
ESCOLA POLITÉCNICA
PROGRAMA DE PÓS-GRADUAÇÃO

EM CIÊNCIA DA COMPUTAÇÃO

LUCIANO LORES CAIMI

SECURE ADMISSION AND EXECUTION OF APPLICATIONS

IN NOC-BASED MANY-CORES SYSTEMS

Porto Alegre
2019

PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO GRANDE DO SUL
ESCOLA POLITÉCNICA

PROGRAMA DE PÓS-GRADUAÇÃO EM CIÊNCIA DA COMPUTAÇÃO

SECURE ADMISSION AND
EXECUTION OF APPLICATIONS
IN NOC-BASED MANY-CORES

SYSTEMS

LUCIANO LORES CAIMI

Thesis presented as partial requirement
for obtaining the degree of PhD in
Computer Science at Pontifícia Univer-
sidade Católica do Rio Grande do Sul.

Advisor: Prof. Dr. Fernando Gehm Moraes

Porto Alegre
2019

Luciano Lores Caimi

Secure Admission and Execution of Applications

in Noc-Based Many-Cores Systems

This Thesis has been submitted in partial
fulfillment of the requirements for the degree of
Doctor of Computer Science, of the Graduate
Program in Computer Science, School of
Technology of the Pontifícia Universidade
Católica do Rio Grande do Sul.

Sanctioned on September 13 ​th​, 2019.

COMMITTEE MEMBERS:

Prof. Dr. Altamiro Amadeu Susin (UFRGS)

Prof. Dr. Cesar Albenes Zeferino (UNIVALI)

Prof. Dr. Avelino Francisco Zorzo (PPGCC/PUCRS)

Prof. Dr. César Augusto Missio Marcon (PPGCC/ PUCRS)

Prof. Dr. Fernando Gehm Moraes (PPGCC/ PUCRS - Advisor)

ACKNOWLEDGMENTS

Dedico este trabalho a duas mulheres especiais, minha mãe, Maria de Lourdes
Caimi e minha filha, Amanda Liczbinski Caimi. A elas uma palavra... Amor.

Uma jornada como esta não se percorre sozinho. Foram muitas pessoas que ca-
minharam comigo e que tornaram mais fácil chegar ao destino. Quero deixar aqui registrado
minha gratidão e meu obrigado.

Agradeço ao meu orientador, professor Fernando Gehm Moraes, pela confiança
que depositou em mim, por todo o processo de orientação, pelo tempo e paciência dedica-
dos.

Agradeço a minha família, especialmente minhas irmãs (Claudia, Flávia e Ana),
sobrinhas e sobrinhos pelo carinho, suporte, incentivo e convívio, essenciais para manter a
saúde e o equilíbrio emocional ♥.

Agradeço a Carin pelo incentivo no início da jornada. Meu muito obrigado e
gratidão a Reni pelo carinho e apoio. Agradeço ao meu amigo Vinícius M. Fochi, parceiro de
jornada e de trabalho. Agradeço aos colegas do GAPH que contribuíram diretamente com
meu trabalho: Marcelo Ruaro, Eduardo Wachter e André Del Mestre. Agradeço aos antigos
colegas e hoje amigos que fiz durante o doutorado, obrigado Jean, Felipe, Jurinha, Korol,
Tanauan, Gustavo, Ramon, Cataldo, Anderson e também os amigos do futebol semanal.

Agradeço aos professores do PPGCC pela dedicação e competência: Marcon,
Amory, Ney, Hessel, Avelino, De Rose, Gustavo. Obrigado ao Régis e ao Diego da secre-
taria do PPGCC pelo pronto auxílio que sempre recebi.

Agradeço a Universidade Federal da Fronteira Sul e aos programas de fomento à
qualificação docente pelo suporte e auxílio recebidos.

ADMISSÃO E EXECUÇÃO SEGURA DE APLICAÇÕES EM SISTEMAS
DE MULTIPLOS NÚCLEOS BASEADOS EM REDES INTRA-CHIP

RESUMO

A adoção de sistemas múltiplos núcleos torna a preocupação com a proteção de
dados um requisito crítico de projeto de taos sistemas devido ao compartilhamento de recur-
sos e a execução simultânea de várias aplicações na plataforma. Uma aplicação que pro-
cessa dados confidenciais pode ter sua segurança prejudicada por um processo malicioso.
A literatura contém várias propostas para proteção de sistemas many-core, concentrando-
se principalmente na proteção da execução da aplicação ou no acesso a memórias com-
partilhadas. No entanto, uma solução que englobe todo ciclo da aplicação, incluindo a
admissão da aplicação, sua execução e o acesso a periféricos, é uma lacuna a ser preen-
chida. Esta Tese discute três questões relacionadas à segurança em sistemas many-core
basados em redes intra-chip: a admissão segura de aplicações, a prevenção do compar-
tilhamento de recursos durante sua execução, e o acesso seguro a dispositivos externos.
Esta Tese propõe um conjunto de protocolos e mecanismos, aplicados em tempo de exe-
cução, para abordar estas questões. Antes da requisição de admissão de aplicações as
entidades responsáveis pela admissão são autenticadas. Uma entidade autenticada pode
implantar aplicações, necessitando apenas da verificação de um Código de Autenticação
de Mensagem (MAC - Message Authentication Code) para garantir a integridade da apli-
cação. As aplicações são mapeadas em zonas seguras contínuas opacas (OSZ - Opaque
Secure Zones), com a reserva de todos os elementos de processamento e recursos de
comunicação. Todos os fluxos de tráfego que devem atravessar as OSZ são redireciona-
dos para o exterior das OSZ . Essa abordagem de isolamento evita ataques de negação
de serviço (DoS - Denial-of-Service), ataques de temporização e falsificação, e garante a
confidencialidade e integridade dos dados. Os dispositivos externos também são autenti-
cados, permitindo o uso de uma chave compartilhada dedicada para criptografar as trocas
de mensagens com periféricos. No que diz respeito à admissão de aplicações, o overhead
dominante da proposta corresponde às etapas de computação e verificação do MAC, o que
resulta na latência para iniciar uma aplicação segura por alguns milissegundos. Relativa-
mente à execução da aplicação, a avaliação mostra um impacto insignificante no tempo de
execução de aplicações seguras e não seguras, mesmo na presença de vários caminhos
reroteados e respectivo reencaminhamento e retransmissão de mensagens. A proteção
do cabeçalho da mensagem e da carga útil durante o acesso a periféricos corresponde ao

custo principal na latência de comunicação. O que se apresenta é um conflito entre o custo
da criptografia (hardware ou software) versus a latência adicional na comunicação com o
periférico. Esta Tese avança o estado da arte na área de pesquisa de sistemas many-core
baseados em redes intra-chip, uma vez que engloba mecanismos de segurança para todo
ciclo da aplicação. O mecanismo leve de autenticação mútua entre entidades externas
e o many-core e a utilização de um MAC para proteger o código-fonte da aplicação são
inovações propostas na Tese. A proteção da execução das aplicações sem mecanismos
criptográficos através de OSZ , evitando o compartilhamento de recursos computacionais e
de comunicação, representa outra contribuição desta Tese.

Palavras-Chave: Sistema many-core baseado em rede intra-chip, Segurança, Autentica-
ção Mútua, Admissão de Aplicações, Zonas Seguras.

SECURE ADMISSION AND EXECUTION OF APPLICATIONS IN
NOC-BASED MANY-CORES SYSTEMS

ABSTRACT

The adoption of many-cores systems introduces the concern for data protection
as a critical design requirement due to the resource sharing and the simultaneous execu-
tions of several applications on the platform. A secure application that processes sensitive
data may have its security harmed by a malicious process. The literature contains several
proposals to protect many-cores against attacks, focusing for example in the protection of
the application execution or the access to shared memories. However, a solution covering
the application lifetime, including its admission, execution and peripheral access, is a gap
to be fulfilled. This Thesis discusses three security-related issues: the secure admission of
applications, the prevention of resource sharing during their execution, and the safe access
to external devices. This Thesis proposes a set of protocols and mechanisms, executed
at runtime, to tackle these issues. The application admission authenticates trusty entities.
An entity authenticated might deploy applications, requiring only a Message Authentica-
tion Code (MAC) verification to guarantee the application integrity. Secure applications are
mapped into Opaque Secure Zones (OSZ), with the reservation of all Processing Elements
(PEs) and communication resources. All traffic flows that should cross the OSZ are rerouted
to the outside of the OSZ . Such isolation approach avoids Denial-of-Service (DoS), timing,
and spoofing attacks and guarantees data confidentiality and integrity. External devices
are also authenticated, enabling the use of a dedicated shared key to encrypt the periph-
eral exchange messages. Concerning the application admission, the dominant overhead
corresponds to the MAC computation and verification steps, that results in the latency to
start a secure application by a few milliseconds. Concerning the application execution, the
evaluation shows a insignificant impact on the execution time of secure and non-secure ap-
plications, even in the presence of several broken paths and the respective rerouting and
retransmission of messages. Protection of message header and payload during the periph-
eral access correspond to the main overhead in the communication latency. The concern
is the trade-off between the cryptography cost (hardware or software) versus the additional
latency in the communication. This Thesis advances the state-of-the-art on the NoC-based
many-core systems research area since that encompasses security mechanism to entire
application lifetime. The lightweight mechanism to mutual authentication between external
entities and the many-core, and a Message Authentication Code to protect the application’

source code are innovations proposed in the Thesis. The protection of application execu-
tion without cryptographic mechanisms through the OSZ , avoiding both communication and
computational resources sharing represent another contribution of this Thesis.

Keywords: NoC-based Many-core System, Security, Mutual Authentication, Application Ad-
mission, Secure Zones.

LIST OF FIGURES

Figure 1.1 – Security constrains related to the secure application execution. 19

Figure 2.1 – The Authentication Controller module. [Sepúlveda et al., 2018]. 28

Figure 2.2 – Block diagram of RLAN’s network interface [Rajesh et al., 2015]. . . . 30

Figure 2.3 – Example of optimized NoC topology for a smartphone application
[Hu et al., 2015]. 30

Figure 2.4 – Example of two SBR segment computations: a) the path among S
and D goes through an insecure element due to a routing restriction; b) a
set of restrictions in the segments enables a secure path between S and D.
[Fernandes et al., 2016] . 31

Figure 2.5 – Example of Surf scheduling in a 16-node 2D mesh with three appli-
cation domains (denoted by white, gray, and black). [Wassel et al., 2014]
. 33

Figure 2.6 – Establishment of a secure session in [Silva and Zeferino, 2017]. . . . 34

Figure 2.7 – Representation of the Firewall connections. [Oliveira et al., 2018] . . . 35

Figure 2.8 – (a) Memory access mechanism. (b) Hermes PE architecture with
detailed NI. [Kinsy et al., 2017] . 36

Figure 2.9 – Overview of P-sec architectural blocks and structure of packets [Bo-
raten and Kodi, 2016]. 37

Figure 2.10 – Overview of architecture [Real et al., 2018]. 38

Figure 2.11 – Block diagram of Secure Communication Architecture [Isakovic and
Wasicek, 2013]. 39

Figure 2.12 – Security zones at MPSoCs interconnected through a two-level NoC
(Service and data NoC). [Sepúlveda et al., 2017] . 40

Figure 2.13 – Gossip router microarchitecture. (1) Gossip In block; (2) Gossip
logic; (3) Gossip generator [Reinbrecht et al., 2017]. 41

Figure 2.14 – Top-level NoC firewall [Grammatikakis et al., 2015a]. 42

Figure 3.1 – Overview of MCSoC hardware model. 49

Figure 3.2 – Packet and message structures - a flag (D/P) in the target address
field differentiates data packets from peripheral packets. 50

Figure 3.3 – BrNoC architecture. 52

Figure 3.4 – Control NoC Wrapper logic . 53

Figure 3.5 – Message (flit) and one row of BrNoC CAM memory. 53

Figure 3.6 – Example of path discovery using the BrNoC. 55

Figure 3.7 – Overview of the kernels: (a) MPE kernel manages the system and do
not execute users’ tasks; (b) SPE kernel manage users’ tasks. 57

Figure 3.8 – Application task graph example. 58

Figure 4.1 – Secure zone and dynamic reconfiguration of routing paths. 61

Figure 4.2 – Protocol general view. 63

Figure 4.3 – SZ1: continuous and rectangular, SZ2: discontinuous, SZ3: cont.,
rect., and opaque, SZ4: cont. and rectilinear. 65

Figure 5.1 – Sequence diagram of Setup phase of protocol. 69

Figure 5.2 – Sequence diagram of Mutual Authentication phase of protocol. 70

Figure 5.3 – Application Admission phase protocol. 71

Figure 5.4 – Entity key exchange. 75

Figure 5.5 – Tasks allocation and MAC verification phase. Red arrows: broadcast
messages transmitted through the control NoC. 76

Figure 5.6 – Algorithm 5.1 evaluation scenario with three OSZ positioning. 79

Figure 5.7 – Timeline for the four phases impacting the latency to start an Appsec. 82

Figure 5.8 – Timeline for the four phases impacting the latency to start an Appsec

with task sorting. 82

Figure 6.1 – Close OSZ phase. 84

Figure 6.2 – (a) Wrapper logic for one port; (b) Detailed Wrapper Control masking
logic. 86

Figure 6.3 – Rerouting sequence. 86

Figure 6.4 – Backtrack example. 87

Figure 6.5 – Open OSZ protocol steps. 88

Figure 6.6 – Communication latency: (a) Appsec in the OSZ , and malicious tasks
outside the OSZ ; (b) latency graph results [Caimi et al., 2017a]. 90

Figure 6.7 – Task graphs and mapping. (a) MPEG and (b) DTW applications
[Caimi et al., 2017a]. 91

Figure 6.8 – Task graphs and mapping of MPEG application with broken path
between iquant and IDCT tasks. 92

Figure 7.1 – Inter-PE communication flow [Ruaro et al., 2016]. 94

Figure 7.2 – I/O API primitives. (a) Consumer task accessing a peripheral. (b)
Producer task accessing a peripheral. 94

Figure 7.3 – Wrappers modules. (a) PE architecture; (b) brNoC wrapper module;
(c) wrapper control module . 96

Figure 7.4 – Configuration scenarios for I/O communication from OSZ 97

Figure 7.5 – Procedures to adjust the I/O packet and wrappers configuration. 98

Figure 7.6 – OS procedures at message received: (a) unreachable; (b) backtrack. 100

Figure 7.7 – Example scenario for I/O evaluation. 102

LIST OF TABLES

Table 1.1 – Security principles addressed during the application phases in this
Thesis. Legend: -: not addressed, : attack prevented; ⌃: attack mitigated . 21

Table 1.2 – Security principles with respective attacks addressed during the ap-
plication phases in this Thesis. 22

Table 2.1 – Security mechanisms proposals to distinct application lifetime phase
with respective positioning level . 26

Table 2.2 – State-of-the-art summary. 44

Table 2.3 – Cost overhead of the proposals. 46

Table 3.1 – Examples of Messages Types and Purposes of the brNoC. 55

Table 4.1 – Defense mechanisms positioning with objectives and Thesis chapters. 62

Table 5.1 – Setup and Authentication phases evaluation. 77

Table 5.2 – Admission phase performance evaluation. 80

Table 5.3 – Key Exchange phase evaluation. 81

Table 5.4 – Task Allocation and MAC verification evaluation results. 81

Table 5.5 – Delay time to start different applications. 83

Table 6.1 – Parameters of the messages to close the OSZs. 85

Table 6.2 – OSZ Close phase evaluation. 89

Table 6.3 – OSZ Open phase evaluation. 89

Table 6.4 – Impact of the OSZ in the Non-Secure Applications [Caimi et al., 2017a]. 91

Table 7.1 – Mask wrapper configuration cases. 98

Table 7.2 – Overhead to Communicate with I/O devices. 103

Table 7.3 – Overhead to compute the SipHash on I/O messages. 104

Table 8.1 – Summary of Publications. 111

LIST OF ACRONYMS

3PIP – Third Part Intellectual Property

AES – Advanded Encryption Standart

AET – Application Execution Time

API – Application Program Interface

ATZ – ARM TrustZone

CAM – Content Addressable Memory

CPU – Central Processor Unit

DH – Diffie-Hellmann

DMA – Direct Memory Access

DMNI – Direct Memory Network Interface

DOS – Denial-of-Service

DDOS – Distributed Denial of Service

ECC – Elliptic Curve Cryptography

ECDH – Elliptic Curve Diffie-Hellmann

EOP – End-of-Packet

FPGA – Field Programmable Gate Array

GMP – Global Manager Processor

GPPC – General Purpose Processing Cores

HT – Hardware Trojan

HTTPS – Hyper Text Transfer Protocol Secure

I/O – Input/Output

ILP – Integer Linear Programming

IOT – Internet of Things

IP – Intellectual Property

ISA – Instruction-Set Architecture

KDC – Key Distribution Center

LFSR – Linear-feedback Shift Register

LMP – Local Manager Processor

MAC – Message Authentication Code

MITM – Man-in-the-Middle

MMU – Memory Management Unit

MPSOC – Multiprocessor System on Chip

MCSOC – NoC-based many-core SoC

NAS – Numerical Aerodynamic Simulation

NI – Network Interface

NOC – Network on Chip

OSZ – Opaque Secure Zones

OS – Operating System

P + P – Prime + Probe

PE – Processor Element

PRN – Pseudo-Random Number

PRNG – Pseudo-Random Number Generator

PS – Packet Switch

PK – Private Key

PUK – Public Key

PUF – Physical Unclonable Function

RISC – Reduced Instruction Set Computing

RTL – Register Transfer Level

SBR – Segment-based Routing

SBR-SZA – SBR Security Zone Awareness

SCA – Side Channel Attack

SDN – Software Defined Network

SLR – Systematic Literature Revision

SSL – Secure Sockets Layer

SR – Source Routing

SP – Slave Processor

SWS – Sliding Window Search

SZ – Secure Zone

TEE – Trusted Execution Environment

TLS – Transport Layer Security

TNP – Temporal Network Partitioning

VHDL – VHSIC Hardware Description Language

VHSIC – Very High Speed Integrated Circuit

WBAN – Wireless Body Area Network

WML – Wrapper Mask Logic

ZKP – Zero Knowledge Proof

CONTENTS

1 INTRODUCTION . 17

1.1 THREAT MODEL . 20

1.2 THESIS STATEMENT . 22

1.3 MOTIVATION . 22

1.4 OBJECTIVES . 23

1.5 ORIGINAL CONTRIBUTIONS . 24

1.6 DOCUMENT ORGANIZATION . 24

2 STATE-OF-THE-ART . 26

2.1 PROTECTING THE APPLICATION ADMISSION . 27

2.2 PROTECTING THE APPLICATION EXECUTION . 29

2.2.1 PROTECTING COMMUNICATION . 29

2.2.2 PROTECTING COMPUTATION . 37

2.2.3 PROTECTING COMPUTATION AND COMMUNICATION 39

2.3 PROTECTING THE MEMORY ACCESS . 40

2.4 DISCUSSION . 42

3 BASELINE PLATFORM . 48

3.1 HARDWARE MODEL . 48

3.1.1 DATA NOC . 50

3.1.2 CONTROL NOC - BRNOC . 51

3.2 SOFTWARE MODEL . 57

4 GENERAL VIEW OF SECURITY MECHANISMS . 59

4.1 DEFENSE MECHANISMS . 59

4.2 GENERAL VIEW OF THE PROTOCOL PHASES . 62

4.3 SECURE ZONES . 63

4.4 REQUIREMENTS AND RESTRICTIONS . 65

4.4.1 REQUIREMENTS . 65

4.4.2 RESTRICTIONS . 66

5 THE MUTUAL AUTHENTICATION, ADMISSION AND ALLOCATION PHASES 68

5.1 MUTUAL AUTHENTICATION FOR MCSOCS . 68

5.1.1 SYSTEM SETUP PHASE . 68

5.1.2 MUTUAL AUTHENTICATION PHASE . 69

5.2 APPLICATION ADMISSION AND TASK ALLOCATION PHASES 71

5.2.1 APPLICATION ADMISSION . 71

5.2.2 ENTITY KEY EXCHANGE . 75

5.2.3 TASKS ALLOCATION AND MAC VERIFICATION . 76

5.3 PROTOCOL PHASES EVALUATION . 76

5.3.1 SETUP AND AUTHENTICATION PHASES EVALUATION 77

5.3.2 ADMISSION TO ALLOCATION PHASES EVALUATION 78

5.4 FINAL REMARKS . 83

6 APPLICATION EXECUTION . 84

6.1 CLOSING THE OPAQUE SECURE ZONE . 84

6.2 SECURE APPLICATION EXECUTION . 85

6.3 PROTOCOL TO OPEN AN OPAQUE SECURE ZONE . 88

6.4 APPLICATION EXECUTION EVALUATION . 89

6.5 FINAL REMARKS . 92

7 PERIPHERAL ACCESS . 93

7.1 MCSOC COMMUNICATION MODEL . 93

7.2 ENABLING I/O ACCESS FROM OSZ . 95

7.3 I/O COMMUNICATION ISSUES . 99

7.4 PROTECTING PACKET HEADER AND PAYLOAD OUTSIDE THE OSZ 101

7.5 PERIPHERAL ACCESS EVALUATION . 102

7.6 FINAL REMARKS . 105

8 CONCLUSION AND FUTURE WORK . 106

8.1 FUTURE WORK . 110

8.2 SUMMARY OF THE PUBLICATIONS PRODUCED DURING THE THESIS 111

REFERENCES . 112

17

1. INTRODUCTION

Many-core SoCs (System on Chip) are platforms providing high connectivity and
massive parallelism for running a wide variety of applications. The use of many-cores sys-
tems is continuously increasing, due to the growing number of integrated processing cores
into a single chip and the number of fields where they are applied to. A many-core may be
classified as heterogeneous or homogeneous (symmetric and asymmetric). Heterogeneous
many-cores employ PEs (Processor Elements) with distinct architectures and organizations
(like general-purpose processors, graphics processing unit, dedicated hardware acceler-
ators, memories, among others) [Esmaeilzadeh et al., 2012]. Symmetric homogeneous
many-core correspond to systems with all PEs having the same architecture and organiza-
tion. Asymmetric many-core are a particular case of homogeneous systems, where the PEs
share the same ISA (Instruction-Set Architecture), but not the organization [ARM, 2013].

A many-core SoC contains PEs or IPs (Intellectual Property) modules intercon-
nected by complex communication infrastructures, such as hierarchical buses or NoC (Net-
work on Chip) [Popovici et al., 2010].

An NoC contains routers and links and is responsible for exchange data and control
messages between PEs and peripherals. The routers receives packets from the processors
and links assist to reach the packets to other routers on the routing path, which is decided by
the routing algorithm. Network Interfaces (NI) connect IPs to the NoC routers. The routing
units constitute the underlying communication infrastructure of the system, where multiple
interconnected routers define network topologies [Hemani et al., 2000][Benini and Micheli,
2002].

In the context of this work we adopt the term MCSoC to describe the NoC-based
many-core SoC.

As the adoption and complexity of MCSoCs increases, the concern for data pro-
tection appears as a new design requirement [Baron et al., 2013]. A MCSoC may be used
in scenarios where availability is a critical factor and downtimes must be minimized. These
systems may also handle sensitive information; thus it is necessary to protect this data from
unauthorized access.

According to [Ramachandran, 2002], not only data protection, unauthorized access
and availability are concerns on MCSoC design. The following seven security principles
are generally accepted as the foundation of a good security solution being the three first
principles mandatory features:

• Confidentiality: the property of non-disclosure of information to unauthorized processes,
entities or users;

• Availability: the protection of assets from DoS (Denial-of-Service) threats that might
impact the system availability;

18

• Integrity: the prevention of modification or destruction of an asset by an unauthorized
entity or user;

• Authentication: the process of establishing and validity a claimed identity;

• Authorization: the process of determining whether a validated entity is allowed access
to a secured resource based on attributes, predicates or context;

• Auditing: the property of logging the system activities at levels sufficient for reconstruc-
tion of events;

• Nonrepudiation: the prevention of any participant denying his role in the interaction
once it is completed.

MCSoCs, beyond their inherent scalability, provide massive parallelism and high
performance to the users. In such systems, several applications execute simultaneously,
sharing computation (processors) and communication (routers and links) resources. This
resource sharing lead to security and trust problems, requiring the design of solutions to
avoid malicious entities exploring vulnerabilities and breaking some security principle.

The system (hardware and Operating System) and applications are exposed to
malicious attackers at different moments of the applications lifetime which can compromise
their admission and execution due to the resource sharing feature of MCSoC [Real et al.,
2016a] [Kinsy et al., 2017] [Reinbrecht et al., 2018].

The application’s lifetime encompasses three main phases: (a) before the execution
we need to admit the application to the MCSoC, mapping the tasks and reserving resources
for execution; (b) during the application execution the computation resources run the algo-
rithms and use communication resources to inter-task cooperation and peripherals access;
(c) finally, at the end of the execution, the resources release must be provided to enable its
use by another application.

The execution of an application with security constraints comprises at least three
assumptions. The first one is the secure admission of the application, to guarantee the
object code integrity. The second assumption regards the application execution in an runtime
environment protected from attacks. The third assumption is related to the protection of the
communication with peripherals and shared memories (Figure 1.1).

The application admission corresponds to the object code transfer from an off-chip
entity to the MCSoC. With respect to security in this process, the many-core must trust on
the entity transmitting the application and the integrity of the application must be verified
to avoid the insertion of malicious code. Examples of attacks include Trojan Horses, man-
in-the-middle and spoofing whilst solutions to these issues exist for the Internet, computer
networks, and software in general [Hanka and Wippel, 2011][Kuntze, 2013][Khernane et al.,
2016].

19

Protected
I/O and
Memory

Appsec
Execution

Secure
Admission

MCSoC/Peripheral
Mutual Authenti-
 cation

Object Code
 Integrity

Full runtime
protected
environment

Communication
and Computation
resources
availability

Data confidentiality

Authorization and
Authenticity of
communicating
parts

Figure 1.1: Security constrains related to the secure application execution.

At execution time, a malicious attacker may have access to sensitive computation or
communication data and, therefore, a secure application (Appsec) that processes sensitive
data will have its security harmed by a malicious process. Examples of attack on such
systems include DoS, timing attack, side-channel attack and information leakage [Hu et al.,
2015] [Sepúlveda et al., 2015c][Real et al., 2016b].

Adoption of firewalls, encryption mechanisms and resource isolation through se-
cure zones are common strategies to deal with the security threats. The mechanisms used
to create such secure zones include encryption, routing algorithm, logical and temporal iso-
lation. Particularly, the scope of this Thesis uses Opaque Secure Zones1, defined as:

Definition 1. Opaque Secure Zone (OSZ) is a continuous isolated area in the system, with a
rectilinear shape, with the PEs and routers reserved to execute a single application, without
computation and communication resource sharing.

Relative to application communication with external devices, unauthorized access
to instructions and data in shared memory and peripherals can compromise the applications’
execution, due to attacks aiming the information tampering or the information leakage. Other
examples of attack include DoS and timing attack [Grammatikakis et al., 2015b][Reinbrecht
et al., 2017].

Most proposed security solutions applied to MCSoC consider only one of three
mentioned assumptions, limited to the application execution (computation or communication
protection) and eventually the shared memory access. The concern about memory access
is considered from the communication point of view. Proposals regarding the application
admission and the access to peripherals are scarce in the MCSoC research field. A low-
cost protocol for secure application admission and communication with external devices
targeting MCSoCs is still an open research problem. The state-of-the-art chapter details
this statement.

1 The Opaque Secure Zone definition is introduced in this Thesis. Details are presented in Section 4.3.

20

1.1 Threat Model

The resource sharing of MCSoCs components introduces vulnerabilities to the ap-
plications running on it. These vulnerabilities compromise the security principles throughout
the applications lifetime, by example:

• Integrity: a malicious entity can change the source code of the tasks, at the applica-
tion admission, inserting Trojan Horses or backdoors aiming a shady behavior of the
application during its execution.

• Confidentiality: unauthorized access to the data by writing or reading. With different
applications sharing the MCSoCs, a malicious application can be loaded and executed
by a given processor, accessing the memory to retrieve or leak critical data through
malicious PEs or peripherals.

• Availability: disruption of the system by overloading resources. A malicious application
generating packets with a high injection rate can produce this attack, overloading the
communication infrastructure.

• Authentication: before the application admission, the MCSoC must have confidence
that the entity that want to run an application in the many-core system proofs its identity.

• Authorization: the deployment of an malicious application without authorization en-
ables innumerable threats in the system compromising its integrity, availability and in-
tegrity. At execution and communication phases, unauthorized access to peripherals
or resources inside the OSZ also compromise these features.

Table 1.1 presents the security principles addressed by the Thesis to each phase of
the application lifetime. This work does not cover the nonrepudiation and audition principles
(‘-’ signal). The principles addressed mitigating attacks are showed using ‘⌃’ signal. The
signal ‘ ’ inform that the security principle is fully address, avoiding the attack.

At the MCSoCs context, it is possible to explore such vulnerabilities with attacks
that compromise the system by using:

• Denial-of-Service - DoS: disruption of the system by overloading resources, compro-
mising its availability. A malicious application task generating packets with a high in-
jection rate can produce this attack, overloading the communication infrastructure.

• Distributed Denial-of-Service - DDoS: similar to DoS, uses multiples tasks to attack
and disrupt the system by overloading resources, compromising its availability. A ma-
licious application running in distinct PEs can coordinate an attack to a specific router
overloading its communication capacity.

21

Table 1.1: Security principles addressed during the application phases in this Thesis. Leg-
end: -: not addressed, : attack prevented; ⌃: attack mitigated

Principles Application phases
Admission Execution I/O Access

Availability ⌃ ⌃
Confidentiality -
Integrity
Authentication -
Authorization -
Nonrepudiation - - -
Audition - - -

• Timing attack: explores the communication collision between the sensitive traffic and
the attacker traffic. The latency interference induced by malicious traffic can provide to
the attacker some information about the timing, frequency, and volume of the secure
communication.

• Hardware Trojans: a malicious modification of the system’s hardware (e.g., inserted
into the NoC) aiming to sniff and leakage sensitive data.

• Spoofing: a malicious application successfully falsifies its identity to obtain unautho-
rized privileges.

• Hijacking: an attempt to alter the system configuration to execute a set of abnormal
tasks along with normal system operation (e.g. during the load of the operating system
or an application).

• Man-in-the-Middle - MitM: an attack where the attacker secretly relays and alters the
communication between the external entity and the MCSoC, in such way that each
one believes they are directly communicating with each other. This enable the attacker
send malicious data or obtain secret information of the MCSoC.

• Trojan Horse and backdoor: the tampering of the task’s source code during the admis-
sion of the application can insert malicious code that, during the application execution,
can compromise the availability of the MCSoC and the confidentiality of the data.

Side channel attacks, as power-monitoring or electromagnetic attacks, are not con-
sidered in this proposal. However, the feasibility of such attacks in a system with dozens of
processors is unlikely to occur.

Table 1.2 details the attacks prevented or mitigated by our Thesis regarding the
secure principles and the application phase.

22

Table 1.2: Security principles with respective attacks addressed during the application
phases in this Thesis.

Principles Application phases
Admission Execution I/O Access

Availability DoS, DDoS DoS, DDoS, Trojan Horse DoS, DDoS
Confidentiality - Timing attacks, HT, Data leakage

Trojan horse, Backdoor MitM
Integrity Trojan horse, Backdoor Trojan horse, Backdoor Spoofing

Hijacking, Spoofing Hijacking, Spoofing
Authentication MitM - Spoofing
Authorization MitM Trojan horse, Spoofing
Nonrepudiation - - -
Audition - - -

1.2 Thesis Statement

It is feasible to develop a protocol to secure applications, including the application
admission, runtime isolation of computation and communication resources, and access to
external devices (memory and peripherals). Compared to other works available in the liter-
ature, the proposed protocol presents a smaller area, smaller communication latency, and
execution time overhead.

1.3 Motivation

MCSoCs are becoming the solution to meet the high-performance demand of em-
bedded systems while maintaining the power consumption restrictions during its execution.
Examples of modern architectures with a large number of processors interconnected by
NoC includes the Mellanox family TILE-Gx72 (72 cores) [Mellanox Tecnhlogies, 2018], Intel
Knights Landing [Sodani et al., 2016] and Oracle M8 (32 cores) [Oracle, 2017], Kalray array
(256 cores) [Dinechin et al., 2014], and KiloCore chip (1,000 cores) [Bohnenstiehl et al.,
2016]. Recently, even complex architectures follow the MCSoC trend, such as Intel Xeon i9
(18 x86-processors) [Intel, 2018].

The protection of sensitive data is an ever-increasing concern today with the in-
creased exposure of MCSoCs. While running sensitive applications, the splitting and sharing
strategy performed in MCSoC enable a malicious application to explore the vulnerabilities
due to computational and communication resources sharing. Attacks at MCSoCs enable
to modify the system behavior, extract sensitive information, or disable its operation. In ad-
dition, the use of MCSoCs in areas where a failure could be catastrophic (e.g., medical
devices, automotive and aerospace industry) require the adoption of security mechanisms.

23

1.4 Objectives

The main objective of this Thesis is to define a set of protocols, executed at runtime,
to enable applications with security concerns to run in MCSoCs tackling the following issues:
application admission, secure execution, and access to peripheral devices.

The following specific objectives must be fulfilled to help achieving the main objec-
tive:

I External entities authentication
Definition of a secure method to establish the communication of the MCSoC with
external hardware components. The goal of this step is to authenticate these com-
ponents and define a secret symmetric key that enables external hardware to send
sensitive application and data with integrity guarantees during the application deploy
and confidentiality guarantees during the communication with peripherals.

II Application admission
Definition of the location and the shape of the OSZ to make the application task map-
ping inside the region. This step requires new heuristics to determine the best location
for the OSZ according to the application’s task number, the MCSoC free resources,
and the mapping heuristics into OSZ .

III Internal transfer of the secret key and object code verification
Definition of a secure mechanism to send the secret symmetric key to all processors
belonging to the OSZ . This mechanism must avoid plaintext key exchange, making
hard a possible attack to the task’s object code. The external entity requesting the
secure application execution sends the tasks’ object code to the mapped processor
appending a Message Authentication Code (MAC). At the reception, the processor
confirms the object code integrity, and then the application execution can proceed.

IV Close the OSZ and secure application execution
The isolation of the OSZ occurs after loading the tasks on the processors. This work
uses spatial and temporal isolation, i.e. the processors of the OSZ are exclusively
dedicated to run the secure application. After isolation, the application can start without
encrypting its messages since external traffic that should cross the OSZ is blocked. In
the same way, any traffic belonging to the sensitive application does not leave the OSZ .
To meet this requirement a rerouting algorithm is required to circumvent the messages
that should cross the OSZ region.

V Communication with Peripherals
The communication with external devices is part of most applications. To enable data
communication with peripherals we propose a mechanism that enable distinguish I/O
packets from data packets allowing communication with peripheral without expose the

24

resources inside the OSZ . A secure application can expose sensitive application’s data
with the communication to external devices. To meet this specific objective, it is nec-
essary to use encryption and the private key previously created. The challenge is the
trade-off between the cryptography cost (hardware or software) versus the additional
latency in the communication due to this procedure.

VI Application release
At the end of the secure application execution, the operating system of each processor
in the OSZ must clear the task’s memory area to avoid the leakage of sensitive data.
After the memory cleaning, the processors in the boundary of OSZ can accept the
message flow crossing again. When the system manager receives the notifications
about the release of resources of all processors of OSZ these processor become
available to other applications.

1.5 Original Contributions

The original contribution of this Thesis is the complete isolation at runtime of the
application using secure regions and dynamic rerouting, protecting computation and com-
munication resources from attacks. The proposal isolates a given system region using wrap-
pers, instead of firewalls, reducing, comparatively, the hardware cost. In addition, given the
fact that the application is isolated, there is no need to encrypt packets inside the OSZ ,
reducing the communication latency between application’s tasks.

Other original contributions are the lightweight methods adopted. The authentica-
tion of trusty entities avoids the cost of key exchange protocols for each application admitted
in the system since the key exchange occurs once for each entity. For each new application
admitted in the system, only a MAC verification is required. The execution of the application
inside a reserved region eliminates the need of firewalls and data encryption (except when
communicating with peripheral devices).

1.6 Document Organization

The remaining of this document is organized as follows. Chapter 2 presents the
state-of-the-art regarding MCSoC security issues and a discussion of the main related
works. Chapter 3 describes the system architecture presenting the main hardware and
software modules that support the used security mechanisms. Chapter 4 presents a general
view of the mechanisms adopted in this Thesis to support a secure application lifetime.
Chapter 5 details the proposed mechanism to ensure a secure admission of the application
into the MCSoC, including peripherals authentication. Chapter 6 details the OSZ creation,
the application execution, the reroute mechanism used to circumvent OSZ avoiding the

25

data traffic of another applications and the OSZ release. Chapter 7 details the access to
peripherals from the OSZ and the mechanism used to protect the data exchange. Chapter
8 presents the general conclusion of the Thesis, directions for future work and the Author’s
publications during the Ph.D. period.

26

2. STATE-OF-THE-ART

The MCSoC research field is broad, with several research groups working in this
area. Concerns related to NoC security is not a recent thread, with publications from the
beginning of 2000’s, such as [Gebotys and Gebotys, 2003], [Avizienis et al., 2004], [Coburn
et al., 2005] and [Evain and Diguet, 2005].

This section presents the literature review on MCSoC security. Emphasis is given
to the mechanisms used to protect the system on the different lifetime phases, considering
the positioning of the mechanisms: at the NoC level; at the many-core level; in other sys-
tems or research area. Table 2.1 summarizes this approach, presenting some prevention
mechanism found in the literature review to each execution lifetime phase and the respective
positioning.

Table 2.1: Security mechanisms proposals to distinct application lifetime phase with respec-
tive positioning level

App. lifetime
phase # NoC MCSoC other area

Admission
– – [Khernane et al., 2016]

Zero Knowledge Proof
[Sepúlveda et al., 2018]

MAC – [He et al., 2012]
ECDH protocol

Execution

[Ancajas et al., 2014]
Packet Certification – –
[Rajesh et al., 2015]
Auditing and Firewall

[Isakovic and Wasicek, 2013]
Secure Zones and Sym. encryption –

[Fernandes et al., 2016]
Routing Scheme

[Sepúlveda et al., 2017]
Sym. and Asym. Encryption –

[Oliveira et al., 2018]
Symmetric Encryption

[Sharma et al., 2018]
Symmetric Encryption –

I/O Access

[Grammatikakis et al., 2015b]
Firewall – –

[Reinbrecht et al., 2017]
Routing Scheme – –

During the application admission phase, authentication mechanisms are applied
to the entities in order to ensure the integrity of the application’s object code (Section 2.1).
With respect to the application’s execution, the review focus on the protection of the commu-
nication resources, the computation resources, and works with both protection mechanisms
(Section 2.2). The review of proposed mechanisms to protect the access to peripherals
(mainly shared memory) is presented in Section 2.3. Each related work is summarized ac-
cording to the following structure: (i) the attacks employed to obtain some advantage; (ii)
the threats mitigation methods; (iii) the operation of the method; (iv) the cost regarding the
area, power or latency of the proposed mechanisms.

Section 2.4, present a discussion, positioning this Thesis w.r.t. the state-of-the-art,
showing some issues and gaps found in the reviewed works.

27

2.1 Protecting the application admission

The application admission corresponds to the object code transfer from an off-
chip entity to the MCSoC. With respect to security in this process, each actor (external
entity and MCSoC) must confirm the other part’s identity, and the integrity of the application
must be verified to avoid the tampering of the application’s object code. Solutions to these
issues exist for the Internet, computer networks, and software using techniques such as
ZKP (Zero Knowledge Proof) [Khernane et al., 2016], DH (Diffie-Hellman) protocol based
on ECC (Elliptic Curve Cryptography) [He et al., 2012] and MAC [Sepúlveda et al., 2018].

(i) Zero Knowledge Proof protocol

In [Khernane et al., 2016], the Authors present a secure lightweight and energy
efficient authentication scheme for WBAN (Wireless Body Area Network) called BANZKP.
The scheme is based on a ZKP protocol and a commitment scheme to authenticate the
sensor nodes in the WBAN network. They used ZKP to confirm the identity of the sensor
nodes while the commitment scheme deals with replay attacks. According to the authors,
after the authentication success, an encryption mechanism (not presented in the paper)
provides the message privacy protection. Evaluation uses the Omnet++ simulator. Authors
claim that the proposed method reduces the memory consumption by 56.13% and energy
consumption by 94.11% when compared with the alternative protocol TiniZKP.

(ii) ECDH protocol

He et al. [He et al., 2012] present an authentication scheme for session initiation
protocol based on ECDH applied to multimedia services. The proposed scheme consists
of three phases: system setup; registration; and authentication. At the setup phase, the
system generates a point (P) over an elliptic curve using a large prime number, an integer
(Ks) as the secret key, then calculate the Ppub = Ks x P as a public key (over the finite field
FP and modular arithmetic over P), and publish these parameters, except Ks. At registration
phase the user became a new legal user sending the username and password, and the
server computes two secret values, the first based on the user password and another based
on Ks value. Then the server calculates and stores a password verifier based on these two
values. At the authentication phase, the user sends a request using the username and a
value (R1), calculated with Ppub; the server responds with a challenge using (R1); the user
validate the server’s challenge and, if it holds, compute a response that involves the user
password, the R1, the server’s challenge, and the username. Finally, the server validates the
answer to accept the user’s request. After the mutual authentication, a shared session key
is calculated in both sides using common values. The paper presents a security analysis
and a performance analysis based on the number of elliptic curve scalar multiplications,

28

modular multiplications, modular inversions, and one-way hash functions operations used
on the scheme.

(iii) Message Authentication Code

Sepúlveda et al. [Sepúlveda et al., 2018] propose a runtime mechanism based on
MAC and PUF (Physical Unclonable Function) to provide memory integrity and authentica-
tion. The MAC uses the SipHash algorithm. The proposed mechanism prevents code injec-
tion and memory modification attacks, including spoofing, reallocation and replay attacks to
the off-chip components. The mechanism is divided into three stages: key generation; MAC
initialization and application installation; and operation. At the key generation stage a key for
each application is derived using a challenge PUF and a random number. These are used
to compute the helper data, used for generation and reconstruction of the key. Application
identifier, PUF challenge, and helper data are used by the Authentication Controller module
(Figure 2.1) to trigger the regeneration of the application-specific key which is required for
MAC initialization during application installation as well as during the SoC operation.

Figure 2.1: The Authentication Controller module. [Sepúlveda et al., 2018].

At the MAC Initialization and Application Installation stage, before the normal sys-
tem operation, the MAC for all applications that are going to be executed are computed and
stored in the off-chip memory. During SoC operation stage, code/data may be migrated to
another IP core or write back to the main memory. In such situations, MACs are computed
in the Authentication Controller and stored in the off-chip memory. During a read access,
the loaded data is used to recompute the MAC, which is then compared with the MAC pre-
viously stored in memory. For an authentic memory line the computed MAC matches to the
MAC stored in memory. The Authors implement the mechanism using Xilinx Nexys4 FPGA
(Field Programmable Gate Array) and the evaluation FPGA resource utilization shows the
following overhead of the modules when compared with the baseline system: +132% of FFs
(Flip-Flops) and +135% of LUTs to the entyre secure PUF module; +19% of FFs (Flip-Flops)
and +17% of LUTs to the authentication Controller module. Performance evaluation shows a

29

low impact on the application degradation due to the mechanism: up to 25% (write intensive
Qsort application).

2.2 Protecting the application execution

The literature presents a diversity of mechanisms used to protect communication,
computation and memory accesses in MCSoCs. Mechanisms protecting the communication
include: (i) firewalls; (ii) secure zones; (iii) routing schemes; (iv) temporal network partition-
ing; (v) cryptography; (vi) packet certification. To protect computation the main mechanism
used is spatial and/or logical isolation. The mechanism protecting memory accesses include
routing schemes and firewalls.

2.2.1 Protecting communication

The communication subsystem are attacked by Hardware Trojans (HT) or mali-
cious processes are employed to attack the communication subsystem to obtain informa-
tion leakage or break the system security. The main reported attacks are DoS [Hu et al.,
2015][Sepúlveda et al., 2015a] [Real et al., 2016b], HT [Rajesh et al., 2015][Ancajas et al.,
2014], timing side-channel attack [Fernandes et al., 2016][Wassel et al., 2014], and attacks
to confidentiality and integrity [Rajesh et al., 2015][Wang and Suh, 2012].

We describe bellow works that use different mechanisms to protect the communi-
cation subsystem, although the computation is still exposed due to resource sharing that is
not directly addressed in the proposed mechanisms.

(i) Firewalls

Rajesh et al. [Rajesh et al., 2015] propose a runtime latency auditor for NoCs,
called RLAN, to dynamically monitor the on-chip resources availability and properly filter the
malicious traffic. The goal of the proposed method is to prevent HT and mitigate attacks to
the availability of the NoC. According to the Authors, RLAN is a non-invasive technique that
can work without any modification with third part IP NoCs. The method is implemented at
the NI (Network Interface), as shown in Figure 2.2.

The principle adopted by the RLAN design is that packets traversing routes with
significant overlap (spatial similarity) around the same time (temporal similarity) have com-
parable latencies. The method includes two major steps: (a) all packets are tagged with a
timestamp to enable latency computation; (b) creation of Source/Destination traffic in RLAN.
The second step creates a control traffic to compute the reference latency, using it to detect

30

Figure 2.2: Block diagram of RLAN’s network interface [Rajesh et al., 2015].

attacks by HTs or malicious processes. The authors use BooKSim 2.0 Simulator to evaluate
the performance of the method, and the 45nm TSMC standard cell library to evaluate power
and area. Results show that RLAN incurs an overhead of 12.73% in area, 9.84% in power
and 5.4% in terms of network latency when compared to the baseline NI.

Hu et al. [Hu et al., 2015] propose a three-level firewall to provide access control,
authentication, and availability of the communication system, preventing information leakage
and DoS attack. The proposed method makes a design time analysis of the traffic and the
NoC architecture [NaNoC, 2015] applying Integer Linear Programming (ILP) to select the
levels and position of the firewalls: (a) between a PE and a router or; (b) between routers.
Figure 2.3 illustrate the method in a smartphone application.

Figure 2.3: Example of optimized NoC topology for a smartphone application [Hu et al.,
2015].

The goal of the Authors is to reduce the communication overhead required for se-
curity information in packets’ headers. The authors do not present the area, power or per-
formance costs. Results show a 30% to 63% overhead reduction in header size of packets
when the firewalls are positioned between routers over a standard solution, i.e., firewalls
connected to the NIs.

31

(ii) Routing Scheme

Sepúlveda et al. [Sepúlveda et al., 2015a] present a runtime method to prevent
timing side-channel attacks and information leakage. The work proposes two mechanisms:
adaptive routing and random arbitration. The proposed method assumes that a malicious
task in the path of a memory access may extract sensitive data from the temporal behavior
of the communication flow. To prevent the temporal behavior extraction, the first mecha-
nism implements a random arbitration in the routers to remove the temporal correlation of
malicious injected traffic and the memory access. The second mechanism is the adaptive
West-First routing method, which allows, in some situations, to make turns to escape from
blocking conditions. Thus, the secure traffic deviates from the malicious traffic in the path
automatically to get a free one. Results show that random arbitration and adaptive routing
maintains an average throughput of 0.41 and 0.6 flits/cycle, respectively, to one secure traffic
flow with several malicious injection rates. The area overhead due to the random arbitration
and adaptive routing is 11% and 5%, respectively. The power overhead due to the random
arbitration and adaptive routing is 9% and 8%, respectively.

(iii) Secure Zones - Routing Scheme

Fernandes et al. [Fernandes et al., 2016] propose a design time method that en-
ables the creation of Secure Zones (SZ) based on the routing algorithm to mitigate DoS
and timing side channel attacks. The authors extend the Segment-based Routing (SBR) to
security purposes creating the SBR Security Zone Awareness (SBR-SZA) that enables the
creation of SZs. After running the SBR-SZA, the Region-based Routing Algorithm (RBR)
creates routing restrictions avoiding shared paths between different applications and dead-
lock free paths.

Figure 2.4: Example of two SBR segment computations: a) the path among S and D goes
through an insecure element due to a routing restriction; b) a set of restrictions in the seg-
ments enables a secure path between S and D. [Fernandes et al., 2016]

The evaluation method uses two synthetic scenarios and the Numerical Aerody-
namic Simulation (NAS) benchmark [NASA, 2015] to measure the overhead in the size of

32

the routing tables and the communication latency penalty. Results show up to 16.56% over-
head in the size of the routing tables.

(iv) Secure Zones - Encryption

Sharma et al. [Sharma et al., 2018] proposes an encryption mechanism for zone-
to-zone secure communication. The authors present a runtime protocol (PF-ID-2PAKA) that
generates private/public par keys for each IP core of the SoC. The secure zones are created
dynamically having an anchor node responsible by the secure communication with other
zones. The protocol enables dynamically creation of session keys used to encrypt the mes-
sage flow between the anchor nodes, protecting the communication.

(v) Temporal Network Partitioning

Temporal network partitioning (TNP) employs explicit flow separation to avoid in-
terference of low-priority flows in high priority flows. The goal of the approach is to mitigate
DoS, timing side-channel attacks and information leakage [Wassel et al., 2014] and [Wang
and Suh, 2012].

In [Wassel et al., 2014] and [Wassel et al., 2013], the authors propose a design
time method to create domains of noninterference to prevent DoS and timing attacks. Non-
interference means that packet injection from one domain can never have any effect on the
packets delivered from other domains. The domains are implemented using virtual chan-
nels, and the noninterference is obtained through bounded priority arbitration, called surf
scheduling at each router port. In this schedule, a packet waits until it can be forwarded in
one dimension (e.g. X-direction) and then does not experience any wait at any downstream
router in this dimension. After finishing the first dimension, the packet might experience an-
other wait until it can be forwarded to the next dimension. The authors call this schedule surf
scheduling because a packet is like a surfer who waits to ride a wave to some location and
then waits to ride another wave.

Figure 2.5 shows an example where the router forwards the flits in a single clock
cycle. The arbiter schedules the flows according to the sequence: two white; one gray; one
black (the white flow receives 50% of the bandwidth). A packet (the white box under the
node S) belongs to the white domain and is sent from the node S to the node R. The Figure
2.5 contains six consecutive cycles (a to f). At T = 1, the packet is forwarded to the S port
in the Y-dimension (which is scheduled to forward white packets). It keeps moving in the
y-dimension until T = 3, when it needs to move in the X-dimension on the W port. The
packet waits two cycles (T = 4 and T = 5) until it is the white domain’s turn on the W port,
and finally it is forwarded to its destination on T = 6.

The proposed SurfNoC was implemented in BookSim 2.0, a cycle accurate simula-
tor. The latency evaluation shows that the overhead of surf scheduling is almost independent
of network size (average number of hops), leading to a constant overhead of 19 cycles (ex-

33

Figure 2.5: Example of Surf scheduling in a 16-node 2D mesh with three application domains
(denoted by white, gray, and black). [Wassel et al., 2014]

cept for 16 nodes) because the packet wait time depends only on the number of dimensions
and domains. The drawback of the proposed method is that increasing the number of do-
mains also increases the number of virtual channels, increasing the router area an power
consumption.

Wang et al. [Wang and Suh, 2012] propose a design time priority-based arbitration
and a static limit mechanism to provide protection against information leakage and DoS.
The idea is to assign high-priority to low-security traffic, in such way that its behavior is not
affected by high-security traffic. With this scheme, when flows from two different security
levels compete for the router traversal, the low-security flow always wins due to the arbitra-
tion police, avoiding a malicious task to infer timing information over the high-security flow.
Virtual channels are statically allocated to each security domain to remove interference in
buffers. To prevent a possible DoS attack due to this unfair arbitration scheme, the authors
include an additional mechanism that monitors and limits the amount of the low-security traf-
fic regardless the amount of high-security flows. The proposed method evaluation uses the
Darsim Simulator. As expected, results show that the method increases the performance in
low-security flow and decreases the high-security flow.

(vi) Cryptography

Ancajas et al. [Ancajas et al., 2014] present a runtime method to protect information
leakage from HTs. The authors propose the Fort-NoC, a three-layer security mechanism.
These security measures are introduced in the NI of the NoC. The first layer is the Data

34

Scrambling (DS), which makes the HT activation harder. This is done with XOR cipher en-
cryption [Churchhouse, 2002] to encrypt the data before sending it to the NoC. The second
layer is the Packet Certification (PC) that attach an encrypted tag at the end of the packet
before injecting it into the NoC. This is obtained creating a random lookup table dynamically
at the boot-time that creates a 16-bit unique identifier for each node in the system. Based
on the destination node of a packet, each data packet embeds a tag containing the trans-
lated identifier of the destination node from the lookup table. The third layer is the Node
Obfuscation (NObf) that decouples the source and destination nodes of a communication
to increase side-channel resilience. The NObf is obtained with task migration. The evalu-
ation of the area shows an overhead of 0.34% and 9.57% to PC and DS respectively. The
power consumption evaluation shows no overhead to PC technique and overhead of 5.8%
to DS technique. According to the authors, the performance evaluation shows an overhead
of 5.9%.

Silva and Zeferino [Silva and Zeferino, 2017] propose the use of an AES block and
a KDC (Key Distribution Center), adding authenticity and confidentiality in the message flow
of the SoCIN NoC. The KDC share different master keys with each node (the authors do not
explain how this is executed). During the operation, when a node A wants to send a sensitive
message to node B, the node A send a session key request to the KDC. This request inform
the communicating nodes (A and B) an is encrypted using his master key of node A. The
KDC decrypt the request and generate (using a LFSR) a session key. The KDC sends the
session key generated to node A encrypted with its master key and another message with
the session key to node B encrypted with the note B’s master key. At this point the two
communicating nodes (A and B) have a session key to encrypt the message at source node
A and decrypt message at target node B. Figure 2.6 illustrate the process.

Figure 2.6: Establishment of a secure session in [Silva and Zeferino, 2017].

At the paper, it is not clear at the work if each message exchange needs a new
key session or the same key session is used by all messages from node A to node B.
The evaluation shows that the communication using the security mechanism is from 7 to

35

17.6 times slower if the secure session was already established or not, respectively. The
hardware cost evaluation using Xilinx ISE sinthesis toll shows the additional costs in LUTs,
FFs and BRAMs equal 233.5%, 188.6%, and 687.5%, respectively.

Oliveira et al. [Oliveira et al., 2018] propose an architecture that includes a firewall
capable of filtering incoming and outgoing NoC traffic, an AES cipher block to encrypt the
NoC flow and, an auxiliary NoC that use a Hamiltonian path to configure the firewall rules
and distribute the keys. Figure 2.7 presents the interfaces connected to the firewall. The
router and the NI signals are the same. Instead of changing the interfaces, state machines
in the firewall manage the flow control signals. The firewall may encrypt or not the packets
according to an identifier in the packet.

Figure 2.7: Representation of the Firewall connections. [Oliveira et al., 2018]

The firewall plus the AES module increases the router area by 193.7% and latency
increases (i) in the best-case scenario (disturbing traffic in the path of the ciphered traffic) by
126.3%; (ii) in the worst-case scenario (contention due to the simultaneous need of encrypt
and decrypt packets by the same AES block) by 395.92%.

In Kinsy et al. [Kinsy et al., 2017], the authors introduced Hermes, a secure mul-
ticore computing architecture framework. The proposed scheme claims to prevent DoS,
virtual channel and physical memory attacks by creating a virtualization layer that isolates
computing threads based on system and user-defined trust levels and security policies.

Hermes achieves both hardware and software views of secure processing by group-
ing processors into physical zones called wards and virtual logical zones called islands. The
wards have different secure level defined at design time and each one have a anchor node
responsible by its key management.

The environment protects the physical memory using an MMU (Memory Manage-
ment Unit) with access restrictions based on two tables (Access Code Table and Base Table
Entries) that provide a firewall behavior to the MMU (Figure 2.8.a). Hermes achieve com-

36

Figure 2.8: (a) Memory access mechanism. (b) Hermes PE architecture with detailed NI.
[Kinsy et al., 2017]

munication protection using several mechanisms: (i) DH protocol distributes public keys to
anchor nodes of the physical zones, with join and leave operations to distribute the keys to
the logical zones; (ii) a AES module in the NI to encrypt the traffic flow when required; (iii) a
key manager in the NI to select an appropriate key during the operation; (iv) MAC and hash
modules to generate session keys (Figure 2.8.b). Beyond those mechanisms, the environ-
ment provides a routing algorithm to prohibit or limit the traversal of zones by non-member
generated traffic.

According to the Authors, the hardware overhead to fully implement the security
features of Hermes architecture is 17%. The performance results on the SPLASH-2 bench-
marks presents an overhead of 1% to 9% across all the benchmarks when compared to the
non-secure baseline architecture.

(vii) Packet Validation

Boraten et al. [Boraten and Kodi, 2016] propose a runtime packet-security (P-Sec)
method, including a packet validation technique to protect compromised NoC architectures
from fault injection side channel attacks (potentially DoS) and HTs by merging two error
detection schemes, namely algebraic manipulation detection (AMD) and cyclic redundancy
check (CRC) codes. According to the authors, in normal operating environments (not under
attack) CRC is capable of detecting faults in packets since the fault rates are low. For cores
sending sensitive data over the network, P-Sec is turned ON and they switch from CRC to
AMD mode to protect sensitive packets from fault injection attacks.

Figure 2.9 shows, at the top, the changing between normal operation (CRC) and
secure operation (AMD). In the same Figure, at the middle, the logical arrangement of two
modules and, at the bottom, the packet structures in the distinct operation modes. In the
AMD technique the number of redundant bits is a function of the message length and the
size of a random number internally used.

37

Figure 2.9: Overview of P-sec architectural blocks and structure of packets [Boraten and
Kodi, 2016].

The work uses CRC messages with 204 bits length and CRC of 32 bits length;
AMD messages with 204 bits length, random number of 17 bits and redundancy of 17
bits (204,17,17). The evaluation implements four methods (AMD, CRC-32, JTEC-QED and
SECDED). Compared to SECDED, the smallest method, the power consumption is 2.68x
and 8.36x greater to CRC-32 and AMD, respectively. The evaluated area, in comparison
with SECDEC is 3.5x and 16.1x greater to CRC-32 and AMD, respectively. Performance
results indicate P-Sec reduces overhead compared to Fort-NoCs.

2.2.2 Protecting Computation

The computation protection encompass mechanisms to avoid the processors shar-
ing between distinct applications or deeply embedded into the processor micro-architecture
mechanisms. The review shows that logical and spatial isolation are adopted [Real et al.,
2016b][ARM, 2018]. When just processors or clusters isolation is used, the communica-
tion system remains exposed to attacks. Solutions based on processor micro-architecture
mechanisms such as obfuscated instruction execution [Fletcher et al., 2012] or PUF-based
authentication architecture [Hoffman et al., 2015] are not addressed in this work.

Real et al. [Real et al., 2018] and their previous works [Real et al., 2016a][Real
et al., 2016b] propose a logical and spatial isolation of sensitive applications through the
dynamic creation of SZs to mitigate DoS and cache SCA attacks at runtime. The architecture
uses the MPSoCSim [Wehner et al., 2015], a Mesh NoC where each router is connected to

38

a cluster with 4 processors (with local memory), 1 shared memory and 1 shared bus (see
Figure 2.10).

Figure 2.10: Overview of architecture [Real et al., 2018].

Only cluster resources are isolated by the SZ . If a task needs to communicate with
a task in another cluster the message is sent through an insecure channel.

The evaluation focus is on the creation of secure zones with different deployment
strategies (number of clusters in the SZ) and execution scenarios (number of isolated ap-
plication and their priorities). According to the chosen deployment strategy and execution
strategy, either the isolated applications performance or the non-isolated applications per-
formance can be penalized. The performance overhead of the proposed mechanisms in-
creases with the number of required secure zones. The worst-case shows an execution-time
overhead up to 35.86% over the baseline.

ARM processors provide the ARM TrustZone (ATZ) [ARM, 2018], a hardware sup-
port for the creation at runtime of Trusted Execution Environments (TEEs) and therefore the
isolation of applications in the same processor. This feature creates two virtual processors
and two Memory Management Units (MMU), allowing to execute a secure and a non-secure
application simultaneously. However, at any instant, only a single domain in the system is
secured. TTE allows the secure partition of shared memory controlling memory accesses
to avoid data extraction and change (mitigating confidentiality and integrity attacks). Never-
theless, in multicore and many-core systems architectures, applications running on different
processors share resources such as the communication infrastructure (NoC, buses) and
memory. Thereby, with TTE, applications running on different processors are not protected
from each other since sharing the communication infrastructure leads to possible leakage of
information.

39

2.2.3 Protecting Computation and Communication

This section includes works that protect both computing and communication simul-
taneously [Sepúlveda et al., 2017][Isakovic and Wasicek, 2013]. These works use firewalls
or encryption mechanisms along with isolation.

(i) Secure Zones - Partition and encryption

Isakovic et al. [Isakovic and Wasicek, 2013] obtain computation and communica-
tion protection using spatial isolation with encryption mechanisms. The authors propose an
architectural partitioning of the MPSoC resources at design time to provide availability, con-
fidentiality and integrity. The Authors adopt security components like a secure microkernel
and a secure channel infrastructure that includes cryptography and firewalls. The Authors
propose to migrate the security functions from application components to the security com-
ponents. To obtain a secure environment for applications, the Authors use Spatial Isolation
of applications and secure channels (encryption) to data exchange. The proposed method
uses the ACROSS MPSoC architecture [Salloum et al., 2013], but do not detail the imple-
mentation methods and how the protocols work. Figure 2.11 shows the block diagram of
architecture (TISS means Trusted Interface Subsystem). The authors shows a use-case
of the proposal on a Engine Control Unit (ECU) but do not present results of area, power
consumption or latency.

Figure 2.11: Block diagram of Secure Communication Architecture [Isakovic and Wasicek,
2013].

(ii) Secure Zones - Spatial isolation and encryption

Sepúlveda et al. [Sepúlveda et al., 2017] also protect computation and communica-
tion resources using spatial isolation with encryption mechanisms. In the incremental work
[Sepúlveda et al., 2017] [Sepúlveda et al., 2016] [Sepúlveda et al., 2015b] and [Sepúlveda
et al., 2015c] the authors propose an NoC-based architecture that implements runtime dis-
rupted SZs using three cryptographic techniques: Hierarchical Diffie-Hellman, Hierarchical

40

Tree-based Diffie-Hellman and mapping key predistribution scheme. The method prevents
attacks to availability, confidentiality, and integrity of the system. The architecture adopts two
NoCs: (a) data NoC, used by the application data; (b) service NoC used to exchange the
security control packets (key exchange, firewall rules, etc.). After mapping the application,
one of the key agreement protocol is executed between the mapped PEs using the service
NoC. The encryption/decryption is obtained XORing the message with the shared key. Fig-
ure 2.12 presents an example with one disrupt SZ , two malicious routers and one infected
IP.

Figure 2.12: Security zones at MPSoCs interconnected through a two-level NoC (Service
and data NoC). [Sepúlveda et al., 2017]

The architecture was modeled in SystemC-TLM and RTL-VHDL, and the evalua-
tion uses the SHOC simulation environment. Despite the use of cryptographic primitives
like Diffie-Hellmann, the authors show an area overhead of 20% and a power consumption
overhead of 12.7% over a baseline implementation. The latency evaluation overhead shows
a dependency with the number PEs in the SZ, between 30% and 55% over the baseline
implementation.

2.3 Protecting the Memory Access

When the MPSoCs architecture has shared memories, it is necessary to protect the
memory accesses. The protection must prevent unauthorized tasks to read or write some
memory blocks and avoid information leakage in the communication subsystem.

41

(i) Routing Scheme

Reinbrecht et al. [Reinbrecht et al., 2017] and their previous works [Reinbrecht
et al., 2016a][Reinbrecht et al., 2016b] propose the improvement of the Prime + Probe (P
+ P) attack introduced by Osvik [Osvik et al., 2006], expanding it to the communication
structure of the MPSoC (i.e. the NoC). The (P + P) attack is a timing side-channel attack
that exploits the information leakage through communication timing behavior. The attack is
executed over the interaction between the shared cache and the victim IP that is reading the
AES secret key.

The proposed attack has two variations: (i) (P + P) firecracker; (ii) (P + P) arrow.
The authors shows results to both attacks. In the (P + P) firecracker technique, 14 cryp-
tographic tasks were needed to complete the attack, properly recovering 12 of 16 bytes
from AES key. The (P + P) arrow technique performed 256 encryptions in the attack and
recovered 9 of 16 bytes from AES key.

Figure 2.13: Gossip router microarchitecture. (1) Gossip In block; (2) Gossip logic; (3)
Gossip generator [Reinbrecht et al., 2017].

To mitigate the (P + P) attacks, the authors propose the Gossip NoC. The Gossip
NoC combines two strategies to protect the MPSoC against timing side-channel attacks: (i)
detection, which includes a bandwidth monitoring and a gossip message generation in the
presence of an abnormal behavior that enables the second strategy; (ii) protection, triggered
when any gossip message is received and which is able to modify the route of the packet
(XY routing algorithm to the YX). Figure 2.13 shows the Gossip router microarchitecture.

The work Reinbrecht et al. [Reinbrecht et al., 2017] shows that the Gossip router
increases the logic area of the NoC about 21%. The unprotected NoC represent 35% of the
MPSoC, became 42.5%, meaning that the effective logic overhead in the system was 7.5%.
When calculating the same impact for power, the authors obtain 16.2% of power overhead
over the baseline router and 1.18% of power overhead in the entire system.

42

Another cache collision attack in NoC-based SoC is presented in [Reinbrecht et al.,
2018]. The authors show the attack efficacy to fully recover an AES key. The paper do not
bring up a mechanism to mitigate the attack in the work.

(ii) Firewall

Grammatikakis et al. [Grammatikakis et al., 2015a] and their correlated works
[Grammatikakis et al., 2015b][Papadimitriou et al., 2015] [Grammatikakis et al., 2014] pro-
pose a source-side firewall at the NI which, by checking the physical address against a set
of rules, rejects untrusted CPU requests to the on-chip memory. The Authors claim that the
proposed method protect to DDoS and threats related to data leakage, confidentiality, in-
tegrity, and availability. The firewall architecture has three modules: (a) the operating mode
controller (OMC), that accepts, decodes and dispatches NoC firewall commands; (b) the
segment-level rule-checking (SLRC), that module processes incoming memory accesses
and configuration commands; (c) the interrupt unit (INTU) that accepts interrupt requests
from the OMC and SLRC modules and reports interrupt contexts to the CPU. Figure 2.14
presents a top-level block diagram of proposed firewall.

OMC

SLRC

INTU

Interrupt to CPU

Request to Memory

Setup from CPU

Request from CPU

NoC Firewall Setup

NoC Firewall

C
P

U
C

P
U

M
E

M

Figure 2.14: Top-level NoC firewall [Grammatikakis et al., 2015a].

The evaluation environment uses the STNoC, a ring-based NoC topology. First
a time-annotated RTL description was implemented, then a set of GEM5 simulations are
executed. Results shows a reduction on power consumption by 30% due to the fact that ma-
licious requests are prevented from entering the network, thus fewer packets are released,
resulting in lower network traffic and smaller queues and activities. Due to the same reason
the delay to the packets transverse the STNoC decrease 20.47%.

2.4 Discussion

Proposals to provide mutual authentication of entities (users, sensors, peripherals)
and application deploy exists in other computing areas (wireless sensor networks, WBAN,
multimedia services, cloud computing, etc.), however, according to the literature review
these issues have scarce attention in MCSoC research area.

43

The recent work Sepúlveda et al. [Sepúlveda et al., 2018] deals partially this issue
presenting a MAC mechanism based on PUF to protect the memory from data forgery. The
application admission protection is not directly addressed since that the paper doesn’t dis-
cuss the authentication of the entities and the secure transfer of the object code to the mem-
ory, focusing on the protection during the memory access provided by the MAC scheme,
that includes the tasks object code.

The SLR shows that during the application execution phase, most works related to
the security of MCSoCs protect just the communication subsystem. The main mechanisms
used are firewalls, temporal network partition, routing schemes and secure zones. Table 2.2
summarizes the characteristics of state-of-the-art proposals. The first column presents the
primary author, year and reference paper of proposed mechanism. The second and third
columns indicate if the proposed mechanism protects the communication and/or computa-
tion. The fourth column presents the protection mechanism. The fifth column shows which
attack or malicious behavior is mitigated by the proposed mechanism. The sixth and seventh
columns summarize what happens at design-time and runtime for each proposed mecha-
nism. Table 2.2 also has three blocks, each one presenting works related to the protection
of different application lifetime phase (admission, execution, peripheral access).

Several works ([Hu et al., 2015], [Fernandes et al., 2016], [Wassel et al., 2014])
adopt design time methods. Methods deployed at design time enable the adoption of so-
phisticated and robust algorithms to provide solutions to the security problem since they do
not have limitations related to the computation time of the heuristics. However, design time
methods are not applicable in dynamic workload scenarios. Thus, these methods are limited
to scenarios where the workload is known beforehand, without any change during the life
cycle of the system. In the review, only [Wassel et al., 2014] addresses this issue suggesting
that their proposed method can be used in aerospace or medical devices. According to the
authors, these fields require high performance, security and have static workloads.

The most common and intuitive approach to protect communication refers to en-
cryption mechanisms. The review shows the use the AES modules incorporated to the NI,
ciphering and deciphering the message flow in works such as [Silva and Zeferino, 2017],
[Oliveira et al., 2018], [Kinsy et al., 2017] or, less robust encryption modules using XOR
logic gates ([Ancajas et al., 2014], [Sepúlveda et al., 2017]). This approach provides data
confidentiality but still expose the traffic to DoS and timing SCA attacks. Firewall and TNP
(Temporal Network Partition) try mitigate this issues.

The use of firewalls ([He et al., 2012], [Rajesh et al., 2015], [Grammatikakis et al.,
2015b]) ensure access control to the communication system, avoiding DoS attacks and
minimizing the possibility of data extraction by a malicious process. Wassel et al. [Wassel
et al., 2014] and Wang et al. [Wang and Suh, 2012] use TNP to provide temporal and logical
traffic isolation avoiding the interference on secure flows, enabling communication availability
and timing SCA attacks protection.

44

Table 2.2: State-of-the-art summary.
Proposal Protection Method Prevent - Provide Design Time RuntimeComput. Comm.
Sepúlveda
(2018)
[Sepúlveda et al., 2018]

No Yes PUF and MAC
Access control;
Data integrity
and authenticity

– Key regeneration
MAC verification

Rajesh
(2015)
[Rajesh et al., 2015]

No Yes Firewall Access control;
Confidentiality – Traffic monitoring

and rules activation

Hu
(2015)
[Hu et al., 2015]

No Yes Firewall Access control;
Confidentiality

Application mapping;
Firewall positioning
and rules configuration

–

Sepúlveda
(2015)
[Sepúlveda et al., 2015d]

No Yes Routing Scheme
Random arbitration

Timming SCA ;
and DoS prevention –

arbitration obfuscation
traffic monitoring and
routing change

Fernandes
(2016)
[Fernandes et al., 2016]

No Yes
Secure Zone: table-
routing algorithm
(RBR/SBR)

Timing SCA and
DoS attacks miti-
gation;

Runs RBR and SBR algorithms
to mapping tasks, calculate
paths and router tables

–

Wassel
(2014)
[Wassel et al., 2014]

No Yes Temporal Network
Partition

Timing SCA and
DoS attacks miti-
gation;

Task mapping and configuration
of static schedule arbitration –

Ancajas
(2014)
[Ancajas et al., 2014]

No Yes
Encryption,
Authentication
Obsfucation

Hardware trojan at-
tack; Confidentiality
and authentication

–
Encryption, table-based
authentication, taks
migration

Boraten
(2016)
[Boraten and Kodi, 2016]

No Yes Packet validation Hardware trojan at-
tack; Data integrity –

Change operation mo-
de; generate and verify
coded packets

Silva
(2017)
[Silva and Zeferino, 2017]

No Yes Encryption Data Confidentiality;
Authentication – Key distribution; Cipher

and decipher messages

Kinsy
(2017)
[Kinsy et al., 2017]

No Yes Firewall;
Encryption

Memory access control;
Data leakage and
integrity; DoS

Secure wards arrangement Key distribution; Cipher
and decipher messages

Oliveira
(2018)
[Oliveira et al., 2018]

No Yes Firewall;
Encryption Data Confidentiality – Key distribution; Cipher

and decipher messages

Real
(2018)
[Real et al., 2018]

Yes No Secure Zone: spatial
and temporal isolation

Data integrity;
Confidentiality
inside the Cluster

Application Priority levels Application mapping;
SZ creation;

ARM
(2008)
[ARM, 2018]

Yes No Secure Zone: spatial
and logical isolation

Access control;
Data integrity;

Application development
using ATZ API

Switch to TTE mode
and police execution

Isakovic
(2013)
[Isakovic and Wasicek, 2013]

Yes Yes
Secure Zone: Spatial
isolation and encryp-
tion

Access control;
Authentication;
Data integrity

Secure Kernel (keys and secure
channel management) and secure
mechanisms (protocols, algorithms)
provided

Secure channels creation;
key exchange;
Firewall rules execution

Sepúlveda
(2017)
[Sepúlveda et al., 2017]

Yes Yes
Discontinuous Secure
Zone: cryptography
and firewalls

Access control;
Authentication;
Confidentiality

– Key exchange; cipher
and decipher messages

Reinbrecht
(2017)
[Reinbrecht et al., 2017]

No Yes Routing Scheme Timing SCA; –

Find baseline communi-
cation level; Communica-
tion monitoring; Change
routing police

Grammatikakis
(2015)
[Grammatikakis et al., 2015a]

No Yes Firewall DDoS; Data leakage; – Firewall rules configu-
ration and execution

Our Proposal Yes Yes
ECDH; Opaque Secure
Zones; Rerouting;
Symmetric Encryption

DoS; Spoofing;
Data integrity;
Authentication; Tim-
ming attacks; MitM

Cluster size

Entities authentication;
Application admission;
Opaque Secure Zones;
Rerouting; Peripheral
data encryption

The works offering protection to computation ([Real et al., 2016b], [ARM, 2018]) or
protecting computation and communication simultaneously ([Isakovic and Wasicek, 2013],
[Sepúlveda et al., 2017]) adopts temporal, logical or spacial isolation as main mechanism.

The isolation enables the creation of secure zones. According to review, secure
zones are defined at design time ([Fernandes et al., 2016]) or at runtime ([Isakovic and Wa-
sicek, 2013], [Sepúlveda et al., 2017]). The techniques to create secure zones include en-
cryption ([Sepúlveda et al., 2017]), the routing algorithm ([Fernandes et al., 2016]), firewalls
([Kinsy et al., 2017]) or, spatial isolation ([Real et al., 2018]). The proposed mechanisms
found in the literature implement secure zones providing logical ([Sepúlveda et al., 2017],
[Sharma et al., 2018]) or spatial isolation ([Fernandes et al., 2016], [Real et al., 2018]), al-

45

though remain sharing the communication resources, remaining exposes to attacks such as,
DoS, timing SCA, HT or data eavesdropping, depending on the mechanism used.

In the reviewed works, just Isakovic et al. [Isakovic and Wasicek, 2013] discuss
the needs of an explicit partitioning in the prevent resources. According to the Authors the
application level don’t need to implement mitigating resources directly. These mechanisms
must be implemented at hardware and microkernel level to be used by the application level.

The protection of the application communication with peripherals and shared mem-
ories avoids unauthorized access to instructions and data, which may also compromise the
resources availability, due to DoS attacks, cache-based SCA attacks or tampering. Mecha-
nisms to mitigate these threats employ techniques such as firewalls [Grammatikakis et al.,
2015b], routing scheme [Reinbrecht et al., 2017] and MAC [Sepúlveda et al., 2018].

Our proposal applies different defense mechanisms to protect both computation
and communication encompassing all phases of application lifetime. At the application ad-
mission, a mutual authentication mechanism between the MCSoC and a MAC mechanism
guarantee peripherals authenticity and application integrity. During the application execu-
tion, the defense mechanism is the spatial reservation of computation and communication
resources, resulting in an Opaque Secure Zone (OSZ). The key feature enabling the runtime
creation of OSZs is a rerouting mechanism responsible for deviating any traffic traversing an
OSZ. The last mechanism is the access to peripherals using a secure protocol to open
access points in the OSZ border, and lightweight encryption mechanisms.

Table 2.3 presents the overhead of distinct proposals (first column) related to the
area (second column), power consumption (third column) and latency (fourth column). The
fifth column shows another overhead parameter eventually presented by the schemes.

Even though all proposed mechanisms use MCSoC, according to [Bjerregaard and
Mahadevan, 2006] a comparative cost analysis is hard to make. This is the case for the
performance evaluation, area and power consumption overhead analysis due to the distinct
platforms and the comparison happening against a baseline architecture of one’s own work.
Also, the baseline system adopted for each work and the workload varies. As an example,
[Sepúlveda et al., 2017] uses encryption mechanisms to protect the communication and
a dedicated service NoC to key exchange and firewall rules configuration, presenting area
overhead of 20%, i.e. less than [Reinbrecht et al., 2017], which use a router logic to generate
and detect gossip messages, with 21% of area overhead. These works do not detail the
baseline system, making the comparison difficult and imprecise.

The area overhead is between 9.9% and 233% of the correspondent baseline im-
plementation. In general, methods that protect communication using AES modules present
higher overhead, as Silva et al. [Silva and Zeferino, 2017] (233%) and Oliveira et al. (193%).
An initial expectation is that adopting encryption methods would imply in highest area and
power costs. However, the reviewed proposed mechanisms ([Ancajas et al., 2014], [Sepúlveda
et al., 2017]), use only simple XOR-based methods to encrypt the communication. While

46

Table 2.3: Cost overhead of the proposals.

Proposal Overhead
area power latency other

Sepúlveda (2018)
[Sepúlveda et al., 2018] 152% – – performance:

1% to 9%
Ancajas (2014)
[Ancajas et al., 2014] 9.9% 5.8% 5.8% –

Rajesh (2015)
[Rajesh et al., 2015] 12.7% 9.8% 5.4% –

Sepúlveda (2015)
[Sepúlveda et al., 2015a] 11.0% 9.0% – –

Fernandes (2016)
[Fernandes et al., 2016] – – – routing tables:

15.56%
Silva (2017)
[Silva and Zeferino, 2017] 233.0% – 700% to 1760% –

Kinsky (2017)
[Kinsy et al., 2017] 17.0% – 9.0% –

Real (2018)
[Real et al., 2018] – – – execution-time:

35.8%
Sepúlveda (2017)
[Sepúlveda et al., 2017] 20.0% 12.7% 30% to 55% –

Oliveira (2018)
[Oliveira et al., 2018] 193% – 126.3% to 395.9% –

Grammatikakis (2015)
[Grammatikakis et al., 2015b] – -30% -20.5% –

Reinbrecht (2017)
[Reinbrecht et al., 2017] 21.0% 16.2% – –

such strategies imply good results regarding area and power consumption, the papers do
not discuss how secure or how strong is this encryption technique.

The power consumption is strongly related to the workload and the method used to
mitigate the threats. The evaluation in Grammatikakis et al. [Grammatikakis et al., 2015a]
show a power consumption reduction of 30% when compared to the system under attack.
With the proposed method, several packets are dropped by the firewall in the NI, saving
power resources. However, the impact of the firewall with normal operation is not evaluated.
Other works that evaluate the impact of the proposed methods in power consumption shows
an increase between 5.8% with the packet certification presented in [Ancajas et al., 2014]
and 16.2% with the gossip method proposed in [Reinbrecht et al., 2017].

As presented in Chapter 1, we argue that the security concerns to run a sensitive
application must deal with the application admission, the computational and communications
aspects of their execution and the memory and I/O access. The state-of-the-art review
shows that the proposed works do not present a systemic solution that includes all these
aspects.

47

Most works consider only one of these aspects, limited to the application execution
(computation or communication protection) and the memory access. The concern about
memory access is considered from the communication point of view. The application admis-
sion is neglected presenting just one work protecting the memory integrity.

This Thesis stands-out from related works because it covers all phases required to
execute an application with security constraints using runtime mechanisms to tackle these
issues: application admission, execution and peripheral access. The protocol authenticates
trusty entities and creates an entity key. The authenticated entities may deploy applications
on the MCSoC, with an attached MAC (Message Authentication Code), which ensures at the
same time integrity and authentication. Reserving and isolating computation and communi-
cation resources inside a region of the MCSoC guarantees the secure execution. During
the application execution the protection to the peripherals access is obtained with lightweight
encryption mechanism and packet integrity checking. After the application execution, the re-
sources are released and the memory is erased to avoid information leakage.

48

3. BASELINE PLATFORM

This chapter introduces the MCSoC baseline platform used in this work, based on
the Hermes MultiProcessor System (HeMPS) [Carara et al., 2009][Woszezenki, 2007]. The
baseline platform and this work are both developed at the Hardware Design Support Group
(GAPH) research group [GAPH, 2018].

The presentation of the hardware and software models is required in order for the
reader to understand the assumptions made in the next Chapters related to the methods
to add security in MCSoCs. The first part of chapter presents the hardware model, with
emphasis on the Control NoC. This Control NoC, developed in cooperation with members
of the research group ([Wachter et al., 2017]), corresponds to the first Thesis contribution,
and it is a key module to make feasible the methods presented later. This Control NoC
enables the implementation of the OSZs because it is the hardware allowing to find the
paths circumventing them. The second part of this chapter details the software model, with
emphasis on the operating systems and how applications are described.

3.1 Hardware Model

Figure 3.1.a overviews the hardware components of the MCSoC used in this work.
The system contains two regions: the GPPC (General Purpose Processing Cores), and
peripherals. The GPPC contains a set of identical PEs that execute general purpose ap-
plications. Peripheral are specialized cores, which provide I/O interface and hardware ac-
celeration for tasks running on GPPC. Examples of peripherals include accelerators for im-
age processing, communication protocols (e.g., Ethernet, USB), and Application Injectors
(AppInj).

The baseline architecture uses local scratchpad memory, without caches neither
shared memories. The goal of using this simple memory model is twofold: (a) to reduce
the power consumption related to cache controllers and NoC traffic (transfer of cache lines);
(b) to reduce the complexity of the system model, enabling to simulate systems with tens
of PEs. The architecture may support shared memories connected as peripherals, enabling
access a largest data memory space.

Peripherals are connected to the boundaries of the GPPC [Ruaro et al., 2018] and,
in an MCSoCs, it may occur at any location of the NoC, at external routers, or at unused ports
of the mesh NoC (e.g., South ports of bottom routers). We adopted the last option, resulting
in a regular floorplan for PEs, with peripherals distributed along the GPPC boundary.

The main hardware platform features are:

• NoC-based system: the platform contains two NoCs. A PS (Packet Switch) data NoC
and a control NoC. Both adopts 2D-mesh topology. The data NoC uses duplicated

49

SP SP SP

SP SPSP

SP SP LMP SP

SP

SP

SP SPSP SP

SP

SP

SP

SP

SP

GMP

SP

SP

SPSP

Application
Injector

Legend:
 - DMNI: Direct Memory Network Interface
 - PRNG: Pseudo-Random Number Generator
 - Lw.Cryp.: Ligthweight Cryptographic Module
 - GPPC: General Purpose Processing Cores
 - GMP: Global Manager Processor
 - LMP: Local Manager Processor
 - SP: Slave Processor

SPSP

SP

SP

SP

SP

SP SP SP

SP SPSP

SP SP LMP SP

SP

SP

SP SPSP SP

SP

SP

SP

SP

SP

LMP

SP

SP

SPSP

SPSP

SP

SP

SP

SP

Peripheral 3

Memory
CPU

Data
NoC

Router

Control
NoC

Router

PE
Processing Element

W W

W

W

W

W

W

W

PRNG

Wrapper
Control

GPPC
P

e
ri

p
h

e
ra

l
2

P
e

ri
p

h
e

ra
l
1

(a) (b)

DMNI
Lw.

Cryp.

Figure 3.1: Overview of MCSoC hardware model.

physical channels, enabling the adoption of distinct routing algorithms per physical
channel (detailed in Section 3.1.1). The control NoC uses broadcast as the default
transmission mode (detailed in Section 3.1.2). The two NoCs are completely disjointing
without any hardware or software dependence in their accesses.

• Homogeneous system: all PEs have the same hardware architecture (Figure 3.1.b)
with a PS (Packet Switch) NoC router, a broadcast NoC router, a private memory,
a MIPS-like processor, a DMNI (Direct Memory Network Interface) module, a PRNG
(Pseudo-random Number Generator) module, a set of wrapper cells connected to each
router link and a wrapper control module.

• Distributed memory: each PE has a true dual-port scratchpad memory for instructions
and data, while message-passing performs the communication between PEs.

The CPU component adopted is the Plasma, which implements the MIPS ISA. The
DMNI module is a network interface with DMA (Direct Memory Access) capabilities [Ruaro
et al., 2016]. The PRNG module uses the Trivium [Canniere and Preneel, 2006], a stream
cipher based PRNG to generate a 64-bit pseudo-random number (PRN). The local memory
is a true dual-port scratchpad, storing code and instructions. If some application requires a
larger memory space than the one available in the local memory, it is possible to connect
shared memories to the system as a peripheral.

The system requires at least one peripheral, the AppInj . This peripheral is respon-
sible for transmitting applications to be executed in the GPPC using the data NoC.

The control flow signals of all links contain wrapper cells or simply wrappers. The
function of the wrapper cells is to isolate a given link. The granularity of the isolation is
at the link level. For example, it is possible to block only the west link and continue to

50

transmit through the other links. The wrapper closes the control NoC and the data NoC links
simultaneously, ensuring that a given message/packet will be discarded in both NoCs.

The activation of the wrapper cells occurs by the OS using a memory mapped
register at each PE, enabling to isolate a given link. Each bit of the wrapper register en-
ables/disables a given port wrapper of the PE. The wrapper acts over the control flow sig-
nals of each NoC port (8 ports for the data NoC and 4 ports for the control NoC). Thus, the
wrappers’ area overhead is negligible since its implementation requires a small number of
gates, a register, and an FSM.

Sections 3.1.2 and 7 presents the behavior of the wrappers in the control NoC and
data NoC respectively. The wrapper module is also described in Section 7.2.

3.1.1 Data NoC

The data NoC transfers data messages, exchanged by applications. The data NoC
extends the NoC Hermes [Moraes et al., 2004] adopting duplicated physical channels, flit
width equal to 16 bits, input buffering, round-robin arbitration, credit-based flow control,
wormhole packet switching, simultaneous support for distributed XY routing and source rout-
ing (SR).

The use of duplicated physical channels ensures deadlock avoidance and full rout-
ing adaptivity. The number of virtual or replicated channels required to avoid deadlocks is a
function of the network topology. For example, two virtual or replicated channels are suffi-
cient to avoid deadlocks in a 2D-mesh topology [Linder and Harden, 1991]. The flit width is
half of the original in the Hermes NoC to minimize the area overhead due to the duplicated
physical channel adoption.

The standard routing mode between PEs is the distributed XY routing algorithm.
The data NoC also supports SR such that it is possible to determine alternative paths to
circumvent broken paths due to an OSZ . The mechanism to found an alternative path to
use in the SR is presented in Section 3.1.2.

Source /
 Target

D
/
P

XY /
SR

Payload
 Size

Service Payload (optional)Service
header

Packet header Packet payload

Message header Message payload

Figure 3.2: Packet and message structures - a flag (D/P) in the target address field differen-
tiates data packets from peripheral packets.

The data NoC differentiates data packets from peripheral packets. Data packets
are those exchanged by tasks running in PEs, and peripheral packets are those transferred

51

between a task and a peripheral. A peripheral packet arriving in a boundary PE goes to the
peripheral, and not to the DMNI.

A data packet, from the NoC point of view, has a header and a payload (Figure
3.2). The packet header content controls the data NoC behavior, such as, routing, open and
close internal switching, and arbitration. While in [Carara et al., 2009] the packet header have
two fields (target and payload size), we adopt three fields to support the SR, the rerouting
mechanism and the communication with peripherals: (i) the source/target address with data
(D) or peripheral (P) packet flag; (ii) the XY or SR field that indicate the turns on each router
when use SR or the source/target address when use XY routing (repeat the first field) and;
(iii) the payload size.

From the task point of view, a message is used by the kernel with two fields: (i)
the message header to control the data exchange between tasks or with peripherals trough
data such as, producer task ID, consumer task ID, service (e.g., message delivery, request
for a message, task mapping, task allocation), message timestamp and, (ii) the payload, an
optional field, with the task or peripheral data. It may contain, for example, user data or the
object code of a task.

3.1.2 Control NoC - BrNoC

The BrNoC [Wachter et al., 2017] is a dedicated NoC, decoupled from the data
NoC. The BrNoC has the same topology of the data NoC, enabling to control each port
individually (e.g., the North port in the dedicated NoC has an equivalent North port in the
data NoC). The default transmission mode is the broadcast because it enables to reach PEs
in case of disabled links, to notify several PEs with one message, and to transmit with low
latency control messages.

In a broadcast, when a given port receives a message, it is processed and broad-
casted to the neighbor routers (ports N, S, E, W), except to the port it came from. According
to the transmission mode, the message may be transmitted to the port connected to the NI
(local port). The broadcast acts as a wave traveling through the NoC. The BrNoC supports
four transmission modes:

• brTgt (broadcast with a target): a specific PE is the target of this message. The mes-
sage is broadcasted to all routers, but only the PE with the target address consumes
it. This mode may be used to find a new path after a message discard; notify a specific
PE to execute some action. The broadcast ensures that the message will be delivered
even if a link/router is faulty or disable.

• brAll (broadcast to all PEs): all PEs consume the message. Therefore, all PEs are
interrupted, and the message type defines the action the PE should execute. This

52

mode may be used to freeze the tasks of a given application; send commands to PEs
of same application ID; set wrappers to define a secure zone.

• brWt (broadcast without a target): all BrNoC routers consume the message, without
notifying the NIs. This mode executes actions related to the BrNoC management, as
clearing specific data structures.

• unicast : this message is an answer to a brTgt message. The unicast message
follows the path defined by the brTgt message, in the reverse order to reach the source
PE (backtrack process). This mode may be used to return a new path. Due to the
limited payload size, each BrNoC router in the path sends a unicast message to the
source router so that the fault-free path can be completely received.

Figure 3.3 presents the internal architecture of a BrNoC router, for a 2D-mesh
topology. The router contains two control FSMs (Finite State Machines), two round-robin
arbiters and a centralized CAM (Content Addressable Memory) memory. In addition, routers
have a small area footprint since they do not have input buffers (the CAM acts as a buffer
shared by all input ports, storing all flits received for all ports), and each flit encapsulates a
single message.

source target... used pending

...

Input
Arbiter

O-FSM

I-FSM
Output
Arbiter

CAM

North
South

East
West
Local

North
South
East
West
Local

Input
Ports

Output
Ports

Figure 3.3: BrNoC architecture.

The wrappers are connected to the control flow signals (req, ack in the control NoC
- Figure 3.4). The control flow signals traverses the wrapper if it is disabled. Considering
the activation of the wrapper the int_in_req signal (internal value of the input request) is
masked to 0 even if the in_req value is 1 in the external side of the PE. The value 1 in the
wrapper value also set the out_req regardless of the int_out_ack value. This actions disable
the message request from the neighbor PE and set the out_ack value to release it. From
the neighbor PE the message was delivery. Equivalent behavior occurs when the request is
generate internally (int_out_req signal).

53

in_ack

out_req

in_req

out_ack

int_in_ack

int_out_req

int_out_ack

wrapper_reg
value

Internal PE
Side

External PE
Side

Control NoC Wrapper

Figure 3.4: Control NoC Wrapper logic

Figure 3.5 details the flit structure (37 bits) and one CAM row (51 bits). Each CAM
row stores the flit contents (to enable the broadcast) and control fields. The flit structure
contains the fields: message ID (identification); source address; target address; message
type (defines the action to execute and the transmission mode); message payload . The tag
to search in the CAM is the tuple {msg ID, source address}. Each brNoC link contains the
flit structure plus the req, ack and nack signals.

The CAM size definition (number of rows) occurs at design time, and it is not a
function of the system size, ensuring scalability. Smaller CAMs can increases the delay in
handling the messages, while larger CAMs reduces this delay at the cost of larger silicon
area. The payload size may increase at design time to support services requiring larger data
to transmit. The payload size is also a trade-off between the amount of data to transmit and
the silicon area.

source target type payload my_hop out_port

8 bits 8 bits 4 bits 8 bits 8 bits 2 bits

pending

1 bit

used

1 bit

in_port

2 bits

msg ID

8 bits

control = 14 bitsflit = 37 bits

op_mode

1 bit

Figure 3.5: Message (flit) and one row of BrNoC CAM memory.

The control structure of one CAM row contains the fields: op_mode, in_port , my_hop,
out_port , pending and used . The pending field signalizes the presence of a message to be
handled. The used indicates that the row is in use. The in_port stores the port identifica-
tion from where the message comes from. The unicast mode uses the fields my_hop and
out_port .

The control NoC has two operation modes (op_mode field): global and restrict. The
global operation mode enables the control messages to pass through the wrappers, even if
they are enabled. This operation mode permits PEs inside a secure zone to exchange mes-

54

sages with manager PEs. The restrict operation mode observes the status of the wrappers,
i.e., if a control message hits an activated wrapper, the message is discarded. This mode
enables a path discovery mechanism by the control NoC.

The I-FSM receives incoming messages and if necessary stores the message in a
CAM row. A handshake protocol (req, ack , nack) controls the I-FSM which is initially in an
idle state, waiting for incoming messages (req asserted in a given port). The input arbiter
chooses an input port to handle. Three conditions may assert the ack signal: (c1) the tag
is not in the CAM, and there is space in the CAM; (c2) the tag is in the CAM; (c3) failed
or isolated port, where a wrapper force the ack signal. The assertion of the nack occurs
when the tag is not in the CAM, and there is no space in the CAM. The router receiving the
nack unsets the req and tries later (action discussed in the O-FSM). When condition (c1) is
satisfied the I-FSM execute the following actions:

• stores the message in a free position of the CAM;

• asserts the pending field to signalize that the message should be broadcasted;

• asserts the used field to signalize that the CAM row contains a valid message;

• stores the port identification selected by the arbiter in the in_port field (the size of
in_port and out_port fields are a function of the number of router ports);

• in a search for a source-target path, the payload contains the distance from the current
router address to the source address. This value is incremented and stored in the
my_hop field.

Condition (c2) ensures that requests to already visited routers are discarded, avoid-
ing cyclic transmissions (i.e., deadlocks), and the end of the broadcast when all routers were
visited.

The O-FSM handles the messages stored in the CAM, using the same handshake
protocol. The output arbiter chooses a row to handle, according to the asserted pending
fields. All broadcast modes propagate the message to the neighbor routers, except the
in_port . According to the broadcast mode, the message also goes to all local ports (brAll),
or to the local port that matches the router address with the target field (brTgt). The pending
field is cleared when all broadcasted ports answer with an ack . If some broadcasted port
answer with a nack the arbiter selects another CAM row, enabling the selection of the current
row again. An example of message type using brWt propagation is the CLEAR, responsible
for freeing a CAM row, by clearing the used field. The unicast message uses the in_port ,
my_hop and out_port fields to answer a brTgt message. The unicast message forwards
the message to the port defined in the in_port field.

Figure 3.6 presents an example of the procedure to find a new path using the
control NoC. In this scenario, Router 1 communicates with Router 15 (XY path), but an OSZ

55

interrupts the communication. Using the control NoC, Router 7 starts a BROKEN_PATH
message to Router 1 (not showed in Figure 3.6).

Table 3.1: Examples of Messages Types and Purposes of the brNoC.

Purpose Message Type Transmission
Mode

Operation
Mode

Path Discovery
BROKEN_PATH brTgt Global
SEARCH_PATH brTgt Restrict
BACKTRACK unicast Restrict

Security SET_SECURE_ZONE brAll Global
END_SECURE_ZONE brAll Global

System Management START_APP brAll Global
END_TASK brTgt Global

The BROKEN_PATH is defined at the type field (Figure 3.5). Table 3.1 shows
examples of messages types with the respective transmission mode, operation mode and
purpose.

When the message reaches the Router 1, it starts a SEARCH_PATH message to
find a new path to Router 15 (Figure 3.6.a, red arrows).

12

 0

 4

15
(hop 6)

 2 3

14
(hop 5)

13
(hop 4)

9
(hop 3)

5
(hop 2)

1
(hop 1)

12

 0

 4

15

 2

 6 7

 3

1413

9

5

1
(hop 1)

12

 4

15

 6 7

 3

1413

5
(hop 2)

1
(hop 1)

2
(hop 2)

0
(hop 2)

12 15

 7

1413

5
(hop 2)

1
(hop 1)

2
(hop 2)

0
(hop 2)

4
(hop 3)

3
(hop 3)

9
(hop 3)

12 1514

5
(hop 2)

1
(hop 1)

2
(hop 2)

0
(hop 2)

4
(hop 3)

3
(hop 3)

9
(hop 3)

13
(hop 4)

15

5
(hop 2)

1
(hop 1)

2
(hop 2)

0
(hop 2)

4
(hop 3)

3
(hop 3)

9
(hop 3)

13
(hop 4)

12
(hop 5)

14
(hop 5)

 (a) (b) (c)

 (d) (e) (f)

8 10 11 98 10 11 8 10 11

 6

 6 7

10 11

 6 7

10 11

 6 7

10 11

Opaque
Secure Zone

Opaque
Secure Zone

Opaque
Secure Zone

Opaque
Secure Zone

Opaque
Secure Zone

Opaque
Secure Zone

88
(hop 4)

8
(hop 4)

- backtrack path - backtrack path routers - source and target routers - OSZ boundary

Figure 3.6: Example of path discovery using the BrNoC.

56

Next, Routers 0, 2 and 5 receive the message through ports East, West and
South, respectively. Then, these routers broadcast the received message to their neigh-
bors (Figure 3.6.b). As Router 6 has the wrapper activated in ports South and East and the
SEARCH_PATH message uses the restrict mode the message is ignored in Router 6 (the
input req signal is masked and the output ack signal is force to high - Figure 3.4).

In Figure 3.6.c, Routers 3, 4 and 9 receive the message from ports East, South,
and South, respectively, and broadcast to their neighbors. Note that the message sent by
the Router 4 is discarded in Router 5 because this router already have received the message
from the same source (msg ID/source address stored in CAM). Router 7 ignore the message
because the wrapper is active in the port South and East and Router 10 because the wrapper
is active in the ports West and North.

Next, Figure 3.6.d, the message is received in ports East and South of Routers
8 and 13, respectively, and sent to their neighbors. The Router 4 discard the message
because it has received the message previously. Router 10 ignores the message from
Router 9 because the wrapper is active in ports West and North.

In the next hop (Figure 3.6.e) the message is received in Routers 12 and 14.
Router 12 send to Router 8 that ignores the message because has received it previously.
Router 10 ignores the message from Router 14 because the wrapper is active in ports West
and North. Finally, in Figure 3.6(f) the SEARCH_PATH message reaches the target, starting
the answer step, with BACKTRACK messages.

In the answer, each router in the path sends a BACKTRACK message to the source
router. Initially, Router 15 sends a BACKTRACK message to Router 1 through the West port
(information stored in the in_port field). Next, Router 14 propagates the first message,
and then transmits a new BACKTRACK message to Router 1, with the payload having the
contents of the out_port field. Each router in path repeats this process, propagating the
previous BACKTRACK messages and sending a new one. The my_hop field controls the
process, finishing when the source router receives all BACKTRACK messages (my_hop=1).
Therefore the source router receives a number of BACKTRACK messages equal to the
number of hops in the path to the target. Each one of these messages contains the port
to reach the destination router in the payload. For the example the source PE (Router 1)
receive the following out_port values form the BACKTRACK messages: [W E E N N N].

When Router 1 receives a BACKTRACK message, the PE is interrupted to compute
a hop of the source routing path to Router 15. After receiving all BACKTRACK messages,
the Router 1 compute the source routing path and resends the lost message. All subsequent
packets to this destination use the source routing path, which is stored in an OS structure.
The process to find a new path to a given target is executed once, only when the fault is
detected.

57

3.2 Software Model

Scalability at the hardware level comes from PEs executing several tasks in parallel,
using the NoC to transmit multiple flows concurrently. However, large systems require high-
level management for controlling the deployment of new applications, monitoring resources
usage, manage task mapping and migration, and can execute self-adaptive actions accord-
ing to systems constraints. Thus, to achieve a scalable design, HeMPS adopts cluster-based
decentralized management [Castilhos et al., 2013]. Clusters are virtual regions in the GPPC,
with a set of slave processors (SPE) and one manager PE (MPE). SPEs execute applications’
tasks, while MPEs manage the clusters.

The management occurs at the MPE and SPE levels, executed by the kernel running
in those PEs, as depicted in Figure 3.7.

Task 1 Task 2 Task 3 ...

Task 2

Task 1

Kernel
Slave

Kernel
Slave

...

Communication System Calls

Task
Scheduling

Interrupt
Handling

Wrapper
Activation

MAC
Verification

S
c

ra
tc

h
p

a
d

 L
o

c
a

l M
e

m
o

ry

Slave PE - SPE

Kernel
Manager

Kernel
Manager

App Mapping System Calls

Mutual
Authentication

Task
Migration

Shape
Definition

Key
Management

S
c

ra
tc

h
p

a
d

 L
o

c
a

l M
e

m
o

ry
Manager PE - MPE

(a) (b)

Figure 3.7: Overview of the kernels: (a) MPE kernel manages the system and do not execute
users’ tasks; (b) SPE kernel manage users’ tasks.

At the MPE level, as presented in Figure 3.7.a, the local memory is reserved to the
kernel, without executing user’s tasks. The MPE executes heuristics as task mapping, task
migration, monitoring, authentication and key management.

At the SPE level, as displayed in Figure 3.7.b, a multi-task kernel acts as an Oper-
ating System. The platform adopts a paged memory scheme to simplify the kernel design.
Examples of actions executed by the kernel include task scheduling, inter-task communica-
tion (message passing), interrupt handling.

Both manager kernels are written in C language. Only a small part of the code is
written in assembly language, responsible for executing context saving and handling hard-
ware and software interruptions.

Applications are also written in C language. They are modeled as task graphs
A = < T , P, D, S >, where T = {t1, t2, ..., tm} is the set of application tasks corresponding
to the graph vertices; P = {p1, p2, ..., pn} is the set of peripherals corresponding to the graph
vertices. The D set represents the application descriptor which contains the communicating

58

pairs {(ti , tj), (ti , pr), (tj , ps), ..., (tm, pn)} with (ti , tj , ..., tm) 2 T, (p1, p2, ..., pn) 2 P. A pair (ti , tj)
denotes the communication from task ti to task tj (ti ! tj), and a pair (ti , pr) denotes the
communication from task ti to peripheral pr (ti ! pr). The S value indicates if the applications
execute in normal mode (value 0) or secure mode (value 1) and also is enhanced in the
application descriptor. Figure 3.8 present an application m.

task
A

task
B

taskC

taskE
periph

1

taskD

Send(&msg, taskB)

Send(&msg, taskD)

Receive(&msg, taskA)

Send(&msg, taskC)

Receive(&msg, taskB)

Send(&msg, taskE)

Receive(&msg, taskA)

Send(&msg, taskE)

Receive(&msg, taskC)

IO_Send(&msg, periph1)

Receive(&msg, taskD)

taskA:
 taskB
 taskD
taskB:
 taskC
taskC:
 taskE
taskD:
 taskE
taskE:
 periph1

secure: yes

App.
Descriptor

Figure 3.8: Application task graph example.

Tasks communicate using message passing (MPI-like) primitives. The API provides
two primitives: a non-blocking Send() and blocking Receive(). The main advantage of this
approach is that a message is only injected into the NoC if the receiver request data, reduc-
ing network congestion. To implement a non-blocking Send(), a dedicated memory space
in the kernel, named pipe [Carara et al., 2009], stores each message written by tasks. The
pipe is a communication channel where messages are stored and consumed in an ordered
fashion. Within this work, the pipe is a memory area of the kernel reserved for message
exchanging, where messages are stored in an ordered fashion and consumed according
it. Each pipe slot contains information about the target/source processor, task identification
and the order in which it is produced.

At the lower level, the kernel communicates with the data NoC with data_request
and data_delivery packets. The pipe and a message buffer enables packet retransmission
to inter-task communication and inter-manager communication respectively.

The support for I/O communication uses a second API, with IO_Receive() and
IO_Send() primitives, using a master/slave communication model. The PE is the communi-
cation master and the peripherals the communication slaves. At the lower level, the kernel
communicates with the data NoC with IO_request , IO_delivery , and IO_ack packets. The
IO_Receive() primitive uses the IO_request at the PE side and the IO_delivery at the pe-
ripheral side. The IO_Send() primitive uses IO_delivery at the PE side and the IO_ack at
the peripheral side.

59

4. GENERAL VIEW OF SECURITY MECHANISMS

This chapter presents in Section 4.1 a general view of the security mechanisms
proposed to each phase of the application lifetime. This is required in order to provide a
holistic perspective of this Thesis approach before detailing the methods on the next chap-
ters. Section 4.2 presents a condensed view and an explanation of the protocol phases
used to mitigate the security issues during the applications’ lifetime. Section 4.3 presents a
classification of the available techniques to create secure zones as found in the literature,
using an orthogonal criteria. Section 4.4 presents the requirements of the MCSoC environ-
ment to implement the proposed methods in this Thesis, and the restrictions imposed by this
environment.

4.1 Defense Mechanisms

As discussed in Chapter 1 the execution of an application with security constraints
comprises at least three premises: (i) application admission; (ii) application execution; (iii)
access to peripherals.

The application admission presents two security issues: (a) the authenticity of each
actor (external entity and MCSoC), i.e., the guarantee that the other part is whom it says to
be; and (b) the integrity of the application, to avoid the tampering of the object code with
threats such as backdoors, trojan horses or spoof behavior.

In this work, the application admission uses a mutual authentication mechanism
based on ECDH (Elliptic Curve Diffie-Hellman) to guarantee the authenticity of the AppInj
that wants to run an application into the MCSoC, and a MAC (Message Authentication Code)
to ensure the integrity of applications during the object code transfer.

Elliptic Curve Diffie-Hellman (ECDH) is an Elliptic Curve variant of the standard
Diffie-Hellman protocol based on the algebraic structure of elliptic curves over finite fields.
ECDH is a key agreement protocol that allows two actors, each having an elliptic curve pub-
lic–private key pair, to establish a common secret key over an insecure channel [Hankerson
et al., 2003].

The Elliptic Curve Cryptosystem (ECC) security is based on the discrete logarithm
problem, i.e. the problem to solve the discrete logarithm in reasonable computational time.
In a simplified view, let E be an elliptic curve and A, B be its points such that B = n.A =
Pn

i=1 A – for some n. The computational effort to compute B from A when n and A are
know is low. The task to find an n when A and B are know, is called the discrete logarithm
problem for elliptic curves. No efficient algorithm to compute discrete logarithm problem for
elliptic curves is known. Detailed discussion about ECC can be obtained in [Koblitz, 1987],
[Schneier, 1996], [Hankerson et al., 2003], [Certicom Research, 2009].

60

Elliptic Curve Cryptosystems present the highest strength per bit of the public-key
cryptosystems. In other words, the number of bits needed to obtain the same security is
smaller in ECCs. ECC not only uses smaller keys for equivalent strength compared to tra-
ditional public-key cryptosystems like RSA but also the key size disparity grows as security
needs increase. The advantages that can be obtained with smaller keys include speed
(faster computations), processing power, storage, bandwidth, and circuit area, relevant pa-
rameters when resources are constrained [Gupta et al., 2002].

The aim of a MAC is to prevent an adversary from modifying a message sent by
one actor to another, without the actors detecting that a modification has been made in the
message [Katz and Lindell, 2014]. This task is only possible if the communicating actors
have some common secret unknown by the adversary.

The difference between a hash function and a MAC is that the former provide just
data integrity, while the latter guarantees data integrity and authentication. Briefly, a MAC
code is a way of combining a common secret key with a message so that the receiver can
authenticate that the sender of the message has the common secret key and no-one who
does not know the secret key could have sent or changed the message.

According to [Mouha et al., 2014] some of the most commonly used algorithms are
CMAC, HMAC, and UMAC. CMAC is based on a block cipher, usually AES or Triple-DES,
whereas HMAC uses a hash function such as SHA-2, SHA-3, and UMAC is based on a
universal hash function combined with a standard cryptographic primitive such as a block
cipher or a hash function.

This Thesis uses the SipHash algorithm to generate a MAC of each application’s
task object code due to the good performance when compared to non-cryptografic hashes,
according to the algorithm’s authors ([Aumasson and Bernstein, 2012]) and the C reference
implementation being available using MIT public licence. SipHash is a cryptographic MAC
consisting of modular additions, rotations, and xors (ARX) and uses a 128-bit key, producing
a 64-bit output and has an internal state of 256 bits size [Aumasson and Bernstein, 2012].
The process is split into three stages: initialization, compression, and finalization. SipHash
is parameterizable using c SipRounds in the compression and d SipRounds in the final-
ization stages. A specific instantiation of SipHash is called SipHash-c-d. Dobraunig et al.
[Dobraunig et al., 2018] presents a differential cryptoanalysis of SipHash-2-4 and conclude
that it is indistinguishable from a pseudo-random function.

To support the use of PRN, a hardware module implements a PRNG based on
Trivium. Trivium generates a 64 bit PRN from an 80-bit seed and an 80-bit Initialization
Vector (IV), and has been selected as part of the portfolio for low area hardware ciphers
(Profile 2) by the eSTREAM project [Canniere and Preneel, 2006]. It is not patented and
has been specified as an International Standard under ISO/IEC 29192-3 [ISO/IEC , 2012].
The access to PRN uses a mapped register enabling the CPU to read its value directly.

61

The second premise regards the application execution in a runtime environment
protected from attacks. This is obtained with a runtime mechanism that creates Opaque
Secure Zones (OSZ) dynamically into the MCSoC, enabling temporal and spatial isolation
of applications, preventing the communication and computation resource sharing.

The execution mechanism includes: (i) OSZ shape definition and positioning; (ii)
wrapper activation; (iii) retransmission of lost packets in and out the OSZ boundaries; and
(iv) launch application. Figure 4.1 illustrates a simplified view of the approach. In Figure
4.1(a), the MCSoC contains one application in execution, App1. Next, the manager pro-
cessor maps an App2, activating the wrappers at the boundary of the OSZ . At this moment
(Figure4.1(b)), the App1 traffic is blocked by the OSZ . Figure 4.1(c) shows the App2 execut-
ing in the OSZ , and the App1 traffic circumventing the region.

LMP

APP 1
T2

APP 1
T1

 (a) (b) (c)

LMP

APP 1
T2

APP 1
T1

APP 2
T2

APP 2
T1

W

W

W

W

WW

LMP

APP 1
T2

APP 1
T1

APP 2
T2

APP 2
T1

W

W

W

W

WW

Figure 4.1: Secure zone and dynamic reconfiguration of routing paths.

The third premise is related to the protection of communication with peripherals and
shared memories. As presented in Section 3.1.1 the data NoC distinguish the packets with
a flag in the header field (first flit of the packet). This feature enables to block all data packets
arriving at the boundary of the OSZ (in both directions) and to apply selective control of I/O
packets. Besides the control of the I/O flow at the boundary of the OSZ the protection of
data traffic is obtained with lightweight cryptography applied to the message payload and a
MAC based on SipHash algorithm to protect the service header of the message.

The MAC on the service header inhibits an adversary to forge the message source
or tampering the control information present in the service header such as task ID, times-
tamp, peripheral ID. The lightweight cryptography prevents data leakage during the commu-
nication with peripherals.

The protection of the payload has both software and hardware implementations.
The software-based implementation uses PRESENT [Bogdanov et al., 2007] and AES [NIST,
2001] encryption mechanisms. The hardware-based implementation (the lw_crypt module
in Figure 3.1) uses the SIMON [Beaulieu et al., 2015] and AES encryption modules.

None of the software or hardware cryptographic module is mandatory in the The-
sis. The focus is to provide a secure environment to the application execution using a set
of algorithms with strong security properties and low cost relative to area overhead and la-
tency in the application execution. Thus, the modular implementation enables to replace the
cryptographic modules according to distinct security requirements.

62

Table 4.1 summarizes the defense mechanisms, positioning them according to the
Thesis objectives (Section 1.4), and where they are detailed in the subsequent chapters.

Table 4.1: Defense mechanisms positioning with objectives and Thesis chapters.
Defense

Mechanism ECDH MAC on task’s
object code OSZ Lightweight

Cryptography
Objectives

(Section 1.4)
I - External entities

authentication
II - Application admission

and III - Key exchange
IV - Close the

OSZ
V - Communication

with Peripherals

Thesis chapter Chapter 5
Section 5.1

Chapter 5
Section 5.2 Chapter 6 Chapter 7

4.2 General view of the protocol phases

As presented in Section 1.4 the objective of this Thesis is to propose a set of proto-
cols, executed at runtime, to enable applications with security concerns to run in MCSoCs tack-
ling the following issues: application admission, secure execution, and access to peripheral
devices. Figure 4.2 summarizes the protocol phases. The names of the phases are pre-
sented on the left side of Figure 4.2, in blue color.

At the Setup phase each actor is responsible for generating a key pair {Pk, PuK}
suitable for elliptic curve cryptography. Then, the public key and the ID pair {PuK, ID} of each
external entity (AppInj and peripherals) is loaded at the MCSoC . Each external entity also
load the {PuK, ID} pair of the MCSoC . The Authentication phase uses the {PuK, ID} pair
during the mutual authentication phase.

The result of each of these phases, setup and authentication, are: (i) the external
entities (peripherals and AppInj) authenticated in the MCSoC ; (ii) a common session key
(Ke) shared between the peripherals and the MCSoC.

The Admission phase has three goals: (i) define the Opaque Secure Zone (OSZ)
shape and location; (ii) ask to the AppInj the tasks’ codes; and (iii) transmit to the SPs that
will receive the task’s codes the Ke of the AppInj and peripherals used by application to,
respectively, verify the MAC and encrypt the messages (1 to 5 in Figure 4.2).

The AppInj uses Ke to compute the MAC using the SipHash algorithm [Aumasson
and Bernstein, 2012] during the allocation phase of the protocol. After receiving the desti-
nation of Appsec ’s tasks, the AppInj uses Ke to generate a MAC to each task’s object code.
Thus, the allocation sends the task’s object code with the respective MAC appended – 6.
The SP receives the task’s object code and, using the same Ke, compute the MAC locally. If
the computed MAC match with the received MAC the object code integrity is verified.

If the previous phase succeeded for all tasks, the application might execute – 7.
The Close OSZ phase proceeds by activating the wrappers surrounding the OSZ ("W" in
Figure 3.1) and start the execution of the application – 8. The wrappers discard all messages
that should traverse the OSZ . The control NoC transmits to the source of the discarded

63

GMP

Setup

Authentication

LMP SPi

Admission

Allocation

Close OSZ

Run
Appsec

Open OSZ

Mutual Authentication

New application request

App's task graph
Select
Cluster

OSZ Definition
Application MappingApplication map

MAC Ok

Tasks request

tasks allocation

Verify task
MAC

Store Ke

Close OSZ / Start App

End Task / Open
OSZ Clear

Memory

Ke

End App

Release
Cluster

Resources

Generate {PKi, PuKi} Generate {PKm, PuKm}

Protocol
Phases

11

Periph

Mutual Authentication

Generate {PKi, PuKi}

I/O data exchange

10

AppInj

9

8

76

4
5

321

Figure 4.2: Protocol general view.

messages a retransmission request. The non-secure applications use the control NoC to
find an alternative path to circumvent the OSZ and retransmit the non-delivered messages
using a rerouting mechanism.

The I/O access occurs during the application execution, and the concerns are (i)
to enable the communication without compromise the security, (ii) to protect the service
header of message against tampering and, (iii) to protect the message payload against
eavesdropping – 9.

The Open OSZ phase cleans the memory contents of the SPs inside it to prevent
any information leakage to be used by an attacker – 10. Also, the SP’s Operating System
erase the value of Ke key and release the wrapper opening the OSZ . Finally, the LMP
clears the internal structures to release the cluster resources previously allocated to the
application and sends a message to the GMP that release its internal structures about the
cluster resources – 11.

4.3 Secure Zones

Resource sharing is a native feature of MCSoCs. Different applications may exe-
cute in the same processor, share the NoC links, as well as shared memories. This feature
is the source of issues related to security. Secure Zones (SZ) is an approach adopted to
reduce resource sharing.

Methods employed at design time enable the adoption of sophisticated and robust
algorithms to provide solutions to the security problem since they do not have limitations
related to the heuristics’ computation time. However, design time methods are not applicable

64

in dynamic workload scenarios. Thus, these methods are limited to scenarios where the
workload is known beforehand, without any change during the system lifetime.

The literature presents several methods to create SZs. It is possible to classify
such methods using a set of orthogonal criteria:

• Creation time: the definition of the SZ occurs at design time [Fernandes et al., 2016]
or runtime [Real et al., 2018][Sepúlveda et al., 2017].

• Shape: the SZ may be discontinuous [Sepúlveda et al., 2017] [Fernandes et al.,
2016][Sharma et al., 2018] or continuous, with a rectangular[Isakovic and Wasicek,
2013] or rectilinear shape [Caimi et al., 2018b].

• Communication sharing: the SZ may allow flows belonging to sensitive applications
to share NoC links [Sepúlveda et al., 2017][Fernandes et al., 2016][Sharma et al.,
2018] or the flow inside the SZ is forbidden to other applications.

• Computation sharing: the SZ may allow that tasks belonging to sensitive applications
share the same processor [Sepúlveda et al., 2017] or applies resource reservation to
sensitive application [Real et al., 2018][Fernandes et al., 2016][Sharma et al., 2018].

• Methods: the methods used by the SZs include cryptography [Sepúlveda et al.,
2017][Sharma et al., 2018], routing algorithms[Fernandes et al., 2016], spatial and
temporal isolation[Real et al., 2018], rerouting[Caimi et al., 2017a].

Figure 4.3 presents examples of SZs according to the previous classification. Dis-
continuous SZs (SZ2) require more efforts to prevent attacks (encryption or routing schemes)
due to the flows exposure, while continuous SZs can imply internal fragmentation when us-
ing a rectangular shape, due to the reservation of resources without effective use (SZ1). A
rectilinear shape (SZ4) prevents internal fragmentation but needs dedicated routing mech-
anisms to avoid flows crossing the boundary of the region.

The use of continuous SZ (SZ1 and SZ4) still exposes the communication to at-
tackers because flows belonging to other applications can transverse the SZ allowing DoS,
HT and timing attacks.

According to the previous classification, Opaque Secure Zones (OSZs) are cre-
ated at runtime, have a rectilinear shape, without computation and communication resource
sharing. The SPs of the OSZ are reserved to execute a single secure application (SZ3, in
Figure 4.3). The only resource sharing exception is the communication with I/O devices.

The creation of an OSZ must avoid unreachable SPs. For example, in Figure 4.3
considering all SZ as opaques, the top right SPs are unable to communicate with man-
ager PEs. Thus, processors’ selection should consider not only the availability of resources
but also prevent unreachable SPs. This is achieved by adding a padding around OSZs to

65

SP SP

SP SPSP

SP SP

SP SPSP

SP

GMP

SP

SP

SPSP SP SP

SP SPSP

SP SP

SP SPSP

SP

SP

SP

SPSP

LMP

Secure Zone 1

Secure Zone 2

Secure Zone 2

Secure Zone 3

Secure Zone 4

Figure 4.3: SZ1: continuous and rectangular, SZ2: discontinuous, SZ3: cont., rect., and
opaque, SZ4: cont. and rectilinear.

prevent unreachable SPs. Also considering the access restriction, when a peripheral is con-
nected to the MCSoC border, none OSZ must be placed using the same router were the
peripheral is connected.

The method that enables OSZ is the dynamic rerouting mechanism. The rerouting
mechanism ensures that the Appsec ’s traffic stays inside the OSZ , and deviates all traffic that
should cross the OSZ .

The OSZ mechanism corresponds to the second contribution of this Thesis since
no other work adopts the communication resource reservation, enabling the use exclusive
of the NoC links by the Appsec.

4.4 Requirements and restrictions

4.4.1 Requirements

This section presents the requirements to implement the security mechanisms
proposed in this Thesis. They are mandatory resources that must be available in others
MCSoCs that wants to implement the methods herein presented.

• Hierarchical architecture: as presented in Chapter 3 the system has a hierarchical
architecture organized in clusters, with two types of PEs: (i) manager PEs, responsi-
ble by cluster control and management; (ii) PEs executing applications’ tasks - slave
processors (SP). There are two distinct manager PE, global manager (GMP) and lo-
cal managers (LMP). The GMP and LMP assume management functions with respect
the secure application execution, as the communication with external entities (AppInj
and peripherals) to authenticate each other, key management and, compute, find and
create the OSZ .

66

• Task migration support: The manager PE is in charge to find a continuous region
with free SPs to execute the Appsec. In the absence of a continuous region, the system
must support task migration to release SPs in such a way to create the region.

• Wrappers surrounding PEs: the wrapper are the key mechanism to the creation of
OSZ and the isolation of the MCSoC communication resources. It’s implementation
use simple AND, NOT, and OR logic gates attached to the flow controls signals of the
NoCs, in addiction to a set of mapped registers to activate the wrappers.

• Secure mechanism to exchange control messages with OSZs: With the OSZ com-
munication isolation, a secure mechanisms to control message exchange between
LMP and SPs must be provided. The control NoC (brNoC) achieves this issue pro-
viding an independent and not shared mechanism to exchange control messages
beetwen manager PEs and SPs. BrNoC is disjoint from the data NoC and is inac-
cessible at application level (only the OS has access to the brNoC).

• Rerouting and retransmission support: with the wrapper activation and the creation
of the OSZ all traffic crossing the OSZ is discarded requiring the retransmission and
the rerouting support. It requires a dedicated NoC (as brNoC) to search paths to
circumvent the OSZs, and a data NoC with support to source routing. At the software
level, the OS of each SP should be able to resend packets that hit the border of an
OSZ and were discarded.

• PRNG support: the use of PRNG is necessary in different moments of the proposed
solutions, such as during the ECDH protocol and the key distribution to SPs inside the
OSZ . This way, a software or hardware PRNG solution is required in the system to
support the secure features operations. PRNG is not mandatory, alternative mecha-
nism like PUF (Physical Unclonable Functions) are used to generate random numbers
[O’donnell et al., 2004][Sepúlveda et al., 2018].

• Peripherals support using Master/Slave communication model: the model based
on master/slave communication prevents unauthorized data traffic inside the MCSoC,
since that the application always starts the communication.

• Method to inject applications into the MCSoC: the MCSoC must have at least one
NoC port available to connect an application injector responsible by the applications’
deploy.

4.4.2 Restrictions

The baseline architecture adopted imposes architectural restrictions:

67

• the communication model is message exchange, with applications modeled as appli-
cation task graphs (Figure 3.8);

• the memory model is Distributed Private Memory (DPM), without local caches and
shared memories;

• the OS is preloaded in the SP’s private memories, i.e., there is no bootloader to read
the OS from an external memory.

In this context, it is out of the scope of this Thesis Centralized Shared Memory
(CSM) or Distributed Shared Memory (DSM) architectures [Girão et al., 2011], as well as
the communication model with threads.

Since that the OS is preloaded in the private memories, boot attacks [Jacob et al.,
2017][Rouget et al., 2017] are also out of the scope of this Thesis.

Work also assumes that hardware components of the platforms are secure. This
leads to two restrictions. The first one, attacks originated from Hardware Trojans are out-
of-the-scope of the Thesis. Second, attacks that disturb the hardware from side channels
attacks (as forcing values in some links or wires) are also not considered in the Thesis.

68

5. THE MUTUAL AUTHENTICATION, ADMISSION AND
ALLOCATION PHASES

As presented in the state-of-the-art, the MCSoC literature disregards the secure
application admission. While robust solutions exist for distributed systems and the internet,
the requirement of the MCSoCs such as memory limitation, and reduced latency to start
the applications inhibits the adoption of these solutions on the MCSoCs.

This chapter details the protocol steps to guarantee the entire secure application
deploy. Three main phases are detailed: (i) the mutual authentication; (ii) the application
admission and; (iii) the application’s tasks allocation. The mutual authentication and key
agreement phases (Section 5.1) runs just once to each peripheral. At the end of this steps,
a common secret key is shared between the GMP and the peripheral. Section 5.2 presents
the secure admission, detailing the algorithm to define the OSZ shape and positioning, the
common secret key distribution mechanism, and the application’s task allocation protocol.
Each new application execution requested by the AppInj runs the admission, allocation and
key exchange phases of the protocol. Section 5.3 evaluates the mechanisms and protocols
of the secure application admission. Finally, section 5.4 presents the final remarks of the
chapter.

5.1 Mutual Authentication for MCSoCs

This section presents the authentication scheme for many-cores. The proposed
scheme consists of two phases: System Setup phase and Mutual Authentication phase.
The system setup runs offline and is responsible by communication parts register (periph-
erals and many-core). The mutual authentication runs once to each external entity and is
responsible for guaranteeing that the other part is whom it says to be.

5.1.1 System Setup phase

At the Setup phase, both External Entity (Ei) and the MCSoC (M) initially compute
a key pair suitable for elliptic curve cryptography, step 1 in Figure 5.1. The key pair consists
{Pk, PuK} of a private key (Pk) and a public key (PuK), represented by a random multiplier
number and a point over an Elliptic Curve, respectively. Next, each one publishes their
respective ID and PuK (step 2). This phase ends with each part loading the pair {PuK, ID} of
each other (step 3), using a secure channel.

In this context, the External Entity could be any peripheral connected to the bound-
aries of the GPPC (General Purpose Processing Cores) through the data NoC, such as the
AppInj , accelerators and communication modules.

69

Generate
{PuKi, PKi}

Generate
{PuKm, PKm}

Publish
{IDi, PuKi}

Publish
{IDm, PuKm}

Load
{IDi, PuKi}

Load
{IDm, PuKm}

GMPExternal Entity

1

2

3

Figure 5.1: Sequence diagram of Setup phase of protocol.

A secure channel to publish and load the public keys may avoid man-in-the-middle
and hijacking attacks. This process can be done using mechanisms like https, TLS/SSL or
VPNs and, is out of the scope of the Thesis. However, the protocol deployed in the next
section ensures that even if the public keys use unsecured channels, the Mutual Authenti-
cation phase guarantees that only the legitimate actors involved in the process will correctly
exchange data.

5.1.2 Mutual Authentication phase

As shown in Figure 3.1, external entities may deploy secure applications to execute
in the MCSoC. This phase provides mutual authentication between an external entity (the
AppInj , or other peripheral), and the MCSoC.

If an entity wants to send an Appsec to run in the MCSoC, it must first execute the
mutual authentication, before sending the application code.

Figure 5.2 shows the mutual authentication protocol. The arrows denote messages
through the data NoC, the parenthesis content is the data message, and the external paren-
thesis index is the key used to encrypt the message.

Initially, the GMP sends a request authentication message to External Entity (step
1 in Figure 5.2). The External Entity returns a message encrypted by the MCSoC public key
(PuKm) loaded at the Setup phase (2). The request message contains the entity identifier
and a random number, i.e., the pair {IDi , noncei}. Note that any entity, even in an attempt to
insert a malicious application, may send this message because the MCSoC has a published
public key.

The GMP decrypts the request message using its private key (PKm), verifying the
received IDi . If IDi is valid, the MCSoC sends a reply message encrypted by the entity public
key (PuKi) – step 3. This message contains the tuple {IDm, noncei , noncem}, where IDm is
the MCSoC ID, and noncem is a random number generated by the MCSoC. Otherwise,
if the entity IDi is not found, the reply message is encrypted using the MCSoC public key

70

(PuKm) since there is no public key associated with the received IDi . The reply message is
always sent to avoid information leakage.

At the entity side, before decrypting the message, if the received noncei does not
match, this means that the connection with the MCSoC is compromised because other
actor tried to forge the MCSoC ID. A correct received noncei corresponds to a correct
authentication of the MCSoC, once just the lawful pair {PuKm, PKm} can encrypt/decrypt the
initial request message.

Verify: IDi

ee_id(IDi, noncei)PuKm

gmp_id(IDm, noncei, noncem)PuKi

Verify: IDm and noncei

EE Start

gmp_ok(noncem)PuKm

Verify: noncem

gmp_resp(accept/reject)

Generate Ke
(IDi, noncem, Ke)PuKm

~~ ~~

Store Ke

GMPExternal Entity

1

3

4

5

6

7

req_auth()

2

GMP
Start

Figure 5.2: Sequence diagram of Mutual Authentication phase of protocol.

After verifying the correct reception of noncei , the entity seeks the PuKm according
to the received IDm. The entity encrypts the received noncem using PuKm, and send this
data to the MCSoC – step 4.

At the MCSoC side, the received noncem is decrypted using PKm. A correct
noncem authenticates the entity, once just the lawful pair {PuKi , PKi} can encrypt/decrypt
the message with the noncem. This way, if the noncem and the IDi (received on first request
message) are correct, the MCSoC sends an accept message to the entity. Otherwise, a
reject message is sent – step 5.

Once finished the mutual authentication steps the entity generates a session key
Ke, used during the Task Allocation phase. The entity uses this key to compute a Mes-
sage Authentication Code (MAC) appended at the end of each task object code. The
MCSoC uses this key to verify the integrity of each task deployed into the system.

The entity sends the tuple (IDi , noncem, Ke) encrypted by the MCSoC public key
(PuKm), where IDi and noncem are used to authenticate the message – step 6.

The GMP keeps the pair {IDi, Ke} to use it in future secure applications deployed
by the entity, saving resource consumption and decreasing the latency to start the secure
application – step 7.

71

5.2 Application admission and Task Allocation phases

As previously presented the application admission and task allocation have the
following goals: (i) define the Opaque Secure Zone (OSZ) shape and location; (ii) transmit
to the SPs that will receive the task’s codes the Ke of the AppInj and peripherals used by
application, and (ii) receive the task’s codes from AppInj and verifies the integrity trough the
MAC.

5.2.1 Application Admission

The Application Admission phase determines the location of the OSZ and maps
the Appsec ’s tasks. Figure 5.3 presents the application admission steps. The arrows indicate
the messages and their contents using the data NoC.

The AppInj request to run an Appsec sending a Run_app message to the GMP. The
Run_app message contains the application descriptor (number of tasks, inter-task depen-
dencies, secure mode) (1). The GMP selects the cluster with enough resources to execute
Appsec (2), sending to the LMP of the selected cluster the Appsec descriptor and the internal
ID attached to the application by GMP(3).

GMP LMP SP 0

Req_Alloc(Tasks_Map)

NewApp (ID, descriptor) Shape Definition and
Map Application's Tasks

Task_Comm(task_ID, locations)

3

4

7

AppInj

Cluster
Seletion

Run_app(descriptor)

store locations

~~~~ ~~~~

6

. . .

SP i
~~

Task_migration(task_ID, SP location)
8

9migration_done(task_id)

Req_Alloc(Tasks_Map)

Task_Comm(task_ID, locations)

store locations

10

11

12

5

1

2

Figure 5.3: Application Admission phase protocol.

With the application descriptor, the LMP runs an algorithm to determine: (i) the
number of SPs needs to run the application; (ii) the possibles OSZ shapes; (iii) the OSZ
positioning inside the cluster; (iv ) the number of task migrations needed to ensure exclusive
SPs execution. The algorithm is a specific contribution of this Thesis and next subsection
details it.



72

After defining the OSZ , LMP maps the tasks inside this region, considering as cost
function the communication cost between the tasks (4) [Mandelli et al., 2011]. Note that
mapping means definition of tuples {task_ID, SP location }, not the object code transfer.

Next, four actions from LMP occurs: (i) request to the GMP the tasks’ object code
(5) for the SPs that does not require task migration; (ii) transmission of the addresses of
the communicating pairs to SPs that will receive the mapped tasks (steps 6 and 7 in Figure
5.3); (iii) the task migration request (8) to the SPs inside the selected OSZ , according to
algorithm 5.1, that have other application’s task running; (iv ) after receiving the message
with task migration finished (9), the LMP request the allocation to GMP (10) and sends the
communicating pairs to SP (11). The task migration process occurs in parallel with request
allocation and communication pairs actions, enabling the Task Allocation phase start to free
SPs inside the OSZ while the task migration runs to release SPs of the OSZ .

LMP manages the task migration process since it knows the resources available
and the task positioning in the cluster. The task migration runs at O.S level of the MCSoC and
disposes a specific protocol to exchange the task’ object code, data and heap memory area,
enabling the runtime migration of the tasks. The task migration process is a auxiliary feature
that allow creation of OSZ without resources sharing. A detailed explanation about the task
migration mechanism can be obtained in [Ruaro and Moraes, 2017].

Beside the task migration the MCSoC supports reclustering, allowing a cluster to
borrow an SP to run a task of an application running in another cluster. During the recluster-
ing process, an LMP request a processor to others LMPs using the control NoC (broadcast
mode) and then execute a task migration to obtain a free SP in their cluster.

Creating OSZ at Runtime

Algorithm 5.1 presents the pseudo-code to create at runtime an OSZ . The algo-
rithm inputs are the number of Appsec ’s tasks (app.#tasks); the number of tasks PEs may
execute simultaneously (#tasks.PE); the cluster side size (cluster_side); and the manager
processor position (MP.pos).

The calculated shape is a rectilinear polygon, enclosing a set of SPs, without any
task executing inside it, avoiding computation and communication sharing. The OSZ shape,
occasionally, results in an internal fragmentation, i.e. some SP belonging to the OSZ don’t
have any task to run (shape area minus the number of PEs to execute Appsec). The algorithm
removes SPs from rectangular regions to avoid internal fragmentation, leading to rectilinear
polygons.

The algorithm have the MAX_MIGRATION design time parameter, defining the
maximum number of task migrations. Once a shape is defined, it may contain tasks belong-
ing to other applications. The algorithms migrate the tasks running in the selected region
to guarantee the exclusive use of the processors by the Appsec. Due to the cost of the task



73

migration, the algorithm limits the number of task migrations using the MAX_MIGRATION
design time parameter.

The first step of the algorithm, lines 1–5, is the definition of the shape_set . The loop
computes the number of SPs to execute Appsec according to app.#tasks and #tasks.SP
(line 3). The function shapes returns a set of rectangular shapes. For example, consider
app.#tasks = 7 and #tasks.SP = 2. The first iteration (t = 1) requires 7 SPs, returning
shapes {(3,3),(2,4),(4,2)}, with a fragmentation equal to 2, 1 and 1 for each shape. The
second iteration (t = 2) requires 4 SPs, returning shapes {(2,2),(1,4),(4,1)}. For these
shapes, there is no fragmentation.

If the shape_set is empty (line 6–7), the algorithm returns FALSE , meaning that the
cluster does not have a shape to execute Appsec. This happens when all calculated shapes
exceed the cluster side, e.g., in a 3x3 cluster (cluster_side = 3) and app.#tasks = 10 the
minimum shape side is 4, leading to a FALSE value return from the algorithm.

If the cluster receives Appsec (else block), the algorithm sorts the shape_set in
ascending order, using the shape size as criteria. The rationale is to minimize the CPU
sharing (one task per PE), maximizing the Appsec performance.

After the sorting step, the algorithm starts the search process. This process re-
quires three loops: (i) outer loop (line 10), controls the number of tasks migrations; (ii)
intermediate loop (line 14) traverses the shape set; (iii) internal loop (line 15) traverses the
PE set of the cluster.

The search process adopts a Sliding Window Search (SWS) procedure (line 16),
using as inputs the PE coordinates (PE .xy ), the shape size (�.xy ), the manager position
(MP.pos), and the cluster side size (cluster_side). The conditions to obtain an appropriate
shape location are: (i) the shape fits in the cluster; (ii) the shape does not overlap the man-
ager processor; (iii) the shape does not overlap an active OSZ and have one row/column
pad from adjacent active OSZ ; (iv ) the shapes boundaries does not touch any peripheral
(share the same data NoC router). If the shape fits the conditions, the SWS procedure
returns the number of processors executing tasks inside the region, otherwise �1, in the
variable usedPEs.

The LMP needs access the PEs of the defined OSZ to send the communicating
tasks location (step 6 on Figure 5.3) and the entity key (Subsection 5.2.2). The strategy to
avoid unreachable PEs (in data NoC) during the SWS is start the search in the opposite
cluster corner to the location of the cluster LMP.

The first iteration of the outer loop disables task migrations (mig# = 0). Thus, after
executing the SWS procedure, all PEs must be available, i.e., there is no task executing in
the PEs inside the region. If one of the shapes fills this condition (line 17), the bottom left
coordinate of the selected shape receives the current PE position (lines 18-19). For this
first iteration of the outer loop, defragmentation occurs only if necessary (lines 20-24). If the



74

Algorithm 5.1: Search resources to create the OSZ
Input: app.#tasks, #tasks.PE, cluster_side, MP.pos
Output: sh // selected shape

1 shape_set  ;
2 for t from 1 to #tasks.PE do
3 PEs_needed ceil(app.#tasks / t)
4 shape_set  shape_set [ shapes(PEs_needed, cluster_side)
5 end
6 if shape_set = ; then
7 return FALSE
8 else
9 sort(shape_set , largest) // sort shape set according to the area, largest first

10 for mig# from 0 to MAX_MIGRATION do
11 if mig# = 1 then
12 sort(shape_set , smallest) // sort shape set, smallest first

13 end
14 forall sh[i] in shape_set do
15 forall PE in (cluster_side ⇥ cluster_side) do

// SWS: Sliding Window Search

16 usedPEs SWS(PE.xy, sh[i].�xy, MP.pos, cluster_side)
17 if usedPEs = mig# then
18 sh[i].x PE.x
19 sh[i].y PE.y
20 if sh[i].fragmentation > 0 then
21 for y from 1 to sh[i].fragmentation do
22 PE.pos(sh[i].x, sh[i].y).invalid 1
23 end
24 end
25 if usedPEs 6= 0 then
26 foreach PE in sh[i] do
27 if PE.used 6= 0 then
28 migration_list(PE.xy, sh[i])
29 end
30 end
31 end
32 return sh[i]
33 end
34 end
35 end
36 end
37 return FALSE
38 end

shape has internal fragmentation, the leftmost shape column has some of the PEs marked
as invalid (line 22), modifying the shape from a rectangular to a rectilinear format. After this
process, the selected shape returns to the caller function.

Subsequent iterations of the outer loop enable task migrations, from 1 to MAX_-
MIGRATIONs. With the goal of reducing the number of task migrations, the shape set is
reordered, with the smallest shapes evaluated first. The previous process is repeated, exe-



75

cuting the SWS procedure. When the number of used PEs inside the cluster is equal to the
allowed number of task migrations, the shape is selected. Besides defragmentation, tasks in
used processors are put in a migration list to be migrated to outside the region (lines 25-31).

5.2.2 Entity Key Exchange

This phase of the protocol transmits Ke of the AppInj and peripherals to the SPs
belonging to OSZ , encrypted with a new key, Km (internal MCSoCs key). The procedure
works to distribute the Ke shared with the AppInj or shared with any peripheral used by
Appsec.

Each task receives a MAC to guarantee the integrity of the object code. The MAC
is created using the SipHash algorithm [Aumasson and Bernstein, 2012] and Ke. Therefore,
the SPs need Ke to compute the MAC attached to each task, and for security reasons Ke

must remain in the GMP.

Read random number: rnd
Km = SIPHASH(rnd)
M = Ekm(Ke)

GMP SP 0

Req_Alloc(Tasks_Map)

2

send_rnd(rnd)
Km = SIPHASH(rnd)

send_Ke(M)
Ke= Dkm(M)

1

LMP
~~ ~~ ~~

3

5
4

6

. . .

Figure 5.4: Entity key exchange.

Figure 5.4 presents the entity key exchange steps. LMP transmits the application’s
task map at the step 3 of the previous phase to GMP (Req_Alloc message, 1 in Figure 5.4).

In order to avoid broadcast transmission and prevent the reception of the random
number by other SPs (3), GMP reads a random number from the PRNG module(2). GMP
uses that number in the creation of the Km key, transmitting it to each SP inside the OSZ
using the data NoC. GMP and each SP that receive the random number create Km using the
SipHash algorithm and the transmitted random number (4).

GMP uses Km to encrypt Ke, using an XOR operation between Km and Ke. After
encrypting Ke, GMP sends the encrypted value to each SP inside the OSZ using the data
NoC (5). Then, each SP decrypt the received message using Km (6), obtaining Ke, to be
used in the next protocol phase.



76

5.2.3 Tasks Allocation and MAC verification

The goal of this phase of the protocol is to allocate the Appsec ’s tasks in the SPs of
the OSZ , guaranteeing their integrity.

This phase starts with GMP requesting to AppInj the object code of the Appsec ’s
tasks (1 in Figure 5.5). Each req_task message contains the mapping tuple {SP� location, taskID},
used by AppInj to send the task’ object code to SP.

AppInj generates a MAC for each task, using the SipHash algorithm and Ke. After-
wards, the AppInj sends a task_allocation message with the task identification (taskID),
the task’ object code and the MAC (2). SP stores the object code in the memory and com-
putes the MAC also using the SipHash algorithm and Ke (obtained in phase 5.2.2) (3). SP
compares the received MAC with the computed MAC and sends the task_allocated mes-
sage with the MAC comparison result to LPM (4) using the control NoC (red dashed arrows).

GMP LMP SP 0

Compute:
MAC = SIPHASH(object code, Ke)

AppInj

Req_task(SP location, taskID)

Task_Allocated(taskID, status)

~~
1

~~~~~~

2

3

. . .

4

Req_task ...
~~~~

Task_Allocated(taskID, status)

~~~~
App_Alloc(appID, status)

5

App_status(status)
6

Task_Allocation(SP location, taskID, Object Code, MAC)

4

Figure 5.5: Tasks allocation and MAC verification phase. Red arrows: broadcast messages
transmitted through the control NoC.

After mapping all tasks, LMP notifies the status of the allocation (5) to GMP. If all
Appsec ’s tasks were correctly received, Appsec might start its execution. Otherwise, the pro-
cess is interrupted, and GMP notifies AppInj that Appsec was corrupted during its allocation
(6).

5.3 Protocol phases evaluation

This section evaluates the protocol phases previously presented regarding the per-
formance and the hardware (area) costs. To the performance evaluation, the steps respon-
sible by the mutual authentication uses the OVPSim [OVP, 2018] description while an RTL
SystemC description evaluate the others protocol phases. The hardware evaluation cost
uses an RTL VHDL description.

77

5.3.1 Setup and Authentication phases evaluation

This section evaluates the first two phases of the protocol initially, corresponding
to the system setup (Section 5.1.1) and mutual authentication (Section 5.1.2). Both phases
do not impact directly in the latency to start a secure application but are required to run a
secure application since the Ke common key defined at the end of the process is required
when the application execution is required by AppInj .

The hardware architecture of the External Entity and GMP was described using
OVPSim APIs [OVP, 2018], an accurate instruction simulator. The cryptographic functions of
this steps use the TweetNaCl [Bernstein et al., 2015], a compact and self-contained public-
domain C library. The library uses Curve25519 on the EDCH key exchange, the base of our
proposed mutual authentication.

Table 5.1: Setup and Authentication phases evaluation.

Phase Step Actions
MIPS

Instructions
(x106)

ARM
Instructions

(x106)
Setup 1 generate Key pair 239.2 83.9
Authent. 1 start 0.001 0.001

2 generate nouncei
encrypt request 224.4 84.1

3
decrypt request

generate nouncem
encrypt reply

449.0 168.3

4 decrypt reply
encrypt nouncem

449.0 168.3

5 decrypt nouncem
encrypt A/R 449.0 168.3

6
decrypt A/R
generate Ke
encrypt Ke

449.0 168.3

7 decrypt Ke 224.5 84.1
TOTAL Setup + Authentication 2245.0 845.3

Table 5.1 shows the two first phases of the protocol (1st col.), the steps of the
protocol (2nd col.), the executed actions (3rd col.), and the number of instructions of these
actions in the MIPS-like OR1k (4th col.) and ARM A9 (with SIMD) processors (5th col.). The
three main actions, generate a key pair, encrypt data and decrypt data, requires a similar
number of instructions: 239.2M, 224.4M and 224.5M – MIPS processor, and 83.9M, 84.1M
and 84.1M – ARM processor. The total amount of instructions of the two first phases of the
protocol are 2,245.0M and 845.3M instructions, in processors MIPS and ARM, respectively.
Considering the processors running at 500 MHz with a CPI=1, the time consumption relative
to the mutual authentication of the External Entity and the MCSoC is 4.49s for MIPS and
1.68s for the ARM.

Although this overhead is relatively significant, in the order of seconds, only one
execution of the mutual authentication process occurs for each entity to ensure the authen-

78

ticity of the parts and does not impact the latency to start the applications. The cost to
compute the session key (Ke) corresponds to step 6 in Table 5.1, and it is smaller than half
second. Thus, it is possible to consider to change this key periodically to increase the se-
curity of the system. Remember that the transmission of this key to the SPs of the selected
OSZ occurs by using a lightweight cryptography method.

5.3.2 Admission to Allocation phases evaluation

This section evaluates the protocol phases that impact directly in the latency to start
the Appsec, i. e. from Admission (5.2.1) to Allocation (5.2.3) phases. The evaluation was
conducted in a clock-cycle RTL SystemC description of the MCSoC presented in Section
3.1. Operating system and applications are described in C language as presented in Section
3.2.

Admission phase evaluation

Four internal steps of the Admission phase impact on the delay to start the Appsec,
(i) the cluster selection inside the GMP and the messages exchange of the protocol; (ii) the
OSZ definition through the Algorithm 5.1 running in LMP; (iii) the application mapping by the
LMP; and (iv) the task migration when the OSZ positioning needs release PEs to run the
Appsec.

The cluster selection has a minor impact on the delay and it is a function of the
number of the cluster in the MCSoC. The selection evaluates the free resources in each
cluster to define where the Appsec will run, selecting the region with most resources available.
Varying the number of clusters from 1 to 4, the selection take less than 500 clock cycles to
define the cluster in all cases.

The Algorithm 5.1 defines the OSZ shape and positioning and its execution con-
tribute to delay to start the Appsec. The Algorithm evaluation setup includes a 14x7 MCSoC in-
stance (cluster_side = 7), a 9-task application (Appsec), up to 2 tasks may execute simulta-
neously per PE (#tasks.PE = 2).

With such configuration, the shape_set is equal to: {(3, 3), (2, 5)⇤, (5, 2)⇤, (2, 3)⇤,
(3, 2)⇤, (1, 5), (5, 1)}. Shapes marked with a ’⇤’ have internal fragmentation (equal to 1), re-
quiring the removing of PEs from the shape.

Figure 5.6 presents the 14x7 MCSoC, with producer-consumer applications mapped
when the system starts (pink PEs), with the goal to create obstacles to the OSZ creation,
and three OSZs. The creation of the OSZs occurs according to the following sequence:

• SZ1: corresponds to the smallest execution time of Algorithm 5.1 because the execu-
tion of the outer loop finds a valid region in the first iteration;

79

LMP

7 8 9 10 11 12 13

GMP

5

4

3

2

1

0

6

0 ...

...

...

...

...

...

...

...

SZ2

SZ1

SZ3

t0 SZ1 SZ2 SZ3

Figure 5.6: Algorithm 5.1 evaluation scenario with three OSZ positioning.

• SZ2: corresponds to an intermediate execution time due to the execution of the SWS
several times, with the removal of a PE from the region to eliminates internal fragmen-
tation;

• SZ3: corresponds to the largest execution time to find an OSZ in this scenario.

Note that the algorithm creates the three OSZs at runtime, with Appsecs executing
in parallel. Also, the blue OSZ (SZ2) requires internal rerouting when the botton-right PE
send packets to PEs on the left side of the OSZ (if XY routing is used the packets would
expose the communication). The experimental setup also has scenarios with tasks mapped
inside the SZs with the goal to activate the task migration, enabling to evaluate its cost (not
presented in Figure 5.6).

Table 5.2 presents the scenario evaluation. The first column shows the Opaque
Secure Zones created according to Figure 5.6. Results for execution of Algorithm 5.1 (2nd

column of table) are a function of the number of shapes and the position of selected shape
in the cluster. The Migration results (3rd column) shows the cost to migrate one task of 4.3
KB at a distance of 4 hops. The Cluster selection and message exchange delay (4th column)
is related to the initial cluster selection by GMP and the set of messages send to/from the
PEs of the selected shape according with the protocol presented in Figure 5.3. The Appsec

mapping delay (5th column) is the spend time to map the Appsec the into selected region. The
6th column is the sum of the previous columns that correspond to delay due to the Admission
phase. All values in Table 5.2 are presented in clock cycles (cc - where K means 103).

The time spend by Algorithm 5.1 varies with the number of calculated shapes,
the positioning of the shape, the previous tasks and OSZ found during the SWS and the
peripheral positioning. Results show a low impact on executing Algorithm to create and

80

Table 5.2: Admission phase performance evaluation.
Secure
Zone

Algorithm 5.1
(cc)

Migrations
(cc)

Cluster selection and
messages exchange (cc)

Appsec
mapping (cc)

Total
clock cycles (cc)

SZ1 3.9K - 1.4K 4.3K 9.6K
SZ2 13.5K - 1.2K 4.1K 18.8K
SZ2 27.2K 24.0K 1.9K 4.2K 58.3K
SZ3 21.1K - 1.2K 4.1K 26.4K
SZ3 32.6K 23.4K 1.9K 4.2K 62.1K

search a suitable shape position. In the worst-case of the proposed evaluation scenario
(SZ3), the delay was 32.6K clock cycles (cc). This corresponds to evaluate the SWS of
seven calculated set shape from all valid initial positions of the cluster, then invert the set
shape order (enabling 2 tasks by PE) to finally find a region starting in PE location (8,0).

As shown, the performance may be penalized if tasks migrations are required. The
migrations can happen in parallel, i.e., more than one migration can perform at the same
time, minimizing its cost. The cost of the migrations is a function of the number of migrations
and the size of the task’s object code. The proposed algorithm tries to minimize the number
of migrations first looking for regions that not require migration and after looking by small
shapes (and potentially fewer migrations).

The cost of the messages exchange varies with the distance of the PEs belonging
to the OSZ relative to GMP and LMP. The cluster selection and message exchange has a
insignificant impact on the delay to start the Appsec.

In summary, this set of results shows that the Application Admission phase is not
time-consuming. Despite the exhaustive search made by Algorithm 5.1, the search space
is small (few shapes to evaluate). The mapping algorithm is also fast because the search
space is delimited by the OSZ , with enough resources to map the tasks.

The total time to execute this phase, including the cluster selection and the ex-
changed messages reached in the worst-case 62134 clock cycles, or 621.3µs@100MHz1. A
usual case, without migration penalties uses less than 30K clock cycles, or 300µs@100MHz.

Key Exchange phase evaluation

The Key Exchange phase (Section 5.2.2) evaluation measures the delay time of
each step after the GMP receives the Req_alloc message. Table 5.3 summarizes the
elapsed time of each step of protocol according with Figure 5.4.

This phase of the protocol consumes, in average, 7324 clock cycles. The dominant
cost is the SipHash time required to obtain the Km key used to encrypt (step 2 in Figure 5.4)
and decrypt (6) Ke. Other steps have a small impact on delay time of the key exchange
phase.

1All MCSoC (routers, processor, DMNI, etc) runs at 100 MHz.

81

Table 5.3: Key Exchange phase evaluation.
SipHash and Km

at GMP (cc)
messages exchange

(cc)
SipHash at SP

(cc)
Km at SP

(cc)
3932 588 2270 534

Task Allocation phase evaluation

An experiment varying the object code size evaluates the Tasks Allocation and
MAC verification phase - TAMV (Section 5.2.3). Table 5.4 presents in the 1st column the
task object code size (in KBytes), in the 2nd column the number of clock cycles required to
compute and verify the MAC, and in the last column the total time of this protocol phase.

Table 5.4: Task Allocation and MAC verification evaluation results.
Object Code size

(KB)
MAC step

(cc)
Total
(cc)

2 67.2K 73.1K
3 100.1K 106.5K
4 133.0K 139.9K
5 165.9K 173.3K

10 330.4K 340.4K

Table 5.4 shows that the number of clock cycles (cc) to compute and verify the MAC
is a function of the task object code size, being equal to 32.9 Kcc/KB. The equation below
presents the number of clock cycles to compute and verify the MAC.

TAMVphase ⇡ 2646 + (Object Code Size in KB * 32.9K)

where: 2646 cc is the average value between steps 3 and 5 of Figure 5.5.

Compared to the other protocol phases, this step dominates the latency to start
secure applications. The reason to explain this larger delay is due to the MAC computation,
which operates on 64-bit blocks, and the result of each block is used in the next block, thus
being a sequential operation.

Figure 5.7 presents a timeline for the four phases impacting the latency to start an
Appsec (the figure does not respect a scale related to each phase). The Key Exchange and
MAC verification phases are executed in parallel, for each SP with Appsec tasks. The delay
to start each of these phases corresponds to send the encrypted Ke and the tasks object
code, respectively.

The Admission delay time of 18844 clock cycles presented in Figure 5.7 corre-
sponds to the average case of Table 5.2, where half of the shape set is evaluated until
finding an appropriate region to OSZ , and no migration is required.

As presented, the Ke key distribution is required to each SP belonging to the OSZ ,
i.e., with N SPs selected to run tasks of the Appsec, N set of interactions happens between

82

Admission Key Exchange SP1 MAC Verification Task 1
Close SZ

2.3222.646 + (Task Size KB * 32.896) 7.32418.844

MAC Verification Task 2

MAC Verification Task N

.

.

.

Key Exchange SP N

Key Exchange SP2

.

.

.

486

... ...

Figure 5.7: Timeline for the four phases impacting the latency to start an Appsec.

GMP and each SP. The average time spend to each interaction is 7324 clock cycles with a
delay of 486 clock cycles to start the interaction with the next SP.

The Task Allocation step runs sequentially since the object code of each task is
sent sequentially by the AppInj ; however, the MAC verification runs in parallel once each SP
calculate the MAC of the received message locally to check with the received MAC.

Admission Key Exchange SP1 MAC Verification Task 1 Close SZ

MAC Verification Task 2

MAC Verification Task N

.

.

.

Key Exchange SP N

Key Exchange SP2

.

.

.

486

2.3222.646 + (Task Size KB * 32.896) 7.32418.844

Figure 5.8: Timeline for the four phases impacting the latency to start an Appsec with task
sorting.

Because the MAC calculation time is proportional to the object code size and oc-
curs in parallel in different SPs, it is possible to reduce the total time spent to calculate the
MAC sorting the sending tasks on AppInj from larger to smaller, taking advantage of parallel
execution (Figure 5.8). Thus, in the best case, the time to calculate the MAC of all tasks
corresponds to the time to calculate the MAC of the bigger size task.

Table 5.5 presents a comparative view of distinct applications running with and with-
out security resources. The experiment also evaluates the task size sorting impact on delay
to start the Appsec. The 1st and 2nd columns present the application and its corresponding
number of tasks (# tasks). The 3rd column indicates the instant time in clock cycles when the
request to run the application arrives the GMP. The 4th column presents the clock cycle num-
ber from the beginning of the application execution. The 5th column presents the delay time
between the request and the beginning of the application execution, which correspond to
the delay to start the application. The 6th column shows the cost due the security resources
proposed.

Table 5.5 shows a small additional time to start the application in clock cicles (0.43
ms in the best case and 1.83 ms in the worst case, when running at 100 MHz). How
expected the additional time is proportional with the object code size of tasks since the MAC
calculation requires more time spend according to the object code size.

83

Table 5.5: Delay time to start different applications.

Application # tasks Request time
(cc)

Start Execution
(cc)

Delay to start
(cc)

Cost
(cc)

Prod/Cons 2 5.7K 35.3K 29.6K -
Prod/Cons - OSZ 2 5.7K 78.2K 72.5K 42.9K
Prod/Cons - OSZ - sorting 2 5.7K 78.0K 72.3K 42.7K
MPEG 5 5.7K 74.4K 68.7K -
MPEG - OSZ 5 5.7K 257.7K 252.0K 183.3K
MPEG - OSZ - sorting 5 5.7K 226.9K 221.2K 152.5K
DTW 7 5.7K 84.9K 79.2K -
DTW - OSZ 7 5.7K 147.5K 141.8K 62.6K
DTW - OSZ - sorting 7 5.7K 137.2K 131.5K 52.3K

The advantage of task size ordering happens when the object code size difference
is significant in such way that the time spend to compute the MAC of small object code sizes
is contained by the time spend of bigger task code sizes. This occurs in the MPEG applica-
tion were the PRINT task has 2.6 KB size, and the IDCT task has 6.7 KB size, resulting in a
12.2% small spent time to start the MPEG Appsec, when the task allocation occurs according
to the task size.

5.4 Final Remarks

This chapter presented the security mechanisms used to guarantee the secure
deployment of applications in MCSoCs. Three main phases were detailed: (i) the Mutual
Authentication; (ii) the Application Admission and; (iii) the application’s Tasks Allocation.

The mutual authentication method of entities [Caimi et al., 2018a] that deploy ap-
plications on MCSoC is a specific contribution of this Thesis. To the best of the Author’s
knowledge, there is no similar work for many-cores. The chapter detailed the Setup and the
Mutual Authentication phases, and evaluates its costs for two processors architectures, with
the costs being in the order of few seconds. Although this overhead seems high, only one
execution of the mutual authentication process occurs for each AppInj to ensure the authen-
ticity of the parts and does not impact the latency directly to start the applications. Besides
that, only applications from trusty entities run in the many-core, reducing the probability of
attacks from malicious applications.

The application’s tasks allocation is another contribution of this Thesis ([Caimi et al.,
2018b]). The relevant characteristics of the method include runtime execution (that allows
the shape definition, OSZ positioning and tasks allocation - including task migration) and
several OSZs may co-exist in parallel.

In regards to the application admission, i.e. the latency to start a secure application,
the dominant operation corresponds to the MAC computation and verification steps. The
application is delayed by few milliseconds to start. Adding the delay of each protocol phase,
the secure application is delayed for less than 4 ms (@100MHz) for 10KB tasks [Caimi et al.,
2017b].

84

6. APPLICATION EXECUTION

After receiving all Appsec ’s tasks correctly, the Application might start its execution
in a runtime environment protected from attacks. This is obtained enabling the wrappers to
create a Opaque Secure Zone (OSZ) into the MCSoC. The execution mechanism includes:
(i) wrapper activation; (ii) launch application; (iii) retransmission of lost packets in and out
the OSZ boundaries.

This chapter details the protocol steps to guarantee the execution of the entire
secure application. Three main phases are detailed: (i) the OSZ closing at Section 6.1; (ii)
the application execution at Section 6.2; (iii) the OSZ opening at Section 6.3. Section 6.4
presents the performance evaluation of these protocol phases. Finally, Section 6.5 presents
the final remarks of the chapter.

6.1 Closing the Opaque Secure Zone

The goal of this phase is to close the wrappers surrounding the OSZ ("W" in Figure
3.1), and start the execution of the Appsec. Figure 6.1 shows the protocol steps related to
OSZ closing and application execution steps.

LMP SP 0 SP 1

Set_Secure_Zone(boundaries)

Secure_Zone_Received(app_ID)

Set_rectlinear(boundaries)

Task_Allocated(taskID,status)

~~ ~~ ~~

1

2

3

Start_Sec_App(App_ID)
5

Rectlnear_Received(app_ID)
4

Figure 6.1: Close OSZ phase.

This phase starts with LMP sending a Set_Secure_Zone broadcast message (1 in
Figure 6.1) through the control NoC with the upper right (UR) and lower left (LL) corners of
the OSZ . The operating system (OS) of All PEs receive this message, each one verifying
if it is on the OSZ boundary. If the SP is on the OSZ boundary, the OS writes in a data
structure the wrappers that must be closed.

85

The SP located at the UR corner of the OSZ transmits to the LMP a Secure_Zone-
_Received message (2). Once received this message, the LMP sends a Set_rectilinear
broadcast message (3) through the control NoC with the UR and LL corners of SPs to
remove from OSZ . The SPs belonging to this region and its neighborhood update the data
structure of the wrappers to be closed. Two values identical and equal to the LL corner of
the Set_Secure_Zone message indicates none cut must be done in the OSZ .

Table 6.1 details the values on Set_Secure_Zone and Set_rectilinear messages
to SZ1 to SZ3, related to Figure 5.6 (reproduced at right side of the table).

Table 6.1: Parameters of the messages to close the OSZs.

LMP

7 8 9 10 11 12 13

GMP

5

4

3

2

1

0

6

0 ...

...

...

...

...

...

...

...

SZ2

SZ1

SZ3

t0 SZ1 SZ2 SZ3

SZ1 SZ2 SZ3
(LL)(UR) (LL)(UR) (LL)(UR)

Set_Secure_Zone (11,4)(13,6) (8,2)(9,4) (8,0)(12,0)
Set_rectilinear (11,4)(11,4) (8,2)(8,3) (8,0)(8,0)

The SP located at the UR corner of the OSZ transmits to the LMP a Rectlinear
_Received message (4). After receiving this message, the LMP can start the execution
of Appsec, by broadcasting a Start_Sec_App message (5), using the control NoC in global
mode. This message enables the SPs to activate the wrappers to block incoming/outcoming
traffic and releases the tasks belonging to Appsec to execute.

6.2 Secure Application Execution

The Start_Sec_App message activates the wrappers surrounding the OSZ ("W" in
Figure 3.1) starting the execution of the Appsec.

The wrapper activation occurs using a memory mapped register (wrapper_reg) at
each PE. Each bit in the wrapper register enables/disables a given port wrapper of the PE.
The wrapper acts over the control flow signals of each NoC port (8 ports for the data NoC and
4 ports for the Control NoC). Figure 6.2.a shows the wrapper logic for one port. Thus, the
wrappers’ area overhead is insignificant since its implementation requires a small number of
gates, a register, and an Finite State Machine (FSM).

When the wrapper value is activated, the internal PE side has the control flow sig-
nals masked, disabling all external requests. If a request arrives, it is blocked, and due to the
masking, the ack signal is high. This simple process results in discarding the packets arriv-
ing at the PE. The same process occurs when the PE tries to send a message, req blocked
and ack enabled. The control NoC uses a single wrapper value, opening or blocking the

86

Figure 6.2: (a) Wrapper logic for one port; (b) Detailed Wrapper Control masking logic.

flows in both directions. The data NoC contains two wrapper values, enabling to selectively
block the flow direction (required for I/O communication).

For security reasons, applications running at the SPs cannot access wrapper_reg,
that only the OS has access to it. Figure 6.2.b details the "wrapper control" module. The
value applied to the wrapper logic explained above is a result of a AND operation between
the wrapper_reg value and a mask value coming from “wrapper mask logic" (WML) module.
The default value of mask signals arriving the AND operation is ’1’, i.e., by default the wrap-
pers values corresponds to wrapper_reg contents. Section 7.2 present detailed explanation
about the wrapper control module.

When a message discarding occurs, the control NoC sends a retransmission re-
quest (using the brNoC) to the message source PE. When the retransmission request arrives
at the source PE, the OS uses the control NoC to obtain a new path to the target PE, which
avoids the OSZ . The control NoC returns a path, which is used to retransmit the message,
and all subsequent packets through source routing.

backtrack(source,hop,port)

task_message(source, target,...)

OSZ
boundary

Source
SP

Target
SP

1

unreachable(source,target)

X

searchpath(source,target)

2

34

backtrack(source,hop,port)

task_message(source, target,...)

~~ ~~ ~~

5

6a

6b

7

Figure 6.3: Rerouting sequence.

87

Figure 6.3 shows the sequence diagram of the search path and rerouting mecha-
nisms. Considering an application running with its task exchanging messages (1) the OSZ
activation discards the message (2) and the PE at the border sends a unreachable mes-
sage (3) notifying the source SP. The source SP verifies if the message was sent previously
(4) and request a path discovery (using the brNOC) through the searchpath message (5).
When the searchpath message arrives the target PE the backtracking mechanism sends
a sequence of backtrack messages, each one providing the hop number and the output
port used by the hop in the SR mechanism (6a, 6b, ...). With all pairs (hop, port) received,
the source SP process the path and resend the previously discarded message using source
routing (SR) (7).

Figure 6.4.a shows two applications running ({T1,T2} and {T3,T4}) using XY rout-
ing. At some time, a Appsec creates a square OSZ , (3,2) to (4,3). After the OSZ activation, a
message sent by task T1 (3,1) to task T2 (4,4) is discarded at PE (4,2) and an unreachable
message is sent back to PE (3,1) notifying the message loss. At PE (3,1) a path discovery
to PE (4,4) starts using a searchpath message. When this message arrives the target PE
(4,4), the backtracking starts sending a unicast message to the source PE with the current
hop (7) and the incoming port of the searchpath message (W). After the unicast message
from (4,4) pass through PE (3,4) it also generates and sends a unicast message containing
its hop (6) and the outcoming port to PE (4,4), i.e., port E (Figure 6.4.b). This process
continues at each PE in the unicast path, with each PE sending a message with its hop and
outcoming port to the PE (4,4).

Note that the first unicast message uses the incoming port, while other unicast
messages use the outcoming port. This mechanism creates an invalid routing situation
(incoming port equal to the outcoming port), which is used in the source routing as the
mechanism to detect that path ended.

(3,4)
(hop 6)

(hop 7)
(port W)

Source
routing
from PE(3,1)
to PE(4,4)

W

MP

(b)

T2

T1

(a)

0 1 2 3 4

4

3

2

1

0 MP

T2

T1

0 1 2 3 4

4

3

2

1

0

T3

T4

T3

T4

(4,4)
(hop 7)

(2,4)
(hop 5)

(2,3)
(hop 4)

(2,2)
(hop 3)

(2,1)
(hop 2)

(3,1)
(hop 1)

E

N
E

N
N

W

(c)

(hop 6)
(port E) (hop 5)

(port E) (hop 4)
(port N) (hop 3)

(port N) (hop 2)
(port N) (hop 1)

(port W)

Figure 6.4: Backtrack example.

88

Figure 6.4.c shows the unicast messages sequence with respective hop and port.
The resulting SR path from PE (3,1) to PE (4,4) circumventing the OSZ use the following
directions at each PE: [W N N N E E W].

Note that the alternative path computation is executed once, only for the first lost
message. Thus, the impact of closing an OSZ in the non-secure applications is minimal, as
shown in the results section.

6.3 Protocol to Open an Opaque Secure Zone

At the end of Appsec execution, the "Open OSZ " phase clears the memory contents
of the SPs inside it preventing any information leakage from being used by an attacker. In
addition, the OS erase the Ke value (also Kps if used) and release the wrapper opening the
OSZ . Also, the LMP clears internal structures to release the cluster resources previously
allocated to Appsec and sends a message to the GMP that releases its internal structures
related to the cluster resources.

Figure 6.5 shows the protocol steps to open the OSZ at the end of the Appsec.
When a Appsec task ends its execution (1), the PE sends a End_Task message with its task
ID, using the control NoC in global mode.

GMP LMP SP 0 SP 1

Clear Memory
Open Wrapper

Clear Memory
Open Wrapper

Open_SZ(boundaries) Open_SZ(boundaries)

End_app(app_ID)

~~ ~~ ~~ ~~

2

3 3

5

End_Task(task_ID)

End_Task(task_ID)

SZ_Opened(boundaries)

1

1

4

Figure 6.5: Open OSZ protocol steps.

When all Appsec tasks finish their execution, the LMP transmits an Open_Secure_Zone
message (2). All PEs inside the OSZ clear their memory to prevent information leakage and
then open the wrappers (3), releasing the locked resources. Then, the PE located at the up-
per right corner of the SZ transmits to the LMP a Secure_Zone_Opened message (4). Finally,
the LMP clear the internal structures to release the cluster resources previously allocated to
Appsec (5).

89

6.4 Application execution evaluation

This section evaluates the protocol phases previously presented and the impact
of the OSZ creation in applications that use paths blocked by OSZ . The first experiment
evaluates the steps presented in Section 6.1, corresponding to the impact to close OSZ
in 4 scenarios, changing the OSZ size from 2x2 up to 3x3 SPs. Table 6.2 presents the
evaluation, considering the OSZ size.

Table 6.2: OSZ Close phase evaluation.
OSZ Shape 2X2 2X3 3X2 3X3

Total (cc) 2302 2312 2316 2322

The number of clock cycles to close an OSZ starts when the LMP sends the
Set_Secure_Zone message until the upper right PE in OSZ effectively activates their wrap-
pers after the Start_Sec_App message. The Close Secure Zone results present a small
increase in the number of the clock cycles, proportional to the distance, in hops, to the up-
per right PE of the OSZ . As presented in the previous chapter the Close OSZ protocol imply
in a small impact on the latency to start the Appsec of just 2.3K clock cycles.

The second evaluation concerns the impact to open an OSZ in 5 scenarios, chang-
ing the OSZ size from 2x1 up to 5x5 PEs. Table 6.3 presents the evaluation, considering
the OSZ size. The time to open a OSZ starts when the LMP sends the Open_Secure_Zone
message until the reception of a Secure_Zone_Opened (Figure 6.5). The Open Secure Zone
delay is related to the amount memory pages to erase and the size of each memory page.
All memory pages (64 KB in the experiment) used by Appsec are erased at this protocol step.

Table 6.3: OSZ Open phase evaluation.
OSZ Shape 2x1 2x2 3x3 4x4 5x5
Total (cc) 5943 5,962 6006 6048 6081

The Open Secure Zone results present a small increase in the number of the clock
cycles (around 6K clock cycles) to a 64 Kbytes memory page and proportional to the dis-
tance to the upper right PE of the OSZ .

The result disclosed by the table is the scalability. The overhead induced by the
method comes from the Close Secure Zone, which corresponds to less than 2400 clock
cycles to a large OSZ (2.4 µs@100MHz). The Open Secure Zone does not impact in the
applications’ execution time. The Open Secure Zone delay affects the amount of time to
release the PEs, which is also small (around 6.0 µs).

The third evaluation presents the intrusiveness of non-secure applications in an
Appsec. This experiment presents a scenario where an Appsec shares communication re-
sources with malicious flows. Figure 6.6(a) presents the mapping configuration: an Appsec

90

mapped in the OSZ (surrounded by the doted line) and six other tasks mapped outside the
OSZ generate malicious flows. The latency of the packets on the north port of the PE ex-
ecuting TaskD is measured according to 3 scenarios (Figure 6.6(b)): (i) Appsec executing
alone in the system; (ii) all tasks running without the OSZ ; (iii) all tasks running with the
OSZ activated. Scenario (i) produces the baseline latency between taskD and taskF, with-
out any disturbing traffic. In the second scenario (ii), the malicious flows disturb the taskD
latency. The 3rd scenario shows that the application running inside the OSZ the latency has
the behavior of the baseline scenario (i), preventing DoS or timing attacks.

MP

C1
C2

C3
C4

C5
C6

P1 P2 P3 P4

P5 P6TaskETaskDTaskC

TaskATaskFTaskB

(a)

(b)

Figure 6.6: Communication latency: (a) Appsec in the OSZ , and malicious tasks outside the
OSZ ; (b) latency graph results [Caimi et al., 2017a].

The fourth evaluation presents the impact of the OSZ on non-secure applications.
Close a region inside the MCSoCs at runtime implies that applications executing outside of
OSZ must continue the execution, by reconfiguring and rerouting the source-target paths.
Figure 6.7 presents the mapping of two non-secure applications. The dotted squares in the
figure represent the boundary where the Appsec can be mapped and executed.

The non-secure applications start their execution, and at a given moment the Appsec

is mapped, and then the OSZ closed. For each non-secure application, 6 secure zones
scenarios are evaluated. Table 6.4 presents each scenario, the non-secure application exe-
cution time (AET) overhead (2nd and 4th columns), and the number of rerouted paths (3rd

and 5th columns), for MPEG and DTW applications, respectively.

The execution time overhead of the applications outside of the OSZ is in the worst-
case 2.56%. This overhead is related to the number of rerouted paths, which is a function of
the OSZ location, and the number of interrupted flows. For example, the third DTW scenario
(highlighted in gray) has a large OSZ (12 PEs), requiring the execution of 12 rerouting paths.
This experiment showed that OSZ might be defined at runtime, with a insignificant impact
on the performance of the applications outside of the region.

91

MP PRINT iquant

START

IDCT

MPEG

START

IVLC

iquant

IDCT

PRINT

IVLC

MP

BANK

RECOG

DTW

BANK

P1 P2

RECOG

P2

P1

P4

P3
P3 P4

(a) (b)

0 1 2 3 4 50 1 2 3 4 5

5

4

3

2

1

0

5

4

3

2

1

0

Figure 6.7: Task graphs and mapping. (a) MPEG and (b) DTW applications [Caimi et al.,
2017a].

Table 6.4: Impact of the OSZ in the Non-Secure Applications [Caimi et al., 2017a].

OSZ
Boundary

MPEG DTW

AET overhead # Paths
Rerouted AET overhead # Paths

Rerouted
((1,2),(3,4)) 1.22% 7 2.53% 11
((2,2),(3,4)) 1.13% 6 2.53% 11
((1,1),(3,4)) 1.22% 7 2.56% 12
((3,2),(3,4)) 1.13% 5 2.53% 10
((1,3),(4,3)) 1.17% 7 0.98% 8
((1,2),(4,3)) 1.17% 7 0.79% 9

The rectilinear shape of an OSZ can lead to an internal unreachable path when
two communicating tasks are mapped with the XY communicating path crossing the LL
OSZ corner. Next experiment evaluates the impact of internal unreachable paths on the
performance of APPsec. Figure 6.8 presents the mapping of MPEG application that results
in the unreachable path between the iquant and IDCT tasks and the rerouting mechanism
activation.

The message sent by iquant task to the IDCT task is blocked by wrappers and a
searchpath message is fired. After get a new path the message is re-send using SR. The
cost is related to one path discovery and reroute path and represent an overhead of just
0.26% considering the baseline MPEG application execution.

The opaque secure zone completely isolates the application, protecting computa-
tion and communication resources from attacks (integrity, confidentially, DoS, timing, and
spoofing) from malicious applications, using wrappers, a low-cost hardware mechanism.
Results show the effectiveness of the approach and the insignificant impact in the execution
time of secure and non-secure applications.

92

MP

PRINTIDCT

0 1 2 3 4

4

3

2

1

0

START IVLC

START IVLC iquant IDCT PRINT

iquant

Figure 6.8: Task graphs and mapping of MPEG application with broken path between iquant
and IDCT tasks.

6.5 Final Remarks

This chapter presented an original contribution of this Thesis, a method to set
Opaque Secure Zones at runtime avoiding communication and computation sharing, in-
cluding a dynamic rerouting mechanism to deal with broken paths of task messages ([Caimi
et al., 2017a]. The proposed mechanism uses wrappers, a low-cost hardware mechanism
due to the small area overhead. The OSZ isolates the application, without any communi-
cation and computation sharing, enabling tasks’ messages exchange without cryptography,
not penalizing the execution time of the secure application.

The evaluation shows a insignificant impact on the execution time of secure and
non-secure applications, even in the presence of several broken paths and the respective
rerouting and retransmission of messages. Two aspects explain this remarkable result: (i)
the efficiency of brNoC to obtain new paths trough the searchpath and backtrack mes-
sages; (ii) the new SR path is used for all new messages to the same target PE.

93

7. PERIPHERAL ACCESS

Previous Chapters presented the approach to protect the admission and execution
of applications with security constraints, including ECDH and MAC techniques and spatial
reservation of computation and communication resources, resulting in an Opaque Secure
Zone (OSZ) [Caimi and Moraes, 2019].

This chapter presents in Section 7.1 the communication model and the APIs used
by the MCSoC to communicate with peripherals. Section 7.2 presents the mechanism that
enables the access to peripherals using a protocol to open access points on the border of the
OSZs. Section 7.3 discusses communication issues related to open access points. Section
7.4 presents the mechanisms to protect the packet header and payload when a message
goes outside the OSZ . Section 7.5 presents the evaluations and a discussion about the
proposed mechanisms. Finally, Section 7.6 presents the final remarks of the chapter.

7.1 MCSoC communication model

The adopted communication model is message passing (MPI-like), with the API
supporting non-blocking Send() and blocking Receive() primitives to communicate. The
reason to adopt message passing comes from the adopted memory organization, distributed
memories.

Figure 7.1 presents the flow to both send and receive a packet between two differ-
ent PEs. The Send() primitive generates a system call, send_packet(). The kernel copies
the message in a data structure named pipe, and the task continues its execution, perform-
ing a non-blocking Send(). At the consumer side, the task executes a Receive() primitive.
The OS generates a request packet to the producer PE and changes the task status to
waiting, performing a blocking Receive().

When the producer PE receives the request message, it programs the DMNI to
send the packet, copying the data from memory and transmitting it to the NoC. At the con-
sumer side, when the DMNI receives a packet, it interrupts the processor. The interruption
handler calls the read_packet() at the OS level, which programs the DMNI to read the packet
copying it from the NoC to the memory. Once the packet is received, the OS executes func-
tions related to the contents of the packet. For example, if the packet contains a data to a
task_ID, the packet is written in the task_ID memory space, the Receive() call is unlocked,
and the task_ID is scheduled to execute.

Due to this handshake mechanism, the task messages remain into the OS structure
called pipe. The OS has also a message buffer structure to store control messages that use
the data NoC (such as Req_task, Req_alloc, App_status). These two structures, pipe and

94

Need to send
a packet:

send_packet()

DMNI
programing

Receive the
packet:

read_packet()

DMNI
programing

DMNI

Send

DMNI

Receive

Operational
System

Hardware

header

payl. size

... p
ip

e

L
o

c
a

l
M

e
m

o
ry

header

payl. size

...

L
o

c
a

l
M

e
m

o
ry

Network On Chip

Producer PE Consumer PE

interruption

Figure 7.1: Inter-PE communication flow [Ruaro et al., 2016].

control messages buffer, enable the retransmission of packets when a discard occurs due to
the presence of an OSZ boundary.

Communication with peripherals uses a second API, with primitives IO_Send() and
IO_Receive(). Both primitives are blocking, that is, the task calls the primitive and remains
blocked until an answer message arrives from the communicating peripheral. The I/O access
uses a master/slave communication model where the PE is the communication master and
peripherals the communication slaves. Regardless the I/O primitive used, the initial packet
is sent from the PE to a peripheral, and the answer comes from a peripheral to the PE.

At the lower level, the OS communicates using the data NoC with IO_request ,
IO_delivery , and IO_ack packets. The IO_Receive() primitive uses the IO_request at the PE
side and the IO_delivery at the peripheral side. The IO_Send() primitive uses IO_delivery
at the PE side and the IO_ack at the peripheral side. Figures 7.2(a) and 7.2(b) show the
API primitive IO_Receive and IO_Send, and the underlying message exchange between the
Consumer PE and a peripheral (a) and the Producer PE and a peripheral (b).

IO_Request(...)

Request
processing

~~
~~

Task:
 IO_Receive(...)

Task blocked

Consumer PE Peripheral

IO_Delivery(...)

Task unblocked

IO_Delivery(...)

Delivery
processing

~~
~~

Task:
 IO_Send(...)

Task blocked

Peripheral

IO_Ack(...)

Task unblocked

(a) (b)

Producer PE

Figure 7.2: I/O API primitives. (a) Consumer task accessing a peripheral. (b) Producer task
accessing a peripheral.

95

As presented in Figure 3.2 (on page 50), the data NoC differentiates the API’s
messages (MCSoC internal data or I/O data) with a flag into the header field (first flit) of the
packet, enabling a distinct control of the packets when necessary. Specifically, this feature
helps to block all data packets arriving at the boundary of the OSZ (in both directions) and
to apply selective management of I/O packets.

This communication method with peripherals helps preventing attack attempts, ei-
ther by PEs trying to forge I/O packets or even peripherals trying to carry out the attack.
Communication is always initiated by the PE in the OSZ . Note that if a peripheral does not
answer, a DoS attack may occur. A simple solution to avoid this problem is to adopt a timer
at the OS level, which avoids long waiting times.

7.2 Enabling I/O access from OSZ

The incoming and outcoming packets arriving at a given port are discarded when
the OSZ ’s wrappers are enabled. By default, this mechanism prevents data exchange from
a PE inside the OSZ to a peripheral and also prevent the data exchange from a peripheral
to a PE inside the OSZ .

Figure 7.3.a details the PE with wrappers, and Figures 7.3.b and 7.3.c details the
wrapper attached to the control NoC and the wrapper control module respectively.

When the wrapper is enabled, the internal PE side has the control flow signals
masked, disabling all external requests. If a request arrives, it is blocked, and due to the
masking, the ack signal is high. This simple process results in discarding the packets arriving
at the PE. The same process occurs when the PE tries to send a packet, req signal is blocked
and ack signal is enabled.

Besides this process, a dedicated circuit monitors the incoming requests in the
data NoC when the wrappers are active. As mentioned previously, when a packet request
arrives in an activated wrapper, it is discarded. This circuit stores the header flit (first flit)
to recognize the source and target PEs, and create a notification message through the
brNoC (UNREACHABLE message) to the source PE, enabling the retransmission mechanism.
Note that this massage does not carry any information related to the position of the OSZ ,
preventing attackers from discovering where the OSZ is.

When the notification message arrives at the source SP (UNREACHABLE message),
the OS uses the control NoC to obtain a new path to the target SP, which avoids the OSZ .
The control NoC returns a path, which is used to retransmit the packet, and all subsequent
packets through source routing.

As show in Figure 7.3.c, the control NoC uses a single wrapper value, opening or
blocking the flows in both directions. The data NoC contains two wrapper values, enabling
to selectively block the flow direction (required for I/O communication).

96

in_ack

out_req

in_req

out_ack

int_in_ack

int_out_req

int_in_req

int_out_ack

Control NoC
wrapper value

(a)

(c)

 wrapper mask
logic

(WML)

data

tx

eop eop_out

eop_in

&

fr
o
m

 r
o
u
te

r
to

 l
o
c
a
l
p
o
rt

&

Control NoC

wrapper_reg

input wrapper
value

8

4

&

Data NoC

output wrapper
value

wrapper
value

4

8 4

8 8 4

input
mask

output
mask

control NoC
mask

(b)

Memory
CPU

Data
NoC

Router

Control
NoC

Router

PE
Processing Element

W W

W

W

W

W

W

W

PRNG

Wrapper
Control

DMNI
Lw.

Cryp.

Figure 7.3: Wrappers modules. (a) PE architecture; (b) brNoC wrapper module; (c) wrapper
control module

The wrapper activation occurs using a memory mapped register (wrapper_reg) at
each PE. Each bit in the wrapper register enables/disables a given port wrapper of the PE.
The wrapper acts over the control flow signals of each NoC port (8 ports for the data NoC
and 4 ports for the Control NoC). Figure 7.3.b shows the wrapper logic for one port. Thus,
the wrappers’ area overhead is negligible since its implementation requires a small number
of gates, a register, and an FSM.

For security reasons, the applications running at the SPs cannot access wrapper_reg,
given that only the OS has access to it. Figure 7.3.c details the "wrapper control" module
presented in Figure 7.3.a. The value applied to the wrapper logic explained above is a result
of a AND operation between the wrapper_reg value and a mask value coming from “wrapper
mask logic" (WML) module. The default value of mask signals arriving the AND operation is
’1’, i.e., by default the wrappers values corresponds to wrapper_reg contents.

97

As explained, an OSZ block all incoming and outcoming messages. However, I/O
communication requires a selective control to send packets to peripherals and receive pack-
ets from peripherals. The wrapper control module performs the I/O packet control, enabling
the communication with peripherals. Distinct wrapper values are provided to incoming and
outcoming traffic in the data NoC (input wrapper value and output wrapper value in Figure
7.3.c).

According to the relative position of the SP with the peripheral location, the wrap-
per mask configuration occurs through configuration message or memory mapped regis-
ter (input_mask_reg and output_mask_reg) inside the wrapper mask logic. Configuration
message is required when the OSZ boundary is not connected to the communicating SP,
otherwise the OS set the memory mapped register directly. Figure 7.4 presents the six
configuration scenarios, according to the relative position of SP and peripheral. Due to the
master/slave communication mode, each I/O interaction needs to open two wrappers on the
data NoC to (a) send a packet with the request, or with the data and (b) receive the answer
with the data or ack response.

Secure Zone

IO communication PE

forward wrapper

backward wrapper

forward path

backward path

Legend:

GMP

Peripheral

0 1 2 3

3

2

1

0

(a)

GMP

Peripheral

0 1 2 3

3

2

1

0

(b)

GMP

Peripheral

0 1 2 3

3

2

1

0

(c)

GMP

Peripheral

0 1 2 3

3

2

1

0

(d) (e) (f)

GMP

Peripheral

0 1 2 3

3

2

1

0 GMP

Peripheral

0 1 2 3

3

2

1

0

Figure 7.4: Configuration scenarios for I/O communication from OSZ .

Table 7.1 summarizes the wrapper configuration with respect to the method used
(message or memory mapped register) and the direction of the data message (forward -
output direction; backward - input direction). The difference between cases (a) and (e)
refers to the configuration messages goes to distinct or same SP. The difference between
cases (c) and (f) refers to the port masked, i.e. distinct or same port.

Before transmitting a message to a peripheral, the OS of the communicating SP first
sends two configuration messages to the boundary of the OSZ (or set the respective mask
register according to Table 7.1), to set the mask registers. The SP knows the boundaries of
OSZ , obtained in the ’Close OSZ ’ step. When the mask configuration message arrives at

98

Table 7.1: Mask wrapper configuration cases.

Case forward
wrapper

backward
wrapper

(a) message message
(b) mapped register message
(c) mapped register mapped register
(d) message mapped register
(e) message message
(f) mapped register mapped register

the target router, the wrapper control module (Figure 7.3.a) intercepts the message (i.e., this
message is not consumed by SP) to set the mask value (input mask or output mask value)
as shows in the Figure 7.3.c.

The mask configuration messages contain the direction (input or output) and the
port side to mask (e.g., north). Note that the WML module (Figure 7.3.c) receive the EOP
signals (End-Of-Packet) of each data router port. Thus, once an EOP is received in an
opened port (input or output), this port is closed. This mechanism ensures that the secure
zone will receive only one I/O packet for each request.

After Appsec has executed the IO_Receive or IO_Send functions, the API needs to
adjust the message and configure the wrappers before send the I/O packet. Figure 7.5 show
the procedures before sending the I/O message.

Secure
App

Request Send
/ Receive IO

Search
peripheral

address/port

Adjust last
hop

Send IO
message

Calculate
mask

wrappers

Configure
masks

noyes

Figure 7.5: Procedures to adjust the I/O packet and wrappers configuration.

Initially the OS search by the address and the port where the peripheral is attached.
At the application level, the peripheral is available from their name but, at the communication
level the XY position and the port are used (e.g. peripheral called raw_log attached to the
router (4,4), north port).

99

In our model, peripherals are attached directly to a router port (e.g., north port), and
there is a PE connected to the local port of this router. Thus, we need to adjust the last hop
to avoid that the packet be consumed by the local port, being forwarded to the peripheral.

Next, considering that the communication with the peripheral is requested by a
secure application, before sending the I/O message, the mask values and the wrapper con-
figuration are provided by the OS according to the procedure summarized in Table 7.1 and
Figure 7.4, i.e., using configuration messages or mapped register configuration.

7.3 I/O communication issues

With multiple active OSZs and other applications running into MCSoC the proce-
dure of sending and receiving I/O messages opening specific ports, with specific directions
is subject to four main issues:

(a) from OSZ to I/O – the message hit other OSZ in the path to the peripheral: this causes
the discard of the message, and an unreachable message (using the control NoC on
global mode) arrives at the source PE inside the OSZ . The PE sends mask con-
figuration messages to reestablish the initial wrappers conditions and retransmit the
message using source routing;

(b) from I/O to OSZ – the message hit other OSZ before arriving at the OSZ boundary:
this cause a message discarding and an unreachable message arrives at the PE con-
nected to the peripheral. This SP request a searchpath service and obtain the source
routing path to the target PE inside the OSZ . Then the SP sends a configuration
message to the peripheral to retransmit the message using the source routing path
received. At OSZ side no action is needed;

(c) from external PE to an I/O – after opening the input port and before receiving the pe-
ripheral response, a distinct I/O message addressed to a peripheral arrives in the OSZ ,
resulting in it being discarded by the wrapper. With the target address present in the
header flit is possible to discard the message at the wrapper and sends a unreach-
able message to the source PE. Then source PE request a searchpath to resend the
discarding message. At OSZ side no action is needed;

(d) from distinct I/O to OSZ – after opening the input port and before receiving the pe-
ripheral response a distinct I/O message (addressed to a PE outside the OSZ) arrives
in the OSZ , resulting in it being discarded by the wrapper. With the target address
present in the header flit is possible to discard the message at the wrapper and sends
a unreachable message to the source. The unreachable message arrives at the PE
connected to the peripheral and the procedure is similar to (b). At OSZ side no action
is needed.

100

As presented, each issue implies in specific actions taken by the OS to guarantee
the Appsec execution. Figure 7.6.a shows the OS’s procedure when a unreachable message
arrives to the PE after an I/O message is discarded due to hitting another OSZ . Initially the
PE verifies the message ID and if it belongs to an Appsec. If the discarded message belongs
to an Appsec, before sending the searchpath message the OS must compute new values to
the wrapper’s masks (close the opened wrappers in data NoC) and reconfigure the wrappers
to enable the searchpath message pass through control NoC wrapper.

Receive
Unreachable

message

IO
message
& secure

App

Send
searchpath
message

Calculate
mask

wrappers

Configure
masks

Receive
Backtrack
message

Mount
message
header

Send SR
message

Adjust last
hop

Secure
App

Send SR
IO

message

Calculate
mask

wrappers

Configure
masks

Adjust last
hop

Send
SR_path to
peripheral

yes

yes no

no

(b)(a)

discover wich message
was lost

App data message

App I/O message

Attached peripheral message

Figure 7.6: OS procedures at message received: (a) unreachable; (b) backtrack.

Figure 7.6.b shows the OS’s procedure when a backtrack message arrives on a
PE. The procedure’s goal is to discover which condition resulted in the discard of the original
message, to then resend it. The first case, (app data message - request/delivery) corre-
sponds to regular messages sent by applications that need resend because reached an
OSZ .

The second condition in Figure 7.6.b, app I/O message, means that an I/O mes-
sage reached another OSZ and, therefore, the source PE must send the message again.
First, the OS adjust the last hop (avoiding the message to be consumed by the local port at
the target PE). Next, the OS verifies if the message belongs to an Appsec and, if this is true,
calculate and configure the wrapper’ mask to then resend the message.

Finally, the third condition (peripheral message), means that the an I/O message
from an Peripheral attached to this router had a discarded message. In this case, the OS
of the PE is responsible by dealing with the discarding, obtaining the SR path sending it
to the peripheral. With the SR path the peripheral resend the I/O message to the target
PE. If none peripheral is attached to the routers means that wrong unreachable/backtrack
messages arrived to the PE.

101

A possible attack refers to a malicious peripheral that, even authenticated, sends
a spoofing message during the period that the input data port is open to the I/O message.
The prevention is associated to the lightweight cryptography, where the message received
by the internal SP discards the message due to the wrong key used to encode the message
and re-open the input port to receive the legitimate I/O message.

7.4 Protecting packet header and payload outside the OSZ

This section presents the mechanisms adopted to protect the header and the pay-
load of the I/O messages outside the OSZ since they are exposed to data integrity and
confidentiality attacks when leave the OSZ .

The MCSoC and peripheral share a secret key (Ke) obtained during the authen-
tication phase (Section 5.1.2) and this key is transmitted to the PEs of the OSZ during the
key exchange phase (Section 5.2.2). As presented below, four actions using the secret key
are addressed to protect the header and the payload of I/O messages.

• Header protection using software SipHash: at the MCSoC side, before sending the
I/O message, the OS applies the SipHash algorithm into the message header fields,
excepting the second field, and insert the computed value in the last field of the mes-
sage header (Figure 3.2). The second field is not considered by the SipHash because
it indicates whether the message uses SR or XY routing. As the SR mechanism dis-
card the hops already taken, the content of this flit changes in the path, and if it were
included in the SipHash, the computation at the target router would be wrong.

• Payload protection using software AES: at the MCSoC side, before sending the I/O
message, the OS applies the AES algorithm into the payload of the message;

• Payload protection using hardware AES: the hardware implementation is partially ad-
dressed into the architecture, in the context of other work in the research group [Oliveira
et al., 2018], with an AES module attached between the network interface module and
the local router port;

• Payload protection using hardware SIMON: the hardware implementation is partially
addressed into architecture, in the context of other work in the research group [Silva,
2018];

The SipHash [Aumasson and Bernstein, 2012] and AES [NIST, 2001] software im-
plementations are available as library modules of the OS. The execution of both algorithms
occurs transparently for the Appsec. After assembling the message header and before send-
ing the I/O message, the OS verifies whether it belongs to an Appsec or not to decide sending
it without protection or to apply both protection mechanisms.

102

Although the AES cannot be considered a lightweight cryptography module, we use
it for comparison purposes. The wrappers’ configuration messages do not need SipHash/AES
protection, because these messages do not leave the OSZ and therefore are not exposed
to attacks.

7.5 Peripheral Access Evaluation

This section evaluates the peripheral access, specifically the wrapper configuration
mechanism that enables the communication of PEs inside the OSZ with peripherals. The
evaluation uses a clock-cycle accurate RTL SystemC description of the MCSoC.

GMP

Peripheral

0 1 2 3 4 5

3

2

1

0

output wrapper and path

input wrapper and path

Legend:

Opaque Secure Zone

IO communicating PE

Figure 7.7: Example scenario for I/O evaluation.

The first experiment evaluates the performance impact using the proposed mech-
anism to communicate with I/O devices. The experiment uses the platform presented in
Figure 7.7 and consider five scenarios:

(1) baseline: an application executing I/O communication without OSZ ;

(2) OSZ activated, SPs {(1,1), (2,1), (1,2), (2,2)}, enabling to evaluate the impact of the
wrappers’ configuration through messages (worst-case);

(3) OSZ activated with a second OSZ (SPs {(4,1),(4,2)}), blocking the output I/O mes-
sages from SP (1,1), requiring the searchpath service and the reroute mechanism to
retransmit the output message;

(4) OSZ activated with a second OSZ (SPs {(4,2),(4,3)}), blocking the input I/O messages
from the peripheral, requiring the searchpath service and the reroute mechanism to
enable the peripheral to retransmit the message;

(5) OSZ activated with a second OSZ (SPs {(4,1),(4,2),(4,3)}, blocking both output and
input I/O messages, requiring two searchpath services and reroute mechanisms to
correct delivery the I/O message.

103

As the goal of this experiment is to evaluate the performance of wrapper configu-
ration and retransmission mechanism for I/O messages, the header and payload protection,
with MAC and cryptography respectively, are disabled.

In all scenarios, SP (1,1) runs a task with 50 iterations, communicating with the
peripheral at each iteration. Table 7.2 presents for each scenario the Appsec execution time
in the second column (in clock cycles), and the average overhead per iteration in the third
column (in clock cycles) according to the simulated scenario.

Table 7.2: Overhead to Communicate with I/O devices.

Scenario Clock
Cycles (CC)

Average Overhead
CC/iteration

(1) I/O 283,7K -
(2) I/O + OSZ 317,7K 680.7K
(3) I/O + OSZ + output rerouting 320,9K 744.4K
(4) I/O + OSZ + input rerouting 321,8K 763.0K
(5) I/O + OSZ + rerout. both dir. 326,5K 856.6K

The total execution time increases from 12% up to 15%, an expected result given
that the secure application is a synthetic application, executing only I/O communication. The
relevant result is the one presented in the third column, the communication overhead. The
overhead to configure the wrappers and find new paths corresponds to less than 900 clock
cycles per I/O access. Once the path is configured, it is used for the next packets, without
incurring additional overhead. Two main reasons explain this remarkable result: (i) a simple
wrapper configuration mechanism; (ii) the adoption of a dedicated NoC to find the paths
when rerouting is required.

The second experiment evaluates the wrappers’ behavior at the OSZ boundary, as
shown in Figure 7.7, under a DoS attack campaign promoted by a malicious task located at
SP (3,3), including several periods with the wrapper opened.

The experiment showed that no malicious task message traversed the OZS bound-
ary. This happens due two mechanisms, (i) the selective opening of the wrapper, where the
opening direction discard all messages in a contrary direction (i.e., if the wrapper is enabled
to send an I/O message, it discards any attempt to inject a message); (ii) the flag in the
header field (first flit of the packet) that differentiate the messages from I/O API from the task
communication API.

The third experiment evaluates the cost to protect the message header using a
MAC based on SipHash. Before sending an I/O message the SipHash value is computed
over the message header (except the second field) and appended at the last two fields.
During the I/O message reception, the SipHash value is computed locally and compared
with the received one. If a mismatch occurs the message is discarded and a retransmission
request is sent. As the SipHash support is not yet addressed at the peripheral side, for per-
formance evaluation we use another PE to send authenticated message headers, emulating

104

the communication with peripheral behavior. Table 7.3 presents the overhead to apply the
SipHash algorithm at the PE side.

Table 7.3: Overhead to compute the SipHash on I/O messages.

Scenario Clock
Cycles (CC)

Overhead
CC

Input 209 -
Input + SipHash 3221 3012
Output 246 -
Output + SipHash 2969 2723

The Input time corresponds to the interval between the OS interruption by DMNI
until releasing the message payload to the application (including the computation and MAC
verification, when applicable). The Output time measure starts after the wrapper configura-
tion until after the DMNI programming (including MAC computation, when applicable).

The Input overhead is slightly higher than the Output overhead due to the local MAC
computation and comparison, that validates the received message. Even with the SipHash
software implementation, the overhead corresponds to about 3000 clock cycles (3 µseg@
100MHz).

The fourth experiment evaluates the cost to protect the I/O message’ payload
through a software implementation of AES using ECB mode and 128 bits of key size. The
ECB mode presents a risk regarding the repetition of messages that could lead to plaintext
attacks.

The I/O message encryption occurs splitting the message payload in blocks of 16
bytes and applying the AES algorithm before send the message to the peripheral. At the
reception, after the DMNI interruption and before delivery the message to the application,
the decryption occurs splitting the received payload and applying the AES algorithm.

The AES uses a self-contained implementation provided by B. Conte [Conte, 2018]
without any cross-licensing. The time spent to encrypt or decrypt the I/O messages are
similar and scale with the payload length. The average value obtained during the AES
execution is 7000 clock cycles per block. Considering an I/O message with just 100 bytes
result in an overhead of approximately 49K clock cycles.

The number of clock cycles per block represents a considerable overhead, showing
the nonapplicability of a software implementation of the AES algorithm.

A hardware implementation of the AES [Hemanth, 2004] using the EBC opera-
tion mode was integrated to a similar MCSoC architecture (single 32 bits channel NoC,
no rerouting and I/O support) [Oliveira et al., 2018]. The proposed experiment uses one
AES module placed between the DMNI and the router ports, to process both operations,
encryption and decryption. Once the data is loaded, after 13 clock cycles, the data (en-
crypted/decrypted) is available. The AES module area evaluation uses ST Microelectronics

105

standard-cells and CMOS 65nm technology, with a silicon area corresponding to twice the
router area (8-flit buffer).

A serialized version of SIMON lightweight cryptography hardware module [Beaulieu
et al., 2013] was also implemented by the research group [Silva, 2018]. The work shows
a latency of 140 and 141 clock cycles to encrypt and decrypt a block, respectively. The
SIMON module area evaluation uses ST Microelectronics standard-cells and CMOS 65nm
technology in the synthesis, and the results present an area 5 times smaller than AES im-
plementation, equivalent to less than half of the router area.

7.6 Final Remarks

This chapter presented the mechanisms and protocols to enable communication
with peripherals from a secure application running inside an OSZ . We deal with two main
issues: (i) how to permits I/O communication from/to OSZ , presenting the protocol to define
access points in the border of the OSZ (original Thesis contribution) that selectively open
specific ports to I/O messages pass through the OSZ ’ wrapper borders ([Caimi and Moraes,
2019]) and, (ii) the protection of I/O messages outside of OSZ through header protection
using MAC and, payload protection, partially address, using AES (software and hardware
implementation) and SIMON (hardware implementation).

The evaluation results show a low impact on the wrappers configuration in all sce-
narios, less than 900 clock cycles per I/O access. Even in the presence of blocked paths,
there is a minimum effect over the I/O communication. This happens because the SP al-
ways use the last valid path to send the message. This way, after finding the new path using
the searchpath mechanism, following messages make use of this SR path, decreasing the
impact of a broken path.

The software mechanism using SipHash to protect the header’ message outside
the OSZ presents an acceptable cost of less than 3 µseg@ 100MHz. The software AES
implementation shows an impracticable cost about 7K clock cycles to encrypt or decrypt a
single block (128 bits). The hardware AES module implementation presents adequate per-
formance but penalizes the silicon area overhead. Otherwise, the hardware SIMON module
implementation shows a low area overhead and smaller performance when compared to
AES implementation.

The cryptographic hardware modules implementation illustrates an open design
space exploration to select a suitable encryption module that combines latency, throughput
and area.

106

8. CONCLUSION AND FUTURE WORK

In this Thesis, we introduced the following statement: It is feasible to develop
a protocol to secure applications, including the application admission, runtime isolation of
computation and communication resources, and access to external devices (memory and
peripherals). Compared to other works available in the literature, the proposed protocol
presents a smaller area, smaller communication latency, and execution time overhead.

Regarding to the first part of the statement, this Thesis proposed a set of protocols
and mechanisms to protect the execution of applications in MCSoCs during its three lifetime
phases: Admission, Execution and Peripheral Access. This Thesis did not have the intention
to cover all threats and attacks that the MCSoCs are exposed. Due to the MCSoCs com-
plexity the entire protection, considering hardware and software, is a large task, without a
silver bullet to solve the problem.

With respect to security in the application admission, the many-core must trust
the entity transmitting the application and the integrity of the application must be verified
to avoid the insertion of malicious code. The Thesis addressed these problems with two
mechanisms: (i) the mutual authentication between external entities (as peripherals and
applications’ injectors) and the MCSoC, obtaining at the end of the process a shared key
(Ke); (ii) the application’ tasks integrity guarantee, using a software-based MAC verification
with the SipHash algorithm.

At execution time, a malicious attacker may have access to sensitive computation
or communication data and, therefore, a secure application that processes sensitive data
will have its security harmed by a malicious process. The Thesis addressed the security
problem during the application execution using Opaque Secure Zones (OSZ), a mechanism
that avoids resource sharing by reserving computation and communication resources to
exclusive use of the secure application. An algorithm was proposed to define the OSZ
shape and location according to the resources required by the application and available at
the MCSoC. The communication isolation occurs using wrappers at control signals of the
NoC routers. To deal with lost messages and broken paths due to the OSZ activation, a
search-path mechanism and message rerouting using Source Routing (SR) were provided.

Relative to the communication with external devices, the issues refers to enable the
access to peripherals from the OSZ and the risk of unauthorized access to instructions and
data during the exchange or, even the tampering of the message header during the message
travel outside to the OSZ . The Thesis proposed a hardware module that manages the
wrappers masking the access of I/O packets selectively to/from peripherals, maintaining the
OSZ protection. The security of I/O messages outside of OSZ encompass header protection
using MAC and payload protection, partially addressed the latter, using AES (software and
hardware implementation) and SIMON (hardware implementation).

107

As presented in Chapter 1, resource sharing introduces vulnerabilities to the appli-
cations running on it. Regarding the security principles and the application lifetime phases,
vulnerabilities include integrity, confidentiality, availability, authentication, and authorization.

It is possible to explore such vulnerabilities with attacks that compromise the system
such as DoS, DDoS, timing attack, hardware trojan, spoofing, hijacking, man-in-the-middle,
trojan horse, and backdoor.

As presented, the Thesis addressed these vulnerabilities and attacks at different
phases of the application. In the following, we discuss the mechanisms adopted to prevent
and mitigate these vulnerabilities, with Tables 1.1 and 1.2 as a guideline for the discussion.

At application admission, the vulnerabilities addressed by the Thesis are the in-
tegrity, authentication, authorization, and partially the availability. The mutual authentication
(based on ECDH) and the MAC (based on SipHash) attached to the task’s object code deal
with these issues.

A MitM attack can occur if a malicious agent is placed between the MCSoC and
an external entity. This attack is prevented by the proposed mutual authentication mecha-
nism. Initially, the public keys of MCSoC and external entity are exchange using a secure
channel and, during the authentication the keys and nonce values are used to guarantee
the correct authentication of each one, preventing the MitM attack. At the end of the mutual
authentication, a common key Ke is obtained.

To prevent integrity attacks (such as trojan horse, backdoor, hijacking, and spoof-
ing), while transferring the task’s source code to the MCSoC, the ke is used as the key to
the SipHash MAC algorithm. Thus, the external entity previously authenticated compute and
attach a MAC to each task’ object-code. At MCSoC side the MAC object-code is verified
before proceed with the execution, preventing the insertion of malicious code to execute in
MCSoCand, also guarantee that only external entities with authorization deploy the secure
application in MCSoC.

The availability is partially addressed during the admission due to the communi-
cation model based on a master-slave mechanism where the external entity acts in slave
mode. Thus, DoS or DDoS attacks originated from external entities are mitigated, although
the traffic still exposed to other concurrent flows from others PEs into MCSoC.

At the application execution, the vulnerabilities addressed by the Thesis are the
availability, confidentiality, integrity and authorization (Table 1.1). The application isolation
using Opaque secure Zones (OSZ) is the mechanism used to prevent these issues. As
presented, when an OSZ is active, data messages do not cross its borders. Only I/O data
traffic can traverse, but just when the Appsec running inside the OSZ communicates with a
peripheral. This I/O traffic use specif OSZ boundary ports, with a specific direction, and only
one message in each direction is enabled.

108

Attacks to the availability (DoS and DDoS) are prevented due to the isolation pro-
vided by the OSZ , once none external data traffic crosses the internal limits of the OSZ
what prevents explore router congestion or router starvation during the Appsec execution. In
the same way, the prevention against confidentiality is guaranteed by the OSZ mechanism.
Timing attacks are prevented since no time inferences can be taken from messages inside
OSZ since none external data message can affect the router occupancy. Hardware trojan is
prevented since none data traffic crosses the OSZ boundary due to the wrappers activation,
avoiding data leakage.

The Appsec data integrity is also addressed by OSZ mechanism once, even that
only applications deployed by authenticated entities runs on it, none data message outgoing
the OSZ even when the application run in it tries to send data to a PE outside the OSZ .
In other words, even if an application deployed by a legitimate entity tries to forge a target
address outside the OSZ the data is not delivered due to the wrappers activation. In the
same way, no external application has the authorization to send messages to the OSZ
without previous authorization.

At the I/O access, the vulnerabilities addressed by the Thesis are the confidentiality,
integrity, authentication, and partially the availability. The mutual authentication of peripher-
als with the MCSoC, the MAC attached to the header of I/O messages, the encryption of the
payload in I/O messages, the master/slave communication model and the selective opening
of the OSZ boundaries are the mechanisms implemented to deal with these issues.

The availability is partially addressed during the I/O access due to master/slave
mechanism where the external entity acts in slave mode. Attacks like DoS or DDoS orig-
inated from external entities are mitigated, although the traffic still exposed to other flows
from others PEs into MCSoC.

Confidentiality attacks that explore the data leakage are addressed by the encryp-
tion of the I/O message’ payload, such way that only the external entity with the Ke key is able
to obtain the plaintext of the original message. The integrity of the I/O message is obtained
by the encryption of the payload and the MAC verification of header provided by SipHash
algorithm. The authorization is addressed by selective opening of ports in OSZ bordering
and the master/slave communication mode used on peripheral data exchange.

The second part of the Thesis statement present: Compared to other works avail-
able in the literature, the proposed protocol presents a smaller area, smaller communication
latency, and execution time overhead.

The hardware support to deal with the vulnerabilities addressed by the Thesis in-
cludes the brNoC, the wrappers, the Wrapper Mask Logic (WML) module and the encryption
modules (AES and Simon).

The brNoC and the baseline data NoC routers are synthesized using the ST Mi-
croelectronics standard-cells and CMOS 65nm technology. The baseline router has flit size

109

equal to 16 bits, two channels per link, buffer depth equal to 8, and support to XY and source
routing. The 4 and 8 rows versions of brNoC internal CAMs represent 20.49% and 30.86%
of the baseline router (data NoC), respectively. This is a remarkable value, indicating that the
4 row version is equivalent to one port of the baseline router (data NoC uses mesh topology
supporting 5 ports).

The AES and SIMON encryption modules area evaluation uses the same ST tech-
nology in the synthesis. The AES module presented a silicon area corresponding to twice
the data NoC router area (8-flit buffer). The SIMON module area evaluation presents an
area 5 times smaller than AES implementation, equivalent to less than half of the data NoC
router area.

The WML module and the wrappers were not synthesized, however the estimate
area is smaller than the 4 row brNoC router due to the modules uses only three registers
with 10 bits each one (1 wrapper and 2 mask registers), one 8 depth flit buffer and a control
FSM unit.

Considering the 4-row brNoC router, the SIMON module, the WML with wrapper
registers, the total area overhead is smaller than the area of the data NOC router. In per-
spective, the data NoC router corresponds roughly to 10% of the PE area in the baseline
platform. In other words, the hardware area overhead of the mechanism implemented in
the Thesis is equivalent to 10% of the baseline platform. The literature presents overheads
between 9.9% and 233% to deal with just one application lifetime phase.

Regarding the communication latency overhead induced by the proposed mecha-
nisms, two applications lifetime phases are affected: (i) the admission, due to MAC com-
putation and verification; (ii) I/O access due to the wrapper mask configuration, header and
payload protection by MAC and encryption respectively.

The first overhead induces only a delay to start the secure application and does not
impact the application execution time. As shown, the impact is less than 33K clock cycles
per Kbyte of the tasks’ source code. This overhead occurs once and does not impact on the
application execution time. In fact, due to the isolation mechanism promoted by the OSZ ,
the inter-task latency corresponds the best-case performance since there is no congestion
inside the OSZ .

The second overhead affects the communication latency. The wrapper mask con-
figuration requires about 680 clock cycles per I/O access. Evaluation with a synthetic ap-
plication showed an overhead up to 15% due to the need to open the OSZ to the I/O com-
munication. The header protection of I/O messages causes communication latency about
3K clock cycles per I/O message due to the MAC calculation and verification. The effec-
tive percentage overhead depends on the number of accesses performed by the application
during its execution. The payload protection of I/O messages also causes communication
overhead. The hardware implementation is partially addressed and shows small overhead

110

to encrypt/decrypt the message, about 13 clock cycles for AES and 140 clock cycles for
SIMON.

Regarding the execution time overhead presented by the reviewed works in the
Table 2.3, at the execution phase the execution time overhead is up to 35.8%, without taking
into account the peripherals access (not supported in the state-of-the-art works). Our work
presents an execution time overhead that is a function of the amount of I/O accesses. As
applications run without interference inside OSZ , the execution time corresponds to the
application running alone in the MCSoC (no overhead). The execution overhead occurs
only due to delay induced by MAC and encryption applied to the I/O messages.

8.1 Future Work

As a guideline for future work, this Thesis has room for improvements as follows:

• incorporate to the baseline platform a RISC-V processor module enabling the use of
standards benchmarks and delivering more computational power to the applications
and O.S.;

• extent the authentication protocol to support the common key (Ke) renew between the
peripherals and the MCSoC enabling full session key support;

• improve the Task Allocation and MAC verification phase making parallel the reception
of the task object code with the MAC calculation;

• explore others MAC algorithms, selecting a suitable algorithm considering area and
performance to implement a hardware module with the selected MAC;

• full hardware support to payload protection trough the implementation of a suitable
cryptographic module in the baseline platform;

• provide a open standard I/O interface, such as AMBA or Wishbone, at the borders of
MCSoC enabling the isolation of internal NoC signals to the peripheral. This feature
increases the MCSoC security once hidden the internal signaling used, hindering
attacks started on malicious peripherals;

• implement a peripheral request manager with arbitration functionality, enabling simul-
taneous requests to device and with capacity to deal with the unreachable messages
previously sent, including the retransmission using SR;

• explore the use of Software Defined Networks (SDNs) in the MCSoC, as proposed
by [Ruaro et al., 2019], to communication with peripherals. Potentially, this technique
avoid the use of crytographic modules to peripheral communication since the traffic is
isolated by dedicated paths between the source PE and the peripheral.

111

8.2 Summary of the publications produced during the Thesis

Table 8.1 presents the summary of the publications produced during the Thesis
period, linking each one with the related Thesis Chapter .

Table 8.1: Summary of Publications.

Publication Reference Relationship with the Thesis
Wachter, E.; Caimi, L.; Fochi, V.; Munhoz, D.; Moraes, F.
BrNoC: a Broadcast NoC for Control Messages in
Many-core Systems.
Microelectronics Journal, Volume 68, October 2017,
Pages 69–77.

Chapter 3 - development of
the BrNoC

Ruaro, M.; Caimi, L.; Fochi, V.; Moraes, F.
A Framework for Heterogeneous Many-core SoCs
Generation
In: LASCAS, 2019

Chapter 3 - Peripheral
support

Ruaro, M.; Caimi, L.; Fochi, V.; Moraes, F.
Memphis: a Framework for Heterogeneous
Many-core SoCs Generation and Validation.
Design Automation for Embedded Systems Journal,
Accepted: 8 August 2019.

Chapter 3 - Peripheral
support

Caimi, L.; Fochi, V.; Wachter, E.; Moraes, F.
Secure Admission and Execution of Applications in
Many-core Systems
In: SBCCI, 2017.

Chapter 4 - General view of
Thesis proposal

Caimi, L.; Fochi, V.; Wachter, E.; Moraes, F.
Runtime Creation of Continuous Secure Zones in
Many-Core Systems for Secure Applications
In: LASCAS, 2018

Chapter 5 - OSZ creation

Caimi, L.; Fochi, V.; Moraes, F.
Secure Admission of Applications in Many-Cores
In: ICECS, 2018

Chapter 5 - Appsec
Admission

Caimi, L.; Fochi, V.; Wachter, E.; Munhoz, D.; Moraes, F.
Activation of Secure Zones in Many-Core Systems
with Dynamic Rerouting
In: ISCAS, 2017, pp. 144-147

Chapter 6 - Appsec Execution

Caimi, L.; Moraes, F.
Activation of Secure Zones in Many-Core Systems
with Dynamic Rerouting
In: ISVLSI, 2019

Chapter 7 - Peripheral
access from 0SZ

Fochi, V.; Caimi, L.; Ruaro, M.; Wachter, E.; Moraes, F.
System Management Recovery Protocol for MPSoCs.
In: SOCC, 2017, pp. 367-374.

Publications not directly
related to the Thesis subject
- use of the BrNoC and
peripheral support
in the fault tolerance domain

Fochi, V.; Caimi, L.; Silva, M.; Wachter, E.; Moraes, F.
Fault-tolerance at the Management Level in
Many-core Systems
In: SBCCI, 2018

112

REFERENCES

[Ancajas et al., 2014] Ancajas, D. M., Chakraborty, K., and Roy, S. (2014). Fort-NoCs: Mit-
igating the threat of a compromised NoC. In ACM/IEEE Design Automation Conference
(DAC), pages 1–6.

[ARM, 2013] ARM (2013). big.LITTLE Technology: The Future of Mobile. Technical report,
ARM Limited.

[ARM, 2018] ARM (2018). ARM Security Technology: Building a Secure System using
TrustZone Technology . Source: http://infocenter.arm.com, Nov. 2018.

[Aumasson and Bernstein, 2012] Aumasson, J.-P. and Bernstein, D. J. (2012). SipHash: a
fast short-input PRF. In International Conference on Cryptology (INDOCRYPT), pages
489–508.

[Avizienis et al., 2004] Avizienis, A., Laprie, J. C., Randell, B., and Landwehr, C. (2004).
Basic concepts and taxonomy of dependable and secure computing. IEEE Transactions
on Dependable and Secure Computing, 1(1):11–33.

[Baron et al., 2013] Baron, S., Wangham, M. S., and Zeferino, C. A. (2013). Security mech-
anisms to improve the availability of a Network-on-Chip. In IEEE International Conference
on Electronics, Circuits, and Systems (ICECS), pages 609–612.

[Beaulieu et al., 2013] Beaulieu, R., Shors, D., Smith, J., Treatman-Clark, S., Weeks, B.,
and Wingers, L. (2013). The simon and speck families of lightweight block ciphers. IACR
Cryptology ePrint Archive, 2013:404.

[Beaulieu et al., 2015] Beaulieu, R., Shors, D., Smith, J., Treatman-Clark, S., Weeks, B., and
Wingers, L. (2015). The SIMON and SPECK Lightweight Block Ciphers. In ACM/IEEE
Design Automation Conference (DAC), pages 175:1–175:6.

[Benini and Micheli, 2002] Benini, L. and Micheli, G. (2002). Networks on chips: a new SoC
paradigm. Computer, 35(1):70–78.

[Bernstein et al., 2015] Bernstein, D. J., van Gastel, B., Janssen, W., Lange, T., Schwabe,
P., and Smetsers, S. (2015). TweetNaCl: A Crypto Library in 100 Tweets. In International
Conference on Cryptology and Information Security in Latin America (LATINCRYPT),
pages 64–83.

[Bjerregaard and Mahadevan, 2006] Bjerregaard, T. and Mahadevan, S. (2006). A Sur-
vey of Research and Practices of Network-on-chip. ACM Computing Surveys (CSUR),
38(1):1–51.

http://infocenter.arm.com

113

[Bogdanov et al., 2007] Bogdanov, A., Knudsen, L. R., Leander, G., Paar, C., Poschmann,
A., Robshaw, M. J., Seurin, Y., and Vikkelsoe, C. (2007). Present: An ultra-lightweight
block cipher. In Workshop on Cryptographic Hardware and Embedded Systems (CHES),
pages 450–466.

[Bohnenstiehl et al., 2016] Bohnenstiehl, B., Stillmaker, A., Pimentel, J., Andreas, T., Liu,
B., Tran, A., Adeagbo, E., and Bass, B. (2016). A 5.8 pJ/Op 115 billion ops/sec, to 1.78
trillion ops/sec 32nm 1000-processor array. In IEEE Symposium on VLSI Circuits (VLSIC),
pages 1–2.

[Boraten and Kodi, 2016] Boraten, T. and Kodi, A. K. (2016). Packet security with path sen-
sitization for NoCs. In Design, Automation Test in Europe Conference (DATE), pages
1136–1139.

[Caimi et al., 2018a] Caimi, L. L., Fochi, V., and Moraes, F. G. (2018a). Secure Admission
of Applications in Many-Cores. In IEEE International Conference on Electronics, Circuits
and Systems (ICECS), pages 761–764.

[Caimi et al., 2018b] Caimi, L. L., Fochi, V., Wachter, E., and Moraes, F. (2018b). Runtime
Creation of Continuous Secure Zones in Many-Core Systems for Secure Applications. In
IEEE Latin American Symposium on Circuits and Systems (LASCAS), pages 1–4.

[Caimi et al., 2017a] Caimi, L. L., Fochi, V., Wachter, E., Munhoz, D., and Moraes, F. G.
(2017a). Activation of Secure Zones in Many-core Systems with Dynamic Rerouting. In
IEEE International Symposium on Circuits and Systems (ISCAS), pages 144–147.

[Caimi et al., 2017b] Caimi, L. L., Fochi, V., Wachter, E., Munhoz, D., and Moraes, F. G.
(2017b). Secure Admission and Execution of Applications in Many-core Systems. In
Symposium on Integrated Circuits and Systems Design (SBCCI), pages 65–71.

[Caimi and Moraes, 2019] Caimi, L. L. and Moraes, F. (2019). Security in Many-Core SoCs
Leveraged by Opaque Secure Zones. In IEEE Computer Society Annual Symposium on
VLSI (ISVLSI), pages 471–476.

[Canniere and Preneel, 2006] Canniere, C. D. and Preneel, B. (2006). Trivium. Source:
http://www.ecrypt.eu.org/stream/e2-trivium.html, Nov. 2018.

[Carara et al., 2009] Carara, E. A., de Oliveira, R. P., Calazans, N. L. V., and Moraes, F. G.
(2009). HeMPS - a framework for NoC-based MPSoC generation. In IEEE International
Symposium on Circuits and Systems (ISCAS), pages 1345–1348.

[Castilhos et al., 2013] Castilhos, G., Mandelli, M., Madalozzo, G., and Moraes, F. (2013).
Distributed resource management in NoC-based MPSoCs with dynamic cluster sizes. In
IEEE Computer Society Annual Symposium on VLSI (ISVLSI), pages 153–158.

http://www.ecrypt.eu.org/stream/e2-trivium.html

114

[Certicom Research, 2009] Certicom Research (2009). SEC 1. Standards for Efficient Cryp-
tography Group: Elliptic Curve Cryptography. Source: http://www.secg.org/sec1-v2.pdf,
Dec. 2018.

[Churchhouse, 2002] Churchhouse, R. (2002). Codes and Ciphers: Julius Caesar, the
Enigma, and the Internet. Cambridge University Press, 240p.

[Coburn et al., 2005] Coburn, J., Ravi, S., Raghunathan, A., and Chakradhar, S. (2005).
SECA: Security-enhanced Communication Architecture. In IEEE International Conference
on Compilers, Architectures and Synthesis for Embedded Systems (CASES), pages 78–
89.

[Conte, 2018] Conte, B. (2018). Crypto-algorithms: AES. Source: https://github.com/B-
Con/crypto-algorithms, Nov. 2018.

[Dinechin et al., 2014] Dinechin, B. D. D., Amstel, D. V., Poulhiès, M., and Lager, G. (2014).
Time-critical computing on a single-chip massively parallel processor. In Design, Automa-
tion Test in Europe Conference (DATE), pages 1–6.

[Dobraunig et al., 2018] Dobraunig, C., Mendel, F., and Schläffer, M. (2018). Differential
Cryptanalysis of SipHash. Source: http://eprint.iacr.org/2014/722, Nov. 2018.

[Esmaeilzadeh et al., 2012] Esmaeilzadeh, H., Blem, E., Amant, R. S., Sankaralingam, K.,
and Burger, D. (2012). Dark silicon and the end of multicore scaling. IEEE Micro,
32(3):122–134.

[Evain and Diguet, 2005] Evain, S. and Diguet, J. P. (2005). From NoC security analysis to
design solutions. In IEEE Workshop on Signal Processing Systems Design and Imple-
mentation (SiPS), pages 166–171.

[Fernandes et al., 2016] Fernandes, R., Marcon, C., Cataldo, R., Silveira, J., Sigl, G., and
Sepúlveda, J. (2016). A security aware routing approach for NoC-based MPSoCs. In
Symposium on Integrated Circuits and Systems Design (SBCCI), pages 1–6.

[Fletcher et al., 2012] Fletcher, C. W., Dijk, M., and Devadas, S. (2012). A secure processor
architecture for encrypted computation on untrusted programs. In ACM Workshop on
Scalable Trusted Computing (WSTC), pages 3–8.

[GAPH, 2018] GAPH (2018). Hardware design support group. Source: www.inf.pucrs.br/
gaph/, Nov. 2018.

[Gebotys and Gebotys, 2003] Gebotys, C. H. and Gebotys, R. J. (2003). A framework for
security on NoC technologies. In IEEE Computer Society Annual Symposium on VLSI
(ISVLSI), pages 113–117.

http://www.secg.org/sec1-v2.pdf
https://github.com/B-Con/crypto-algorithms
https://github.com/B-Con/crypto-algorithms
http://eprint.iacr.org/2014/722
www.inf.pucrs.br/gaph/
www.inf.pucrs.br/gaph/

115

[Girão et al., 2011] Girão, G., Barcelos, D., and Wagner, F. R. (2011). Performance and
Energy Evaluation of Memory Organizations in NoC-Based MPSoCs under Latency and
Task Migration . In IEEE International Conference on Very Large Scale Integration (VLSI-
SoC), pages 56–80.

[Grammatikakis et al., 2014] Grammatikakis, M. D., Papadimitriou, K., Petrakis, P., Papa-
grigoriou, A., Kornaros, G., Christoforakis, I., and Coppola, M. (2014). Security Effective-
ness and a Hardware Firewall for MPSoCs. In IEEE High Performance Computing and
Communications (HPCC), pages 1032–1039.

[Grammatikakis et al., 2015a] Grammatikakis, M. D., Papadimitriou, K., Petrakis, P., Papa-
grigoriou, A., Kornaros, G., Christoforakis, I., Tomoutzoglou, O., Tsamis, G., and Coppola,
M. (2015a). Security in MPSoCs: A NoC Firewall and an Evaluation Framework. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems, 34(8):1344–
1357.

[Grammatikakis et al., 2015b] Grammatikakis, M. D., Petrakis, P., Papagrigoriou, A., Ko-
rnaros, G., and Coppola, M. (2015b). High-level security services based on a hard-
ware NoC Firewall module. In Workshop on Intelligent Solutions in Embedded Systems
(WISES), pages 73–78.

[Gupta et al., 2002] Gupta, V., Gupta, S., Chang, S., and Stebila, D. (2002). Performance
Analysis of Elliptic Curve Cryptography for SSL. In ACM Workshop on Wireless Security
(WiSe), pages 87–94.

[Hanka and Wippel, 2011] Hanka, O. and Wippel, H. (2011). Secure deployment of
application-tailored protocols in future networks. In International Conference on the Net-
work of the Future (NoF), pages 10–14.

[Hankerson et al., 2003] Hankerson, D., Menezes, A. J., and Vanstone, S. (2003). Guide to
Elliptic Curve Cryptography. Springer-Verlag New York, Inc., 332p.

[He et al., 2012] He, D., Chen, J., and Chen, Y. (2012). A secure mutual authentication
scheme for session initiation protocol using elliptic curve cryptography. Security and Com-
munication Networks, 5(12):1423–1429.

[Hemani et al., 2000] Hemani, A., Jantsch, A., Kumar, S., Postula, A., Öberg, J., Millberg,
M., and Lindqvist, D. (2000). Network on chip: An architecture for billion transistor era. In
Nordic Circuits and Systems Conference (NORCHIP), pages 166–173.

[Hemanth, 2004] Hemanth (2004). AES crypto core. Source: https://opencores.org/
projects/aes_crypto_core, Dec. 2018.

https://opencores.org/projects/aes_crypto_core
https://opencores.org/projects/aes_crypto_core

116

[Hoffman et al., 2015] Hoffman, C., Cortes, M., Aranha, D. F., and Araujo, G. (2015). Com-
puter security by hardware-intrinsic authentication. In Conference on Hardware/Software
Codesign and System Synthesis (CODES+ISSS), pages 143–152.

[Hu et al., 2015] Hu, Y., Müller-Gritschneder, D., Sepulveda, M. J., Gogniat, G., and
Schlichtmann, U. (2015). Automatic ILP-based Firewall Insertion for Secure Application-
Specific Networks-on-Chip. In Workshop on Interconnection Network Architectures: On-
Chip, Multi-Chip (INA-OCMC), pages 9–12.

[Intel, 2018] Intel (2018). Intel core i9-7980xe extreme edition processor. Source: https://
www.intel.com/content/www/us/en/products/processors/core/x-series/i9-7980xe.html,
Nov. 2018.

[Isakovic and Wasicek, 2013] Isakovic, H. and Wasicek, A. (2013). Secure channels in an
integrated MPSoC architecture. In Industrial Electronics Society (IECON), pages 4488–
4493.

[ISO/IEC , 2012] ISO/IEC (2012). Trivium standard ISO/IEC 29192-3. Source: http://
www.ecrypt.eu.org/stream/e2-trivium.html, Nov. 2018.

[Jacob et al., 2017] Jacob, N., Heyszl, J., Zankl, A., Rolfes, C., and Sigl, G. (2017). How to
break secure boot on FPGA socs through malicious hardware. In Conference on Crypto-
graphic Hardware and Embedded Systems (CHES), pages 425–442.

[Katz and Lindell, 2014] Katz, J. and Lindell, Y. (2014). Introduction to Modern Cryptogra-
phy. Chapman & Hall/CRC, 512p.

[Khernane et al., 2016] Khernane, N., Potop-Butucaru, M., and Chaudet, C. (2016).
BANZKP: a Secure Authentication Scheme Using Zero Knowledge Proof for WBANs. In
International Conference on Mobile Ad Hoc and Sensor Systems (MASS), pages 307–
315.

[Kinsy et al., 2017] Kinsy, M. A., Khadka, S., Isakov, M., and Farrukh, A. (2017). Hermes:
Secure heterogeneous multicore architecture design. In IEEE International Symposium
on Hardware Oriented Security and Trust (HOST), pages 14–20.

[Koblitz, 1987] Koblitz, N. (1987). Elliptic curve cryptosystems. Mathematics of Computa-
tion, 48(177):203–209.

[Kuntze, 2013] Kuntze, N.; Rudolph, C. (2013). Secure deployment of SmartGrid equipment.
In IEEE Power Energy Society General Meeting (PESGM), pages 1–5.

[Linder and Harden, 1991] Linder, D. H. and Harden, J. C. (1991). An Adaptive and
Fault Tolerant Wormhole Routing Strategy for k-ary n-cubes. Transactions on Computer,
40(1):2–12.

https://www.intel.com/content/www/us/en/products/processors/core/x-series/i9-7980xe.html
https://www.intel.com/content/www/us/en/products/processors/core/x-series/i9-7980xe.html
http://www.ecrypt.eu.org/stream/e2-trivium.html
http://www.ecrypt.eu.org/stream/e2-trivium.html

117

[Mandelli et al., 2011] Mandelli, M., Amory, A., Ost, L., and Moraes, F. G. (2011). Multi-task
Dynamic Mapping Onto NoC-based MPSoCs . In Symposium on Integrated Circuits and
Systems Design (SBCCI), pages 191–196.

[Mellanox Tecnhlogies, 2018] Mellanox Tecnhlogies (2018). TILE-Gx72 Processor
Overview. Source: http://www.mellanox.com/page/products_dyn?product_, Nov. 2018.

[Moraes et al., 2004] Moraes, F. G., Calazans, N., Mello, A., Möller, L., and Ost, L. (2004).
HERMES: an infrastructure for low area overhead packet-switching networks on chip. In-
tegration, the VLSI Journal, 38(1):69 – 93.

[Mouha et al., 2014] Mouha, N., Mennink, B., Herrewege, A. V., Watanabe, D., Preneel, B.,
and Verbauwhede, I. (2014). Chaskey: An Efficient MAC Algorithm for 32-bit Microcon-
trollers. In Selected Areas in Cryptography (SAC), pages 306–323.

[NaNoC, 2015] NaNoC (2015). The nanoc project. Source: http://www.nanoc-project.eu/,
Nov. 2018.

[NASA, 2015] NASA (2015). Numerical aerodynamic simulation - nas. Source: http://
www.nas.nasa.gov/publications/npb.htm, Nov. 2018.

[NIST, 2001] NIST (2001). Announcing the advanced encryption standard (aes). Source:
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf, Nov. 2018.

[Oliveira et al., 2018] Oliveira, B., Reusch, R., Medina, H., and Moraes, F. G. (2018). Eval-
uating the Cost to Cipher the NoC Communication. In IEEE Latin American Symposium
on Circuits and Systems (LASCAS), pages 1–4.

[Oracle, 2017] Oracle (2017). Oracle’s SPARC T8 and SPARC M8 Server Architecture.
Technical report, Oracle Corporation.

[Osvik et al., 2006] Osvik, D. A., Shamir, A., and Tromer, E. (2006). Cache Attacks and
Countermeasures: The Case of AES. In Topics in Cryptology, pages 1–20.

[OVP, 2018] OVP (2018). Open virtual platform. Source: http://www.ovpworld.org/
technology_ovpsim, Nov. 2018.

[O’donnell et al., 2004] O’donnell, C. W., Suh, G. E., and Devadas, S. (2004). Puf-based ran-
dom number generation. Source: http://csg.csail.mit.edu/pubs/memos/Memo-481/Memo-
481.pdf, Dec. 2018.

[Papadimitriou et al., 2015] Papadimitriou, K., Petrakis, P., Grammatikakis, M. D., and Cop-
pola, M. (2015). Security Enhancements for building saturation-free, low-power NoC-
based MPSoCs. In IEEE Conference on Communications and Network Security (CNS),
pages 594–600.

http://www.mellanox.com/page/products_dyn?product_
http://www.nanoc-project.eu/
http://www.nas.nasa.gov/publications/npb.htm
http://www.nas.nasa.gov/publications/npb.htm
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
http://www.ovpworld.org/technology_ovpsim
http://www.ovpworld.org/technology_ovpsim
http://csg.csail.mit.edu/pubs/memos/Memo-481/Memo-481.pdf
http://csg.csail.mit.edu/pubs/memos/Memo-481/Memo-481.pdf

118

[Popovici et al., 2010] Popovici, K., Rousseau, F., Jerraya, A. A., and Wolf, M. (2010). Em-
bedded Software Design and Programming of Multiprocessor System-on-Chip: Simulink
and System C Case Studies. Springer Publishing Company, Incorporated, 290p.

[Rajesh et al., 2015] Rajesh, J., Ancajas, D. M., Chakraborty, K., and Roy, S. (2015). Run-
time Detection of a Bandwidth Denial Attack from a Rogue Network-on-Chip. In IEEE/ACM
International Symposium on Networks-on-Chip (NOCS), pages 8:1–8:8.

[Ramachandran, 2002] Ramachandran, J. (2002). Designing Security Architecture Solu-
tions . John Wiley & Sons, Inc., 483p.

[Real et al., 2016a] Real, M. M., Migliore, V., Lapotre, V., and Gogniat, G. (2016a). AL-
MOS Many-Core Operating System Extension with New Secure-Enable Mechanisms for
Dynamic Creation of Secure Zones. In Euromicro International Conference on Parallel,
Distributed, and Network-Based Processing (PDP), pages 820–824.

[Real et al., 2018] Real, M. M., Wehner, P., Lapotre, V., Göhringer, D., and Gogniat, G.
(2018). Application Deployment Strategies for Spatial Isolation on Many-Core Accelera-
tors. ACM Transaction on Embedded Computing Systems, 17(2):55:1–55:31.

[Real et al., 2016b] Real, M. M., Wehner, P., Migliore, V., Lapotre, V., Göhringert, D., and
Gogniat, G. (2016b). Dynamic spatially isolated secure zones for NoC-based many-core
accelerators. In Symposium on Reconfigurable Communication-centric Systems-on-Chip
(ReCoSoC), pages 1–6.

[Reinbrecht et al., 2018] Reinbrecht, C., Forlin, B., Zankl, A., and Sepúlveda, J. (2018).
Earthquake — A NoC-based optimized differential cache-collision attack for MPSoCs. In
Design, Automation Test in Europe Conference (DATE), pages 648–653.

[Reinbrecht et al., 2016a] Reinbrecht, C., Susin, A., Bossuet, L., and Sepúlveda, J. (2016a).
Gossip NoC - Avoiding Timing Side-Channel Attacks through Traffic Management. In IEEE
Computer Society Annual Symposium on VLSI (ISVLSI), pages 601–606.

[Reinbrecht et al., 2016b] Reinbrecht, C., Susin, A., Bossuet, L., Sigl, G., and Sepúlveda,
J. (2016b). Side channel attack on NoC-based MPSoCs are practical: NoC Prime+Probe
attack. In Symposium on Integrated Circuits and Systems Design (SBCCI), pages 1–6.

[Reinbrecht et al., 2017] Reinbrecht, C., Susin, A., Bossuet, L., Sigl, G., and Sepúlveda,
J. (2017). Timing attack on NoC-based systems: Prime+Probe attack and NoC-based
protection. Microprocessors and Microsystems (MICPRO), 52(C):556–565.

[Rouget et al., 2017] Rouget, P., Badrignans, B., Benoit, P., and Torres, L. (2017). Secboot -
lightweight secure boot mechanism for linux-based embedded systems on fpgas. In Sym-
posium on Reconfigurable Communication-centric Systems-on-Chip (ReCoSoC), pages
1–5.

119

[Ruaro et al., 2018] Ruaro, M., Caimi, L. L., Fochi, V., and Moraes, F. G. (2018). A Frame-
work for Heterogeneous Many-core SoCs Generation. In IEEE Latin American Sympo-
sium on Circuits and Systems (LASCAS), pages 89–92.

[Ruaro et al., 2019] Ruaro, M., Jantsch, A., and Moraes, F. G. (2019). Self-adaptive qos
management of computation and communication resources in many-core socs. ACM
Transactions on Embedded Computing Systems, 18(4):37:1–37:21.

[Ruaro et al., 2016] Ruaro, M., Lazzarotto, F. B., Marcon, C. A., and Moraes, F. G. (2016).
DMNI: A specialized network interface for NoC-based MPSoCs. In IEEE International
Symposium on Circuits and Systems (ISCAS), pages 1202–1205.

[Ruaro and Moraes, 2017] Ruaro, M. and Moraes, F. G. (2017). Demystifying the cost of
task migration in distributed memory many-core systems. In IEEE International Sympo-
sium on Circuits and Systems (ISCAS), pages 1–4.

[Salloum et al., 2013] Salloum, C. E., Elshuber, M., Höftberger, O., Isakovic, H., and Wa-
sicek", A. (2013). The ACROSS MPSoC – A new generation of multi-core proces-
sors designed for safety–critical embedded systems. Microprocessors and Microsystems
(MICPRO), 37(8):1020 – 1032.

[Schneier, 1996] Schneier, B. (1996). Applied cryptography: protocols, algorithms, and
source code in C. John Wiley & Sons, Inc., 758p.

[Sepúlveda et al., 2015a] Sepúlveda, J., Diguet, J. P., Strum, M., and Gogniat, G. (2015a).
NoC-Based Protection for SoC Time-Driven Attacks. IEEE Embedded Systems Letters
(ESL), 7(1):7–10.

[Sepúlveda et al., 2015b] Sepúlveda, J., Flórez, D., and Gogniat, G. (2015b). Reconfig-
urable Group-Wise Security Architecture for NoC-Based MPSoCs Protection. In Sympo-
sium on Integrated Circuits and Systems Design (SBCCI), pages 26:1–26:6.

[Sepúlveda et al., 2015c] Sepúlveda, J., Flórez, D., and Gogniat, G. (2015c). Recon-
figurable security architecture for disrupted protection zones in NoC-based MPSoCs.
In Symposium on Reconfigurable Communication-centric Systems-on-Chip (ReCoSoC),
pages 1–8.

[Sepúlveda et al., 2017] Sepúlveda, J., Flórez, D., Immler, V., G., G., and Sigl, G. (2017).
Efficient security zones implementation through hierarchical group key management at
NoC-based MPSoCs. Microprocessors and Microsystems (MICPRO), 50:164 – 174.

[Sepúlveda et al., 2016] Sepúlveda, J., Flórez, D., Soeken, M., Diguet, J. P., and Gogniat, G.
(2016). Dynamic NoC buffer allocation for MPSoC timing side channel attack protection.
In IEEE Latin American Symposium on Circuits Systems (LASCAS), pages 91–94.

120

[Sepúlveda et al., 2015d] Sepúlveda, J., Gogniat, G., Flórez, D., Diguet, J. P., Pires, R., and
Strum, M. (2015d). TSV protection: Towards secure 3D-MPSoC. In IEEE Latin American
Symposium on Circuits Systems (LASCAS), pages 1–4.

[Sepúlveda et al., 2018] Sepúlveda, J., Willgerodt, F., and Pehl, M. (2018). SEPUFSoC:
Using PUFs for Memory Integrity and Authentication in Multi-Processors System-on-Chip.
In Great Lakes Symposium on VLSI (GLSVLSI), pages 39–44.

[Sharma et al., 2018] Sharma, G., Ellinidou, . S., Anand, R., Kuchta, V., Markowitch, O., and
Dricot, J. (2018). Secure Communication on NoC based MPSoC. In International Confer-
ence on Security and Privacy in Communication Networks (SecureComm), page 12.

[Silva, 2018] Silva, C. L. (2018). Design of a lightweight cryptography module for FPGA
based on Simon and Speck algorithms. Course Completion Assignment, PUCRS. Source:
http://www.inf.pucrs.br/~moraes/docs/tcc/tcc_cristovam.pdf, Dec. 2018.

[Silva and Zeferino, 2017] Silva, M. R. and Zeferino, C. A. (2017). Confidentiality and Au-
thenticity in a Platform Based on Network-on-Chip. In Brazilian Symposium on Computing
Systems Engineering (SBESC), pages 225–230.

[Sodani et al., 2016] Sodani, A., Gramunt, R., Corbal, J., Kim, H. S., Vinod, K., Chinthamani,
S., Hutsell, S., Agarwal, R., and Liu, Y. C. (2016). Knights Landing: Second-Generation
Intel Xeon Phi Product. IEEE Micro, 36(2):34–46.

[Wachter et al., 2017] Wachter, E., Caimi, L. L., Fochi, V., Munhoz, D., and Moraes, F. G.
(2017). BrNoC: A broadcast NoC for control messages in many-core systems. Micro-
electronics Journal, 68:69 – 77.

[Wang and Suh, 2012] Wang, Y. and Suh, G. E. (2012). Efficient Timing Channel Protec-
tion for On-Chip Networks. In IEEE/ACM International Symposium on Networks-on-Chip
(NOCS), pages 142–151.

[Wassel et al., 2013] Wassel, H. M. G., Gao, Y., Oberg, J. K., Huffmire, T., Kastner, R.,
Chong, F. T., and Sherwood, T. (2013). SurfNoC: A Low Latency and Provably Non-
interfering Approach to Secure Networks-on-chip. In International Symposium on Com-
puter Architecture (ISCA), pages 583–594.

[Wassel et al., 2014] Wassel, H. M. G., Gao, Y., Oberg, J. K., Huffmire, T., Kastner, R.,
Chong, F. T., and Sherwood, T. (2014). Networks on Chip with Provable Security Proper-
ties. IEEE Micro, 34(3):57–68.

[Wehner et al., 2015] Wehner, P., Rettkowski, J., Kleinschmidt, T., and Göhringer, D. (2015).
MPSoCSim: An extended OVP simulator for modeling and evaluation of Network-on-Chip
based heterogeneous MPSoCs. In Conference on Embedded Computer Systems: Archi-
tectures, Modeling, and Simulation (SAMOS), pages 390–395.

http://www.inf.pucrs.br/~moraes/docs/tcc/tcc_cristovam.pdf

121

[Woszezenki, 2007] Woszezenki, C. (2007). Alocação de Tarefas e Comunicação entre
Tarefas em MPSoCs. Master’s thesis, Pontifical Catholic University of Rio Grande do Sul
(PUCRS).

