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ABORDAGEM MULTI-MODELO PARA IDENTIFICAÇÃO DE POTENCIAIS
PROBLEMAS CONTRATUAIS.

RESUMO

Os contratos sustentam a maioria das transações comerciais modernas, definindo
os deveres e obrigações das partes relacionadas em um contrato, e garantir que esses con-
tratos estejam livres de erros é crucial para a sociedade moderna. A análise de um contrato
requer a compreensão das relações lógicas entre cláusulas e a identificação de possíveis
contradições, que, por sua vez, dependem de esforços humanos para entender cada cláu-
sula no qual são suscetíveis a erro. Neste trabalho, desenvolvemos uma abordagem para
automatizar essas análises, identificando relações lógicas e detectando possíveis conflitos
nas cláusulas contratuais. A abordagem resultante deve ajudar os autores do contrato a
detectar possíveis conflitos lógicos entre as cláusulas.

Palavras-Chave: Contratos, Aprendizado de Máquina, Redes Neurais Artificiais, Sistemas
Normativos.



MULTI-MODEL APPROACH TO IDENTIFY POTENTIAL PROBLEMS IN A
CONTRACT.

ABSTRACT

Contracts underlie most modern commercial transactions defining the duties and
obligations of the related parties in an agreement, and ensuring such contracts are error-free
is crucial for modern society. The analysis of a contract requires understanding the logical
relations between clauses and identifying potential contradictions, which, in turn, depends on
error-prone human effort to understand each clause. In this work, we develop an approach
to automate such analyses identifying logical relations and detecting potential conflicts in
contract clauses. The resulting approach should help contract authors detecting potential
logical conflicts between clauses.

Keywords: Contracts, Machine Learning, Neural Networks, Normative Systems.
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1. INTRODUCTION

Understanding existing logical relations between sentences is a difficult task that
requires an accurate understanding of meaning of the underlying natural language. The
ambiguity and variability of linguistic expression in natural language complicates the recog-
nition of these relations such as entailment and contradiction contained in texts. The ability
to classify these logical inferences among different text is a significant feature of an intelligent
system [5]. Detecting these logical relations can be useful to help humans to interpret a more
complex text, where entailment and contradiction are crucial aspects to fully understanding
such as norms and contracts.

Contracts are documents that contain normative sentences formalizing agreements
among the related parties, which involve people and companies. The normative sentences
describe the duties that the related parties are subject to and the penalties in case of rule
violation. In a contract, the norms may contain logical relation between them such as entail-
ment, contradiction or a neutrality of obligations [12].

For instance, in a contract that contains the following norms “All companies must
pay the Y tax” and “The company X must pay the Y tax”, it is logically not possible to satisfy
the first norm without satisfying the second norm. In the case of company X not paying
the tax Y, automatically violates both norms due to the conditions of compliance. Since
both norms are logically linked and are in the same context, we have an entailment relation
between them.

By contrast, conflicts in a contract may emerge through problems related to a logical
contradiction between norm clauses. Taking the example above, we have a contradiction
relation if we change the second norm to “The company X must not pay the tax Y” due
to their contradictory compliance condition. Analyzing these conflicts demands a careful
analysis of all parties involved in a contract. An automated way to detect a conflict between
contract clauses addresses these reviews of contract clauses, which is a long and complex
issue even for human experts.

The problem of classifying the logical relation between norms is analogous to Nat-
ural Language Inference (NLI), which is the task of determining whether a natural language
hypothesis h can be inferred from a natural language premise p [22]. In an entailment
relation, if p is true then h cannot be false, otherwise is a contradiction relation. Natural
Language Inference is a broader task than conflict identification, and thus, good models
to classify logical relations will naturally be applicable to detect contract conflicts. Impor-
tantly, since NLI has seen a surge in research, including new machine learning models and
dataset curation [6, 37], it offers substantial labelled training data in much larger quantities
than purely contract conflict datasets [4].
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In this work, we provide an automated way to detect normative conflicts in contracts
by analyzing the inferential relations between contract clauses. We detect such conflicts us-
ing a multi-model approach, developed in Section 3 composed of models that deal with two
specific tasks: natural language inference and norm conflict classification. For the first task,
we develop an NLI model that identifies the logical relation between normative sentences,
whereas for the second task we develop a state-of-the-art norm conflict classifier that detects
the conflict type between two normative sentences. We show that the new model surpasses
the old state of the art by a substantial margin in Section 4. We perform an experimental
analysis in Chapter 5, we show that the combination of such models can help to further
understand potential contractual problems, for example, identifying transitive conflicts.
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2. BACKGROUND

In this chapter, we detail the concepts that we use in this work and the problem
formulation. First, we report a brief introduction about norms and contracts detailing their
basic concepts. Second, we explain the main concepts of natural logic and natural language
inference detailing which inferential relations we can extract in sentences written in natural
language. Finally, to understand our developed approach, we explain concepts of machine
learning methods reporting novel neural network methods to deal with natural language.

2.1 Norms and Contracts

Norms are statements that indicate a judgment about an expected behavior im-
posing rules and ought in a society. The main objective of norms is to determine what an
agent (human or artificial) should and should not do, according to established rules [7]. A
normative sentence is characterized by modal verbs to make explicit the ought of each agent
involved.According to Griffiths [16], there are two types of norm: Informal norms and Formal
norms.

Informal norms do not need to be clearly specified and can be grounded by be-
havior observations and reproduction [16]. The violation of an informal norm may not have
a penalty due to these norms are implicit and subject to ambiguity. Dress code and other
personal interaction rules are examples of informal norms, which are commonly related to
human behavior.

By contrast, formal norms are explicit and must be clearly detailed. Formal norms
have penalties attached to the cases of violation to ensure its fulfillment. Contract clauses
and laws are examples of formal norms, which are most strictly enforced and should be
clearly stated. For instance, consider the formal normative statement defined by the govern-
ment “The company X should pay 10 percent of his incoming for the government”. Regard-
less of the reason, in the case of Company X violates this norm, the government can apply
sanctions and fines for the company X. This example enforces that formal norms should be
clear to avoid any possible misunderstanding.

2.1.1 Contract

Contracts are documents that define the duties and obligations between two or
more people in an agreement. Organizations use contracts with themselves to make an
economic exchange, which may involve goods, services or money. A contract contains a
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set of formal norms, known as clauses, which defines the constraints and the penalties in
case of a clause violation. According to Rousseau [29], contracts contains the following
components: promise, payment, and acceptance.

In a contract, a promise is the communication of a commitment to do something.
The key element of contract premise is the communication of a future intent through state-
ments that describe obligations of each organization. The payment of a contract represents
the offer made by the other party, which is considered a promise as well [29]. Given the
fact that the organizations sign the contract after the consensus regarding their obligations,
the acceptance represents the voluntary participation of each party, which symbolizes their
willingness to make commitments to the other.

Understanding all norms in a contract is essential to all involved parties in order to
comply with commitments defined. Besides that, all norms must be clear and well-defined
to avoid potential conflicts in a contract. In this work, we focus on logical relations between
normative sentences in a contract dealing with aspects of natural language processing such
as ambiguity.

2.1.2 Norm Conflict Types

To further help contract writers to understand the nature of conflicts, Aires et al [1]
introduce a typology of norm conflicts that specifies their causes. Given a norm pair, this
typology relies on inconsistency in their deontic modalities, their normative action, and their
conditions. This typology contains four types of norm conflicts: deontic-modality, deontic-
structure, deontic-object and object-conditional.

The deontic-modality conflict type indicates conflicts originated by the deontic state-
ment of each clause, i.e., prohibition × obligation, obligation × permission, and permission
× prohibition. Deontic-structure conflict types involves different deontic meaning but with
different sentence structure. Deontic-object conflict occurs when the action or specification
of the two norms are different, with the same deontic meaning. The object-conditional con-
flict occurs when the condition to perform a norm is conflicting with another. Table 6.1 shows
examples of norm pairs contained in norm conflict dataset with their respective conflict types.

In the first row, although both norms are similar, they contain different deontic
meanings for the same action and the same subject. Similar to the first row, the second
norm pair contains different deontic meaning with a different sentence structure. The third
row shows an example when the conflict arises from the norm object, which indicates two
different dates in their specification for the same subject and the same modality. The last
row shows an example where the conflict arises from the condition since if the condition
imposed by the second norm is not satisfied, the first norm is conflicting with the second.
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Table 2.1 – Examples of norm pairs with the respective conflict type.
Norm Pair Conflict Type
- The Specifications may be amended by the NCR design release process.
- The Specifications shall not be amended by the NCR design release
process.

deontic modality

- All inquiries that Seller receives on a worldwide basis relative to Buyer’s air
chamber "Products" as specified in Exhibit III, shall be directed to Buyer.
- Seller may not redirect inquiries concerning Buyer’s air chamber "Products".

deontic structure

- Autotote shall make available to Sisal one (1) working prototype of the
Terminal by May 1, 1998.
- Autotote shall make available to Sisal one (1) working prototype of the
Terminal by June 12, 1998.

deontic object

- The Facility shall meet all legal and administrative code standards applicable
to the conduct of the Principal Activity thereat.
- Only if previously agreed, the Facility ought to follow legal and administrative
code standards.

object conditional

2.2 Natural Logic and Inference

2.2.1 Natural Logic

Natural Logic is a model that describes logical inferences over natural language
representation. Given that most of the reasoning is done in natural language by humans
and most uses of natural language express reasoning of some sort, this model aims to
create a correspondence between logical and grammatical structure[20]. Although Lakoff
developed the main concepts of Natural Logic [20], Aristotle uses a similar approach to
introduce syllogisms through logical arguments represented by natural language. Recently,
Natural Logic model was revisited by Valencia [34] that uses monotonic properties to explain
inferences and MacCartney et al. [23] introduce semantic exclusion relations.

Valencia work [34] develops a Natural Logic model based on a mechanism that
applies monotonicity calculus. In the Natural Logic context, monotonicity calculus describes
entailment as semantic containment relation between natural language texts, which is analo-
gous to the set containment relation. Therefore, this analogy allows classifying bi-directional
relation distinguishing forward entailment and reverse entailment. For example, the word pair
(“crow”, “bird”) is a forward entailment whereas the pair (“European”, “French”) is a reverse
entailment. However, the approach of monotonicity calculus cannot represent semantic ex-
clusion, which represents contradiction meaning. Thus, using many simple inferences fails
using monotonicity calculus such as “Stimpy is a cat” |= “Stimpy is not a poodle”.

MacCartney et al. [23] develop an extension of Natural Logic to incorporate seman-
tic exclusion in monotonicity calculus. Following Valencia, this work formalizes an inventory
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of relations that represents semantic containment including two new relations to represent
semantic exclusion: negation and alternation. Negation is analogous to set complement
while alternation is analogous to exclusive disjunction. MacCartney et al [23] uses the ∧
symbol to evoke the logically similar bitwise XOR operator of the C programming language
family, although its is the same symbol used to represent a logical conjunction. This ex-
tension includes a cover relation to represent non-exhaustive exclusion (non-equivalence).
Table 2.2 describes the symbol defined by MacCartney et al. [23] that represents each
relation with an example.

Table 2.2 – Inventory of semantic relations of MacCartney et al. [23] extension of Natural
Logic
Symbol Name Example

x ≡ y equivalence sofa ≡ couch
x @ y forward entailment crow @ bird
x A y reverse entailment European A French
x ∧ y negation human ∧ nonhuman
x | y cover cat | dog
x # y independence hungry # hippo

2.2.2 Natural Language Inference

Automated reasoning and inference are essential topics of artificial intelligence.
Natural language inference (NLI) is a widely-studied natural language processing task that
is concerned with determining the inferential relation between a premise p and a hypothesis
h [6]. In NLI, the entailment relation inferred is formulated based on the following represen-
tations: two-way classification and three-way classification [22].

Two-way classification is the simplest representation of NLI, which describes the
task as a binary decision. The objective of this NLI task is to classify whether the hypothesis
follows the premise (entailment) or does not (non-entailment). This classification form were
used in the RTE competition [9]. This task representation cannot detect a contradiction
between p and h due to the inference of a non-entailment does not specify the relation that
differs from an entailment.

Alternatively, the three-way classification form deals with contradiction creating an
extra category of inferred relations. In three-way classification form, the relations are di-
vided into three categories: entailment, contradiction and neutral. Given a pair of premise-
hypothesis p and h, the entailment relation occurs when h can be inferred from p [22]. When
h infers the negation of p, the pair results in a contradiction. Otherwise, if none of these re-
lations can be inferred, the relation of p and h is neutral.
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In NLI, both p and h are sentences written in natural language. The challenge of
this task differs of formal deduction from logic due to deal with informal reasoning [22]. The
emphasis of the NLI is on aspects of natural language such as lexical semantic knowledge
and the deal with the variability of linguistic expression. Consider the following premise p
and hypothesis h as an instance of an NLI scenario [22]:

• p: Several airlines polled saw costs grow more than expected, even after adjusting for
inflation.

• h: Some of the companies in the poll reported cost increases.

In the NLI context, this example is considered a valid entailment inference because
any person that interprets p would likely accept that h implies in the information of p. Al-
though is a valid NLI classification, h is not a strict logical consequence of p due to the fact
that p informs that airline companies saw the growth of the cost, not necessarily reporting
the growth of the cost. This example reflects the informal reasoning of the task definition
due to deal with ambiguity of natural language [22].

2.3 Machine Learning and Neural Networks

2.3.1 Machine Learning Overview

Machine learning is the field of study that covers computational models and algo-
rithms that give computers the ability to improve through experience [25]. These methods
focus on detecting patterns and using the discovered patterns to predict future information
to help in decision making under uncertainty [26]. Mitchel [25] states the following about
machine learning: “A computer program is said to learn from the experience E with respect
to some class of task T and performance measure P if its performance at task in T, as
measured by P, improves with experience E”. A machine learning model contains a set of
parameters supplied by the input information, known as features. There are the following
types of machine learning methods: supervised learning and unsupervised learning.

The objective of supervised learning is to learn a function using a training dataset
that contains the expected function result given a set of input values. A supervised model
uses the expected value of the training data to measure the error compared with the inferred
value through a cost function. The model improves its performance considering the result of
the cost function by minimizing the error. For example, given an house price prediction task
and a dataset with enough data, we can create a supervised model using house size and
number of rooms as feature and the house price as expected function value.
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On the other hand, the unsupervised model objective is to learn a function using a
training dataset that does not contains the expected function result. An unsupervised model
relies only on features of the training dataset to predict the results. Clustering is an example
task of unsupervised learning, which classify the input value based only on the input features
and the classes are not known beforehand.

Machine learning problems are categorized based on the expected output of the
model [30]. When the output value of the model is a finite set of values, the learning problem
is called classification. The objective of a classification task is to predict a class given a input
value. When the output of the model represents a continuous number value, the learning
problem is called regression. House price prediction is an example of a regression task due
to the predicted price is a real number.

2.3.2 Neural Networks

Neural network is a computational model for machine learning inspired by the bi-
ological neural networks of the animal brains. In a neural network, the input information
flows through intermediate computations, which are called activation functions, and finally
to the model output [15]. This model is associated with a directed acyclic graph describ-
ing how these activation functions are composed together[15]. The nodes of the graph are
named artificial neurons and each edge contains an associated real number, which is called
weight [15]. The number of artificial neurons measures the dimensionality of its input data,
which is represented by a numeric vector. A neural network is composed of one input layer,
one or more hidden layers and one output layer.

The input layer describes the input data, where the neurons represent each feature
of the model. The hidden layer is an intermediary network tier that receives the values from
the input layer or the others hidden layers and executes an activation function. Each hidden
layer may contains an extra neuron called bias, which propagates a fixed value for the next
layers. The output layer receives the result of hidden layer and produces the output of the
neural network.

The number of layers of a neural network architecture represents the depth of the
model [15]. The feed forward neural network is a neural network architecture that can have
multiple layers with fully connected neurons, which a weight value associated with each
neuron connection. The Figure 2.1 shows an example of feed forward neural networks,
given the model feature set x and the model output y.
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Figure 2.1 – A feed forward neural network with the input neurons x, hidden neurons h and
the output neuron y.

2.3.3 Activation Functions

The activation function is the function that converts the input values of a layer to
an output value to feed the next layers. In a neural network, we use the sum of products
of the input values with their respective weights as the input of activation function. In this
subsection, we cover two instances of activation functions: sigmoid and hyperbolic tangent
(tanh). The Equation 2.1 shows an example of an activation function a that receives the sum
of products z given the input value x and weights w .

z =
∑

i

wi · xi

activation = a(z)
(2.1)

Sigmoid

Sigmoid is a mathematical function that produces values between 0 and 1, result-
ing in an S-shaped curve. A neural network uses the sigmoid as an activation function to
squash their inputs into a value that represents a probability [15]. The Equation illustrates
the sigmoid function σ receiving z that is the sum of products between the layer input and
their weights.

σ =
1

1 + exp(−z)
(2.2)

The sigmoid function results in values between 0 and 1, which saturates when
its argument approaches positive infinity or negative infinity in the limit. In the case when
the sum is extremely high, the sigmoid saturates to 1 and when it is very low the function
saturates to 0. Figure 2.2 shows the shape of sigmoid and the saturation regions.
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Figure 2.2 – S-shape formed by sigmoid function [15]

Hyperbolic Tangent

The Hyperbolic Tangent (tanh) is a non-linear function that forms an S-shaped
curve similar to the sigmoid function. Tanh function results in values between -1 and 1,
which saturates when its argument approaches positive infinity or negative infinity in the
limit. A neural network can use tanh as the activation function that can control the increase
or decrease of values in a hidden state [15]. The Equation 2.3 illustrates the tanh function
receiving the argument z and the Figure 2.3 shows the shape and its saturation region.

tanh(z) =
ε2z − 1
ε2z + 1

(2.3)

Figure 2.3 – S-shape formed by tanh function.

Softmax

Softmax is a numerical function that represents a normalized probability distribu-
tion [26]. Formally, given a set of values x ∈ R with length K , for each element of x , the
softmax results in probability values normalized in the interval (0,1). The softmax function
applies an exponential function of element xi and normalizes it dividing by the sum of the
exponential of all elements in x . Neural network models that deal with multi-class classifica-
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tion tasks use softmax as an activation function of its output layer to represent each K class
probability [15]. Equation 2.4 shows the softmax function of the i-th element of set x .

softmax(x)i =
exi∑K
j=1 exj

(2.4)

2.3.4 Backpropagation

The Backpropagation is an algorithm that adjusts the weights of a neural network
through error minimization between the predicted and the expected value [25]. The algorithm
uses the measured error to adjust weights using the Chain Rule of calculus to compute the
derivatives of activation functions of the neural network layers [15]. This algorithm is divided
in two steps: forward propagation and backward propagation.

In forward propagation, the algorithm executes a prediction over input values com-
puting the activation functions of all the network layers. The input of activation function is the
result of the matrix multiplication between the layer input values and his weights including
the sum with bias value. Equations 2.5 and 2.6 show the operations processed in a neural
network layer, where the variable j represents the neuron index of the layer l , the variable k
represents the neuron index of the previous layer (l − 1) and the operation al

j represents the
activation function σ.

z l
j =

∑
k

w l
j ,k · al−1

k + b (2.5)

al
j = σ(z l

j ) (2.6)

After forward propagation reaches the output layer predicting the neural network
output, then the backward propagation is executed. This step of algorithm relies on the Chain
Rule to propagate the error measured from the output layer to all of neural network weights.
Equation 2.7 shows the Chain Rule applied in the backward propagation with variable J
representing the cost function and variable δL representing the error to be back propagated
from the output layer L.

δL =
∂J
∂zL

=
∂J
∂aL ·

∂aL

∂zL

(2.7)
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2.4 Byte Pair Encoding for Subwords

Byte Pair Encoding (BPE) is an algorithm for data compression that merges fre-
quent pair of bytes in a single and unused byte. Sennrich et al [32] adapt the BPE algorithm
to encoding words via subword units to generate a reduced vocabulary. Instead of merge
frequent pairs of bytes, Sennrich et al technique merges pairs of character sequences to
generate subword fragments. This adaptation’s objective is to create a vocabulary for neural
machine translation that deals with rare words without requiring an extra encoding model.

Given a text corpus, the subword algorithm iterates over all character pairs and
replaces each occurrence of the most frequent pair (“A”, “B”) with its merged representation
(“AB”) to create a symbol vocabulary. The merge operation creates a new symbol and,
consequently, reduces the vocabulary size. The number of merge operations is a constant
value that is defined by a hyperparameter of the algorithm. For example, given a text corpus
[“low”, “lowest”, “newer”, “wider”], the algorithm detects the following symbols using three
merge operations of most frequent pairs: “lo” (“l”+“o”), “er” (“e”+“r”), and “low”(“lo”+“w”). With
these symbols, we can represent out-of-vocabulary(OOV) words that are composed of such
symbols. For instance, we can represent the OOV word “lower” using the symbols “low” and
“er”.

2.5 Transformer

Transformer is a type of neural network architecture that processes sequences
based solely on attention mechanisms instead of using recurrent connections in the network.
Vaswani et al. [35] developed this architecture to deal with the machine translation task,
achieving impressive performance on machine translation tasks. This architecture uses an
Encoder-Decoder approach based on other machine translation neural networks such as
Sequence to Sequence learning [33]. Approaches that use Transformer variations recently
achieve state-of-the-art results on natural language understanding tasks, such as Question
Answering [39] and Sentiment Classification [13]. The encoder and decoder of Transformer
are composed of blocks that contain two types of neural network layers: a self-attention
layer and a feed-forward layer. Image 2.4 shows the Transformer Architecture describing the
blocks and its layers.

The self-attention mechanism learns the internal relations between elements of
an input sequence, which is a significant part of this architecture. These relations allow
Transformer to learn semantic representations that carry information about all elements in
the same sequence and learning long term dependencies as well. Given that these neural
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Figure 2.4 – Diagram of Transformer architecture describing the layer composition of
blocks. [35]

networks learn term dependencies that rely only on self-attention approach, a recurrent
neural network with memory gates is dispensable in this architecture.

On the other hand, since a recurrent mechanism is absent, the input of Transformer
architecture does not have information about the order of elements. To deal with this issue,
the authors of Transformer architecture introduce a representation that informs the element
position in its representation, known as Positional Embedding. The input of Transformer
architecture is the sum of input embedding with its Positional Embedding. Vaswani et al [35]
use a sinusoidal function to represent Positional Embeddings of each position.

A self-attention layer is composed of three matrices: a query matrix, a key matrix,
and a value matrix. Each element of a sequence is associated with a query matrix that maps
an output given a pair of key/value matrix, which projects the magnitude of relations with
other elements. Although encoder and decoder uses self-attention mechanism similarly,
the decoder part of Transformers applies a mask to remove later element values to avoid
computing the attention score to subsequent positions of a single word. Equation 2.8 shows
the function of the self-attention mechanism that results in a representation Z given a query
matrix Q, a key matrix K , a value matrix V and a normalization term dk , which represents
the dimensionality of matrix K . Figure 2.5 describes an example detailing each operation
of the self-attention mechanism, which produces the attention weights to focus on relevant
words and then multiply with its values.
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Words Thinking Machines
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Query
Vectors

Key
Vectors
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Score q . k = 112 q . k = 96

Divide by 8 14 12

Softmax 0.88 0.12

Softmax . Value

Figure 2.5 – Diagram of operations executed by self-attention mechanism, generating the
representation of the word “thinking” given the input sentence “Thinking Machine”. The
numbers are hypothetical.

Z = softmax(
Q.K√

dk
).V (2.8)

Besides the computation of relations between elements in a sequence, this archi-
tecture introduces the approach of computing multiple representations for each sequence
element, known as Multi-Headed attention [35]. The objective of Multi-Headed attention is
generating representation subspaces of an element to learn different aspects of an individ-
ual element, in which each subspace represents an attention mechanism head. Each head
contains a distinct query, key and values matrices randomly initialized and computes the
self-attention mechanism as well as explained previously. After computing each head, the
neural network concatenates each head output into a single matrix and then transforms into
a matrix with the same shape of input size using a fully-connected layer. Figure 2.6 shows
how each subspace of multi-head attention computes the output representation.

After computing the self-attention layer, the Transformer block uses a feed-forward
neural network to process each hidden state of the sequence separately and identically. The
transformer block uses an extra layer applying the Batch Normalization method [18] on the
output of each block layer.
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Figure 2.6 – Diagram of self-attention model using Multi-Head approach using 3 heads.

2.6 Transformer-XL

The default Transformer neural network processes a text corpus by splitting into
segments and each segment is a separate model input. Given that, a specific segment
cannot access the information of other segments of the same corpus, which results in a lack
of contextual information. To deal with this issue, the Transformer-XL neural network uses a
recurrent neural network to process the segments that compose the corpus as a continuous
sequence [10]. With a recurrent mechanism, the Transformer-XL can memorize previous
segments improving learned representations with better contextual information.

The Transformer-XL model stores the hidden states of the previous segment using
as contextual information to learn term dependencies between segments. For instance,
given an application of a default Transformer model for the task of next word prediction in a
large corpus, during the training phase, we need to split the text into smaller segments and
optimize the model using only the segment words. During the evaluation phase, we need to
shift segments to the right to predict the next word of different segments to test considering
all words in the corpus regardless of segments separated during training phase.
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2.7 XLNet

XLNet is a pretraining method for the Transformer-XL neural network that uses the
next-word prediction unsupervised task for language modeling. Using a large unlabeled
corpus, this approach aims to improve a model through transfer learning for a supervised
downstream task, which usually relies on small labeled datasets. In this section, we describe
the main concepts of XLNet. First, we describe the concept of autoregressive language
modeling used in XLNet. Second, we describe the unsupervised tasks used in XLNet pre-
training known as permutation language modeling. Finally, we describe the new approach of
computing self-attention representations introduced by XLNet: Two-Stream Self-Attention.

2.7.1 Autoregressive Language Model

Autoregressive language modeling is a task that aims to predict a token given only
its predecessors [39]. Using a large corpus, an autoregressive language model tries to
predict each corpus token processing a fixed-size window of its previous word. When pro-
cessing this task using neural networks, the AL model creates a contextual word represen-
tation by learning hidden layer features. Using a large corpus, an AL model tries to predict
each corpus token processing a fixed-size window of its previous word. Specifically, given a
text sequence X = [x1, ..., xT ] of length T , autoregressive language modeling maximizes the
likelihood using the following equation:

max
θ

log pθ =
T∑

t=1

log pθ(xt |x<t ) =
T∑

t=1

log
exp(hθ(x1:t−1).e(xt ))∑
x ′ exp(hθ(x1:t−1).e(x ′t )))

(2.9)

In Equation 2.9, hθ(x1:t−1) corresponds to hidden representations learned by a model given
previous the inputs of xt and e(xt ) corresponds to the embedding representation of xt . The
θ symbol corresponds to the model parameters. Regarding language representation, an
autoregressive model brings a limitation about context information: it does not capture the
bidirectional context since its inputs consists only of the previous elements (i.e. tokens to
the left). To address this problem, XLNet uses all possible permutations of elements in a
sequence for the unsupervised task of permutation language modeling [39].

2.7.2 Permutation Language Modeling

Based on autoregressive language modeling, Permutation Language Modeling is
a task that predicts the next word considering the preceding context given a permutation of
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the original sequence. For instance, given a set of tokens [x1, x2, x3], we can use a possible
permutation of this sequence [x1, x3, x2] to predict x2. Since the model predicts x2 conditioned
by x1 and x3, using the permutation instead of original sequence allows the model to learn the
bidirectional context of x2. Formally, given a set Z that represents all possibles permutations
of sequence X with length T , the PL modeling aims to maximize the likelihood using the
following equation:

max
θ

Ez∼ZT

[∑T
t=1 log pθ(xzt |xz<t )

]
(2.10)

The equation above is similar to the AR modeling equation, however, the difference
is that xzt is conditioned by the previous elements of the permutation sequence z ∈ Z [39].
The zt variable denotes the t-th element of the permutation z. In expectation operator, all
permutation sequences adjust the same parameter θ during the training execution. Given
that, and the xt symbol receives the information of all elements of sequence x including its
successors, capturing then the bidirectional context.

2.7.3 Two-Stream Self-Attention

To deal with the Permutation Language Modelling task using the Transformer archi-
tecture, the XLNet uses a modified version of the self-attention mechanism. To predict the xzt

token, the neural network should not see its content but only its position to avoid to become
a trivial task. For example, given the sentence “permission does not imply obligation” for the
next-word prediction task, to predict the word “obligation” we should only consider its prede-
cessor tokens “permission does not imply”. On the other hand, to use other elements in xz<t

to predict xzt , we need its representations already formulated by the neural network. The XL-
Net introduces the Two-Stream attention that formulates two types of hidden representation:
the content representation and query representation.

The content representation hzt uses the standard self-attention mechanism as well
as in the original Transformer implementation, which can access all tokens xz<t including
xzt . Alternatively, the query representation gzt do not access the xzt information but only its
context xz<t in the permutation z. Equation 2.11 shows the details of how to generate the
gzt and hzt using the self-attention mechanism.

hm
zt

= Attention(Q = hm−1
zt

, KV = hm−1
hz≤t

)

gm
zt

= Attention(Q = gm−1
zt

, KV = hm−1
hz<t

)
(2.11)

In the m-th self-attention layer, the self-attention query vector Q uses the value of
previous layer (m-1) in both representations. The single difference is that the self-attention
Key and Value vectors (KV ) of gzt does not include the hm−1

zt
, which means that it only consid-

ers the previous token representations hhz<t . Both representations are related considering
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that gzt uses the hm−1
hz<t

computed by content representation in the previous layer. Regarding
the initialization of such representations in the first layer (m=1), the h1

zt
receives the em-

bedding vector of xzt and g1
zt

receives a randomly initialized vector, which is updated in the
backpropagation execution. Since the XLNet uses the query representation to deal with
issues of the PL modeling task, it is not necessary during the finetuning process.
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3. APPROACH

In this chapter, we describe our approach to detect potential problems in a contract,
given the relation of its normative sentences. First, we develop our multi-model approach
to recognize not only whether a pair of sentences contains a conflict but also its inferential
relation. Second, we specify our neural network to deal with the natural language inference
task and the norm conflicting detection task. Third, we report the dataset that we use for
training our models. Finally, we describe the implementation details of our neural network
and training details as well.

3.1 Multi-Model for Potential Contractual Problems

Our multi-model approach relies on a model to predict the inferential relation be-
tween a pair of norms and a model to detect potential conflicts in the same pair. Although
the results of both tasks are different, we use the same model specification since both tasks
deal with sentence pairs written in natural language. Our multi-model receives a pair of
normative sentences and processes the norms by two different models simultaneously and
apart. Given that there is no dependency between models, the two models do not share
parameters and, hence, we train both models separately.

Given a normative sentence pair (n1,n2), the NLI Model predicts the inferential re-
lation between both sentences resulting in the following classes: contradiction, entailment
and neutral. Since the existence of conflict between clauses is independent of the order of
the clauses (i.e. a conflict is a problem regardless of which clause comes first), we process
pairs (n1,n2) and (n2,n1) to consider both sentences as the premise in the NLI Model.

The Norm Conflict Classification (NCC) model predicts whether a potential conflict
exists between n2 and n1 or not. When conflict exists, the model predicts the conflict type
following the typology introduced by Aires et al [1]. Figure 3.1 shows a diagram that repre-
sents our multi-model approach, illustrating how it processes a pair of norms and how we
represent the likelihood of the norm pair belonging to a particular class.

3.2 Neural Network Specification

We implement a neural network model for each task as a multi-label classifier.
Both models use the same specification and the same neural network architecture details
except the number of predicted classes in the output layer. Since both tasks involve natural
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Figure 3.1 – Diagram illustrating our multi-model approach processing a norm pair, which
results in two logit vector: one that represents the likelihood of the norm pair belonging to a
particular conflict type conflict type (or nonconflicting) and another to represent its inferential
relation (NLI classes).

language classification, we leverage a modified XLNet [39] model to learn sentence-pair
representations.

As well as original Transformer architecture [35], we use subword units [32] to rep-
resent the sentence words using a pretrained token vocabulary made available by Yang et
al [39]. The model input consists of the concatenation of both sentences n1 and n2 including
special tokens SEP and CLS. We define this input structure following the input structure of
XLNet pretraining task to avoid creating a discrepancy between the pretraining method and
our tasks. The SEP token separates the sentences and CLS is token used by the XLNet to
encode the whole input sequence.

Since XLNet input consists of text fragments that might contain one or more sen-
tences, we separate each sentence in segments including a segment identifier for n1 and n2

to differentiate whether two tokens are within the same sentence [39]. Regarding the spe-
cial tokens (CLS, SEP), we include a specific segment index to differentiate from sentence
content considering that these tokens should not bias the segment representation. Equa-
tion 3.1 shows how we concatenate the (n1,n2) tokens and Equation 3.2 shows the segment
definition, where xn1,n2 is the token sequence and sn1,n2 is the sequence of segment indexes.

xn1,n2 = [sep, n1, sep, n2, sep, cls] (3.1)

sn1,n2 = [ssep, sn1, ssep, sn2, ssep, scls] (3.2)

To predict the output class, we include a feed-forward neural network on top of our
classifier model using the representation produced by XLNet as the input of this network.
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The XLNet neural network uses the self-attention mechanism [35] to represent all input to-
kens, which means that all representations carry a part of other token information measured
by an attention score. We use only the CLS representation hcls to predict the output class
since it contains the information of all tokens in sentence pair. The feed-forward neural net-
work computes a tanh activation function to generate a logit vector representing each class
probability. Equation 3.3 shows how we predict the output class, where h denotes a vector
that contains all token representations of (n1,n2) produced by XLNet, tanh(hclsW T ) denotes
the tanh activation function of feed forward network and ŷ is the predicted class given the
highest logit value contained in logit vector l . Figure 3.2 shows how the XLNet neural network
predicts the output class ŷ given the tokens x (1) of n1 and the tokens x (2) of n2. Importantly,
Figure 3.2 shows the neural network details represented by boxes in the diagram of Figure
3.1.

h = XLNet(n1, n2)

l = tanh(hclsW )

ŷ = arg max
c

lc

(3.3)
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Figure 3.2 – Multi-label classifier that uses XLNet to generate tokens representation followed
by a Feed Forward Neural Network to predict the output class.
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3.3 Datasets

In this section, we report the datasets that we use for training our models. First,
we describe the MultiNLI (MNLI) dataset composed by sentence pairs annotated with a
Natural Language Inference label. Second, we describe the Norm Dataset for norm conflict
classification that we use for NCC-Model training.

3.3.1 MultiNLI

The Multi-Genre Natural Language Inference (MultiNLI) corpus is a large dataset
that contains 433k sentence pairs annotated with NLI classes (contradiction, entailment,
neutral) [37]. This dataset is based on Stanford Natural Language Inference (SNLI) cor-
pus [6] and the data has the same format, and was collected in a similar way. However,
MultiNLI contains more diverse sentences including text and speech from ten different gen-
res compared to SNLI, since it contains only image caption descriptions. The genres of
MultiNLI are the following categories: face-to-face conversations 1 (FACE-TO-FACE), gov-
ernment content (GOVERNMENT), Letters (LETTERS), report of the terrorist attack in 9/112

(9/11), sentence from non-fiction work of Oxford University Press (OUP), Slate Magazine
contents (SLATE), telephone conversation3 (TELEPHONE), travel guide content (TRAVEL),
verbatim content4 (VERBATIM), and fiction content (FICTION).

This MultiNLI corpus provides the following sets: train set, dev matched/mismatched
sets and test matched/mismatched set. The mismatched version of the dev set contains
sentences from the same sources of training set while the mismatched version sentences of
training and dev set differ substantially. The test set has the same division of dev set but with
the unlabeled sentence pairs. To evaluate a model using the test set, the predicted values
must be submitted in a Kaggle Competition56 since the test labels are hidden, which each
test prediction will be evaluated by their platform.

1https://newsouthvoices.uncc.edu/
2https://9-11commission.gov/
3https://catalog.ldc.upenn.edu/LDC97S62
4http://www.verbatimmag.com/
5https://www.kaggle.com/c/multinli-matched-open-evaluation
6https://www.kaggle.com/c/multinli-mismatched-open-evaluation
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Table 3.1 – Example of sentence pairs contained in MultiNLI dataset with their respective
NLI labels.

Premise Hypothesis Label
The Old One always comforted
Ca’daan, except today.

Ca’daan knew the Old One very
well. Neutral

At the other end of Pennsylvania
Avenue, people began to line up
for a White House tour.

People formed a line at the end
of Pennsylvania Avenue. Entailment

A woman selling bamboo sticks
talking to two men on a loading dock.

A woman is not taking money
for any of her sticks. Contradiction

3.3.2 Norm Dataset

The Norm Conflict Dataset is a corpus that contains 11557 sentences that rep-
resent clauses given a variety of contracts [1]. Aires et al develop this dataset in a semi-
automated way using volunteers to create a conflicting second norm given the original. The
dataset contains 111,329 non-conflicting norm pairs and 238 conflicting norms annotated
with their respective conflicting types. The conflicting types covered by this dataset fol-
lows the typology introduced in Section (deontic-modality, deontic-meaning, deontic-object,
object-conditional).

3.4 Implementation and Training Details

In both model instances, we implement a compact version of XLNet, named XLNet-
Base, instead of using the large version (XLNet-Large) for multi-label classifier model. Al-
though the XLNet-Large results in better performance compared to the XLNet-Base, we
use the smaller version in order to speed up training by having fewer trainable parameters.
Importantly, the fewer parameters help ups more easily refine the network with a relatively
smaller training dataset in the Norms Dataset. We implement the two models using XLNet-
Base pretrained weights made available by Yang et al [39] and use auxiliary code provided
by HuggingFace [38]. Table 3.2 shows the specification of both XLNet models describing the
number of transformer blocks, the number of heads used in multi-head attention, the hidden
state size and the total number of trainable parameters.

Table 3.2 – Specification of each XLNet model.
Model Blocks Heads Hidden Parameters

XLNet-Base 12 12 768 110M
XLNet-Large 24 16 1024 340M
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We train both models using the Adam algorithm [19] to optimize the neural net-
work weights and we measure the model error using the Negative Log-Likelihood (NLL) loss
function in output probabilities. Since we deal with a multi-class classification task, our loss
function accumulates the log loss values of each class prediction. To avoid the exploding
gradient problem [28], we clipped the gradient norm within 1. Given an output label yc for
class c and a premise-hypothesis pair (p, h), the goal is to minimize the function shown in
Equation 3.4.

NLL = −
∑

c

yc. log P(c|p, h) (3.4)

3.4.1 NLI-Model Training

In the NLI-Model, our training procedure is similar to the procedure by Yang el al
[39] in single-task XLNET training for the NLI task. However, since their focus is not on
hyperparameter finetuning for MultiNLI, we finetune for the NLI task using specific hyperpa-
rameter values. Given a specified number of steps during the training process, we validate
our model in MultiNLI matched and mismatched dev sets to select the best values given the
model performance on these datasets. To use small train batches, we accumulate the back-
propagated values before update the NLI-Model weights. The gradient accumulation allows
us to train the model in a GPU with less memory since we use a batch size 16 times smaller
than that of Yang et al. As we accumulate gradient given a specific number of steps, we
scale up the number of training steps to increase the number of updates in model weights.
Table 3.3 shows the hyperparameter values that we use in NLI-Model comparing with values
used by Yang et al in NLI task finetuning.

Table 3.3 – Hyperparameters values for NLI-Model train.
Ours Yang et al [39]

Learning rate 3e-5 3e-5
Batch size 8 128
Gradient acc. steps 16 -
Adam epsilon 1e-8 1e-6
Input sequence size 170 128
Training steps 150K 10K

We monitor the training of the NLI-Model by creating checkpoints in intervals of
2000 steps to extract its loss value and accuracy in the validation dataset. Although we
limit the training execution to 50000 steps, we apply the early stop technique to suspend the
execution when the loss value in the validation set stops to decrease. Figure 3.3 shows the
loss and the accuracy progress of the NLI-Model throughout the steps on the MNLI validation
set.
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We apply a learning rate scheduler to decay its value in each weight update step
through a linear function. Equation 3.5 shows how we compute the linear rate decay where
lrt+1 and lrt are,respectively, the next and actual learning rate value, stept is the actual train
step, and steptotal is the number of weight update steps.

lrt+1 = lrt ·
stept − steptotal

steptotal
(3.5)
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Figure 3.3 – Progress of the loss and the accuracy of the NLI-Model in MNLI validation set
throughout the training steps using the hyperparameter values of Table 3.3

3.4.2 Norm Conflict Classification Model Training

To train the Norm Conflict Classification (NCC-Model), we select the single fold
using as a criterion the balance between classes to train the NCC-Model to produce a fair
comparison. Aires split this dataset into ten folds to fit their models using the k-fold cross-
validation process. Table 3.4 shows the data statistics of our selected fold, which contains
369 samples in the train set and 41 for the validation set, reporting the number of examples
per class.

We train NCC-Model using two procedures: training reusing NLI-Model weights
NCC-Modelnli-ft, and training from scratch using directly pretrained XLNet weights. In the
first experiment, we initialize the NCC-Model reutilizing the NLI-Model weights to explore the
relation between two tasks. Our goal is to determine the existence of a link between logical
relations such as contradiction, and conflict typology as defined by Aires et al [1]. In contrast
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Table 3.4 – Samples per class contained in the train and val sets that we use to train NCC-
Model.

Class Train Validation
nonconflicting 184 20
deontic-modal 80 8
deontic-structure 47 7
deontic-object 31 4
object-conditional 27 2

to NLI, which contains a significant volume of labeled datasets, finding an openly available
norm dataset is difficult. Thus, we investigate whether transferring weights from NLI-model
to the NCC-Model has the potential to improve it. Alternatively, considering that might be
an excess of weight update, in the second experiment we use the XLNet-Base pretrained
weights to train directly on the selected norm dataset fold.

Note that in the first experiment we use a smaller learning rate than used in NLI-
Model to prevent large magnitude changes to the pretrained NLI weights. Applying the gra-
dient accumulation in both experiments improves the results even using a dataset with few
examples. Table 3.5 shows the hyperparameter values of the NCC-Model training process.

Table 3.5 – Hyperparameters values used in NCC-Model training.

Learning rate 2e-6 with NLI weights
1e-5 w/o NLI weights

Batch size 4
Gradient Accumulation Steps 3
Adam epsilon 1e-8
Input Sequence Size 250
Training Steps 5000

In the NCC-Model training process, we use checkpoints per epoch instead of per
steps since the volume of the MNLI dataset is much greater than the Norm Dataset. Thus,
we use the early stop technique monitoring the result obtained in the epoch’s last step. We
use weights of the best checkpoint regarding its accuracy and loss in the validation set of
the selected fold as the final model.

Figures 3.4 and 3.5 show the training progress of NCC-Model and NCC-Modelnli-ft

respectively throughout the epochs. We note that the NCC-Modelnli-ft training procedure is
slower when compared to the NCC-Model given that it needs more training epochs to early
stop. On the other hand, the progress of the NCC-Modelnli-ft validation loss is stable when
compared to NCC-Model, which indicates that the NCC-Model is more prone to overfitting.
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Figure 3.4 – Progress of the loss and the accuracy of the NCC-Model throughout the training
steps using the hyperparameter values of Table 3.5
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Figure 3.5 – Progress of the loss and the accuracy of the NCC-Modelnli-ft throughout the
training steps using the hyperparameter values of Table 3.5
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4. RESULTS

In this chapter, we report the results of our models using the MultiNLI dataset for
the NLI-Model and Norm Dataset for the norm conflict classification models. First, we report
a qualitative comparison between related approaches describing a quantitative analysis.
Finally, we report the results of specific norm pairs to compare with related approaches
describing a qualitative analysis.

4.1 Quantitative Analysis

4.1.1 NLI-Model

In this section, we compare the results of our trained NLI-Model with similar mod-
els, such as the XLNet original work and BERT [13]. BERT is the previous state-of-the-art
model and XLNet-Base introduced by Yang et al is the base of our NLI-Model. We choose
XLNet-Base and BERT-Base models in our comparison considering their similar architecture
since these two models include 12 transformer blocks in its architecture. Table 4.1 shows
a comparison of our approach with similar models using the MultiNLI dev matched (m) and
mismatched (mm) datasets.

Table 4.1 – Comparison of our trained NLI-Model and similar models using the MultiNLI dev
datasets.

Model Acc (m/mm)
BERT-Base [13] 84.34/84.65
XLNet-Base [39] 85.84/85.43
XLNet-Base (Our NLI-Model) 87.06/86.30

Our NLI-Model obtains slightly better results compared to BERT-base and even
with the original XLNet in both datasets. Both models have the same neural network ar-
chitecture as well as the number of trainable parameters. However, the main difference
between our pretrained XLNet-Base and Yang et al [39] is the training procedure, since we
do hyperparameter tuning for NLI task specifically.

4.1.2 NCC-Model

We now compare the results of our trained NCC-Model with related work models
as well as both training procedures. We select the works of Aires and Meneguzzi [2], which
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uses a Convolutional Neural Network (CNN), and Aires et al [1], which uses learned seman-
tic representations as inputs of an off-the-shelf Support Vector Machine model. We compare
the results using all norm dataset labels, which include non-conflict pairs. The comparison
with Aires et al uses the the best performing approach (the concatenation of norm embed-
dings) for all five labels. We report, for all approaches, accuracy (A), precision (P), recall
(R), and F-measure (F). In this comparison, we include the following two NCC-Models with
different training procedures: NCC-Modelnli-ft, which we train reusing NLI-Model weights and
NCC-Model, which we train using directly Norm Dataset. As shown in Table 4.2, our ap-
proach surpasses the state-of-the-art results in all metrics using both training procedures by
a considerable margin.

Table 4.2 – Comparison between our approaches with current and previous state-of-the-
art approaches considering all classes (4 types of conflicts and non-conflicts norm pair) in
test dataset. We compare accuracy (A), precision (P), recall (R) and F-measure (F) values
among the approaches.

Approach A P R F
Aires and Meneguzzi[2] 0.63 0.59 0.64 0.61
Aires et al [1] 0.70 0.71 0.64 0.66
NCC-Model 0.91 0.95 0.91 0.92
NCC-Modelnli-ft 0.93 0.96 0.93 0.95

Although using NLI-Model weights as the starting point of the NCC-Model obtains
better results in the test set, we do not have enough evidence that that the NLI pretraining is
indeed superior to the NCC-model alone, since the improvement relies on a single example.
Since this problem is one of binary classification (conflicting and non-conflicting norm pairs)
and the improvement relies on just two examples, we prefer to be cautious about claims
of superior accuracy. Analyzing the confusion matrices shown in Figures 4.1 and 4.2, we
note that NCC-Model misclassified one conflicting norm pair as non-conflicting and one con-
flicting norm pair as non-conflicting when compared to NCC-Modelnli-ft. On the other hand,
NCC-Modelnli-ft misclassified examples belonging to similar conflict (deontic-modality and
deontic-structure) since both types rely on the modal verb. We argue that the NCC-Modelnli-ft

misclassification is subtler since the error concerns on similar conflict types and, on the other
hand, the NCC-Model could not recognize a conflict regardless of its type. This error com-
parison provides an additional piece of evidence of the model improvement using the NLI
pretrained weights.

4.1.3 Statistical Test

To test whether the use of pretrained weights improves the performance of the
NCC-Model, we use the McNemar’s Statistical Test[24] to compare the error proportion of
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Figure 4.1 – Confusion matrix of NCC-Model in the test set.
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Figure 4.2 – Confusion matrix of NCC-Modelnli-ft in the test set.

the two approaches (NCC-Model and NCC-Modelnli-ft). In this statistical test, we apply two
different methods in the same dataset and collect their results to test its null hypothesis,
which indicates whether the two methods have the same proportion of errors [14]. The
rejection of the null hypothesis of the McNemar’s test occurs when the two approaches
result in different proportion of error, which shows that the two models have a significant
difference.

To apply the McNemar’s test, we create a contingency table that contains the num-
ber of correct/incorrect instances of each method. Table 4.3 shows the contingency table of
two approaches using the test set of Norm Dataset.
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Table 4.3 – Contingency Table with number of instances that were correct/incorrect classified
by the norm classification model trained reusing NLI-Model weights (NCC-Modelnli-ft) and
another norm classification model without NLI-Model weights (NCC-Model).

Correct
(NCC-Modelnli-ft)

Incorrect
(NCC-Modelnli-ft)

Correct (NCC-Model) 41 1
Incorrect (NCC-Model) 2 1

As both models result in a high accuracy on the test set, the contingency table
shows a contrast between the number of correctly classified pairs with other numbers. Given
such disparity, the test fails to reject the null hypothesis showing that both approaches have a
similar proportion of errors on the test set, since the probability value (p-value) resulted from
our contingency table is 1. Such results corroborate our findings that using a pretrained NLI
model does not certainly improve the accuracy of the Norm Classification task, as mentioned
in the previous section.

4.2 Qualitative Analysis

In this section, we analyze the results of typical examples extracted from the test
set to compare our approach against the related work. Aires et al work [1] the following
norm pair to compare its approach performance against Aires and Meneguzzi work [2]:

• Invoice cost shall not be adjusted for, and Customer shall not be entitled to, promotional
allowances, cash discounts, prompt pay discounts, growth programs or any other sup-
plier incentives received by USF.

• If the cost of the invoice is adjusted, Customer will not be entitled to promotional dis-
counts, cash discounts, growth programs or any other supplier incentives received by
USF.

Aires and Meneguzzi’s approach misclassified as non-conflicting with 64% con-
fidence while Aires et al ’s approach correctly classified as object-conditional conflict with
40% confidence. Both of our models correctly classify this norm pair as well with 97% and
98% of confidence respectively. Such results show that our approaches not only infer the
correct conflict type for this norm pair but also do it with increased confidence level when
compared to related work.

For the next example, we compare the results of both approaches to investigate
the effects of using NLI weights for the NCC task. The difference between both approaches
relies solely on the following norm pair:
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• ACTII shall be responsible for the design, construction, equipment, validation and
maintenance of the ACTII Facilities, including the Janssen Equipment.

• Except for the Janssen Equipment, ACTII must be in charge of the all production pro-
cesses involving ACTII Facilities.

The NCC-Modelnli-ft correctly classified this norm pair as object-conditional, spread-
ing the confidence levels across conflict types assigning 35% confidence to object-conditional,
30% to deontic-structure, and 27% to deontic-object. By contrast, the NCC-Model misclassi-
fied as non-conflicting pair with 84% confidence, which is a notable error since this example
is a conflicting norm pair. Our intuition is that the NCC-Modelnli-ft could capture better the
modal verb information since it can indicate an entailment or even a contradiction. We dis-
cuss further this issue in Section 5.3, which we report the attention weights of each word in
norms.
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5. EXPERIMENTAL ANALYSIS

In this chapter, we describe how both models work combined to help find potential
contractual problems. First, we explore the entailment relation of conflicting pairs that relies
on deontic meaning. Second, we explore the transitive relations to find conflicts that may
arise within three norms. Third, we explore the self-attention weights that highlight terms
with a strong correlation with each conflict or inferential relation. Finally, we describe the
limitations of our models as a result of the relatively small available dataset.

5.1 NLI Predictions on Norm Dataset

In this section, we describe the predicted NLI class for each norm pair contained
in the selected fold of norm dataset. Given a norm pair, we show the NLI predicted class
by the NLI-Model and compare its inferential relation with its conflict type. Instead of using
the entire dataset, which is unbalanced regarding the number of pairs for each conflict type,
we select a single fold created using Aires et al sampling strategy [1]. We show the results
obtained from both models on the norms dataset fold reporting each NLI class confidence
grouped by each conflict type.

5.1.1 NLI in Non-Conflicting Pairs

Since nonconflicting pairs might not refer to the same norm parties or actions, the
NLI-Model predicts the neutral relation for most norm pairs as expected. The NLI-Model
predicts the neutral relation in 80% of nonconflicting pairs processed, and its confidence
surpasses all other NLI classes by a large margin. We compute each confidence percentage
using the Softmax function over the logits predicted by the NLI-Model. We use the average
confidence of the NLI-Model to report how much an NLI class may be related to a non-
conflicting norm pair considering all instances contained in Norm Dataset fold. Table 5.1
shows the number of nonconflicting norm pairs predicted for each NLI class including the
average of each NLI class confidence.

5.1.2 NLI in Conflicts Related to Modal Verbs

In this section, we cover conflicts related to deontic meaning divergence through
modal verbs such as deontic-modality and deontic-meaning. These two conflict types occur
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Avg conf.
(n1, n2)

Predictions
(n1, n2)

Avg conf.
(n2, n1)

Predictions
(n1, n2)

Contradiction 21,91 % 27 23,60% 31
Entailment 8,01% 9 6,89% 5
Neutral 70,07% 148 69,49% 148

Table 5.1 – The average confidence of the NLI-Model considering all non-conflicting pairs
with the respective number of norm pairs predicted for each NLI Class. We include results
considering both directions in the NLI-Model regarding the premise/hypothesis roles (n1,n2
and n2,n1).

when a norm pair express a different deontic modality. In such conflict types, we report
a significant number of norm pairs that the NLI-Model classified as a contradiction. We
observe that in norm pairs where one sentence conveys an obligation or permission and the
other conveys a prohibition, the NLI-Model could identify a contradiction relation. This shows
that our model tends to indicate a contradiction in occurrences of negation of a modal verb,
which often illustrates a prohibition norm. Tables 5.2 and 5.3 show the number of norm pairs
annotated with deontic-modality and deontic-structure with its respective NLI class.

Avg conf.
(n1, n2)

Predictions
(n1, n2)

Avg conf.
(n2, n1)

Predictions
(n2, n1)

Contradiction 60,52% 57 61,57% 58
Entailment 32,12% 28 25,27% 27
Neutral 0,07% 6 11,14% 6

Table 5.2 – The average confidence of the NLI-Model considering all deontic-modality con-
flicting norm pairs in selected fold with the respective number of norm pairs predicted for
each NLI Class.

Avg conf.
(n1, n2)

Predictions
(n1, n2)

Avg conf.
(n2, n1)

Predictions
(n2, n1)

Contradiction 73,77% 41 64,53% 36
Entailment 15,68% 8 7,6% 13
Neutral 10,54% 4 27,83% 4

Table 5.3 – The average confidence of the NLI-Model considering all deontic-structure con-
flicting norm pairs in selected fold with the respective number of norm pairs predicted for
each NLI Class.

The NLI-Model recognizes an entailment relation in norm pairs that the premise
informs an obligation and the hypothesis informs permission. On the other hand, the NLI-
Model shows in some examples that the opposite is not true when the obligation comes
from the hypothesis norm resulting in neutral relation in this case. This relation reflects the
differences between modal verb intensity recognized by our NLI Model given a norm pair.
This case illustrates that even an entailment relation can represent conflict in a contract since
the pair contains different deontic meanings for the same parties and the same action.
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We show examples of norm pairs annotated with deontic-modality and deontic-
structure that describe this relation in Table 5.4. The two first rows show examples of re-
lations between a permissible and an obligatory norm, where the entailment and neutral
relation reflects the inference relation. The last two rows show examples of contradiction
cases where a pair represents permission and prohibition of the same action for the same
party. The norm pair shows that our model could detect a contradiction in a prohibition
with modal verb not being negated directly. However, we note that in the last row, in which
norms contain a different structure, the NLI-Model decreases the confidence of classifying
contradiction correctly when norm (b) is the premise and (a) is the hypothesis.

Norm Pair a,b b,a Conflict
(a) CBSI will retain the originals in its archives.
(b) CBSI may retain the originals in its archives.

E
(49,39%)

N
(64,11%) DM

(a) All prices quoted are exclusive of federal state and
local excise sales use and similar taxes and any duties
and VA Research shall be responsible for all such items.
(b) VA Research may be liable for any of these items if
anywhere they would be federal state and local taxes
sales tax use and similar and any rights.

E
(84,56%)

N
(51,28%) DS

(a) The Specifications may only be amended by the
NCR design release process.
(b) The Specifications shall not be amended by the
NCR design release process.

C
(98,74%)

C
(96,46%) DM

(a) No material changes may be made to the Headcount
Plan without the prior approval of the Global Supply
Team.
(b) Parties may perform changes on materials whenever
they want.

C
(95,41%)

C
(49,37%) DS

Table 5.4 – Norm pairs (a,b) annotated with conflict types deontic-modality (DM) and deontic-
structure (DS) with their respective NLI class predicted by the NLI-Model. The NLI classes
entailment (E), neutral (N) and contradiction (C) are related to their confidence and we pro-
vide NLI-Model results for both sides (a,b) and (b,a).

5.1.3 NLI in Conflicts Related to Norm Object

In cases where the normative conflict emerges from norm objects (deontic-object
and object-conditional), we note there is a low correlation between NLI classes and the de-
tected conflicts. These conflict types result in more diverse cases regarding the inferential
relation between norms. We observe that our NLI-Model predictions do not follow the strict
definition of contradiction in NLI, such that the predicted class does not reflect necessarily
the norm pair inference relation. In some cases where the norm conflict occurs when the
norm object diverges, the NLI-Model predicts a contradiction relation. Although the NLI-
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Model can detect a contradiction when norm objects are contradictory, in cases where the
objects of hypothesis norm do not necessarily imply in the negation of premise object, the
NLI-Model tends to predict the norm pair as a contradiction relation. The norm pairs anno-
tated with deontic-object expose some limitations of our NLI model regarding our training
dataset and time relations described in Section 5.4.

Table 5.5 – Norm pairs annotated as deontic-object conflict in norm dataset fold with the
respectives NLI-Model predictions. We include the confidence level of NLI-Model for each
predicted NLI class: Contradiction (C), Entailment (E) and Neutral (N).

Norm Pair a,b b,a
(a) Autotote shall make available to Sisal one 1 working prototype
of the Terminal by May 1 1998.
(b) Autotote shall make available to Sisal one 1 working prototype
of the Terminal by June 12 1998.

C
(87,65%)

C
(85,99%)

(a) NCR shall pay the freight carrier directly.
(b) NCR must pay the freight carrier making a back deposit.

C
(74,43%)

C
(91,93%)

(a) MOPAC and Biopure will cooperate in causing an orderly
connection of the Separation Facility with the System.
(b) MOPAC shall make an orderly connection of the Separation
Facility with the System.

E
(95,66%)

N
(99,14%)

(a) Hershey will cooperate in no shipping procedures.
(b) Hershey will cooperate in all shipping procedures.

C
(99,93%)

C
(99,82%)

Table 5.5 shows NLI-Model results in conflicting norm pairs annotated as deontic-
object. The first and second rows illustrate norm pairs that our NLI-Model predicts a contra-
diction with high confidence when norm actions are different but not necessarily represents
an opposition. While the first row represents a norm pair that contains a simple time-related
divergence, the second row illustrates a conflict that emerges from divergence in specifi-
cation details about the norm actions. In such cases, the difference does not necessarily
indicate a contradictory relation between norm actions and, hence, the NLI-Model prediction
is uncertainty regarding the norm action meaning. The third row illustrates a norm pair with
a conflict that arises from the definition of which party will perform the same norm action.
Both norms express the same action but the norm (a) includes the subject of the norm (b),
which leads the NLI-Model to predict an entailment relation considering the norm pair (a,
b). On the other hand, the opposite pair (b, a) is not a valid entailment association since (b)
does not include all subjects of (a), which results in a neutral relation. In contrast with the
two first examples, the fourth norm pair is an instance where the norm (a) negates the action
of the norm (b), leading the NLI-Model to classify a contradiction relation correctly.

In norm pairs that the conflict arises from its conditional actions (object-conditional),
we observe that the NLI-Model predicts contradiction when a norm condition may lead to
the opposite action of another one when satisfied. Alternatively, the NLI-Model predicts an
entailment relation where the condition of one norm may lead to the same action of another
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one when satisfied. In such cases, the conflict emerges when one norm establishes a
condition to its action, and another one expresses the same action definitively.

Table 5.6 – Norm pairs annotated as object-conditional conflict in norm dataset fold with the
respectives NLI-Model predictions. We include the confidence level of NLI-Model for each
predicted NLI class: Contradiction (C), Entailment (E) and Neutral (N).

Norm Pair a,b b,a
(a) If such action by Apple will impact SCI’s cost or delivery
schedule such cost or schedule will be equitably adjusted.
(b) Costs and schedule will not be adjusted.

C
(99,80%)

C
(51,57%)

(a) MOPAC shall not be liable to Biopure for consequential
damages arising out of System shutdown caused by any event of
force majeure.
(b) If natural causes System to shutdown MOPAC will be
responsible for the damages.

C
(44,78%)

C
(75,93%)

(a) All prices quoted are exclusive of federal state and local
excise sales use and similar taxes and any duties and VR
Research shall be responsible for all such items.
(b) VR Research may be liable for any of these items if any where
they would be federal state and local taxes sales tax use and
similar and any rights.

E
(84,44%)

N
(51,24%)

The two first rows of Table 5.6 describe contradictions between one norm that con-
tains a conditional action that declares the opposite action of another one. In the second
norm pair, the norm (a) indicates that the MOPAC shall not be liable for damages caused by
any event while the norm (b) includes a conditional event that MOPAC may be responsible
for damages. Thus, this norm pair presents a contradiction not only in norm action but also
in its conditions to perform it.

The third row shows an entailment relation between the norm pair (a,b) since both
norms express the same action. On the other hand, it is not true in the reverse pair (b, a)
given that the premise norm imposes a condition to perform the hypothesis norm action. In
this case, the hypothesis is not necessarily true since the premise introduces a condition to
be valid and, consequently, the NLI-Model cannot infer the entailment relation in norm pair
(b, a).

5.2 Transitive Conflicts

In this section, we explore transitive relations to find potential contractual problems
that may arise from more than two sentences using the NCC-Modelnli-ft. We select entailed
norm pairs containing obligation × permission relation and create a third norm that involves
a prohibition that conflicts with the pair. Formally, given an entailed norm pair (n1,n2), we
introduce a norm n3 that conflicts with n1 and, transitively, conflicts with n2 as well. In the
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following example, we intentionally create the n3 with a deontic-modality conflict with n1 with
the same norm structure, associating a prohibition that concerns the same norm object and
action.

• n1: Customer should notify USF at least days in advance of special promotions that
may cause unusual or excessive demand on inventory.

• n2: Customer may inform USF before any promotions that may result in an unexpected
demand on inventory.

• n3: Customer should not notify USF at least days in advance of special promotions that
may cause unusual or excessive demand on inventory.

The NLI-Model predicts the relation between n1 and n2 as entailment with 97%
confidence and between n2 and n1 as neutral with 78% confidence. Due to their different
norm structure, the NCC-Modelnli-ft predicts a deontic-structure conflict between n1 and n2

with 60%. Since the norm structure between n2 and n3 are different as well as n1 and n2,
NCC-Modelnli-ft predicts a deontic-structure conflict between n2 and n3 with 96% illustrating
a transitive conflict between an entailed norm pair with another norm. Such a complicated
relation shows that by using both models jointly we could infer other conflicts based on en-
tailed norms. Although we guided this experiment concerning logic aspects, such transitive
relations are not strictly logical since an NLI model deals with the informal and ambiguous
reasoning encoded by natural language.

5.3 Exploring the Self-Attention Weights

In this section, we show the relevance of each term to predict a specific inferential
relation or conflict type reporting its attention weights. To help humans to investigate nor-
mative conflicts, we explore the attention weights to highlight words in a norm pair showing
the correlation with its conflict computed by the neural network. In this analysis, we use the
NCC-Modelnli-ft instead of NCC-Model due to its better performance on the Norm Dataset
test set, as stated in Chapter 4. Since our model uses only the CLS token to predict the out-
put label, we show in this analysis only the attention weights computed for the CLS token.
Voita et al analyze how to interpret each head contained in multi-head self-attention for the
neural machine translation task describing specifics syntactic relation between words [36].
However, we could not find a clear pattern of each head in our classification tasks and,
hence, we use the average value of all heads in this analysis.

In conflicts that arise from different deontic meanings, we note that the attention
weights produced by NCC-Modelnli-ft show a strong correlation with the modal verb. We use
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as an example the following pair with deontic-modality conflict, which is the same pair of the
first row of Table 5.3:

• n1: CBSI will retain the originals in its archives

• n2: CBSI may retain the originals in its archives

The NCC-Modelnli-ft predicts the correct label for this norm pair with high attention weights
for the modal verb of the second norm. Regarding its inferential relation, we note that
the attention weights produced by the NLI-Model reflect the same modal verb pattern of
NCC-Modelnli-ft. Such attention weights to predict this entailment relation corroborate our
analysis of Section 5.1.2. Figures 5.1 and 5.2 illustrate the attention weights of NCC-Modelnli-ft

and NLI-Model respectively of this example for each subword unit.

CBS I will retain the original s in its archives

CL
S 0.012 0.021 0.035 0.005 0.005 0.001 0.001 0.000 0.002 0.001

CBS I may retain the original s in its archives

CL
S 0.061 0.103 0.350 0.096 0.059 0.016 0.044 0.057 0.028 0.027

Figure 5.1 – Heat map with attention weights produced by NCC-Modelnli-ft for the norm pair of
the first row of Table 5.3, which contains a deontic-modality conflict. Due to space limitations,
we divide the self-attention vector in two row to represent each sentence in a row and we
omit the special characters.

CBS I will retain the original s in its archives

CL
S 0.014 0.015 0.030 0.022 0.007 0.011 0.003 0.002 0.003 0.002

CBS I may retain the original s in its archives

CL
S 0.008 0.039 0.574 0.037 0.054 0.013 0.031 0.041 0.018 0.018

Figure 5.2 – Heat map with attention weights produced by NLI-Model for the norm pair of
the first row of Table 5.3, which contains a entailment relation.

We use the next sentence pair to show a more diverse example, which contains a
deontic-structure conflict and a contradiction as well:

• n1: No material changes may be made to the Headcount Plan without the prior approval
of the Global Supply Team.

• n2: Parties may perform changes on materials whenever they want.
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We extracted the norm pair above from the last row of Table 5.5. Although this pair contains
sentences with different structures, the NCC-Modelnli-ft could detect the divergence between
deontic meanings highlighting the modal verb. The NLI-Model detects which terms of n1 con-
tradicts the n1, resulting in high attention weights for the word “may”, which is the modal verb
negated indirectly, and “whenever”, which reinforces the permission of material changes.
Figures 5.3 and 5.4 illustrate the attention weights of NCC-Modelnli-ft and NLI-Model respec-
tively of this example.

No material changes may be made to the Head count Plan without the prior approval of the Global Supply Team

CL
S 0.025 0.003 0.003 0.019 0.029 0.005 0.013 0.033 0.003 0.005 0.001 0.003 0.039 0.005 0.012 0.028 0.028 0.001 0.012 0.007

Parties may perform changes on materials whenever they want

CL
S 0.032 0.108 0.049 0.018 0.053 0.016 0.087 0.091 0.042

Figure 5.3 – Heat map with attention weights produced by NCC-Modelnli-ft for the norm pair
of the last row of Table 5.3, which contains a deontic-structure conflict.

No material changes may be made to the Head count Plan without the prior approval of the Global Supply Team

CL
S 0.011 0.001 0.001 0.004 0.005 0.001 0.005 0.008 0.002 0.002 0.001 0.013 0.024 0.006 0.007 0.009 0.010 0.004 0.006 0.005

Parties may perform changes on materials whenever they want

CL
S 0.064 0.164 0.048 0.016 0.032 0.018 0.200 0.102 0.051

Figure 5.4 – Heat map with attention weights produced by NLI-Model for the norm pair of
the last row of Table 5.3, which contains a contradiction relation.

We use the following norm pair, extracted from the second row of Table 5.5, to
report attention weights of deontic-object conflict type:

• NCR shall pay the freight carrier directly.

• NCR must pay the freight carrier mkaing a back deposit.

In this case, we note that the attention weights of both models highlight the conflicting object
in the second norm. Since the object diverges between norms, the attention weights of both
models result in high values on object words. Figure 5.5 shows an example of attention
weights of a norm pair with deontic-object conflict, highlighting the divergence of the pay-
ment form to the freight carrier. Similarly, Figure 5.6 shows the attention weights of this norm
pair that NLI-Model computes to predict the contradiction relation.

The following norm pair represents an object-conditional conflict and contains an
entailment relation:

• All prices quoted are exclusive of federal state and local excise sales use and similar
taxes and any duties and VR Research shall be responsible for all such items.
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N CR shall pay the freight carrier directly

CL
S 0.016 0.015 0.059 0.014 0.007 0.002 0.003 0.066

N CR must pay the freight carrier making a back deposit

CL
S 0.023 0.017 0.100 0.045 0.015 0.007 0.008 0.121 0.153 0.121 0.129

Figure 5.5 – Heat map with attention weights produced by NCC-Modelnli-ft for the norm pair
of the second row of Table 5.5, which contains a deontic-object conflict.

N CR shall pay the freight carrier directly

CL
S 0.010 0.007 0.049 0.011 0.006 0.002 0.003 0.027

N CR must pay the freight carrier making a back deposit

CL
S 0.013 0.009 0.093 0.022 0.008 0.002 0.002 0.137 0.239 0.117 0.108

Figure 5.6 – Heat map with attention weights produced by NLI-Model for the norm pair of
the second row of Table 5.5, which contains a contradiction relation.

• VR Research may be liable for any of these items if any where they would be federal
state and local taxes sales tax use and similar and any rights.

As well as previous norm pairs, the NCC-Modelnli-ft highlights the modal verb as-
signing high attention weight to the verb of the second norm. Given that this conflict type
relies on norm conditions, we note that the NCC-Modelnli-ft also highlights the conditional
word “if”, which in this example contains the highest attention weight of the norm pair. Fig-
ure 5.7 shows the attention weights of this norm pair that NCC-Modelnli-ft uses to predict the
object-conditional conflict.

In this analysis, we explore the attention weights of norm pairs produced by our
approach to discuss which words it considers to be the cause of the conflict and which
words reflect its inferential relation. Importantly, we argue that our models can not only
detect the conflict type or inference relation but also help human experts to fix potential
problems in contracts. We show that the attention weights can guide humans to fix such
problems indicating which norm words should be adjusted relying on its attention weights.
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Figure 5.7 – Heat map with attention weights produced by NLI-Model for the norm pair of
the last row of Table 5.6, which represents an object-conditional conflict.

5.4 Approach Limitations

In this section, we discuss the limitations of our approach and describe related
work that covers topics related to the dataset linguistic bias. Although the NLI-Model yields
accurate results on the MultiNLI dataset, we observe some limitations while evaluating this
model on normative sentences, which motivate us to investigate such failures in recognizing
the norms inferential relation. First, we describe the Gururangan et al [17] work that raises
uncertainty about the success of NLI systems exposing issues of NLI datasets. Second,
we describe the uncertainty between neutral and contradiction class that Willians et al [37]
raises in the MultiNLI dataset. Finally, we discuss limitations about inferential relations that
rely on temporal aspects.

Gururangan et al implement an off-the-shelf classifier to predict NLI labels using
only the hypothesis sentence to examine the statistic cues in sentence pair annotations [17].
With a model that is oblivious to the premise, this classifier predicts the correct NLI label
in 67% of sentence pairs contained in the SNLI dataset and 53% in the MultiNLI dataset.
Such results show that the dataset contains an annotation pattern that introduces a bias
to the hypothesis sentence, which leaves clues to identify the inferential relation without
considering the premise sentence. Our analysis of the attention weights produced by our
models corroborates with this hypothesis bias, given that the second sentence receives the
highest attention values in the NLI-Model.

To see whether a certain word contains a bias for an inference class, Gururangan
et al compute the point-wise mutual information (PMI) between each word and class in
training dataset for SNLI and MultiNLI as stated in Equation 5.1. For example, negation
words such as none, no, never and nothing are high frequency in contradictory pairs, which
means that these words are strong indicators of contradiction. Table 5.7 shows example
of PMI values of words in the class contradiction. This analysis corroborates the intuition
that the NLI-Model contains such bias given that 38 of 48 non-conflicting pairs classified as
contradictions contain at least one of the four most PMI in MultiNLI contradiction pairs.

PMI(word , class) = log
p(word , class)

p(word)p(class)
(5.1)
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word PMI(word, ’contradiction’)
never 5.0%
no 7.6%
any 4.1%
nothing 1.4%
none 0.1%

Table 5.7 – Top 5 words ordered by its PMI with the NLI class contradiction.

We note that the annotation process of the MultiNLI dataset does not necessarily
follow the strict definition of the NLI contradiction, stated in Section 5.1.3. The standard
adopted in this process is the definition introduced by De Marneffe et al : sentences A and
B are contradictory if there is no possible world in which A and B are both true [11]. De
Marneffe et al argues that coreference is essential describing that a contradiction occurs
when both sentences refer to the same event. However, the lack of coreference information
of each sentence in MultiNLI turns uncertain the difference between the labels contradiction
and neutral labels. For example, the first row of Table 5.5 contains a pair of sentences in
which the hypothesis sentence does not infer a negation of the premise. On the other hand,
we can consider that the date divergence between norms represents a mutual exclusion
considering that both sentences refer to the same event. Thus, the mutual exclusion denotes
a contradiction since the norm subject cannot perform the same action on different dates.

Besides such dataset limitations, we note that our NLI-Model could not detect in-
ferential relations that relies on temporal aspects. Where two norms contain a deadline for
compliance, if one of the norms contains an earlier deadline for the same norm than the sec-
ond, the earlier deadline implies that the later deadline will be fulfilled, which is not true on
the other way. However, the NLI-Model tends to consider this time-related object divergence
as a contradiction as shown in the first row of Table 5.5 and, therefore, ignoring the tempo-
ral relation between the norms. As well as other issues raised above, our intuition is that
such limitations are related to our training dataset, which does not cover time associations
enough to train the model to infer such relations. Willians et al include in the MultiNLI dataset
sentences with terms that represent abstract temporal interpretation, (e.g., then, today) and
month names and days of the week [37], but not sentences with finer temporal details as
illustrated in the first row of Table 5.5.
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6. RELATED WORK

In this chapter, we present related works that analyze normative sentences and
contract clauses. We describe the related works explaining the problem dealt, their objec-
tives and how they represent a normative sentence as well as its conflict detection approach.
Finally, we compare the objective of this work with the related work and discuss the differ-
ences.

6.1 Norm Conflict Identification in Contracts

Aires [3] develop an approach that identifies potential conflicts between norms in
contracts. They divide their approach into two steps. First, they focus on norm identification,
which results in a formal representation of a norm. Second, they use the formal representa-
tion to detect and classify potential conflicts between norms using techniques of the formal
logic.

In the norm identification step, they evaluate a sentence written in the natural lan-
guage to determine if it is a norm or not. This assumes that a norm follows a well-defined
4-component structure: an indexing number or letter, one or more named parties, a modal
verb, and a behavior description. Given this structure, they apply a regular expression to
decide whether a sentence is a norm sentence or not. After identifying norms, they create
a formal representation of the norm sentence extracting three components: party name, de-
ontic meaning, and the norm action. With the formal representation, they detect potential
conflicts following three relations between deontic meaning in norm pairs [31]:

• Permission and Prohibition

• Permission and Obligation

• Obligation and Prohibition

As the pre-requisites to apply this comparison, the norm pairs assume the following condi-
tions:

• Both norms are applied to the same party

• Both norms have conflicting deontic meanings

• Both norms refer to the same act

Instead of using a formal representation to use a strict logic approach, we intend
to explore the use of techniques that deal with the informal reasoning of natural language.
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While this approach deals with normative conflict detection as binary classification (contains
a conflict or not), we handle this problem as multi-label classification relying on a conflict
typology. In our multi-model approach, we develop a neural network considering the dataset
introduced by Aires et al [1], which contains the conflict type specified.

6.2 Norm Conflict Identification using Deep Learning

Aires and Meneguzzi [2] approach uses a LeNet CNN [21] to process a norm pair
at a character level to classify whether a norm pair contains a conflict. Their approach
represents a norm pair (n1, n2) as a matrix that consists of the characters from n1 in its lines
and n2 in its columns. The matrix cell value is 1 when the character of its line and column
are equals and 0 otherwise. The LeNet CNN receives this norm pair representation and
processes the matrix using two convolutional layers followed by a max-pooling layer and two
fully connected neural networks.

Although we use a deep learning approach as well as this work, we process a
norm pair in a word-level instead of character level using a novel neural network architecture.
Instead of using matrix representation, we represent each norm pair as a single vector. Our
approach results in a higher accuracy considering the typology introduced by Aires et al [1]
when compared with their work.

6.3 Classification of Contractual Conflicts via Learning of Semantic Representa-
tions

Aires et al [1] introduce a typology of conflicts in normative sentences and present
machine learning methods that classify these conflict types. These learning methods rely on
the semantic representation of norms using Sent2Vec [27] to create embedding vectors to
represent the norms. First, they describe an extension of Aires Norm Dataset to include the
conflict typology, which introduces 228 new conflicting norms including the existing 111 from
the previous dataset. Second, they present an unsupervised learning method to detect the
presence or absence of norm conflicts. Finally, they present a supervised learning method
that deals with binary (i.e., conflicts and non-conflict) and multi-class classification method
to classify the conflict types created.

They manually extend the Norm Dataset to include the following conflict types: de-
ontic modality, deontic structure, deontic object and object conditional. The deontic modality
is the conflict based on the divergence of deontic meanings between the modal verbs of the
pair of norms. The deontic structure occurs when both of deontic meaning and sentence
structure are different given a pair of norms. The deontic object conflict type emerges from
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the difference of norm actions and specification details, although the deontic meaning may
be the same. Finally, the object conditional type appears when a conflict occurs in the
condition of actions in a pair of normative sentences.

Table 6.1 – Examples of norm pairs with the respective conflict type.
Norm Pair Conflict Type
- The Specifications may be amended by the NCR design
release process.
- The Specifications shall not be amended by the NCR design
release process.

deontic modality

- All inquiries that Seller receives on a worldwide basis relative
to Buyer’s air chamber "Products" as specified in Exhibit III,
shall be directed to Buyer.
- Seller may not redirect inquiries concerning Buyer’s air
chamber "Products".

deontic structure

- Autotote shall make available to Sisal one (1) working prototype
of the Terminal by May 1, 1998.
- Autotote shall make available to Sisal one (1) working prototype
of the Terminal by June 12, 1998.

deontic object

- The Facility shall meet all legal and administrative code
standards applicable to the conduct of the Principal Activity
thereat.
- Only if previously agreed, the Facility ought to follow legal
and administrative code standards.

object conditional

The unsupervised learning method consists of including a centroid that represents
the norm pairs with conflicts and another centroid to represent non-conflicting norm pairs.
They compute the centroids based on two different distance-based approaches to calculate
the mean of embedding space. The first approach considers the concatenation of norm pairs
and the second uses the offset embeddings of norm pairs. Given an unseen concatenated
norm pair, this method selects the output class based on the near centroid in the embedding
space.

In supervised learning, they use a Support Vector Machine (SVM) [8] to compute
a hyperplane that maximizes the margin between the norm pairs of different classes. In this
learning method, they represent the norm pairs using both approaches used in unsupervised
learning (concatenation and offset). To investigate which conflict type is hardest or easiest,
they execute the SVM removing non-conflicting pairs of the dataset.

In contrast with this work, which represents each normative sentence in a distinct
embedding vector, we develop a neural network that receives both normative sentences as
a single sequence. Using the self-attention mechanism, we develop a neural network that
learns each token representation carrying information not only of tokens contained in its
sentence but tokens in another pair sentence. Our approach surpasses the Aires et al [1]
work in all measure metrics with a large margin.
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7. CONCLUSION AND FUTURE WORK

In this work, we developed an approach to identify potential problems in contract
clauses. We summarize our contribution in two parts: first, we created a model to recognize
inferential relations between norms in a contract; second, we created a model to identify
conflicts between norms in contracts and its conflict type. We show that using such models
jointly allows more sophisticated reasoning about the deontic meanings conveyed in the sen-
tences, as well as reasoning about transitive conflicts (i.e. conflicts involving the combination
of more than two clauses).

We developed both models using a novel neural network approach that relies on
a pretraining method that enables learning bidirectional context of words, known as XLNet.
Using pretrained weights, we train a neural network by finetuning to the NLI task, which con-
tains a wide openly annotated datasets. To identify conflicts between normative sentences,
we use the same pretrained weights to train a neural network by finetuning to the task of
norm conflict classification using the dataset and the conflict typology provided by Aires et
al [1]. In contrast with the first model, the volume of annotated data is scarce, motivating us
to experiment with the use of transfer learning by reusing the trained NLI model.

We report a set of experimental analyses that shows aspects that our models could
capture from normative sentences regarding its inferential relation and conflict. We show
that the divergence of deontic meaning not only shows a conflict but also can determine its
inferential relation. The attention weights generated by our models show that our approach
can highlight terms correlated with a specific conflict or its inferential relation, which its a
feature that can help human experts indicating potential problematic terms in a set of norms.

Dealing with both tasks jointly opens a number of possible avenues of further re-
search, motivating 3 avenues for future work: First, we aim to evaluate our NLI model in
more diverse NLI datasets that can complement the limitations of the MultiNLI dataset as
discussed in Section 5.4. Second, we aim to create a new typology of conflicts in contracts
that combine the deontic meaning conveyed in the sentences with its logical relations. Third,
we aim to create a tool that uses both models to help human experts in the law area by
dealing with real cases of contractual problems.
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