.

Sensor class

Beginning by the sensor class implementation, in the example that we are going to demon-
strate, the sensor distributes the slack time data of the PE in a topic named /sensor/pe/<id>/slacktime,
where <id> is the identification of the PE. The periodicity of updating this data depends on the
periodicity in which the update() method is called externally. The user must give a name for the
sensor class (we call STSensor), and implement the update() and updateStatus() methods in its
source file, in addition to defining the topic name and domain in the class constructor. This class
must have declared in the header file a public member named data with its type defined by Type
class to be specified following. Figures APPENDIX C.1 and APPENDIX C.2 show the code snippet
demonstrating the minimal implementation of the header and source files of the STSensor class.

Monitor class

For the Monitor class implementation, the user must give a name for the Monitor class
(STMonitor in this example), and implement the enable() and doit(MQSoCMessage* pMQMessage)
methods in its source file. The enable() method must define the topic name and domain of the
observable sensor data. We implement the STMonitor class to receive the sensor data of slacktime
of all PEs that have advertised to the respective topic. The Modules feature allows representing this
interest through the subscription to the topic named /sensor/pe/+/slave, using the wildcard feature
(see Section 5.3). The STMonitor header file contains an additional class declaration to store the
sensor data of all sensors, named STMonitor_T. When a sensor data is received, the doit method
deserializes the message and stores the received data to an array declared in the STMonitor_T class.
The Decisor class, detailed in Section 5.4.3, uses the STMonitor_T class to access the observable
sensor data. Figures APPENDIX C.3 and APPENDIX C.4 show the code snippet demonstrating the
minimal implementation of the header and source files of the STMonitor class.



97

Type class

The Type class must implement the serialize and deserialize methods used by the sensor
and monitor classes. In this example, we named the type class as STType. Figures APPENDIX C.5
and APPENDIX C.6 show the code snippet demonstrates the minimal implementation of the header
and source files of the STType class. The code uses the MsgPuck serialization library (see Section
4.4.3) to serialize and deserialize the members that represents the observable sensor data. Note that
the user could use the desired serialization method by following the signature of the serialize and
deserialize methods of the MessageType base class.

5.4.2. Actuator/Effector pair and Type classes

We show as follows how to manually create the constructors and methods of the Actuator,
Effector and Type classes.

Actuator class

In the demonstrated example, the Decisor class detailed in Section 5.4.3 actuates in the
system through a DVFS mechanism. For this, the Decisor class instances an object of the Actuator
class named DvfsActuator. The Actuator class header file must contain the declaration of the enable
method, while the source file must contain the implementation of the enable method. The method
implementation must define the topic name and domain that identify the actuation data, named
in this example as /actuator/pe/<id>/dvfs, where <id> is the identification of the PE in which
the decisor will actuate. The Decisor class implementation that instances the DvfsActuator class
must enable the set of actuator objects passing the id of the PE in the enable method parameter.
Figures APPENDIX C.7 and APPENDIX C.8 show the code snippet demonstrates the minimal
implementation of the actuator header and source classes. The Actuator class implemented in this
example uses the UpDownActuator design pattern class implementation.

Effector class

The pair effector of the DvfsActuator class, named DvfsEffector, must contain the dec-
laration of the enable and doit methods in the header file and their implementation in the source
file. The enable() method must define the topic name and domain used by the DvfsActuator
class. The doit method must call the deserialize method and uses the received actuation data
to configure the system. In this example, we apply the received actuation data using the prim-
itive HAL_OS_EFFECTORS_setDVFS(value) that applies the value parameter in the processor
voltage/frequency configuration (the DVFS mechanism is detailed in Section 6.1.3). Figures AP-
PENDIX C.9 and APPENDIX C.10 show the code snippet demonstrates the minimal implementation
of the effector header and source files.

Type class

The Type class used by the DvfsActuator and DvfsEffector class must implement the
serialize and deserialize methods used by the sensor and monitor classes. In this example, we named
the Type class as DvfsType. Figures APPENDIX C.11 and APPENDIX C.12 show the code snippet
demonstrates the minimal implementation of the header and source files of Type class.



98

5.4.3. Decisor class

The Decisor class as implemented in this hypothetical example, named SimpleDecisor,
must contain the enable method declaration and declare a pointer to the desired Monitor class to
access its monitored sensor data. Also, it must instance the DvfsActuator class. The enable method
implementation must enable all the instanced monitors calling the addCallbackMonitor method
and passing a pointer to respective member method, named notifySTMonitor in the example.
The notifySTMonitor method is called when the variable that stores the observable sensor data
is updated. In the example, the notifySTMonitor calls the decide() method which contains the
decision-making logic according to the observable data of the slacktime sensor. Note that the
decision is made whenever the slacktime data of a PE is updated. Figures APPENDIX C.13 and
APPENDIX C.14 show the code snippet demonstrates the minimal implementation of the header
and source files of the Decisor.

5.4.4. Experiment

We perform an experiment to verify the effectiveness of middleware coordination to per-
form communication between the pairs Sensor/Monitor, and Actuator/Effector. The main goal of
the experiment is to confirm that the adaptive service works correctly for the purpose described in the
source codes of its components. We use a platform composed of a non-clusterized 3x3 NoC-based
MPSoC with homogeneous PEs, as detailed in Section 6.1. Each PE has a MIPS-like processor,
DMNI module, private random access memory (RAM) and router. The frequency/voltage scaling
actuation mechanism (DVFS) operates only on the processor, memory and DMNI, as detailed in
Section 6.1.3. There are three possible DVFS level, following a decreasing order of performance:
vf(7), vf(6), and vf(4). The platform contains sensors of CPU4 (Central Processing Unit) utilization
at hardware level measured according to the equation 6.11. Section 6.1.3 details the DVFS mecha-
nism. The experimental setup consists of a 3x3 MPSoC configuration running an AES application
with 5 tasks. Figure 5.10 shows the setup of the experiment with the performed application (a), and
the MPSoC platform setup with the location of the objects (b) of the evaluated adaptive service
(c). We use an AES application - MPI-based - to impose a workload for the MPSoC in order to
observe a variation in the CPU utilization. Each slave PE has one instance of the STSensor and
DvfsEffector components. The master PE has one instance of the SimpleDecisor and STMonitor
components, besides eight instances of the DvfsActuator component (one for each slave PE).

Figures 5.11 and 5.12 show the CPU utilization over time in the PE. The graph shows
samples of CPU utilization every 250ms, which is the time window to sample new sensor data. The
graphs represent the SP’s view of the sensor data and also show the actuation commands received
by the respective SP (blue line). As noted, the PE allocates the task before that instant 1000
Kticks in both PEs. At this time, both PEs have a CPU utilization of around 80% regarding the
initial processing-load spent mapping the task. All PEs start execution on the highest performance
voltage/frequency pair (represented by vf(7)). The SimpleDecisor object (Section 5.4.3) implements
a decision logic where the DVFS is scaled to down when CPU utilization is less than 33% and to up
when CPU utilization is greater than 66%. We can observe that the actuation occurs in six instants
for PE 1 in Figure 5.11. The DVFS is scaled to down at the time instants marked by the first,
second, fourth, and sixth blue, horizontal lines, and to up at the time instants marked by the third

4The target platform uses the term CPU to represent the processor.



99

and fifth blue, horizontal lines. For PE 4 in Figure 5.12, the DVFS is scaled firstly to down when
the CPU utilization is lower than 33% and to up after reaching 66%.

The goal of this experiment is to demonstrate the actuation of the evaluated adaptive
service against the sensor data. Chapter 6 demonstrates a complex case study of a self-adaptive
system composed of two adaptive services that actuate at two levels: slaves PE and cluster.

STSensor

STMonitor

DvfsEffector

SimpleDecisor

STSensor

DvfsEffector

STSensor

DvfsEffector

STSensor

DvfsEffector

STSensor

DvfsEffector

STSensor

DvfsEffector

STSensor

DvfsEffector

STSensor

DvfsEffector /sensor/pe/<id>/slacktime

STSensor

SimpleDecisor

DvfsActuator

STSensorSTSensorSTSensorSTSensorSTSensorSTSensorSTSensor

DvfsEffectorDvfsEffectorDvfsEffectorDvfsEffectorDvfsEffectorDvfsEffectorDvfsEffectorDvfsEffector

DvfsActuatorDvfsActuatorDvfsActuatorDvfsActuatorDvfsActuatorDvfsActuatorDvfsActuator

/actuator/pe/<id>/dvfs

/actuator/pe/<id>/dvfs

STMonitor
/sensor/pe/+/slacktime0 1 2

3 4 5

6 7 8

AES
MASTER

AES
SLAVE1

AES
SLAVE2

AES
SLAVE3

AES
SLAVE4

AES
MASTER

AES
SLAVE1

AES
SLAVE2

AES
SLAVE3

AES
SLAVE4

a) b) c)

Master 
PE

Slave
PE

DvfsActuatorDvfsActuatorDvfsActuatorDvfsActuatorDvfsActuator

Figure 5.10: Experiment setup: a) AES task graph; b) 3x3 MPSoC platform setup; c) Evaluated
adaptive service.



100

C
P

U
 U

ti
liz

a
ti
o
n
 (

%
)

Tick Counter (kticks)

CPU utilization Time x Time PE 0x1x0

 0

 10

 20

 30

 40

 50

 60

 70

 80

 1
0

0
0

 2
0

0
0

 3
0

0
0

 4
0

0
0

 5
0

0
0

 6
0

0
0

 7
0

0
0T
a

s
k
 a

llo
c
a

te
d

T
a

s
k
 t

e
rm

in
a

te
d

v
f 

(6
)

v
f 

(4
)

v
f 

(6
)

v
f 

(4
)

v
f 

(6
)

v
f 

(4
)

Mean = 38.75 Max = 77

Std Dev = 27.3987 Min = 6

Figure 5.11: CPU utilization over time for the PE 1.

C
P

U
 U

ti
liz

a
ti
o
n
 (

%
)

Tick Counter (kticks)

CPU utilization Time x Time PE 0x1x1

 30

 40

 50

 60

 70

 80

 90

 100

 1
0

0
0

 2
0

0
0

 3
0

0
0

 4
0

0
0

 5
0

0
0

 6
0

0
0

 7
0

0
0

T
a

s
k
 a

llo
c
a

te
d

T
a

s
k
 t

e
rm

in
a

te
d

v
f 

(6
)

v
f 

(7
)

Mean = 70.2917 Max = 100

Std Dev = 27.3579 Min = 31

Figure 5.12: CPU utilization over time for the PE 4.



101

6. CASE STUDY OF A SELF-ADAPTIVE SYSTEM

This chapter presents a case study in which we compare two versions of a multilevel self-
adaptive system on an MPSoC platform. The objective is to compare the results obtained according
to performance, energy and software quality metrics, aiming to contrast the approaches used for the
development of these self-adaptive systems.

In this way, the chapter is organized as follows. Section 6.1 presents the baseline MPSoC
platform and baseline self-adaptive system proposed at [MdSR+19]. Section 6.2 presents the same
platform, however refactoring the whole self-adaptive system with the proposed middleware. Section
6.3 presents the results.

6.1. Baseline Platform

The baseline platform used for the self-adaptive system case study presented in this chapter
is the HeMPS1 platform. HeMPS is an open-source many-core architecture framework used to
implement and evaluate software and hardware modules for many-cores. Figure 6.1 shows the
many-core architecture of the baseline platform.

The platform is composed of a NoC-based MPSoC that embeds homogeneous processing
elements (PE). Each PE (Figure 6.1-b) is equipped with a Plasma CPU2 (MIPS-like) [Ope14], Direct
Memory Network Interface (DMNI) module [RLMM16], a private Local Memory, and packet-switch
based router. The DMNI contains a direct memory access interface incorporated into a network
interface, which allows the router to access the Local Memory without using the processor. The
applications enter in the MPSoC through an extra memory module - called Application Repository -
attached to the PE located in the bottom-left position. At the system initialization, the applications’
static code is loaded into PEs’ local memories to be run. When all resources are busy, the manager
system maintains the application in the application repository and loads the object code when there
is an available execution resource.

M

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

M

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

M

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

M

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

M
Cluster Manager Processor 
- MPE

S Slave Processor - SPE

L
o

c
a

l 
M

e
m

o
ry

CPU

NI

(a)

PS

Cluster: The cluster size is defined at design time.

(b)

Application 

Repository

Figure 6.1: Baseline HeMPS MPSoC: (a) system architecture; (b) PE architecture [RM18, p. 35].

The baseline platform organizes the PEs in clusters. Each cluster has a Manager PE (MPE)3
that assumes features of system management such as task mapping and application admission

1http://www.inf.pucrs.br/hemps/
2The target platform uses the term CPU to represent the processor.
3The MPE is also called as LM in this Thesis.

http://www.inf.pucrs.br/hemps/


102

control. The Slave PEs (SPE)4 receive the applications’ static code from the Application Repository
and run them in multitasking mode, managed by a kernel software embedded in each PE. The MPE
and SPE have different kernel software. Additionally, there is also one specific version of the MPE
kernel, called SMPE (System Master PE). The SMPE implements the same features of the MPE,
added with functions of overall cluster management and control of the interface with the application
repository with correlated features to application mapping on the cluster. More details about the
application admission management can be found at [RM18, p. 35].

6.1.1. Baseline Self-Adaptive System

This section presents the baseline self-adaptive system used for comparison purposes with
the self-adaptive system designed using the middleware approach, presented in Section 6.2. The
baseline self-adaptive system, called Multi-Objective Resource Management (MORM), has been
designed by Martins and Moraes [MdSR+19]. For comparison purposes, we reference its implemen-
tation in the present case study as MORM-C. MORM aims to operate in an environment of dynamic
execution of applications, respecting a limit of power consumption, called power cap. MORM works
by managing the execution of applications should avoid exceeding the power cap in addition to
maintaining the system operation in the valley of power consumption. It has been designed to act
in a clusterized MPSoC, where each cluster can be configured to work in two operation modes as
follows: i) performance mode, where the maximum performance is scaled up to reach the power
cap; ii) energy mode, where performance is reduced to reach the valley of power.

MORM is classified as multi-objective management because it concomitantly addresses
power, energy, and performance goals [MdSR+19]. MORM considers both communication and
computing sensoring for actuation.

Figure 6.2 shows the overview structure of the MORM self-adaptive system following the
hierarchical organization of the clusterized MPSoC, where SP is a Slave PE, CM is the Cluster
Manager PE (one by cluster) and GM is the Global Manager PE (one for the system as whole).
MORM follows the observe-decide-act paradigm [DJS15], performing both system observation, deci-
sion making and actuation at the system/cluster level (inter-cluster domain) and processing element
level (intra-cluster domain).

Figure 6.2: General MORM overview [MdSR+19, p. 4].

The system observation follows a bottom-up direction. At the PE level, the SPs send
observed data (energy, CPU utilization, NoC congestion) to their CMs. In turn, each CM sends the

4The SPE is also called as SP in this Thesis.



103

data observed in its cluster (power consumption) to the GM. The system decision making follows
the hierarchical cluster organization, with the GM deciding on the observed inter-cluster data and
the CMs deciding on the observed intra-cluster data. The system actuation follows a top-down
direction. An actuation method acts on the PE level setting the voltage-frequency pair of one or
more SPs. In turn, another actuation method acts on the system-level changing the operation mode
of a given cluster. The following subsections detail the observation, actuation, and decision making
methods used by MORM.

6.1.2. Observation Methods

MORM uses a power and energy characterization methods to infer the power dissipation
and energy consumption for each PE, cluster, and system as a whole. The methods consider
the processor, NoC (Network-on-Chip) and memory to estimate the static and dynamic power
dissipation. The method to estimate power and energy is general because it is based on a calibration
process to define the energy/power values. The characterization process employs a synthesizable
VHDL description of the base platform in RTL level. The next subsections describe the power
and energy characterization methods for the processor, router and memory. The method does not
consider the power and energy for the DMNI because it is a small module compared to the processor,
router, and memory.

Processor Power/Energy Characterization

The processor power characterization incorporated into MORM was proposed by Martins
at [MSC+14], comprising five steps:

1. Grouping all the instructions of the processor into instruction classes according to their type
(e.g., arithmetic, logical, shift, move, nop, branches, jumps and load-store). In this step, an
assembly program is implemented with the instructions of the class to be used in step 4.

2. Simulation at RTL level of each instruction class, counting the number of clock cycles to
execute it for validation purposes in step 5.

3. Logic synthesis of the processor defining the processor frequency for a given technology. This
step generates a netlist with annotated delay data to be used in step 4.

4. Simulation at gate-level of each assembly program created in step 1 using the netlist generated
in step 3. This step generates the switching activity at the gate level as well as traces for
functional validation with step 2.

5. Power measurement from the switching activity traces generated in step 4. Table 6.1 shows
the power and energy measured at the end of the processor power characterization.

The energy for each instruction class (Eclass) is measured following the Equation 6.1, where
Pclass is the power measured for a given instruction class, CPI is the number of clock cycles for that
instruction class and T is the clock period5.

Eclass = Pclass ∗ CPI ∗ T (6.1)

The total energy consumption for the processor (Eprocessor) and total power dissipation for
the processor (Pprocessor) are measured following the equations 6.2 and 6.3, where ninstructionsi is the

5The clock period used in this case study is 4ns



104

Table 6.1: Power characterization results and energy estimation for each instruction class of the
processor. Library CORE65GPSVT (65nm), 1.1V, 25ºC (T=4ns).

Class Avg. Power (mW) Energy per inst. (pJ)
Leakage Dynamic Leakage Dynamic

Arithmetic

0.452

5.894

1.808

23.58
Logical 5.176 20.70
Shift 4.940 19.76
Move 4.768 19.07
Nop 3.331 13.32

Branches 5.723 31.70
Jumps 4.175 18.56

Load-store 5.507 3.616 43.15

number of executed instructions for the instruction class i in a given execution sample, EClassi is the
energy measured for the instruction class i (constant, from Equation 6.1) and PClassi is the power
measured for the instruction class i (constant, from Table 6.1).

Eprocessor =
nclasses∑

i=0
ninstructionsi

× Eclassi
(6.2)

Pprocessor =
nclass∑
i=0

ninstructionsi
× Pclassi

(6.3)

The processor power characterization considers that the processor consumes only static
power when no task is running in the processor or when it is awaiting state (e.g., waiting for data
from another task).

Martins [MSC+14] has validated the calibration process for the energy and power mea-
surements using different benchmarks. This validation generates an error on the power and energy
processor measured at the RTL level, compared to the gate level. In the related experiments, the
error was from -9% to 8% for energy consumption and -9% to 10% for power dissipation, depending
on the benchmark.

Router Power/Energy Characterization

The router that composes the PE architecture (Figure 6.1-b) includes internal components
such as input buffers, crossbar, and control logic for arbitration and routing purposes. The router
characterization process has been proposed by Martins at [MSC+14]. It is similar to the processor
characterization, comprising four steps:

1. Generation of traffic in all 5 ports of the router for maximizing the switching activity. This step
creates 6 testcase scenarios varying the injection rate from 0% to 50% of the link bandwidth.

2. Logic synthesis of the one instance of a 5-port router, generating a netlist to be used in step
3. The energy consumption of the wires (links) considers the wire capacitance between two
routers (considering the distance of 1 mm between the routers).

3. Simulation of the 6 scenarios created in step 1 in a 3x3 NoC instance, replacing the router RTL
description by the netlist generated in step 2. Each testcase scenario generates a switching
activity file at the gate level for the respective injection rate.



105

4. Power measurement from the switching activity file generated in step 3. Despite the 6 injec-
tions rates performed in the characterization method, the final characterization adopts two
rates: 100% - representing the active mode of the router (worst case); and 0% - representing
the idle mode of the router. Table 6.2 shows the power characterization for the two consid-
ered router modes. The second column of the table represents the dynamic average power
consumption for one buffer. The combinational logic represents the power consumption of the
remaining router components. The last column represents the leakage power of the router.

Table 6.2: Router Average Power. Library CORE65GPSVT (65nm), 1.1V@4ns, 25ºC.

Traffic Rate One buffer Combinational Logic Prouter
leak (nports = 5)

0% - idle 364.64 µW 575.64 µW 223.08 µW100% - active 755.56 µW 2655.25 µW

The energy consumption characterization for the router is divided in dynamic active energy
to receive one flit (named Erouter

active) and dynamic idle energy (named Erouter
idle ). They are measured

respectively following the equations 6.4 and 6.5, where nports is the number of ports of the router
(constant, 5), Pcomponent

active is the power consumption of a given component in the active mode,
Pcomponent

idle is the power consumption of a given component in the idle mode, and T 6 is the period
of the sample timing window.

Eactive
router = [((nports − 1)× P idle

buffer) + P active
buffer + P active

comb ]× T (6.4)

Eidle
router = [(nports × P idle

buffer) + P idle
comb]× T (6.5)

Memory Power/Energy Characterization

The memory power/energy characterization uses the CACTI-P tool [LCA+11] enabling the
characterization of the energy consumption of the PE local memory. Table 6.3 shows the access
time that corresponds to the period used to characterize the processor and the router (rounded to
4ns), the Pmemory

leak that is the leakage power of the memory, the Eload that is the dynamic energy
spent per read access in the memory, and the Estore that is the dynamic energy spent per store access
in the memory.

Table 6.3: CACTI-P Report for a Scratchpad Memory (65nm, 1.1V, 25ºC).

Access time Pmemory
leak Eload Estore

3.98 ns 0.66 mW 67 pJ 38 pJ

Processing Element (PE) Power/Energy Characterization

MORM uses data of energy consumption for the processing element as a whole. For this,
an observing module sums locally the total energy provided by the processor, router and memory
energy characterization, supported by a set of additional hardware and software components.

The additional hardware components include a set of registers into the PE for counting
events: a) nclass - number of executed instructions for the respective instruction class; b) cyclesactive

6The sample timing window (T) used in this case study is 250ms



106

- number of clock cycles in which the router is transmitting flits; c) cyclestotal - number of clock
cycles executed by the PE at the sample timing window. The sample timing window is called an
epoch - an execution timing interval defined by a periodic hardware interruption. At the end of an
epoch, all counters are read and reset to zero.

The additional software components include functions to read the counters at the end of
an epoch and, from this, estimate the PE power and energy. The following equations sum to already
related equations to perform the PE energy estimation, where Eprocessor, Ememory and Erouter are the
dynamic energy spent respectively by the processor, memory and router at an epoch, Eleakage is the
energy from leakage power of the whole PE and EPE is the total energy spent by the PE at an
epoch.

Eprocessor =
nclasses∑

i=0
ninstructionsi

× Edynclassi
(6.6)

Ememory = ninstructionsload
× Eload + ninstructionsstore × Estore (6.7)

Erouter = Eidle
router × (cyclestotal − cyclesactive) + Eactive

router × cyclesactive (6.8)

Eleakage = [P leakage
processor + P leakage

memory + P leakage
router × nports]× cyclestotal × T (6.9)

EP E = Eprocessor + Ememory + Erouter + Eleakage (6.10)

Others PE observed data

MORM also uses others observed data to perform the decision making described in Section
6.1.4. Additional hardware registers and software functions provide observed data from the router
and processor, which are as follows: a) Utilizationprocessor - percentage of clock cycles where the
processor is running a task or kernel routine, calculated from the equation 6.11; b) router injection -
buffer utilization of the local port of the router; c) router congestion - buffer utilization of the non-
local ports (north, south, east and west). Hardware counters in the router provide the measurements
of router injection and router congestion, which are measured by the average message flow in the
respective router ports at an epoch.

Utilizationprocessor = cyclesactive

cyclesidle

(6.11)

6.1.3. Actuation Methods

The base platform provides some actuation methods that are used by the MORM to
achieve the desired adaptability. Hardware modules or software features implements the provided
actuation methods. Figure 6.3 shows the actuation methods used by MORM and the classification
according to its implementation, software or hardware, described as follows.



107

Actuation Methods

Hardware

Frequency Scaling Voltage Scaling

Software

Clock Gating Application 
Allocation Task Allocation Task Migration

Figure 6.3: Classification of actuation methods adopted by MORM

Dynamic Voltage/Frequency Scaling - DVFS

The frequency scaling actuates on the processor, memory and DMNI hardware components
of the PE. The router works in a nominal frequency to avoid that a processor at higher frequency
stall due to PEs that are running at a lower frequency. The DMNI synchronizes the hardware mod-
ules which work at different frequencies using two bi-synchronous FIFOs. The additional hardware
necessary to implement the frequency scaling at the baseline platform is a clock-generator and the
bi-synchronous FIFOs at the DMNI. The additional FIFO produces, at average, an overhead of
6.55% in the applications execution time. More details about the hardware modifications to perform
the frequency scaling can be found at [MdSR+19].

The voltage scaling employed on the baseline platform follows a method for modeling
supply voltages supported by the system. The method evaluates the processor netlist for 1.0V and
0.9V since nominally the processor works at 1.1V-250MHz. The same process is performed for the
memory and router. The goal is to measure the minimum period to obtain an acceptable slack
concerning processor, memory, and router, without interfering with the operation of these hardware
components.

Figure 6.4: Secure voltage/frequency pairs [MM18, p. 74].

Figure 6.4 shows the results of the performed evaluation, listing the minimum period for
safely scaling the voltage and frequency. The yellow boxes define safe Voltage/Frequency pairs,
numbered from 1 to 9 that correspond to scale, respectively, from highest to lower performance
modes. The hardware necessary to implement the voltage scaling is a voltage regulator that presents
a latency of 100ns (25 clock cycles at 250MHz) and an energy overhead of 10% [CCK07].

Clock-Gating

The clock gating employed on the baseline platform considers a model that affects only
the processor and memory. According to the adopted model, the processor clock signal is disabled
when it is in idle mode, saving dynamic power. The processor does not perform memory operations
at the idle mode. Consequently, the memory does not accumulate dynamic power in the idle mode
(since the dynamic power comes from load and store operations only). The router continuously



108

spends dynamic power in the idle and active mode. When in idle, the router considers the dynamic
power from buffers (equation 6.5). The timing overhead of the clock gating actuation is considered
negligible [MdSR+19].

Application Allocation

The application allocation method assigns the tasks of an application to a chosen cluster.
The application allocation follows a protocol triggered when the application repository set the re-
spective hardware interruption in the GM. The GM runs an algorithm to select7 a cluster to map
the application tasks, informing the respective CM of its choice. The CM also runs an algorithm to
select the SPs to map the application tasks, reporting it to the GM that is the only PE with physical
access to the application repository. Then, the GM stars the task allocation protocol detailed next.
Decision making methods at the GM and CM kernel implement algorithms to select, respectively,
the cluster and SPs that will receive the tasks. They are detailed in Section 6.1.4.

Task Allocation

The task allocation method assigns the tasks of an application to the chosen SPs. The
task allocation method only coordinates the tasks to the respective SPs. There is no making decision
method in this process since the application allocation method does it. The task allocation begins
with the GM getting a task code from the application repository and sending it directly to the SP
informed by the CM in the application allocation. After receiving the task, the SP notifies this to
its CM, which releases the execution in the respective SP.

Task Migration

The task migration method remaps the tasks of an application inside the same cluster.
That is, the task migration process moves a task from a source SP to a destination SP. The
component that uses the task migration method is responsible for the decision making about who
are the involved SPs. The task migration protocol migrates all sections of the task object code
directly from the source to the destination SP, without using checkpoints. The migrated task enters
in running mode at the destination SP after the task migration process for all tasks finishing.

6.1.4. Decision Making Methods

MORM employs decision-making methods that work synchronically to adapt the system
to multi-objective. Multi-objective means that MORM addresses power, energy, and performance
concomitantly [MdSR+19]. MORM uses the clusterization feature of the base platform to shift the
goals according to the workload behavior.

MORM is the composition of a set of observation, actuation and decision-making methods.
However, it is important to note that what differentiates MORM from other self-adaptive system is
the decision-making methods used by it. The employed decision-making methods are responsible by
decisions that are taken at two different domains: i) inter-cluster domain, to handle the power cap,
application mapping and to choose the cluster operation modes; ii) intra-cluster domain, to control
the DVFS, task mapping, and task migration. They are described as follows.

7The GM does not admit an application execution if there are no sufficient available resources (number of free pages minor than the number of application tasks) in any cluster,
waiting until they are released.



109

MORM Inter-Cluster Decision-Making Method

The decision-making method employed in the inter-cluster domain is responsible by the
admission of an application in the system. Figure 6.5 shows a general schema of the MORM
Inter-Cluster Decision-Making Method.

Application 
Operating Mode 

Selector
Algorithm

app

energyClset

perfClset

APP Admission? Cluster
Selector

Algorithm

      (appmode)

No sysClset

MORM Inter-Cluster Decision-Making Method

call call 

cloutputI
N
P
U
T

O
U
T
P
U
T

return

SwitchOpMode
(energy/perf)

Enqueue
(app)

Yes

Figure 6.5: General Schema of the MORM Inter-Cluster Decision-Making Method.

The method comprises two algorithms to: i) select the application operating mode (Al-
gorithm 3); ii) select the cluster to admit the application (Algorithm 4). The GM performs both
algorithms in the kernel level.

Algorithm 3 shows a pseudo-code of the process to define the application operating mode.
The algorithm can shift the operation modes of the clusters while respecting the system power
cap based on the amount of power disturbance induced by application events [MdSR+19]. The
algorithm receives as input the application description, the set of clusters operating in energy mode
(energyClset) and the set of clusters operating in performance mode (perfClset), generating as output
the selected application mode (appmode). The application description (app) comes from an appli-
cation power profiling performed at design-time. At design-time, simulations of the application set
measure the power consumption in two scenarios: i) when the application tasks are executing in dif-
ferent PEs without CPU sharing and at the nominal voltage and frequency parameters; ii) when the
application tasks are executing in the same PE at the most energy efficient voltage and frequency
parameters. More details about the application profiling can be found at [MM18, p. 109]. The
algorithm uses the power measurements of the application profiling to infer the power dissipation in
the performance (app.pwrPerformance) and energy (app.pwrEnergy) modes.

The execution of the algorithm is triggered when an application requests admission into
the system or when an application finishes its execution. All clusters operate in performance mode
at the beginning of the system execution.

When an application requests its admission (line 2 in Algorithm 3), the algorithm allows
admission if the estimated power for running the application in performance mode, added to the
current system power, does not exceed the system power cap (lines 3-5). Otherwise, the algorithm
estimates the power increment to allow application in energy mode (line 7). If the estimate exceeds
the power cap (line 8), the algorithm switches the operating mode of clusters running in performance
mode to energy mode until the estimation falls below the power cap (lines 9-14). If the estimation
does not exceed the power cap (line 15), the application is admitted in energy mode (line 16).
Otherwise, the application is queued for later acceptance (line 18). If the estimation calculated to
admit the application in energy mode (line 7) does not exceed the power cap (line 20), the algorithm
allows the application to be admitted in energy mode (lines 24 and 26). If there is no cluster in
energy mode by then (line 21), the algorithm switches the operating mode from performance to
energy (line 23) of that cluster that has the largest number of processors available (line 22). When
an application finishes its execution (line 30), the algorithm switches to performance (line 34) the



110

Algorithm 3 MORM Application Operating Mode Selector [MdSR+19, p. 114]
1: Inputs: app, energyClset, perfClset

2: if app is arriving then
3: newPwr ← sys.pwr + app.pwrPerformance

4: if newPwr < sys.pwrCap then
5: Allows the admission of the application in performance mode
6: else
7: newPwr ← sys.pwr + app.pwrEnergy

8: if newPwr > sys.pwrCap then
9: for each cli ∈ perfClset do

10: newPwr ← newPwr + cli.pwrV ariation

11: if newPwr > sys.pwrCap then
12: shiftOpMode(cli, energy)
13: end if
14: end for
15: if newPwr < sys.pwrCap then
16: Allows the admission of the application in energy mode
17: else
18: Application enqueued to be admitted later
19: end if
20: else
21: if energyClset = ∅ then
22: cloutput ← maxAvailSPs(perfClset, performance)
23: shiftOpMode(cloutput, energy)
24: Allows the admission of the application in energy mode
25: else
26: Allows the admission of the application in energy mode
27: end if
28: end if
29: end if
30: else . app finished its execution
31: for each cli ∈ energyClset do
32: newPwr ← sys.pwr + cli.pwrV ariation

33: if newPwr < sys.pwrCap then
34: shiftOpMode(cli, performance)
35: end if
36: end for
37: end if

operating mode of that cluster that is in energy mode (line 32) and whose power increment does
not exceed the power cap (lines 32-33).

After selecting the operating mode of the application, GM selects the cluster to admit the
application based on the available resources. Algorithm 4 shows a pseudo-code of the process for
selecting the cluster to admit the application. The algorithm takes as input the application descrip-
tion, the output of the Application Operating Mode Algorithm (appmode), and the set of system



111

clusters (sys.clset). The algorithm outputs the cluster (cloutput) selected to receive the application.
The algorithm initially calculates (line 4 in Algorithm 4) the number of SPs required to run the
application based on the application description and the application mode selected by Algorithm 3.
The number of SPs is equal to the number of application tasks for performance mode or less than
that for energy mode, since the tasks can share the CPU in the energy mode. The algorithm then
checks on clusters running in the selected application mode for those that have enough SPs to run
the application (lines 5-9). Among these clusters, the algorithm returns the one with the maximum
number of SPs running without tasks (lines 10-13). If there are not enough clusters available with
enough SPs to run the application, the algorithm selects the performance mode cluster with the
maximum number of available SPs (line 14), changes the application mode to energy (line 15), and
updates the number of SPs required to run the application in energy mode (line 16). If the number
of free SPs for the selected cluster is sufficient to receive the application (line 17), the algorithm
switches the operating mode (line 18) of the cluster and returns the selected cluster identification
(line 19). Otherwise, no cluster is available to run the application, and the application is queued to
run later.

Algorithm 4 MORM Cluster Selector [MdSR+19, p. 115]
1: Inputs: app, appmode, sys.clset

2: Outputs: cloutput

3: clset ← ∅
4: SPmin ← getMinSPsAdmitApp(app, appmode)
5: for each cli ∈ sys.clset do
6: if appmode = cli.mode and cli.freeSP ≥ SPmin then
7: clset ← clset ∪ cli
8: end if
9: end for
10: if clset 6= ∅ then
11: cloutput ← maxAvailSPs(clset, appmode)
12: return cloutput

13: end if
14: cloutput ← maxAvailSPs(sys.clset, performance)
15: appmode ← energy

16: SPmin ← getMinSPsAdmitApp(app, appmode) . update SPmin

17: if cloutput.freeSP ≥ SPmin then
18: shiftOpMode(cloutput, energy)
19: return cloutput

20: else
21: return ∅
22: end if

MORM Intra-Cluster Decision Making Method

The decision-making method employed in the intra-cluster domain is responsible for se-
lecting the voltage-frequency pair of the SPs within a cluster in addition to choose the SPs that will
receive the tasks of an application. The method comprises two mechanisms described as follows: i)
adaptive DVFS; ii) task mapping/remapping. The CM of each cluster performs both mechanisms
in the kernel level.



112

Algorithm 5 shows a pseudo-code of the process responsible for selecting the voltage-
frequency pair (vf-pair) for a given SP, enabling the DVFS adaptive feature. It is a threshold-based
algorithm that receives as input the cluster operating mode (clopMode), the message injection rate of
an SP (SPinjection), and the processor utilization of that SP (SPutilization) to decide the vf-pair to be
applied to that SP. The algorithm can generate as output one of these three values for the vf-pair: i)
nominal (VFperf) - highest voltage/frequency pair; ii) low power (VFmin) - lowest voltage/frequency
pair; iii) EDP (VFEDP) - more energy efficient voltage/frequency pair (intermediate value between
nominal and low power). The algorithm executes whenever the CM receives an observation sample
message from an SP containing the message injection rate and the processor utilization of that SP.
The algorithm starts by setting the vf-pair to nominal (line 3). If the cluster is operating in energy
mode (line 4), the algorithm changes the vf-pair to low power in two situations (lines 6-7): i) high
injection rate (SPinjection > 75%) - the SP is injecting messages into the network at a higher speed
than the destination consumes them; ii) low processor utilization (SPutilization < 25%) - the SP is
in an idle state for most of the time waiting for messages. Otherwise, the algorithm switches the
vf-pair to EDP (line 5). In order to define the levels of high and low injection rate, the algorithm
considers that the injection rate is the average utilization of the input bu[U+FB00]er in the local
port.

Algorithm 5 MORM Adaptive DVFS
1: Input: clopMode, SPinjection, SPutilization

2: Outputs: VFpair
3: V Fpair ← V Fperf

4: if cl.opMode = ENERGY then
5: V Fpair ← V FEDP

6: if SPinjection > 75 or SPutilization < 25 then
7: V Fpair ← V Fmin

8: end if
9: end if
10: return V Fpair

The process of tasks mapping/remapping is an algorithm for selecting the SPs that will
receive the application tasks. The algorithm receives as input the application profile and the ap-
plication mode of operation (energy or performance). From the application operating mode, the
algorithm decides by performance or energy mapping. Performance mapping maximizes application
parallelism and optimizes execution time. It uses a single-task mapping where an SP does not share
resources with other tasks. Energy mapping aims to use the minimum number of available processors
to map an application. It uses a multi-task mapping where a processor shares resources between
tasks. Tasks that communicate with each other can be mapped to the same SP. Parallel tasks do
not share the same SP. The remapping mechanism uses two approaches - join and split - to perform
adaptability when the operating mode of the cluster switches. Join remapping acts when a cluster is
running in performance mode and receives an order to switch to energy mode. Its goal is to migrate
the communicating tasks to execute them on the same processor, generating more idle processors
that can be shut-down. Split remapping acts when a cluster is running in energy mode and receives
an order to switch to performance mode. It aims to spread tasks across more SPs, optimizing task
performance.



113

6.2. Self-adaptive system embedded in the Middleware

This section discusses the development of a self-adaptive system using the support provided
by middleware. The self-adaptive system developed is based on the MORM self-adaptive system
already detailed in Section 6.1.1. The goal is to refactor MORM using a middleware-based approach.
The requirement is that the functionality for which MORM was developed is maintained.

As refactoring methodology, we identify the original MORM code inside the HEMPS’s
kernel software, and redesign your project using the classes of sensors, monitors, decision makers,
actuators and effectors provided by the middleware’s modules extension (Section 5.4). MORM is
originally implemented in the C programming language and its source code is coupled to the kernel.
Functions in the kernel implement the logic of the sensors (Section 6.1.2), actuators (6.1.3) and
decision-makers (Section 6.1.4).

To identify the original MORM code inside the HEMPS’s kernel software, we follow these
steps: i) in the kernel software source code, we identify the functions that correspond to the logic of
sensors, decision-makers and actuators; ii) for sensors and actuators, we disable the low-level kernel
primitives used to send and receive messages; iii) for decision-makers, we completely disable the
source code of the respective functions. We disable the functions and code snippets through the use
of preprocessing directives (macros). The objective of using preprocessing directives is to allow the
selection at design-time of which of the two self-adaptive systems could be enabled in the HEMPS
system: i) original MORM in C, named MORM-C; ii) MORM refactored in the middleware, called
MORM-MQSoC8.

After the process of identifying the original MORM-C code, we proceeded with the mod-
ularization of that logic in the classes provided by the middleware’s modules extension, described
as follows: i) the Sensor and Monitor classes implement the logic of the MORM-C sensors; ii) the
Actuator and Effector classes implement the MORM-C actuators; iii) the Decisor class implement
the logic of the MORM-C decision-makers. Figures 6.6 and 6.7 demonstrate the adaptive services
modeled on the middleware class structure for the Global Master PE and Local Master PE, respec-
tively. Next, we discuss the design choices made for the implementation of both adaptive services.
Figure 6.8 shows a MORM’s overview for MORM-C and MORM-MQSoC implementations.

DvfsActuatorDvfsActuatorDvfsActuatorDvfsActuatorDvfsActuatorDvfsActuatorMormLocalMaster
Monitor

MormSlaveSensor MormSlaveSensor MormSlaveSensor MormSlaveSensor MormSlaveSensor MormSlaveSensor MormSlaveSensorMormLocalMaster
Sensor

DvfsActuator

GlobalMasterDecisor

MormSlaveSensor MormSlaveSensor MormSlaveSensor MormSlaveSensor MormSlaveSensor MormSlaveSensor MormSlaveSensorClusterPowerMode
Effector

ClusterPowerMode
Actuator

/actuator/cluster/<id>/powerMode/sensor/cluster/+/mormLocalMaster

/sensor/cluster/<id>/mormLocalMaster /actuator/cluster/<id>/powerMode

Figure 6.6: MORM-MQSoC Adaptative Ser-
vice for the Global Master PE.

DvfsActuatorDvfsActuatorDvfsActuatorDvfsActuatorDvfsActuatorDvfsActuatorMormSlaveMonitor

MormSlaveSensor MormSlaveSensor MormSlaveSensor MormSlaveSensor MormSlaveSensor MormSlaveSensor MormSlaveSensorMormSlaveSensor

DvfsActuator

LocalMasterDecisor

MormSlaveSensor MormSlaveSensor MormSlaveSensor MormSlaveSensor MormSlaveSensor MormSlaveSensor MormSlaveSensor DvfsEffector

DvfsActuator

/actuator/pe/<id>/dvfs/sensor/pe/+/mormSlave

/sensor/pe/<id>/mormSlave /actuator/pe/<id>/dvfs

Figure 6.7: MORM-MQSoC Adaptative Ser-
vice for the Local Master PE.

8We use the OO-MQSoC middleware version in all development and evaluation processes detailed in this Chapter. For simplicity, we call OO-MQSoC only as MQSoC in this
Chapter.



114

RouterMemory CPU

RouterMemory CPU

RouterMemory CPUH
W

HSAL 
Sensor API

HSAL 
Actuator API

HSAL 
Communicating API

Router 
Statistics

Memory 
Statistics K

er
ne

l
M

id
dl

ew
ar

e

MormSlaveSensor DvfsEffector

MormSlaveMonitor DvfsActuatorLocalMasterDecisor

MormLocalMaster
Monitor GlobalMasterDecisor ClusterPowerMode

Actuator

Processor 
Statistics

MormLocalMaster
Sensor

ClusterPowerMode
Effector

setPower
ModeCluster

NoC 
Interface

H
S

A
L

Publishers 
ManagerModules 

Manager
Protocol 

Stack Fabric

HSAL 
Actuator API

HSAL 
Communicating API

Subscriber 
Manager

NoC 
Interface

Publishers 
ManagerModules 

Manager
Protocol 

Stack FabricSubscriber 
Manager

Publishers 
ManagerModules 

Manager
Protocol 

Stack Fabric

HSAL 
Communicating API

Subscriber 
Manager

NoC 
Interface

RouterMemory CPU

RouterMemory CPU

RouterMemory CPU

S
LA

V
E

 P
E

LO
C

A
L 

M
A

S
TE

R
 P

E
G

LO
B

A
L 

M
A

S
TE

R
 P

E

H
W

K
er

ne
l

M
id

dl
ew

ar
e

H
S

A
L

H
W

K
er

ne
l

M
id

dl
ew

ar
e

H
S

A
L

H
W

NoC 
Interface

Operating Mode 
Selector

Application 
Admission

setPower
ModeCluster

NoC 
Interface

Task 
Mapping

Task 
Migration

Adaptive 
DVFS

Power 
Calculator

setDvfs
Level

NoC 
Interface

Router 
Statistics

Memory 
Statistics

Processor 
Statistics

Task MappingTask Migration

K
er

ne
l

H
W

K
er

ne
l

H
W

K
er

ne
l

MORM-C MORM-MQSoC

set
DvfsLevel

Figure 6.8: General MORM overview for the MORM-C and MORM-MQSoC implementations.

6.2.1. MORM-MQSoC Adaptative Service for the Local Master PE.

Many of the design choices we made regarding the modularization of MORM logic using
the middleware classes aim to maintain similarity of functionality between the two approaches.
For example, MORM-C encapsulates the sensor data of an SP in a single message, although it is
more appropriate to separate the messages according to sensor type for modularization purposes.
Differentiating memory’s sensor data from router’s sensor data would be indicated for cases where
a monitor is only interested in one of these data. However, as the MORM-C encapsulates all sensor
data from an SP in a single message, we follow this behavior. The adaptive service for the Local
Master PE (LM) following our middleware-based approach is comprised of these classes, described
below: MormSlaveSensor , MormSlaveMonitor , LocalMasterDecisor , DvfsActuator , and
DvfsEffector . Figure 6.7 shows a general overview of the relation between these classes representing
an ODA loop.

MormSlaveSensor class defines the SP sensor object. In our middleware-based approach,
a type class defines the format of the sensor data that will be serialized in the payload of the
message to be sent. The MormSlaveSensor class uses the MormSlaveType class as the sensor
data format. Following the detailed instructions in Section 5.4, the MormSlaveType class contains
the serialize and deserialize methods, which encapsulate/decapsulate the sensor data in/from the
message payload. The MormSlaveSensor class contains the updateStatus method, which defines
where the current information of the sensor data is extracted to be serialized. Figure 6.12 shows
the code snippet of the methods serialize, deserialize and updateStatus defined in the respective
classes. Sensor data information is calculated at the kernel level by the same functions used by the



115

MORM-C implementation. The difference is that while the MORM-C sends the sensor data message
using low-level kernel primitives, the MORM-MQSoC sends the message via the publish-subscribe
primitives. An advantage highlighted here is that pub-sub decouples the source of the destination
of a message. For example, in the communication model that uses low-level kernel primitives, if
a sensor’s data must be sent to more than one recipient, the developer of adaptive services must
explicitly define this in the source code. In the publish-subscribe model, the developer does not need
to define who is the recipient of the message, because the message is sent to a topic. Recipients
who wish to receive the message from this sensor should show interest by subscribing to the topic.
The updateStatus method of the MormSlaveSensor class accesses the sensor data through HSAL
primitives. The topic named /sensor/pe/<id>/mormSlave identifies the message generated by the
MormSlaveSensor class, where <id> is the identification of each SP. The Modules class defines in
its composition an instance of the MormSlaveSensor class for each SP.

void MormSlaveType::serialize(MQSoCMessage* pMQMessage)
{

...
w = mp_encode_uint(w, this->id);
w = mp_encode_uint(w, this->procSlacktime);
w = mp_encode_uint(w, this->energyleak);
w = mp_encode_uint(w, this->energyTotal);
w = mp_encode_uint(w, this->realSamplingWindow);
w = mp_encode_uint(w, this->routerInjection);
w = mp_encode_uint(w, this->routerCongestion);
...

}

void MormSlaveType::deserialize(MQSoCMessage* pMQMessage) {
...

this->id = mp_decode_uint(&r);
this->procSlacktime = mp_decode_uint(&r);
this->energyleak = mp_decode_uint(&r);
this->energyTotal = mp_decode_uint(&r);
this->realSamplingWindow = mp_decode_uint(&r);
this->routerInjection = mp_decode_uint(&r);
this->routerCongestion = mp_decode_uint(&r);

...
}

void MormSlaveSensor::updateStatus() {
...

this->data.procSlacktime = HAL_OS_SENSORS_getSample_processorSlacktime();
this->data.energyleak = HAL_OS_SENSORS_getSample_processorEnergyLeak() +
HAL_OS_SENSORS_getSample_routerEnergyLeak() + HAL_OS_SENSORS_getSample_memoryEnergyLeak();
this->data.energyTotal = this->data.energyleak + HAL_OS_SENSORS_getSample_processorEnergyDyn() +
HAL_OS_SENSORS_getSample_routerEnergyDyn() + HAL_OS_SENSORS_getSample_memoryEnergyDyn();
this->data.realSamplingWindow = HAL_OS_SENSORS_getSample_realSamplingWindow();
this->data.routerInjection = HAL_OS_SENSORS_getSample_routerInjection();
this->data.routerCongestion = HAL_OS_SENSORS_getSample_routerCongestion();

...
}

Figure 6.9: Code snippet of the serialize and deserialize methods of the MormSlaveType class, and
the updateStatus method of the MormSlaveSensor class.

MormSlaveMonitor class is the pair of the MormSlaveSensor class. When subscribing
to the sensor data topic of all SPs using the wildcard symbol “+”, messages sent in this topic are re-
ceived by the MormSlaveMonitor class. MormSlaveMonitor deserializes the received messages using
the deserialize method of its instantiated MormSlaveType class. An array struct in the MormSlave-
Monitor class stores the deserialized sensor data. Through this approach, decision-makers or other
components that want to use the sensor data from the SPs must use a pointer to the MormSlave-
Monitor object and read the array structure. As demonstrated in Section 5.4.1, when instancing
a pointer to the MormSlaveMonitor class, the component must also pass a pointer to a method



116

that is invoked when the MormSlaveMonitor’s array struct is updated. In the MORM-MQSoC im-
plementation, the MormSlaveMonitor object is instantiated by the MormLocalMasterSensor and
LocalMasterDecisor classes.

LocalMasterDecisor class implements the decision-making logic at the intra-cluster ac-
tuation level. While maintaining the same functionality, this class decouples from the kernel the
MORM’s decision-making logic. This approach allows, for example, that the decision logic to be
replaced by another heuristic without interfering with the behavior of other elements of the adaptive
service, such as sensors and actuators. The LocalMasterDecisor class incorporates in specific meth-
ods the Algorithm 5 which defines the MORM’s decision-making logic. The LocalMasterDecisor
class actuates in the SPs by instancing the DvfsActuator class, one for each SP in the cluster.

DvfsActuator class is a specialization of the UpDownActuator class (detailed in Section
5.2.2). The UpDownActuator class implements a standard interface that allows control of the
applicable actuation levels in an actuator. The DvfsActuator class implements three actuation
levels following the DVFS model detailed in Section 6.1.3. Figure 6.13 shows the class diagram
of the ClusterPowerModeActuator class. As shown, it is derived from the UpDownActuator class,
having as template parameters the DVFSType class as parameter for DataType and the DvfsValue
enumerator class as parameter for T. The DvfsActuator class uses the DvfsType as the actuation
data format. The topic named /actuator/pe/<id>/dvfs identifies the message flow between the
DvfsActuator and DvfsEffector pair, where <id> is the SP identification. As shown in Figure 6.8,
both MormSlaveMonitor, LocalMasterDecisor and DvfsActuator classes are instantiated in the LM
kernel.

ModuleInterface< Actuator >

+ driveData(data : ModuleType&) : void

UpDownActuator

+ drive() : void 

DataType, T, FIRST, LAST, INIT

UpDownControl

+ up() : bool
+ down() : bool
+ get() : T
+ advance(n : int) : bool
+ to_first() : bool
+ to_last() : bool
+ at_first() : bool
+ at_last() : bool
+ at(val : T) : bool

- etl::cyclic_value<T, FIRST, LAST> value;
- DataType data;

DataType, T, FIRST, LAST, INIT

DvfsActuator

+ enable() : void
+ drive() : void

<DataType -> DvfsType, 
T -> DVFSValue, 

FIRST -> DVFSValue::VF_PAIR_3, 
LAST -> DVFSValue::VF_PAIR_1, 
INIT -> , DVFSValue::VF_PAIR_1>

DvfsType

+ serialize(pMQMessage : MQSoCMessage*) : void
+ deserialize(pMQMessage : MQSoCMessage*) : void

- id : unsigned int
- value : unsigned int

+ deserialize(pMQMessage : MQSoCMessage*) : void- data

<< enumeration >>
DVFSValue

+ operator++(DVFSValue& v) : DVFSValue&  
+ operator--(DVFSValue& v) : DVFSValue&

VF_PAIR_3=4
VF_PAIR_2=6
VF_PAIR_1=7

- T

Figure 6.10: DvfsActuator Class Diagram.

DvfsEffector class is the pair of the DvfsActuator class. It receives the actuation value
from the DvfsActuator object instantiated in the LM and applies this actuation value in the SP using
an HSAL primitive. Figure 6.11 shows the code snippet of the doit method of the DvfsEffector class
responsible for calling the deserialize method of the DvfsType class and applying the actuation value



117

stored by the variable named “value”. The Modules class instantiates a DvfsEffector object for each
SP.

void DvfsEffector::doit(MQSoCMessage* pMQMessage)
{
...

this->data.deserialize(pMQMessage);
HAL_OS_EFFECTORS_setDVFS(this->data.value);

..
}

Figure 6.11: Code snippet of the doit method of the DvfsEffector class.

6.2.2. MORM-MQSoC Adaptative Service for the Global Master PE.

The adaptive service that performs decision-making in the inter-cluster domain is located
in the Global Master PE (GM). The Section 6.1.4 details the algorithms that execute the decision
making in the implementation of the MORM-C. MORM-MQSoC implementation has the same func-
tionality. The distinctions are in the model of communication between the elements of the adaptive
service and the modularization of the codes using our middleware-based approach. APPENDIX G
shows the directory tree with the set of files implemented by MORM-MQSoC. The adaptive service
for the GM following our middleware-based approach is comprised of these classes, described below:
MormLocalMasterSensor , MormLocalMasterMonitor , GlobalMasterDecisor , ClusterPow-
erModeActuator , and ClusterPowerModeEffector . Figure 6.6 shows a general overview of the
relation between these classes representing an ODA loop.

MormLocalMasterSensor class defines the LM sensor object. The MormLocalMas-
terSensor class uses the MormLocalMasterType class as the sensor data format. The MormLocal-
MasterType class contains the serialize and deserialize methods, which encapsulate/decapsulate the
sensor data in/from the message payload. The MormLocalMasterSensor class contains the updat-
eStatus method, which defines where the current information of the sensor data is extracted to be
serialized. Figure 6.12 shows the code snippet of the serialize, deserialize and updateStatus methods
defined in the respective classes. The MormLocalMasterSensor class updates the status of sensor
data by accessing the respective data in variables stored by the LocalMasterDecisor object instance.
It also calls the HAL_OS_OS_predictPowerMigration primitive via the HSAL interface which is
handled by the LM kernel. This function estimates the power spent by a given migration of appli-
cation tasks. The GlobalMasterDecisor class uses the sensor data through the instantiation of its
MormLocalMasterMonitor pair. The topic name /sensor/pe/<id>/mormLocalMaster identifies the
message generated by the MormLocalMasterSensor class, where <id> is the identification of each
cluster. The Modules class defines in its composition an instance of the MormLocalMasterSensor
class for each LM.

MormLocalMasterMonitor class is the pair of theMormLocalMasterSensor class. When
subscribing to the sensor data of all clusters using the “+” wildcard symbol, messages sent in this
topic by the respective LM are received by the MormLocalMasterMonitor class. The MormLocal-
MasterMonitor deserializes the received messages using the deserialize method of the MormLocal-
MasterType class. An array struct in the MormLocalMasterMonitor class stores the deserialized
LM’s sensor data. Through this approach, decision-makers or other components that want to use
the LM’s sensor data must use a pointer to the MormLocalMasterMonitor object and read the array
structure. The MormLocalMasterMonitor object is used by the GlobalMasterDecisor class.



118

void MormLocalMasterType::serialize(MQSoCMessage* pMQMessage)
{

...
w = mp_encode_uint(w, this->id);
w = mp_encode_uint(w, this->energyLeak);
w = mp_encode_uint(w, this->energyTotal);
w = mp_encode_uint(w, this->powerModeCluster);
w = mp_encode_uint(w, this->powerEstimatorError);
w = mp_encode_uint(w, this->slackTime);
...

}

void MormLocalMasterType::deserialize(MQSoCMessage* pMQMessage) {
...

this->id = mp_decode_uint(&r);
this->energyLeak = mp_decode_uint(&r);
this->energyTotal = mp_decode_uint(&r);
this->powerModeCluster = mp_decode_uint(&r);
this->powerEstimatorError = mp_decode_uint(&r);
this->slackTime = mp_decode_uint(&r);

...
}

void MormLocalMasterSensor::updateStatus() {
...

this->data.energyLeak = pLocalMasterDecisor->totalPEEnergyHistory.getEnergyClusterDif_leakage();
this->data.energyTotal = pLocalMasterDecisor->totalPEEnergyHistory.getEnergyClusterDif_total();
this->data.powerModeCluster = pLocalMasterDecisor->getCurrentPowerMode();
this->data.powerEstimatorError = HAL_OS_predictPowerMigration(HAL_OS_GetClusterUID(),
pLocalMasterDecisor->getCurrentPowerMode());
this->data.slackTime = pLocalMasterDecisor->processorHistory.get_average_slack_time_cluster();

...
}

Figure 6.12: Code snippet of the serialize and deserialize methods of the MormLocalMasterType
class, and the updateStatus method of the MormLocalMasterSensor class.

GlobalMasterDecisor class implements the decision-making logic at the inter-cluster
actuation level. While maintaining the same functionality, this class decouples from the kernel all
the MORM’s decision-making logic. The GlobalMasterDecisor class incorporates in specific methods
the algorithms 4 and 3. We perform some modifications in the algorithms of the MORM-C decision
logic in order to decouple those actuation values that are platform specific. With this design decision,
the GlobalMasterDecisor class could be used as decision-making method of any actuation object
derived from UpDownActuator class. The GlobalMasterDecisor class actuates in the clusters by
instancing the ClusterPowerModeActuator class, one for each cluster in the system.

ClusterPowerModeActuator class is a specialization of the UpDownActuator class (de-
tailed in Section 5.2.2). The DvfsActuator class implements two levels of actuation: Performance
- where the SPs in the cluster are configured as single-task execution model; Energy - where the
SPs are configured as multitask execution model, with the maximum number of tasks defined at
design time. In both actuation levels, tasks migration can be performed to achieve one or another
execution model, as detailed in the process of tasks mapping/remapping in Section 6.1.4. Fig-
ure 6.13 shows the class diagram of the ClusterPowerModeActuator class. As demonstrated, it is
derived from UpDownActuator class, having as template parameters the ClusterPowerModeType
class as parameter for DataType and PowerModeValue enumerator class as parameter for T. The
ClusterPowerModeActuator class uses the ClusterPowerModeType as actuation data format. The
topic named “/actuator/cluster/<id>/powerMode” identifies the message flow between the Clus-
terPowerModeActuator and ClusterPowerModeEffector pair, where <id> is the identification of
the cluster. Both MormLocalMasterMonitor, GlobalMasterDecisor and ClusterPowerModeActuator
classes are instances of the GM kernel.



119

ModuleInterface< Actuator >

+ driveData(data : ModuleType&) : void

UpDownActuator

+ drive() : void 

DataType, T, FIRST, LAST, INIT

UpDownControl

+ up() : bool
+ down() : bool
+ get() : T
+ advance(n : int) : bool
+ to_first() : bool
+ to_last() : bool
+ at_first() : bool
+ at_last() : bool
+ at(val : T) : bool

- etl::cyclic_value<T, FIRST, LAST> value;
- DataType data;

DataType, T, FIRST, LAST, INIT

ClustersPowerModeActuator

+ enable() : void
+ drive() : void

<DataType -> ClusterPowerModeType, 
T -> PowerModeValue, 

FIRST -> PowerModeValue::PERFORMANCE, 
LAST -> PowerModeValue::ENERGY, 

INIT -> , PowerModeValue::PERFORMANCE>
ClustersPowerModeType

+ serialize(pMQMessage : MQSoCMessage*) : void
+ deserialize(pMQMessage : MQSoCMessage*) : void

- id : unsigned int
- value : unsigned int

+ deserialize(pMQMessage : MQSoCMessage*) : void- data

<< enumeration >>
PowerModeValue

+ operator++(PowerModeValue& v) : PowerModeValue& 
+ operator--(PowerModeValue& v) : PowerModeValue&

PERFORMANCE
ENERGY

- T

Figure 6.13: ClusterPowerModeActuator Class Diagram.

ClusterPowerModeEffector class is the pair of the ClusterPowerModeActuator class. It
receives the actuation value from the ClusterPowerModeActuator object instantiated in the GM and
applies this actuation value in the LM kernel by using an HSAL primitive. Figure 6.14 shows the
code snippet of the doit method of the ClusterPowerModeEffector class responsible for calling the
deserialize method of the ClusterPowerModeType class and applying the actuation value represented
by the variable named “value”. The Modules class instances one ClusterPowerModeEffector object
for each LM.

void ClusterPowerModeEffector::doit(MQSoCMessage* pMQMessage)
{
...

this->data.deserialize(pMQMessage);
HAL_OS_EFFECTORS_setClusterPowerMode(this->data.id, this->data.value);

...
}

Figure 6.14: Code snippet of the doit method of the ClusterPowerModeEffector class.

6.3. Evaluation

This section presents the evaluation performed on MORM-C and MORM-MQSoC self-
adaptive systems. Both self-adaptive systems run on the HEMPS platform detailed in Section 6.1.
To include the middleware in the HEMPS platform, it was necessary to implement HSAL directives
which represent the interface from the middleware to the kernel. We also included the middleware
initialization in the kernel boot process. The middleware initialization includes the initialization of
the base middleware structures (Chapter 4) and modules extension (Chapter 5).



120

Refactoring the MORM-C self-adaptive system originally presented at [MdSR+19] allows
us to compare and contrast the advantages and disadvantages of using middleware support for the
development of self-adaptive systems. While more modular code seems more understandable and
easier to fix and expand, we need to assess this perception through objective evaluation metrics
that can be extracted from both approaches. We have summarized performance/energy and soft-
ware quality metrics extracted from MORM-C and MORM-MQSoC implementations as follows: i)
Performance/energy metrics: Execution Time, Energy, Power and CPU Utilization; ii) Software
quality metrics: Cyclomatic Complexity, Interface Complexity, Function Complexity, Lines of Code,
Effective Lines of Code, Logical Lines of Code and Parameters. Sections 6.3.1 and 6.3.2 detail the
performance/energy metrics and present the results obtained upon these metrics. Section 6.3.3 and
6.3.4 detail the software quality metrics and discusses the results obtained upon these metrics.

6.3.1. Performance/Energy Metrics

The hypothesis to be verified in this evaluation is the following:

Hypothesis 6.3.1. The overhead implied by the middleware-based design approach for the devel-
opment of a self-adaptive system has low impact on the applications performance and the energy
spent by the system.

To test the Hypothesis 6.3.1, we compared the two approaches by stimulating the system
with an application benchmark. Since the MORM self-adaptive system aims to adapt the system in
order to comply with a power cap, we have to stimulate the platform and observe the behavior of
the system according to some performance and energy metrics. The application benchmark consists
of the following applications: DTW (6 tasks), AES (5 tasks), MPEG (5 tasks), and Synthetic
(communication-bound application, 6 tasks). The metrics extracted are as follows, depending on
the performed experiment: application execution time, workload execution time, energy, power and
CPU utilization. The metrics are extracted from a clock-cycle accurate RTL SystemC description
of the HeMPS system.

In the experiments detailed in Section 6.3.2, we inserted the applications in the system in
a certain order and entry time to cause a behavior in the system against a typical workload. Both
MORM-C and MORM-MQSoC self-adaptive systems follow the same assumptions, which are: i)
sensor’s data samples in the SPs are generated and sent every 250 Kticks9; ii) when an LM receives
an SP sample, it generates an LM’s sensor sample that is immediately sent to the GM; iii) an LM
performs its decision-making process whenever it receives a sensor sample from an SP; iv) the GM
performs its decision-making process whenever an application request mapping or an application
finishes its execution; v) the order and time of entry of applications into the system are the same;
vi) the power cap is set to 180mW; vii) the SPs running no tasks are considered off (their sensors
do not generate data while off).

6.3.2. Performance/Energy Results

This section discusses the results obtained by MORM-C and MORM-MQSoC self-adaptive
systems upon the performance/energy metrics detailed in Section 6.3.1. Figure 6.15 shows the
average power results for MORM-C and MORM-MQSoC running a typical workload. We stand out

91 Ktick corresponds to 1000 clock cycles.



121

in Figure 6.15 instants of time where the applications are inserted in the system (red vertical bars),
snapshots taken for energy evaluation (blue vertical bars) and the time instant where the applications
ended (green vertical bars). The applications enter in the system representing a dynamic load of
applications in three instants of time in the following order: i) two long applications enter at 1000
Kticks; ii) two short applications enter at 5200 Kticks; iii) other two short application enters at 9300
Kticks. Figure 6.16 shows the average system’s slack time for MORM-C and MORM-MQSoC at
the same experiment. Slack time is the time (in percentage) where the SPs are idle.

In
st

an
t P

ow
er

 (m
W

)

MORM-C Instant Power

30

80

130

180

230

S
na

ps
ho

t 1

S
na

ps
ho

t 2

S
na

ps
ho

t 3

S
na

ps
ho

t 4

app
6

ended

S
na

ps
ho

t 5

2nd
ap

p 
bu

rs
t

3rd
ap

p 
bu

rs
t

app
2

ended

ap
p 3

en
de

d

ap
p 4

en
de

d

ap
p 1

en
de

dap
p 5

en
de

d

In
st

an
t P

ow
er

 (m
W

)

Tick Counter (Kticks)

MORM-MQSoC Instant Power

30

80

130

180

230

2000 12000 22000 32000 42000

S
na

ps
ho

t 1

S
na

ps
ho

t 2

S
na

ps
ho

t 3

S
na

ps
ho

t 4

S
na

ps
ho

t 5

2nd
ap

p 
bu

rs
t

3rd
ap

p 
bu

rs
t

app
2

ended

ap
p 3

en
de

d

ap
p 4

en
de

d

ap
p 1

en
de

d

ap
p 5

en
de

d

app
6

ended

Figure 6.15: Average power results for MORM-C and MORM-MQSoC running typical workload.

Table 6.5 presents the performance and energy results for both implementations extracted
in each snapshot: (i) number of executed iterations (appi Iter.), which corresponds to the per-
formance of the applications (higher value correspond to better performance); (ii) total energy
consumed by the system (Energy); (iii) average utilization of the SPs (CPU Util.) including those
turned off. We extracted the values of the sample immediately prior to the respective snapshot.
The values between parentheses is the overhead in percentage based on the samples, considering the
following: negative value for appi Iter means that the number of iterations performed for the applica-
tion decreased by that percentage; positive overhead for Energy means that the energy consumption
increased by that percentage.

Firstly, we analyze the adaptation logic of both MORM-C and MORM-MQSoC self-
adaptive systems. We can observe that after the first burst of applications (Figure 6.15), the
instant power is around 90mW. After the second burst, the power enters the region of the power
cap and even after the third burst of applications, the power remains below the cap for both adaptive

10MORM-C
11MORM-MQSoC
12MORM-C
13MORM-MQSoC



122

40

50

60

70

80

90

A
ve

ra
ge

 S
la

ck
 T

im
e 

(%
)

MORM-C Global Slack Time

Mean = 54.8137
Max = 84

Std Dev = 8.76936
Min = 43

40

50

60

70

80

90

2000 12000 22000 32000 42000

A
ve

ra
ge

 S
la

ck
 T

im
e 

(%
)

Tick Counter (Kticks)

MORM-MQSoC Global Slack Time

Mean = 54.4307
Max = 86

Std Dev = 8.64516
Min = 42

Figure 6.16: Average Slack Time for MORM-C and MORM-MQSoC running typical workload.

Table 6.4: Applications Execution Time.

Application
Execution Time (Kticks)

MQSoC Overhead
BASE10 MQSoC11

app1long 42256 44124 4.4%
app2long 31846 33272 4.5%
app3short 18808 19587 4.1%
app4short 12653 13146 3.9%
app5short 26473 27346 3.3%
app6short 27058 27604 2.0%

Total Energy (mJ) 19606.4 20766.1 5.9%

services. The adaptation logic switches the operating mode of the Cluster 0 from performance to
energy mode and changes the vf-pair of the SPs to a lower energy consumption value, as can be
observed in Figure 6.17, Snapshot 2. With the third burst of applications, the adaptation logic
switches the operating mode of the Cluster 3 to energy, as Snapshot 3. The app5 is already ended
in this instant. We can observe that the adaptation logic has switched the Cluster 0 to performance
mode because the logic measures that the power increment would not exceed the power cap. Most
of all, the system execution does not exceed the power cap at any time for both MORM-C and
MORM-MQSoC scenarios.

We review some possible behaviors that we may find in the analysis of the performance
and energy results that we will discuss below. MORM-C uses low-level kernel primitives to send
messages between the elements that comprise the adaptive service. MORM-MQSoC does that
through middleware’s publish-subscribe primitives. Thus, we should find some performance overhead
since the middleware performs additional processing to handle features such as serialization, protocol
stack and topic verification, as detailed in Sections 4 and 5. We could see the performance overhead
in the results as extended time to finish the applications, which should result in additional power
consumption. In addition, although MORM-C and MORM-MQSoC have been designed with the



123

Table 6.5: Performance and energy results.

Metric Snapshot 1 Snapshot 2 Snapshot 3 Snapshot 4 Snapshot 5
BASE12 MQSoC13 BASE12 MQSoC13 BASE12 MQSoC13 BASE12 MQSoC13 BASE12 MQSoC13

app1long Iter. 263 253(3.8%) 720 705 (2.1%) 1317 1287 (2.3%) 2067 2001 (3.2%) 3504 3324 (5.1%)
app2long Iter. 45 43 (4.7%) 139 133 (4.3%) 311 299 (3.8%) 541 516 (4.6%) - -
app3short Iter. - - 292 281 (3.9%) 1285 1211 (5.8%) - - - -
app4short Iter. - - 106 115 (8.1%) - - - - - -
app5short Iter. - - - - 460 400 (13.0%) 1628 1529 (6.1%) - -
app6short Iter. - - - - 82 79 (3.7%) 276 266 (3.6%) - -
Energy (mJ) 713.6 720.6 (1.0%) 2657.9 2794.9 (5.1%) 7891.2 8149.1 (3.3%) 14969.0 15251.8 (1.9%) 18625.3 19349.8 (3.9%)
CPU Util. (%) 25 25 43 44 55 55 43 43 35 35

same set of sensors, decision logic and actuators, a particular behavior observed may be different
due to a possible time deviation in a given sample of the system’s state.

Manager Off VFperf

A

C

B3

B4

B1 B2

A D

E

B C

Performance Mode Performance Mode

Performance Mode Performance Mode

A

C

B3

B4

B1 B2

A D

E

B C

Energy Mode Performance Mode

Performance Mode Performance Mode

A D

E

B C

Performance Mode

Performance Mode

Performance Mode Performance Mode

Performance Mode Energy Mode

A

C

B3

B4

B1 B2

Performance Mode Performance Mode

Performance Mode Performance Mode

Snapshot 1 Snapshot 2 Snapshot 3 Snapshot 4 Snapshot 5

B3

B4 A1 C1

C2

A2 B

D

C1

C2

B

D

A1

A2

A

B

C

A

B1

B2B3

B4

A

C

B3B4
B1

B2

C
D

app1long

app2long

app3short

app4short

app5short

app6short

Energy Mode

VFEDP VFmin

B2

A
B1

E
C
D
A

C

B3B4
B1

B2

A
B

D

E
A
BE

C

Performance Mode

C

A

B1

B2B3

B4

Figure 6.17: Task mapping showing the cluster mode and vf-pair at each snapshot (Same behavior
for both MORM-C and MORM-MQSoC).

Analyzing the performance and energy results, we can observe that the system execution
begins with a start-up time required for the MORM-MQSoC to advertise and subscribe the topics
that identify the set of sensor/monitor pairs and actuators/effectors pairs. This start-up time is the
first additional execution time performed by MORM-MQSoC. The middleware start-up finishes at
instant 4937 Kticks, including the MORM-MQSoC start-up. The sensor data begins to be sampled
after the first application mapping, which happens at instant 1000 Kticks. The performance overhead
induced by MORM-MQSoC on the number of iterations of the applications ranges from 2.1% to 13%,
depending on the snapshot. The execution time of the whole execution scenario for MORM-MQSoC
is 44202 Kticks, which represents an overhead of 4.5% compared to MORM-C. The difference in
CPU utilization (CPU Util. in Table 6.5) reached a maximum of 1% in Snapshot 2. As viewed in
Figure 6.16, the behavior of the system’s slack time is similar for both. The total energy spent by
the MORM-MQSoC is 20766.1 mJ, which represents an overload of 5.9% compared to MORM-C.

Memory Footprint Analysis

Tables 6.6 and 6.7 show the memory footprint required to store the software for MORM-C
and MORM-MQSoC. We analyze the memory footprint size separately for each software component
of the adaptive service. MORM-C consists of the base kernel and the MORM-C adaptive logic.
MORM-MQSoC is composed of the same base kernel added to the base middleware, the modules
extension, and the MORM-MQSoC adaptive logic. Analyzing the footprint size only for MORM
software, the overhead of MORM-MQSoC over MORM-C is 27.5% for master software and 128%
for the slave. The base software required to incorporate the MORM-MQSoC, consisting of the base
middleware and the modules extension, presents an overhead of 52.9% for the master software and
69.7% for the slave. The total overhead of the MORM-MQSoC considering all software components
(Total Size row) is 44.5% for the master software and 78% for the slave.



124

The memory footprint overhead is caused in part by the use of OOP features, such as
virtual functions and polymorphism. Virtual functions are resolved at runtime. When using virtual
functions, the compiler adds additional code to maintain the structures needed to handle pointers
and call methods of derived classes. The remaining overhead is caused by other features designed
to make the programming of self-adaptive systems easier and more transparent to the user, such as
payload serialization (Section 4.4), use of strings and wildcards to represent the publish-subscribe
topic (Section 5.3), hardware/software abstraction layer to facilitate the portability of the middleware
to other platforms (Section 4.3.4), and protocol stack to facilitate the addition of new layers in the
protocol stack handled by the middleware (Section 4.3.4). It’s the cost of a code that is more
reusable and easier to maintain.

Table 6.6: MORM-C Memory Footprint.

Software Component Footprint (KB)
Master Slave

Base Kernel 24.2 15.2
MORM-C 12 2.5
Total Size 36.2 17.7

Table 6.7: MORM-MQSoC Memory Footprint.

Software Component Footprint (KB)
Master Slave

Base Kernel 24.2 15.2
Base Middleware 10.5 8.3
Modules Middleware Extension 2.3 2.3
MORM-MQSoC 15.3 5.7
Total Size 52.3 31.5

Internal timing profile

We know that by adding a new level of processing to the software stack, in this case, the
middleware, we would cause a performance overhead compared to the MORM-C approach. However,
can we quantify the processes that most demand time within middleware processing? To do this, we
perform a timing profile of the internal middleware processes and compare the results with MORM-
C. In this experiment, we measure the number of clock cycles (ticks) spent by each component
of both MORM-C and MORM-MQSoC. We perform the same analysis for the inter-cluster and
intra-cluster adaptive service. Figures 6.18 and 6.19 show the components of the intra-cluster and
inter-cluster adaptive services, where we place between parentheses the time spent by their respective
methods/functions. In these figures, we show in (a) the results for MORM-MQSoC and in (b) the
results for MORM-C.

MormSlaveMonitor
(3273)

LocalMasterDecisor
(3222)

MormSlaveSensor
(4260)

DvfsActuator
(8534)

DvfsEffector
(4067)

LM

SP

Monitor
(253)

Decisor
(3505)

Effector
(1912)

Sensor
(745)

Actuator
(104)

LM

SP

a) b)

Figure 6.18: Time spent by each component of the intra-cluster adaptive service for: a) MORM-
MQSoC b) MORM-C.

As we have shown in the previous experiment, MORM-MQSoC presents an execution time
overhead of 4.5% in the simulated scenario. Since the application tasks run on the SPs (and not on
the LMs and GMs), the overhead is mainly due to the middleware processing performed on the SPs.
The process of generation of the sensor data in SPs and deliver to the DMNI to be sent by NoC is
identified in Figure 6.18 by the MormSlaveSensor component. As defined at design-time, the sensor
data in SP is generated intermittently every 250 Kticks. This means that every 250 Kticks, the



125

MormLocalMasterMonitor
(3485)

GlobalMasterDecisor
(3108)

ClusterPowerModeEffector
(20676)

MormLocalMasterSensor
(11462)

ClusterPowerModeActuator
(10874)

GM

LM

Monitor
(915)

Decisor
(3113)

Effector
(17691)

Sensor
(4324)

Actuator
(341)

GM

LM

a) b)

Figure 6.19: Time spent by each component of the inter-cluster adaptive service for: a) MORM-
MQSoC b) MORM-C.

middleware uses the processor for additional 3515 ticks than the same process in MORM-C. Thus,
the application tasks that are running at the same SP do not use the processor in this time period,
causing a delay in their execution time. This delay corresponds to an overhead 1.6%. The remaining
overhead is caused by network traffic, as detailed in the network traffic analysis as follows.

Network Traffic Analysis

This section evaluates the network traffic for the same typical workload. The variation in
network traffic is mainly due to the difference in message size between MORM-MQSoC and MORM-
C. MORM-MQSoC uses the additional packet header for handling the publish-subscribe layer of the
protocol stack (as detailed in Section 4.3.4). We analyze the following metrics: a) router injection,
that is the rate of utilization of the buffer in the local port measured in percentage; b) router
congestion, that is the rate of utilization of the input buffer in the non-local ports (north, south,
west, and east); c) Dif Time, that is the time for transmitting a message from a source PE to a
target PE.

For both router injection and router congestion metrics, the routers report the percentage
of cycles that the buffer stays with high utilization (>= 75%) in the epoch. For example, a rate of
25% means that in 25% of the clock cycles the buffer usage has been occupied by 75% or more of
its capacity.

0

6

12

18

24

30

36

20000 40000

M
O

R
M

-C

0

6

12

18

24

30

36

10000 20000 30000 40000

M
O

R
M

-M
Q

S
oC

Tick Counter (Kticks)

Figure 6.20: Router Injection (%), presented in the Y-axis.



126

Figure 6.20 shows a box plot graph to the router injection measured for MORM-C and
MORM-MQSoC during the execution time of the typical workload. The graph shows a box plot bar
for each epoch along the execution time. Each box plot bar presents the minimum, first quartile,
median, third quartile, and maximum values calculated on the samples of all SPs at the epoch.
The median value (black points in the graphs) is lower than 4% for all samples. However, MORM-
MQSoC presents a higher variance in the samples what can be viewed in the maximum values in
the graphs. For the worst-case, the injection rate is 31.0% for MORM-MQSoC and 14.6% for
MORM-C. Considering the average mean values, MORM-MQSoC router injection rate is 50.9%
higher than MORM-C rate (0.63% and 0.42% for MORM-MQSoC and MORM-C, respectively).
The higher injection rate in MORM-MQSoC contributes to the execution time overhead of 4.5% in
the simulated scenario.

Figure 6.21 shows the box plot graph related to the router congestion rate. The median
router congestion is lower than 2% for all cases. MORM-MQSoC reaches 16.2% at worst-case,
while MORM-C reaches 3.1%. Considering the average mean values, the router congestion rate is
0.182% for MORM-MQSoC and 0.175% for MORM-C.

0

2

4

10000 20000 30000 40000

M
O

R
M

-C

0

2

4

6

8

10

12

14

16

18

10000 20000 30000 40000

M
O

R
M

-M
Q

S
oC

Tick Counter (Kticks)

Figure 6.21: Router Congestion (%), presented in the Y-axis (note that the scale of the Y-axis is
not the same for better viewing purpose).

The next experiment evaluates the delay in the delivery of messages generated in the self-
adaptive system. We analyze the delay in the delivery of messages from the SPs to their respective
LMs. The metric used is Dif Time, that represents the time for transmitting a message from a
source PE to a target PE, considering only the hardware elements (DMNI, router buffer and NoC).
Figure 6.22 shows the Dif Time for the sensor data messages generated by SPs. A line in the graph
corresponds the average of all Dif Time samples in an epoch for the respective cluster. A point in
the graph is the Dif Time of a given SP in that cluster. Figure 6.23 shows the summarized Dif Time
for all messages of the SP’s sensor data.

The Dif Time median is 6494 Kticks and 7927 Kticks for MORM-MQSoC and MORM-C,
respectively. Although MORM-MQSoC presents a lower Dif Time median, it presents a higher delay
to process the received message in the middleware and also when a DVFS actuation process is



127

0

2500

5000

7500

10000

20000 40000

M
O

R
M

-C

Cluster 0
Cluster 1

Cluster 2
Cluster 3

Cluster 0
Cluster 1

Cluster 2
Cluster 3

0

2500

5000

7500

10000

10000 20000 30000 40000

M
O

R
M

-M
Q

S
oC

Tick Counter (Kticks)

Cluster 0
Cluster 1

Cluster 2
Cluster 3

Cluster 0
Cluster 1

Cluster 2
Cluster 3

Figure 6.22: Dif Time (Kticks), presented in the Y-axis, showing the arrival delay of the sensor data
messages from SPs to LMs.

triggered by the decisor. As showed in Figure 6.18, MORM-MQSoC (MormSlaveMonitor) spends
3273 ticks to process the received message, while MORM-C (Monitor) spend 253 ticks. This
processing is related to the updating of SP statistics in the LM. In the case of a DVFS actuation,
the LM spends 8534 ticks to generate the actuation message, while MORM-C spend 104 ticks.
One consequence of this delay is that another received message, stored in the buffer router, is not
consumed until the entire process described here is finished. This can have a cascading impact,
since other PEs cannot send messages through this router if it becomes full. The same reasoning
we can apply to the LM of the Cluster 0 which also has GM functions. In addition to the delay
caused by the reception of a SP sensor message, the LM (which is also GM) may also be slow to
consume messages in periods of time in which it is processing a reception of a LM sensor data or
when is triggered an actuation in a given cluster’s operating mode. For these reasons, the Dif Time
worst case achieves 77786 ticks for MORM-MQSoC and 51031 ticks for MORM-C.

6.3.3. Software Quality Metrics

This section presents the metrics used to test the following hypothesis:

Hypothesis 6.3.2. The use of middleware-based design approach improves the quality of the self-
adaptive system software.

Measuring the quality of software can be done by control or prediction metrics. Control
metrics are associated with software development processes from its design until a considerable period
of time in production. Examples of control metrics are the average effort and time required to fix
reported bugs. Control metrics can only be extracted after the software is developed by reviewing
both bugs fixing and feature extending processes. Prediction metrics help predict the characteristics
of the software. Examples of prediction metrics are cyclomatic complexity and interface complexity.



128

Figure 6.23: Box Plot of the summarized Dif Time for transmission of the SP’s sensor data.

Software metrics can influence the designer to choose which design approach to use to
deploy a given software. We do not have a complete software development cycle guaranteed by
control metrics available to promote the use of a modular and self-contained approach such as that
used in MORM-MQSoC. Thus, we evaluate the software through predictor metrics of quality.

We select predictor metrics that could be extracted from both approaches used in MORM-C
and MORM-MQSoC. We extract the metrics using the M-Squared Technologies’ Resource Standard
Metrics (RSM) tool. For each source file of MORM-C and MORM-MQSoC implementations, we
use RSM to extract the following metrics: i) Cyclomatic Complexity ; ii) Interface Complexity ; iii)
Function Complexity ; iv) Lines of Code; v) Effective Lines of Code; vi) Logical Lines of Code; vii)
Parameters.

Cyclomatic Complexity (CC) metric is the number of linearly independent code paths
through the source code of a software [McC76]. A software with complex control flow requires more
testing to achieve good code coverage and is less easy to maintain. This metric can also indicate
the number of test cases required in the unit testing to fully validate a function/method. CC can be
applied to functions, methods, classes or for projects as a whole. A small value for CC means less
logical complexity, implying less risk in its modification and easier to understand. The RSM tool
calculates the CC value according to McCabe [McC76]. The calculation is based on a representation
of the function control flow. The control flow represents a function such as a graph consisting of
nodes and edges. CC is defined as Equation 6.12, where P is the number of predicted nodes (nodes
that contain conditions) in the control flow graph.

CC = P + 1 (6.12)

Interface Complexity (IC) is a software quality metric that sums the number of input
parameters for a function and the number of return states for that function. This metric can be
useful when analyzing the complexity of a function’s interface. IC can be applied to functions,
methods, classes, or for projects as a whole. A small value for IC means less interface complexity.
IC is defined as Equation 6.13, where Par is the number of input parameters for the function and
Ret is the number of return states for the function.

IC = Par +Ret (6.13)



129

Function Complexity (FC) is the sum of the Cyclomatic Complexity (CC) and the Interface
Complexity (IC) of a function. This metric can be useful when analyzing the complexity of a function.
A small value for FC means less function complexity. FC is defined as Equation 6.14.

FC = CC + IC (6.14)

Lines of Code (LoC) is a software quality metric that represents the number of lines of code
for a function. This metric considers all the lines that compose the code of a function, including
comments, blacks, and parentheses. LoC can be applied to functions, methods, classes or to projects
as a whole.

Effective Lines of Code (eLoC) is a software quality metric that represents the number of
effective lines of code for a function. This metric excludes comments, blanks, or stand-alone keys
or parentheses. eLoC can be applied to functions, methods, classes or to projects as a whole.

Logical Lines of Code (1LoC) is a software quality metric that represents the number of
code’s logical lines for a function. This metric considers only those lines of code with statements
ending with a semicolon. 1LoC can be applied to functions, methods, classes or to projects as a
whole.

Parameters is a software quality metric that represents the number of parameters of a
function. Parameters can be applied to functions, methods, classes or to projects as a whole.

6.3.4. Software Quality Results

This section discusses the results obtained by MORM-C and MORM-MQSoC self-adaptive
systems following the software quality metrics detailed in Section 6.3.3. We extract the software
quality metrics using the RSM tool [MSq18] having as object of evaluation the source code of
the MORM-C and MORM-MQSoC self-adaptive systems. The objective is to test the Hypothesis
6.3.2. To do this, we have to differentiate the MORM source code from the rest of the kernel and
middleware. The MORM-MQSoC’s source code is simple to identify since all its code is composed
of the files of its classes, as demonstrated in Sections 6.2.2 and 6.2.1. However, the differentiation
of the MORM-C’s source code from the rest of the kernel software is not trivial. To differentiate
it, we identify the methods used by MORM-C in kernel code and surround them with preprocessing
macros. In addition, the platform contains two kernel versions corresponding to the master and
slave kernels. The master kernel is the software used in GM and LM. The slave kernel is used in SP.

Equations 6.15 and 6.16 define the computation of a given software quality metric (QM) for
the MORM-C source code, where: i) QM(KERNELC

Master+MORMC
Master) and QM(KERNELC

Slave+MORMC
Slave)

are the respective metric extracted from the whole code formed by kernel and MORM-C source code
for the master and slave kernels, respectively; ii) QM(KERNELC

Master) and QM(KERNELC
Slave) are the

respective metric extracted from the kernel source code excluding MORM-C source code through
the preprocessing macro for the master and slave kernels, respectively.

QM(MORMMaster
C ) = QM(KERNELMaster

C +MORMMaster
C )−QM(KERNELMaster

C )
(6.15)

QM(MORMSlave
C ) = QM(KERNELSlave

C +MORMSlave
C )−QM(KERNELSlave

C ) (6.16)



130

Since MORM works with sensor, making-decision and actuator components located on
both master and slave kernels, we have consolidated the quality metrics of both kernels, as Equation
6.17.

QM(MORMT otal
C ) = QM(MORMMaster

C ) +QM(MORMSlave
C ) (6.17)

The metrics for the MORM-MQSoC’s source code are extracted directly from the files of
its classes. Equation 6.18 defines the computation of a given quality metric (QM) for the MORM-
MQSoC’s source code, where the value extracted from the MORM-MQSoC classes used in the master
kernel (QM(KERNELMQSoC

Master )) is added to those extracted for the slave kernel (QM(KERNELMQSoC
Slave ))

in order to calculate the total value (QM(MORMMQSoC
Total )).

QM(MORMT otal
MQSoC) = QM(MORMMaster

MQSoC) +QM(MORMSlave
MQSoC) (6.18)

Table 6.8 shows the results measured for each software quality metric, comparing the
source code MORM-C and MORM-MQSoC. The last line shows the percentage reduction achieved
by MORM-MQSoC. From the results achieved by MORM-MQSoC, we can state that the Hypothesis
6.3.2 is true, considering the evaluated metrics. That is, the use of middleware-based design approach
improves the quality of the self-adaptive system software, with gains from 33% to 47.8%, depending
on the metric.

Table 6.8: Software Quality Results.

Implementation
Quality Metric (QM)

CC IC FC LOC eLOC 1LOC Parameters

MORMC
Total 3.45 3.22 6.67 16.31 13.67 10.82 1.94

MORMMQSoC
Total 2.03 2.16 4.19 9.35 7.18 5.64 1.06

Reduction 41.1% 33.0% 37.2% 42.7% 47.5% 47.8% 45.3%

The performed experiments allow us to assert that the MORM-MQSoC software has better
quality than the MORM-C software, presenting the same functionality with an additional cost of
5.9% of the energy spent and 4.5% of the execution time in a typical workload.

To summarize, we show in a normalized way in Figure 6.24 the set of quality metrics
along with the performance/energy results presented in Section 6.3.2. While values greater than 1
represent a MORM-MQSoC overhead against MORM-C, values less than 1 represent a gain. For
example, 1.05 for Energy represents a MORM-MQSoC overhead against MORM-C of 5%, while
0.59 for CC represents a MORM-MQSoC gain against MORM-C of 59%.



131

0.59
0.67

0.63

0.57

0.53

0.520.551.06

1.05

1.44

1.78

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

CC

IC

FC

LOC

eLOC

1LOCParameters

Energy

Scenario Execution Time

Footprint (master)

Footprint (slave)

Figure 6.24: Result of the evaluation considering performance, energy and software quality metrics
for the MORM-MQSoC self-adaptive system compared to MORM-C.



132

7. CONCLUSION

This Thesis argued the need for more systematic and standardized software development
approaches in the domain of MPSoC platforms, especially for the development of self-adaptive
systems in these platforms. We argued that current approaches for software development are mostly
hard-coded to the underlying system components such as kernel software or ad-hoc communication
protocols. This characteristic makes the maintenance and extension of the developed software a
difficult task.

The fundamental problems addressed in the Thesis was how to aggregate quality properties
to the self-adaptive system software, related to maintainability and software reuse, without generating
an excessive performance and power consumption overhead along with memory usage required by
the generated software. In the same way, we investigated current programming models regarding the
coupling between the elements that make up the system. Among them, we highlighted the publish-
subscribe model that enables complete decoupling in the communication between the elements of
the system and the underlying hardware/software architecture.

Considering the fundamental problems addressed in this Thesis, the introduction of this
Thesis stated the following hypothesis:

“Faced with current programming models and the need for self-adaptation of MPSoC
systems that meet application requirements while complying system constraints, the use of a publish-
subscribe model along with a middleware-based software development approach can improve software
quality of self-adaptive systems while minimizing the middleware’s impact on system performance,
memory usage and energy spend.”

To test the Thesis hypothesis, we followed an evolutionary middleware design approach
starting with aspects of middleware communication on a NoC-based platform, detailed in Chapter
4, succeeded by the deployment of a middleware extension that supports the development of self-
adaptive systems, detailed in Chapter 5. Regarding middleware communication aspects, we presented
in Section 4.2 both the phases of the proposed publish-subscribe protocol and the communication
API that are the foundation of the programming model incorporated to the middleware design. As an
evaluation, we compared the results achieved with an MPI-based programming model on an MPSoC
platform simulated in an instruction accurate abstraction level. The proposed publish-subscribe
model improved the performance of the evaluated application by up to 29.9%, while it presented an
overhead of 43.7% in the footprint size.

From this initial design of the middleware implemented in C programming language without
any object-oriented technique, we derived the publish-subscribe protocol phases and redesigned
the middleware incorporating best-practices of object-oriented programming and design patterns to
introduce code reuse aiming the support to the development of self-adaptive systems. Section 4.3
described the new middleware structure and API, introducing an interface for middleware extensions
along with other design improvements such as protocol stack and hardware/software abstraction
layer. We evaluated the new middleware structure by comparing the results with the previous
middleware implementation. The middleware presented an improvement in performance of up to
19.5% in the simulated applications, while having an 8.7% footprint overhead compared to the
previous middleware.

In order to establish a standard for how middleware encapsulates messages in the self-
adaptive system, we identified the need to include a data serialization feature into the middleware.
We detailed in Section 4.4 a benchmark evaluation that we have performed on available serialization
libraries for embedded devices with small memory. The goal was to identify the library with the



133

best performance results and that requires the lowest footprint size. From the achieved results, we
highlighted the Msgpuck library to perform the serialization into the middleware.

The middleware structure designed following OOP programming allowed us to develop
a middleware extension that abstracts communication details to the designer. This middleware
extension, called Modules, has the function of wrapping the logic of the elements of the self-adaptive
system in C++ classes: Sensor, Monitor, Decisor, Actuator and Effector. Thus, the designer of the
self-adaptive system does not need to know details of the middleware communication primitives.
We detailed the Modules extension in Chapter 5, including a demonstration of how to implement
an adaptive service using the Modules extension in Section 5.4.

In order to demonstrate that the provided middleware-based approach generates software
of better quality while minimizing the middleware’s impact on the system execution and memory
requirements, we developed a case study comparing our proposal with a baseline self-adaptive system
developed at [MM18]. The adopted self-adaptive system is a hierarchical adaptive Multi-Objective
Resource Management (MORM) for MPSoCs under a power cap, considering dynamic application
workloads. MORM can dynamically shift the management goals prioritizing energy or performance
according to the workload behavior. MORM employs the Observe-Decide-Act (ODA) paradigm
comprising elements of observation, decision-making and actuation.

We redesigned the whole baseline implementation of MORM using our approach, as de-
tailed in Section 6.2. The logic of the elements that make up the self-adaptive system - sensors,
decision makers and actuators - has been wrapped in the Modules extension classes with the commu-
nication between the elements performed by the proposed publish-subscribe protocol. Our approach
stands out from the baseline development approach regarding software quality metrics. The results
showed that the MORM software designed following our approach presented improvements of 41.1%
in code complexity and 33% in interface complexity, in addition to similar gains in other software
quality metrics, as detailed in Section 6.3.4. As expected due to the addition of a new layer in
the software stack, our approach presented an overhead at execution time of 4.5% and at energy
spent of 5.9%. The software generated in our approach showed an overhead of 52.7% and 69.7%
respectively for the master and slave kernel software. The overall evaluation was detailed in Section
6.3.2.

The proposed middleware allowed us to assert the hypothesis stated in this Thesis, showing
that the proposed publish-subscribe programming model, along with the middleware-based approach
improved the quality of the software of the evaluated MORM self-adaptive system. Regarding the
middleware’s impact on the system, the achieved results showed a reduced overhead concerning
execution time and energy spent. Besides, the requirements for the middleware and its extensions
are suitable for MPSoC platforms with a minimum of 128KB of memory.

7.1. Future Works

To guide future works that can be extended from the current state of the research presented
in this Thesis, we identify the following possible improvements:

7.1.1. Kernel services on the middleware

Kernel services ported to work as applications or extensions over the middleware. So the
kernel services communicate using topics and does not need to know where the services are running.



134

The operating system becomes cleaner and the development of new services becomes more modular.
Examples of kernel services that can be ported are the task mapping and task migration.

7.1.2. Topic Name Dictionary

We have identified that the topic-name scheme as described in Section 5.3 present a high
overhead in its processing in addition to requiring a higher memory requirement by the middleware.
This happens because we use the string format to define the topic type. As an alternative to this
solution without losing the ease of identifying topics through strings is the definition of a dictionary
of topic names. In this solution, a protocol between the clients and the broker would be responsible
for translate topic names from strings to integers and thus reduce the processing overhead on
middleware.

7.1.3. Security Publish-Subscribe Operations

Current middleware operations trust in the clients that are accessing the publish-subscribe
system. Adding a security feature to the operations of the publish-subscribe system, particularly to
the advertise, subscribe and publish operations, could to prevent malicious clients from causing any
improper action on the publish-subscribe system.

7.1.4. Broker Fault-tolerance Protocol

Expand the fault tolerance protocol that we have proposed at [DHA18]. This protocol
aims to assure the availability of the publish-subscribe system in case of failures in the broker. We
didn’t include this work in this Thesis because it is in an initial stage.

7.1.5. High-level modeling for decision-making logic

In the current approach, the decision making logic can be modeled using an algorithm. A
high-level modeling approach could abstract the system adaptation rules by relating system states
provided by the monitors to the respective actions in the actuating elements of the self-adaptive
system, assigning priorities to these rules. In addition, the priorities could be adapted according
to changes in the system requirements at runtime. Another related open research is the high-level
modeling that handles making of decisions in multi-objective systems, where the objectives could be
conflicting.

7.1.6. Issues regarding distributed decision-making

The self-adaptive system model and middleware provided in this Thesis does not include
mechanisms to address issues concerning distributed decision-making. Instead, the designer must
deal with scenarios where there is more than one decision maker for the same set of configurable



135

hardware/software elements, which could generate undesired behavior. An extension to the model
and middleware could be provided for this purpose, aiming to abstract this design complexity through
mechanisms already employed in multi-agent systems [Mor05].

7.1.7. Support to real-time applications and services

This Thesis does not address applications or services with real-time constraints. The
support to this type of applications implies in improving the middleware architecture and models
with QoS mechanisms, such as: publish-subscribe protocol with message delivery reliability; message
prioritization of given topics in queues present in middleware or even in routing protocols; and
customization of QoS options through API primitives parameters.



136

REFERENCES

[AJMH13] Aguiar, A.; Johann, S.; Magalhaes, F.; Hessel, F. “Customizable rtos to support
communication infrastructures and to improve design space exploration in mpsocs”.
In: RSP, 2013, pp. 130–135.

[AMM+17] Amorim, T.; Martin, H.; Ma, Z.; Schmittner, C.; Schneider, D.; Macher, G.; Winkler,
B.; Krammer, M.; Kreiner, C. “Systematic pattern approach for safety and security
co-engineering in the automotive domain”. In: SAFECOMP, 2017, pp. 329–342.

[AMR+16] Abich, G.; Mandelli, M. G.; Rosa, F. R.; Moraes, F.; Ost, L.; Reis, R. “Extending
freertos to support dynamic and distributed mapping in multiprocessor systems”. In:
ICECS, 2016, pp. 712–715.

[AS15] Abuseta, Y.; Swesi, K. “Design patterns for self adaptive systems engineering”, Journal
of Software Engineering and Applications, vol. 6–4, 2015, pp. 11–28.

[ASB+09] Almeida, G. M.; Sassatelli, G.; Benoit, P.; Saint-Jean, N.; Varyani, S.; Torres,
L.; Robert, M. “An adaptive message passing mpsoc framework”, Journal of
Reconfigurable Computing, vol. 2009–1, 2009, pp. 1–20.

[BBS15] Berkane, M. L.; Boufaida, M.; Seinturier, L. “A modular approach dedicated to self-
adaptive system”, Lecture Notes on Software Engineering, vol. 3–3, 2015, pp. 183–
188.

[BCR14] Bellavista, P.; Corradi, A.; Reale, A. “Quality of service in wide scale publish—subscribe
systems”, IEEE Communications Surveys & Tutorials, vol. 16–3, 2014, pp. 1591–1616.

[Bel58] Bellman, R. “On a routing problem”, Quarterly of applied mathematics, vol. 16–1,
1958, pp. 87–90.

[BJR11] Becker, J.; Johann, M. D. O.; Reis, R. “VLSI-SoC: Technologies for Systems
Integration: 17th IFIP WG 10.5/IEEE International Conference on Very Large Scale
Integration”. Springer, 2011, 202p.

[BM06] Bjerregaard, T.; Mahadevan, S. “A survey of research and practices of network-on-
chip”, ACM Computing Surveys, vol. 38–1, 2006, pp. 1–51.

[BS10] Boonma, P.; Suzuki, J. “TinyDDS: An Interoperable and Configurable
Publish/Subscribe Middleware for Wireless Sensor Networks”. IGI Global, 2010, pp.
206 – 231.

[But97] Butenhof, D. R. “Programming with POSIX threads”. Addison-Wesley Professional,
1997, 400p.

[CCJ+14] Cassano, L.; Cozzi, D.; Jungewelter, D.; Korf, S.; Hagemeyer, J.; Porrmann, M.;
Bernardeschi, C. “An inter-processor communication interface for data-flow centric
heterogeneous embedded multiprocessor systems”. In: DTIS, 2014, pp. 1–6.

[CCK07] Choi, Y.; Chang, N.; Kim, T. “Dc–dc converter-aware power management for low-
power embedded systems”, IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol. 26–8, 2007, pp. 1367–1381.



137

[CCM14] Carara, E. A.; Calazans, N. L. V.; Moraes, F. G. “Differentiated communication services
for noc-based mpsocs”, IEEE Transactions on Computers, vol. 63–3, 2014, pp. 595–
608.

[CCS+08] Ceng, J.; Castrillon, J.; Sheng, W.; Scharwachter, H.; Leupers, R.; Ascheid, G.; Meyr,
H.; Isshiki, T.; Kunieda, H. “Maps: An integrated framework for mpsoc application
parallelization”. In: DAC, 2008, pp. 754–759.

[CdOCM09] Carara, E. A.; de Oliveira, R. P.; Calazans, N. L. V.; Moraes, F. G. “Hemps - a
framework for noc-based mpsoc generation”. In: ISCAS, 2009, pp. 1345–1348.

[CDRT13] Chen, J.; Díaz, M.; Rubio, B.; Troya, J. M. “Ps-quasar: A publish/subscribe qos aware
middleware for wireless sensor and actor networks”, Journal of Systems and Software,
vol. 86–6, 2013, pp. 1650–1662.

[Cha01] Chandra, R. “Parallel programming in OpenMP”. Morgan Kaufmann, 2001, 231p.

[CM12] Chaqfeh, M. A.; Mohamed, N. “Challenges in middleware solutions for the internet of
things”. In: CTS, 2012, pp. 21–26.

[CNG10] Carter, N. P.; Naeimi, H.; Gardner, D. S. “Design techniques for cross-layer resilience”.
In: DATE, 2010, pp. 1023–1028.

[CPC10] Che, W.; Panda, A.; Chatha, K. S. “Compilation of stream programs for multicore
processors that incorporate scratchpad memories”. In: DATE, 2010, pp. 1118–1123.

[CPS14] Chitic, S.-G.; Ponge, J.; Simonin, O. “Are middlewares ready for multi-robots
systems?” In: SIMPAR, 2014, pp. 279–290.

[DCT+13] Derin, O.; Cannella, E.; Tuveri, G.; Meloni, P.; Stefanov, T.; Fiorin, L.; Raffo, L.;
Sami, M. “A system-level approach to adaptivity and fault-tolerance in noc-based
mpsocs: The madness project”, Microprocessors and Microsystems, vol. 37–6, 2013,
pp. 515–529.

[DDF+06] Dobson, S.; Denazis, S.; Fernández, A.; Gaïti, D.; Gelenbe, E.; Massacci, F.; Nixon,
P.; Saffre, F.; Schmidt, N.; Zambonelli, F. “A survey of autonomic communications”,
ACM Transactions on Autonomous and Adaptive Systems, vol. 1–2, 2006, pp. 223–
259.

[DHA18] Domingues, A.; Hamerski, J. C.; Amory, A. “Broker fault recovery for a multiprocessor
system-on-chip middleware”. In: SBCCI, 2018, pp. 1–6.

[DJS15] Dutt, N.; Jantsch, A.; Sarma, S. “Self-aware cyber-physical systems-on-chip”. In:
ICCAD, 2015, pp. 46–50.

[DJS16] Dutt, N.; Jantsch, A.; Sarma, S. “Toward smart embedded systems: A self-aware
system-on-chip (soc) perspective”, ACM Transactions on Embedded Computing
Systems, vol. 15–2, 2016, pp. 22:1–22:27.

[Dou10] Douglass, B. P. “Design patterns for embedded systems in C: an embedded software
engineering toolkit”. Elsevier, 2010, 472p.

[DRA10] Deshpande, S.; Ravale, P.; Apte, S. “Cache coherence in centralized shared memory
and distributed shared memory architectures”, Journal on Computer Science and
Engineering, vol. 2010–1, 2010, pp. 39–44.



138

[Ecl16] Eclipse. “An open source mqtt v3.1/v3.1.1 broker”. Source: https://mosquitto.org/,
Last access on: 2016-12-13.

[EFGK03] Eugster, P. T.; Felber, P. A.; Guerraoui, R.; Kermarrec, A.-M. “The many faces of
publish/subscribe”, ACM Computing Surveys, vol. 35–2, 2003, pp. 114–131.

[EHL+09] Eloranta, V.-P.; Hartikainen, V.-M.; Leppänen, M.; Reijonen, V.; Haikala, I.;
Koskimies, K.; Mikkonen, T. “Patterns for distributed embedded control system
software architecture”, Technical Report, Tampere University of Technology, 2009,
17p.

[ES12] Elkady, A.; Sobh, T. “Robotics middleware: A comprehensive literature survey and
attribute-based bibliography”, Journal of Robotics, vol. 2012–1, 2012, pp. 1–15.

[FDLP11] Fattah, M.; Daneshtalab, M.; Liljeberg, P.; Plosila, J. “Exploration of mpsoc
monitoring and management systems”. In: ReCoSoC, 2011, pp. 1–3.

[Fer15] Fersi, G. “Middleware for internet of things: A study”. In: DCOSS, 2015, pp. 230–235.

[FF62] Ford, L.; Fulkerson, D. “Flows in networks”, Princeton University Press, vol. 412–1,
1962, pp. 527–532.

[GB10] Göhringer, D.; Becker, J. “High performance reconfigurable multi-processor-based
computing on fpgas”. In: IPDPSW, 2010, pp. 1–4.

[GBO+16] Garibotti, R.; Butko, A.; Ost, L.; Gamatie, A.; Sassatelli, G.; Adeniyi-Jones,
C. “Efficient embedded software migration towards clusterized distributed-memory
architectures”, IEEE Transactions on Computers, vol. 65–8, 2016, pp. 2645–2651.

[GHHDB10] Göhringer, D.; Hübner, M.; Hugot-Derville, L.; Becker, J. “Message passing
interface support for the runtime adaptive multi-processor system-on-chip rampsoc”.
In: SAMOS, 2010, pp. 357–364.

[GLH+12] Gillen, M.; Loyall, J.; Haigh, K. Z.; Walsh, R.; Partridge, C.; Lauer, G.; Strayer,
T. “Information dissemination in disadvantaged wireless communications using a data
dissemination service and content data network”. In: SPIE, 2012, pp. 1–12.

[GOB+13] Garibotti, R.; Ost, L.; Busseuil, R.; Kourouma, M.; Adeniyi-Jones, C.; Sassatelli, G.;
Robert, M. “Simultaneous multithreading support in embedded distributed memory
mpsocs”. In: DAC, 2013, pp. 1–7.

[Gun16] Guntheroth, K. “Optimized C++: Proven Techniques for Heightened Performance”.
O’Reilly Media Inc., 2016, 388p.

[GWHB11] Göhringer, D.; Werner, S.; Hubner, M.; Becker, J. “Rampsocvm: Runtime support and
hardware virtualization for a runtime adaptive mpsoc”. In: FPL, 2011, pp. 181–184.

[HAR+17] Hamerski, J. C.; Abich, G.; Reis, R.; Ost, L.; Amory, A. “Publish-subscribe
programming for a NoC-based multiprocessor system-on-chip”. In: ISCAS, 2017, pp.
1–4.

[HAR+18] Hamerski, J. C.; Abich, G.; Reis, R.; Ost, L.; Amory, A. “A design patterns-based
middleware for multiprocessor systems-on-chip”. In: SBCCI, 2018, pp. 1–6.

https://mosquitto.org/


139

[HDFGM18] Hamerski, J. C.; Domingues, A.; F. G. Moraes, A. A. “Evaluating serialization for a
publish-subscribe based middleware for mpsocs”. In: ICECS, 2018, pp. 1–4.

[HLLL08] Hsieh, K.-Y.; Liu, Y.-C.; Lai, C.-H.; Lee, J. K. “The support of software design patterns
for streaming rpc on embedded multicore processors”. In: SIPS, 2008, pp. 263–268.

[Hof13] Hoffman, H. “Seec: A framework for self-aware management of goals and constraints in
computing systems”, Ph.D. Thesis, Massachusetts Institute of Technology, Cambridge,
USA, 2013, 172p.

[HTSC08] Hunkeler, U.; Truong, H. L.; Stanford-Clark, A. “Mqtt-s - a publish/subscribe protocol
for wireless sensor networks”. In: COMSWARE, 2008, pp. 791–798.

[HZZ+14] Heisswolf, J.; Zaib, A.; Zwinkau, A.; Kobbe, S.; Weichslgartner, A.; Teich, J.;
Henkel, J.; Snelting, G.; Herkersdorf, A.; Becker, J. “Cap: Communication aware
programming”. In: DAC, 2014, pp. 1–6.

[ICG07] Issarny, V.; Caporuscio, M.; Georgantas, N. “A perspective on the future of middleware-
based software engineering”. In: FOSE, 2007, pp. 244–258.

[JBA+13] Joven, J.; Bagdia, A.; Angiolini, F.; Strid, P.; Castells-Rufas, D.; Fernandez-Alonso,
E.; Carrabina, J.; Micheli, G. D. “Qos-driven reconfigurable parallel computing for
noc-based clustered mpsocs”, IEEE Transactions on Industrial Informatics, vol. 9–3,
2013, pp. 1613–1624.

[JSHP14] Javaid, H.; Shafique, M.; Henkel, J.; Parameswaran, S. “Energy-efficient adaptive
pipelined mpsocs for multimedia applications”, IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, vol. 33–5, 2014, pp. 663–676.

[JW04] Jerraya, A.; Wolf, W. “Multiprocessor systems-on-chips”. Elsevier, 2004, 608p.

[KKKH16] Kim, T.; Kang, J.; Kim, S.; Ha, S. “Sophy+: Programming model and software
platform for hybrid resource management of many-core accelerators”, Microprocessors
and Microsystems, vol. 43–1, 2016, pp. 47–58.

[KMKL16] Khemaissia, I.; Mosbahi, O.; Khalgui, M.; Li, Z. “Crmpsoc: New solution for feasible
reconfigurable mpsoc”. In: ICSOFT, 2016, pp. 175–198.

[KMZS08] Kasim, H.; March, V.; Zhang, R.; See, S. “Survey on parallel programming model”. In:
NPC, 2008, pp. 266–275.

[Kor18] Kormanyos, C. “Real-time C++: efficient object-oriented and template microcontroller
programming”. Springer, 2018, 426p.

[Lab10] Labiod, H. “Wireless ad hoc and Sensor Networks”. John Wiley & Sons, 2010, 352p.

[LBP15] Lingaraj, K.; Biradar, R. V.; Patil, V. C. “A survey on middleware challenges and
approaches for wireless sensor networks”. In: CICN, 2015, pp. 56–60.

[LCA+11] Li, S.; Chen, K.; Ahn, J. H.; Brockman, J. B.; Jouppi, N. P. “Cacti-p: Architecture-
level modeling for sram-based structures with advanced leakage reduction techniques”.
In: ICCAD, 2011, pp. 694–701.

[LF15] Lakhani, F.; Faisal, N. “Design patterns-from architecture to embedded software
development”, Journal of Computer Science Issues, vol. 12–1, 2015, pp. 146–152.



140

[LM14] Li, X.; Moh, S. “Middleware systems for wireless sensor networks: A comparative
survey”, Contemporary Engineering Sciences, vol. 7–13-16, 2014, pp. 649–660.

[Mae11] Maeda, K. “Comparative survey of object serialization techniques and the programming
supports”, Journal of Computer, Electrical, Automation, Control and Information
Engineering, vol. 5–12, 2011, pp. 1488–1493.

[Mae12] Maeda, K. “Performance evaluation of object serialization libraries in xml, json and
binary formats”. In: DICTAP, 2012, pp. 177–182.

[MAJJ08] Mohamed, N.; Al-Jaroodi, J.; Jawhar, I. “Middleware for robotics: A survey”. In: RAM,
2008, pp. 736–742.

[MCA12] MCAPI. “Multicore communication api (mcapi), version 2015”. Source: http://
www.multicore-association.org/pdf/MCAPI_Reference_Card.pdf, Last access on:
2016-12-16.

[McC76] McCabe, T. J. “A complexity measure”, IEEE Transactions on Software Engineering,
vol. SE-2–4, 1976, pp. 308–320.

[MCM+04] Moraes, F.; Calazans, N.; Mello, A.; Möller, L.; Ost, L. “Hermes: An infrastructure
for low area overhead packet-switching networks on chip”, IEEE Transactions on Very
Large Scale Integration Systems, vol. 38–1, 2004, pp. 69–93.

[MCS+15] Mandelli, M.; Castilhos, G.; Sassatelli, G.; Ost, L.; Moraes, F. G. “A distributed energy-
aware task mapping to achieve thermal balancing and improve reliability of many-core
systems”. In: SBCCI, 2015, pp. 1–7.

[MdSR+19] Martins, A. L. D. M.; da Silva, A. H. L.; Rahmani, A. M.; Dutt, N.; Moraes, F. G.
“Hierarchical adaptive multi-objective resource management for many-core systems”,
Journal of Systems Architecture, vol. 2019–1, 2019, pp. 1–16.

[MFRC15] Munk, P.; Freier, M.; Richling, J.; Chen, J. J. “Dynamic guaranteed service
communication on best-effort networks-on-chip”. In: PDP, 2015, pp. 353–360.

[Mia15] Miasnikov, A. “C++ for embedded systems”. Kindle Edition, 2015, 271p.

[MKC11] Motakis, A.; Kornaros, G.; Coppola, M. “Dynamic resource management in modern
multicore socs by exposing noc services”. In: ReCoSoC, 2011, pp. 1–7.

[MLIB08] Mahr, P.; Lörchner, C.; Ishebabi, H.; Bobda, C. “Soc-mpi: A flexible message passing
library for multiprocessor systems-on-chips”. In: ReConFig, 2008, pp. 187–192.

[MM18] Martins, A. L. D. M.; Moraes, F. G. “Multi-objective resource management for many-
core systems”, Ph.D. Thesis, PUCRS, Porto Alegre, Brasil, 2018, 149p.

[Moo59] Moore, E. F. “The shortest path through a maze”. In: ITST, 1959, pp. 285–292.

[Mor05] Moreau, L. “Stability of multiagent systems with time-dependent communication
links”, IEEE Transactions on Automatic Control, vol. 50–2, 2005, pp. 169–182.

[MOS09] Minhass, W. H.; Öberg, J.; Sander, I. “Design and implementation of a plesiochronous
multi-core 4x4 network-on-chip fpga platform with mpi hal support”. In: FPGAworld,
2009, pp. 52–57.

http://www.multicore-association.org/pdf/MCAPI_Reference_Card.pdf
http://www.multicore-association.org/pdf/MCAPI_Reference_Card.pdf


141

[MPI15] MPI. “Mpi: A message-passing interface standard, v3.1”. Source: http://mpi-
forum.org/docs/mpi-3.1/mpi31-report.pdf, Last access on: 2016-12-16.

[MQT99] MQTT. “Mq telemetry transport (mqtt)”. Source: http://mqtt.org, Last access on:
2016-12-16.

[MSC+14] Martins, A. L.; Silva, D. R.; Castilhos, G. M.; Monteiro, T. M.; Moraes, F. G. “A
method for noc-based mpsoc energy consumption estimation”. In: ICECS, 2014, pp.
427–430.

[MSHH11] Matilainen, L.; Salminen, E.; Hämäläinen, T. D.; Hännikäinen, M. “Multicore
communications api (mcapi) implementation on an fpga multiprocessor”. In: SAMOS,
2011, pp. 286–293.

[MSK15] Magyar, G.; Sincak, P.; Krizsán, Z. “Comparison study of robotic middleware for
robotic applications”, Advances in Intelligent Systems and Computing, vol. 316–1,
2015, pp. 121–128.

[MSq18] MSquared. “Resource standard metrics”. Source: http://msquaredtechnologies.com/,
Last access on: 2018-10-03.

[NVC10] Nollet, V.; Verkest, D.; Corporaal, H. “A safari through the mpsoc run-time
management jungle”, Journal of Signal Processing Systems, vol. 60–2, 2010, pp. 251–
268.

[OMG05] OMG. “Realtime corba specification, v1.2”. Source: http://www.omg.org/spec/RT/
1.2/, Last access on: 2016-12-16.

[OMG11] OMG. “Corba core specification, v3.2”. Source: http://www.omg.org/spec/CORBA/
3.2/, Last access on: 2016-12-16.

[Ope14] OpenCores. “Plasma - most mips i(tm) opcodes”. Source: https://opencores.org/
projects/plasma, Last access on: 2019-01-10.

[Par03] Pardo-Castellote, G. “Omg data-distribution service: Architectural overview”. In:
ICDCS, 2003, pp. 200–206.

[PBYP17] Petersen, B.; Bindner, H.; You, S.; Poulsen, B. “Smart grid serialization comparison:
Comparision of serialization for distributed control in the context of the internet of
things”. In: COMPUTING, 2017, pp. 1339–1346.

[PG14] Pérez, H.; Gutiérrez, J. J. “A survey on standards for real-time distribution
middleware”, ACM Computing Surveys, vol. 46–4, 2014, pp. 49.

[Pie04] Pietzuch, P. R. “Hermes: A scalable event-based middleware”, Ph.D. Thesis, University
of Cambridge, Cambridge, England, 2004, 180p.

[PRJW10] Popovici, K.; Rousseau, F.; Jerraya, A. A.; Wolf, M. “Embedded software design and
programming of multiprocessor system-on-chip”. Springer, 2010, 290p.

[QCG+09] Quigley, M.; Conley, K.; Gerkey, B.; Faust, J.; Foote, T.; Leibs, J.; Wheeler, R.; Ng,
A. Y. “Ros: an open-source robot operating system”. In: ICRA, 2009, pp. 1–6.

[RC10] Ramirez, A. J.; Cheng, B. H. “Design patterns for developing dynamically adaptive
systems”. In: ICSE, 2010, pp. 49–58.

http://mpi-forum.org/docs/mpi-3.1/mpi31-report.pdf
http://mpi-forum.org/docs/mpi-3.1/mpi31-report.pdf
http://mqtt.org
http://msquaredtechnologies.com/
http://www.omg.org/spec/RT/1.2/
http://www.omg.org/spec/RT/1.2/
http://www.omg.org/spec/CORBA/3.2/
http://www.omg.org/spec/CORBA/3.2/
https://opencores.org/projects/plasma
https://opencores.org/projects/plasma


142

[RCM] Ruaro, M.; Carara, E. A.; Moraes, F. G. “Runtime Adaptive Circuit Switching and Flow
Priority in NoC-Based MPSoCs”, IEEE Transactions on VLSI Systems, vol. 23–6, pp.
1077–1088.

[RCM14] Ruaro, M.; Carara, E. A.; Moraes, F. G. “Runtime qos support for mpsoc: A processor
centric approach”. In: SBCCI, 2014, pp. 1–7.

[RLC15] Rosa, T. R.; Lemaire, R.; Clermidy, F. “A co-design approach for hardware
optimizations in multicore architectures using mcapi”. In: INA-OCMC, 2015, pp. 17–
20.

[RLMM16] Ruaro, M.; Lazzarotto, F. B.; Marcon, C. A.; Moraes, F. G. “Dmni: A specialized
network interface for noc-based mpsocs”. In: ISCAS, 2016, pp. 1202–1205.

[RM18] Ruaro, M.; Moraes, F. G. “Self-adaptive qos at communication and computation levels
for many-core system-on-chip”, Ph.D. Thesis, PUCRS, Porto Alegre, Brasil, 2018,
150p.

[RMJPC16] Razzaque, M. A.; Milojevic-Jevric, M.; Palade, A.; Clarke, S. “Middleware for internet
of things: A survey”, IEEE Internet of Things Journal, vol. 3–1, 2016, pp. 70–95.

[ROR+14] Rosa, F.; Ost, L.; Raupp, T.; Moraes, F.; Reis, R. “Fast energy evaluation of embedded
applications for many-core systems”. In: PATMOS, 2014, pp. 1–6.

[ROS16a] ROS. “Names - ros wiki”. Source: http://wiki.ros.org/Names, Last access on: 2016-
12-13.

[ROS16b] ROS. “Parameter server - ros wiki”. Source: http://wiki.ros.org, Last access on: 2016-
12-13.

[RR08] Ryll, M.; Ratchev, S. “Application of the data distribution service for flexible
manufacturing automation”, World Academy of Science, Engineering and Technology,
vol. 41–1, 2008, pp. 178–185.

[RRPS16] Ross, J. A.; Richie, D. A.; Park, S. J.; Shires, D. R. “Parallel programming model
for the epiphany many-core coprocessor using threaded mpi”, Microprocessors and
Microsystems, vol. 43–1, 2016, pp. 95–103.

[SARM16] Sheltami, T. R.; Al-Roubaiey, A. A.; Mahmoud, A. S. “A survey on developing
publish/subscribe middleware over wireless sensor/actuator networks”, Wireless
Networks, vol. 22–6, 2016, pp. 2049–2070.

[SB03] Schmidt, D. C.; Buschmann, F. “Patterns, frameworks, and middleware: their
synergistic relationships”. In: ICSE, 2003, pp. 694–704.

[SBP+09] Saraswat, V.; Bloom, B.; Peshansky, I.; Tardieu, O.; Grove, D. “X10 language
specification, v2.3”, Technical Report, IBM, 2009, 17p.

[SC08] Schmidt, D.; Corsaro, A. “Addressing the challenges of tactical information
management in net-centric systems with dds”, CrossTalk, vol. 21–1, 2008, pp. 1–6.

[SD14] Sarma, S.; Dutt, N. “Minimal sparse observability of complex networks: Application to
mpsoc sensor placement and run-time thermal estimation amp; tracking”. In: DATE,
2014, pp. 1–6.

http://wiki.ros.org/Names
http://wiki.ros.org


143

[SDG+15] Sarma, S.; Dutt, N.; Gupta, P.; Venkatasubramanian, N.; Nicolau, A. “Cyberphysical-
system-on-chip (cpsoc): A self-aware mpsoc paradigm with cross-layer virtual sensing
and actuation”. In: DATE, 2015, pp. 625–628.

[SDP+14] Silva, J. R.; Delicato, F. C.; Pirmez, L.; Pires, P. F.; Portocarrero, J. M.; Rodrigues,
T. C.; Batista, T. V. “Prisma: A publish-subscribe and resource-oriented middleware
for wireless sensor networks”. In: AICT, 2014, pp. 87–97.

[SDV+13] Sarma, S.; Dutt, N.; Venkatasubramanian, N.; Nicolau, A.; Gupta, P. “Cyberphysical-
system-on-chip (cpsoc): Sensor-actuator rich self-aware computational platform”,
Technical Report, University of California Irvine, 2013, 26p.

[SF09] Schneider, S.; Farabaugh, B. “Is dds for you?”, Technical Report, Real-Time
Innovations, 2009, 5p.

[SK00] Schmidt, D.; Kuhns, F. “An overview of the real-time corba specification”, Computer,
vol. 33–6, 2000, pp. 56–63.

[SKK+14] Said, M. B.; Kacem, Y. H.; Kerboeuf, M.; Amor, N. B.; Abid, M. “Design patterns
for self-adaptive rte systems specification”, Journal of Reconfigurable Computing, vol.
2014–1, 2014, pp. 1–21.

[SKL11] Sain, M.; Kumar, P.; Lee, H. “A survey of middleware and security approaches for
wireless sensor networks”. In: ICCIT, 2011, pp. 64–69.

[SM12] Sumaray, A.; Makki, S. K. “A comparison of data serialization formats for optimal
efficiency on a mobile platform”. In: ICUIMC, 2012, pp. 48:1–48:6.

[SR14] Saghian, M.; Ravanmehr, R. “A survey on middleware approaches for distributed real-
time systems”, Journal of Mobile, Embedded and Distributed Systems, vol. 6–4, 2014,
pp. 147–158.

[Tar12] Tarkoma, S. “Publish/subscribe systems: design and principles”. John Wiley & Sons,
2012, 360p.

[TN12] Tong, X.; Ngai, E. C. “A ubiquitous publish/subscribe platform for wireless sensor
networks with mobile mules”. In: DCOSS, 2012, pp. 99–108.

[TR13] Tuveri, G.; Raffo, L. “Integrated support for adaptivity and fault-tolerance in mpsocs”,
Ph.D. Thesis, Universita’degli Studi di Cagliari, Cagliari, Italy, 2013, 93p.

[Whi11] White, E. “Making Embedded Systems: Design Patterns for Great Software”. O’Reilly
Media Inc., 2011, 330p.



144

APPENDIX A – List of base primitives of the HSAL

Table APPENDIX A.1: Primitives of the Hardware/Software Abstraction Layer
Primitive Category Description

HAL_OS_TASK_GetCurrentTask() OS Task Retrieves the currently running task
HAL_OS_TASK_GetCurrentApp(task) OS Task Retrieves the application id of a given task
HAL_OS_COMM_send(netID, msg, length) OS Communication Sends a message (msg, pointer to integer) with a given length (length - number of integers) to

a destination PE (netID - network address) through network interface.
HAL_OS_DEBUG_getTickCount() OS Debug Retrieves the number of ticks that have elapsed since the system was started
HAL_OS_DEBUG_PRINT(str) OS Debug Prints a given string (str)
HAL_OS_DEBUG_PRINT_1ARG(str,a) OS Debug Prints a given string (str) and integer (a)
HAL_OS_DEBUG_PRINT_2ARG(str,a,b) OS Debug Prints a given string (str), and two integers (a,b)
HAL_CONFIG_getnPes() System Config Retrieves the number of PEs of the cluster
HAL_CONFIG_getPeType(pe_id) System Config Retrieves the type (master or slave) of a given PE (pe_id))
HAL_CONFIG_getNumberOfCpusX() System Config Retrieves the number of PEs of the whole MPSoC located in the horizontal axis
HAL_CONFIG_getNumberOfCpusY() System Config Retrieves the number of PEs of the whole MPSoC located in the vertical axis
HAL_CONFIG_getClusterX() System Config Retrieves the number of PEs of the cluster located in the horizontal axis
HAL_CONFIG_getClusterY() System Config Retrieves the number of PEs of the cluster located in the vertical axis
HAL_CONFIG_GetUID() System Config Retrieves the network address of the current PE
HAL_CONFIG_GetClusterUID() System Config Retrieves the cluster identification of the current PE
HAL_CONFIG_CLUSTER_NUMBER() System Config Retrieves the number of clusters of the MPSoC
HAL_CONFIG_MAX_LOCAL_TASKS() System Config Retrieves the number of maximum tasks running on the current PE
HAL_OS_SENSORS_getSample_routerInjection() OS Sensors Retrieves a router injection sample
HAL_OS_SENSORS_getSample_routerCongestion() OS Sensors Retrieves a sample of the router congestion sensor
HAL_OS_SENSORS_getSample_routerEnergyLeak() OS Sensors Retrieves a sample of the leakage energy sensor of the router
HAL_OS_SENSORS_getSample_routerEnergyDyn() OS Sensors Retrieves a sample of the dynamic energy sensor of the router
HAL_OS_SENSORS_getSample_memoryEnergyLeak() OS Sensors Retrieves a sample of the leakage energy sensor of the memory
HAL_OS_SENSORS_getSample_memoryEnergyDyn() OS Sensors Retrieves a sample of the dynamic energy sensor of the memory
HAL_OS_SENSORS_getSample_processorEnergyLeak() OS Sensors Retrieves a sample of the leakage energy sensor of the processor
HAL_OS_SENSORS_getSample_energy_leakage() OS Sensors Retrieves a sample of the leakage energy of the PE, considering all components
HAL_OS_SENSORS_getSample_energy_total() OS Sensors Retrieves a sample of the PE energy, considering both leakage and dynamic energy
HAL_OS_SENSORS_getSample_processorSlacktime() OS Sensors Retrieves a sample of the slack time sensor of the processor
HAL_OS_EFFECTORS_setDVFS(vf) OS Effectors Sets a vf-pair value (vf) on the Voltage/Frequency Scaling actuation method (Section 6.1.3)
HAL_OS_EFFECTORS_setClusterPowerMode(clusterID,
powerMode)

OS Effectors Sets a power mode value on the cluster operation mode actuation method (Section 6.1.3)



145

APPENDIX B – Diagram class of the Modules extension classes from
Section 5.2

- sensorsSensor

+ enable() : void
+ disable() : void
+ isEnabled() : void
+ update() : void

- monitors - effectors

- actuators

Monitor

+ enable() : void
+ disable() : void
+ isEnabled()  : void

Actuator

+ enable()  : void
+ disable() : void
+ isEnabled() : bool

Effector

+ enable()  : void
+ disable() : void
+ isEnabled() : bool

ModuleInterface< Actuator >

+ driveData(data : ModuleType&) : void

ModuleInterface< Effector >

ModuleInterface< Sensor >

+ updateStatus() : void
+ updateData(data : ModuleType&) : void

ModuleInterface< Monitor >

Decisor

+ enable()  : void
+ disable() : void
+ isEnabled() : bool
+ decide() : void

Modules

+ enable() : void
- enableSensors() : void
- enableMonitors() : void
- enableActuators() : void
- enableEffectors() : void
- enableDecisors() : void
+ updateSensors() : void
+ updateDecisors() : void

- decisors

Figure APPENDIX B.1: Modules Class Diagram.

ModuleInterface< Sensor >

+ updateStatus() : void
+ updateData(data : ModuleType) : void

ModuleInterfacePublisher

+ transmit() : void
+ enableAsPublisher() : void

ExampleASensor

+ update() : void
+ updateStatus() : void

ExampleBSensor

+ update() : void
+ updateStatus() : void

Sensor

+ enable() : void
+ disable() : void
+ isEnabled() : bool
+ update() : void

ExampleAModuleType

+ serialize(pMQMessage : MQSoCMessage*) : void
+ deserialize(pMQMessage : MQSoCMessage*) : void

- id : unsigned int
- value : unsigned int

+ deserialize(pMQMessage : MQSoCMessage*) : void

- data

ExampleBModuleType

+ serialize(pMQMessage : MQSoCMessage*) : void
+ deserialize(pMQMessage : MQSoCMessage*) : void

- id : unsigned int
- value : unsigned int

+ deserialize(pMQMessage : MQSoCMessage*) : void

- data

Figure APPENDIX B.2: ModuleInterface<Sensor> Class Diagram.



146

ModuleInterfaceSubscriber

+ enableAsSubscriber(callBackP : CallbackPtr) : void

ModuleInterface< Monitor >

Monitor

+ enable() : void
+ disable() : void
+ isEnabled() : bool

ExampleBMonitor

+ enable() : void
+ doit(pMQMessage : MQSoCMessage*) : void

ExampleAMonitor

+ enable() : void
+ doit(pMQMessage : MQSoCMessage*) : void

Figure APPENDIX B.3: ModuleInterface<Monitor> Class Diagram.

ModuleInterface< Actuator >

+ driveData(data : ModuleType) : void

Actuator

+ enable() : void
+ disable() : void
+ isEnabled() : bool

ModuleInterfacePublisher

+ transmit() : void
+ enableAsPublisher() : void

ExampleAActuator

+ drive() : void

ExampleBActuator

+ drive() : void

ExampleAModuleType

+ serialize(pMQMessage : MQSoCMessage*) : void
+ deserialize(pMQMessage : MQSoCMessage*) : void

- id : unsigned int
- value : unsigned int

+ deserialize(pMQMessage : MQSoCMessage*) : void

- data

ExampleBModuleType

+ serialize(pMQMessage : MQSoCMessage*) : void
+ deserialize(pMQMessage : MQSoCMessage*) : void

- id : unsigned int
- value : unsigned int

+ deserialize(pMQMessage : MQSoCMessage*) : void

- data

Figure APPENDIX B.4: ModuleInterface<Actuator> Class Diagram.



147

ModuleInterfaceSubscriber

+ enableAsSubscriber(callBackP : CallbackPtr) : void

ModuleInterface< Effector >

Effector

+ enable() : void
+ disable() : void
+ isEnabled() : bool

ExampleBEffector

+ enable() : void
+ doit(MQSoCMessageCT* pMQMessage) : void

ExampleAEffector

+ enable() : void
+ doit(MQSoCMessageCT* pMQMessage) : void

Figure APPENDIX B.5: ModuleInterface<Effector> Class Diagram.

ModuleInterfacePublisher

+ transmit() : void
+ enableAsPublisher() : void

TopicMQSoCMessage
- topic- message

ModuleInterface< Actuator >

+ driveData(data : ModuleType) : void

ModuleInterface< Sensor >

+ updateStatus() : void
+ updateData(data : ModuleType) : void

Publisher

+ advertise(t : Topic) : void
+ publish(t : Topic, mqMessage : MQSoCMessage) : void

Figure APPENDIX B.6: ModuleInterfacePublisher Class Diagram.



148

Topic

Callback

MQSoCMessage
ModuleInterfaceSubscriber

+ enableAsSubscriber(callBackP : 
CallbackPtr) : void

+ doit(pMQMessage : MQSoCMessage*) : void

Subscriber

+ subscribe(t : Topic, callBackP : CallbackPtr) : void

- topic- message

ModuleInterface< Monitor > ModuleInterface< Effector >

Figure APPENDIX B.7: ModuleInterfaceSubscriber Class Diagram.

ModuleInterface< Actuator >

+ driveData(data : ModuleType&) : void

UpDownActuator

+ drive() : void

DataType, T, FIRST, LAST, INIT

UpDownControl

+ up() : bool
+ down() : bool
+ get() : T
+ advance(n : int) : bool
+ to_first() : bool
+ to_last() : bool
+ at_first() : bool
+ at_last() : bool
+ at(val : T) : bool

- value : etl::cyclic_value<T, FIRST, LAST>
- data : DataType

DataType, T, FIRST, LAST, INIT

Figure APPENDIX B.8: UpDownActuator Class Diagram.



149

APPENDIX C – Header and source files of the classes detailed in
Section 5.4

#include <Sensor.h>
#include <STType.h>
#include <ModuleInterface.h>
...
class STSensor : public ModuleInterface<Sensor>
{

public:
//*** Class Constructor ***//
STSensor();
//*** Data that will be serialized ***//
STType data;
...
//*** Methods inherited from the parent classes (ModuleType/Sensor) ***//
void update();
void updateStatus();
...

};

Figure APPENDIX C.1: Code snippet of the STSensor header file.

#include <STSensor.h>
#include <hal.h>
...
STSensor::STSensor(){

this->enable();
//*** Get the sensor identification using the HAL ***//
this->data.id = HAL_OS_GetDecUID();
//*** Topic Name and Domain definition ***//
this->topic.name.assign("/sensor/pe/");
this->topic.name.append(HAL_OS_itoa(HAL_OS_GetDecUID()));
this->topic.name.append("/slacktime");
this->topic.domain = Topic::SLAVES;
...
this->enableAsPublisher();

}

void STSensor::update (){
this->updateData(this->data);

}

void STSensor::updateStatus(){
//*** Get actual value using the specific HAL primitive ***//
this->data.value = HAL_OS_SENSORS_getSample_processorSlacktime();

}

Figure APPENDIX C.2: Code snippet of the STSensor source file.



150

#include <STType.h>
#include <ModuleInterface.h>
...
class STMonitor_T {
public:

STType sensorData[HAL_OS_SLAVE_NUMBER()];
};

class STMonitor : public ModuleInterface<Monitor>{
public:

//*** Local variable data that stores the received sensor data ***//
STMonitor_T data;
//*** Methods inherited from the base classes (Effector and Callback) ***//
void doit(MQSoCMessage* pMQMessage);
void enable();
//*** Callbacks for the classes that instances the monitor ***//
static STMonitor* getObject();
void addCallbackMonitor(CallbackMonitorPtr cb, Decisor* base) {

notifies[callbacksInc] = {cb, base};
callbacksInc++; //todo: tratar quando excede MAX_NOTIFIES

}
private:
//*** Class Constructor ***//
STMonitor();
static STMonitor* obj;
void callNotifies(unsigned int id) {

for(binder* begin = notifies;begin != notifies+callbacksInc;begin++) {
begin->call(id, sendTime, receiveTime);

}
}
unsigned int callbacksInc;
binder notifies[MAX_NOTIFIES];

};

Figure APPENDIX C.3: Code snippet of the STMonitor header file.

#include <STMonitor.h>
#include <hal.h>
...
STMonitor* STMonitor::obj = NULL;
static size_t mem_STMonitor_local[852];
//*** Method that return a pointer to already instanced STMonitor Class object ***//
STMonitor* STMonitor::getObject() {

if(obj==NULL)
obj = new (mem_STMonitor_local) STMonitor;

return obj;
}
//*** Method that is called when the monitor is enabled. ***//
void STMonitor::enable(){

this->topic.name = "/sensor/pe/+/slave";
this->topic.domain = Topic::SLAVES;
this->enableAsSubscriber(this);

}
//*** Method called by middleware (SubscribersManager Class) when a new message is received on the subscribed topic.
//*** This method deserializes a message and writes the received data at variable members.
void STMonitor::doit(MQSoCMessage* pMQMessage)
{

STType DataRet;
DataRet.deserialize(pMQMessage);
this->data.sensorData[DataRet.id-1] = DataRet;
this->callNotifies(DataRet.id, sendTime, receiveTime);

}

Figure APPENDIX C.4: Code snippet of the STMonitor source file.



151

#include <ModuleType.h>
...
class STType: public ModuleType {

public:

//*** Class Constructor ***//
STType();

//*** Variables that are serialized/deserialized. ***//
unsigned int id;
unsigned int value;

//*** Methods inherited from the parent classes (ModuleType) ***//
void serialize(MQSoCMessage* pMQMessage);
void deserialize(MQSoCMessage* pMQMessage);

};

Figure APPENDIX C.5: Code snippet of the STType header file.

#include <STType.h>
#include <msgpuck.h>
...
//*** Serialize the variable members to the passing message. ***//
void STType::serialize(MQSoCMessage* pMQMessage)
{

char buf[PS_MSG_PAYLOAD_SIZE*4];
char *w = buf;

//*** Place bellow the code to serialize each variable class member. ***//
w = mp_encode_uint(w, this->id);
w = mp_encode_uint(w, this->value);

pMQMessage->msg_len = w-buf;
pMQMessage->msg = buf;

}

//*** Deserialize the passing message writing the variable members. ***//
void STType::deserialize(MQSoCMessage* pMQMessage) {

const char *r = pMQMessage->msg;

//*** Place bellow the code to deserialize the message to each variable member of the class. ***//
this->id = mp_decode_uint(&r);
this->value = mp_decode_uint(&r);

}

Figure APPENDIX C.6: Code snippet of the STType source file.

#include "Actuator.h"
#include <DvfsType.h>
#include <Topic.h>
#include <DVFSValue.h>
#include <UpDownActuator.h>
...
class DvfsActuator : public UpDownActuator <DvfsType, DVFSValue, DVFSValue::VF_PAIR_3, DVFSValue::VF_PAIR_1,
DVFSValue::VF_PAIR_1>
{

public:
//*** Class Constructor ***//
DvfsActuator();
//*** Methods inherited from the parent classes (Actuator) ***//
void enable(unsigned int id);

private:
bool enabled;

};

Figure APPENDIX C.7: Code snippet of the DvfsActuator header file.



152

#include "include/DvfsActuator.h"
...
//*** Method that is called when the Actuator is enabled. ***//
void DvfsActuator::enable(unsigned int id){

this->enabled = true;
this->data.id = id;

this->topic.name.assign("/actuator/pe/");
this->topic.name.append(HAL_OS_itoa(id));
this->topic.name.append("/dvfs");
this->topic.domain = Topic::SLAVES;

this->enableAsPublisher();
}

Figure APPENDIX C.8: Code snippet of the DvfsActuator source file.

#include <DvfsType.h>
#include <ModuleInterface.h>
...
class DvfsEffector : public ModuleInterface<Effector>
{

public:
//*** Class Constructor ***//
DvfsEffector();
//*** Methods inherited from the parent classes (Effector and Callback) ***//
void enable();
void doit(MQSoCMessage pMQMessage);
//*** Local variable data that stores the received actuation data ***//
DvfsType data;

};

Figure APPENDIX C.9: Code snippet of the DvfsEffector header file.

#include <hal.h>
#include <DvfsEffector.h>
...
void DvfsEffector::enable(){

this->data.id = HAL_OS_GetDecUID();
this->topic.name.assign("/actuator/pe/");
this->topic.name.append(HAL_OS_itoa(HAL_OS_GetDecUID()));
this->topic.name.append("/dvfs");
this->topic.domain = Topic::SLAVES;
...
this->enableAsSubscriber(this);

}
void DvfsEffector::doit(MQSoCMessage* pMQMessage)
{

this->data.deserialize(pMQMessage);
HAL_OS_EFFECTORS_setDVFS(this->data.value);

}

Figure APPENDIX C.10: Code snippet of the DvfsEffector source file.

#include <ModuleType.h>
...
class DvfsType: public ModuleType {

public:
//*** Class Constructor ***//
STType();
//*** Variables that are serialized/deserialized. ***//
unsigned int id;
unsigned int value;
//*** Methods inherited from the parent classes (ModuleType) ***//
void serialize(MQSoCMessage* pMQMessage);
void deserialize(MQSoCMessage* pMQMessage);

};

Figure APPENDIX C.11: Code snippet of the DvfsType header file.



153

#include <DvfsType.h>
#include <msgpuck.h>
...
//*** Serialize the variable members to the passing message. ***//
void DvfsType::serialize(MQSoCMessage* pMQMessage)
{

char buf[PS_MSG_PAYLOAD_SIZE*4];
char *w = buf;
//*** Place bellow the code to serialize each variable class member. ***//
w = mp_encode_uint(w, this->id);
w = mp_encode_uint(w, this->value);
pMQMessage->msg_len = w-buf;
pMQMessage->msg = buf;

}
//*** Deserialize the passing message writing the variable members. ***//
void DvfsType::deserialize(MQSoCMessage* pMQMessage) {

const char *r = pMQMessage->msg;
//*** Place bellow the code to deserialize the message to each variable member of the class. ***//
this->id = mp_decode_uint(&r);
this->value = mp_decode_uint(&r);

}

Figure APPENDIX C.12: Code snippet of the DvfsType source file.

#include <Decisor.h>
#include <DvfsActuator.h>
#include <STMonitor.h>
...
class SimpleDecisor : public Decisor {

public:
//*** Methods inherited from the base class (Decisor) ***//
void enable();
void decide(unsigned int id);
...

private:
void notifySTMonitor(unsigned int id);
//*** Monitor Class Instance ***//
STMonitor* STMonitor;
//*** Actuator Class Instance ***//
DvfsActuator DvfsActuator[HAL_OS_SLAVE_NUMBER()];

};

Figure APPENDIX C.13: Code snippet of the SimpleDecisor header file.

#include <SimpleDecisor.h>
...
//*** Method that is called when the decisor is enabled. ***//
void SimpleDecisor::enable(){

this->STMonitor = STMonitor::getObject();
this->STMonitor->enable();
this->STMonitor->addCallbackMonitor((CallbackMonitorPtr) &this->notifySTMonitor,this);
int i;
for (i=0;i<HAL_OS_SLAVE_NUMBER();i++)

DvfsActuator[i].enable(i+1);
}
//*** Method that is called when the the monitor variables are updated. ***//
void SimpleDecisor::notifySTMonitor(unsigned int id){

decide(id);
}
/*** Method that is called to decide an action. ***/ /
void SimpleDecisor::decide(unsigned int id){

if (STMonitor->data.sensorData[id-1].value < 25)
DvfsActuator[id-1].down();

else
if (STMonitor->data.sensorData[id-1].value > 75)

DvfsActuator[id-1].up();
}

Figure APPENDIX C.14: Code snippet of the SimpleDecisor source file.



154

APPENDIX D – Directory tree of Modules extension of the middleware

middleware

extension

modules

common

include

Actuator.h

Callback.h

Decisor.h

Effector.h

ModuleInterface.h

ModuleType.h

Monitor.h

Publisher.h

Sensor.h

Subscriber.h

UpDownActuator.h

UpDownControl.h

modules_ports

dvfs

actuators

common

decisors

effectors

monitors

sensors

types

Extension features of the middleware.

Modules feature.

Common files used for any modules port.

Header files of the common directory.

Actuator base class.

Callback base class.

Decisor base class.

Effector base class.

ModuleInterface template base class.

ModuleType base class.

Monitor base class.

Publisher base class.

Sensor base class.

Subscriber base class.

UpDownActuator base class.

UpDownControl base class.

Modules implementation specific to a platform/service.

Files of the DVFS adaptive service implementation.

Actuator classes files.

Common classes files.

Decisor classes files.

Effector classes files.

Monitor classes files.

Sensor classes files.

Type classes files.



155

APPENDIX E – Base Directory tree of a Modules port

middleware

extension

modules

...

modules_ports

dummyService

actuators

common

decisors

effectors

monitors

sensors

types

Extension features of the middleware.

Modules feature.



156

APPENDIX F – A tool to automate the creation of objects of an
adaptive service

This Appendix describes a tool provided to automatically create the files, directory struc-
tures, and makefile of the objects of an adaptive service. This tool aims to facilitate the work of
the user that is developing an adaptive service in the middleware.

The tool is a script written in the Python language and can be run in a Linux shell envi-
ronment with support to Python. The following steps were tested in an Ubuntu Linux environment,
version 14.04.1, with Python in the version 2.7.6.

The first step is to create the directory structure of the module port. For this, the user must
type in the shell # python modules.py ports new <port_name> , where port_name is the name of the adaptive service
that the user wants to create. For example, the following command # python modules.py ports new dummyService

generates the directory structure showed in APPENDIX E. The tool provides options to create the
classes:

• Sensor:
$ python modules.py ports <port\_name> sensor <sensorName> <topicName> <topicDomain> <typeName>

• Monitor:
$ python modules.py ports <port\_name> monitor <monitorName> <topicName> <topicDomain> <typeName>

• Decisor:
$ python modules.py ports <port_name> decisor <decisorName> <monitorName> <actuatorName>

• Actuator:
$ python modules.py ports <port_name> actuator <actuatorName> <topicName> <topicDomain> <actuatorType>
<typeName> <actuator_enum_class> <actuator_enum_first_value> <actuator_enum_last_value>
<actuator_enum_initial_value>

• Effector:
$ python modules.py ports <port_name> effector <effectorName> <topicName> <topicDomain> <typeName>

• Type:
$ python modules.py ports <port_name> type <typeName>

• 3-part Sensor/Monitor/Type:
$ python modules.py ports <port_name> 3-part-sensor/monitor <name> <topicName> <topicDomain>

• 3-part Actuator/Effector/Type:
$ python modules.py ports <port_name> 3-part-actuator/effector <name> <topicName> <topicDomain>
<actuatorType> <actuator_enum_class> <actuator_enum_first_value>
<actuator_enum_last_value>

• Modules:
$ python modules.py ports <port_name> Modules <sensorName> <effectorName> <decisorName>



157

APPENDIX G – Directory tree of the MORM-MQSoC adaptive service

middleware

extension

modules

...

modules_ports

morm

actuators

include

ClusterPowerModeActuator.h

ClusterPowerModeActuator.cpp

common

decisors

include

GlobalMasterDecisor.h

GlobalMasterDecisor.cpp

effectors

include

ClusterPowerModeEffector.h

ClusterPowerModeEffector.cpp

monitors

include

MormLocalMasterMonitor.h

MormLocalMasterMonitor.cpp

sensors

include

MormLocalMasterSensor.h

MormLocalMasterSensor.cpp

types

include

LocalMasterType.h

ClusterPowerModeType.h

MormLocalMasterType.cpp

ClusterPowerModeType.cpp



 

 


