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SÍNTESE DE IMAGEM A PARTIR DE TEXTO COM

DESENTRELAÇAMENTO COMPLETO

RESUMO

Algoritmos de generalização sofrem vários problemas. Comumente, os algoritmos de
aprendizado profundo tendem a se ajustar a uma quantidade limitada de dados, gerando re-
sultados insatisfatórios para dados não vistos. No caso de modelos geradores profundos, esse
problema se manifesta de forma diferente. O modelo tende a ignorar nuances da distribuição
real e colapsar em atributos mais comuns. Embora em algum grau, esse seja um comportamento
desejado, isso pode levar o algoritmo a gerar imagens com diversidade muito reduzida, não ex-
plorando todos os atributos fornecidos pela distribuição real. Redes generativas profundas (por
exemplo, GANs) não têm custo explícito para incentivar a diversidade durante o treinamento.
Além disso, as GANs foram inicialmente projetadas para gerar amostras aleatórias sem con-
trole do usuário. Propomos um método baseado em desentrelaçamento para resolver ambos os
problemas de uma só vez para algoritmos de síntese de imagem a partir de texto. Primeiro,
forçamos o desentrelaçamento de conceitos não descritos por descrições textuais (por exemplo,
o segundo plano). Então, usamos as representações desentrelaçadas para fornecer combina-
ções aleatórias para o gerador. Isso orienta o gerador para um mapeamento mais completo,
gerando um aumento na diversidadea partir da mesma quantidade de dados. Com representa-
ções desentrelaçadas, o framework também ganha controle sobre a geração para cada conceito.
Realizamos vários experimentos e estudos de ablação para validar nossas contribuições em um
conjunto de dados de um único objeto. Os resultados mostram melhorias para ambos os ob-
jetivos e nenhum efeito colateral para os frameworks tradicionais. Nossa abordagem pode ser
facilmente usada em outros frameworks para aumentar o controle, a diversidade e o realismo.

Palavras-Chave: Modelos Geradores, GANs, Síntese de texto à imagem, Desentrelaçamento.





FULLY-DISENTANGLED TEXT-TO-IMAGE SYNTHESIS

ABSTRACT

Generalization algorithms suffer from several problems. Commonly, deep learning
algorithms are prone to overfit a limited amount of data, generating unsatisfactory results for
unseen data. In the case of deep generative models, this problem manifests itself differently. The
model tends to ignore nuances from the real distribution and to collapse into the most common
attributes. To some degree, this is a desired behavior, but this can lead the algorithm to generate
images with very reduced diversity, not exploring all attributes provided by the real distribution.
Deep generative networks (e.g. GANs) have no explicit objective to encourage diversity during
training. Furthermore, GANs were initially designed to generate random realistic samples with
no control for the user. We propose a disentanglement-base method to tackle both problems at
once for text-to-image synthesis frameworks. First, we force the disentanglement of concepts
not described by textual descriptions (e.g. background). Then, we use the learned disentangled
representations to provide random combinations for the generator. This guides the generator
to a more complete mapping, hence increasing diversity using the same amount of data. With
disentangled representations, the framework also gains control over synthesis for each concept.
We conduct several experiments and ablation studies to validate our contributions on a single-
object dataset. Results show improvements for both goals and no side-effects for the traditional
text-to-image frameworks. Our approach can easily be used on top of other frameworks to
increase control, diversity, and realism.

Keywords: Generative Models, GANs, Text-to-image Synthesis, Disentanglement.
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1. INTRODUCTION

Image synthesis has improved significantly in the past years due to the rise of Deep
Learning algorithms, more specifically, Generative Adversarial Networks [19] (GANs). The
GAN framework combines high-level feature representation of data, provided by deep neural
networks, and an adversarial training procedure to close the gap between complex distributions.
With the use of GANs, any unknown distributions (e.g. images of birds) can be mapped from
a known distribution (e.g. Gaussian) without relying on any additional supervision but a
limited amount of samples from the target distribution. Without an explicit mathematical
representation, new data indistinguishable from the real can be synthesized.

Initially, GANs were designed to synthesize images from random noise with no control
of what should be drawn. To overcome this issue, Mirza et al. [42] suggested the use of
conditions to guide generation. The framework adds on top of the original GAN an auxiliary
categorical representation of classes or attributes. Following this framework, Reed et al. [49]
proposed the use of text descriptions, which became the benchmark framework for a new field
on deep learning research: text-to-image synthesis.

Text-to-image synthesis is the task of generating images from natural language. The
natural language provides an easy way, for users, to generate or manipulate images based
on their will. It is a general constraint that can guide different aspects of an image. With
text descriptions, one could guide the synthesis process to have specific objects with specific
attributes such as colors, textures, relative position, etc.

Furthermore, natural language is an appropriate and powerful protocol towards au-
tomation. It enhances human-computer interaction by facilitating access to computers by un-
sophisticated computer users, users in hands-busy situations (e.g. car driving), and users with
disabilities [38]. Closing the gap between text and image ultimately means to give computers
visual knowledge from our most ordinary way of communication.

However, like any machine learning algorithm, GANs undergoes some statistical prob-
lems of generalization; ignoring less common features from the real distribution and generating
samples with low diversity [61]. Likewise, it is known that GANs are prone to suffer from mode
collapse, where equal samples are generated from different points of the known distribution.
Specifically, in the case of text descriptions, such issues can become more evident. It is safe to
say that text description can not provide complete pixel-level information of an image. Thus,
for the text-to-image synthesis, much of the content must be “imagined” taking into account
the desired distribution. Text-to-image models are likely to learn common properties for these
“free” attributes and are not encouraged to explore all features contained in the real data. This
makes text descriptions good in guiding synthesis with a great diversity of colors and textures,
but weak in providing diversity for shapes, poses, backgrounds or any other feature rarely
described by natural language.
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Several alternatives have been proposed to tackle these problems and to overcome
general text-to-image GAN’s limitations: data augmentation for text latent space smoothness
[78, 54]; disentanglement [48]; multi-objective discriminators [11]; and many others. This work
focuses its efforts on increasing diversity and control via the disentanglement of concepts.

Text-to-image synthesis frameworks commonly receive only two inputs: a text de-
scription and a random noise, which stands alone for diversity. The noise stores all mapped
variations for a given text description, which can tie together distinct attributes based on fre-
quently seen combinations. Disentanglement aims to decouple a specific attribute from the
noise, which allows the use of non-frequent combinations to increase diversity. For instance, in
the case of images of birds, where a body shape would be taken to easily fit the most common
color-shape combination (e.g. small neck and yellow body), different shapes can be generated
with the same color (e.g. long neck and yellow body). Moreover, once a concept is disentangled
from the random noise, it offers a new controllable feature for the synthesis. If a user decides
to make small changes in the bird’s shape and keep the other features constant, he/she can
simply marginalize the disentangled condition.

General image synthesis has three main objectives to be tackled: realism, which is
associated to how close the learned distribution is to the real distribution; control, related to
the capability of the user to choose what will be drawn; and diversity, related to the model
capacity on exploring the full space of possible images to be synthesized.

This work provides a novel way of disentangling concepts for text-to-image synthesis
as a proxy to tackle control and diversity. We found that disentanglement can be achieved
by conditioning synthesis on a chosen concept and forcing consistency with extra supervision.
This approach not only encourages a more diverse mapping but also provides control, letting
the user choose any desired combination of features.

We now define image content as three distinct concepts: object style (colors and tex-
tures); object boundaries (shape and position); and object context (background) [56]. Since
text descriptions mostly provide style information [49], the proposed method focuses on dis-
entangling shape and background from the traditional GAN noise. We add two consistency
modules that enforce shape and background conditioning. The framework is then able to learn
mismatched combinations of attributes at training time. Also, the method learns new repre-
sentations of conditions that, at inference time, can guide synthesis or be completely discarded,
preserving the traditional text-to-image GAN feature of generating samples only from natural
language and a random noise. The ultimate result is a more complete mapping between text
descriptions and images. Now, every text description can be mapped to any combination of
style, shape, and background contained in the dataset.

Additionally, we employ text representation from NLP (Natural Language Processing)
word-vector models instead of the sentence-level representations used on previous work. This
technique provides better generalization for words not contained on the task-specific dataset
vocabulary and is more appropriate for our disentanglement method, giving a word-level sen-
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sitivity to the model. Furthermore, we argue that the problem of multimodal mapping is
addressed more properly by using a raw representation of both modalities (text and image).

To summarize, the contributions of this work are: (i) two modules for shape and back-
ground disentanglement on text-to-image GANs as a proxy to increase control and diversity;
(ii) an adapted text-to-image synthesis architecture for the use of NLP word vectors that gives
word-level sensitivity to the model for a better disentanglement, prevent bad conditioning, and
increase general results on the task.
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2. BACKGROUND

In this chapter, we will dive into the concepts and modules that compose the base
framework used in this work. We begin by introducing the frameworks that preceded the first
text-to-image synthesis GAN [49] and end with a related work section to contextualize our
contributions in the current research status.

2.1 Generative Models

In Machine Learning, every task can be defined as the process of learning a target
function f : X −→ Y , or equivalent P (Y |X). Generative and discriminative modeling are two
distinct designs of learning algorithms for this purpose. Given data samples X and their labels
Y , Mitchell [29] defines a generative model as one capable of describing how to generate random
instances of X conditioned on the target attribute Y by learning the distribution of P (X|Y ).
Classifiers such as Naive Bayes are considered generative models since they estimate P (X|Y )

and P (Y ) to ultimately learn P (Y |X) for classification. On the other hand, Linear Regression
is an example of a discriminative classifier, since it directly estimates P (Y |X).

In the case of Naive Bayes, generative modeling is an intermediate step for classifica-
tion. As opposed to that, a sub-field of deep learning focuses on the capability of synthesiz-
ing data indistinguishable from the original domain: content synthesis or content generation.
Leveraging from the success of deep learning on high-level feature extraction, several studies
have tried to generate new content on image data. Work like Pixel-RNN [63] and Variational
Autoencoder [33] achieved promising results. However, arguably Generative Adversarial Net-
works (GANs), proposed by Goodfellow [19], opened a new path on content generation and
established itself as the state-of-the-art in many related tasks. GANs have been widely used
in tasks such as single-image super resolution [35], unsupervised learning [55], image-to-image
translation [28], semantic image in-painting [75], and domain adaptation [23].

2.2 Generative Adversarial Networks

Generative adversarial networks are generative models that address the unsupervised
learning problem of density estimation without explicitly defining a density function [19]. In-
stead, GANs tackle the problem by mapping some unknown data distribution px to a prior
known distribution pz ∼ N (µ, σ2). Once the mapping is concluded, the network can generate
new data indistinguishable from px by sampling from pz.

The GAN framework comprises two parametric functions whose objectives, though
concurrent, cooperate for the final objective. The first is the generator Gθg(·), trained to learn
the one-way mapping pz −→ px. The second is the discriminator Dθd(·), a binary classifier
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trained to distinguish if its input comes from px or pg, where pg is the distribution of samples
generated by G. Ultimately, the discriminator learns to distinguish between real data from the
dataset and fake data coming from the generator (see Figure 2.1).
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Figure 2.1: Vanilla GAN framework, where x denotes real images from the dataset and x̂ denote
fake images coming from the generator. Real and fake images are fed into the discriminator
one at a time.

The training dynamics is based on the capacity of neural networks to encode high-level
features and the backpropagation gradient flow from D to G. While D gets better on its task
it is simultaneously providing gradients for G to generate samples closer to the distribution px.
In practice, both G and D are trained alternately, updating θg or θd at each step. The final
objective is achieved when the generated data Gθg(z) ∼ pg becomes indistinguishable from px,
or simply pg = px. The training objective function is formally defined as:

min
G

max
D

V (G,D) = Ex∼px(x)[logDθd(x)] + Ez∼pz(z)[log (1−Dθd(Gθg(z)))], (2.1)

a zero-sum game, where the first term represents the expected classification given an input from
px and the second the expected classification given an input from pg.

Considering that D is a binary classifier (outputs 1 for real and 0 for fake), we want
the above expression to have its maximum value when updating θd, which means set Dθd(x) = 1

and Dθd(Gθg(z)) = 0. Likewise, we want the minimum value by setting Dθd(Gθg(z)) = 1 when
updating θg. Note that, to update θg, the first term does not need to be computed. In practice,
for numeric stability, equation. 2.1 is split into:

Ld = Ex∼px [log (1−D(x))] + Ez∼pz [logD(G(z))], (2.2)

Lg = Ez∼pz [log (1−D(G(z)))] (2.3)

to be both minimized during optimization. Thus, the labels are modified to D(x) = 1 and
D(G(z)) = 0 for Ld and D(G(z)) = 1 for Lg. Finally, gradients are computed via backpropa-
gation to update θd and θg with gradient descent (see algorithm 2.1).
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Algorithm 2.1 GAN training procedure [19]
Data: images x, number of training steps S.
for n = 1 : S do

Sample minibatch of m noise samples {z(1), ..., z(m)} from prior pz ∼ N (µ, σ2).
Sample minibatch of m image samples {x(1), ..., x(m)} from prior px.
Update θd by descending stochastic gradient:

∇θd

1

m

m∑
i=1

[log(1−D(x)) + logD(G(z))].

Update θg by descending stochastic gradient:

∇θg

1

m

m∑
i=1

[log(1−D(G(z)))].

end

In GANs there are no stop criteria. Instead, the iterations are repeated several times
to guarantee convergence for the task in hand. The best model is verified by human inspection
or by the use of metrics like Inception Score [62] or Fréchet Inception Distance [20]. Both
metrics will be discussed in section 4.3.

2.2.1 Conditional Generative Adversarial Networks

Mirza et at. [42] proposed an extended version of the traditional GAN called Condi-
tional GAN (CGAN). Along with the noise vector z, CGAN adds vector c as input to stand for
a specific attribute or class (see Figure 2.2). Usually, c is a one-hot vector of size k (number of
classes on the dataset). Real and synthesized images will be evaluated against their conditions
on the discriminator during training. This procedure ultimately allows G to synthesize images
of a specific class among all the others present on the dataset. Hence, the objective functions
can be rewritten as:

Ld = Ex∼px [log (1−D(x, c)) + log (D(x, c′))] + Ez∼pz [logD(G(z, c), c)] (2.4)

Lg = Ez∼pz [log (1−D(G(z, c), c))]. (2.5)

Note that D also receives c as an argument. In this case, as described in the algo-
rithm 2.2, the discriminator is fed with matched and mismatched pairs of images and conditions,
(x, c) and (x, c′) respectively. This is because the discriminator D will not only be trained to
distinguish between real and fake data but also to evaluate if their input pairs are matching or
not. Gradients will now store information regarding the chosen conditions for G.
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Figure 2.2: CGAN framework.

Algorithm 2.2 CGAN training procedure.
Data: images x, matched conditions c, mismatched conditions c′, number of training steps S.
for n = 1 : S do

Sample minibatch of m noise samples {z(1), ..., z(m)} from prior pz ∼ N (µ, σ2).
Sample minibatch of m image examples {x(1), ..., x(m)} from prior px.
Sample minibatch of m matched conditions {c(1), ..., c(m)}.
Sample minibatch of m mismatched conditions {c′(1), ..., c′(m)}.
Update θd by descending stochastic gradient:

∇θd

1

m

m∑
i=1

[log(1−D(x, c)) + logD(x, c′) + logD(G(z, c), c)].

Update θg by descending stochastic gradient:

∇θg

1

m

m∑
i=1

[log(1−D(G(z, c), c))].

end

As opposed to the GAN space of fake images (Figure 2.3a), the resulted CGAN space
can be seen as a clustering of classes (Figure 2.3b). Each cluster can be achieved by passing
the respective condition as input along with the random noise z.

2.3 Text-to-Image Synthesis

Text-to-image synthesis is the task of generating images from a natural language
description. The task has two main challenges: to close the heterogeneous and the homogeneous
gap between the data. The heterogeneous gap is the gap between high-level concepts of text
descriptions and the pixel-level contents of an image, while the homogeneous gap is the gap
between both modalities [77] — synthetic and real image distributions —, our final objective.
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Figure 2.3: Representation of the space of fake images learned by the generator. In (a) we have
the resulted mapping of a traditional GAN without categorical conditions, and (b) we have the
space learned by the CGAN considering two categories, cA and cB.

Reed et al. [49] were the first to propose the use of text descriptions as conditions on
top of the CGAN framework to tackle this problem. Differently from classes, text descriptions
have high intra-variance; semantically equivalent sentences may have very distinct formatting.
Besides, it is not possible to preset a fixed number of conditions. Text descriptions give us
an infinite space of conditions varying in size, semantics, and formatting. To deal with such
a scenario, Reed added a text encoder ϕ(·) to map text representations to a semantically-
meaningful space of sentences (see Figure 2.4).
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Figure 2.4: Text-to-Image GAN framework. The vector t is a raw text description representa-
tion.

This mapping is particularly challenging due to the trade-off between fine word-level
control and formatting invariance. For instance, sentences with very similar formatting may
describe very different features, while the exact same features can be described in a variety of
ways. We want text encoding to be invariant on writing style while preserving fine detailed
word-level control over synthesis.
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However due to the text representation used by Reed, we believe that text encoders
tend to ignore details and prioritize common features during the adversarial training. This
scenario may generate a semantically-poor latent space, not exploring all benefits of natural
language. Finally, the default training procedure for text-to-image synthesis is summarized in
Algorithm 2.3.

Algorithm 2.3 Text-to-image synthesis training procedure.
Data: images x, matched text t, mismatch text t′, number of training steps S.
for n = 1 : S do

Sample minibatch of m noise samples {z(1), ..., z(m)} from prior pz ∼ N (µ, σ2).
Sample minibatch of m image examples {x(1), ..., x(m)} from prior px.
Sample minibatch of m matched text {t(1), ..., t(m)}.
Sample minibatch of m mismatched text {t′(1), ..., t′(m)}.
Update θd by ascending stochastic gradient:

∇θd

1

m

m∑
i=1

[logD(x, ϕ(t)) + log(1−D(x, ϕ(t′))) + log(1−Dθd(G(z, ϕ(t)), ϕ(t)))].

Update θg by descending stochastic gradient:

∇θg

1

m

m∑
i=1

[log(1−Dθd(G(z, ϕ(t)), ϕ(t)))].

end

2.3.1 Text Representation

The first text representation module proposed by Reed was a character-level vector
representation learned from the char-CNN-RNN encoder [49]. Previous work show across many
different tasks that char-CNN-RNN is one of the most effective textual encoders [50]. Hence,
their approach was followed by almost all subsequent work on text-to-image synthesis.

The char-CNN-RNN as it was first proposed for text-to-image synthesis was pre-
trained using classes and images from the dataset. The general idea was to train the text
encoder to map text representations into a space semantically-distributed in terms of classes.
Roughly, this was done by encoding images and their captions to a common space and using
both vector representations to predict the correct class (e.g. bird species).

We believe that this method introduces several undesired behaviors. First, since it tries
to predict classes using a categorical representation, it is assuming that they are equidistant
from each other. Two classes can be closer to each other (e.g. car and bus) than others
(e.g. animal species). Second, there is no guarantee that this method is preserving word-level
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semantics. All sentences from the same classes are treated as equivalent, which may not be
true. Descriptions may have a different level of detailing of the same object, which may cause
less frequent attributes to be completely ignored when approximating complete descriptions to
poor ones. Lastly, in Reed’s approach the GAN only sees sentence-level representations during
the adversarial training, which may be harmful for diversity and coherence.

The char-CNN-RNN learns character-level vector representation by optimizing the
following cost function:

1

N

N∑
n=1

∆(yn, fx(xn)) + ∆(yn, ft(tn)) (2.6)

where {(xn, tn, yn) : n = 1, ..., N} is the training data set of images, text, and class labels. The
function ∆ is the 0-1 loss, which assigns one and zero for matched and mismatched labels,
respectively. The predicted labels are given by two classifiers fx and ft parameterized as:

fx(x) = arg max
y∈γ

Et∼T (y)[φ(x)ᵀϕc(t)] (2.7)

ft(t) = arg max
y∈γ

Ex∼X(y)[φ(x)ᵀϕc(t)] (2.8)

where φ is a deep convolutional neural network, ϕc is the char-CNN-RNN text encoder, X(y)

is the set of images from class y, and T (y) is the set of textual descriptions from class y. What
these equations are doing is aligning text and images to have a higher compatibility score when
they belong to the same class compared to any other. As already mentioned, the problem with
this approach is that it assumes that classes are equally distant from each other, which is not
necessarily true. Furthermore, two distinct classes can have very similar descriptions not just
because the classes are similar, but because they can lack detailed information. This may lead
the encoder to learn extra information that is not present in the textual description. Briefly,
this approach can lead to several behaviors that might harm coherence and diversity.

Finally, we argue that the char-CNN-RNN procedure provides extra dataset informa-
tion that would not be present in a “raw” text description. If we want to learn text-to-image
correspondent representations, it is reasonable to argue that text representations should contain
only textual properties (grammatical, semantical and syntactical). Also, it should be complete
dataset-agnostic and be learned only from a linguistic corpus. We hypothesize that such rep-
resentation will allow better generalization, preserve fine details and prevent the pointed out
issues.

Popular Word Vector Models such as word2vec [40] and Glove [46] provide a vector
space of words by parsing large corpora and assigning each word to a point in a semantically-
meaningful space. Glove, for example, is a count-based model that learns vectors of words
from their co-occurrence information, i.e., how frequently they appear together. Word2vec is
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a predictive model that uses a feed-forward neural network to predict a target word from its
context (Continuous Bag of Words) or a target context from a source word (Skip-Gram).

We believe that the use of word vectors learned from those methods on text-to-image
synthesis is more appropriate for the task. It not only offers a more extensive vocabulary than
the one seen in the training set but also truly represents the task meaning of mapping two com-
plete independent modalities (text and image). Moreover, we believe that such representation
can be beneficial for our disentanglement approach.

Finally, a crucial difference between char-CNN-RNN and this approach is that while
char-CNN-RNN freezes the learned text encoder and only use sentence-level representations,
the word-vector model allows the training of a text encoder with word-level sensitivity during
the adversarial training. By doing so, we believe that the algorithm will learn a more tuned
text encoder and leverage general results for the task.

2.3.2 Conditioning Augmentation

Since the first work on text-to-image synthesis, researchers notice that — due to the
very high dimensionality of text latent space and the little amount of data available — the
sparsity of the latent space would have to be tackled. At that time, Reed proposed a manifold
smoothing by interpolating two sentences before feeding the network. However, it was not an
ideal approach since it lost textual consistency by mixing sentences from different classes of
objects. Since then, many studies have tackled this problem in a variety of ways. From the use
of extra dialog information to textual data augmentation modules [54, 16, 30, 76].

Zhang et al. [78] proposed what was called Conditioning Augmentation (CA). Condi-
tioning augmentation is a module that maps text t to a multivariate normal distributionN (0, I)

before feeding it to the generator and discriminator networks. The intuition is that it could
generate a more smooth latent space of sentences by sampling from a normal distribution.

Similar to a Variational Autoencoder (VAE), the CA module encodes t to mean µ and
standard deviation σ vectors using a neural network. From it, the module can sample many
sentence representations from the same sentence only by adding a random noise as described
in equation 2.9:

z = µ(t) + σ(t)� ε, (2.9)

where ε is the random noise sampled from N (0, I). Like VAE, sentences are mapped to N (0, I)

by minimizing
KL(t) = Dkl[N (µ(t), σ(t)2) || N (0, I)], (2.10)

which is the KL divergence between the output normal distribution N (µ, σ2) and N (0, I).
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GANs were always supposed to map unknown distributions from known distributions
and that is exactly what the CA module does by mapping text descriptions to a normal distri-
bution. Until this moment, this is the main approach to tackle text latent space sparsity.

2.3.3 Joint Conditional and Unconditional Distribution Approximation

Another module adopted by many studies in the field is the joint conditional and
unconditional discriminator. As mentioned in Section 2.2.1, to handle conditional synthesis,
discriminators are required to classify whether a pair of image and condition match. In spite of
this being sufficient for the task, it has no explicit penalty for unrealistic images. Zhang et al.
[79] handle this problem using the equations from GAN and CGAN jointly. However, instead
of using two discriminators, they propose a single discriminator with two branches: one for
conditional loss evaluation and other for unconditional loss evaluation (see Figure 2.5).
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Figure 2.5: Joint Conditional and Unconditional Discriminator.

With the building blocks shown in this section, we cover the basic techniques adopted
by the text-to-image synthesis research field.

2.4 Disentangled Representation Learning

In this section, we will define disentanglement and the disentangled representation
learning research field. Disentangled representation learning is a recent sub-field in Deep Learn-
ing with its own vast literature (e.g. [3, 56, 59, 22, 73, 9, 21, 14, 25]). Disentangled representa-
tion learning consists of the technique of breaking down each data feature into defined variables
and encoding them as separate dimensions [12]. The goal is to mimic the human perception
of data. For instance, humans can easily distinguish different concepts containing in data and
imagine the expected result when only one is modified. We can define disentanglement as the
degree to which a representation factorizes the underlying factors of variation [18].

For any machine learning algorithms, the first stage of modeling is the feature repre-
sentation of the observed raw data. It is a crucial stage that can define whether the designed
algorithm will achieve its goal or not. Effective representations should highlight important
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abstract factors that are relevant for the task while suppressing inconsequential or nuisance
factors [34]. Disentangled feature representation is the representation of features with dis-
joint subsets of abstract concepts that can be manipulated independently and help algorithms
towards better performance.

Disentangled representations offer several advantages — (i) Invariance: it is easier to
derive representations by simply marginalizing over the corresponding dimensions; (ii) Transfer-
ability: they are more suitable for transfer learning, since the subset features can be selectively
shared across various tasks; (iii) Interpretability/Inspection: a human expert may be able to
interpret dimensions individually and assign specific meaning to them, helping to build trust-in
machine learning systems [26]; (iv) Conditioning and intervention: they allow for interpretable
conditioning or intervention for the observation of each latent subset effect. In short, the im-
portance of learning disentangled representations has been suggested to be useful for a large
variety of tasks and domains [3, 51].

Finally, these representations can also enable controllable generation of data through
generative models [26] and be used as a proxy to force diversity.

2.5 Related Work

Besides the already mentioned textual representation issue, text-to-image synthesis as
it was first conceived had many problems to be addressed: low resolution, low diversity, low
semantic consistency and lack of control. In this section, we summarize text-to-image synthesis
efforts to address these problems, as well as some recent work on disentanglement techniques
for GANs.

Initially, to increase the original 64 × 64 low resolution, Zhang et al. [78] proposed
a multi-stage generation by stacking two GANs. A first GAN sketches a primitive 64 × 64

image from text descriptions and a second image-to-image GAN refines and upsamples the
input image until it reaches the 256× 256 resolution. Addressing the same issue, authors from
[80] synthesized 512 × 512 images introducing the hierarchical-nested adversarial objectives.
Their approach can train the entire GAN in a single stage process, allowing mid-level layers to
be tuned from gradients of high-resolution layers.

Aiming at semantic consistency, Qiao et al. [47] added a captioning module to gen-
erate sentences from the synthesized images and force consistency with the input description.
Furthermore, Yin et al. [76] added what they called Siamese mechanism in the discriminator
to learn consistent high-level semantics from different descriptions. The Siamese mechanism
employs a contrastive loss to minimize the distance between fake images from two semantically-
equivalent descriptions while maximizing the distance between any other description. This
leads to better textual encoding, hence a more consistent generation. Following the StackGAN
multi-stage schema, the AttnGAN [72] was the first to explore the benefit of word-level repre-
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sentations on text-to-image synthesis. Their framework keeps the sentence-level proposed by
Reed [49] as input for the generator but adds word-level features to attend to intermediate
image representations and increase detailed refinement.

To increase control over synthesis, we see the first attempt at generating images with
position and orientation constraints in [50]. The work introduces a conditional GAN named
GAWWN that also receives as input either coordinates of parts of the object (e.g., beak position
of a bird or head position of a person) or bounding boxes delimiting the object position. It has
several additional steps to encode that information, defining each part of the object in a grid
that is passed to the generator to evaluate the network at local (regions of interest) and global
levels. In MC-GAN [45], the authors propose a method that modifies a background image to
draw objects at specific locations. In their case, the discriminator uses a segmentation mask to
determine whether the image is real or fake.

Aiming at diversity, Dash et al. [11] propose the use of an auxiliary classification branch
in the discriminator. Their discriminator not only evaluates realism and text matching but also
classifies the input image, diversifying generated samples and improving their structural coher-
ence. In FusedGAN [5] the authors combine conditional and unconditional adversarial training
to create a prior structural representation to be post-conditioned on textual descriptions. By
doing so, they manage to implicitly disentangle structure/shape from style without requiring
additional supervision. With this, their method is capable of generating samples that have a
very similar structure but diverse style conditions. This approach, however, offers no control
over the object structure. A manual search is required to sample the desired shape.

Following previous work on disentangled representation learning [74, 9], Singh et
al. [56] use information theory and adversarial training to learn separate code representations
for background, shape and style on single-object datasets. To do so, they impose two constraints
to separate shape and style: (i) the diversity of shapes is smaller than the diversity of style
and (ii) for each shape there is a fixed number of possible styles. The background information
is learned in parallel to ground-truth background images. The ultimate result is the ability to
change each concept independently and to extract these code representations from real images.
These learned features are then used to cluster real images based on the three learned concepts.
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3. METHOD

3.1 Problem Definition and Proposed Approach

General data synthesis faces three main goals: realism, diversity, and control. Likewise
any generalization problem, data synthesis is prone to ignore less-common statistics. Specifi-
cally, when dealing with GANs — where the cost function has no explicit target for diversity
— models are likely to map the same image from different noise points (mode collapse).

Recently, several approaches have been proposed to mitigate mode collapse [57, 79,
1] and it is fair to say that the problem has been well-addressed. However, mode collapse
prevention alone does not guarantee general diversity. Even state-of-the-art approaches tend to
be specialists in generating realistic images of a certain pattern while generating poor results
for less common features or even ignoring them.

For text-to-image generation, it translates into generating common attributes not
present on a description or even ignoring some parts because they are not normally seen with
the rest of the description. Furthermore, specific modifications in the text can trigger a series
of alterations in the image for matching a more common feature combination. For instance,
a “long beak” description might cause the network to also generate a long neck bird, as they
are often seen together. Although this might be a desirable behavior, since the model learns
to model how correlated bird features are in the training distribution, there is no explicit way
to prevent this from happening when the opposite is desired. It is thus unlikely that the
model can properly generate combinations of image features that rarely appear together in the
training-set.

This work introduces the idea of explicitly forcing diversity during training via un-
matched conditions to tackle such a problem. The entire training procedure is done by forcing
synthesis to match a specific shape, style and background passed as conditions. However, in-
stead of using the discriminator to evaluate each condition consistency on fake images, we force
consistency by penalizing pixel-level divergence.

Therefore, our method adds two modules to the regular text-to-image framework: one
for shape consistency and one for background consistency (see Figure 3.1). This technique forces
a complete disentanglement of the three concepts (object style, object shape, and background)
at a noise level, giving better control and allowing a more diverse mapping during training.

Moreover, we opt not to utilize char-CNN-RNN sentence embeddings and, instead,
we make use of word-level vectors that are completely dataset-agnostic. We hypothesize that
both techniques (consistency modules and word-level descriptions) are more suitable to be used
jointly to leverage disentanglement, hence diversity. In the following sections we detail each of
our contributions.
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Figure 3.1: Fully disentangled text-to-image architecture. The generator receives a background
condition zb, a text condition zt, and a shape condition zs. We use CA modules for each
condition to allow intra-diversity.

3.2 Shape Consistency Module

The shape consistency module comprises two additional neural networks, one for shape
encoding and other for shape extraction (see Figure 3.2). The shape encoder φ(·) receives a
previously annotated binary matrix s ∈ RH×W that assigns one to the object and zero to
the background of an image x ∈ RH×W×C , where C stands for color channel and H × W

for height and width. The encoded shape representation ds ∈ Rn is fed into a CA module
CAs to generate a final conditional vector representation zs ∼ N (0, I). The condition zs is
concatenated with other conditions (text and background) to feed the generator G. Once the
generation is completed, the synthesized image x̂ ∈ RH×W×C is segmented using the shape
extraction network S and the result is evaluated against the input condition.

3.2.1 Shape Extraction Network

The shape extraction network is a pixel-level classifier (segmentation network) that
outputs a binary mask ŝ ∈ RH×W×1 from the generated image x̂ ∈ RH×W×C , assigning one for
object pixels and zero for the background pixels.

We make use of a well-known segmentation network called U-Net [52], which is a
fully convolutional neural network with skip-connections. We use this model to show that our
contributions are not highly dependent on sophisticated segmentation strategies. We opted to
change the standard loss used in the original paper, replacing it with the dice loss [41]:

Lseg = −2 ∗
∑

[S(·) ∗ y]∑
S(·) +

∑
y

(3.1)
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where S is the segmentation network and y is the ground-truth mask. The dice loss was shown
to produce sharper edges, which is a useful property given that we force segmentations to be
binary during training. We opt to pretrain S and not to update its weights during generation
to prevent instability during the adversarial training.

3.2.2 Shape Consistency Loss

To guarantee that the segmentation encoding is properly guiding the network to syn-
thesize objects in the respective shape, we include a loss that accounts for shape consistency:

Lsconsist
= ||s− ŝ||2, (3.2)

which is the mean square error between the shape s and the extracted shape ŝ from the generated
image. Since the ground truth segmentation s is binary we use a threshold of 0.5 to make ŝ
binary as well. Values above the threshold are set to 1 and values below are set to 0.

It is important to note that, since the CA module force zs to be in a known distribution
N (0, I), the shape consistency module can be completely discarded at inference time. The user
is allowed to generate images from any random noise zs ∼ N (0, I) that will be automatically
mapped to a shape in the learned shape latent space.
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Figure 3.2: Shape Consistency Module.

3.3 Background Consistency Module

In the same way of shape disentanglement, we propose the use of a background con-
sistency module (see Figure 3.3). However, the idea is not to provide a pure background image
as a condition but to take advantage of the already used images and learn to extract the back-
ground information automatically. Therefore, we encode an image b ∈ RH×W×C from which
we want to extract the background information using an encoder ψ(·). The encoder outputs a
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background encoded vector db ∈ Rn to be fed into a CA module CAb. The CAb outputs a final
background condition vector zb ∼ N (0, I). Thereafter, a synthetic image x̂ is generated from
the background condition zb to be evaluated against the original background image b.

Note that, till this moment there is no incentive for the background encoder to ignore
the foreground (e.g. the bird). Simply applying an image-to-image consistency to the back-
ground would force the generation of the object itself. That would cause an overlap between
the other conditions of style and shape. To avoid such a scenario, we propose a consistency
module with a logical conjunction.
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Figure 3.3: Background Consistency Module.

3.3.1 Background Consistency with Logical Conjunction

For the background consistency module to account only for background information,
we propose the use of L1 error between background pixels. We guarantee consistency only
between background information employing a pixel-level logical conjunction operation on both
b (background image) and x̂ (generated image). The pixel-level logical conjunction operation
is exemplified in Figure 3.4. The background cost function is finally given by the equation 3.3.

Lbconsist
= |b� u− x̂� u|, (3.3)

where sb is the segmentation of the image b, ŝ is the segmentation of the generated image x̂
and

u = g(sb) ∧ g(ŝ) (3.4)

is the background mask. The function g(x) = (x−1) · (−1) only inverts the segmentation mask
to account for background instead of object pixels.

To avoid redundant computation, we use only mini-batch information in such a way
that the segmentation ŝ used for shape consistency is reused for background consistency. Once
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Figure 3.4: Pixel-level logical conjunction.

the encoder ψ perceives that it has to ignore object regions, it starts to encode only background
information to minimize Equation 3.3. As it will be shown, the encoder ψ learns to distinguish
between background pixels and foreground pixels and not simply learns to encode regions where
the objects appear less often. This is an interesting feature and can be employed to different
tasks to guarantee an encoding guided by high-level features and not only by regions. Finally,
the background encoder also encodes a background condition zb ∼ N (0, I) that can be randomly
sampled from the learned background latent space.

3.4 Domain-Agnostic Text Representation

As described in Section 2.3.1, traditional text representation approaches for text-to-
image synthesis use a pretrained text encoder and let the entire adversarial training run only
with sentence-level information. Such an approach makes the algorithm fully dependent on the
capacity of Equations 2.6, 2.7, and 2.8 to generate semantically-meaningful space of sentences.
Furthermore, those equations do not encourage the space to learn intra-class information. We
believe that this method results in a text representation that might limit word-level changes
during synthesis and harm diversity. To avoid such undesired effects we took advantage of a
method proposed by Nam et al. [43] that uses a word-level discriminator with language priors
from semantic word embeddings. Such an approach does not consider any previous dataset
information to train word vectors. Instead, it uses a well-known method to train word vectors
on large corpora: fastText [6].

3.4.1 FastText

FastText is a well-known classifier used for text classification and representation learn-
ing. To learn the semantic space of words, fastText parses an entire text corpus. The network
is trained to predict context words from a center word with fixed window size. For instance, in
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the sentence “this is a brown bird”, the input would be “a”, whereas the output would be “this”,
“is”, “brown”, and “bird”, assuming a window size of 5.

FastText uses n-gram of characters to represent words. For instance, taking the word
“artificial” with n=3, the fastText representation would be <ar, art, rti, tif, ifi, fic, ici, ial, al>
- angular brackets indicate the beginning and the end of the word. This approach can provide
vector representation for words that are not in the model dictionary and allows the embeddings
to understand suffixes and prefixes. We use word vector learned with this method parsing the
entire English Wikipedia corpora.

3.4.2 Text Encoder

The final sentence representation provided by the use of language priors is denoted as
t ∈ Rlmax×dt , where lmax is a fixed max sentence length expected by our network and dt is the
word embedding dimension given by fastText. The text encoder ϕ is a bidirectional GRU with
mean reduction along with the temporal steps, resulting in a final sentence vector ϕt ∈ Rnt .
Similar to previous steps on shape and background modules, we adopt the CA method for a
smooth text representation. The final text condition is then given by zt ∼ N (0, I). Finally, zt
can be concatenated with the previous zb and zs conditions to get the final disentangled noise.

3.4.3 Text-Adaptive Discriminator

The text-adaptive discriminator was proposed by Nam et al. [43] for image manipula-
tion from text descriptions. For such a task, it was crucial to provide training signals related to
specific words. We follow the same approach to give word-level sensitivity to our network and
increase coherence between words and visual attributes. In the text-adaptive discriminator,
each word is independently evaluated against visual attributes to provide fine-grained feedback
to the generator.

The procedure goes as follows. In the textual side, the discriminator encodes the
sentence t using its own BiGRU. Recurrent networks provide T hidden layers for T sized
sentences. In the case of BiGRU, which has forward and backward steps, the network provides
two hidden layers for each i-th word that is averaged to get the final word feature representation
wi. For the visual attribute side, the image x is encoded with multiple convolutional steps. For
each step j an intermediate feature is taken and global average pooling is applied to get a 1D
image vector vj. Then, for each wi, a 1D sigmoid local discriminator fwi

is created to determine
whether a visual attribute vj is related to a word wi. Formally, fwi

is described as:

fwi
(v) = σ(W (wi) · v + b(wi)) (3.5)
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where W (wi) and b(wi) are the weight and the bias dependent on wi. The fucntion σ is the
sigmoid.

The final classification decision is made with the aid of a word-level attention module.
However, differently from [72], the method does not use explicit spatial attention on images. It
simply learns to weight each classification score - associated with a word - by attending words
based on their own. This method reduces the impact of less important words and highlight key
words important to specific visual attributes. The score weight is computed by a softmax layer
written as:

αi =
exp (uᵀwi)∑
i exp (uᵀwi)

, (3.6)

where u is the temporal average of words wi. The final weight αi is then applied to the final
classification score for each word. Finally, the word-level text adaptive-discriminator can be
written as:

Dw(x, t) =
T∏
i=1

[
∑
j

βijfwi
(vj)]

αi (3.7)

where βij is a softmax weight that determines the importance of the visual attribute from the
convolutional layer j for each word wi. It is important to note that this approach does not
change the adversarial training objective. It only replaces the traditional classifier D with this
multi-scale text-adaptive classifier Dw.

3.5 Final Objective

Due to train instability, Nam et al. [43] removed the conditional discriminator for
synthetic images and pointed out that their resulting objective was enough to produce real and
coherent images. We follow the same approach and remove this objective from the traditional
conditional adversarial loss of Eq. 2.4. Finally, the final objective function of our method can
be rewritten as:

Ld = Ex,t∼px,pt [log (1−Dw(x)) + λd(log (1−Dw(x, t)) + logDw(x, t′))]

+ Et,s,b∼pt,ps,px [logDw(G(t, s′, b′′))]
(3.8)

for the discriminator, where s is the segmentation mask and b is an image from px passed as a
background condition for the generator. Note that the discriminator never sees segmentation
or the background data, which simplifies the overall loss function. Shape and background
information are completely contained in the consistency modules. Finally, for the generator,
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the final loss is defined as:

Lg = Et,s,b∼pt,ps,px [logDw(1−G(t, s′, b′′)) + λg log(1−Dw(G(t, s′, b′′), t′))]

+Lkl + γsLsconsist
+ γbLbconsist

,
(3.9)

where
Lkl = λtKL(ϕ(t)) + λsKL(φ(s)) + λbKL(ψ(b)). (3.10)

Note that text, segmentation mask, and background image are sampled independently,
which means that they most likely do not match the same example or class. This is an important
aspect of our method, ensuring that the generator is capable of synthesizing samples with
respect to the textual description but with a wide variety of shapes and backgrounds.



49

4. EXPERIMENTAL SETUP

We conducted our experiments to evaluate the three main objectives of deep generative
models: control, diversity, and realism. All objectives were quantitatively evaluated using
metrics proposed by the research community as well as self-developed heuristics to evaluate the
particularities of our method. For better understanding and to provide support to our findings
we show several qualitative results for each experiment. All experiments were conducted in the
CUB dataset [65].

This chapter is divided into three sections. First, we will detail the dataset used in
our experiments. Second, we will detail all the implementation parameters used. Third, an
explanation of all metrics adopted for evaluation.

4.1 Dataset and Preprocessing

All of our experiments were conducted in the Caltech-UCSD Birds-200-2011 dataset.
The CUB dataset has a total of 11,788 images of 200 classes (bird species) extracted from
Wikipedia articles and filtered by users of Mechanical Turk [71]. The classes are equally dis-
tributed with approximately 60 images per class. Each image is annotated with 1 bounding
box, 15 part locations, 312 attribute labels, 1 segmentation masks, and 10 textual descriptions.

Since images on the CUB dataset have different sizes and aspect ratios, we follow
the same preprocessing adopted by [79] and crop all images and segmentations based on their
bounding boxes locations. This guarantees a fixed size and aspect ratio for the neural network
processing and also provide a better framing for the task. The holdout split is divided into 150
classes for training and 50 classes for test to guarantee synthetic images only based on unseen
conditions.

4.2 Training and Architecture Details

We made the code available at Github 1. The Adam [32] optimizer is used. We first
train the segmentation network for 600 epochs with a learning rate of 0.0001. We freeze the
segmentation network and proceed to the GAN training. The discriminator and the generator
are trained for 600 epochs with a learning rate of 0.0002 with a decay by half every 100 epochs.
We did not perform exhaustive hyper-parameter tuning. We use random crop and horizontal
flip as data augmentation. All images are 64 × 64 × 3 tensors (H = 64, W = 64, C = 3).
The mini-batch used was 64. All conditions are down-sampled to n = 1024 before the CA
network, where they are all down-sampled to 128 (zt, zs and zb). We follow TAGAN [43]

1https://github.com/mauricioarmani/text-to-image-synthesis-with-shape-background-disentanglement
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and use lmax = 50 (max sentence length) and dt = 300 (word-vector size). The recurrent
network ϕ used to encode the sentences is a BiGRU [10] with nt = 512 (hidden layer). The
hyperparameters used were λt = 0.5, λs = 0.5, λb = 0.5, γs = 10, γb = 10, λg = 10 and λd = 10.

The Generator G comprises residual blocks with 3x3-conv layers, Batchnorm [27] and
ReLU activation. After every residual block, the image is up-sampled with nearest-neighbor
interpolation. We use the discriminator proposed in [43], which evaluates sentences at word-level
and comprises several down-sampling operations with 3x3-Conv layers, batch-normalization,
and Leaky ReLU activations. Our segmentation network is the U-Net [52].

4.3 Metrics

Despite the improvements in the image synthesis field, the absence of meaningful
evaluation metrics becomes challenging to make progress towards improved models. As a
result, the generative modeling community has developed various ad-hoc evaluation criteria
[2]. Recent work have introduced new metrics [19, 44, 48, 80]. However, not all of these
metrics are useful for evaluating GANs [60]. Notably, metrics as Inception Score (IS) [53] and
Fréchet Inception Distance (FID) [20] became the most common metrics to evaluate realism
and diversity of generative models.

To evaluate all different aspects of our method, we could not rely solely on tradi-
tional GAN evaluation metrics. Since our main objective is to provide a method for control
and diversity via disentanglement of concepts, we use several metrics to evaluate consistency
(control), as well as diversity and realism. We also propose a metric to evaluate the overlap of
the disentangled concepts.

4.3.1 Inception Score

A well-performing approach to evaluate GANs is the Inception Score (IS), which has
a good correlation with human judgment [53]. IS uses the well known Inception-ResNet [58]
image classifier to evaluate the distribution of generated classes. To account for diversity, the
assumption is that a diverse model should provide samples equally distributed among the classes
in the dataset. In other words, the prior distribution p(y) should be the closest as possible of
a homogeneous distribution. To account for realism, the assumption is that the conditional
probability p(y|x) should be highly predictable. Given an image x and a specific class yi, p(y|x)

should be closest as possible of 100% for y = yi and 0% for any other class or y 6= yi. Finally,
this means that we want p(y|x) and p(y) to be highly divergent. Thus, IS is given as a single
scalar value by computing the KL-Divergence between p(y) and p(y|x).

To properly calculate IS, we construct an estimator of the marginal class distribution
p̂(y) by sampling fake images,
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p̂(y) =
1

N

N∑
i=1

p(y|x(i)), (4.1)

where N is the number of sample images taken from the model and p(y|x(i)) the softmax layer
modeled by a Inception-Resnet pretrained on the ImageNet dataset [13] and fine-tuned for the
50 classes of the CUB test-set. Then, KL-divergence can be computed by

IS(G) = exp(
1

N

N∑
i=1

Dkl[p(y|x(i)) || p̂(y))]). (4.2)

It is recommended applying the above estimator 10 times with N = 5000 and then
taking the mean and standard deviation of the resulting scores [2]. For our experiments we use
N = 5000, being approximately 100 samples from each of the 50 classes from the test-set. We
can rewrite IS using the Dkl formulation for discrete probability distribution as:

IS(G) = exp(− 1

N

N∑
i=1

p(y|x(i))(log p(y|x(i))− log p̂(y)). (4.3)

where p(y|x(i)) ∈ R1×C - being C the number of classes -, and p̂(y) ∈ R1×C . Supposing the
perfect model, p(y|x(i)) would be a one-hot vector ∀i, hence p̂(y) would be a vector of 1/C for
each class (uniform distribution).

4.3.2 Fréchet Inception Distance

Similarly to IS, Fréchet Inception Distance [20] (FID) relies on the use of the Inception-
Resnet classifier to compute model statistics. However, instead of computing the classification
distribution over classes, FID extract image features from an intermediate layer and compare
results from real and fake data.

The coding units are assumed to follow a multivariate Gaussian distribution with
mean µ and covariance Σ. The difference between real and fake data is measured by the
Fréchet distance [17] also known as Wasserstein-2 distance [64].

The Fréchet distance between the Gaussian N (µr, Σr) obtained from real images and
the Gaussian N (µg, Σg) obtained from fake images is computed as follows:

FID(G) = ‖µr − µg‖+ Tr(Σr + Σg − 2(ΣrΣg)
1/2), (4.4)

where Xr ∼ N (µr, Σr) and Xg ∼ N (µg, Σg) are the 2048-dimensional activations of the
Inception-Resnet pool3 layer for real and generated samples respectively. Xg comprises a total
of 30000 images while Xr is computed from the entire training-set (8835 images). Thus, µ and
Σ are all 2048-dimension vectors.
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4.3.3 Multi-Scale Structural Similarity

The Multi-Scale Structural Similarity (MS-SSIM) has been widely used as a proxy to
evaluate diversity on general image synthesis tasks [37, 66, 11, 80, 67, 44].

The single-scale SSIM measure [67] computes the similarity between two images, here
denoted as x1 and x2. Differently from mean squared error (MSE), SSIM tries to emulate
the human perception of an image discounting aspects considered not important for human
perception [7]. The main problem with metrics like MSE is that the evaluation is made at pixel-
level. Humans tend to see images more holistically, not evaluating the pixel-wise differences
but capturing the overall relation between them. To do so, SSIM computes three quantities:
luminance (I), contrast (C), and structure (S), given by:

I(x1, x2) =
2µ1µ2 + C1

µ2
1 + µ2

2 + C1

C(x1, x2) =
2σ1σ2 + C2

σ2
1 + σ2

2 + C2

S(x1, x2) =
σ12 + C3

σ1σ2 + C3

(4.5)

where µ1, µ2, σ1 and σ2 are the mean and standard deviations of pixel intensity in a local image
patch of either image x1 or x2. The variable σ12 denotes the correlation coefficient between
corresponding patches of x1 and x2. C1, C2 and C3 are only constants added for numerical
stability. The three quantities are combined to compute the SSIM score as follows:

SSIM(x1, x2) = I(x1, x2)
αC(x1, x2)

βS(x1, x2)
γ (4.6)

where α, β and γ are parameters used to adjust the relative importance of the three components.
We follow [80] and set α = β = γ = 1 and C3 = C2/2. This results in a specific form of SSIM:

SSIM(x1, x2) =
(2µx1µx2 + C1)(2σx1x2 + C2)

(µ2
x1

+ µ2
x2

+ C1)(σ2
x1

+ σ2
x2

+ C2)
. (4.7)

Finally, the MS-SSIM score is a variant of SSIM for multiple scales. Both images are
iteratively downsampled by a factor of 2. Considering that at each step images are downsampled
by a factor of 2j−1 till the coarsest scale, M , we can formalize the MS-SSIM as follows:

MS-SSIM(x1, x2) = IM(x1, x2)
αM

M∏
j=1

Cj(x1, x2)
βjSj(x1, x2)

γj (4.8)

Luminosity I is only computed for the smaller scale [67]. All parameters were consid-
ered following previous work on text-to-image synthesis.

MS-SSIM and SSIM satisfy the following conditions:

1. Symmetry: S(x1, x2) = S(x2, x1);

2. Boundedness: S(x1, x2) ≤ 1;
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3. Unique maximum: S(x1, x2) = 1 if and only x1 = x2;

The final MS-SSIM score of a given image pair is obtained computing the average
MS-SSIM for all patches. Finally, to account for diversity, the MS-SSIM is computed for all
possible image pairs in a batch of 10000 random samples and averaged [80]. This metric will
also be used to evaluate background consistency in Section 5.1.3, however, with only one scale.

4.3.4 Visual-semantic similarity

In order to evaluate consistency between the input text descriptions and the generated
images, we adopt the method proposed by Zhang et al. [80], Visual-Semantic (VS) similarity
score. VS score trains two functions fv and ft to align paired image features and text de-
scriptions into a common space R512. The alignment is obtained by minimizing the following
pairwise ranking loss [68, 69, 70]:

∑
v

∑
t

max{0, δ − c(fv(v), ft(t)) + c(fv(v), ft(t
′))}

+
∑
t

∑
v

max{0, δ − c(ft(t), fv(v)) + c(ft(t), fv(v
′))},

(4.9)

where v is the 2048-dimensional feature vector extracted from Inception-Resnet and t is the
word-level text description. The vectors t′ and v′ denote mismatched text and image features,
respectively. The image feature encoder fv is a fully connected layer that maps v ∈ R2048 to
R512. Originally, the text encoder ft is a fully connected layer that receives the sentence-vector
representation used in traditional text-to-image synthesis framework. Since we are using word-
level representations, we had to adapt the method and use a GRU with 512 hidden units followed
by a fully connected layer. The final representation is a 512-dimensional vector. Finally, c(·) is
the cosine similarity between both representations. The final VS score is computed by averaging
the results of 30000 samples.

4.3.5 Intersection Over Union

In this work, the Intersection over Union (IoU) will be used to compute the consistency
between input shape condition s ∈ R64×64×1 and the synthesized image shape ŝ ∈ R64×64×1.
Therefore, we employ the IoU at a pixel-level based on input and output segmentations. The
output segmentation is extracted by segmenting the synthesized image in the same way it is
done during training. We define the IoU in terms of its confusion matrix as follows:
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IoU(s, ŝ) =
1

N

N∑
i=1

TPi
TPi + FPi + FNi

. (4.10)

where TP is the number of pixels where the predicted mask correctly assigns as an object; FP
the number os pixels wrongly assigned as an object, and FN the number of pixels wrongly
assigned as non-object. N is the total number of text descriptions on the test split, 2953.

To evaluate the segmentation network’s accuracy, we calculate the IoU over the 2953

real image samples and their ground truth masks. The calculated IoU was 86.87%. Thus, it is
important to point out that our measure has a minimum error of approximately 13%.

4.3.6 Disentanglement Measure

The disentangled representation learning literature has made it clear the importance
of quantifying disentanglement and how there are no straightforward solution [21]. The field
still lacks a clear metric for quantitative evaluation and most of the work still relies solely on
qualitative analysis [18]. Recently, several metrics have been proposed [31, 21, 8, 18] However,
we found that most of them rely on classification predictability of specific attributes on synthetic
datasets [21, 31, 34, 39, 24] and are strictly developed to evaluate disentanglement for annotated
labels.

Therefore, we did not find a metric that could easily be adapted to our scenario of
supervised disentanglement of non-categorical labels. To overcome this issue, we developed a
simple method to evaluate the overlap between disentangled concepts.

The idea is to evaluate how much a condition (e.g. text description) affects pixel
statistics from the foreground and the background on synthetic images. In the case of text
descriptions, we expect high changes in the foreground and low changes in the background.
Table 4.1 shows the expected result for all three conditions.

Table 4.1: Expected disentanglement score table.

Free Foreground Changes Background Changes

Text high low
Background low high

Shape low low

Scores are computed by varying a single condition while keeping others fixed. For each
generated image, we use the segmentation network S to classify whether a pixel belongs to the
foreground or the background. Next, we consider foreground and background distributions as
Gaussian distributions. Then, we compute the mean and standard deviation for each region
(foreground and background). Finally, the foreground change score is computed by taking the
average divergence between foreground distributions of all synthesized images. Likewise, the
background change score is computed from all generated background distributions.



55

The overall process goes as follows. First, we take N instances from our test-set, which
means N text, shape, and background conditions ({(z(n)t , z

(n)
s , z

(n)
b ) : n = 1, ..., N}). Second,

we generate N3 samples, one for every possible input combination. We then evaluate the
disentanglement of one of our three conditions for both the foreground and background. Take,
for instance, a scenario where we are measuring the text disentanglement with N = 20. For each
one of the 400 combinations of shape and background ({(z(n)s , z

(n)
b ) : n = 1, ..., N}), we calculate

the mean and standard deviation of the foreground and background of each image (20 different
zt for each (zs, zb) combination). Then, we compute the mean univariate KL-divergence for
each mean and standard deviation, representing the amount of object and background changes
for a single (zs, zb) combination. We then compute the average for every combination (again,
400) and store them. We execute the procedure M times and report the mean and standard
deviation of the multiple executions as the final disentanglement score.
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5. RESULTS AND DISCUSSIONS

In this chapter, we present the results obtained and their implications. The results are
organized as follows: First, we evaluate control by computing consistency measures for shape,
text, and background conditions; second, we evaluate diversity individually using the proposed
literature metrics; finally, we evaluate the impact on image quality by comparing scores to
previous work and evaluating latent space smoothness. Furthermore, we conducted several
ablation studies to evaluate each proposed solution as an individual module and it effects. All
results are evaluated quantitatively and qualitatively.

5.1 Control

To evaluate how well-conditioned our framework is, we start by computing the con-
sistency between input information and synthesized information. Each concept (shape, text,
and background) has its approach to evaluate consistency. Shape consistency can be easily
evaluated in a pixel-wise manner using the same segmentation network used during training.
However, note that text and background information cannot be simply pixel-wised compared.
We do not want the background to be strictly equal to the input condition. That would mean
a possible overlap of the background on the object and vice-versa. Text condition obviously
cannot be directly compared with the output result. Text input and the synthesized style does
not belong to the same modality and depends on a more sophisticated heuristic to evaluate
consistency.

5.1.1 Shape Consistency

We use IoU described in Section 4.3.5 to measure the shape consistency. The procedure
is simple. We randomly choose 30000 input triplets (t, s, b) from the test-set. Note that each
condition is individually sampled, so the combination is more likely not to be aligned. We
generate 30000 images from those inputs. Next, we use the segmentation network S used
during training to extract the segmentation mask ŝ. Then, we compute the IoU between
fake segmentations ŝ and real segmentation s. The result obtained is an average of 77.29%.
Remembering that the segmentation network already has an error of 86.87%, so we can compute
the final error by taking the difference and subtracting from 100%. The final shape consistency
score is 90.42%.

We can see qualitatively in Figure 5.1 that the model easily follows the input shape.
For each row, background and text conditions are fixed and only the shape conditions are being
modified. It was not only expected but also desired that the shape was not hard-conditioned.
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That could harm fine-grained style details, such as "curved beak" and "long feathers", and
even cause training instability.

Figure 5.1: Qualitative results for shape consistency. For each row, background and text
description are fixed. Better seen in color.

Note that, in the absence of object pixels (last column), the model synthesizes a
background image and completely ignores the textual information. This highlights two desired
features of our model: good shape/background disentanglement and the learning of a mapping
between shape and text. In other words, the model understands that style information is only
relevant for the object, which also shows a good disentanglement between style and background.
We can see that in some cases the model barely tries to draw a bird with the style condition.

5.1.2 Text Consistency

Evaluating text consistency is not a trivial task due to the multimodal nature of this
mapping. Most of the related approaches do not evaluate text consistency quantitatively. We
decide to use the VS-similarity score described in Section 4.3.4. Since our framework does not
use the traditional text representation of previous work, we cannot directly compare results
with previous work. That said, we decide to evaluate only the effect of the consistency modules
against a baseline model. The baseline receives only the text condition t and the noise vector z
- which stands alone for diversity - and does not have any consistency module as ours. However,
the text representation is the same used in our framework (word-vectors from fastText). This
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way, we can compare the impact of shape and background consistency modules on the VS-
similarity. The results can be seen in Table 5.1.

Table 5.1: Visual-semantic similarity for our model and the baseline. The "Aligned" column
refers to alignment regarding the text condition.

Model Segmentation Aligned Background Aligned VS

Ours zs ∼ φ(x ∼ X) Yes zb ∼ ψ(x ∼ X) No 0.146 ± 0.183
Baseline - - - - 0.140 ± 0.184

Note that, since our model receives a shape condition that may contain conflicting
information regarding the text, we compute the VS guaranteeing alignment between shape and
text description. The text and shape condition conflict will better be discussed in Section 5.1.5
Here, the background condition is chosen randomly.

As an additional verification, we decide to compute VS changing the input configura-
tion. Table 5.2 shows the impact of aligning shape, aligning background, aligning shape and
background and with no alignment at all. It is important to point out that all conditions come
from real samples and are not being sampled from the ussian distribution.

Table 5.2: Visual-semantic similarity for our model with different input configurations.

Segmentation Aligned Background Aligned VS

zs ∼ φ(x ∼ X) No zb ∼ ψ(x ∼ X) No 0.135 ± 0.183
zs ∼ φ(x ∼ X) Yes zb ∼ ψ(x ∼ X) No 0.146 ± 0.183
zs ∼ φ(x ∼ X) No zb ∼ ψ(x ∼ X) Yes 0.166 ± 0.184
zs ∼ φ(x ∼ X) Yes zb ∼ ψ(x ∼ X) Yes 0.177 ± 0.184

Note that, by aligning the background, the similarity increases significantly. We be-
lieve that the image encoder, used to compute VS, may have learned to consider background
information to increase its performance. This is a reasonable assumption since birds species
are closely related to their habitat. For instance, yellow-colored birds are never seen in a water
background but are commonly seen in a more greenish context. On the other hand, the model
with no alignment may have several samples with conflicting information. Thus, we believe
only the model with shape alignment holds a fair comparison with the baseline.

We show some qualitative results for text consistency in Figure 5.2. All samples were
generated by randomly choosing the three conditions. The results are quite impressive. The
network can model fine details such as “pointy bill ” and “white wing bars”. Moreover, the model
does not only consider the main features but the whole description - even when the description
is long and detailed. We can see some examples of rare features such as “pink color ” and
“red shade around eyes” being modeled. This kind of generalization is only achievable by the
use of word-vector models. Word-vector models have a meaningful latent space of colors. For
example, colors such as pink, magenta, and purple tend to be close in the semantic space learned
by fastText. Thus, colors that are rarely seen during training (e.g. magenta is seen only one
time) can be drawn. In Figure 5.3 we can see an example of the color magenta being modeled
by our framework against the StackGAN result.



60This bird appears
quite average in
length and side,
it has a white
breast and throat
while it’s wings
and crown are
brown, it also has
an orange beak.

A tiny grey bird,
with a lot of head,
small, black,
pointy bill, yellow
crown, black cheek
patch, white su-
perciliary, malar
stripe, breast,
sides, and flanks,
and yellow tipped
coverts.

The head of the
bird is black while
the body of the
bird is golden yel-
low.

A bird with a
white belly, gray-
green head, and
short black and
pink beak.

This medium bird
has a long neck,
grey and white
countershading,
and a set of dark
feathers atop its
crown with a
narrow pointed
orange bill.

This bird has a
white belly and
head with a pointy
black beak.

This colorful
specimen has a
rust colored belly,
crown, and nape
accented with blue
primaries and
secondaries, and
tail.

A small bird with
a black head and
black nape, with
black covering the
rest of its body,
and bill is short
and pointed.

An entirely black
bird with a small,
sharp beak and
small black eyes.

The bird has
black crown and
nape, gray throat,
breast, belly and
abdomen, the tar-
sus and feet are
light brown.

The bird has a
white belly and a
yellow beak with a
brown body.

A mostly yellow
bird with brown
feathers in its
wings and head.

This dark colored
bird has a brown
belly and breast
and a brown bill.

Medium sized bird
with a matte gray
body, pale yellow
tipped tail feather
and wing edges,
red shade around
eyes, and small
red spot on wings.

A small brightly
colored red bird,
with a white
speckled belly.

A bird with a
white breast,
short yellow bill
and gray feet.

A yellow breasted
and yellow
crowned bird, with
a black throat and
black primaries
with white wing-
bars.

A small bird with
brown feathers
and short but
sharp beak.

The bird has a
white throat, a
spiked crown and
a long bill.

This birds head is
small compared to
its body, its body
is brown, and its
foot and bill are
black.

A colorful bird
with a bright yel-
low body, a black
crown and throat,
orange bill, and
black primaries
and secondaries.

Figure 5.2: Generated samples. Each bird was generated from the sentence on its left and
random shape and background conditions. Better seen in color.
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A magenta colored beautiful
small bird with brown spot-
ted wings.

Ours

StackGAN

Figure 5.3: Depiction of magenta coloured samples. The upper example is the real image being
described. Our model is capable of reproducing a rare feature (magenta) while StackGAN [79]
converges to a common bird (brown-colored). Better seen in color.

5.1.3 Background Consistency

To compute background consistency, we decide to use the SSIM score defined in Sec-
tion 4.3. Since we are only interested in evaluating background, we follow the same approach
of pixel-wise conjunction used during training. We compute the SSIM using the resulted mask.

As described earlier, SSIM computes mean and standard deviation in patches (usually
11×11 patches). Computationally, this is done via 2D convolutions in the image with a 11×11

gaussian filter. In order to evaluate only background pixels, we have to exclude all patches
with at least one foreground pixel. Then, we could not compute the SSIM for smaller scales
(MS-SSIM) - almost all patches had at least 1 foreground pixel for 32 × 32 or smaller scales.
The modified formula of SSIM is given by:

SSIM(x1, x2) =
1

Nb

Nb∑
i=1

(2µx1µx2 + C1)(2σx1x2 + C2)

(µ2
x1

+ µ2
x2

+ C1)(σ2
x1

+ σ2
x2

+ C2)
·mask (5.1)

where µ and σ are the resulting 54 × 54 × 3 tensors from the 11 × 11 filter convolution. The
mask is computed by convolving x1 and x2 segmentations with a 11 × 11 uniform filter and
calculating the pixel-wise logical conjunction.

Finally, we compute the average SSIM from 10000 samples. The resulted SSIM for out
model’s background consistency is 0.253±0.196 for unaligned backgrounds and 0.311±0.234 for
aligned backgrounds. In Figure 5.4 we show two qualitative results for background consistency
with unaligned background.

Qualitative results shows us that background loses most of the details when encoded as
a condition. Background condition catches the overall color and some variations that resembles
tree branches, rocks and others.
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(a) (b)

Figure 5.4: Background consistency qualitative results. In both images: first row indicates real
images used as background condition; first column the shape conditions. Each line has a fixed
text description, which was omitted. Better seen in color.

Besides that, a very interesting result is that the object in the background image is
completely ignored and does not affect the generated image. The pixel-wise logical conjunction,
used during training, was able to provide the supervision necessary for the background encoder
to automatically differentiate background from the foreground. From our knowledge, this is
the first time such a technique is employed and it is one of the most important contributions
of our work for the deep learning community.

5.1.4 Disentanglement

In this section, we show the results obtained applying our disentanglement score,
described in Section 4.3.6. Table 5.3 shows the impact in the foreground and the background
by varying the three concepts independently. Higher values mean more changes. We denote
the varying concept as “free” in the first column.

Unfortunately, it is not possible to compute a “style change” directly. That would
mean an automatic way to uncouple style changes from structural changes made by the free
concept. Therefore, our metric gives a general object change, which computes all changes made
inside the object mask. That said, we expect text descriptions to change the object style, but
keep its structure such as the wing and the beak position. Quantitatively, that means text to
have fewer changes in the object than the background in the background itself. Also, we expect
the shape to make small changes in the object - possibly the structural changes - and almost
no changes in the background. Fortunately, this is exactly what we observe in the results.
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Table 5.3: Disentanglement score with N = 20 and M = 20.

Free Foreground Changes Background Changes

Text 0.48 ± 0.15 0.09 ± 0.04
Background 0.12 ± 0.03 2.65 ± 0.88

Shape 0.08 ± 0.01 0.05 ± 0.01

(a) (b)

Figure 5.5: Samples for visual inspection of the overlap between style and background. In (a)
each row has the same shape and background conditions, but the text description is changing.
In (b) each row has the same text and shape condition, but the background is changing. Better
seen in color.

Note how each free concept is conditioning each part of the image correctly. However,
we can see that background and text have the biggest overlap between them. This is observable
during the visual inspection and was an expected behavior since the bird species has a close
relationship to its context. Our method was not capable of adjusting this strong statistical sign
received during training.

In Figure 5.5 we can see some examples of the overlap between text and background.
Figure 5.5a shows some results of background changes varying only text descriptions and Fig-
ure 5.5b shows the results of object changes varying only the background.

Lastly, to verify the impact of our word-level representation on disentanglement, we
compute the disentanglement measure of our model trained with char-CNN-RNN. This ablation
model has all the consistency modules for shape and background disentanglement, however, the
word-level discriminator is exchanged by the traditional sentence-level discriminator.

Table 5.4: Disentanglement score with N = 20 and M = 20 using char-CNN-RNN.

Free Foreground Changes Background Changes

Text 0.08 ± 0.03 0.01 ± 0.01
Background 0.34 ± 0.05 2.65 ± 1.35

Shape 0.30 ± 0.05 0.08 ± 0.02
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Table 5.4 shows that the char-CNN-RNN sentence-level vector strongly harms the
disentanglement of concepts. We can see that foreground features are mostly conditioned
on background and shape conditions, while the text is being completely ignored. This result
confirms our claim that word-level representation plays an indispensable role in disentanglement
jointly with the consistency modules.

5.1.5 Shape vs Text

In this section, we show an additional study to evaluate text and shape conflict. We
compare the similarity between generated images and text with aligned and unaligned shape
conditions from Table 5.2. The expected behavior is that, if there was no conflicting information
between shape and text, the similarity should be the same. However, it is known that some of
the descriptions have conflicting shape information such as “long beak” and “small bird”. As
expected, VS drops 6.2% by the use of unaligned shapes when background is aligned (first two
rows) and 7.5% when background is not aligned (last two rows).

Finally, to close the control evaluation section, we show in Figure 5.6 some results
with the three conditions simultaneously.

Text Background Shape Result

This bird has a
brown and white
body with black-
tipped wings and
tail, and a head
sporting the colors
red, white, and
black.

This bird has an
orange throat,
belly and crown,
with brown wings
and short bill.

This bird has a
white breast and
a brown spotted
head and back.

Figure 5.6: Results with the three conditions. Better seen in color.
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5.2 Diversity

We evaluate our model’s diversity by comparing IS, FID and MS-SSIM against two
ablation studies and a state-of-the-art framework. The first ablation was obtained by removing
both consistency modules and keeping a traditional text-to-image synthesis framework with
word-vector representations (the same called Baseline in Section 5.1.2). The second is an
ablation where the word-level representation was exchanged by the sentence-level representation
of char-CNN-RNN, keeping the consistency modules. All models with shape and background
consistency modules receive shape conditions from the test-set aligned with the text description,
while background conditions are chosen randomly from a normal distribution. This is due to
the conflict information described in Section 5.1.5 and also due to a lack of smoothness in the
learned segmentation latent space, which decreases significantly all metrics. This problem will
be better addressed in Section 5.3.2, where we evaluate quantitatively and qualitatively the
segmentation latent space.

The HDGAN proposed by Zhang [80] will be used for comparison. IS and FID are
omitted due to the high resolution of the HDGAN framework (512 × 512), which has a high
correlation with IS results [80].

Table 5.5: Diversity evaluation. IS is the Inception Score, higher is better; FID is the Fréchet
Inception Distance, less is better; MS-SSIM is the Multi-Scale Structural Similarity, in this case
less is better.

Model Text C. Modules Seg. Aligned Bkg. IS (+) FID (-) MS-SSIM (-)

Ours sentence Yes zs ∼ φ(x ∼ X) Yes zb ∼ N (0, 1) 2.99 ± 0.07 20.53 0.178
Ours (Baseline) word No - - - 3.48 ± 0.09 24.38 0.173

Ours word Yes zs ∼ φ(x ∼ X) Yes zb ∼ N (0, 1) 3.55 ± 0.09 17.08 0.174
HDGAN [80] sentence - - - - - - 0.215

Note from Table 5.5 that the consistency modules had an improvement of only 2.01%

for IS, while FID had an improvement of 29.94%. This is because IS only measures diversity
regarding the 50 test-set classes - intra-class diversity is ignored. Our method was not designed
to increase diversity in a class sense, but to improve general variability. On the other hand,
FID extracts statistics from high-level features of images and computes the Fréchet distance
between real and fake data. In other words, FID considers diversity and realism based on
high-level features of the training set, from where the statistics are computed. Individually, we
can see that the use of word-vectors also had an important role to increase IS and FID.

On MS-SSIM we had good yet different results. We can see that our work has a
much better performance than HDGAN. Photo-realistic frameworks, such as HDGAN, focus
its efforts on generating high-quality images. We argue that high-quality images are achieved
not only by increasing resolution but by leveraging from common statistics. Since MS-SSIM
does not consider realism, our model easily surpasses HDGAN results. However, differently
from FID results, MS-SSIM does not indicate an improvement by adding consistency modules.
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We believe that the major difference is that FID and IS rely on the use of a deep classifier, which
is trained to encode the object for classification. MS-SSIM instead evaluates the entire image
equally. We can conclude that our method increases object diversity, but has no significant
impact on background diversity.

5.3 Realism

After showing our improvements in control and diversity, we evaluate if the proposed
method penalizes realism. Following the literature, we compute IS and FID and compare to
previous approaches on text-to-image synthesis. Next, we evaluate the learned latent space
smoothness quantitatively and qualitatively through 1D, 2D, and 3D interpolations.

5.3.1 Scores

It is known that IS is directly correlated with the synthesized resolution [80]. Thus,
we compare our work only with previous 64 × 64 resolution models: GAN-INT-CLS [49],
StackGAN-I [78] (first stage only), and FusedGAN [5]. We show results with different input
configurations for our method to investigate the best and worst case (see Table 5.6).

Table 5.6: Realism evaluation against 64× 64 resolution frameworks.

Model Text C. Modules Seg. Aligned Bkg. Aligned IS (+) FID (-)

GAN-INT-CLS [49] - - - - - - 2.88 ± 0.04 68.79
StackGAN-I [78] - - - - - - 2.95 ± 0.02 -
FusedGAN [5] - - - - - - 3.00 ± 0.03 -

Ours word Yes zs ∼ N (0, 1) - zb ∼ N (0, 1) - 3.22 ± 0.08 33.74
Ours word Yes zs ∼ φ(x ∼ X) No zb ∼ ψ(x ∼ X) No 3.35 ± 0.09 17.09
Ours word Yes zs ∼ φ(x ∼ X) Yes zb ∼ ψ(x ∼ X) Yes 3.63 ± 0.10 16.33

As we can see, our model still achieves good performance on IS and FID. Previous
methods on 64 × 64 resolution hit a maximum of 3.00 on IS, while our model - even with
conditions sampled from the Gaussian distribution - have a minimum of 3.22. By aligning all
conditions and sampling from the test-set, our model achieves the highest performance. Aligned
conditions guarantee no conflicting information between shape and text descriptions, and also
does not force less common background/object combination (e.g. yellow bird in the water).

Comparatively, the method that uses background and shape conditions sampled from
the normal distribution has a significant loss on performance. We believe this is mostly due to
the lack of smoothness in the latent space of shapes. This problem will be betteer discussed in
the following section.
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5.3.2 Latent Space Smoothness

It is difficult to imagine how segmentations should be interpolated to always provide
a realistic bird shape. That would mean that every point in the normal distribution is an
intermediate realistic position of a bird. For instance, between a bird facing left and a bird
facing right, we should have infinite intermediate realistic positions - including a bird facing
forward (or backward). Now, imagine this between every possible position the bird might be
and every different shape the bird might have.

We hypothesize that, if the model’s latent space is smooth enough, results from either
segmentation data from the test set or sampling from the known distribution should be similar.
Given the amount of data available, it is more likely that some regions are being filled with
unrealistic shapes that may harm the generation.

Table 5.7: Quantitative results for different input configurations for the generator.

Segmentation Aligned Background Aligned IS (+) FID (-)

zs ∼ φ(x ∼ X) No zb ∼ ψ(x ∼ X) No 3.35 ± 0.09 17.09
zs ∼ N (0, 1) - zb ∼ ψ(x ∼ X) No 3.29 ± 0.08 33.89
zs ∼ N (0, 1) - zb ∼ N (0, 1) - 3.22 ± 0.08 33.74

Table 5.7 show results for conditions from the test-set and the normal distribution.
It confirms our expectations. Both metrics are harmed by sampling shape from the normal
distribution. However, we can see that sampling background from the normal distribution does
not affect the generation significantly. Background latent space is mostly composed of color
variations, which do not have to be realistic for high IS and FID scores. Figure 5.7 shows some
samples that were harmed by bad shape conditioning from the normal distribution.

Figure 5.7: Samples generated with bad shape conditioning from the normal distribution.
Better seen in color.

Notably, images synthesized by bad shape conditions have bad results. Unfortunately,
given the quantitative results, those are very common in the latent space. We believe that
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this problem can be addressed by increasing λs and giving more relevance to the segmentation
mapping during training.

5.3.3 Interpolations

A good method to evaluate the degree of overfitting in a generative model is to ex-
plore the model’s latent space by interpolation [44]. Overfitted models tend to have discrete
transitions in the interpolated images and regions that do not correspond to meaningful images
[4, 48, 15]. Furthermore, interpolation also gives us a good visual tool to evaluate smoothness
qualitatively. In this section, we show several examples not only for evaluation but also to
explore our model’s interesting features of 1D, 2D, and 3D interpolation. All interpolations
were obtained using shape, text, and background conditions from the test-set.

Figures 5.8, 5.9 and 5.10 depict 1D interpolations for style, shape and background,
respectively. Figures 5.11a and 5.11b show 2D interpolations on the shape and background
dimensions. Figures 5.12a and 5.12b show 2D interpolations on the style and background
dimensions. Figure 5.13a and 5.13b show 2D interpolations on the style and shape dimen-
sions. Finally, Figure 5.14 depicts a 3D interpolation through style, shape, and background
dimensions.

Figure 5.8: 1D text description (style) interpolation. Shape and background are kept constant
for each row. Better seen in color.
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Figure 5.9: 1D shape interpolation. Text and background are kept constant for each row.
Better seen in color.

Figure 5.10: 1D background interpolation. Shape and text are kept constant for each row.
Better seen in color.
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(a) (b)

Figure 5.11: 2D interpolation. Shape (x axis) and background (y axis). Text is kept constant.

(a) (b)

Figure 5.12: 2D interpolation. Style (x axis) and background (y axis). Shape condition is kept
constant.
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(a) (b)

Figure 5.13: 2D interpolation. Style (x axis) and shape (y axis). Background condition is kept
constant.

Figure 5.14: 3D interpolation. On the left, a 2D interpolation with style (x axis) and shape
(y axis). For better visualization, we choose the diagonal images to show the third dimension
(background) interpolation - on the right.

Apart from the general good results, Figure 5.11a shows how the model may interpo-
late two shapes with the opposite orientation. The model does not interpolate with intermediate
positions, but with a merging shape that looks more like a two-headed bird. On the other hand,
in Figure 5.15 we show a good interpolation result of our model in a similar scenario.
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Figure 5.15: Interpolation between flipped shapes.

5.4 Ablation Studies

In this section we investigate the impact of our contributions individually. We conduct
ablation studies for shape consistency module, background consistency module, fastText word-
vectors, and the KL loss used to map segmentations to a normal distribution.

The consistency modules ablations are performed by exchanging the input with a
traditional noise z ∼ N (0, 1) and removing the consistency loss setting the hyperparameters to
zero. This way, the diversity is not harmed by the absence of input conditions. The fastText
ablation is performed by using sentence-level representations from the char-CNN-RNN and the
traditional sentence-level discriminator D.

Lastly, the segmentation KL loss ablation is made by setting the hyperparameter to
zero. By doing so, segmentation masks are not mapped to a known distribution and there is
no guarantee of good results by randomly sampling zs instead of using a test-set segmentation.

Table 5.8 summarizes all the obtained results for IS, FID, VS, MS-SSIM and IoU.
We show additional IS and FID results from sampling shape and background conditions from
the normal distribution, denoted as IS-z and FID-z, respectively. MS-SSIM scores follows the
protocol used in Section 5.2, with shape conditions from the test-set and background from a
standard normal distribution.

Table 5.8: Ablation for segmentation consistency (γs), background consistency (γb), segmenta-
tion KL-divergence (λs) and fastText word vectors (Text). All results using conditions from the
test-set without alignment, except for MS-SSIM, where we keep the protocol used in Section 5.2.

γs γb λs Text IS (+) IS-z (+) FID (-) FID-z (-) VS (+) MS-SSIM (-) IoU (+)

10 10 0.5 word 3.35 ± 0.09 3.22 ± 0.08 17.09 33.74 0.135 ± 0.183 0.174 77.2%
0 10 0.5 word 3.42 ± 0.09 3.49 ± 0.09 23.40 25.73 0.135 ± 0.183 0.177 -
10 0 0.5 word 3.45 ± 0.08 3.28 ± 0.07 17.47 33.57 0.147 ± 0.186 0.181 76.57%
10 10 0 word 3.48 ± 0.10 1.93 ± 0.04 17.33 146.74 0.132 ± 0.183 0.298 82.56%
10 10 0.5 sentence 3.03 ± 0.08 2.68 ± 0.06 19.15 37.57 - 0.178 77.78%

We can conclude that the shape consistency module plays an important role in diver-
sity. FID scores are highly improved by the use of shape consistency. The shape consistency
module forces the shape disentanglement hence the use of mismatched conditions during train-
ing, which approximates fake images distribution towards the real data distribution. Also, we
observe that text consistency had no impact.

By the background shape consistency removal, we do not see significant changes in IS
and FID. However, we can see how text consistency is improved in the absence of background
disentanglement. As seen in previous sections, VS is improved by the use of an aligned back-
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ground. Although expected, this behavior is not appropriate for a text consistency metric. Text
descriptions do not describe background information on the CUB dataset. Thus, we cannot
take further conclusions about text coherence on background consistency ablation.

As expected, the removal of KL loss for segmentation harms the use of normal dis-
tribution sampling for the shape condition. IS-z and FID-z drop performance to the lowest
level we have seen so far. However, we can see that IoU is improved to 82.56%, almost the
segmentation network error. Therefore, KL harms the shape consistency to provide the random
sampling feature.

The use of word-vectors from fastText has shown to boost general results of IS and
FID. Unfortunately, it is not trivial compare semantic consistency across methods with different
text representations. Hence, we could not evaluate quantitatively the impact of fastText word-
vectors on semantic consistency.

Finally, MS-SSIM results show that the most significant impact is the removal of the
shape KL loss. This result confirms that CA modules also improve diversity, as pointed out by
Zhang [79]. Furthermore, we confirm that the best result is achieved by the use of all proposed
techniques.
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6. CONCLUSION

In this work, we introduced the base concepts and the main issues of text-to-image
synthesis as well as state-of-the-art efforts on the research community to mitigate them. We
summarized general synthesis goals as realism, diversity, and control; and presented a novel
disentanglement-based approach to tackle diversity and control in the text-to-image scenario.

Furthermore, we raised some criticism about current approaches for text representa-
tion and how it may lead to undesired behaviors for the text-to-image models. Based on that,
we proposed the use of a more proper textual representation, which was demonstrated to be
also beneficial for our disentanglement technique.

The overall idea of our method was to use disentanglement as a proxy to increase
diversity. With the use of extra shape supervision, we could easily disentangle the image into
multiple concepts and force uncommon combinations during training. By doing so, the model
would have to learn a more complete mapping using the same amount of data. Also, once a
concept is disentangled, it can be used to control generation during inference. Our method
learns how to encode the information (e.g. background) in such a way that the user can easily
choose the overall aspects of the image: from small detailed object structure to background
colors.

We built an experimental setup based on current research metrics as well as a self-made
measure to evaluate all aspects of our method. First, we evaluated the generation consistency
against the three disentangled conditions — style (text), shape, and background — and inves-
tigate dataset peculiarities such as text and segmentation conflicts. Second, we measured the
degree of disentanglement of our model and the influence of traditional sentence-level repre-
sentation. Third, we evaluated the impact of our approach on diversity and compared it to
state-of-the-art results. Next, we checked if the proposed techniques did not harm realism to
increase diversity and control. Finally, we evaluated each component independently conducting
several ablation studies for the shape consistency module, the background consistency module,
the fastText word-vector representation and segmentation KL loss (used to map conditions to
a normal distribution).

Based on the results presented in Section 5.1, we can say that our framework offers
fine control over style, pose and background. Via natural language, a user can dictate detailed
aspects of the object such as colors and textures. With a 2D binary mask, the user can choose
a specific pose, shape or location for the object. Lastly, passing a real image, the algorithm is
able to extract background information and copy for a synthesized object. Some improvements
for the background are still necessary, but the current results are promising. It is important to
point out that none of the above conditions are strictly necessary to generate a synthetic image
during inference. Our method preserves all text-to-image features.

Regarding diversity, we could conclude in Section 5.2 that our method highly improves
object diversity. Mostly due to the use of the shape consistency module and the word-level
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text representation. The fastText representation jointly with the word-level discriminator have
shown to be helpful to increase diversity but also played a fundamental role in disentanglement.

Additionally, we investigated in Section 5.3 the impact of our contributions on realism
by comparing results with related approaches. Even with the loss of performance by the use
of normal distribution sampling, our method still has the best results on FID and IS. Unfor-
tunately, there is no quantitative way of measuring realism independently and we support our
claim that our framework does not harm realism based on the degree of improvement on FID
and IS.

We investigated the mentioned loss on performance by evaluating quantitatively the
latent space smoothness. The hypothesis that a not smooth latent space would cause a drop
in performance by sampling from the normal distribution was confirmed. Our method was
not able to interpolate the segmentation latent space properly. Most of the shape conditions
generate unrealistic images when sampled from a normal distribution and not from a real mask.
We believe this issue can be better addressed by a more rigorous search for hyperparameters.
Unfortunately, this is computationally demanding, an thus, we leave it for future work.

Finally, our future work also includes: increase resolution, which can easily be made
following previous approaches such as stacking multiple GANs [79, 78]; adapt the framework
for multi-object datasets, such as MS-COCO [36]; and lastly, expand some of our contributions
for image manipulation from textual description, which has already shown promising results.
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