

ESCOLA POLITÉCNICA
PROGRAMA DE PÓS-GRADUAÇÃO EM CIÊNCIA DA COMPUTAÇÃO

MESTRADO EM CIÊNCIA DA COMPUTAÇÃO

GABRIEL PALUDO LICKS

AUTOMATED DATABASE INDEXING USING
MODEL-FREE REINFORCEMENT LEARNING

Porto Alegre

2020

PONTIFICAL CATHOLIC UNIVERSITY OF RIO GRANDE DO SUL
SCHOOL OF TECHNOLOGY

COMPUTER SCIENCE GRADUATE PROGRAM

AUTOMATED DATABASE
INDEXING USING MODEL-FREE
REINFORCEMENT LEARNING

GABRIEL PALUDO LICKS

Master Thesis submitted to the Pontifical
Catholic University of Rio Grande do Sul
in partial fulfillment of the requirements
for the degree of Master in Computer
Science.

Advisor: Prof. Felipe Rech Meneguzzi

Porto Alegre
2020

Gabriel Paludo Licks

Automated Database Indexing Using Model-Free
Reinforcement Learning

This Master Thesis/Doctoral Thesis has been

submitted in partial fulfillment of the requirements

for the degree of Doctor/Master of Computer

Science, of the Graduate Program in Computer

Science, School of Technology of the Pontifícia

Universidade Católica do Rio Grande do Sul.

Sanctioned on August 4th, 2020.

COMMITTEE MEMBERS:

Prof. Dr. Luís Lamb (PPGC/UFRGS)

Prof. Dr. Rodrigo Barros (PPGCC/PUCRS)

Prof. Dr. Felipe Meneguzzi (PPGCC/PUCRS - Advisor)

ACKNOWLEDGMENTS

I thank my advisor Felipe Rech Meneguzzi and my colleagues Julia Colleoni Couto
and Leonardo Rosa Amado for fundamental insights on the development of this research.

This work was supported by SAP SE. I thank SAP Labs Latin America for funding
and providing feedback to carry out this research.

INDEXAÇÃO DE BANCOS DE DADOS AUTOMÁTICA UTILIZANDO
APRENDIZADO POR REFORÇO

RESUMO

A configuração de bancos de dados para uma execução eficiente de queries é uma
tarefa complexa, ficando a cargo de um administrador de banco de dados. Para isso, são uti-
lizados índices, estruturas que facilitam a busca de registros e reduzem o tempo de resposta
das queries, especialmente ao processar queries complexas. Porém, resolver o problema
de criar índices que realmente otimizam o acesso ao banco de dados requer uma quanti-
dade substancial de conhecimento do banco de dados e do domínio, cuja falta geralmente
resulta em espaço e memória desperdiçados com índices irrelevantes, comprometendo o
desempenho do banco de dados para queries e, certamente, degrada o desempenho da
atualização de registros no banco. Nesta pesquisa, desenvolvemos a arquitetura SmartIX
para resolver o problema de indexar automaticamente um banco de dados utilizando apren-
dizado por reforço para otimizar queries indexando dados ao longo da utilização de um
banco de dados. Para avaliar seu desempenho, utilizamos o banco de dados TPC-H, refe-
rência na literatura para benchmarking de bancos de dados. Nossa avaliação experimental
mostra que nossa arquitetura converge para configurações de índices com desempenho
superior em comparação à trabalhos relacionados que utilizam aprendizado por reforço
e algoritmos genéticos, constantemente mantendo configurações de índices próximas do
ótimo e eficientemente escalando para bancos de dados maiores.

Palavras-Chave: inteligência artificial, aprendizado por reforço, bancos de dados, indexa-
ção automática.

AUTOMATED DATABASE INDEXING USING MODEL-FREE
REINFORCEMENT LEARNING

ABSTRACT

Configuring databases for efficient querying is a complex task, often carried out by
a database administrator. To reduce the response time of queries, especially complex ones,
index structures are created to facilitate the search for data. However, solving the problem
of building indexes that truly optimize database access requires a substantial amount of
database and domain knowledge, the lack of which often results in wasted space and mem-
ory for irrelevant indexes, possibly jeopardizing database performance for querying and cer-
tainly degrading performance for updating. In this research, we develop the an architecture
to solve the problem of automatically indexing a database by using reinforcement learning
to optimize queries by indexing data throughout the lifetime of a database. We train our
reinforcement learning agent and evaluate its performance in experiments using TPC-H, a
standard, and scalable database benchmark. In our experimental evaluation, our architec-
ture shows superior performance compared to related work on reinforcement learning and
genetic algorithms, maintaining near-optimal index configurations and efficiently scaling to
large databases.

Keywords: artificial intelligence, reinforcement learning, databases, automated indexing.

CONTENTS

1 INTRODUCTION . 15

2 BACKGROUND . 17

2.1 INDEXING IN RELATIONAL DATABASES . 17

2.1.1 INDEX DATA STRUCTURES AND TYPES . 17

2.1.2 INDEX TUNING . 18

2.1.3 PERFORMANCE OPTIMIZATION AND MEASUREMENT 19

2.2 REINFORCEMENT LEARNING . 21

2.2.1 MARKOV DECISION PROCESSES . 22

2.2.2 DYNAMIC PROGRAMMING METHODS . 23

2.2.3 TEMPORAL-DIFFERENCE LEARNING . 24

2.2.4 FUNCTION APPROXIMATION . 26

3 ARCHITECTURE . 29

3.1 AGENT . 30

3.2 ENVIRONMENT . 31

3.2.1 STATE REPRESENTATION . 31

3.2.2 ACTIONS . 32

3.2.3 REWARD . 32

4 EXPERIMENTS . 35

4.1 EXPERIMENTAL SETUP . 35

4.1.1 DATABASE SETUP . 35

4.1.2 BASELINES . 36

4.2 AGENT TRAINING. 38

4.3 STATIC CONFIGURATIONS . 40

4.4 DYNAMIC CONFIGURATIONS . 42

4.4.1 FIXED WORKLOAD . 42

4.4.2 SHIFTING WORKLOAD . 43

4.5 SCALING UP DATABASE SIZE . 44

5 RELATED WORK . 47

6 CONCLUSION . 49

REFERENCES . 51

APPENDIX A – TPC-H database schema . 55

APPENDIX B – Benchmark results . 57

APPENDIX C – Index configurations . 59

15

1. INTRODUCTION

Database indexes optimize queries and reduce their response time, especially
when computing complex queries [Ramakrishnan and Gehrke, 2003, Ch. 8, p. 296]. More
than finding the correct columns to index, it is important to balance the number of indexes
created in a database [Ramakrishnan and Gehrke, 2003, Ch. 20, p. 654]. Too many in-
dexes can result in an overhead when maintaining their organization to match data updates,
whereas too few indexes might not be enough to have a positive performance impact [Ra-
makrishnan and Gehrke, 2003, Ch. 20, p. 654]. Thus, indexing is task that needs to be
performed continuously with diligence, as its configuration directly impacts on a database’s
overall performance.

Index tuning is a task that is usually carried out by a human database administra-
tor (DBA). However, frequently analyzing the database workload in order to find the correct
attributes to index and try each candidate index configuration is time consuming. Machine
learning techniques are being used in a variety of tasks related to database management
systems and automated database administration. These include broader aspects such as
completely automated database management [Pavlo et al., 2017], narrowing down to spe-
cific tasks such as query optimization [Marcus and Papaemmanouil, 2018, Kraska et al.,
2018]. The use of learning algorithms to tackle the problem of index tuning, especially due
to the problem complexity [Ramakrishnan and Gehrke, 2003, Ch. 20, p. 664], can be bene-
ficial for exploring and computing estimates to a higher number of possible configurations in
order to achieve the best set.

Specifically, recent research applied reinforcement learning (RL) methods to the
case of index tuning [Basu et al., 2016, Sharma et al., 2018]. Reinforcement learning is a
class of machine learning algorithms that aims to optimize decision making while maximizing
the total reward of an agent in an environment. Analogous to the case of index tuning,
frequent decisions on creating or dropping indexes have to be taken in order to optimize
the performance of a database to a given workload. Such analogy makes reinforcement
learning likely to decide what index tuning requires and abstracts away the DBA’s task of
frequently analyzing all candidate columns to index.

We developed an architecture for automated and dynamic database indexing that
evaluates queries to make decisions on whether to create or drop indexes using reinforce-
ment learning. Our architecture allows continuous assessment and automatic modification
of the database index configuration, according to the queries the database receives. The ar-
chitecture is composed of a reinforcement learning agent, an environment representation of
the database that interacts with the agent, and an interface to apply changes to the database.
The agent then explores this environment to find the optimal set of indexes concerning the
current workload of queries. By exploring different index configurations, we expect the agent

16

to learn the impact of each index with regard to the workload and to optimize performance
accordingly, allowing automatic modification of the index configuration.

We perform experiments using a scalable benchmark database, where we empir-
ically evaluate our architecture results in comparison to standard baseline index configura-
tions, database advisor tools, genetic algorithms, and other reinforcement learning methods
to database indexing. The architecture we implemented to automatically manage indexes
through reinforcement learning successfully converged in its training to a configuration that
outperforms all baselines and related work, both in performance and in storage usage by
indexes. Results show that the architecture consistently maintains near-optimal index con-
figurations both in fixed and shifting database workloads, and scales to large databases
without the need to be re-trained.

This manuscript is structured as follows. First, in Chapter 2, we provide background
about indexing in relational databases and reinforcement learning. In Chapter 3, we detail
the architecture we built for automated database indexing. In Chapter 4, we report the
results of training the reinforcement learning agent and compare its performance to other
approaches. In Chapter 5, we describe related work on the topic of reinforcement learning
for database indexing. And lastly, in Chapter 6, we show the contributions, limitations, and
future work of this research.

17

2. BACKGROUND

This chapter provides the background required to understand the remained of this
manuscript. In Section 2.1, we provide an overview of the use of indexes in relational
databases. In Section 2.2, we introduce the basic concepts about reinforcement learning
and how problems can be modeled and solved through its techniques.

2.1 Indexing in relational databases

A DBMS is a software designed to manage databases and facilitate organizing col-
lections of data efficiently [Ramakrishnan and Gehrke, 2003, Ch. 1, p. 4]. In particular,
we address relational DBMSs, which are based on the relational model [Ramakrishnan and
Gehrke, 2003, Ch. 1, p. 10], where data collections can be thought as tables whose rows
represent records and columns represent attributes [Ramakrishnan and Gehrke, 2003, Ch.
3, p. 60]. The way a DBMS stores data internally is through files, each of which consists of
pages [Ramakrishnan and Gehrke, 2003, Ch. 8, p. 273]. However, it is not trivial to maintain
these records organized in order to facilitate data retrieval. For example, maintaining a set
of numeric records sorted can be a good strategy for later retrieval, though it becomes com-
putationally expensive when records are constantly modified [Ramakrishnan and Gehrke,
2003, Ch. 8, p. 274].

An important technique to file organization in a DBMS is indexing [Ramakrishnan
and Gehrke, 2003, Ch. 8, p. 274]. Indexes are data structures that optimize retrieval oper-
ations with regard to a search key. Suppose there is a set of records containing attributes
age and salary, such that these are sorted according to the age attribute. This organization
facilitates the searching for records using the key age, but searching for salary can be com-
putationally expensive, even requiring a complete sweep of the records in the worst case. If
an index with the salary key was available, searches involving salary could be significantly
improved [Ramakrishnan and Gehrke, 2003, Ch. 8, p. 276].

2.1.1 Index data structures and types

The way indexes are organized depend on the data structure it uses. The two
main techniques to maintain data indexed are hash-based and tree-based [Ramakrishnan
and Gehrke, 2003, Ch. 8, p. 278] structures. The former technique organizes records by
hashing records according to a search key, and these are grouped into buckets according
to a hash function [Ramakrishnan and Gehrke, 2003, Ch. 8, p. 279]. The latter technique

18

organizes records using a tree-like structure, which arranges records in a sorted order and
directs the search trough intermediate tree levels until leaves containing data entries are
reached [Ramakrishnan and Gehrke, 2003, Ch. 8, p. 280].

The type of an index depend on the attributes it comprises. Indexes can be cre-
ated both on attributes that are primary keys (a record’s unique identifier) or secondary
keys (non-unique attribute values), respectively called primary indexes and secondary in-
dexes [Ramakrishnan and Gehrke, 2003, Ch. 8, p. 277]. The difference is that a primary
index is guaranteed to be unique, while secondary indexes can contain duplicates, which
means that search keys on secondary indexes can lead to more than one record [Ramakr-
ishnan and Gehrke, 2003, Ch. 8, p. 278]. Indexes can also be composite when one is
created to comprise more than one attribute. Composite indexes can be beneficial when the
search key includes conditions on more than one attribute, thus supporting a broader range
of queries [Ramakrishnan and Gehrke, 2003, Ch. 8, p. 296].

2.1.2 Index tuning

Indexing is a task usually undertaken by the Database Administrator (DBA), a per-
son who has considerable domain knowledge in order to make such decisions [Ramakrish-
nan and Gehrke, 2003, Ch. 8, p. 291]. Although indexes are helpful in improving query
performance, creating too many indexes will slow down INSERT, UPDATE, and DELETE op-
erations. This is due to the fact that, whenever one of these operations affects a record,
the whole collection of records and indexes have to be updated in order to match the orga-
nization being maintained, which implies in a computational overhead [Ramakrishnan and
Gehrke, 2003, Ch. 8, p. 290-291]. Consequently, there is a trade-off in the number of
indexes one might want to have and the computational overhead one is willing to pay [Ra-
makrishnan and Gehrke, 2003, Ch. 20, p. 654]. Thus, the DBA has to balance this trade-off
to achieve the best performance.

Techniques for index selection without the need of a domain expert is a long-time
research subject and remains a challenge due the problem complexity [Wang et al., 2015,
Elfayoumy and Patel, 2012, Duan et al., 2009]. The idea is that, given the database schema
and the workload it receives, we can define the problem of finding a good index configuration
that optimizes database operations [Ramakrishnan and Gehrke, 2003, Ch. 20, p. 664]. The
complexity of this task comes from the potential number of attributes that can be indexed and
all of its subsets. Suppose we have n attributes that compose our records, let us calculate
the amount of different indexes we can create. We have n choices of attributes for the first
index, n − 1 for the second, such that for an index with up to c attributes we have

19

c∑
i=1

n!
(n − i)!

(2.1)

possibilities in total. That is, for collections of records with 10 attributes, there are 10 different
possibilities of 1-attribute indexes, 90 different possibilities of 2-attribute indexes, and 30240
different possibilities of 5-attribute indexes [Ramakrishnan and Gehrke, 2003, Ch. 20, p.
654].

While DBMSs strive to provide automatic index tuning, the usual scenario is that
performance statistics for optimizing queries and index recommendations are offered, but
the decision to apply changes is made by the DBA. Most recent versions of DBMSs such as
Oracle [Olofson, 2018] and Azure SQL Database [Popovic, 2017] can automatically adjust
indexes. The former does not explain the strategy and techniques used to accomplish it.
The latter goes slightly into more detail by briefly describing the actions it performs: it iden-
tifies indexes that could improve performance of queries that read data from the tables; and
identifies the redundant indexes or indexes that were not used in longer period of time that
could be removed [Popovic, 2017].

2.1.3 Performance optimization and measurement

In order to optimize the performance of queries, a DBMS evaluates different plans
of performing the operations a query is composed of [Ramakrishnan and Gehrke, 2003, Ch.
12, p. 404]. An efficient query execution plan tries to minimize the cost each operation
incurs, and such plans can benefit from the presence of indexes that consequently diminish
the cost of information retrieval [Ramakrishnan and Gehrke, 2003, Ch. 12, p. 404]. A cost
model is usually predefined and contains estimates that take into account aspects related to
CPU, network transmission, and disk I/O [Ramakrishnan and Gehrke, 2003, Ch. 8, p. 284]..
The total cost of execution of a query can be interpreted as a performance measure to how
the current DBMS configuration can respond to a query, such that the lower the cost is, the
better.

A more general way of evaluating performance is through benchmarking. Since
DBMSs are complex pieces of software and each has its own techniques to optimization,
external organizations have defined protocols to evaluate their performance [Ramakrishnan
and Gehrke, 2003, Ch. 20, p. 682]. The Transaction Processing Performance Council (TPC),
for example, is an organization created to define benchmarks that evaluate the performance
of database transactions in various aspects and contexts of workloads [Ramakrishnan and
Gehrke, 2003, Ch. 20, p. 683]. The goals of benchmarks are to provide measures that
are portable to different DBMSs and evaluate a wider range of aspects of the system, e.g.

20

transactions per second and price-performance ratio [Ramakrishnan and Gehrke, 2003, Ch.
20, p. 683].

TPC-H Benchmark

The TPC1 is a non-profit corporation that produces benchmarks to measure database
performance [TPC, 1998]. The identifier "H" represents one of its decision support bench-
mark versions. The TPC-H is a good proxy for querying tasks because it has business-
oriented ad-hoc queries that can scale to large volumes of data. Its relational model is
composed of 8 tables, briefly described as follows:

• REGION: contains the continents of the world.

• NATION: contains a list with some countries of the world.

• CUSTOMER: a person who buys parts from suppliers.

• SUPPLIER: an organization that provides parts.

• PART: pieces made available by suppliers.

• PARTSUPP: the relationship between suppliers and parts.

• ORDERS: data related to purchase orders.

• LINEITEM: the biggest table in the dataset. It contains details of all orders of each
customer, with a list of their parts.

The tools provided by TPC-H include a database generator (DBGen) able to create
up to 100 TB of data to load in a DBMS, and a query generator (QGen) that creates 22
queries with different levels of complexity. Using the database and workload generated us-
ing these tools, TPC-H specifies a benchmark that consists of inserting records, executing
queries, and deleting records in the database to measure the performance of these opera-
tions. Based on the benchmark, we gather outputs from three metrics, named QphH@Size,
Power@Size, and Throughput@Size. The resulting values are related to its scale factor
(@Size), i.e., the database size in gigabytes.

The TPC-H Performance metric is expressed in Queries-per-Hour (QphH@Size),
which is achieved by computing the Power@Size and the Throughput@Size metrics [Thanopoulou.
et al., 2012]. The Power@Size evaluates how fast the DBMS computes the answers to sin-
gle queries. It is composed of: (1) the first Refresh Function (RF1) that inserts into tables
ORDERS and LINEITEM a set of 0.1% of records based on the initial population of these
two tables; (2) a single query stream composed of 22 queries generated by QGen; (3) the

1TPC: http://www.tpc.org/

http://www.tpc.org/

21

second Refresh Function (RF2), that drops the same percentage of rows as the RF1. This
metric is computed using the formula in Equation 2.2:

Power@Size =
3600

24

√
π22

i=1QI(i , 0)× π2
j=1RI(j , 0)

× SF (2.2)

where 3600 is the number of seconds per hour and QI(i , s) is the execution time for each one
of the queries i . RI(j , s) is the execution time of the refresh functions j in the query stream s,
and SF is the scale factor or database size, which may range from 1 to 100, 000 according
to its @Size. As the Power@Size metric is based on the geometric mean, the root of the
product is the overall execution time from one stream (22 queries) and the two RFs.

The Throughput@Size measures the ability of the system to process the most
queries in the least amount of time, taking advantage of I/O and CPU parallelism [Thanopoulou.
et al., 2012]. It computes the performance of the system against a multi-user workload per-
formed in an elapsed time, using the formula in Equation 2.3:

Throughput@Size =
S × 22

TS
× 3600× SF (2.3)

where S is the number of query streams executed, and TS is the total time required to run
the throughput test for s streams.

QphH@Size =
√

Power@Size × Throughput@Size (2.4)

Equation 2.4 shows the Query-per-Hour Performance (QphH@Size) metric, which
is obtained from the geometric mean of the previous two metrics and reflects multiple as-
pects of the capability of a database to process queries. The QphH@Size metric is the final
output metric of the benchmark, and summarizes both single-user and multiple-user overall
database performance.

2.2 Reinforcement Learning

Reinforcement learning is the closest machine learning paradigm to how humans
learn, with its algorithms strongly inspired by biological aspects [Sutton and Barto, 2018, Ch.
1, p. 4]. It is characterized by a trial-and-error learning method, where an agent interacts and
transitions through states of an environment by taking actions and observing rewards [Sutton
and Barto, 2018, Ch. 1, p. 1-2]. The objective of a reinforcement learning agent is to
maximize its accumulated reward in the environment it is acting on, ultimately leading to a
policy that maps the best actions to take in each state.

22

In this section, we first introduce Markov Decision Processes (MDPs), a mathemat-
ical framework used to model reinforcement learning problems (Subsection 2.2.1). Second,
we introduce methods that can solve MDPs when its entire model is available (Subsec-
tion 2.2.2). Third, we describe methods capable of solving MDPs without complete knowl-
edge of the environment (Subsection 2.2.3). Last, we detail techniques used to deal with
MDPs with large state spaces through generalization (Subsection 2.2.4).

2.2.1 Markov Decision Processes

Introduced by [Bellman, 1957], a Markov Decision Process (MDP) is a formalization
to decision making problems and is widely used to model reinforcement learning problems.
The way an agent transitions through an MDP is by sequential decision making, i.e. choosing
actions that lead from one state to another. State transitions and decision making in MDPs
are characterized by: (1) a stochastic transition system, which determines the probabilities
to which state the decision making agent reaches after taking an action; and (2) the Markov
property, which dictates that every transition between states depends exclusively on the last
visited state, rather than the history of states before that [Sutton and Barto, 2018, Ch. 3, p.
49].

An MDP is formally defined as a tuple M = 〈S,A,P,R, γ〉, where S is the state
space,A is the action space, P is a transition probability function which defines the dynamics
of the MDP,R is a reward function, and γ ∈ [0, 1] is a discount factor [Sutton and Barto, 2018,
Ch. 3]. More specifically, at each time step t the agent interacts with the environment by
taking an action at ∈ A in state st ∈ S. As a consequence, the agent receives a reward
rt+1 ∈ R and reaches a new state st+1 ∈ S with probability p(st+1|st , at) given the transition
probability function [Sutton and Barto, 2018, Ch. 3, p. 48]. Figure 2.1 illustrates the agent-
environment interaction in a MDP.

Agent

Environment

rt+1

st+1

Action
at

Reward
rt

State
st

Figure 2.1: Agent-environment interaction in an MDP [Sutton and Barto, 2018, Ch. 3, p. 48].

23

The way an agent learns to behave is by taking actions and observing rewards,
and choosing which actions to take depends on the policy an agent is following. Ideally,
an agent starts exploring different states in order to learn the actions that lead to better
rewards, and then starts exploiting the states that maximize the accumulated reward over
time. Such behavior is defined as an ε-greedy policy. It means that, with ε-probability, the
agent chooses whether to take a random actiona or an argmaxa among the available actions
in a given state. The epsilon value is decayed after a predefined number of transitions, so
that the agent initially explores with a higher probability different states and starts exploiting
later on.

In order to learn which states are better than others, the agent approximates what
is called the value function. The value function, denoted as Vπ, returns an estimation of the
accumulated reward an agent might expect from a state while following a policy π onwards.
The value function for a state following a policy π is computed using the Bellman Expectation
Equation [Sutton and Barto, 2018, Ch. 3, p. 62]:

vπ(s) = Eπ[rt+1 + γvπ(st+1) | s] . (2.5)

The expectation operator E determines that the value of a given state is an average
value of what is expected from its successor states in the long run. Suppose there are two
policies π and π′, π is better than π′ if vπ(s) > vπ′(s), ∀s ∈ S, where vπ(s) is the utility of
a state estimated by the value function under a policy π [Sutton and Barto, 2018, Ch. 3,
p. 62]. The optimal solution, thus, is a policy π∗ that is better than or equal to all other
policies [Sutton and Barto, 2018, Ch. 3, p. 62].

2.2.2 Dynamic programming methods

When a perfect model of the environment is available, i.e. the whole MDP dy-
namics, there are dynamic programming algorithms that are capable of finding its optimal
solution (the optimal policy π∗) [Sutton and Barto, 2018, Ch. 4, p. 73]. These are not learning
algorithms, and it is possible to compute them using a closed form, however it may be more
efficient to compute the solution iteratively. The strategy to find the solution is to approximate
the value function by iteratively sweeping the state space and updating their values through
the Bellman Equation. In reinforcement learning, such algorithms with complete information
of the environment are classified as model-based algorithms. Algorithms that deal with in-
complete information of the environment are classified as model-free algorithms, which we
address in the next subsection.

Dynamic programming methods for solving MDPs are built upon two processes:
policy evaluation and policy improvement. Policy evaluation is the process of computing the

24

value function vπ for a policy π , whereas policy improvement is the process of generating a
new policy π′ > π by acting greedily with respect to π [Sutton and Barto, 2018, Ch. 4, p. 74-
79]. We compute the value function so that we can find better policies by greedily selecting
actions using the computed value function of the neighborhood of each state [Sutton and
Barto, 2018, Ch. 4, p. 80]. The policy improvement theorem states that, if a new greedy
policy π′ is as good as (but not better) than the previous policy π, both π and π′ must be
optimal policies [Sutton and Barto, 2018, Ch.4, p. 79]. A dynamic programming algorithm
that effectively combines both of these processes at each sweep in the state space is the
Value Iteration algorithm [Sutton and Barto, 2018, Ch. 4, p. 83], as shown in Algorithm 2.1.

Algorithm 2.1: Value Iteration pseudo-code [Sutton and Barto, 2018, Ch. 6, p. 83]

Input: a small threshold θ > 0 determining accuracy of estimation
1: Initialize V (s) arbitrarily, ∀s ∈ S except for V(terminal) = 0
2: repeat
3: for s ∈ S do
4: v ← V (s)
5: V (s)← maxa

∑
s′,r p(s′, r |s, a)[r + γV (s′)]

6: ∆← max(∆, |v − V (s)|)
7: until ∆ < θ

Output: a policy π ≈ π∗ such that π(s) = argmaxa
∑

s′,r p(s′, r |s, a)[r + γV (s′)]

For each state of the set, the algorithm gets the current value of the state from the
value function and computes a new value for that state by greedily selecting the value that
corresponds to the maximum value achieved by acting in that state. Then, it calculates the
difference between the previous state value and the new greedy state value and stores the
maximum between this error and the error of the previous seen state. Once the algorithms
updates the local value of the entire state space, it can converge if the maximum error is
less than a threshold of accuracy, or otherwise it runs another sweep of the state space.
The output is a deterministic policy resulting from greedily acting with regard to the value
function computed by the algorithm.

2.2.3 Temporal-Difference Learning

Temporal-difference learning (TD learning) is a method formally introduced by [Sut-
ton, 1988] for predicting future behavior using past experience in incomplete models of the
environment, where the transition and reward functions are not known. Alongside TD learn-
ing methods, there are also Monte Carlo methods that solve model-free reinforcement learn-
ing problems, though we do not go into further detail about such methods. Regardless, the
difference between the two is that Monte Carlo estimates rely on a complete sequence of

25

experiences from the state it is estimating to the terminal state. TD methods, rely on a
technique called bootstrapping, which means that the update of a state value is based on
the existing estimate of its successor state [Sutton and Barto, 2018, Ch. 4, p. 89]. Such
characteristics imply that Monte Carlo methods are only defined to learning in episodic en-
vironments (terminating), whereas TD methods can learn in continuing environments (non-
terminating) [Sutton and Barto, 2018, Ch. 5, p. 91]. The reason we do not go into detail
about Monte Carlo methods is that, since learning indexes in databases is not assumed to
terminate, such methods are not suitable for the task.

We now introduce the notion of a state-action value q(s, a), i.e. the action-value
function, which does not exclusively estimate the value of a state, but the value of taking an
action at a particular state. This is the first step to control behavior optimally in the environ-
ment [Sutton and Barto, 2018, Ch. 6, p. 129], as we do not know the transition probabilities
of the MDP. Computing the Bellman Expectation Equation for state-action values qπ is essen-
tially the same as the state-value function vπ, but now considering transitions of state-action
pairs [Sutton and Barto, 2018, Ch. 6, p. 129]:

qπ(s, a) = Eπ[rt+1 + γqπ(st+1, a′) | s, a] , (2.6)

which represents the expected discounted reward an agent might receive by following policy
π after taking action at at st onwards. The action-value function is computed with regard to
a policy through incremental updates

q(st , at)← q(st , at) + α[rt+1 + γq(st+1, at+1)− q(st , at)] , (2.7)

where α ∈ [0, 1] is a step size with regard to the TD error, which is the difference between
the the previous estimate q(st , at) and a better estimate rt+1 + γq(st+1, at+1).

There are two approaches that TD methods use to estimate the action-value func-
tion: on-policy and off-policy learning [Sutton and Barto, 2018, Ch. 6, p. 138]. In both
approaches, the policy an agent follows is called the behavior policy. The behavior policy
is usually an ε-greedy exploration function, which means that, with ε probability the agent
chooses whether to take a random actiona or an argmaxa action of highest utility among the
available actions at a given state [Sutton and Barto, 2018, Ch. 6, p. 129]. The difference
lies on how the two approaches update action-values. The on-policy approach updates the
action-value function with regard to the action selection from the same behavior policy it is
following (q(st+1, at+1)), as in Equation 2.7), whereas an off-policy approach updates values
with regard to a greedy action selection (maxaQ(st+1, a)), as in the following Equation:

q(st , at)← q(st , at) + α[rt+1 + γmaxaq(st+1, a)− q(st , at)] . (2.8)

26

The algorithm for learning on-policy is called SARSA [Rummery and Niranjan,
1994], which stands for the tuple 〈S, A, R, S′, A′〉 of each transition update, targeted to the
action that is selected following the behavior policy. The off-policy algorithm is called Q-
Learning [Watkins, 1989], whose updates are targeted to the action that returns the max-
imum value (greedy selection with regard to the current action-value function). We show
a pseudo code for Q-Learning in Algorithm 2.2. Notice that both algorithms can be repre-
sented essentially the same, except for the update rule.

Algorithm 2.2: Q-Learning pseudo-code [Sutton and Barto, 2018, Ch. 6, p. 131]

1: Define a step size α ∈ (0, 1] and ε ∈ (0, 1]
2: Initialize q(s, a) for all s ∈ S and a ∈ A arbitrarily, except that q(terminal, ·) = 0
3: for each episode do
4: s ← initial state
5: repeat for each step of episode
6: Choose a from s using policy (e.g. ε-greedy)
7: Take action a, observe r , s′

8: q(s, a)← q(s, a) + α[r + γmaxaq(s′, a)− q(s, a)]
9: s ← s′

10: until s is terminal

2.2.4 Function Approximation

The methods described so far are called tabular methods, as each estimated action-
value is updated and stored in a table of state-action values. The problem with tabular ap-
proaches is that, when we have a large state space and branching factor, it is infeasible to
visit all state-action pairs enough times that the estimates of their values is close enough
to the true value to be able to compute an optimal policy [Sutton and Barto, 2018, Ch. 9,
p. 196-197]. Assuming that states can be described in terms of informative features, such
problem can be handled by using linear function approximation, which is to use a parame-
terized representation for the action-value function other than a look-up table [Tsitsiklis and
Van Roy, 1997]. The simplest differentiable function approximator is through a linear com-
bination of features, though there are other ways of approximating functions such as using
neural networks [Sutton and Barto, 2018, Ch. 9, p. 195].

We approximate action-values using Equation 2.9

q̂(s, a)← θ0 + θ1f1(s) + θ2f2(s) + · · · + θnfn(s) (2.9)

where θ ∈ Θ is a parameter associated to a state feature f ∈ F . We adjust its parame-
ters through agent experience to approximate the true action-value function by employing
gradient descent in the TD error with regard to each feature parameter:

27

θi ← θi + α[r (s) + γmaxa′q̂θ(s′, a′)− q̂θ(s, a)]
∂q̂θ(s, a)
∂θi

(2.10)

Using Equation 2.10, we adjust our Θ parameters to reduce the temporal difference
between successive states and update these parameters in the direction of decreasing the
error after each trial [Tsitsiklis and Van Roy, 1997]. Function approximation allows us to
estimate the value-function of new state-action pairs by generalizing from known state-action
pairs. This means that we can predict action-values by learning and updating Θ parameters
throughout algorithm iterations.

Neural networks as function approximators

Since not all functions can be approximated linearly, an alternative is to use use
neural networks with non-linear activation as approximators. In terms of the error in approx-
imating the value function, the ideal is to find a set of parameters Θ that leads the agent to
a global optimum. However, finding global optima is rarely possible for non-linear approxi-
mators, and sometimes possible for linear ones [Sutton and Barto, 2018, Ch. 9, p. 200]. It
is generally enough, though, when non-linear approximators such as neural networks con-
verge to a local optima [Sutton and Barto, 2018, Ch. 9, p. 200].

Though neural networks are effective function approximators in many tasks, it is
not easy to apply them in the context of reinforcement learning due to the high correlation
between data inputs to update the value function [Mnih et al., 2015]. Specifically, learning
off-policy produces higher variance updates than learning on-policy, which can result in steps
that greatly vary in size and lead to parts of the space with a different gradient [Sutton and
Barto, 2018, Ch. 11, p. 283]. Neural networks within reinforcement learning become widely
used only after [Mnih et al., 2015] successfully approximated the value function using deep
neural networks to play Atari games.

In order to avoid oscillations in the parameters, [Mnih et al., 2015] propose a
method called experience replay, which randomly samples mini-batches of past agent expe-
rience to update the value function. Experience replay is a method stores agent’s experience
tuples e = 〈s, a, r , s′〉 at each time-step in a replay memory D = {e1, ... , en}. At each time
step, multiple updates are performed based on a mini-batch of experiences, e ∼ D, sampled
uniformly at random from the replay memory [Sutton and Barto, 2018, Ch. 16, p. 440]. The
aim is to reduce the variance of updates, as successive updates are not correlated with one
another [Mnih et al., 2013]. Such method still requires many samples in order to converge
to the true value function, e.g. 50 million transitions for the case of each Atari game in the
work from [Mnih et al., 2015].

28

29

3. ARCHITECTURE

In this section, we introduce our database indexing architecture to automatically
choose indexes in relational databases, which we refer to as SmartIX. The main motivation
of SmartIX is to abstract the database administrator’s task that involves a frequent analysis
of all candidate columns and verifying which ones are likely to improve the database index
configuration. For this purpose, we use reinforcement learning to explore the space of pos-
sible index configurations in the database, aiming to find an optimal strategy over a long time
horizon while improving the performance of an agent in the environment.

SmartIX

RL Agent

Environment

DBMS Interface

DBMS

Action at
State st+1
Reward rt+1

Indexing
option

Changes to
apply

Database
stats

Structured
database stats

Figure 3.1: SmartIX architecture.

30

The SmartIX architecture is composed of a reinforcement learning agent, an envi-
ronment model of a database, and a DBMS interface to apply agent actions to the database.
The reinforcement learning agent is responsible for the decision making process. The agent
interacts with an environment model of the database, which computes system transitions
and rewards that the agent receives for its decisions. To make changes persistent, there is
a DBMS interface that is responsible for communicating with the DBMS to create or drop
indexes, and fetch statistics of the current index configuration. We describe in detail each of
these components in the next sections.

3.1 Agent

Our agent is based on the Deep Q-Network agent proposed by [Mnih et al., 2015].
The algorithm consists of a reinforcement learning method built around the Q-learning, using
a neural network for function approximation, and a replay memory for experience replay. The
neural network is used to approximate the action-value function, and is trained using mini-
batches of experience randomly sampled from the replay memory. At each time step, the
agent performs one transition in the environment. That is, the agent chooses an action using
an epsilon-greedy exploration function at the current state, the action is then applied in the
environment, and the environment returns a reward signal and the next state. Finally, each
transition in the environment is stored in the replay buffer, and the agent performs a mini-
batch update in the action-value function. Algorithm 3.1 depicts the steps performed by the
agent.

Algorithm 3.1: Indexing agent with function approximation and experience replay. Adapted
from [Sutton and Barto, 2018, Ch. 6, p. 131] and [Mnih et al., 2015].

1: Random initialization of the value function
2: Empty initialization of a replay memory D
3: s ← DB initial index configuration mapped as initial state
4: for each step do
5: a← epsilon greedy(s)
6: s′, r ← execute(a)
7: Store experience e = 〈s, a, r , s′〉 in D
8: Sample random mini-batch of experiences e ∼ D
9: Perform experience replay using sampled mini-batch

10: s ← s′

31

3.2 Environment

The environment component is responsible for computing transitions in the system
and computing the reward function. To successfully apply a transition, we implement a model
of the database environment, modeling states that contain features that are relevant to the
agent learning, and a transition function that is able to modify the state with regard to the
action an agent chooses. Each transition in the environment outputs a reward signal that is
fed back to the agent along with the next state, and the reward function has to be informative
enough so that the agent learns which actions yield better decisions at each state.

3.2.1 State representation

The state is the formal representation of the environment information used by the
agent in the learning process. Thus, deciding which information should be used to define a
state of the environment is critical for task performance. The amount of information encoded
in a state imposes a trade-off for reinforcement learning agents. Specifically, that if the state
encodes too little information, then the agent might not learn a useful policy, whereas if the
state encodes too much information, there is a risk that the learning algorithm needs too
many samples of the environment that it does not converge to a policy.

For the database indexing problem, the state representation is defined as a fea-
ture vector ~S = ~I · ~Q, which is a result of a concatenation of the feature vectors ~I and ~Q.
The feature vector ~I encodes information regarding the current index configuration of the
database, with length |~I| = C, where C is a constant of the total number of columns in the
database schema. Each element in the feature vector ~I holds a binary value, containing
1 or 0, depending on whether the column that corresponds to that position in the vector is
indexed or not. An example illustrating such vector is shown in Figure 3.2. The second part
of our state representation is a feature vector ~Q, also with length |~Q| = C, which encodes
information regarding which indexes were used in last queries received by the database. To
organize such information, we set a constant value of H that defines the horizon of queries
that we keep track of. To each of the last queries in a horizon H, we verify whether any of
the indexes currently created in the database are used to run such queries. Each position
in the vector ~Q corresponds to a column and holds a binary value that is assigned 1 if such
column is indexed and used in the last H queries, else 0. Finally, the concatenate both~I and
~Q to generate our binary state vector ~S with length |~S| = 2C.

32

TABLE

COLUMN 1 COLUMN 2 COLUMN 3 COLUMN 4 COLUMN 5 COLUMN 6 ... COLUMN N

0 0 1 0 1 1 ... 0

Not indexed

Available action
COLUMN 2, CREATE

Indexed

Available action
COLUMN 6, DROP

Figure 3.2: Representation of index configuration vector and available actions.

3.2.2 Actions

In our environment, we define the possible actions as a set A of size C + 1. Each
one of the C actions refer to one column in the database schema. These actions are im-
plemented as a “flip” to create or drop an index in the current column. Therefore, for each
action, there are two possible behaviors: CREATE INDEX or DROP INDEX on the correspond-
ing column. This behavior is illustrated in Figure 3.2, where each column can be either
dropped or created an index on it. The last action is a “do nothing” action, that enables the
agent not to modify the index configuration in case it is not necessary at the current state.

3.2.3 Reward

Deciding the reward function is critical for the quality of the ensuing learned policy.
On the one hand, we want the agent to learn that indexes that are used by the queries in
the workload must be maintained in order to optimize such queries. On the other hand, in-
dexes that are not being used by queries must not be maintained as they consume system
resources and are not useful to the current workload. Therefore, we compute the reward
signal based on the next state’s feature vector ~S after an action is applied, since our state
representation encodes information both on the current index configuration and on the in-
dexes used in the last queries, i.e. information contained in vectors~I and ~Q.

Our reward function, thus, can be computed using Equation 3.1:

R(op, use) = (1− op)((1− use)(1) + (use)(−5)) + (op)((1− use)(−5) + (use)(1)) (3.1)

33

where op = Ic and use = Qc. That is, the first parameter, op, holds 0 if the last action
represents a dropped index in column c, or 1 if created an index. The latter parameter,
use, holds 0 if an index in column c is not being used by the last H horizon queries, and 1
otherwise.

Therefore, our reward function returns a value of +1 if an index is created and it
actually benefits the current workload, or if an index is dropped and it is not beneficial to
the current workload. Otherwise, the function returns −5 to penalize the agent if an index is
dropped and it is beneficial to the current workload, or an index is created and it does not
benefit the current workload. The choice of values +1 and −5 is empirical. However, we
want the penalization value to be at least twice smaller than the +1 value, so that the values
do not get canceled when accumulating with each other. Finally, if the action corresponds to
a “do nothing” operation, the environment simply returns a reward of 0, without computing
Equation 3.1.

34

35

4. EXPERIMENTS

In this chapter, we report the experiments using the SmartIX architecture. First, we
introduce the experimental setup and the baselines we use in this chapter to compare results
(Section 4.1). Second, we report the results on training our reinforcement learning agent
(Section 4.2). Third, we analyze the results of our agent in comparison to the baselines and
related work, using the static index configuration in which each algorithm converged to after
training (Section 4.3). Fourth, we report the results on the dynamic index configurations,
i.e. changing indexes over time, while algorithms follow their trained policies (Chapter 4.4).
Lastly, we show how the our agent efficiently indexes databases that are larger than the one
used for training the agent (Chapter 4.5).

4.1 Experimental setup

We now detail the database setup we use for the experiments and each of the
baselines used for performance comparison.

4.1.1 Database setup

Due to its usage in literature for measuring database performance [Thanopoulou.
et al., 2012] [Pedrozo et al., 2018] [Neuhaus et al., 2019] [Basu et al., 2016], we choose to
run experiments using the database schema and data provided by the TPC-H benchmark.
The tools provided by TPC-H include a data generator (DBGen), which is able to create up to
100TB of data to load in a DBMS, and a query generator (QGen) that creates 22 queries with
different levels of complexity. The database we use for experiments is populated with 1GB
of data, however we also show performance results in databases with 10GB and 100GB of
data in later experiments. To run benchmarks using each baseline index configuration, we
implemented the TPC-H benchmark protocol using a Python script that runs queries, fetches
execution time and computes the performance metrics.

To provide statistics on the database, we show the in Table 4.1 the number of rows
that each table contains and an analysis on the indexing possibilities. For that, we mapped
for each table in the TPC-H database the total number of columns, the columns that are
already indexed (primary and foreign keys, indexed by default) and the remaining columns
that are available for indexing. The complete schema of the TPC-H database is shown in
Appendix A.

36

Table 4.1: TPC-H database - Table stats and indexes

Table Total rows Total Columns Indexed Columns Indexable Columns

REGION 5 3 1 2

NATION 25 4 2 2

PART 200000 9 1 8

SUPPLIER 10000 7 2 5

PARTSUPP 800000 5 2 3

CUSTOMER 150000 8 2 6

ORDERS 1500000 9 2 7

LINEITEM 6001215 16 4 12

Totals 8661245 61 16 45

By summing the amount of indexable columns in each table, we have a total of 45
columns that are available for indexing. Since a column is either indexed or not, there are two
possibilities for each of the remaining 45 indexable columns. This scenario indicates that we
have exactly 35, 184, 372, 088, 832 (245), i.e. more than 35 trillion, possible configurations
of simple indexes. We can think of it as a matrix of 45 columns by over 35 trillion lines
containing all possible combinations. Thus, this is also the number of states that can be
assumed by the database indexing configuration, and therefore explored by the algorithms.

For comparison purposes, we manually compute which columns compose the
ground truth optimal index configuration. We manually create each index possibility and
check whether an index benefits at least one query within the 22 TPC-H queries. To check
whether an index is used or not, we run the EXPLAIN command to visualize execution plan of
each query. After this analysis, we have 6 columns from the TPC-H that compose our ground
truth optimal indexes: C_ACCTBAL, L_SHIPDATE, O_ORDERDATE, P_BRAND, P_CONTAINER,
P_SIZE.

4.1.2 Baselines

The baselines comprise different indexing configurations using different indexing
approaches, including commercial and open-source database advisors, related work on ge-
netic algorithms and reinforcement learning methods. Each baseline index configuration is
a result of training or analyzing the same workload of queries, from the TPC-H benchmark,
in order to make an even comparison between the approaches. The following list briefly
introduces each of them:

37

1. Default: is the initial DBMS index configuration and contains no indexes except the
standard on primary and foreign keys;

2. All indexed: is the configuration that contains all columns indexed;

3. Random policy: is the best performing configuration explored by an agent following a
policy that selects indexing options randomly over the course of 1000 iterations;

4. EDB [EnterpriseDB, 2019]: is the index configuration suggested by EnterpriseDB, a
commercial database advisor tool;

5. POWA [POWA, 2019]: is the index configuration suggested by the PostgreSQL Work-
load Analyzer, an open-source advisor tool;

6. ITLCS [Pedrozo et al., 2018]: is the Index Tuning with Learning Classifier System
(ITLCS), which combines a learning classifier and genetic algorithms to explore rules
for efficient indexing;

7. GADIS [Neuhaus et al., 2019]: is the Genetic Algorithm for Database Index Selec-
tion (GADIS), which uses an evolutionary algorithm to explore index configurations
encoded as individuals;

8. NoDBA [Sharma et al., 2018]: is a system based on a cross-entropy deep reinforce-
ment learning method applied to recommend indexes for given workloads; and

9. rCOREIL [Basu et al., 2016]: is a system based on a policy iteration reinforcement
learning method, which estimates a database cost model and suggests indexes that
decrease such cost.

The EDB [EnterpriseDB, 2019], POWA [POWA, 2019] and ITLCS [Pedrozo et al.,
2018] index configurations are a result of a study conducted by Pedrozo, Nievola and Ribeiro
[Pedrozo et al., 2018]. The authors [Pedrozo et al., 2018] employ these methods to compute
the actual indexes suggested by each method to each of the 22 queries in the TPC-H work-
load, which constitute the respective index configurations we use in this analysis. The index
configurations of GADIS [Neuhaus et al., 2019], NoDBA [Sharma et al., 2018] and rCOR-
EIL [Basu et al., 2016] are a result of experiments we ran using source-code provided by the
authors. We execute the author’s algorithms without modifying any hyperparameter except
configuring the database connection. The index configurations we use in this analysis is the
one in which each algorithm converged to, when the algorithm stops modifying the index
configuration or reaches the end of training.

38

4.2 Agent training

We now detail the agent’s training process. In our case, to approximate the value
function, we use a simple multi-layer perceptron neural network with two hidden layers and
an Adam optimizer with a mean-squared error loss, both PyTorch 1.5.1 implementations
using default hyperparameters [Paszke et al., 2019]. The input and output dimensions de-
pend on the amount of columns available to index in the database schema, as shown in
Section 3.2.1. The neural network architecture is detailed in Table 4.2.

Table 4.2: Neural network architecture (sequential model).

Layer Dimension

Linear (90, 128)
ReLU
Linear (128, 128)
ReLU
Linear (128, 46)

The hyperparameters we use for training the agent are shown in Table 4.3. The
first two hyperparameters, learning rate and discount factor, are used in the update equation
of the value function. The next two hyperparameters are related to experience replay, where
replay memory size defines the amount of experiences the agent is capable of storing, and
replay batch size defines the amount of samples the agent uses at each time step to update
the value function. The other four hyperparameters are related to the epsilon-greedy explo-
ration function, where we define an epsilon initial as maximum epsilon value, an epsilon final
as epsilon minimum value, a percentage in which epsilon decays, and the interval of time
steps at each decay. Finally, the last hyperparameter is the query horizon in which we keep
track of the last H queries in the agent state representation, influencing on how fast the agent
sees a workload shift and adapts the index configuration. All values of DQN’s hyperparame-
ters are a result of an informal search, such as employed by the original authors [Mnih et al.,
2015], and the newly introduced query horizon H can be adapted if needed.

We train our agent for the course of 64 thousand time steps in the environment.
Training statistics are gathered every 128 steps and are shown in Figure 4.1. Sub-figure 4.1a
shows the total reward accumulated by the agent at each 128 steps in the environment,
which consistently improves over time and stabilizes after the 400th x-axis value. Sub-
figure 4.1b shows the corresponding epsilon value per 128 steps during training, which
starts at 1.00 and decays towards its minimum value of 0.01. Sub-figure 4.1c shows the
accumulated loss at each 128 steps in the environment, i.e. the errors in predictions of the
value function during experience replay, and illustrates how it decreases towards zero as
parameters are adjusted and the agent approximates the true value function.

39

Table 4.3: Training hyperparameters.

Hyperparameter Value

Learning rate (α) 0.0001
Discount factor (γ) 0.9

Replay memory size 10000
Replay batch size 1024

Epsilon initial 1.00
Epsilon final 0.01
Epsilon decay 1%
Decay interval 128

Query horizon (H) 40

0 100 200 300 400 500
Step

300

250

200

150

100

50

0

50

Ac
cu

m
ul

at
ed

 re
wa

rd

(a) Accumulated reward per 128 steps.

0 100 200 300 400 500
Step

0.0

0.2

0.4

0.6

0.8

1.0

Ep
sil

on
 v

al
ue

(b) Epsilon value per 128 steps.

0 100 200 300 400 500
Step

0

200

400

600

800

1000

1200

1400

Ac
cu

m
ul

at
ed

 lo
ss

(c) Accumulated loss per 128 steps.

Figure 4.1: Training statistics.

40

To evaluate the agent behavior and the index configuration in which the agent is
converging to, we plot in Figure 4.2 data of each index configuration explored by the agent
in the 64 thousand training steps. Each index configuration is represented in terms of total
indexes and total optimal indexes a configuration contains. Total indexes is simply a count
on the number of indexes in the configuration, while total optimal indexes is a count on the
number of ground truth optimal indexes in the configuration. The lines are smoothed using a
running mean of the last 5 values, and a fixed red dashed line across the x-axis represents
the configuration in which the agent should converge to. Both the total amount of indexes
and the total optimal indexes converge towards the ground truth optimal indexes. That is,
the agent not only learns to keep the optimal indexes in the configuration, but it also drops
the indexes that do not benefit the workload.

0 10000 20000 30000 40000 50000 60000
Step

0

5

10

15

20

25

Nu
m

be
r o

f i
nd

ex
es

Total indexes
Total optimal indexes
Ground truth optimal indexes

Figure 4.2: Indexes configuration at each step while training.

4.3 Static configurations

We now evaluate each baseline index configuration in comparison to the one in
which our agent converged to. We show the TPC-H performance metric (QphH, i.e. the
query-per-hour metric) and the index size of each configuration. Figure 4.3a shows the
query-per-hour metric of each configuration (higher values denote better performance). The
plotted values are a result of a trimmed mean, where we run the TPC-H benchmark 12 times
for each index configuration, removing the highest and the lowest result and averaging the
10 remaining results. Figure 4.3b shows the disk space required for the indexes in each
configuration (index size in MB), which allows us to analyze the trade-off in the number of
indexes and the resources needed to maintain it. In an ideal scenario, the index size is just

41

the bare-minimum to maintain the indexes that are necessary to support query performance.
Therefore, in Figure 4.3c, we plot a ratio of query-per-hour over index size. A detailed
table containing results of each benchmark execution and exact index sizes is shown in
Appendix B, and a detailed list of each index configuration in Appendix C.

Defa
ult

Random
NoD

BA
PO

WA

rCOREILEDB

All in
dexe

s
ITL

CS
GADIS

Smart
IX

Index configuration

950

975

1000

1025

1050

1075

1100

Qp
hH

@
1G

B

(a) Query-per-hour metric

Defa
ult

Smart
IX
ITL

CS
GADIS EDB

PO
WA

NoD
BA

Random
rCOREIL

All in
dexe

s

Index configuration

0

500

1000

1500

2000

2500

Si
ze

 in
 M

B

(b) Index size (in MB)

All in
dexe

s

rCOREIL

Random
NoD

BA
PO

WA
EDB

GADIS
ITL

CS

Smart
IX
Defa

ult

Index configuration

0

1

2

3

Ra
tio

(c) Ratio of performance and in-
dex size

Figure 4.3: Static index configurations results.

While SmartIX achieves the best query-per-hour-metric, the two genetic algorithms
[Neuhaus et al., 2019] and [Pedrozo et al., 2018] have both very similar query-per-hour and
index size metrics in comparison to our agent. GADIS [Neuhaus et al., 2019] itself uses a
similar state-space model to SmartIX, with individuals being represented as binary vectors
of the indexable columns. The fitness function GADIS optimizes is the actual query-per-hour
metric, and it runs the whole TPC-H benchmark every time it needs to compute the fitness
function. Therefore, it is expected that it finds an individual with a high performance metric,
although it is unrealistic for real-world applications in production due to the computational
cost of running the benchmark.

Indexing all columns is among the highest query-per-hour results and can seem
to be a natural alternative to solve the indexing problem. However, it results in the highest
amount of disk used to maintain indexes stored. Such alternative is less efficient in a query-
per-hour metric as the benchmark not only takes into account the performance of SELECT

queries, but also INSERT and DELETE operations, whose performance is affected by the
presence of indexes due to the overhead of updating and maintaining the structure when
records change [Ramakrishnan and Gehrke, 2003, Ch. 8, p. 290-291]. It has the lowest
ratio value due to the storage it needs to maintain indexes.

While rCOREIL [Basu et al., 2016] is the most competitive reinforcement learning
method in comparison to SmartIX, the amount of storage used to maintain its indexes is
the highest among all baselines (except for having all columns indexed). rCOREIL does not
handle whether primary and foreign key indexes are already created, causing it to create du-
plicate indexes. The policy iteration algorithm used in rCOREIL is a dynamic programming

42

method used in reinforcement learning, which is characterized by complete sweeps in the
state space at each iteration in order to update the value function. Since dynamic program-
ming methods are not suitable to large state spaces [Sutton and Barto, 2018, Ch. 4, p. 87],
this can become a problem in databases that contain a larger number of columns to index.

Among the database advisors, the commercial tool EDB [EnterpriseDB, 2019] achieves
the highest query-per-hour metric in comparison to the open-source tool POWA [POWA,
2019], while its indexes occupy virtually the same disk space. Other baselines and related
work are able to optimize the index configuration and have lightweight index sizes, but are not
competitive in comparison to the previously discussed methods in terms of the query-per-
hour performance metric. Finally, among all the baselines, the index configuration obtained
using SmartIX not only yields the best query-per-hour metric, but also the smallest index
size (except for the default configuration), i.e. it finds the balance between performance and
storage, as shown in the ratio plot.

4.4 Dynamic configurations

This section aims to evaluate the behavior of algorithms that generate policies, i.e.
generate a function that guides an agent’s behavior. The three algorithms that generate poli-
cies are SmartIX, rCOREIL, and NoDBA. The three are reinforcement learning algorithms,
although using different strategies (see Chapter 5). While rCOREIL and SmartIX show a
more interesting and dynamic behavior, the NoDBA algorithm shows a fixed behavior and
keeps only three columns indexed over the whole time horizon, without changing the in-
dex configuration over time (see its limitations in Chapter 5). Therefore, we do not include
NoDBA in the following analysis, and focus the discussion on rCOREIL and SmartIX.

4.4.1 Fixed workload

We now evaluate the index configuration of rCOREIL and SmartIX over time while
the database receives a fixed workload of queries. Figure 4.4 shows the behavior of rCOR-
EIL and SmartIX, respectively. Notice that rCOREIL takes some time to create the first
indexes in the database, after receiving about 150 queries, while SmartIX creates indexes
at the very beginning of the workload. On the one hand, rCOREIL shows a fixed behavior
that maintains all ground truth optimal indexes, however it creates a total of 22 indexes, 16
of those being unnecessary indexes and the remaining 6 are optimal indexes. On the other
hand, SmartIX shows a dynamic behavior and consistently maintains 5 out of the 6 ground
truth optimal indexes, and it does not maintain unnecessary indexes throughout most of the
received workload.

43

0 200 400 600 800 1000
Step

0

5

10

15

20

25
Nu

m
be

r o
f i

nd
ex

es

Total indexes
Total optimal indexes
Ground truth optimal indexes

(a) rCOREIL

0 200 400 600 800
Step

0

5

10

15

20

25

Nu
m

be
r o

f i
nd

ex
es

Total indexes
Total optimal indexes
Ground truth optimal indexes

(b) SmartIX

Figure 4.4: Agent behavior with a fixed workload.

4.4.2 Shifting workload

We now evaluate the algorithm’s behavior while receiving a workload that shifts
over time. To do so, we divide the 22 TPC-H queries into two sets of 11 queries, where for
each set there is a different ground truth set of indexes. That is, out of the 6 ground truth
indexes from the previous fixed workload, we now separate the workload to have 3 indexes
that are optimal first set of queries, and 3 other indexes that are optimal for the second
set of queries. Therefore, we aim to evaluate whether the algorithms can adapt the index
configuration over time when the workload shifts and a different set of indexes is needed
according to each of the workloads.

0 200 400 600 800
Step

0

5

10

15

20

25

Nu
m

be
r o

f i
nd

ex
es

Workload shifts
Ground truth optimal indexes
Total indexes
Total optimal indexes

(a) rCOREIL

0 200 400 600 800
Step

0

5

10

15

20

25

Nu
m

be
r o

f i
nd

ex
es

Workload shifts
Ground truth optimal indexes
Total indexes
Total optimal indexes

(b) SmartIX

Figure 4.5: Agent behavior with a shifting workload.

44

The behavior of each algorithm is shown in Figure 4.5. The vertical dashed lines
placed along the x-axis represent the time step where the workload shifts from one set of
queries to another, and therefore the set of ground truth optimal indexes also changes. On
the one hand, notice that rCOREIL shows a similar behavior from the one in the previous
fixed workload experiment, in which it takes some time to create the first indexes, and then
maintains a fixed index configuration, not adapting as the workload shifts. On the other hand,
SmartIX shows a more dynamic behavior with regard to the shifts in the workload. Notice
that, at the beginning of each set of queries in the workload, there is a peak in the total
indexes, which decreases as soon as the index configuration adapts to the new workload
and SmartIX drops the unnecessary indexes for the current workload. Even though rCOREIL
maintains all 3 ground truth indexes over time, it still maintains 16 unnecessary indexes,
while SmartIX consistently maintains 2 out of 3 ground truth optimal indexes and adapts as
the workload shifts.

4.5 Scaling up database size

In the previous sections, we showed that the SmartIX architecture can consistently
achieve near-optimal index configurations in a database of size 1GB. In this section, we
report experiments on indexing larger databases, where we transfer the policy trained in the
1GB database to perform indexing in databases with size 10GB and 100GB. We plot the
behavior of our agent in Figure 4.6.

0 200 400 600 800
Step

0

5

10

15

20

25

Nu
m

be
r o

f i
nd

ex
es

Total indexes
Total optimal indexes
Ground truth optimal indexes

(a) 10GB TPC-H database.

0 200 400 600 800
Step

0

5

10

15

20

25

Nu
m

be
r o

f i
nd

ex
es

Total indexes
Total optimal indexes
Ground truth optimal indexes

(b) 100GB TPC-H database.

Figure 4.6: Agent behavior in larger databases.

As we can see, the agent shows a similar behavior to the one using a 1GB database
size reported in previous experiments. The reason is that both the state features and the
reward function are not influenced by the database size. The only information relevant to

45

the state and the reward function is the current index configuration and the workload be-
ing received. Therefore, we can successfully transfer the value function learned in smaller
databases to index larger databases, consuming less resources to train the agent.

46

47

5. RELATED WORK

Machine learning techniques are used in a variety of tasks related to database
management systems and automated database administration [Van Aken et al., 2017]. One
example is the work from Kraska et al. [Kraska et al., 2018], which outperforms traditional
index structures used in current DBMS by replacing them with learned index models, hav-
ing significant advantages under particular assumptions. Pavlo et. al [Pavlo et al., 2017]
research culminated on developing the first self-driving DBMS, called Peloton, which has
autonomic capabilities of optimizing the system to incoming workload and also uses predic-
tions to prepare the system to future workloads using predictions. In this chapter, though,
we further discuss related work that focused on developing methods for optimizing queries
through automatic index tuning. Specifically, we focus our analysis on work that based their
approach on reinforcement learning techniques.

Basu et al. [Basu et al., 2016] developed a technique for index tuning based on
a cost model that is learned with reinforcement learning. It is stated that current DBMS’s
cost estimates can be highly erroneous; thus, the authors propose a tuning strategy without
a predefined model. They learn a cost model through linear regression and approximate
the cost of executing queries at the current configuration, and instantiate their approach to
the case of index tuning, to find a indexing configuration that minimizes the cost function.
However, once the cost model is known, it becomes trivial to find the configuration that
minimizes the cost through dynamic programming, such as the policy iteration method used
by the authors. They use DBTune [DB Group at UCSC, 2019] to reduce the state space
by considering only indexes that are recommended by the DBMS. Our approach, on the
other hand, is focused on finding the optimal index configuration without having complete
knowledge of the environment and without heuristics of the DBMS to reduce the state space.

Sharma et al. [Sharma et al., 2018] explore the use of a cross-entropy deep rein-
forcement learning method to administer databases automatically. Their motivation is that
DBMSs currently have a large number of configuration settings that can be set, and it is
typically up to a human administrator to tweak it based on its own experience [Sharma et al.,
2018]. They instantiate their approach to index tuning by evaluating how well their system
selects indexes to a given workload. Their set of actions, however, only include the creation
of indexes, and a budget of 3 indexes is set to deal with space constraints and index mainte-
nance costs. Indexes are only dropped once an episode is finished. Their evaluation relies
on the TPC-H relational model as the database [TPC, 1998], just as our approach. How-
ever, they do not strictly follow the TPC-H protocol, as they do not use the query workload
provided by TPC-H, but use synthetic queries consisting of select counts on the LINEITEM

table, which does not consider INSERT or DELETE operations (highly affected by the pres-
ence of indexes). A strong limitation in their evaluation process is to only use the LINEITEM

48

table to query, which does not exploit how indexes on other tables can optimize the database
performance, and consequently reduces the state space of the problem. Furthermore, they
do not use the TPC-H benchmark performance measure to evaluate performance but use
query execution time in milliseconds.

Unlike previous papers, Pavlo et al. [Pavlo et al., 2017] present an entire self-driving
in-memory DBMS, called Peloton, that predicts the expected arrival rate of queries and
deploys physical, data and runtime actions. Their approach uses clustering algorithms to
classify queries and recurrent neural networks to generate models that predict the arrival
rate of queries from an expected workload in order to plan and execute actions. They specify
actions regarding creating and dropping indexes, though there are no detailed results on the
system’s approach to indexing, making it difficult to make an actual comparison to what we
propose here. Preliminary results of the proposed architecture, however, rely on analyzing
the accuracy of the workload predicted by their models in comparison to the actual workload
sent to the in-memory DBMS. Nevertheless, it is a strongly related work in terms of what we
are working.

Other papers show that reinforcement learning can also be explored in the context
of query optimization by predicting query plans: Marcus et al. [Marcus and Papaemmanouil,
2018] proposed a proof-of-concept to determine the join ordering for a fixed database; Ortiz
et al. [Ortiz et al., 2018] developed a learning state representation to predict the cardinality of
a query. These approaches could possibly be used alongside ours, generating better plans
to query execution while we focus on maintaining indexes that these queries can benefit
from.

49

6. CONCLUSION

In this dissertation, we developed the SmartIX architecture for automated database
indexing using reinforcement learning. The experimental results show that our agent consis-
tently outperforms the baseline index configurations and related work on genetic algorithms
and reinforcement learning. Our agent is able to find the trade-off concerning the disk space
its index configuration occupies and the performance metric it achieves. The state represen-
tation and the reward function allows us to successfully index larger databases, while train-
ing in smaller databases and consuming less resources. Importantly, our learning approach
proves to be practical in realistic scenarios of shifting workloads and very large database
sizes.

Regarding the limitations of our architecture, we do not yet deal with composite in-
dexes due to the resulting state space of all possible indexes that use two or more columns.
Our experiments show results using workloads that are read-intensive (i.e. intensively fetch-
ing data from the database), which is exactly the type of workload that benefits from in-
dexes. However, experiments using write-heavy workloads (i.e. intensively writing data to
the database) can be informative in discovering whether the agent learns to avoid indexes
in write-intensive tables.

Concerning the limitations above, future work can consider to: (1) investigate tech-
niques that allow us to deal with composite indexes, which incurs a factorial increase in the
state space; (2) improve the reward function to provide feedback in case of write-intensive
workloads (the reward function needs continuous improvement, and inf fact there exists
a whole research field on reward shaping); (3) investigate pattern recognition techniques
to predict incoming queries to index ahead of time; and (4) evaluate SmartIX on big data
ecosystems (e.g. Hadoop).

Finally, our contributions include: (1) a formalization of a reward function shaped for
the database indexing problem, independent of DBMS’s statistics, that allows the agent to
adapt the index configuration according to the workload; (2) an environment representation
for database indexing that is independent of schema or DBMS; and (3) a reinforcement
learning agent that efficiently scales to large databases, while trained in small databases
consuming less resources. As a result of this research, we published a paper at the Applied
Intelligence journal [Licks et al., 2020]. At the same time of the development of this research,
other papers in different subjects were co-authored [Amado et al., 2020b] [Amado et al.,
2020a] [Amado et al., 2019].

In closing, we envision this kind of architecture being deployed in cloud platforms
such as Heroku and similar platforms that often provide database infrastructure for various
clients’ applications. The reality is that these clients do not prioritize, or it is not in their scope
of interest to focus on database management. Especially in the case of early-stage start-ups,

50

the aim to shorten time-to-market and quickly ship code motivates externalizing complexity
on third party solutions [Giardino et al., 2016]. From an overall platform performance point
of view, having efficient database management results in an optimized use of hardware and
software resources. Thus, in the lack of a database administrator, the SmartIX architecture
is a potential stand-in solution, as experiments show that it provides at least equivalent and
often superior indexing choices compared to baseline indexing recommendations.

51

REFERENCES

Amado, L. Aires, J. P. Pereira, R. F. Magnaguagno, M. C. Granada, R. Licks, G. P. Marcon,
M. and Meneguzzi, F. (2020a). Latrec+: Learning-based goal recognition in latent space.
In: AAAI Workshop on Plan, Activity, and Intent Recognition (PAIR), vol. 34, pp. 1–2, New
York, USA. AAAI.

Amado, L. Licks, G. P. Marcon, M. Pereira, R. F. and Meneguzzi, F. (2020b). Using self-
attention LSTMs to enhance observations in goal recognition. In: IEEE International Joint
Conference on Neural Networks (IJCNN), pp. 1–8, Glasgow, UK. WCCI.

Amado, L. R. Aires, J. P. Pereira, R. F. Magnaguagno, M. C. Granada, R. Licks, G. P. and
Meneguzzi, F. (2019). Latrec: Recognizing goals in latent space. In: Demonstrations of
The International Conference on Automated Planning and Scheduling (ICAPS), vol. 29, pp.
1–2, Berkeley, USA. ICAPS.

Basu, D. Lin, Q. Chen, W. Vo, H. T. Yuan, Z. Senellart, P. and Bressan, S. (Sep,
2016). Regularized cost-model oblivious database tuning with reinforcement learning.
Transactions on Large-Scale Data- and Knowledge-Centered Systems (TLDKS), vol. 28,
pp. 96–132.

Bellman, R. (Apr, 1957). A markovian decision process. Journal of Mathematics and
Mechanics, vol. 6, pp. 679–684.

DB Group at UCSC (2019). DBTune. Retrieved from URL https://github.com/
dbgroup-at-ucsc/dbtune. October 2019.

Duan, S. Thummala, V. and Babu, S. (Aug, 2009). Tuning database configuration
parameters with iTuned. Very Large Data Base Endowment (VLDB Endownment), vol. 2,
pp. 1246–1257.

Elfayoumy, S. and Patel, J. (2012). Database performance monitoring and tuning
using intelligent agent assistants. In: International Conference on Information and
Knowledge Engineering (IKE), pp. 1–5, San Diego, USA. The Steering Committee of The
World Congress in Computer Science, Computer Engineering and Applied Computing
(WorldComp).

EnterpriseDB (2019). Enterprise Database. Retrieved from URL https://www.enterprisedb.
com. October 2019.

Giardino, C. Paternoster, N. Unterkalmsteiner, M. Gorschek, T. and Abrahamsson, P. (Jun,
2016). Software development in startup companies: the greenfield startup model. IEEE
Transactions on Software Engineering (TSE), vol. 42, pp. 585–604.

https://github.com/dbgroup-at-ucsc/dbtune
https://github.com/dbgroup-at-ucsc/dbtune
https://www.enterprisedb.com
https://www.enterprisedb.com

52

Kraska, T. Beutel, A. Chi, E. H. Dean, J. and Polyzotis, N. (2018). The case for learned
index structures. In: International Conference on Management of Data (SIGMOD), pp.
489–504, New York, USA. ACM.

Licks, G. P. Couto, J. C. de Fátima Miehe, P. De Paris, R. Ruiz, D. D. and Meneguzzi,
F. (Mar, 2020). SMARTIX: A database indexing agent based on reinforcement learning.
Applied Intelligence (APIN), vol. 50, pp. 2575–2588.

Marcus, R. and Papaemmanouil, O. (Jun, 2018). Deep reinforcement learning for join order
enumeration. In: 1st International Workshop on Exploiting Artificial Intelligence Techniques
for Data Management (aiDM), pp. 1–4, New York, USA. ACM.

Mnih, V. Kavukcuoglu, K. Silver, D. Graves, A. Antonoglou, I. Wierstra, D. and Riedmiller,
M. A. (Dec, 2013). Playing Atari with deep reinforcement learning. arXiv preprint CoRR,
vol. abs/1312.5602, pp. 9.

Mnih, V. Kavukcuoglu, K. Silver, D. Rusu, A. A. Veness, J. Bellemare, M. G. Graves, A.
Riedmiller, M. Fidjeland, A. K. Ostrovski, G. et al. (Feb, 2015). Human-level control through
deep reinforcement learning. Nature, vol. 518, pp. 529–533.

Neuhaus, P. Couto, J. Wehrmann, J. Ruiz, D. and Meneguzzi, F. (Jul, 2019). GADIS:
A genetic algorithm for database index selection. In: 31st International Conference on
Software Engineering and Knowledge Engineering (SEKE), pp. 39–42, Pittsburgh, USA.
KSI Research Inc. and Knowledge Systems Institute.

Olofson, C. W. (2018). Ensuring a fast, reliable, and secure database through automation:
Oracle autonomous database. White paper, IDC Corporate USA.

Ortiz, J. Balazinska, M. Gehrke, J. and Keerthi, S. S. (Mar, 2018). Learning state
representations for query optimization with deep reinforcement learning. arXiv preprint
CoRR, vol. abs/1803.08604, pp. 1–5.

Paszke, A. Gross, S. Massa, F. Lerer, A. Bradbury, J. Chanan, G. Killeen, T. Lin, Z.
Gimelshein, N. Antiga, L. Desmaison, A. Kopf, A. Yang, E. DeVito, Z. Raison, M. Tejani,
A. Chilamkurthy, S. Steiner, B. Fang, L. Bai, J. and Chintala, S. (2019). Pytorch: An
imperative style, high-performance deep learning library. In: Wallach, H. Larochelle, H.
Beygelzimer, A. d'Alché-Buc, F. Fox, E. and Garnett, R., editors, Advances in Neural
Information Processing Systems (NeurIPS), vol. 32, pp. 8026–8037. Curran Associates,
Inc., 1 ed..

Pavlo, A. Angulo, G. Arulraj, J. Lin, H. Lin, J. Ma, L. Menon, P. Mowry, T. Perron, M. Quah,
I. Santurkar, S. Tomasic, A. Toor, S. Aken, D. V. Wang, Z. Wu, Y. Xian, R. and Zhang, T.
(2017). Self-driving database management systems. In: Conference on Innovative Data
Systems Research (CIDR), pp. 1–6, Chaminade, USA. CIDRDB, CIDR.

53

Pedrozo, W. G. Nievola, J. C. and Ribeiro, D. C. (2018). An adaptive approach
for index tuning with learning classifier systems on hybrid storage environments. In:
International Conference on Hybrid Artificial Intelligence Systems (HAIS), pp. 716–729,
Basel, Switzerland. Springer.

Popovic, J. (2017). Automatic tuning – SQL Server. Retrieved from URL https:
//docs.microsoft.com/en-us/sql/relational-databases/automatic-tuning/automatic-tuning.
June 2019.

POWA (2019). PostreSQL Workload Analyzer. Retrieved from URL http://powa.
readthedocs.io. October 2019.

Ramakrishnan, R. and Gehrke, J. (2003). Database Management Systems. McGraw-Hill,
New York, USA, 3 ed..

Rummery, G. A. and Niranjan, M. (1994). On-line Q-learning using connectionist systems.
White paper TR 166, Cambridge University Engineering Department, Cambridge, England.

Sharma, A. Schuhknecht, F. M. and Dittrich, J. (Jan, 2018). The case for automatic
database administration using deep reinforcement learning. arXiv preprint CoRR, vol.
abs/1801.05643, pp. 1–9.

Sutton, R. S. (Aug, 1988). Learning to predict by the methods of temporal differences.
Machine learning, vol. 3, pp. 9–44.

Sutton, R. S. and Barto, A. G. (2018). Reinforcement learning: An introduction. MIT press,
Cambridge, Massachusetts, 2 ed..

Thanopoulou., A. Carreira., P. and Galhardas., H. (2012). Benchmarking with TPC-H on off-
the-shelf hardware: An experiments report. In: 14th International Conference on Enterprise
Information Systems (ICEIS), pp. 205–208, Wroclaw, Poland. INSTICC, SciTePress.

TPC (1998). Transaction Performance Council (TPC). Retrieved from URL http://www.tpc.
org. June 2020.

Tsitsiklis, J. N. and Van Roy, B. (May, 1997). An analysis of temporal-difference learning
with function approximation. IEEE Transactions on Automatic Control (TACON), vol. 42, pp.
674–690.

Van Aken, D. Pavlo, A. Gordon, G. J. and Zhang, B. (2017). Automatic database
management system tuning through large-scale machine learning. In: International
Conference on Management of Data (SIGMOD), pp. 1009–1024, New York, USA. ACM.

Wang, J. Liu, W. Kumar, S. and Chang, S.-F. (Dec, 2015). Learning to hash for indexing big
data: a survey. Proceedings of the IEEE, vol. 104, pp. 34–57.

https://docs.microsoft.com/en-us/sql/relational-databases/automatic-tuning/automatic-tuning
https://docs.microsoft.com/en-us/sql/relational-databases/automatic-tuning/automatic-tuning
http://powa.readthedocs.io
http://powa.readthedocs.io
http://www.tpc.org
http://www.tpc.org

54

Watkins, C. J. C. H. (1989). Learning from Delayed Rewards. Ph.D. Thesis, King’s College,
Cambridge, UK.

55

APPENDIX A – TPC-H DATABASE SCHEMA

TPC BenchmarkTM H Standard Specification Revision 2.17.3 Page 13

1.2 Database Entities, Relationships, and Characteristics

The components of the TPC-H database are defined to consist of eight separate and individual tables (the Base
Tables). The relationships between columns of these tables are illustrated in Figure 2: The TPC-H Schema.

Figure 2: The TPC-H Schema

Legend:

 The parentheses following each table name contain the prefix of the column names for that table;

 The arrows point in the direction of the one-to-many relationships between tables;

 The number/formula below each table name represents the cardinality (number of rows) of the table. Some
are factored by SF, the Scale Factor, to obtain the chosen database size. The cardinality for the LINEITEM
table is approximate (see Clause 4.2.5).

PARTKEY

NAME

MFGR

BRAND

TYPE

SIZE

CONTAINER

COMMENT

RETAILPRICE

PARTKEY

SUPPKEY

AVAILQTY

SUPPLYCOST

COMMENT

SUPPKEY

NAME

ADDRESS

NATIONKEY

PHONE

ACCTBAL

COMMENT

ORDERKEY

PARTKEY

SUPPKEY

LINENUMBER

RETURNFLAG

LINESTATUS

SHIPDATE

COMMITDATE

RECEIPTDATE

SHIPINSTRUCT

SHIPMODE

COMMENT

CUSTKEY

ORDERSTATUS

TOTALPRICE

ORDERDATE

ORDER-

PRIORITY

SHIP-

PRIORITY

CLERK

COMMENT

CUSTKEY

NAME

ADDRESS

PHONE

ACCTBAL

MKTSEGMENT

COMMENT

PART (P_)

SF*200,000

PARTSUPP (PS_)

SF*800,000

LINEITEM (L_)

SF*6,000,000

ORDERS (O_)

SF*1,500,000

CUSTOMER (C_)

SF*150,000

SUPPLIER (S_)
SF*10,000

ORDERKEY

NATIONKEY

EXTENDEDPRICE

DISCOUNT

TAX

QUANTITY

NATIONKEY

NAME

REGIONKEY

NATION (N_)
25

COMMENT

REGIONKEY

NAME

COMMENT

REGION (R_)
5

Figure A.1: TPC-H database schema.

56

57

APPENDIX B – BENCHMARK RESULTS

In the Table B.1, we show the benchmark results of each index configuration. Be-
low, in Table B.2, we show de index size of each configuration.

Index config. Power@1GB Throughput@1GB QphH@1GB QphH std. dev.

No indexes 1489.3522 632.8253 970.7003 10.7479
Random 1481.6559 638.4742 972.5285 10.2342
NoDBA 1529.7047 631.4268 982.7456 14.0786
POWA 1573.4915 693.9250 1044.8518 11.9582
rCOREIL 1622.1830 695.1131 1061.8330 11.0346
EDB 1667.6451 696.5483 1077.7452 5.6812
All indexes 1668.3812 699.1538 1079.9548 9.0501
ITLCS 1659.7305 708.8918 1084.6054 13.6867
GADIS 1667.7764 705.8360 1084.9475 8.4136
SmartIX 1659.7895 709.4642 1085.0884 7.4550

Table B.1: TPC-H benchmark results for each configuration.

Index config. Index size (in MB)

No indexes 282.62
SmartIX 429.89
ITLCS 433.85
GADIS 438.40
EDB 521.84
POWA 531.03
NoDBA 663.66
Random 1107.65
rCOREIL 1725.40
All indexes 2547.79

Table B.2: Index size of each configuration.

58

59

APPENDIX C – INDEX CONFIGURATIONS

In Table C.1, we detail each index configurations and annotate whether an index is
among the optimal index set or not.

Table C.1: Index configurations

Index config. Columns indexed Index used?

SmartIX

c_acctbal
p_brand
p_size
o_orderdate
l_shipdate

Yes
Yes
Yes
Yes
Yes

GADIS

c_phone
l_shipdate
o_orderdate
p_container
ps_availqty

No
Yes
Yes
Yes
No

ITLCS

l_shipdate
p_type
o_orderdate
ps_partkey

Yes
Yes
Yes
No

EDB

c_mktsegment
o_orderdate
p_type
l_returnflag
l_shipdate
s_name

No
Yes
No
No
Yes
No

POWA

c_mktsegment
l_returnflag
l_shipdate
o_orderdate
p_name
p_type

No
No
Yes
Yes
No
No

rCOREIL

l_returnflag
l_quantity
l_extendedprice
l_discount
l_receiptdate
l_shipdate
l_tax
l_shipmode
l_shipinstruct
c_acctbal
c_mktsegment
c_name
p_name
p_brand
p_type
p_size
p_container
r_name
s_name
n_name
o_totalprice
o_orderstatus
o_orderdate
o_orderpriority
o_shippriority

No
No
No
No
No
Yes
No
No
No
Yes
No
No
No
Yes
No
Yes
Yes
No
No
No
No
No
Yes
No
No

NoDBA
l_discount
l_quantity
l_shipdate

No
No
Yes

Random

l_extendedprice
l_returnflag
l_commitdate
l_shipmode
o_orderstatus
o_clerk
o_comment
ps_supplycost
ps_comment
c_mktsegment
c_phone
s_address
s_comment
s_phone
p_mfgr
p_comment
p_retailprice
n_comment

No
No
No
No
No
No
No
No
No
No
No
No
No
No
No
No
No
No

