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Abstract

This work proposes a semidefinite optimization solution to the analysis and control of

a torpedo shaped Autonomous Underwater Vehicle (AUV). The AUV is best described

as a nonlinear system and a quaternion representation was used to represent rotations

in space. The system is described by means of the Differential Algebraic Representation

(DAR) which group the nonlinearities in an auxiliary vector, then a convex optimization

problem subject to a set of constraint functions in the form of Linear Matrix Inequalities

(LMI) ensures local exponential stability of the system attitude. A control design strategy

is proposed in order to compute gain K of the closed loop system in three different

scenarios in order to investigate the impact of the size of region X and the error of system

identification at the size of region of attraction.

Keywords: Autonomous Underwater Vehicle, Torpedo, Differential Algebraic Repre-

sentation, Quaternions, Linear Matrix Inequalities, Convex Optimal Problem, Semidefi-

nite Optimization, Lyapunov Stability, Region of Attraction, Locally Exponentially Sta-

ble, Disturbance Rejection.
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Resumo

Este trabalho propõe uma solução optimizada semidefinida para a análise e controle de

um Véıculo Subaquático Autônomo (VSA) no formado de um torpedo. O VSA é descrito

por um sistema não linear e uma representação por quaternions é usada para representar

rotações no espaço. O sistema é descrito em termos de uma Representação Algébrica

Diferencial (RAD), a qual agrupa as não linearidades em um vetor auxiliar, então um

problema de optimização convexo sujeito a um conjunto de funções de restrição na forma

de Desigualdades Matriciais Linearess (DML) garante estabilidade exponencial local da

orientação do sistema. Uma estratégia de controle é proposta para calcular o ganho K

do sistema em malha fechada em três diferentes cenários com o objetivo de investigar

o impacto do tamanho da região X e de posśıveis erros na identificação do sistema no

tamanho da região de atração.

Palavras-chave: Véıculo Subaquático Autônomo, Torpedo, Representação Algébrica

Diferencial, Quaternions, Desigualdades Matriciais Lineares, Problema de Optimização

Convexo, Optimização Semi definida, Estabilidade de Lyapunov, Região de Atração, Es-

tabilidade Exponencial Local, Rejeição de Distúrbios.
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1 Introduction

In the past few decades, the expansion of activities in deep sea growth the interest and

attracted substantial attention of the control community for researching and developing

technologies that help the human beings to discover and explore the submarine world.

The advancement of Autonomous Underwater Vehicles (AUV) over Remotely Operated

Vehicles (ROV) made a strong movement towards that due to their capability of manip-

ulating material and collecting pertinent data at long-range, low-cost and rapid response

(Silva and Sousa, 2008). Many applications may be performed by these classes of vehi-

cles like oceanographic mapping, rescue, environmental surveying and sampling, undersea

cable and structure inspection, explorations, offshore oil installations, deep sea archaeol-

ogy, military interest and others (Pettersen and Egeland, 1996; Yuh, 2000). Even though

marine robotic vehicles represent a very active research area, we have not been able to

explore the full depths of the ocean and its abundant living and non-living resources yet,

what implies that it is a considerably promising industry for working in the next several

decades.

In fact, it is extremely challenging to travel undersea in consequence of the unstruc-

tured and hazardous ocean environment (Yuh et al., 2011). Some of the main researched

topics for making the vehicles fully autonomous and reliable include the following sub-

systems and works: robust underwater communication (Chitre et al., 2008), on-board

navigation sensors (Blidberg and Jalbert, 1995; Black and Butler, 1994; Paull et al.,

2014), high density power sources (Hasvold et al., 2006; Bradley et al., 2001), mechanical

manipulators (Shukla and Karki, 2016), pressure hulls and fairing (Walton et al., 1993;

Davies and Rajapakse, 2014), fault detection and tolerance (Joshi and Talange, 2016;

Podder et al., 2001; Yang et al., 1998), dynamics (Triantafyllou and Amzallag, 1984;

Sagatun, 1992; Fossen et al., 1994), motion planning (Cui et al., 2016) and control sys-

tems. The last is a critical topic, since it is directly responsible for providing accurate

and autonomous control, subject to environmental disturbances, uncertainties in hydro-

dynamic coefficients, changes in the center of gravity and buoyancy due to manipulator

motions and high nonlinear, coupled and time varying dynamics of the vehicle (Yuh,

2000).

The problem of advanced underwater robot control systems has attracted many re-
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searchers and several solutions have been proposed in the literature (Tsukamoto et al.,

1997). A variety of methods have been designed ranging from sliding mode control,

nonlinear control, adaptive control, to neural networks control and fuzzy control. The

substantial quantity of publications evidence the interest of the control community in

applying advanced nonlinear techniques to Autonomous Underwater Vehicles.

Yoerger and Slotine (1985) have investigated the effects of uncertainty of the hydro-

dynamic coefficients and negligence of cross-coupling terms and proposed a sliding mode

controller for trajectory control that handle these problems effectively. Healey and Lien-

ard (1993) have used a multivariable sliding mode autopilot based on state feedback for

control underwater vehicles. Bessa et al. (2010) described the development of a dynamic

positioning system for remotely operated underwater vehicles using sliding mode con-

trol strategy and enhanced by an adaptive fuzzy algorithm for uncertainty/disturbance

compensation.

Nakamura and Savant (1992) presented a nonlinear tracking control that makes use of

the nonholonomic nature of the system without considering the dynamics of the system.

Goheen and Jefferys (1990) have proposed two multivariable selftuning controllers

as an autopilot for underwater vehicles to overcome model uncertainties. Yuh (1990a)

presented an adaptive control system providing high performance in the presence of un-

predictable changes in the dynamics of the vehicle and its environment. Adaptive control

techniques were implemented to the design of robust controllers that can adjust to chang-

ing dynamics and operating conditions by Cristi et al. (1990). An investigation by Tabaii

et al. (1994) showed an hybrid adaptive controller that handles the uncertainties dynam-

ics. A control system is described using the bound estimation techniques, capable of

learning, and adapting to changes in the vehicle dynamics and parameters by Choi and

Yuh (1996). Sahu and Subudhi (2014) proposed an adaptive controller using a regressor

matrix consisting hydrodynamic parameter uncertainties and the control law is verified

using Lyapunov’s stability criterion.

Experimental results on the application of Neural Networks (NN) to control the un-

derwater robotic vehicle ODIN are shown by Yuh (1990b) and Lorentz and Yuh (1996).

Cui et al. (2017) investigated the trajectory tracking problem using NN for compensating

unknown dynamics.

A fuzzy logic controller for depth control of Unmanned Underwater Vehicles which
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does not require a dynamic model was developed by DeBitetto (1995). Ishaque et al.

(2010) proposed a single input single output fuzzy logic controller. Xiang et al. (2017)

presented a robust fuzzy control scheme that reduces the design and implementation costs

since it relaxes the knowledge of the accuracy dynamics and environmental disturbance.

In this dissertation, we will consider a dynamic model of an Autonomous Underwater

Vehicle, describing Coriolis and centripetal terms, damping terms, hydrodynamic added

mass and torque controls, following the notation from the Society of Naval Architects

and Marine Engineers (SNAME, Lewis (1989)). The system will be expressed in terms

of quaternions, then will be described in a Differential Algebraic Representation (Trofino

and Dezuo, 2014). Thus, a convex optimization problem subjected to a set of constraint

functions will be applied to the closed loop system in the above representation providing

sufficient conditions to ensure local exponential stability of the system attitude. The

proposed method do not use any kind of approximation or linearization and a collection

of linear-like tools may subsequently be applied, simplifying and enriching the control

design task. Finally, an investigation to the impact of disturbances in the size of the

Region of Attraction will be presented. The main goals of this work are summarized in

Section 1.1.

Figure 1: Light Autonomous Underwater Vehicle (LAUV) design and built at University
of Porto.

Source:(Silva and Sousa, 2008).

The Autonomous Underwater Vehicle studied in this dissertation consists of a six

degrees of freedom (DOF) torpedo shaped vehicle actuated by one propeller and 3 fins,
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all electrically driven. The vehicle parameters were taken from an AUV optimized for

small size and low-cost mechanical structure (da Silva et al., 2007) designed and built

at the Underwater Systems and Technology Laboratory (USTL) from Oporto University,

called Light Autonomous Underwater Vehicle (LAUV), depicted in Figure 1.

1.1 Objectives

The main aim of this work is to present an attitude control method for an Autonomous

Underwater Vehicle (AUV) in the shape of torpedo such that the control design task may

be cast as a semidefinite optimization problem. The following goals lead this work to the

main objective

• Present the dynamics equations of the AUV in terms of quaternions

• Describe the system in the Differential Algebraic Representation

• Assess stability of the origin subjected to a proposed control law

• Compute the gain K of the closed loop system

• Investigate the impact of disturbances in the size of the Region of Attraction

In order to achieve that, the next section describes how the content of each chapter

advances us towards these objectives.

1.2 Structure

This work has 6 Chapters and is organized as follows. Chapter 2 explores the main

concepts and theories needed along this dissertation, especially the definition of quater-

nions, the application of convex optimization problems with linear matrix inequalities as

constraints, depicting a system in a differential algebraic representation, the understand-

ing of stability by Lyapunov and mathematical tools. Next, on Chapter 3, the dynamic

model of a generic autonomous underwater vehicle is presented along with a specific tor-

pedo model and its DAR form. In Chapter 4, the model is analyzed with a theorem that

guarantees local exponential stability, then a design strategy is provided for the closed

loop system in order to compute gain K. Going further, Chapter 5 shows the numerical

results obtained from this work. Finally, in Chapter 6 the final considerations are granted

and future research proposals are given.
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2 Preliminaries

This chapter will lay the main concepts and the mathematical foundation used through-

out this work. First, some essential mathematical tools will be briefly presented, followed

by the extension of rank 4 to complex numbers, called quaternions and its application to

this work. Next, the process of achieving optimal solutions, known as convex optimiza-

tion problems, is presented along to the introduction to linear matrix inequalities. Finally,

the concept of Lyapunov stability is discussed and a theorem is explored as constraint

functions to assess exponential stability.

2.1 Mathematical Tools

Here, some mathematical tools that are necessary in the resolution of this work are

presented.

Definition 2.1 (Skew-Symmetry). A matrix function S(x) : R3 → R3×3 is a skew-

symmetric matrix operator defined such that the vector cross product

x× y , S(x)y (1)

that is

S = −S ′ (2)

and

S(x) =

 0 −x3 x2

x3 0 −x1

−x2 x1 0

 ,∀x =

x1

x2

x3

 ∈ R3 (3)

�

2.2 Quaternions

A research made by William Hamilton for a generalization of complex numbers in

order to apply them to three-dimensional space resulted in 1843 in the discovery of an

extension of rank 4 to complex numbers, which he named quaternions, described in a

hyper-complex domain, also called Hamiltonian domain (Hamilton, 1844). Today there

are many applications where they are used as for color image compression with Quaternion
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Neural Networks (Isokawa et al., 2003), eletromagnetics (Anastassiu et al., 2003), and for

expressing rotations and attitude of a rigid body in a three-dimensional space as described

later in this section.

A quaternion, q ∈ H, can be written as a sum of one real part and three imaginary

parts

q = η + ε1i+ ε2j + ε3k (4)

where the scalars η, ε1, ε2, ε3 ∈ R are the components of quaternion, while η is the scalar

part and ε1, ε2, ε3 is the vector part. The imaginary identities i, j, k take an important role

and they are the basis elements of Hamiltonian domain since they satisfy this conditions

known as Hamilton’s Rules

i2 = j2 = k2 = ijk = −1. (5)

The set of quaternions can be written as

H = {q = η + ε1i+ ε2j + ε3k | η, εt ∈ R, i2 = j2 = k2 = ijk = −1}. (6)

An alternative way of writing quaternions is the following vector form that will be

used throughout the remaining chapters of this work

q → q = (η, ε1, ε2, ε3) =

η
ε

 . (7)

The conjugate q∗ is defined as

q∗ = η − ε1i− ε2j − ε3k → q∗ =

 η

−ε

 . (8)

The length of q is defined as the norm

‖q‖ =
√
qq∗ →‖q‖ =

√
q′q =

√
η2 + ε21 + ε22 + ε23. (9)

This work uses quaternions to represent rotations in a three-dimensional space. Al-

though, Euler Angles sequences are a traditional way to represent rotations by a set of

three angles and they have easy understanding, unit quaternion is a four-dimensional

parametrization of attitude that provides important advantages, as smooth rotation for
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rigid bodies and avoid singularities (Gimbal Lock) (Diebel, 2006).

From the Euler’s theorem, it is known that the attitude of a rigid body can be described

in terms of rotation by some angle ψ along an axis ~r. In terms of the axis-angle rotation,

quaternions are defined as

q =

 cos ψ
2

~r sin ψ
2

 =

η
ε

 ∈ R4 (10)

where η ∈ R is its scalar part and ε ∈ R3 is its vector part. The unit vector ~r ∈ R3

describes the direction around which the rotation ψ is performed, as depict in Figure 2.

Figure 2: Representation of axis-angle rotation.

ψ

Z  

Y  

X   

r

Source: the autor (2018).

Note that unit quaternions are quaternions with unity norm for natural rotations

without scaling. Then it is clear that the following normalization equation is satisfied
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η2 + ε′ε = 1. (11)

2.3 Convex sets

Among nonlinear functions, the convex one are the most similar to the linear. A set

C ∈ Rn is said to be convex if either C = 0 or if the line connecting any two points in C

is entirely contained in C (Boyd and Vandenberghe, 2004). This is said by the following

δx1 + (1− δ)x2 ∈ C ∀δ ∈ [0, 1],∀x1, x2 ∈ C. (12)

Figure 3 depicts two simple sets where (a) is a nonconvex set because there are pairs

of points which the segments connecting the two points cross the outside border of the

set and in contrast (b) is a convex set by the opposite.

Figure 3: Two sets that easily show the definition of a convex set: (a) Nonconvex set and
(b) Convex set.

(a) (b)

Source: the author (2018).

2.4 Optimization Problems

Optimization problems are processes of choosing the best selection from a number of

options or a set of candidate options (Scherer and Weiland, 2004). They are commonly

found in daily life and have many examples in areas extending from sciences as engineering,

automation, control, architecture and economics to biological and ecological processes and

organizational questions. For example, relevant economical profits on the production of

a product may only be realized if proper decisions is made in its manufacturing process.
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Matching strict specifications and quality standards, with minimal waste of resources,

energy and time, whereas delivering maximal economical profits are constantly demanding

further optimization, for increased efficiency and a better control of processes.

A convex optimization problem is one of the form

minimize
x

f0(x)

subject to fi(x) ≤ bi, i = 1, . . . ,m.
(13)

where the vector x = (x1, ...,xn) is the choice made (optimization variable), the function

f0 : Rn → R represents the cost of choosing it (objective function), the inequalities

fi : Rn → R are the requirements that limit the possible choices (constraint functions)

and the constants bi, ..., bm are the bounds for the constraints (Boyd and Vandenberghe,

2004).

The objective and constraint functions are convex, i.e., satisfy

fi(αx+ βy) ≤ αfi(x) + βfi(y) (14)

for all x,y ∈ Rn, and all α, β ∈ R with α + β = 1, α ≥ 0, β ≥ 0.

A point x is feasible if it satisfies all the constraint functions. Therefore, the convex

optimization problem (13) is feasible if there is at least one feasible point and its solution

is represented by the point that has minimum cost among the set of all choices that meet

the specifications (feasible set). Typically, the solving methods for this problem have no

analytical formula. However, there are very effective methods based on algorithms that

compute a mathematical solution for that particular problem given its properties. An

example of these methods is the Interior-point methods discussed in chapter 11 of (Boyd

and Vandenberghe, 2004).

In this work, we make use of a semidefinite optimization problem in the form of (13)

presented on Chapter 4 to solve the task of maximization of the estimate of the region of

attraction Ra.

2.5 Differential Algebraic Representation

Consider the following uncertain nonlinear system

ẋ = f(x, τ ) (15)
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where x ∈ X denotes the state, τ ∈ T denotes the vector of algebraic variables and

f(x, τ ) is a nonlinear vector function of (x, τ ).

The Differential Algebraic Representation (DAR) originally proposed by (Trofino,

2000) groups nonlinear terms of degree equal or higher than two in an auxiliary vec-

tor ξ(x, τ ) in order to represent rational systems. By making use of this vector, consider

that system (15) can be represented in the following form

ẋ = A1x+ A2ξ(x, τ ) (16)

0 = Ω1(x, τ )x+ Ω2(x, τ )ξ(x, τ ) (17)

where A1 ∈ Rn×n and A2 ∈ Rn×m are constant matrices, Ω1(x, τ ) ∈ Rq×n and Ω2(x, τ ) ∈
Rq×m are affine matrix functions of (x, τ ) and ξ(x, τ ) ∈ Rm is the auxiliary vector.

This representation has no unique solution being not able to compute it in a systematic

way. As consequence, different estimates of the domain of attraction might be lead by

different choices of A1, A2, Ω1(x, τ ), Ω2(x, τ ) and ξ(x, τ ).

The auxiliary variable ξ(x, τ ) may be eliminated from (16) recovering the original

system representation by defining

ξ = −(Ω′2Ω2)−1Ω′2Ω1x (18)

Here, the notation was simplified by not representing the dependence of Ω1, Ω2 and ξ

on (x, τ ).

Then, the dynamics of system (15) can be readily recovered by

ẋ = (A1 − A2Ω−1
2 Ω1)x (19)

2.6 Linear Matrix Inequalities in Control

The design of a controller in general has four requirements: closed-loop stability, stay

stable despite model uncertainty and disturbances (robustness), achieve control require-

ments (performance) and remain stable and well performing despite model uncertainty

and disturbances (robust performance). In control theory, these requirements are usually

best satisfied in the form of convex optimization problems, Section 2.4, and theirs con-

straints stated in terms of Linear Matrix Inequalities (LMIs) (Turner and Bates, 2007).
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The applicability of LMIs ranges from stability and performance evaluations, control law

synthesis, optimal system realization and for many optimization problems. Even though,

the concept of a LMI was first introduced in about 1890, in the work of Lyapunov, it

got in prominence in the late 1980’s with the development of computational algorithms

(Boyd et al., 1994).

An important understanding of matrix inequalities is definiteness as follows.

Definition 2.2 (Definiteness of Matrices). Let P ∈ Rn×n be a symmetric matrix. It is

said to be

a) Positive definite if P > 0 and u′Pu > 0 ∀u 6= 0 ∈ Rn (all eigenvalues are

positive)

b) Positive semidefinite if P ≥ 0 and u′Pu ≥ 0 ∀u ∈ Rn (all eigenvalues are

nonnegative)

c) Negative definite if P < 0 and u′Pu < 0 ∀u 6= 0 ∈ Rn (all eigenvalues are

negative)

d) Negative semidefinite if P ≤ 0 and u′Pu ≤ 0 ∀u ∈ Rn (all eigenvalues are

nonpositive)

The basic structure of a linear matrix inequality (LMI) has the form

F (x) = F0 +
m∑
i=1

xiFi > 0 (20)

where F (x) is a definite positive matrix, which leading principal minors must be positive,

x ∈ Rm is the variable vector and Fi = F ′i ∈ Rn×n, i = 0, ...,m are given constant

symmetry matrices (Scherer and Weiland, 2004). The feasibility problem is to find x

such that inequality (20) holds.

In general, its common to face systems of linear matrix inequalities. The next definition

express how we can represent a set of LMIs as a single LMI.

Definition 2.3 (Multiple LMIs). Multiple Linear Matrix Inequalities is a finite set of

linear matrix inequalities

F1(x) > 0, ..., Fp(x) > 0 (21)
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This system of LMIs can always be converted to a single LMI constraint, when dispos-

ing them diagonally

F (x) =


F1(x) 0 . . . 0

0 F2(x) . . . 0
...

. . .
...

0 0 . . . Fp(x)

 > 0. (22)

2.6.1 Schur Complement

Even though, there are plenty of control problems that can be cast as LMI problems,

a substantial number of pertinent cases have nonlinearities in its nature. In this regard,

there are tools as the Schur complement that manipulates these problems in order to

transform them into a suitable LMI format. In this case, it transforms quadratic matrix

inequalities into linear matrix inequalities.

Considering matrix S ∈ Rn×m and symmetric matrices Q = Q′ ∈ Rn×n, N = N ′ ∈
Rm×m with N > 0, the basic idea is thatQ S

? R

 > 0 (23)

is equivalent to

Q− SR−1S ′ > 0. (24)

2.6.2 S-Procedure

In control problems, there are instances where one needs to combine several quadratic

inequalities into one single inequality. The S-Procedure is a method that enables this

approach.

Let symmetric matrices A = A′ ∈ Rn×n, B = B′ ∈ Rn×n and assume that the

quadratic inequalities are consequence of each other

x′Ax ≥ 0 =⇒ x′Bx ≥ 0 (25)

if and only if there exists a nonnegative λ such that
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B > λA. (26)

One of the simplest linear matrix inequality arose in control theory is the Lyapunov

inequality. The following section presents a set of LMIs that are required to assess stability

in the sense of Lyapunov.

2.7 Lyapunov Stability Theory

Lyapunov stability theory is a classic approach in systems theory that allows one to

draw conceptual conclusions about the trajectories of a system and determine the stability

without explicitly integrating the differential equations of the system (Murray, 2017). The

direct method of Lyapunov makes use of an auxiliary function V (x), called candidate

Lyapunov function, and the concept of energy in order to give sufficient conditions that

prove the stability.

Let V (x) be a candidate Lyapunov function and V̇ (x) be its derivative along trajec-

tories of this system. If V̇ (x) is negative throughout the region, it implies that the energy

is decreasing over time. It means that a trajectory starting in a R neighborhood of the

origin will never leave the neighborhood.

The following lemma presents the set of linear matrix inequalities required to assess

exponential stability (Khalil, 1996) of a function, as Definition (2.4), that will be applied

later on this work.

Definition 2.4 (Definiteness of Functions). Consider a continuously differentiable func-

tion V (x), V : R 7→ R

a) Positive definite if V (0) = 0 and V (x) > 0 ∀x 6= 0 ∈ X

b) Positive semidefinite if V (0) = 0 and V (x) ≥ 0 ∀x 6= 0 ∈ X

c) Negative definite if V (0) = 0 and V (x) < 0 ∀x 6= 0 ∈ X

d) Negative semidefinite if V (0) = 0 and V (x) ≤ 0 ∀x 6= 0 ∈ X

Lemma 2.1. Consider the nonlinear continuous-time autonomous system

ẋ = f(x), (27)



Chapter 2. Preliminaries 31

where x ∈ X is the state vector and the function f : X 7→ Rn is locally Lipschitz on x

with equilibrium point xeq = 0. Let V (x) = x′Px be a candidate Lyapunov function such

that the following is satisfied for all x ∈ X :

k1x
′x ≤ V (x) ≤ k2x

′x, (28)

V̇ (x) = ẋ′Px+ x′Px ≤ −k3x
′x, (29)

R := {x : V (x) ≤ 1} ⊂ X , (30)

for positive scalars, k1, k2 and k3. Then, every trajectory starting in R exponentially

approaches the origin.

�
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3 Dynamic Model

This chapter presents the most commonly used mathematical descriptions of the Au-

tonomous Underwater Vehicle that are necessary in order to design the control method

proposed in Chapter 4. For detailed description, see (Fossen et al., 1994). This chapter is

organized as follows. First, the coordinate frames are briefly introduced, followed by main

components that constitute the motion of marine vehicles. Next, the kinematic model is

addressed presenting the geometric relationship between the body-fixed and earth-fixed

frames. Then, dynamic equations of motion are described in quaternion terms using the

Newton-Euler formulation. Afterwards, the external forces and moments are represented

in terms of Hydrodynamic forces, Environmental forces and Propulsion forces. Finally,

the system dynamic equations are simplified, illustrating the case of study.

3.1 Coordinate Frames

Consider the Autonomous Underwater Vehicle from Figure 4. When analyzing the

motion of this vehicle in 6 DOF, there are two coordinate frames that are commonly used

to describe the kinematics: a global inertia reference frame fixed to the Earth (I -frame

) and a moving coordinate frame, fixed to the vehicle, called body-fixed reference frame

(B -frame ).

The local coordinate frame, (B -frame ), has its origin ORB chosen to coincide with

the center of mass of the vehicle’s body. The body axes XRB, YRB and ZRB coincide with

the principal axes of inertia of the vehicle and are defined as

• XRB - longitudinal axis (directed from aft to fore)

• YRB - transverse axis (directed to starboard)

• ZRB - normal axis (directed from top to bottom)

3.2 Motion Components

The motion of marine vehicles are usually defined in six different components as shown

in Table 2. The position (pp) and orientation (po) of the vehicle are described relative

to the I -frame , while the linear (υ) and angular (ω) velocities and the control forces
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Figure 4: Body-fixed and earth-fixed reference frames.

X  IOI

Z I

Y I

Earth fixed

X
RB

O
RB

Z
RB

Y
RB

u (surge)

w (heave)

v (sway)

p (roll)

q (pitch)

r (yaw)

Source: the autor (2018).

(τ1) and moments (τ2) are described in the B -frame . They are detailed in the following

vectors

Table 2: Notation used for marine vehicles.

Motion component
Forces and
Moments

Linear and
Angular Vel.

Positions and
Euler Angles

Motions in the x -direction (surge) X u x
Motions in the y-direction (sway) Y v y
Motions in the z -direction (heave) Z w z
Rotation about the x -axis (roll) K p φ
Rotation about the y-axis (pitch) M q θ
Rotation about the z -axis (yaw) N r ψ

Source: adapted from Fossen et al. (1994)

p =

pp
po

 =
[
px py pz pφ pθ pψ

]′
∈ R6 (31)

ν =

υ
ω

 =
[
u v w p q r

]′
∈ R6 (32)
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τ =

τ1

τ2

 =
[
X Y Z K M N

]′
∈ R6 (33)

3.3 Quaternion-based Kinematic Model

The geometric relationship between the earth-fixed and the vehicle-fixed motions is de-

scribed by the kinematic model (Fossen et al., 1994). The body-fixed reference frame and

the inertial reference frame are related through a transformation matrix J(q) according

to ṗ
q̇

 =

J1(q) 03×3

04×3
1
2
J2(q)

υ
ω

⇐⇒ ξ̇ = J(q)ν ∈ R7 (34)

where p = [px,py,pz]
′ ∈ R3 is the I -frame position vector of the vehicle, q = [η, ε′]′ =

[η, ε1, ε2, ε3]′ is the unit quaternion representing the body attitude (with scalar and vector

parts η ∈ R and ε ∈ R3, respectively), υ = [u, v, w]′ ∈ R3 and ω = [p, q, r]′ ∈ R3 are the

linear and angular velocities of the vehicle in the B -frame .

The rotation matrix J1(q) ∈ R3×3 that relates the linear velocity vector in the I -frame

to the velocity in the B -frame can be expressed as

J1(q) =

1− 2(ε22 + ε23) 2(ε1ε2 − ε3η) 2(ε1ε3 + ε2η)

2(ε1ε2 + ε3η) 1− 2(ε21 + ε23) 2(ε2ε3 − ε1η)

2(ε1ε3 − ε2η) 2(ε2ε3 + ε1η) 1− 2(ε21 + ε22)

 (35)

The coordinate transformation matrix J2(q) ∈ R4×3 that relates the angular velocity

vector in the I -frame to the velocity in the B -frame can be expressed as

J2(q) =

 −ε′

ηI3×3 + S(ε)

 (36)

where I3×3 is the 3× 3 identity matrix and S(·) is a skew-symmetric matrix.

3.4 Dynamics of Autonomous Underwater Vehicles

The dynamics of Autonomous Underwater Vehicles with 6 Degrees of Freedom can be

represented in the B -frame by the nonlinear equation

M ν̇ + C(ν)ν +D(ν)ν + g(po) = τ + τE (37)
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where M is the total inertial matrix that includes rigid-body and added mass, C(ν) is

the total Coriolis and centripetal terms of the rigid-body and added mass, D(ν) is the

total hydrodynamic damping matrix, g(η) is the gravitational and buoyant forces, τ is

the propulsion forces (control input) and τE is the environmental forces.

The total inertial matrix is defined by

M = MRB +MA (38)

The total Coriolis and centripetal matrix is defined by

C(ν) = CRB(ν) + CA(ν) (39)

The total hydrodynamic damping matrix is defined by

D(ν) = DP (ν) +DS(ν) +DW (ν) +DM(ν) (40)

The following sections will approach each term of Equation (37) individually.

3.4.1 Rigid-body Dynamics

The nonlinear dynamic equations of Rigid-body Vehicles are given by

MRBν̇ + CRB(ν)ν = τRB (41)

where MRB ∈ R6×6 is the rigid-body inertial matrix, CRB(ν) ∈ R6×6 is the rigid-body

Coriolis and centripetal matrix and τRB = [τ ′1, τ
′
2]′ = [X, Y, Z,K,M,N ]′ ∈ R6 is a gener-

alized vector of external forces and moments.

The rigid-body inertial matrix is defined by
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MRB =

 mI3×3 −mS(rG)

mS(rG) IRB

 =



m 0 0 0 mgz −mgy
0 m 0 −mgz 0 mgx

0 0 m mgy −mgx 0

0 −mgz mgy Ix −Ixy −Ixz
mgz 0 −mgx −Iyx Iy −Iyz
−mgy mgx 0 −Izx −Izy Iz


(42)

where m is the constant mass, I3×3 is the identity matrix, rG = [gx, gy, gz]
′ is the center

of gravity, IRB = I ′RB > 0 is the inertia tensor with respect to ORB and S(·) ∈ SS(3) is

defined in Definition 2.1.

The inertia tensor matrix of the rigid-body is

IRB =

 Ix −Ixy −Ixz
−Iyx Iy −Iyz
−Izx −Izy Iz

 (43)

where Ix, Iy and Iz are moments of inertia about the XRB, YRB and ZRB-axes.

The rigid-body Coriolis and centripetal matrix is defined by

CRB(ν) =

 03×3 −mS(υ)−mS(ω)S(rG)

−mS(υ) +mS(rG)S(ω) −S(IRBω)

 , (44)
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which is represented by

CRB(ν) =



0 0 0

0 0 0

0 0 0

−m(gyq + gzr) m(gyp+ w) m(gzp− v)

m(gxq − w) −m(gzr + gxp) m(gzq + w)

m(gxr + v) m(gyr − u) −m(gxp+ gyq)

m(gyq + gzr) −m(gxq − w) −m(gxr + v)

−m(gyp+ w) m(gzr + gxp) −m(gyr − u)

−m(gzp− v) −m(gzq + u) m(gxp+ gyq)

0 −Iyzq − Ixzp+ Izr Iyzr + Ixyp− Iyq
Iyzq + Ixzp− Izr 0 −Ixzr − Ixyq + Ixp

−Iyzr − Ixyp+ Iyq Ixzr + Ixyq − Ixp 0



(45)

This structure used for control design is a compact form of

m(υ̇ + ω × υ + ω̇ × rG + ω × (ω × rG)) = τ1 (46)

IRBω̇ + ω × (IRBω) +mrG × (υ̇ + ω × υ) = τ2 (47)

where τRB = [τ ′1, τ
′
2]′ = [X, Y, Z,K,M,N ]′ ∈ R6 is a generalized vector of external applied

forces and moments, respectively.

3.4.2 External Forces and Moments

The right-hand side vector term τRB of Equation (41) represents the external forces

and moments acting on the vehicle. These external forces and moments can be represented

in terms of Hydrodynamic forces, Environmental forces and Propulsion forces, as expressed

in the following equation

τRB = τH + τE + τ (48)

where τH , τE and τ are the Hydrodynamic forces, Environmental forces and Propulsion

forces, respectively.
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3.4.2.1 Hydrodynamic Forces and Moments Hydrodynamic forces and moments

are composed by the sum of two components as

τH = τR + τD (49)

where τR is the radiation-induced forces and τD is the damping effects.

Radiation-induced forces are forces that act on the body when it is forced to oscillate

with the wave excitation frequency and there are no incident waves. The radiation-induced

forces can be defined as the sum of three new components

τR = −MAν̇ − CA(ν)ν −DP (ν)ν − g(po) (50)

where −MAν̇ − CA(ν)ν is the added mass, −DP (ν)ν is the potential damping and g(η)

is the restoring forces.

Added mass can be understood as pressure-induced forces and moments due to a

forced harmonic motion of the body which are proportional to the acceleration of the

body. The added inertia matrix MA is defined as

MA =

A11 A12

A21 A21

 = −



Xu̇ Xv̇ Xẇ Xṗ Xq̇ Xṙ

Yu̇ Yv̇ Yẇ Yṗ Yq̇ Yṙ

Zu̇ Zv̇ Zẇ Zṗ Zq̇ Zṙ

Ku̇ Kv̇ Kẇ Kṗ Kq̇ Kṙ

Mu̇ Mv̇ Mẇ Mṗ Mq̇ Mṙ

Nu̇ Nv̇ Nẇ Nṗ Nq̇ Nṙ


(51)

where the element Aij of added mass force along the ith-axis due to an acceleration in the

jth direction as example

M12 = Xv̇ (52)

The matrix of hydrodynamic Coriolis and centripetal terms is defined as

CA(ν) =

 03×3 −S(A11υ + A12ω)

−S(A11υ + A12ω) −S(A21υ + A22ω)

 (53)

Considering that motions of submarine vehicles at high speed are highly nonlinear and
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coupled, there are some considerations that can be done in order to simplify the model. It

is important to highlight that the torpedo vehicle studied in this work, as in many other

submarine applications, will move at low speed. Notice that due to vehicle symmetries,

some coefficients that affect the motion can be neglected. If we consider three planes of

symmetry, all elements from the off-diagonal would be neglected. Hence, the following

simple expressions for MA and CA are obtained

MA = −



Xu̇ 0 0 0 0 0

0 Yv̇ 0 0 0 0

0 0 Zẇ 0 0 0

0 0 0 Kṗ 0 0

0 0 0 0 Mq̇ 0

0 0 0 0 0 Nṙ


(54)

CA(ν) =



0 0 0 0 −Zẇw Yv̇v

0 0 0 Zẇw 0 −Xu̇u

0 0 0 −Yv̇v Xu̇u 0

0 −Zẇw Yv̇v 0 −Nṙr Mq̇q

Zẇw 0 −Xu̇u Nṙr 0 −Kṗp

−Yv̇v Xu̇u 0 −Mq̇q Kṗp 0


(55)

Given the above, the total inertial matrix (38) is defined by the sum of (42) to (51)

M =



m−Xu̇ −Xv̇ −Xẇ −Xṗ mgz −Xq̇ −mgy −Xṙ

−Yu̇ m− Yv̇ −Yẇ −mgz − Yṗ −Yq̇ mgx − Yṙ
−Zu̇ −Zv̇ m− Zẇ mgy − Zṗ −mgx − Zq̇ −Zṙ
−Ku̇ −mgz −Kv̇ mgy −Kẇ Ix −Kṗ −Ixy −Kq̇ −Ixz −Kṙ

mgz −Mu̇ −Mv̇ −mgx −Mẇ −Iyx −Mṗ Iy −Mq̇ −Iyz −Mṙ

−mgy −Nu̇ mgx −Nv̇ −Nẇ −Izx −Nṗ −Izy −Nq̇ Iz −Nṙ


(56)

Also, the total Coriolis and centripetal matrix (39) is defined by the sum of (45) to
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(53)

C(ν) =



0 0 0

0 0 0

0 0 0

−m(gyq + gzr) m(gyp+ w)− Zẇw m(gzp− v) + Yv̇v

m(gxq − w) + Zẇw −m(gzr + gxp) m(gzq + w)−Xu̇u

m(gxr + v)− Yv̇v m(gyr − u) +Xu̇u −m(gxp+ gyq)

m(gyq + gzr) −m(gxq − w)− Zẇw −m(gxr + v) + Yv̇v

−m(gyp+ w) + Zẇw m(gzr + gxp) −m(gyr − u)−Xu̇u

−m(gzp− v)− Yv̇v −m(gzq + u) +Xu̇u m(gxp+ gyq)

0 −Iyzq − Ixzp+ Izr −Nṙr Iyzr + Ixyp− Iyq +Mq̇q

Iyzq + Ixzp− Izr +Nṙr 0 −Ixzr − Ixyq + Ixp−Kṗp

−Iyzr − Ixyp+ Iyq −Mq̇q Ixzr + Ixyq − Ixp+Kṗp 0


(57)

There are others damping effects that should be considered

τD = −DS(ν)ν −DW (ν)ν −DM(ν)ν (58)

where −DS(ν)ν is the skin friction, −DW (ν)ν is the wave drift damping and −DM(ν)ν

is the damping due to vortex shedding.

Therefore, substituting Equations (50) and (58) in (49), this implies that the hydro-

dynamic forces and moments can be written as

τH = −MAν̇ − CA(ν)ν −D(ν)ν − g(po) (59)

.

Similarly to (54) and (55), the damping effects acting in an AUV are highly nonlinear

and coupled at high speed. However, assuming the vehicle has three planes of symmetry

and is moving at low speed, the D(ν) matrix approximation can be defined as
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D(ν) = −



Xu 0 0 0 0 0

0 Yv 0 0 0 0

0 0 Zw 0 0 0

0 0 0 Kp 0 0

0 0 0 0 Mq 0

0 0 0 0 0 Nr



−



Xu|u||u| 0 0 0 0 0

0 Yv|v||v| 0 0 0 0

0 0 Zw|w||w| 0 0 0

0 0 0 Kp|p||p| 0 0

0 0 0 0 Mq|q||q| 0

0 0 0 0 0 Nr|r||r|



(60)

where the damping matrix is separated on linear and quadratic damping terms.

The gravitational force fG is performed through the center of gravity rG = [gx, gy, gz]
′

of the vehicle, while the buoyant force fB acts through the center of buoyancy rB =

[bx, by, bz]
′. In hydrodynamic, they are called restoring forces and play an important role

to the model. By strategically projecting fG and rG positions, one may provide restoring

moment in pitch and roll, which is useful for underactuated vehicles and safety reasons.

The restoring forces are described by

g(po) =



(W −B) sin θ

−(W −B) cos θ sinφ

−(W −B) cos θ cosφ

gzW cos θ sinφ

gzW sin θ

0


, (61)

where W is the weight and B the buoyancy force of the vehicle.

3.5 Dynamic Equations of LAUV

The Light Autonomous Underwater Vehicle, Figure 1, is a low-cost torpedo shaped

vehicle developed for oceanographic and environmental surveys (Silva and Sousa, 2008).

The dynamic model, based on (34) and (37), is given by
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η̇(t) = −1

2
ε(t)′ω(t) (62a)

ε̇(t) =
1

2
(η(t)I3×3 + S(ε(t)))ω(t) (62b)

M ν̇(t) = −C(ν(t))ν(t)−D(ν(t))ν(t)− g(η) + τ (t) (62c)

where M ∈ R6×6, C ∈ R6×6 and D ∈ R6×6.

In contrast to Section 3.4, the studied vehicle cannot be considered symmetric on

the three-planes, as a result of the torpedo shape. However, considering that the vehicle

is port/starboard and top/bottom symmetric in shape and assuming the distribution of

mass of a prolate ellipsoid, the inertia matrix of the LAUV will be described as

M =



m−Xu̇ 0 0 0 mgz 0

0 m− Yv̇ 0 −mgz 0 0

0 0 m− Zẇ 0 0 0

0 −mgz 0 Ix −Kṗ 0 0

mgz 0 0 0 Iy −Mq̇ 0

0 0 0 0 0 Iz −Nṙ


. (63)

The Coriolis and centripetal matrix has the following expression

C(ν) =



0 0 0

0 0 0

0 0 0

−mgzr (m− Zẇ)w mgzp− (m− Yv̇)v
−(m− Zẇ)w −mgzr mgzq + (m−Xu̇)u

(m− Yv̇)v −(m−Xu̇)u 0

mgzr (m− Zẇ)w −(m− Yv̇)v
−(m− Zẇ)w mgzr (m−Xu̇)u

−mgzp+ (m− Yv̇)v −mgzq − (m−Xu̇)u 0

0 (Iz −Nṙ)r −(Iy −Mq̇)q

−(Iz −Nṙ)r 0 (Ix −Kṗ)p

(Iy −Mq̇)q −(Ix −Kṗ)p 0


.

(64)

The damping matrix is given by
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D(ν) = −



Xu 0 0 0 0 0

0 Yv 0 0 0 Yr

0 0 Zw 0 Zq 0

0 0 0 Kp 0 0

0 0 Mw 0 Mq 0

0 Nv 0 0 0 Nr



−



Xu|u||u| 0 0 0 0 0

0 Yv|v||v| 0 0 0 Yr|r||r|
0 0 Zw|w||w| 0 Zq|q||q| 0

0 0 0 Kp|p||p| 0 0

0 0 Mw|w||w| 0 Mq|q||q| 0

0 Nv|v||v| 0 0 0 Nr|r||r|


.

(65)

It is usual to design AUVs slightly buoyant, in order to provide easily rescue, so that

the center of gravity is slightly below the center of buoyancy, providing a restoring moment

in pitch and roll. Even though the original LAUV features this, we will consider them in

the same position avoiding the component g(η2).

3.6 Actuator system mapping

The actuator system of this torpedo includes 1 propeller and 3 fins, where 1 is vertical

and the other two arranged 120 degrees from each other, as shown in Figure 5. The

propeller is directly responsible for the thrust force that moves the vehicle on surge, while

fins are mainly responsible for leading rotational motions in yaw and pitch, as gyratory,

diving and rising (Liang et al., 2013).

In this work, we will not consider the dynamics of the thruster motor and fin servos

since they are typically much faster then the remaining dynamics. The relation between

the command signals u1, u2, u3, u4 sent to each individual motor and the torques τ (t)

and thrust F applied to the vehicle can be mapped by means of an appropriate Jacobian

matrix. The control inputs can be computed by the following equation
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Figure 5: Actuators arrangement of the Light Autonomous Underwater Vehicle (LAUV)

120°120°

120°

Z  

X   Y   

Source: the autor (2018).


u1

u2

u3

u4

 = J−1


F

τ1

τ2

τ3

 (66)

where J ∈ R4×4 and ui are the control inputs.

3.7 Differential Algebraic Representation

The Differential Algebraic Representation (DAR), discussed in Section 2.5, makes use

of an auxiliary vector ξ. The DAR representation is given by
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ẋ = A1(x)x+ A2(x)ξ(x) +Bτ (67a)

0 = Ω1(x)x+ Ω2(x)ξ(x) (67b)

In order to represent system (62) in the above form, first, we make the simplifying

assumption that the vehicle is at rest or at least moving at low speed and has three planes

of symmetry such that M is a diagonal matrix.

From quaternion definition it follows that the equilibrium point of system (62) are

q∗ =

η∗
ε∗

 =


±1

0

0

0

 (68)

Furthermore, because of quaternion constraint (11), it follows that

ε→ 0 =⇒ η → ±1 (69)

Therefore, it suffices to ensure the convergence of ε to the origin in order to reach the

equilibrium point q∗. As a consequence, the dynamics of η̇ shall be dropped from the

DAR.

Also, the following change of coordinates will be performed

ε = sign(η)ε (70)

whose time derivative is given by

ε̇ = sign(η)ε̇+ δD(η)η̇ε (71)

In order to avoid the discontinuity of the Dirac delta δD(η), this work will limit its

analysis to the domain given by

η ∈ [−1, 1]− {0}. (72)

In this domain, the system may be describe as
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ε̇ =
1

2
(|η| I3×3 + S(ε))ω

ω̇ = −M−1(C(ω) +D(ω))ω +M−1τ
(73)

where

M =

Ix −Kṗ 0 0

0 Iy −Mq̇ 0

0 0 Iz −Nṙ

 =

M1 0 0

0 M2 0

0 0 M3

 , (74)

C(ω) =

 0 (Iz −Nṙ)ω3 −(Iy −Mq̇)ω2

−(Iz −Nṙ)ω3 0 (Ix −Kṗ)ω1

(Iy −Mq̇)ω2 −(Ix −Kṗ)ω1 0

 , (75)

D(ω) = Dl +Dqω = −

Kp 0 0

0 Mq 0

0 0 Nr

−
Kp|p||ω1| 0 0

0 Mq|q||ω2| 0

0 0 Nr|r||ω3|

 (76)

Note that the change of coordinates in (70) replaced η(t) in the second equation of

(62), by
∣∣η(t)

∣∣ in (73). Also, in order to organize the notation, when we describe the

system in DAR we will use ω = [p, q, r]→ ω = [ω1,ω2,ω3] and ε = [ε1, ε2, ε3].

Thus, the natural choice of state variables given by

x =
[
ε1 ε2 ε3 ω1 ω2 ω3

]′
(77)

allow us to represent |η| as a function of x,

∣∣η(t)
∣∣ = +

√
1− ε′ε = +

√
1− ε′ε = δ(x) ∈ (0, 1], (78)

and also leads to choose the following as the vector of grouped nonlinear terms to be used

in (67)

ξ(x) =
[
ω1ε2 ω1ε3 ω2ε1 ω2ε3 ω3ε1 ω3ε2

ω2
1 ω2

2 ω2
3 ω1ω2 ω1ω3 ω2ω3

]′
. (79)

Expressing the system (73) in the DAR form (67)
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ẋ =



0 0 0 δ(x)/2 0 0

0 0 0 0 δ(x)/2 0

0 0 0 0 0 δ(x)/2

0 0 0 −Kp

Ix−Kṗ
0 0

0 0 0 0 −Mq

Iy−Mq̇
0

0 0 0 0 0 −Nr

Iz−Nṙ





ε1

ε2

ε3

ω1

ω2

ω3


+



0 0 0 −1
2

0 1
2

0 1
2

0 0 −1
2

0

−1
2

0 1
2

0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0
−Kp|p|
M1

0 0 0 0 M3−M2

M1

0
−Mq|q|
M2

0 0 M1−M3

M2
0

0 0
−Nr|r|
M3

M2−M1

M3
0 0





ω1ε2

ω1ε3

ω2ε1

ω2ε3

ω3ε1

ω3ε2

ω2
1

ω2
2

ω2
3

ω1ω2

ω1ω3

ω2ω3



+

03×3

M−1

 τ , (80)

0 = −



0 0 0 ε2 0 0

0 0 0 ε3 0 0

0 0 0 0 ε1 0

0 0 0 0 ε3 0

0 0 0 0 0 ε1

0 0 0 0 0 ε2

0 0 0 ω1 0 0

0 0 0 0 ω2 0

0 0 0 0 0 ω3

0 0 0 0 ω1 0

0 0 0 ω3 0 0

0 0 0 0 0 ω2





ε1

ε2

ε3

ω1

ω2

ω3


+ I12×12



ω1ε2

ω1ε3

ω2ε1

ω2ε3

ω3ε1

ω3ε2

ω2
1

ω2
2

ω2
3

ω1ω2

ω1ω3

ω2ω3



. (81)

Given the above, the system can be described by the following matrices
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ẋ = A1(x)x+ A2(x)ξ(x) +Bτ

0 = Ω1(x)x+ Ω2(x)ξ(x)

where

A1(x) =



0 0 0 δ(x)/2 0 0

0 0 0 0 δ(x)/2 0

0 0 0 0 0 δ(x)/2

0 0 0 −Kp

Ix−Kṗ
0 0

0 0 0 0 −Mq

Iy−Mq̇
0

0 0 0 0 0 −Nr

Iz−Nṙ


(82)

A2 =



0 0 0 −1
2

0 1
2

0 0 0 0 0 0

0 1
2

0 0 −1
2

0 0 0 0 0 0 0

−1
2

0 1
2

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0
−Kp|p|
M1

0 0 0 0 M3−M2

M1

0 0 0 0 0 0 0
−Mq|q|
M2

0 0 M1−M3

M2
0

0 0 0 0 0 0 0 0
−Nr|r|
M3

M2−M1

M3
0 0


(83)

B =

03×3

M−1

 (84)

Ω1(x) = −



0 0 0 ε2 0 0

0 0 0 ε3 0 0

0 0 0 0 ε1 0

0 0 0 0 ε3 0

0 0 0 0 0 ε1

0 0 0 0 0 ε2

0 0 0 ω1 0 0

0 0 0 0 ω2 0

0 0 0 0 0 ω3

0 0 0 0 ω1 0

0 0 0 ω3 0 0

0 0 0 0 0 ω2



(85)
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Ω2 = I12×12 (86)

The dynamics of system (73) can be readily recovered by

ẋ = (A1(x)− A2Ω−1
2 Ω1(x))x+Bτ (87)

Since A1(x) and Ω1(x) depend on x, these variables will be treated as time varying

parameters in theirs respective matrices.

3.8 Domain of Interest

We know from (72) that this description is only valid for η 6= 0, in order to avoid the

discontinuity. Therefore, the domain of interest that will be analysed in this work is given

by

X = {x ∈ R6 : |xi| ≤ sin
ψ

2
, 0 ≤ ψ < π,

∣∣xj∣∣ ≤ ω}, (88)

for i = 1, 2, 3 and j = 4, 5, 6. The value of ω that bounds the angular velocities will be

defined later.
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4 Analysis and Control Design

The main problem addressed in this work is that of providing linear tools for the

analysis and control design of the orientation of an Autonomous Underwater Vehicle

described by equations (62). This Chapter aims to achieve the stability of the origin

of the system in the form (67) described in the previous chapter. First, we will assess

mathematically the stability of the system proving a theorem that satisfies all LMIs from

Lemma 2.1. Then, a control design strategy will be provided in order to compute gain K

such that the closed loop system is locally exponentially stable.

4.1 Analysis

In order to achieve the Lyapunov stability of the Autonomous Underwater Vehicle’s

origin, consider the following control law

τ = Kx (89)

where K = [K1, K2] ∈ R3×6 and x = [ε′ω′] ∈ R6.

Therefore, the vehicle torques are governed by

τ = K1 sign(η)ε+K2ω (90)

control law.

The following theorem adapted from the work by (Coutinho et al., 2004), provides

sufficient conditions for the local exponential stability of the closed loop system. Due to

the DAR of the system, these conditions are given by constraints in the form of Linear

Matrix Inequalities.

The solution to this problem is presented in theorem

Theorem 4.1. Consider system (62) and its DAR representation (67) subject to control

law (89) for a given K ∈ R3×6. Suppose there is a positive definite matrix P = P ′ ∈ R6×6

and a matrix L ∈ R12×6 that satisfy the following inequatilies for all x evaluated at vertices

V(X )

P > 0 (91)
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He{P (A1(x) +BK)} PA2

? 0

+ Ω(x)′L′ + LΩ(x) < 0 (92)

 1 α−1
i ii

α−1
i i′i P

 ≥ 0, i = 1, 2, 3 (93)

where Ω = [Ω1,Ω2] and α = sin (ψ/2). Then, x = 0 is an exponentially stable point of

the closed loop system and an estimate of its region of attraction is given by

Ra = {x ∈ R6 : x′Px ≤ 1}. (94)

�

Proof. All conditions of Lemma 2.1 are proved below:

Constraint (28): Select the following Lyapunov candidate function

V (x) = x′Px. (95)

Then, from the assumption (91) and Definition 2.2 we conclude that

V (x) > 0 (96)

is positive definite. Therefore, picking the smallest and largest eigenvalues of P for k1, k2,

respectively, we have that the first matrix inequality of Lemma 2.1 is satisfied.

Constraint (29): Since the required condition is a non strict inequality, we will add

a small positive scalar to (92) as following

He{P (A1(x) +BK)} PA2

? 0

+ Ω(x)′L′ + LΩ(x) + k3

 I6×6

012×6

[I6×6 06×12

]
≤ 0. (97)

.

Taking the following auxiliary vector

ζ1 =

x
ξ

 (98)

then, it follows that Ω(x)ζ1 = 0. By pre- and post-multiplying (97) by (98) we find that



Chapter 4. Analysis and Control Design 52

ζ ′1

He{P (A1(x) +BK)} PA2

? 0

 ζ1 ≤ −k3x
′x. (99)

Given the closed loop system (16) subject to the control law (89), we have that in-

equality (99) becomes

ẋ′Px+ x′P ẋ ≤ −k3x
′x (100)

which satisfies (29).

Constraint (30): If we pre- and post-multiplying (93) by

ζ2 =

1

x

 (101)

and its transpose, it follows that

ζ ′2

 1 α−1
i ii

α−1
i i′i P

 ζ2 ≥ 0, i = 1, 2, 3. (102)

Considering that xi = iix, the equation above is equivalent to

2− 2α−1xi + (x′Px− 1) ≥ 0, i = 1, 2, 3. (103)

Accordingly to S-Procedure, presented in Section 2.6.2, if we can describe equation

(103) in form (26) with a nonnegative λ

1− α−1xi > λ(1− x′Px), λ = 2, (104)

we can assume that

α−1|xi| ≤ 1, ∀x : x′Px ≤ 1, i = 1, 2, 3 (105)

what satisfies conditions (30) and (88) by defining that α = sin ( ψ̄
2
). In other words, it

means that the estimate domain of attraction of the origin R ⊂ X .

This theorem gives a estimate of region of attraction since the linear matrix inequalities

(92) and (93) are verified in a finite set of points represented by the vertices V(X ), then, by

convexity, Section 2.3, they are also satisfied for all x ∈ X . Also, if LMI (93) guarantees

Ra ⊂ X , it follows that (91), (92), (93), (94) imply the conditions of Lemma 2.1, which
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completes the proof.

In order to maximize the estimate of region of attraction Ra, we may minimize the

trace of the Lyapunov matrix P (Boyd et al., 1994). Then, the task of maximization may

be defined by the following semidefinite optimization problem

minimize
P,L

trace(P )

subject to (91), (92) and (93)
(106)

where P and L are the decision variables.

In the next section, we will evaluate the gain K that stabilizes the system.

4.2 Control Design (Semidefinite Optimization Problem)

This section will provide a design strategy for the closed loop system in order to

compute gain K such that it is locally exponentially stable. The following theorem,

adapted from the work by (Oliveira et al., 2012), provides sufficient conditions for that

through constraints in the form of linear matrix inequalities.

Theorem 4.2. Consider system (62) and its DAR representation (67) subject to control

law (89) for a given K ∈ R3×6. Suppose there is a positive definite constant matrix

Q2 = Q′2 ∈ R6×6, nonsingular matrices Q1 ∈ R6×6 and Q3 ∈ R9×9, and a matrix Y ∈ R3×6

that satisfy the following inequalities for all x evaluated at X

Q2 > 0 (107a)−Q
′
1 −Q1 A1(x)Q′2 +BY A2Q

′
3

? He{A1(x)Q′2 +BY } A2Q
′
3 +Q2Ω′1

? ? He{Ω2Q
′
3}

 < 0 (107b)

 1 α−1
i iiQ2

α−1
i Q2ii P

 ≥ 0, i = 1, 2, 3 (107c)

Then, x = 0 is an exponentially stable equilibrium point of the closed loop system

(62) subject to (89) with K = Y Q−1. Furthermore, the trajectory x(t) belongs to Rd,

approaches the origin when t→∞, and an estimate of its region of attraction is given by

Rd = {x ∈ R6 : x′Q−1
2 x ≤ 1}. (108)



Chapter 4. Analysis and Control Design 54

�

Proof. All conditions of Lemma 2.1 are achieved by the following constraints:

Constraint (28): Take the same Lyapunov candidate function as before

V (x) = x′Px. (109)

Defining that

P = Q−1
2 (110)

from the assumption (107a) and Definition 2.2 we conclude that Q2 is positive definite,

consequently nonsingular and inversible, what holds condition (28).

Constraint (29): if we express constraint (107b) in terms of an auxiliary matrix

ζ3 =

Q1 0 0

0 Q2 0

0 0 Q3

 (111)

it follows that the linear matrix inequality (107b) is equivalent to

ζ ′3Λ2ζ3 =

Q
′
1Λ211Q1 Q′1Λ212Q2 Q′1Λ213Q3

Q′2Λ221Q1 Q′2Λ222Q2 Q′2Λ223Q3

Q′3Λ231Q1 Q′3Λ232Q2 Q′3Λ233Q3

 < 0 (112)

where Λ2ij for i, j = 1, 2, 3 are components of Λ2.

Next, defining that Mi ∈ R6×6 for i = 1, 2, 3, P = M2, Qi = M−1
i , A1cl = A1 + BK,

and simplifying the notation by writing A1 instead of A1(x), we find that the components

of Λ2 are

Λ211 =
−Q′1 −Q1

Q1Q′1
= −M1 −M ′

1, (113)

Λ212 =
A1Q

′
2 +BKQ2

Q1Q′2
= M1A1cl(x) = P −P +M1A1cl(x) = P −M ′

2 +M1A1cl(x), (114)
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Λ213 =
A2Q

′
3

Q1Q′3
= M1A2, (115)

Λ221 =
Q2A

′
1 + Y ′B′

Q2Q′1
= A′1cl(x)M ′

1 = P − P +A′1cl(x)M ′
1 = P −M2 +A′1cl(x)M ′

1, (116)

Λ222 =
(A1 +BK)Q′2 +Q2(A′1 +K ′B′)

Q2Q′2
= He{M2A1cl(x)}, (117)

Λ223 =
A2Q

′
3 +Q2Ω′1
Q2Q′3

= M2A2 + Ω′1M
′
3, (118)

Λ231 =
Q3A

′
2

Q3Q′1
= A′2M

′
1, (119)

Λ232 =
Q3A

′
2 + Ω1Q

′
2

Q3Q′2
= A′2M

′
2 +M3Ω1, (120)

Λ233 =
Ω2Q

′
3 + Ω′2Q3

Q3Q′3
= He{M3Ω2}. (121)

Substituting (113)-(121) into (112) we have that

Λ2 =

−M1 −M ′
1 P −M ′

2 +M1A1cl(x) M1A2

? He{M2A1cl(x)} M2A2 + Ω′1M
′
3

? ? He{M3Ω2}

 < 0. (122)

Since the required condition is a non strict inequality, we will add a small positive

scalar to the above as we have done before, in Section 4.1.

Moreover, let us define an auxiliary vector

ζ4 =

ẋ(t)

x(t)

ξ(t)

 . (123)

If we pre- and post-multiply Λ2 by it, we will have that

ζ ′4Λ2ζ4 ≤ −k3x
′x. (124)

We can rewrite the above as follows
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x′P ẋ+ ẋ′Px

+ ẋ′M1(−ẋ+ A1cl(x)x+ A2ξ)

+M ′
1ẋ(−ẋ′ + A′1cl(x)x+ ξ′A′2)

+ x′M2(−ẋ+ A1cl(x)x+ A2ξ)

+M ′
2x(−ẋ′ + A′1cl(x)x+ ξ′A′2)

+ ξ′M3(Ω1x+ Ω2ξ)

+M ′
3ξ(x

′Ω′1 + ξ′Ω′2) ≤ −k3x
′x, (125)

and it may be expressed as

x′P ẋ+ ẋ′Px+ β1 + β′1 + β2 + β′2 + β3 + β′3 ≤ −k3x
′x. (126)

Finally, defining the following scalar functions

β1 = ẋ′M1[−ẋ(t) + A1cl(x)x+ A2ξ] = 0, (127a)

β2 = x′M2[−ẋ(t) + A1cl(x)x+ A2ξ] = 0, (127b)

β3 = ξ′M3[Ω1(x)x+ Ω2ξ] = 0, (127c)

it follows that

x′P ẋ+ ẋ′Px ≤ −k3x
′x. (128)

Therefore, considering the quadratic Lyapunov function defined in (109), we have that

V̇ (x) = ẋ′Px+ x′P ẋ ≤ −k3x
′x. (129)

Hence, (107b) implies (126) which, in turn, satisfies (29).

Constraint (30): If we pre- and post-multiply (107c) by1 0

0 P

 (130)

it will leads to the linear matrix inequality (93),
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1 0

0 P

′  1 α−1
i iiQ2

α−1
i Q2ii P

1 0

0 P

 =

 1 α−1
i ii

α−1
i i′i P

 ≥ 0, i = 1, 2, 3

which is already proven in the last section in Theorem 4.1. Thus, all required condi-

tions of Lemma 2.1 are satisfied at vertices V(X ) and guarantee Rd ⊂ X , which concludes

the proof.

From the definition of the domain of attraction (108), it is clear that minimizing

Q−1
2 = P , it implies in the maximization of Rd. Regarding to the Schur complement,

detailed in Section 2.6.1, if we chose Q = Q2, S = In and R = N , and apply that to (23)

we have that

N > Q−1
2 = P, (131)

therefore, minimizing the trace of N implies in the minimization of P which, in turn,

implies in the maximization the region of attraction Ra.

In order to evaluate the feedback gain K that maximizes the region of attraction Ra,

since the following optimization problem can be considered subjected to constraints in

the form of linear matrix inequalities

minimize trace(N)

subject to (91), (92), (93) ∀x ∈ V(X ) and

Q2 In

In N

 > 0.
(132)
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5 Results

In this chapter, it will be presented the numerical results obtained throughout the

progress of this work along to the relevant information necessary for reproducing this

results. First, the main simulation procedures will be described followed by the simulation

and constructive parameters. Next, we will present three simulation scenarios, which this

method were applied. Finally, we will discuss the obtained results.

5.1 Simulation Procedure

The numerical results were obtained from the software Matlab R2013b with the free

packages: toolbox Yalmip (Lofberg, 2004) and SDPT3 solver (Toh et al., 1999). The

feasibility of convex optimization problems is strongly related to the size of the region X ,

thus the followed procedures leads one to investigate larger regions of attraction.

• Step 1: Select the intended scenario for simulation.

• Step 2: Increase gradually the ψ in the domain of interest (88).

• Step 3: Compute the gain K that maximizes the region of attraction Rd applying

Theorem 4.2.

• Step 4: Apply the gain K to Theorem 4.1.

• Step 5: Increase the ψ again in the domain of interest (88) to investigate a larger

region of attraction Ra.

Given that, the simulation must be configured with simulation and constructive pa-

rameters in order to reproduce the intended scenarios. The following section presents all

the required configurations.

5.2 Simulation Parameters

Now that the simulation method is structured and declared step by step, several

fundamental constants are necessary to be defined. The Light Autonomous Underwater

Vehicle used in this study, depicted side by side with the ISURUS in Figure 6, is a

torpedo shaped vehicle with a length (l) of 108cm, diameter (d) of 15cm and mass (m)
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of approximately 18kg. The actuator system is composed by one propeller and three fins,

where one is vertical and the other two arranged ±120 degrees from each other, as shown

in Figure 5. The propeller is positioned at the aft end of the AUV, while the fins are

placed xfin = −40cm from the center of buoyancy.

Figure 6: ISURUS (top) and LAUV (bottom) side by site, at USTL

Source: da Silva et al. (2007).

Even though the center of buoyancy is positioned at the origin of the B -frame and

the center of gravity is offset gz = 0.01m from that, for the sake of simplification we will

not consider restoring forces in this model. The construction parameters and dynamic

coefficient, summarized in Table 3 and 4, were obtained from the paper of da Silva et al.

(2007), who derived the numerical coefficients by theoretical and empirical methods as

also by adapting from similar AUVs.

Table 3: Building parameters for the LAUV.

Parameter Symbol Value

length [cm] l 108
diameter [cm] d 15
mass [kg] m 18

Source: (da Silva et al., 2007).

As we mentioned before, the simulations were done in three different scenarios, follow-
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Table 4: Dynamic coefficients for the LAUV.

Parameter Symbol Value

inertia coefficients M

0.04 0 0
0 2.1 0
0 0 2.1


linear damping coefficients Dl

0.3 0 0
0 9.7 0
0 0 9.7


quadratic damping coefficients Dq

6× 10−4 0 0
0 9.1 0
0 0 9.1


Source: (da Silva et al., 2007).

ing the procedure described in the previous section. In the first scenario we chose a large

value for the max angular velocity ω in the domain of interest X (88) in order to analyze

the impact of the size of this region. In contrast to scenario one, we limited ω to a small

value of 1, which is an angular velocity closer to that found on a real application. The

third scenario had the same large value of ω from scenario 1, however we multiplied the

damping matrix by De = 10, in order to investigate the impact of errors in the damping

coefficients model since it is desired to have the smallest and cheapest sensors in low cost

vehicles as the LAUV (da Silva et al., 2007). Table 5 summarizes the scenario parameters.

Table 5: The parameters for each simulation scenario.

Scenario ω[rad/s] De

Scenario 1 100 1
Scenario 2 1 1
Scenario 3 100 10

Source: the author (2018).

The simulation results of this work will be discussed and presented in the next section.

5.3 Numerical Results

The feasibility of the optimization problem is directly related to the size of the domain

of interest (DOA) X , which in turn is defined by two parameters, ψ and ω, maximum

rotation angle for which a solution is found and the limit value of angular velocities,
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respectively. As defined in the previous section, the simulations will be done in three

different scenarios, see Table 5, and follow the instructions listed in Section 5.1.

5.3.1 Scenario 1

In the first scenario we chose a large value of ω = 100 rad/s, which means about 32

revolutions per second, in order to make a loose restriction in the angular velocities. We

run the simulation in a range of max rotation angles ψ, increasing its value gradually, in

order to find the max angle for which a solution is found. From Theorem 4.2, it shows

that the largest region Xd where the gain K can be computed is bounded by the values

of −65° ≤ ψ ≤ 65° for ω = 100,

Xd = {x ∈ R6 : |xi| ≤ sin
65π

360
, 0 ≤ ψ < π,

∣∣xj∣∣ ≤ 100}, (133)

for i = 1, 2, 3 and j = 4, 5, 6.

Considering the above domain, the gain K = Y P is given by

K = 104.

−0.0048 0.0000 −0.0000 −0.0201 0.0001 −0.0000

0.0038 −1.7784 0.0046 0.0149 −7.5793 0.0194

0.0000 0.0046 −1.8359 −0.0000 0.0197 −7.6699

 . (134)

Besides that, from Theorem 4.2, (108) and (110) show that minimizing trace of P im-

plies in maximizing the region of attraction Rd . Moreover, we know that every trajectory

of the closed loop system starting in Rd exponentially approaches the origin.

Table 6: Feasibility, traces of P and evaluated bounds of the estimated region of attraction
Rd by applying Steps 2-3 to scenario 1.

ψ trace(P ) ε1 ε2 ε3 ω1 ω2 ω3

ψ = 45° 21.5102 0.3907 0.3679 0.3678 6.8056 3.5794 3.6265

ψ = 60° 12.8472 0.5075 0.4787 0.4787 5.8252 3.1016 3.1192

ψopt = 65° 11.1834 0.5446 0.5136 0.5136 6.0199 3.1393 3.1505

ψ > 65° infeasible

Source: the author (2018).

Table 6 presents the feasibility along to the trace of P , which was minimized by (132),
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and the bounds for each state of Rd evaluated in simulations run at several max rotation

angles ψ by the application of Theorem 4.2. Also, it shows that increasing ψ up to about

65° resulted in enlarging Rd. The notation ψopt was applied to identify the point where

Rd was maximized.

Next, we made use of Theorem 4.1 with gain (134), in order to investigate a better

region of attraction Ra. Again, we performed the simulation in a range of ψ and set of

numerical results are shown in Table 7. It was identified that with feedback gain K the

estimate region of attraction Ra achieved similar sizes for equals ψ. However, the region

Xa was extended and could be computed until about ψ = 156°, which is also the point of

maximization. The region Xa is given by

Xa = {x ∈ R6 : |xi| ≤ sin
156π

360
,
∣∣xj∣∣ ≤ 100}, (135)

for i = 1, 2, 3 and j = 4, 5, 6.

Table 7: Feasibility, traces of P and evaluated bounds of the estimated region of attraction
Ra by applying Steps 4-5 to scenario 1.

ψ trace(P ) ε1 ε2 ε3 ω1 ω2 ω3

ψ = 45° 19.6609 0.3907 0.3907 0.3907 13.2384 30.3510 30.7733

ψ = 60° 11.6542 0.5074 0.5075 0.5075 14.9384 33.8021 34.1457

ψ = 65° 10.1212 0.5445 0.5446 0.5446 15.1456 34.3968 34.5759

ψ = 130° 3.6354 0.9097 0.9099 0.9099 10.9228 25.8677 25.3545

ψopt = 156.62° 3.2230 0.9798 0.9773 0.9656 4.6456 11.6410 11.0517

ψ > 156.62° infeasible

Source: the author (2018).

Comparing the results presented in Tables 6 and 7 it is clear to see that this approach

implied in a substantial improvement. First, the trace of P , which push the progress, was

reduced from 11.1834 to 3.2230, followed by considerably advances in enlarging the region

Ra or the bounds of the vector state.

Figures 7 and 8 illustrate in two and three dimensions the estimated regions of at-

traction Rd and Ra of scenario 1, obtained from Theorem 4.2 and 4.1, respectively. In

the top left of both, a three dimensional graph, which axes represent the components

of the vector state ε or ω, shows in a spherical volume the bounds presented in Table

7 that limit the estimate region of attraction Ra in terms of which state. In its turn,
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the dotted line depicts the region Xa. The other three graphs, in the top right, bottom

left and right, clarify in two dimensions the top, side and front views the 3D region Ra,

respectively, including a comparison to the estimate region of attraction Rd, numerically

shown in Table 6.

Figure 7: 2D and 3D projection of the estimated region of attraction Ra and Rd for vector
state ε in Scenario 1.

−1

0

1

−1

0

1

−1

0

1

ε
1

ε
2

ε
3

−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

ε
2

ε
3

−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

ε
1

ε
3

−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

ε
1

ε
2

R
d

R
a

χ

Source: the author (2018).

Even with the small decreased in the range of ω1, Figure 8, looking at whole results

suggests that by the proposed procedure we managed to achieve a considerable increase

in the size of the region of attraction leaving little room for improvement of ψ.
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Figure 8: 2D and 3D projection of the estimated region of attraction Ra and Rd for vector
state ω in Scenario 1.
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In Figure 8, the two dimensional plots are zoomed for better understanding of the

graph, hence the region Xa cannot be seen.
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5.3.2 Scenario 2

We explored in the second scenario the restriction of the angular velocities to |ω| ≤ 1

rad/s, which is a value much more closer to the found in real applications. The same

procedure followed by scenario one was applied then and the numerical results presented

in Table 8, which shows some of the same points presented in Table 6, for enabling

comparisons.

Table 8: Feasibility, traces of P and evaluated bounds of the estimated region of attraction
Rd by applying Steps 2-3 to scenario 2.

ψ trace(P ) ε1 ε2 ε3 ω1 ω2 ω3

ψ = 45° 247.6925 0.3327 0.0986 0.0986 0.8488 0.2524 0.2524

ψ = 60° 163.4155 0.3769 0.1276 0.1275 0.7410 0.2516 0.2513

ψ = 65° 145.2605 0.3978 0.1376 0.1375 0.7290 0.2528 0.2525

ψ = 80° 80.5116 0.4988 0.1950 0.1950 0.7667 0.3002 0.3002

ψ = 90° 14.3041 0.6317 0.5356 0.5356 0.8847 0.7508 0.7507

ψopt = 95.9° 12.3139 0.6553 0.5995 0.5996 0.8742 0.8017 0.8015

ψ = 96.5° 13.5649 0.6238 0.5728 0.5729 0.8287 0.7621 0.7620

ψ = 97.1° 25.8601 0.4552 0.4146 0.4147 0.6022 0.5487 0.5488

ψ > 97.1° infeasible

Source: the author (2018).

Even though solutions were found until around ψ = 97°, this time we opted for re-

stricting the domain of interest Xd up to 95.9°, because it produced a larger region of

attraction Rd. The domain of interested is given by

Xd = {x ∈ R6 : |xi| ≤ sin
95.9π

360
,
∣∣xj∣∣ ≤ 1}, (136)

for i = 1, 2, 3 and j = 4, 5, 6.

By narrowing the domain Xd to the above, the feedback gain K obtained at ψ = 95.9°
is equals to

K = 105.

−0.0323 −0.0000 0.0000 −0.0502 −0.0000 0.0000

−0.0000 −3.8468 0.0000 −0.0000 −5.3271 0.0000

0.0000 −0.0000 −3.8476 0.0000 −0.0000 −5.3287

 . (137)
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Given the above feedback gain computed from Xd, we applied it to Theorem 4.2 in

order to search for a larger region of attraction. The results can be read in Table 9.

Table 9: Feasibility, traces of P and evaluated bounds of the estimated region of attraction
Ra by applying Steps 4-5 to scenario 2.

ψ trace(P ) ε1 ε2 ε3 ω1 ω2 ω3

ψ = 45° 24.4314 0.3785 0.3751 0.3751 0.9686 0.9600 0.9600

ψ = 60° 16.7138 0.4802 0.4726 0.4726 0.9461 0.9312 0.9312

ψ = 65° 15.2957 0.5106 0.5012 0.5012 0.9376 0.9203 0.9203

ψ = 80° 12.6979 0.5908 0.5742 0.5742 0.9096 0.8842 0.8842

ψ = 90° 11.8011 0.6345 0.6121 0.6121 0.8896 0.8582 0.8582

ψ = 95.9° 11.4665 0.6568 0.6304 0.6305 0.8776 0.8424 0.8424

ψ = 110° 11.0677 0.6994 0.6630 0.6630 0.8492 0.8049 0.8050

ψ = 120° 10.9994 0.7221 0.6691 0.6692 0.8297 0.7953 0.7953

ψopt = 131° 10.9800 0.7401 0.6696 0.6697 0.8102 0.7942 0.7942

ψ = 140° 10.9826 0.7419 0.6696 0.6696 0.8077 0.7940 0.7940

ψ = 170° 10.9972 0.7392 0.6697 0.6698 0.8098 0.7927 0.7927

ψ = 177.9° 249.2390 0.1597 0.2183 0.2190 0.1041 0.1620 0.1625

ψ > 177.9° infeasible

Source: the author (2018).

The solver was able to find a solution for up to about ψ = 178°, however the estimate

region of attraction Ra started to decrease for ψ > 131°. Thus, the domain of interest Xa
is given by

Xa = {x ∈ R6 : |xi| ≤ sin
131π

360
,
∣∣xj∣∣ ≤ 1}, (138)

for i = 1, 2, 3 and j = 4, 5, 6.

Also, comparing Table 8 and 9 it shows that by narrowing the bounds of the angular

velocities, the solver achieved great improvements in the size of Ra for the former angles

ψ, however it did not accomplish expressive results at optimal points.

Additionally, it is possible to see at ψ = 177.9° how hard the solver worked to find a

solution even penalizing the size of the estimate region of attraction.

Figures 9 and 10 show the resemblance between the numerical results presented in

Tables 8 and 9 through graphs of similar size and shape of the estimate region of attraction

Rd and Rd when the gain (137) is applied at ψ = 131°. We can conclude that the estimate



Chapter 5. Results 67

region of attraction was almost maximized just after Steps 2-3.

Figure 9: 2D and 3D projection of the estimated region of attraction Ra and Rd for vector
state ε in Scenario 2.
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Source: the author (2018).

In the context of the Light Autonomous Underwater Vehicle application we understand

that disturbances and input signals acting on the vehicle that do not surpass the boarder

of the region of attraction Ra will be leaded to the equilibrium point when t→∞.
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Figure 10: 2D and 3D projection of the estimated region of attraction Ra and Rd for
vector state ω in Scenario 2.
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5.3.3 Scenario 3

The third scenario was proposed to investigate the impact of modeling error of damping

coefficients. From (58) and (50) we know that the damping effect is the joint of potential

damping, skin friction, wave drift damping and damping due to vortex shedding, therefore

coefficients that must be modeled and experimented in order to respond similarly to the

real dynamics of the vehicle. Considering that the Light Autonomous Underwater Vehicle

is a low cost vehicle comparing to a regular AUV, it is interesting to use the smallest and

cheapest set of sensors available, what may result in a not so precise modeling.

In the light of these considerations, we multiplied by 10 the coefficients of the damping

matrix D(ω), which is composed by linear and quadratic terms, then executed all the

procedures described in Section 5.1. For the Steps 2-3, the numerical results are shown

in Table 10.

Table 10: Feasibility, traces of P and evaluated bounds of the estimated region of attrac-
tion Rd by applying Steps 2-3 to scenario 3.

ψ trace(P ) ε1 ε2 ε3 ω1 ω2 ω3

ψ = 45° 38.6871 0.3907 0.3734 0.3734 0.7134 0.3570 0.3539

ψ = 50° 33.7791 0.4305 0.4117 0.4117 0.6688 0.3754 0.3713

ψ = 55° 24.4651 0.4695 0.4483 0.4483 0.7618 0.4944 0.4902

ψopt = 57.95° 22.0769 0.4920 0.4678 0.4678 0.8624 0.5189 0.5165

ψ > 57.95° infeasible

Source: the author (2018).

We found that there is no solution for about ψ > 57.95°, which is also the optimal

solution point. The region Xa is given by

Xd = {x ∈ R6 : |xi| ≤ sin
57.95π

360
,
∣∣xj∣∣ ≤ 100}, (139)

for i = 1, 2, 3 and j = 4, 5, 6.

At the optimal point, the computed feedback gain is

K = 104.

−0.0001 −0.0000 −0.0000 −0.0137 0.0000 −0.0000

0.0000 −0.0068 0.0000 0.0035 −6.3805 0.0197

−0.0000 0.0000 −0.0068 −0.0004 0.0196 −6.4436

 . (140)
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Through the application of Theorem 4.1 with gain (140) we investigated a larger region

of attraction Ra and presented the estimations in Table 11 for some values of ψ.

Table 11: Feasibility, traces of P and evaluated bounds of the estimated region of attrac-
tion Ra by applying Steps 4-5 to scenario 3.

ψ trace(P ) ε1 ε2 ε3 ω1 ω2 ω3

ψ = 45° 19.8040 0.3907 0.3907 0.3907 3.0761 6.3860 6.4964

ψ = 50° 16.3413 0.4305 0.4305 0.4305 3.0563 6.4557 6.4919

ψ = 55° 13.7774 0.4695 0.4695 0.4695 3.0994 5.6561 5.7176

ψ = 57.95° 12.6305 0.4920 0.4920 0.4920 3.2163 3.7293 3.7633

ψ = 80° 9.2464 0.4871 0.6494 0.6494 2.9922 3.3309 3.3652

ψ = 90° 8.5482 0.4815 0.7132 0.7132 2.8492 3.3074 3.3429

ψ = 110° 7.9115 0.4655 0.8241 0.8241 2.5010 3.2065 3.2560

ψopt = 118° 7.8631 0.4571 0.8616 0.8616 2.3280 3.1433 3.2156

ψ = 130° 7.9850 0.4422 0.9100 0.9100 2.0183 3.0354 3.1294

ψ = 156.4° 10.7128 0.3849 0.9762 0.9806 0.8127 2.3638 2.3495

ψ > 156.4° infeasible

Source: the author (2018).

Again, the size of the estimate region of attraction Ra increased up to a point and

then started to decreased until about ψ > 156.4°, from where the solver stopped to finding

solutions, see Table 11.

The achieved rotation span were the region of attraction is optimized better is repre-

sented by the domain

Xa = {x ∈ R6 : |xi| ≤ sin
118π

360
,
∣∣xj∣∣ ≤ 100}, (141)

for i = 1, 2, 3 and j = 4, 5, 6.

From Figure 11, we see that the region of attraction is tightly bounded by Xa in the

states ε2 and ε3, leaving little room for improvement. As the LAUV is a torpedo shaped

vehicle, which its main rotation movements are pitch and yaw, we may conclude that the

shape of the estimate region of attraction Ra is attributed to constructive specification,

thus the largest rotation span is set around the axes YRB and ZRB.
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Figure 11: 2D and 3D projection of the estimated region of attraction Ra and Rd for
vector state ε in Scenario 3.
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After all, we concluded that substantial results may be achieved by the application

of the proposed method. In the first and third scenarios, great results were achieved,

enlarging considerably the estimate region of attraction Ra in comparison to Rd, while

in the second scenario the estimate region of attraction had being almost maximized by

Steps 2-3.
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Figure 12: 2D and 3D projection of the estimated region of attraction Ra and Rd for
vector state ω in Scenario 3.

−100

0

100

−100

0

100

−100

0

100

ω
1

ω
2

ω3

−2 0 2
−3

−2

−1

0

1

2

3

ω
2

ω3

−2 0 2
−3

−2

−1

0

1

2

3

ω
1

ω3

−2 0 2
−3

−2

−1

0

1

2

3

ω
1

ω2

−100

0

100

−100

0

100

−100

0

100

ω
1

ω
2

ω3

−5 0 5
−5

0

5

ω
2

ω
3

−5 0 5
−5

0

5

ω
1

ω
3

−5 0 5
−5

0

5

ω
1

ω
2

R
d

R
a

χ

Source: the author (2018).



73

6 Conclusion

Underwater robotics is a huge area of research evidenced by the substantial quan-

tity of publications and techniques that have being developed. Also, it is an extremely

important topic that has being little explored considering that the ocean covers about

two-thirds of the earth (Yuh, 2000). Autonomous Underwater Vehicles have many and

diverse applications, from science to military, as shown in Section 1, and torpedo shaped

is one of the most typical designs.

This work addresses important concepts in the design of controllers. The vehicle

dynamic model approach in this work is very similar to the Spacecraft approached by

Salton et al. (2017) and extended here for AUVs. Given this representation, it opens

space for implementing a series of linear-like tools that potentially enriches the task of

control designing.

Also, given the DAR representation, the control and analysis task was cast as a

semidefinite optimization problem. In three scenarios we compute the feedback gain K

that optimize the region of attraction and the numerical results were discusses in Section

5. From now, a series of other experiments may be studied and advance this work.

6.1 Suggestions for Future Work

Once the Differential Algebraic Representation of the Autonomous Underwater Vehicle

is described, a set of investigations may be subsequently done. Input saturation may be

added by extending the Theorem 4.2, following the idea presented by Oliveira et al. (2012).

Also, this model may be better explored if considering the restoring forces. Moreover, the

application of this strategy for describing all equations of motion in DAR, also considering

the translational movements, will be considered along to the evaluation of the Jacobian

Matrix 66 that relates the inputs with the torques as presented in da Silva et al. (2007).
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