
ESCOLA POLITÉCNICA

PROGRAMA DE PÓS-GRADUAÇÃO EM CIÊNCIA DA COMPUTAÇÃO

MESTRADO EM CIÊNCIA DA COMPUTAÇÃO

ANDERSON ROBERTO PINHEIRO DOMINGUES

ORCA: A SELF-ADAPTIVE, MULTIPROCESSOR SYSTEM-ON-CHIP
PLATFORM

Porto Alegre

2020

1

PONTIFICAL CATHOLIC UNIVERSITY OF RIO GRANDE DO SUL
SCHOOL OF TECHNOLOGY

COMPUTER SCIENCE GRADUATE PROGRAM

ORCA: A SELF-ADAPTIVE,
MULTIPROCESSOR

SYSTEM-ON-CHIP PLATFORM

ANDERSON ROBERTO PINHEIRO DOMINGUES

Master’s Thesis submitted to the Pontifical
Catholic University of Rio Grande do Sul
in partial fulfillment of the requirements
for the degree of Master in Computer
Science.

Advisor: Prof. Dr. Alexandre de Morais Amory

Porto Alegre
2020

Anderson Roberto Pinheiro Domingues

ORCA, A Self-Adaptive, Multiprocessor System-on-Chip
Platform

This Master Thesis/Doctoral Thesis has been

submitted in partial fulfillment of the requirements

for the degree of Doctor/Master of Computer

Science, of the Graduate Program in Computer

Science, School of Technology of the Pontifícia

Universidade Católica do Rio Grande do Sul.

Sanctioned on February 28, 2020.

COMMITTEE MEMBERS:

Prof. Dr. Antonio Carlos Schneider Beck Filho (PGCC/UFRGS)

Prof. Dr. Cesar Augusto Missio Marcon (PPGCC/PUCRS)

Dr. Alexandre de Morais Amory (PPGCC/PUCRS - Advisor)

“Philosophy is a battle against the bewitch-
ment of our intelligence by means of language.”
(Ludwig Wittgenstein, philosopher)

ORCA: A SELF-ADAPTIVE, MULTIPROCESSOR SYSTEM-ON-CHIP
PLATFORM

ABSTRACT

The complex organization of multiprocessor systems-on-chips (MPSoCs) requires
the smart management of systems’ resources during runtime and the capability of systems
to optimize their operation under abnormal situations such as temporary hardware unavail-
ability. One of the approaches for resource management in MPSoCs is self-adaptation,
which augment these systems with sensors, actuators, and decision logic components. In
this thesis, we propose ORCA, a development platform to aid in designing self-adaptive
systems. The platform provides abstractions to deal with self-adaptation complexity, based
on previous work in the field, including a configurable hardware architecture, operating sys-
tem, software libraries, and simulation environment. The hardware architecture consists of
open-source hardware modules and implements a many-core approach based on a RISC-
V compatible processor core. That architecture can be emulated and simulated through
ORCA-SIM, a simulation tool, also part of this work. The tool uses discrete-event simulation
to speed up the simulation process, based on the URSA application programming inter-
face, also part of this work. Software components are also discussed, including a library
for hardware monitoring and energy consumption estimation, and a library for designing
publish-subscribe systems. We present a compilation of results achieved in previous work
and new experiments to cover the validation of the entire platform. For the latter, we fo-
cus the discussion on the design of a task reallocation mechanism based on self-adaptive
components.

Keywords: multiprocessor system-on-chip, self-adaptative systems, computing system sim-
ulation.

ORCA: UMA PLATAFORMA MULTIPROCESSADA INTRA-CHIP
AUTO-ADAPTATIVA

RESUMO

A complexa organização dos sistemas multiprocessador intra-chip (MPSoCs) de-
manda a organização inteligente dos recursos destes sistemas em tempo de execução,
assim como a capacidade destes sistemas de otimizarem sua operação em situações atípi-
cas, como a indisponibilidade temporária de hardware. Uma das abordagem utilizadas para
gerência de recursos em MPSoCs é a da auto-adaptação, que aprimora estes sistemas
através de componentes como sensores, atuadores, e lógica de decisão. Nesta disserta-
ção, nós propomos ORCA, uma plataforma de desenvolvimento para auxiliar no projeto de
sistemas auto-adaptativos. A plataforma provê abstrações para contornar a complexidade
da auto-adaptação, baseado em trabalhos anteriores da área, incluindo uma arquitetura
de hardware configurável, sistema operacional, bibliotecas de software, e ambiente de si-
mulação. A arquitetura de hardware consiste de módulos de hardware de código-aberto e
implementa uma arquitetura multiprocessada baseada em um processador compatível com
o padrão RISC-V. A arquitetura também pode ser simulada e emulada através da ferramenta
de simulação ORCA-SIM, parte desde trabalho. Esta ferramenta utiliza simulação de even-
tos discretos para acelerar o processo de simulação, e utiliza da interface de programação
de aplicação (API) URSA, também parte deste trabalho. Componentes de software também
são discutidos, incluindo uma biblioteca para o monitoramento de hardware e consumo de
energia, e uma biblioteca para o projeto de sistemas publish-subscribe. Nós apresentamos
um compilado dos resultados obitidos em trabalhos anteriores e novos experimentos para
cobrir a validação de toda a plataforma. Para este último, focamos a discussão no projeto
de um mecanismo de realocação de tarefas baseado em componentes auto-adaptativos.

Palavras-Chave: sistemas multiprocessados intra-chip, sistemas auto-adaptativos, simula-
ção de sistemas computacionais.

LIST OF FIGURES

Figure 2.1 – ASoC’s architecture and Learning Classifier Tables (LCT). 30

Figure 2.2 – CARUSO’s architecture . 32

Figure 2.3 – HAMSoC Hierarchical Architecture . 33

Figure 2.4 – CPSoC Architecture . 34

Figure 2.5 – Internal structure and composition of cells in Dodorg 36

Figure 2.6 – Self-organization of an autonomous robot-based production cell 37

Figure 2.7 – HeMPS instance using a 6x6 mesh NoC . 38

Figure 3.1 – The organization of ORCA platform . 43

Figure 3.2 – Organization of components for self-adaptation in ORCA 45

Figure 4.1 – An illustration of a hardware model in URSA . 53

Figure 4.2 – A class diagram for the simulation engine package 55

Figure 4.3 – Class diagram for the base model package . 57

Figure 4.4 – Class diagram for the extended model package 59

Figure 4.5 – Class diagram for the facade application. 59

Figure 5.1 – A router, a NoC, and the connection between routers 62

Figure 5.2 – Addressing system for the NoC . 63

Figure 5.3 – A router (left) and its internal components (right). 63

Figure 5.4 – An off-chip comm. tile and the network bridge module (nbm) 64

Figure 5.5 – Overview of a processing tile and its components 66

Figure 5.6 – Illustration of the single-port memory core used in ORCA 66

Figure 5.7 – Platform’s memory map . 67

Figure 5.8 – Interface of a FIFO buffer . 67

Figure 5.9 – The network interface module . 68

Figure 5.10 – Interface for the HFRiscV processor core . 70

Figure 5.11 – Interface for the memory multiplexer module . 70

Figure 6.1 – Illustration of HellfireOS organization . 72

Figure 7.1 – Integration with a robotics system . 78

Figure 7.2 – Simulation performance considering the robotics system 78

Figure 7.3 – Components of the environment for robotics application development 79

Figure 7.4 – Task sets for the demonstration on task reallocation 81

Figure 7.5 – A self-adaptive technique for task reallocation 81

Figure 7.6 – Results for Bubble Sort and For Loop applications’ experiment 84

Figure 7.7 – Results for the scalability experiment . 85

Figure A.1 – Using muiltitail to visualize log files. 99

Figure B.1 – Interface of an untimed multiplier module. 101

Figure B.2 – Excerpt of the header file for the multiplier model. 101

Figure B.3 – Implementation file for the multiplier model. 102

Figure B.4 – A pointer to a multiplier (left) and a new instance of multiplier (right) . 103

Figure B.5 – Inputs and outputs of the multiplier mapped into the memory space. . 103

Figure B.6 – Modified mem_read method. 103

Figure B.7 – Modified mem_write method. 104

Figure B.8 – A simple peripheral driver for the untimed multiplier module. 104

Figure C.1 – Inputs and outputs for the divisor module. 105

Figure C.2 – Transition system representing the divisor. 106

Figure C.3 – Header file for the divisor module. 107

Figure C.4 – Implementation file for the divisor module. 107

Figure C.5 – The Run method emulating idle cycles (left) and skipping idle cycles
(right). 108

Figure C.6 – Testbench header file. 109

Figure C.7 – The simulation file, MySim.cpp. 110

LIST OF TABLES

Table 2.1 – Features mentioned in studies for ASoC platform 31

Table 2.2 – Features mentioned in studies for CARUSO platform 32

Table 2.3 – Features mentioned in studies for HaMSoC platform 33

Table 2.4 – Features mentioned in studies for CPSoC platform 35

Table 2.5 – Summary on the features mentioned in studies for the DodOrg platform 37

Table 2.6 – Summary on the features mentioned in studies for the HeMPS platform 39

Table 2.7 – Implementation of requirements per platform . 42

Table 2.8 – Features mentioned in related work and how ORCA supports them . . 42

Table 6.1 – Counters available in ORCA Monitoring. 73

Table 6.2 – Operations implemented in ORCA Publish-Subscribe. 75

Table 6.3 – Operations implemented in the Network Client Library. 76

Table C.1 – Implementation of requirements per platform . 109

LIST OF ACRONYMS

ABB – Adaptive Body Biasing

ALU – Arithmetic and Logic Unit

AMBA – Advanced Microcontroller Bus Architecture

API – Application Programming Interface

ASOC – Autonomic System-on-Chip

BTI – Bias Temperature Instability

CPSOC – Cyber-Physical System-on-Chip

DES – Discrete-event Simulation

DMA – Direct Memory Access

DSL – Domain-Specific Language

DSP – Digital Signal Processor

DVFS – Dynamic Voltage-Frequency Scaling

EKF – Extended Kalman Filter

FIFO – First-In, First-Out

FPGA – Field-Programmable Gate Array

FSM – Finite State Machine

GMP – Global Manager PE

GPL – General-Purpose Language

HAL – Hardware Abstraction Layer

HAMSOC – Hierarchical Agent Monitored SoC

HEMPS – Hermes Multiprocessor System-on-chip

HPDC – High-Performance Distributed Computing

I/O – Input/Output

IOT – Internet of Things

IP – Intellectual Property

LMP – Local Manager PE

MAPE – Monitoring-Analysis-Planning-Execute

MAPE-K – Monitoring-Analysis-Planning-Execute-Knowledge

MPSOC – Multiprocessor System-on-Chip

NBTI – Negative Bias Temperature Instatibility

NI – Network Interface

NOC – Network-on-Chip

NORMA – No-Remote Memory Access

OC – Organic Computing

ODA – Observe-Decide-Act

ORCA – Self-adaptive System-on-Chip Platform

OVP – Open Virtual Platforms

PE – Processing Elements

PID – Proportional-Integral Derivative

RAM – Random-Access Memory

RISC – Reduced Instruction Set Computer

RM – Resource Management

RSP – Remote Serial Protocol

RTL – Register-Transfer Level

SAL – Software Abstraction Layer

SAS – Self-Adaptive System

SOC – System-on-Chip

SP – Slave PE

STL – Standard Template Library

SUS – System Under Simulation

TDDB – Time-dependent Dieletric Breakdow

VLSI – Very Large Scale Integration

CONTENTS

1 INTRODUCTION . 23

1.1 RESEARCH PROBLEM AND SCOPE . 24

1.2 GOALS . 25

1.3 CONTRIBUTIONS . 25

1.4 PUBLICATIONS . 26

1.5 THESIS ORGANIZATION . 27

2 RELATED WORK . 29

2.1 A NON-SYSTEMATIC REVIEW ON SELF-ADAPTIVE SOC DESIGN 29

2.1.1 AUTONOMIC SYSTEM-ON-CHIP (ASOC) . 29

2.1.2 CONNECTIVE AUTONOMIC REAL-TIME ULTRA-LOW-POWER SYSTEM ON
CHIP (CARUSO) . 31

2.1.3 HIERARCHICAL AGENT MONITORED SOC (HAMSOC) 32

2.1.4 CYBER-PHYSICAL SYSTEM-ON-CHIP (CPSOC) . 34

2.1.5 DODORG – A SELF-ADAPTIVE ORGANIC MANY-CORE ARCHITECTURE . . 36

2.1.6 HERMES MULTIPROCESSOR SYSTEM-ON-CHIP (HEMPS) 38

2.2 REQUIREMENTS FOR SELF-ADAPTATION IN MPSOCS 39

2.2.1 HARDWARE DESIGN . 39

2.2.2 KERNEL FEATURES . 40

2.2.3 SOFTWARE DESIGN . 40

2.2.4 ARCHITECTURAL ASPECTS . 41

3 ORCA: A SELF-ADAPTIVE MPSOC PLATFORM . 43

3.1 PLATFORM ORGANIZATION . 43

3.2 A DEVELOPMENT ENVIRONMENT FOR SELF-ADAPTIVE TECHNIQUES . . . 45

3.2.1 PHYSICAL SENSING . 46

3.2.2 LOGICAL SENSING . 46

3.2.3 EVALUATORS . 46

3.2.4 DECISION LOGIC . 47

3.2.5 SYSTEM STATE . 47

3.2.6 POLICIES AND GOALS . 47

3.2.7 PROCEDURES . 48

3.2.8 ACTIONS . 48

3.2.9 SWITCHES . 48

4 URSA: A MICRO (µ) RAPID-SIMULATION API . 49

4.1 BACKGROUND AND MOTIVATION . 49

4.2 SIMULATION MODEL . 51

4.2.1 HARDWARE MODELS . 52

4.2.2 PERFORMANCE VS. ACCURACY TRADE-OFF . 53

4.2.3 DVFS SIMULATION AND DARK SILICON . 54

4.3 URSA SIMULATION API . 54

4.3.1 SIMULATION ENGINE PACKAGE . 55

4.3.2 MODEL PACKAGE . 57

4.4 ORCA-SIM, A SIMULATOR ON TOP OF URSA . 58

5 HARDWARE COMPONENTS . 61

5.1 TOP-LEVEL ORGANIZATION . 61

5.2 NETWORKING ORGANIZATION AND ROUTER MODULES 61

5.2.1 ROUTERS . 62

5.3 OFF-CHIP COMMUNICATION TILES . 64

5.3.1 NETWORK BRIDGE MODULE (NBM) . 64

5.3.2 VIRTUAL ETHERNET ADAPTER (VEA) . 65

5.4 PROCESSING TILES . 65

5.4.1 MEMORY CORE . 65

5.4.2 FIFO BUFFERS . 67

5.4.3 NETWORK INTERFACE (NI) . 68

5.4.4 HFRISCV (PROCESSOR CORE) . 69

5.4.5 MEMORY MULTIPLEXER . 70

6 SOFTWARE COMPONENTS . 71

6.1 HELLFIREOS . 71

6.2 SUPPORT LIBRARIES . 72

6.2.1 ORCA MONITORING . 72

6.2.2 ORCA PUBLISH-SUBSCRIBE . 73

6.3 NETWORK CLIENT LIBRARY . 76

7 EVALUATION . 77

7.1 FUNCTIONAL VALIDATION . 77

7.1.1 INTEGRATION WITH A ROBOTICS ENVIRONMENT . 77

7.1.2 ENERGY CONSUMPTION ESTIMATION . 79

7.1.3 TASK REALLOCATION WITH SOFTWARE SENSING . 80

7.2 PERFORMANCE EVALUATION . 83

7.2.1 SINGLE-CORE PERFORMANCE . 83

7.2.2 SCALABILITY AND MULTI-CORE PERFORMANCE . 85

8 CONCLUSIONS AND FUTURE WORK . 87

8.1 AUTHOR’S WORDS AND RESEARCH OUTLOOK . 87

REFERENCES . 89

APPENDIX A – Tutorial for Using the ORCA Platform . 97

A.1 REQUIREMENTS . 97

A.2 ACQUIRING THE SOURCE CODE . 97

A.3 COMPILING THE SIMULATOR AND SOFTWARE IMAGE 98

A.4 RUNNING THE SIMULATION . 99

APPENDIX B – Tutorial for Creating an Untimed Multiplier 101

B.1 CODING THE HARDWARE MODULE . 101

B.2 CHANGING BETWEEN PLATFORMS . 102

B.3 CONNECTING THE MULTIPLIER TO THE PROCESSOR CORE 102

B.4 INTERACTING WITH THE MULTIPLIER VIA MEMORY-MAPPED I/O 103

B.5 ACCESSING THE MULTIPLIER THROUGH SOFTWARE 104

APPENDIX C – TUTORIAL FOR CREATING TIMED MODELS 105

C.1 MODELING TIMED MODELS AS STATE MACHINES . 105

C.2 TRANSLATING THE MODEL INTO CODE . 106

C.3 CREATING A TESTBENCH . 108

C.4 CREATING A SIMULATION TOOL . 110

23

1. INTRODUCTION

Multiprocessor system-on-chip (MPSoC) is an important class of very large scale
integration (VLSI) devices, emerged in the ’2000s, in which all (or most of) the components
necessary for a multiprocessor application reside in the same chip [83]. The goal of the
MPSoC technology is to fill a gap in the market for low-power/energy, high-performance plat-
forms, which matches the requirements of embedded application domains such as robotics
and autonomous vehicles, Internet-of-Things, and mobile communication and gaming. Nowa-
days, the market for MPSoCs targets many products, including vehicles [14, 54], smart-
phones, digital televisions, video games [58], and other specialized telecommunications and
networking devices [62].

The ever-decreasing size of technology node has forced up the number of transis-
tors per area, which increases year after year [69]. However, Moore’s law is bending [15, 55],
and computing power for single-core chips have been limited by physical constraints that
lead to power dissipation and frequency walls [61]. In this situation, MPSoC technology
appears as an alternative to keep pace with the increasing demand for computing power
for modern embedded systems by exploring massively parallel architectures together with
smart resource management (RM) [16, 39, 68, 88]. RM allows for the runtime configuration
of MPSoCs, dynamically adapting the system in the presence of atypical situations such as
high workload and temporary hardware unavailability [48, 49, 53].

One notorious approach for RM in MPSoCs is self-adaptation. Systems with self-
adaptive traits, called self-adaptive systems (SaS), have capabilities to manage themselves
in the face of a changing environment [8]. In the domain of MPSoCs, self-adaptation plays
an essential role in RM, whose studies encompass security [17, 76], fault-tolerance [63],
energy management [48], and performance [87]. Since the late 90’s, many attempts to
provide RM through self-adaptation were made, including those of organic and autonomic
computing [85, 86, 87], passing through cyber-physical systems [72, 74, 73] and hierarchical
management [30], ending up with modern ad hoc solutions [9, 24]. These attempts included
modeling elements whose purpose makes sense only within their paradigm [46], rarely being
able to be reused anywhere else.

In MPSoCs, self-adaptation permeates both software and hardware components.
A self-adaptive technique represents the implementation of a self-adaptive trait and can in-
clude from the physical on-chip temperature sensor to software-level, application-specific
counters in the design. For instance, an arbitrary self-adaptive technique may combine
hardware-only actuation, e.g., dynamic voltage-frequency scaling (DVFS), with software-
driven decision mechanisms. The number of available self-adaptive techniques is vast, and
as far as we are concerned, there is no comprehensive bibliographic review on the matter.
Nevertheless, from the studies on specific techniques, we can conclude that these tech-

24

niques share some specific features such as sensors (both software and hardware ones),
actuators, and decision logic. Sensing, interchangeably called monitoring, provides the nec-
essary information for the system to be aware of environmental (including itself) status.
Then, a decision mechanism must use of sensing data to anticipate possible hazards to
the operation of the system, or even explore possibilities for performance gains. Lastly, the
system must have access to actuation points through components that allow for runtime
configuration. The community translated this thought into the so-called control-loops, ac-
companied by one or another paradigm in the past. Examples of such control loops include
MAPE [36], MAPE with knowledge (MAPE-K) [2], and ODA [47], all they emerged within
the autonomic computing paradigm. For a comprehensive survey on self-adaptive systems
engineering, see Krupitzer et al. [45].

1.1 Research Problem and Scope

MPSoC platforms with support for self-adaptation were developed in the past [3, 7,
74]. However, these platforms assume specific frameworks and are limited to support a par-
ticular set of techniques. As different paradigms have different assumptions about systems’
functioning, porting techniques between paradigms can be challenging. One way to decou-
ple platform-specific features and application programming interface (API) from self-adaptive
techniques is to describe these techniques using well-defined building blocks, whose func-
tioning rely on generic system components, usually implemented through a software ab-
straction layer (SAL). Since some techniques may require specialized hardware, there must
be support for abstracting hardware through a hardware abstraction layer (HAL). Given the
complex, non-trivial, and time-consuming activity of developing self-adaptive techniques, a
platform to support the design of such techniques is of interest.

In this thesis, we present ORCA, a platform for developing self-adaptive tech-
niques targeting MPSoCs. ORCA provides the tooling for developers to build self-adaptive
techniques for MPSoC hardware organization, comprising a configurable number of pro-
grammable processor cores with private, no-remote memory access (NORMA) hierarchy
and network-on-chip (NoC) communication infrastructure. We provide two communication
models within the platform: the message-passing model, which is the most primitive mecha-
nism for point-to-point communication, and the publish-subscribe model, which provides de-
centralized communication. We also provide libraries containing data structures for sensors,
actuators, and decision-logic components. All software is build up on top of HellfireOS [40],
a fully-preemptive, real-time operating system. Finally, URSA, a simulation API, provides the
basis for building cycle-accurate simulators, also allowing hardware models to be modified
to include new sensors, e.g., counters, and actuators, e.g., clock gating.

25

1.2 Goals

The goal of this work is to provide a platform for the development of self-adap-
tive techniques targeting MPSoCs. For this purpose, we present ORCA, which we claim to
provide the necessary support for the development of these techniques. We present features
that we designed during the work and the motivation to include them in the platform for the
remain of the thesis. The following secondary goals apply to this thesis.

1. Propose an architecture for an MPSoC, and provide a reference hardware organization
to aid the development of self-adaptive software. Such an organization would rely on
existing and favorably open-source modules (Chapter 5).

2. Provide software abstractions to control self-adaptive aspects of the MPSoC from the
software-level, incorporating features from other libraries and middleware, if available
(Chapter 6).

3. Suggest an alternative to canonical register-transfer level (RTL) simulation to accel-
erate simulations of the system, preferably with minimum loss of simulation precision
(Chapter 4).

4. Provide a taxonomy on the components for self-adaptation, as well as data structures
to represent these components in the platform (Chapter 3).

5. Validate the platform by demonstrating the implemented features through minimal work-
ing examples, also focusing on the participation of these features in self-adaptation
(Chapter 7).

1.3 Contributions

The main contribution of this work refers to the organization for the components
of the proposed platform, specifically those related to self-adaptation. That organization is
inspired by the paradigms that ruled the domain over the years. These paradigms repre-
sent years of development in several fields and encompass a massive amount of studies,
reported in many conference proceedings, journals, and books. We summarize the contri-
butions of this thesis as follows.

1. A cycle-accurate simulator, named ORCA-SIM, to simulate models written in C++,
capable of estimating the energy consumption of the system under simulation (SUS).
The simulator is made on top of URSA, an API for simulating computing systems. Both
are novel contributions of this thesis (Chapter 4).

26

2. A hardware organization for an NoC-based, mesh-topological MPSoC, consisting of a
router, network interface, processor core, memory modules, and auxiliary modules for
off-chip communication. The provided hardware models are based on existing open-
source register RTL projects. All hardware models, with exception to the processor
core, are novel contributions of this thesis (Chapter 5).

3. Three software libraries: The first library provides monitoring of the system through
hardware and software sensing. The second library supports the development of
publish-subscribe applications, mainly targeting the dissemination of data within the
system. The third library permits the system to communicate with peripheral and ex-
ternal modules. The three libraries are novel contributions of this thesis (Chapter 6).

4. Demonstrations on some features of the proposed platform, including functionalities
such as task reallocation, energy estimation, and off-chip communication (Chapter 7).

1.4 Publications

During the master’s period, the author submitted four conference papers and one
journal article; all them have been accepted for publication [33, 21, 19, 20, 79]. We summa-
rize the contributions presented in each publications as follows.

• 2018

– Broker fault recovery for a multiprocessor system-an-chip middleware (SBCCI [19]).
In the paper, the authors present a protocol to backup sensitive data from brokers
in the MPQSoC middleware [32], along with a recovery protocol to use the backed
up data to reestablish the publish-subscribe service in the system. The authors
validated the work in MPSoC platform in Open Virtual Platforms (OVP).

– Evaluating serialization for a publish-subscribe based middleware for MPSoCs
(ICECS [33]). In this work, the authors performed experiments to measure the
performance, code size, and memory usage of several serialization libraries. The
experiments were performed on the same OVP platform from previous work [32].

• 2019

– Integrating an MPSoC to a Robotics Environment (LARS [21]). In this work, the
authors develop two nodes for a ROS [59] system that permit the ORCA MPSoC
to communicate with external systems. The goal was to integrate the MPSoC
with Gazebo [60], a robot simulator. As a demonstration, the authors present a
synthetic random-walk application running in the MPSoC. The application reads

27

data from the robot’s sensors (laser range and odometry) and actuates on the
wheels of the robot to move it around an example room.

• 2020

– Towards an integrated software development environment for robotic applications
in MPSoCs (ISCAS [79]). In this work, the authors use the ROS nodes developed
in the previous work [21] to provide a development environment. In the environ-
ment, Gazebo simulates the world and robot’s physics, while the software runs in
the ORCA MPSoC. The environment provides several hardware counters that en-
able energy estimation of the system through hardware characterization using the
technique proposed by Martins [48, 49]. The authors validated the environment
for a control application in a quadrotor vehicle.

– A Fault Recovery Protocol for Brokers in Centralized Publish-Subscribe Systems
targeting Multiprocessor Systems-on-Chips (ANALOG [20]. In this work, the au-
thors extend a fault recovery protocol [19], making it modular so that parts of
the protocol can be replaced by other existing solutions, contemplating a broader
range of systems. The authors validated the protocol in two MPSoC platforms: (i)
the OVP platform from the previous work [32], and (ii) HeMPS [56].

1.5 Thesis Organization

We organize the rest of the thesis as follows. In Chapter 2, we discuss the related
work, including studies that resemble the one presented in this thesis. We center the discus-
sion around the features of six system-on-chip (SoC) platforms, representing the paradigms
that conducted the development of self-adaptive techniques for MPSoCs in the last two
decades. We close that chapter by presenting the requirements that lead to the design deci-
sions in ORCA. We present ORCA, the proposed platform, in four chapters. First, Chapter 3
presents an overview of the platform, organized in terms of software, hardware, and tools.
In Chapter 4, we discuss the simulation environment, consisting of URSA, a simulation API,
and ORCA-SIM, a simulation tool. Next, Chapter 5 presents the hardware modules that
we integrated into the platform, followed by the software components, presented in Chap-
ter 6. Chapter 7 brings demonstrations on several features of the platform, including task
reallocation and software sensing. Lastly, Chapter 8 presents the final consideration of this
thesis, including lessons learned during the development of this work, a list of features to
be included in upcoming versions of the platform, and research directions encompassing
self-adaptive techniques and resource management for MPSoCs.

28

29

2. RELATED WORK

Self-adaptation certainly encompasses several aspects of MPSoC design, such as
sensing and actuation, decision logic, software-hardware logic partitioning, and task alloca-
tion. These concepts are generally developed aside from each other, although the literature
presents many attempts to explore them altogether. In this chapter, we endeavor to sum-
marize the progress of a couple of projects in the exploration of MPSoC design regarding
self-adaptation. The goal is to identify which features make certain MPSoC platforms self-
adaptive, as well as to identify the requirements that lead to some of the design decisions
discussed in related studies. With that end, we report the results of a non-systematic review
of the literature while discussing projects that, in our opinion, present remarkable contribu-
tions to the state-of-the-art in the field, in Section 2.1. Later in the chapter, in Section 2.2,
we present the requirements for the platform proposed in this thesis, based on features that
we identified in the discussed platforms.

2.1 A Non-Systematic Review on Self-Adaptive SoC Design

In this section, we discuss six MPSoC projects: Autonomic System-on-Chip (ASoC),
Connective Autonomic Real-time Ultra-low-power System on Chip (CARUSO), Hierarchi-
cal Agent Monitored SoC (HaMSoC), Cyber-Physical System-on-Chip (CPSoC), A Self-
Adaptive Organic Many-Core Architecture (DodOrg), and Hermes Multiprocessor System-
on-Chip (HeMPS). The goal is to present an overview of each project, identifying compo-
nents that enable self-adaptation in these platforms. For a comprehensive discussion on the
features of each particular platform, please refer to the related publications.

2.1.1 Autonomic System-on-Chip (ASoC)

In 2005, Lipsa et al. [47] presented ASoC, a proposal for a framework to aid in the
development of SoC platforms with self-adaptive features. They argued that some of the ca-
pacity of transistors in SoCs should be used to add self-adaptive features to these platforms,
as the number of transistors was dramatically increasing year after year. These features
would include higher fault tolerance, increased performance, power/energy efficiency, and a
more straightforward system diagnosis.

In the ASoC framework, the hardware is separated into two layers. The first, the
functional layer, might include all hardware of the system that is not related to self-adaptation,
that is, the hardware that implements the functional requirements of the system. For the

30

non-functional requirements, the autonomic layer would group all the hardware that explicitly
implements the self-adaptive features of the system, comprising monitors, actuators, evalu-
ators, and a communication interface with the functional layer. Figure 2.1 (left) illustrates the
organization of layers adopted in ASoC.

Figure 2.1 – ASoC’s architecture with Advanced Microcontroller Bus Architecture (AMBATM)
interconnection (left), and an learning classifier tables (LCT) serving as an evaluator (right)
(adapted from [47]).

It is important to note that the authors presented no case study or validation of the
architecture or the design methodology at that moment. However, ASoC appeared as the
basis for other studies. In 2006, Bouajila et al. [5] studied error detection techniques and the
feasibility of implementing them as monitors for the ASoC framework. The authors provide
a fault classification and a survey on previous work but do not provide any results, as the
work was reportedly in progress. Years later, in 2010, Zeppendfeld et al. [85] reported the
successful implementation of a fault-tolerant CPU data path with the ASoC framework, as
well as the application of reinforcement learning to fine-tuning the actuation of the system
through learning classifier tables (LCT) [86]. They point scalability and reliability as future
challenges while providing experimental results for an adaptive Ethernet MAC module.

Zeppenfeld et al. [87], in 2011, adopted the co-design of autonomic elements for
the automated load-balancing of a task-based system. The software part of the system was
responsible for task migration, while the hardware monitors the workload by intercepting
data directly on the CPU. The system workload was calculated by reading the frequency
and utilization of the CPUs. They used actuators to configure Leon3 cores to operate at
the desired frequency following their workload. Regarding task migration, the autonomic
elements implement a binding system for deciding whose core would run the migrated task.
The platform was evaluated against a version using the dynamic voltage-frequency scaling
(DVFS) technique and a static version of the same system. As a result, the authors report
that the autonomic approach surpasses both the DVFS and static versions of the platform
for all evaluated metrics.

31

From studies related to ASoC, we extracted components that we believe that closely
relate to the self-adaptation, as shown in Table 2.1. We included only features explicitly men-
tioned in the papers to avoid misleading our review, performing the same analysis for all the
platforms discussed in this chapter. From now on, by the end of each section, a table will
display the extracted features for each platform. We distribute the extracted components
in classes that group them according to their role in the system. We explain these classes
later, in Section 3.2, as they guide the organization of self-adaptation in ORCA.

Table 2.1 – Summary on the features mentioned in studies for ASoC platform.

Label Feature Class

F-ASOC-1 Functional and autonomic layers for hardware components Architectural
F-ASOC-2 Frequency Monitor Physical Sensor
F-ASOC-3 Cycle Counter Physical Sensor
F-ASOC-4 Workload Monitor Logical Sensor
F-ASOC-5 Frequency Scaling (Clock Gating) Physical Actuator
F-ASOC-6 Task Migration Logical Actuator
F-ASOC-7 Voltage Scaling Physical Actuator

2.1.2 Connective Autonomic Real-time Ultra-low-power System on Chip (CARUSO)

CARUSO is an approach for designing SoCs with a focus on autonomic computing,
low energy consumption, connectivity, and real-time support, in addition to the existing re-
quirements of embedded platforms [7]. Most of the proposed architecture relies on software
and middleware for regulating networking and self-* properties1 along with a helper thread.
CARUSO uses the helper thread to treat monitoring and decision-making in the system.
One of the most notable benefits of using an auxiliary thread to control the autonomic part of
the system includes the support for real-time applications, where a fixed slice of time is re-
served for the auxiliary thread to run using guaranteed percentage scheduling [44]. Finally,
the helper thread would run in a multithreaded processor, separated from the reconfigurable
parts of the system, deployed to an FPGA.

As validation, the authors claim to have applied the CARUSO approach to a swarm
of robots application, whose organization is as shown in Figure 2.2. However, the paper does
not provide any evidence of such a claim, nor a reference to previous work, future, or related
work. Still, Herkersdorf et al. [34] argue that their work is complementary to CARUSO,
as they invest their efforts exclusively to provide self-adaptation in hardware, contrary to

1Groups of properties that include self-management, self-adaptation, self-healing, and other properties with
the “self-” prefix are commonly denoted as “self-*” or “self-x”.

32

CARUSO’s, which relies exclusively on software. We present a summary of the features
mentioned in single study involving CARUSO in Table 2.2.

Middleware

Module library
(HW and SW

modules)

Mobile small size
robot

SoC (adaptive SoC,
multithreaded

 processor core)

SoC Operating
System

Local (re-)conf., local
power mgm.

Connectivity, networking and distributed reconfiguration

System-configuration, -optimization
Global

Power Mgm.
Real-time

requirements
Functional

requirements

System-monitoring

Protection Healing

...

...

…
robot swarm

ha
rd

w
ar

e

 s
of

tw
ar

e

A
pp

lic
at

io
n

 C

A
R

U
S

O

Mobile small size
robot

SoC (adaptive SoC,
multithreaded

 processor core)

SoC Operating
System

Local (re-)conf., local
power mgm.

Figure 2.2 – CARUSO’s architecture (adapted from [7]).

Table 2.2 – Summary on the features mentioned in studies for CARUSO platform.

Label Feature Class

F-CARU-1 Monitoring via auxiliary threads Architectural
F-CARU-2 Energy Monitoring Logical Sensor
F-CARU-3 Clock Frequency and Voltage Scaling Physical Actuator
F-CARU-4 Dark Silicon Physical Actuator
F-CARU-5 Real-time Constraints Logical Sensor
F-CARU-6 Off-chip Communication Interface Architectural

2.1.3 Hierarchical Agent Monitored SoC (HaMSoC)

HAMSoC [30] uses an hierarchical organization of agents for monitoring and ac-
tuating on a self-adaptive MPSoC. There are three levels of agents in HAMSoC: platform
agent, cluster agent, and cell agent. The platform agent implements general monitoring
and configuration of the platform, aiming for global optimization of the system, including net-
work configuration and voltage island partition. The cluster agents apply the configuration to
the associated clusters, while the platform agent decides on the configuration of the whole
platform. However, the application of the configuration is performed per cluster, individu-
ally, since modern MPSoC may run applications with different resources requirements. On

33

the cell level, which corresponds to a processing element (PE) in ordinary MPSoCs, the
cell agent traces the status of the local circuit, monitoring for faults, failures, and workload
issues. Figure 2.3 shows the different agents of HAMSoC architecture.

platform agentapplication
agent

cluster
agent ...

cell
agent

cell
agent

cell cell...

cluster

...

resource

monitoring processing
logic

sensors actuators

agent abstraction

Figure 2.3 – HAMSoC Hierarchical Architecture (adapted from [30]).

HAMSoC provides a framework for formal modeling of agents, resources, and mon-
itoring operations. Parameters of agents and resources can be specified so that they are
visible to monitoring operations. Tuples specify the properties for agents and resources,
while state machines specify the behavior of agents. They provide a design example of a
hierarchical power monitoring system of a clustered MPSoC, containing clusters of four PE
each. The many PEs were interconnected using on-chip routers in a mesh-based topology
network-on-chip, called HAMNoC. It is important to note that one PE per cluster was dedi-
cated to run the cluster agent, while the other three cell agents run in the remaining PE. In
the provided example, application agents inform application requirements to cluster agents,
which apply DVFS to the cluster to keep communication power as lower as possible without
degradation of service’s quality. Although the authors mention the role of the platform agent
in the example system, it was not possible to determine the PE in which the platform agent
is running. Also, the authors discuss no benefits of using the formal modeling framework.
We summarize the features found for HaMSoC’s studies in Table 2.3.

Table 2.3 – Summary on the features mentioned in studies for HaMSoC platform.

Label Feature Class

F-HAMS-1 Hierarchical Monitoring Architectural
F-HAMS-2 Clock Frequency and Voltage Scaling Physical Actuator
F-HAMS-3 Clock Gating Physical Actuator
F-HAMS-4 Boundary Requirements Logical Sensor

34

2.1.4 Cyber-Physical System-on-Chip (CPSoC)

Sarma et al. [74] proposed a self-aware and adaptive MPSoC platform with cross-
level sensing and actuation named CPSoC. That platform relies on a middleware to pro-
vide self-adaptation based on the ODA (observe-decide-act) loop, where sensors are either
physical or virtual, distributed over the layers of the CPSoC architecture. For instance, the
platform can sense circuit delay, aging, leakage, temperature, and oxide breakdown at the
circuit/device level. The key features of the platform include (i) physical and virtual sensing
actuation, (ii) self-awareness and self-adaptation, (iii) cross-layer interaction between com-
ponents, and (iv) predictive modeling and learning. CPSoC’s adopts two networks-on-chips.
The first, named cNoC (core-to-core NoC), treats packets for application purposes. The
other one, named sNoC, treats the control packets. Recent work [71] suggests using hybrid
NoCs to achieve real-time in CPSoC. Figure 2.4 shows an overview of CPSoC’s architecture.

O
n-chip S

ensing and A
ctuation

Application Layer
Adaptive Reflexive
Middleware Layer
Operating System

PLL

Perf. Counters
Timer & RTC

DDRO(s)
Oxide Sensor(s)

Temperature Sensor(s)

Leakage Sensor(s)

Aging Sensor(s)

Reliability Sensor(s)

GPIO

NIA

Scratch
pad/

On-chip
SRAM

CPU(s)

$L2

$I $D

PENoC Router OCSA

On-chip Actuation Unit

Software

MPSoC

Figure 2.4 – CPSoC Architecture (adapted from [73]).

CPSoC permits the configuration of adaptive control policies, and to prioritize them
according to their severity. For example, the system use data from aging, time-dependent
dieletric breakdown (TDDB), bias temperature instability (BTI), and temperature sensors to
detect impending failures. The implemented policy enforces the system to rest immedi-
ately, to heal itself by gating the clock and power of the block. This policy has severity four
(4), which means their activities have priority on the system’s resources against policies of
severity three or less. Examples of such policies include negative bias temperature instabil-
ity (NBTI) induced timing errors (3), thermal and power emergency (2), and thermal-induced
short delays (1). Besides, the platform provides support for self-learning mechanisms, en-
abling the MPSoC to anticipate failures and predict vulnerabilities. For instance, the temper-
ature control of CPSoC combines two hierarchical, cooperative ODA loops. The inner loops
implement adaptive feedback control. This loop is encapsulated into another loop that uses
online learning-based control. The thermal profiling of the system indicates that the peak of
temperature is mitigated by adopting the control-based approach [73].

35

Table 2.4 – Summary on the features mentioned in studies for CPSoC platform.
Label Feature Class

F-CPSO-1 Layer organization Architectural
F-CPSO-2 Application workload type Logical Sensors
F-CPSO-3 Application power and energy consumption Logical Sensors
F-CPSO-4 Application execution time Logical Sensors
F-CPSO-5 System utilization Logical Sensors
F-CPSO-6 Epoch length Logical Sensors
F-CPSO-7 Context switch counter Logical Sensors
F-CPSO-8 Thread load Logical Sensors
F-CPSO-9 History Logical Sensors
F-CPSO-10 Network bandwidth Physical Sensors
F-CPSO-11 Packet/Flit statuses Physical Sensors
F-CPSO-12 Channel status Physical Sensors
F-CPSO-13 Congestion Physical Sensors
F-CPSO-14 Latency Physical Sensors
F-CPSO-15 Bus/Router power Physical Sensors
F-CPSO-16 Branch miss Physical Sensors
F-CPSO-17 Ckt delay Physical Sensors
F-CPSO-18 Aging Physical Sensors
F-CPSO-19 Leakage Physical Sensors
F-CPSO-20 Power monitoring Physical Sensors
F-CPSO-21 Temperature sensor Physical Sensors
F-CPSO-22 Oxide breakdown Physical Sensors
F-CPSO-23 Reliability Physical Sensors
F-CPSO-24 Loop perforation Logical Actuators
F-CPSO-25 Memoization algorithmic choice Logical Actuators
F-CPSO-26 Degree of parallelism Logical Actuators
F-CPSO-27 Code redundancy Logical Actuators
F-CPSO-28 Task allocation Logical Actuators
F-CPSO-29 Scheduling Logical Actuators
F-CPSO-30 Task migration Logical Actuators
F-CPSO-31 Offloading Logical Actuators
F-CPSO-32 Duty cycling Logical Actuators
F-CPSO-33 Adaptive routing Physical Actuators
F-CPSO-34 Dynamic bandwidth allocation Physical Actuators
F-CPSO-35 Channel number and direction Physical Actuators
F-CPSO-36 Dynamic voltage-frequency scaling (DVFS) Physical Actuators
F-CPSO-37 Adaptive body biasing (ABB) Physical Actuators
F-CPSO-38 Reverse biasing Physical Actuators
F-CPSO-39 Clock and power gating Physical Actuators
F-CPSO-40 Multi-gate threshold Physical Actuators

36

We show a summary of the features extracted from studies on CPSoC in Table 2.4.
Please note that features for dynamic compilation, virtualization, and cache were intention-
ally omitted from the table as they do not relate to the runtime operation of the platform,
nor they relate to the hardware organization of the proposed platform. For a comprehensive
description of each feature, see Sarma et al. [72, 73, 74].

2.1.5 DodOrg – A Self-adaptive Organic Many-core Architecture

DodOrg [3, 22, 43] follows an organic computing approach by modeling the different
elements of self-adaptive real-time embedded systems as organs from the human body.
This approach relies on the multi-tier design of the system, including the brain, organs, and
cell tiers. At the brain level, the system is goal-driven, and the parts of the system are
coordinated by the brain to accomplish tasks (analogous to the human body). Next, the
organ level coordinate subsystems, that is, self-contained smaller systems responsible for
executing smaller but crucial tasks in the system (similar to organs, e.g., heart, stomach). At
the lowest tier, the cells of the system organize themselves to form tissues.

Figure 2.5 – Internal structure of a cell in DodOrg (adapted from [3]).

The hardware of Dodorg architecture relies on cells, which are similar to a PE
in most MPSoCs. They argue that these cells can be placed in a mesh-based topology
NoC, namely adaptive real-time network-on-chip (artNoC [75]), to form complex systems,
supporting a couple of traffic classes: best effort, real-time, and broadcast. These cells can
appear with digital signal processor (DSP), input and output (I/O), microprocessor, memory,
and field-programmable gate array (FPGA) modules, as shown in Figure 2.5.

The thermal management of the system relies on dedicated clock domains to adapt
the frequency to the current power budget of cells [22]. Regarding monitoring, the system

37

Figure 2.6 – Self-organization of an autonomous robot-based production cell [3].

uses the counters available in artNoC, e.g., link utilization, to detect abnormal situations
such as deadlock in packets. Besides, their FPGA implementation of the system supports
adding additional counters to the hardware, e.g., idle counter to specific datapaths.

The authors provide an example application applied to a robot swarm for an au-
tonomous robot-based production cell. Each cell controller is attached to a subsystem and
has an organic computing API, middleware, and hardware. The hardware interacts with sen-
sors and actuators from the controlled subsystems, which cooperate to accomplish system
goals. The middleware is responsible for abstracting the hardware from the cells and or-
chestrate the communication between them. In the application, the robot components use
the API to interact with the rest of the system, as seen in Figure 2.6. We show a summary
of the features extracted from studies on Dodorg in Table 2.5.

Table 2.5 – Summary on the features mentioned in studies for DodOrg platform.
Label Feature Class

F-DODO-1 Distributed management Architectural
F-DODO-2 Thermal monitoring Physical Sensing
F-DODO-3 Adaptive routing Physical Actuation
F-DODO-4 Dynamic voltage-frequency scaling (DVFS) Physical Actuation

38

2.1.6 Hermes Multiprocessor System-on-Chip (HeMPS)

HeMPS [10, 11] is not one but a family of MPSoCs that relies on Hermes NoC [56]
as communication infrastructure, connecting several processing elements. The underlying
network topology is usually mesh-based, but torus topology was also studied. Although
HeMPS does not aim to provide the infrastructure for a self-adaptive system (at least not
explicitly), many studies on SaS are validated using HeMPS as the platform, mainly focusing
on the kernel and task migration [24], fault-tolerance [80], and security [9]. Newer updates
on HeMPS were released under the name Memphis [66]; Hence, we consider HeMPS and
Memphis as a single project.

Figure 2.7 – HeMPS instance using a 6x6 mesh NoC [67]. The system is organized as
3x3 clusters. Node zero (0,0) is the global manager (GMP). Each cluster has a local man-
ager node (LMP), with rest of nodes being slave nodes (SP). The GMP is connected to the
application repository, from which the applications’ tasks are loaded into the SPs.

In HeMPS, the processing elements comprise a network interface, direct memory
access module (DMA), random-access memory (RAM) module, and a Plasma processor
core. The Plasma processor is a 32-bit reduced instruction set computer (RISC) micropro-
cessor that executes all MIPS I user-mode instructions. Recently, Ruaro et al. [67] reportedly
merged the DMA and NI modules into a single module called DMNI, which presented per-
formance gains when compared to the PE with uncoupled hardware. Figure 2.7 illustrates
the organization of HeMPS.

HeMPS implements a protocol for dynamic loading applications into clusters of
PEs. Applications’ images (executable assembly and data) are stored in a task repository,
and transferred to PEs at startup by the global manager, which is a particular PE responsible
for processing administrative tasks for the whole system. They organize the system in homo-
geneous clusters. Each cluster has one of their PE dedicated to administrative tasks, called
local manager PE, while the rest of the PE cares of applications’ processing. A manager

39

PE enables the system to run task migration, load balance, and other distributed comput-
ing management, similar to a cluster of computers from the high-performance distributed
computing (HPDC) domain. We show a summary of the features extracted from studies on
HeMPS in Table 2.6.

Table 2.6 – Summary on the features mentioned in studies for the HeMPS platform.

Label Feature Class

F-HEMP-1 Hierarchical management Architectural
F-HEMP-2 Thermal estimation Physical/Logical Sensing
F-HEMP-3 Power estimation Physical/Logical Sensing
F-HEMP-4 System utilization Logical Sensing
F-HEMP-5 Dynamic voltage-frequency scaling (DVFS) Physical Actuation
F-HEMP-6 Task Migration Logical Actuation

2.2 Requirements for Self-Adaptation in MPSoCs

In the previous sections, we presented a couple of MPSoC projects that we believe
to include the most relevant studies on self-adaptation in the domain. We focused on the
architectural aspects of the platforms, i.e., the organization of the components and their role
in self-adaptation. Although a couple of other studies treat self-adaptation in MPSoCs, we
decided to omit them because we are more interested in the organization of the components
involved in self-adaptation than in ad hoc techniques. For instance, it would be better to
provide support to a broad number of sensors than to specific ones. Through the analysis
of the included studies — including all the referenced papers in the previous sections —, we
could determine the following requirements for the proposed platform.

2.2.1 Hardware Design

RQ1: Hardware Sensing. The platform must support adding (and removing) sensors
from the architecture design. Sensing data must be accessible at the software level.
Minimal support for sensors such as temperature, cycle, and heat must be observed,
as these sensors partake in many techniques (F-ASOC-2, F-ASOC-3, F-CPSO-10, F-
CPSO-11, F-CPSO-12, F-CPSO-13, F-CPSO-14, F-CPSO-15, F-CPSO-16, F-CPSO-
17, F-CPSO-18, F-CPSO-19, F-CPSO-20, F-CPSO-21, F-CPSO-22, F-CPSO-23, F-
DODO-2, F-HEMP-2, F-HEMP-3). We fullfil this requirement by providing a simulation

40

framework that permits including new hardware counters and sensors to the design
(see Section 3.2), also providing an example set of hardware counters.

RQ2: Hardware Actuation. The platform must support the design of hardware-level
actuation. Minimal support for DVFS and power gating must be observed, as these
sensors partake in many techniques (F-ASOC-5, F-CARU-3, F-CARU-4, F-HAMS-
2, F-HAMS-3, F-CPSO-33, F-CPSO-34, F-CPSO-35, F-CPSO-36, F-CPSO-37, F-
CPSO-38, F-CPSO-39, F-CPSO-40, F-DODO-3, F-DODO-4, F-HEMP-5). We fullfil
this requirement by providing support for the DVFS and dark silicon techniques (see
Section 4.2.3).

RQ3: Support for Heterogeneity and Peripherals. The platform must support mixing
multiple micro-architectures in the design since application in the domain commonly
relies on hardware heterogeneity. Since SoCs are mostly designed to be part of larger
systems, the platform must provide an interface that enables the MPSoC to communi-
cate with external systems and peripherals (F-CARU-6). We fullfil this requirement by
providing a modular architecture, based on tiles. We provide two example tiles (see
Section 5.4 and Section 5.3) within our platform.

2.2.2 Kernel Features

RQ4: Real-Time Scheduling. The kernel included in the platform must support real-
time scheduling, as many techniques use of auxiliary threads to process sensing data
without impacting the quality-of-service of the running applications (F-CARU-1). We
fulfill this requirement by adopting the HellfireOS kernel (see Section 6.1).

RQ5: Inter-Process Communication (IPC). Self-adaptation is an activity that inherently
involves many processes. The kernel included in the platform must support IPC for
either kernel and application tasks (F-CARU-1). We fulfill this requirement by adopting
the HellfireOS kernel (see Section 6.1).

2.2.3 Software Design

RQ6: Software Sensing. The platform must provide the software basis for accessing
sensors, including accessing registers from the hardware, in the case of hardware-
implemented sensors, or system counters, in the case of software-implemented sen-
sors (F-ASOC-4, F-CARU-2, F-CARU-5, F-HANS-4, F-CPSO-2, F-CPSO-3, F-CPSO-
4, F-CPSO-5, F-CPSO-6, F-CPSO-7, F-CPSO-8, F-CPSO-9, F-HEMP-2, F-HEMP-3,

41

F-HEMP-4). We fulfill this requirement by using some counters provided by the Hell-
fireOS kernel (6.1). Additional counters for using Martin’s [48] technique for power
estimation were included in the platform as well.

RQ7: Sensor Fusing and Composition. The platform must support the development of
filters to treat data from sensors, as well as permit these sensors to be combined to
generate new data on the system. We fulfill this requirement by providing software
sensing within the platform. Software sensing permits treating raw data from hardware
sensors, as well as perform sensor fusing (see Section 3.2).

RQ8: Software Actuation Support. The platform must provide the basis for imple-
mented software actuation. Actuators such as task allocation and real-time param-
eters adjusting must be observed (F-ASOC-6, F-CPSO-24, F-CPSO-25, F-CPSO-26,
F-CPSO-27, F-CPSO-28, F-CPSO-29, F-CPSO-30, F-CPSO-31, F-CPSO-32). We
fulfill this requirement by providing task reallocation, which can be extended to imple-
ment task migration (7.1.3). The API for adjusting the real-time parameters of tasks is
part of the HellfireOS kernel already.

2.2.4 Architectural Aspects

RQ9: Support for Centralized, Distributed and Mixed Software Architecture. As an in-
herently distributed system, the MPSoC must support the several architectural styles
for resource management and system administration (F-ASOC-1, F-CARU-1, F-HANS-
1, F-CPSO-1, F-DODO-1, F-HEMP-1). We fulfill this requirement by providing an or-
ganization for self-adaptation unbound of software architecture (see Section 3.2).

We provide an overview of the requirements implemented by the studied platforms
in Table 2.7. Please note that some platforms may have intentionally missed the implemen-
tation of some requirements, while others may have implemented the requirement but not
reported the implementation in the analyzed papers. The goal is not to compare platforms.
Instead, our goals are to depict better what our platform is intended to achieve.

Although we could determine a minor set of components from the analysed stud-
ies, one cannot guarantee that these components comprehend all the features of the target
platforms. We tried as much as possible to avoid our platform to be too restrictive on the
implementation of the discovered features. Hence, we let the implementation of some com-
ponents open to developers to decide the best architecture, mainly for software components.
However, we provide a guidance on the organization of these components in Section 3.2,
where we present the self-adaptive framework used within ORCA. Table 2.8 presents the
support for the extracted features in ORCA.

42

Table 2.7 – Implementation of requirements per platform.

Platforms Requirements

RQ1 RQ2 RQ3 RQ4 RQ5 RQ6 RQ7 RQ8 RQ9

ASoC ++ ++ ? ? ? ++ ? ++ ?
CARUSO ++ ++ ++ ++ ++ ++ ? ? no
CPSoC ++ ++ S ++ ++ ++ ++ ++ ?
DodOrg ++ ++ S ? ? no ? ? ++
HamSoC ++ ++ ? ? ? ++ ++ ++ no
HeMPS ++ ++ ++ ++ ? ++ ? ? no
ORCA ++ ++ ++ ++ ++ ++ ++ ++ ++

(++) implemented, (S) partially implemented, (?) unknown, (no) explicitly not implemented

Table 2.8 – Features mentioned in related work how ORCA supports them.

Feature Description / Note Support Feature Description / Note Support

F-ASOC-1 Architecture layering (HW) + F-CARU-1 Auxiliary threads1 +++
F-ASOC-2 Frequency monitor ++ F-CARU-2 same as F-HEMP-3
F-ASOC-3 Cycle counter +++ F-CARU-3 DVFS +
F-ASOC-4 Workload monitor ++ F-CARU-4 Dark silicon +
F-ASOC-5 Frequency scaling + F-CARU-5 Real-time constraints +++
F-ASOC-6 Task migration + F-CARU-6 Off-chip comm. +++

F-HAMS-1 Hierarchical monitoring + F-DODO-1 Distributed management +++
F-HAMS-2 same as F-CARU-3 F-DODO-2 same as F-HEMP-2
F-HAMS-3 included in F-CPSO-39 + F-DODO-3 same as F-CPSO-33
F-HAMS-4 Boundary requirements + F-DODO-4 same as F-CARU-3

F-CPSO-1 Architecture layering (SW) + F-CPSO-21 included in F-HEMP-2
F-CPSO-2 Workload type + F-CPSO-22 Oxide breakdown d.n.a.
F-CPSO-3 App. pwr/energy consumption ++ F-CPSO-23 Reliability d.n.a
F-CPSO-4 App. exec. time ++ F-CPSO-24 Loop perforation d.n.a
F-CPSO-5 Sys. utilization +++ F-CPSO-25 Memoization algorithmic choice d.n.a
F-CPSO-6 Epoch length ++ F-CPSO-26 Degree of parallelism d.n.a
F-CPSO-7 Context switch counter ++ F-CPSO-27 Code redundancy d.n.a
F-CPSO-8 Thread load d.n.a. F-CPSO-28 Task allocation ++
F-CPSO-9 History + F-CPSO-29 Scheduling ++
F-CPSO-10 Network bandwidth + F-CPSO-30 same as F-ASOC-6
F-CPSO-11 Packet/Flit status + F-CPSO-31 Offloading d.n.a
F-CPSO-12 Channel status d.n.a. F-CPSO-32 Duty cycling d.n.a
F-CPSO-13 Congestion ++ F-CPSO-33 Adaptive routing +
F-CPSO-14 Latency + F-CPSO-34 Dynamic bandwidth alloc. +
F-CPSO-15 Bus/Router pwr. +++ F-CPSO-35 Channel num. and direction d.n.a.
F-CPSO-16 Branch miss +++ F-CPSO-36 same as F-CARU-3
F-CPSO-17 Ckt delay d.n.a. F-CPSO-37 ABB d.n.a
F-CPSO-18 Aging d.n.a F-CPSO-38 Reverse biasing d.n.a.
F-CPSO-19 Leakage ++ F-CPSO-39 Clock and pwr. gating +
F-CPSO-20 same as F-HEMP-3 F-CPSO-40 Multi-gate threshould d.n.a.

F-HEMP-1 same as F-HAMS-1 F-HEMP-4 same as F-CPSO-5
F-HEMP-2 Thermal estimation ++ F-HEMP-5 same as F-CARU-3
F-HEMP-3 Energy and pwr. estimation +++ F-HEMP-6 same as F-ASOC-6
(+++) implemented (++) partially implemented (+) supported, but not implemented (d.n.a.) does not apply

1Implemented as real-time tasks

43

3. ORCA: A SELF-ADAPTIVE MPSOC PLATFORM

In this chapter, we present a short introduction to ORCA (self-adaptive multipro-
cessor system-on-chip platform), the proposed platform. The goal of this chapter is to ex-
plain the role of the parts of the platform superficially, serving as an introduction to the next
three chapters. The first part of this chapter, Section 3.1, discusses the leading organization
of the platform, which we define in terms of hardware, software, and tools parts. Chapter 5
(hardware) and Chapter 6 (software) present a more in-depth discussion on each of the first
two parts. In the same section, the tools part is promptly explained, with Chapter 4 (simu-
lation) presenting a more extended discussion on the simulation environment. The second
part of the chapter, Section 3.2, discusses the support for self-adaptation in the platform.

3.1 Platform Organization

For this work, we assume a platform to be an operating environment that provides
the necessary resources for one or more applications to run [25]. We consider as parts
of a platform the related software stack, including support libraries, hardware drivers, and
the operating system; the associated hardware architecture, including micro-architecture
and memory organization; and tools, which permit developers to fast access the resources
offered by the platform. Figure 3.1 presents a schematic depicting the organization of the
platform in terms of hardware, software, and tools.

GCC toolchain for RV32IM
ORCA-SIM
Automation Tools

ORCA MPSoC
 Network-on-Chip
 Processing Tiles
 HF-RiscV cores
 Memory cores
 Network Interface
 Off-chip Comm. Tiles

HellfireOS
Publish-Subscribe Lib.
Monitoring Lib.
Examples
Client Library

ORCA Platform

Software ToolsHardware

Figure 3.1 – The organization of ORCA platform, depicting software, hardware, and tools.
Items highlighted in blue are third part work have included int this work with none or minimal
modifications.

We refer to the hardware of the platform as to ORCA MPSoC. This MPSoC is
based on existing open-source hardware, bringing components from other SoC projects.
The first project is Hermes [56], a NoC whose design is parts of HeMPS and Memphis

44

platforms [10, 66]. Our hardware design is similar to the one in HeMPS in several aspects,
including the NORMA organization and on-chip network topology. In contrast, ORCA has a
different organization for peripherals. In HeMPs, peripherals are connected to border routers
in non-local ports, while in ORCA, peripherals must necessarily connect to local ports of
routers.

Nevertheless, HeMPs is a homogeneous MPSoC due to its computing nodes al-
ways implement the same ISA (MIPS2), while ORCA can have different cores with different
ISA (e.g., RISCV32i and RISCV32im) because ORCA incorporates the HF-RiSCV proces-
sor core from the HFRISC SoC. We provide two tile designs for the MPSoC: (i) processing
tiles, whose functioning corresponds to the processing elements in HeMPs, and (ii) off-chip
communication tiles, whose hardware bridges the communication between the MPSoC and
the rest of the system. We discuss all these components along with the rest of the hardware
of the platform in Chapter 5.

Off-chip communication tiles cannot run any software, as they include no proces-
sor in their design. Thus, all the software run in processing tiles. An image containing a
modified version of the HellfireOS — a fully-preemptive, real-time kernel —, applications
and software libraries’ code is loaded into the main memory of each processing tile at the
startup. The modifications that we made for the kernel to work with the MPSoC hardware
were minimal; thus, we omit them in this work. Two software libraries were developed on the
top of HellfireOS: one provides support for the publish-subscribe communication model for
applications, while the other one enables the access of hardware-level sensors and coun-
ters to software (memory-mapped I/O). Examples of applications that use both libraries are
provided within the platform. We developed a third library for off-chip communication. This
library can be deployed to other machines (e.g., a desktop computer) to enable that ma-
chine to use the NoC protocol for communicating with the MPSoC. We discuss HellfireOS
and software libraries in Chapter 6.

The last part corresponds to the tooling of the platform. Generally speaking, tools
include any software or artifact whose use applies only to the development stages of the
project. The tools that we use in ORCA include the toolchain for the HF-RiscV core, au-
tomation scripts (written in bash and make languages), testing applications to validate off-
chip communication, and simulator. The toolchain corresponds to the GNU Binutils 2.28,
containing linker, assembler, and other facilities for manipulating binary files; and GCC
7.1.0, including front end for C and C++ languages. Automation scripts provide facilities
for debugging and configuration and are intended to be platform-specific, tested with Debian
(Stretch and Buster), and Ubuntu (16.04.6 LTS). Testing applications for off-chip communi-
cation consists of UDP/IP applications interacting with the simulator tool whose packets can
be inspected using the provided plug-in for Wireshark [82]. The simulation tool used in this
work, ORCA-SIM, and the correspondent simulation API, URSA, are discussed in Chapter 4.
Technical information on the testing environment is presented in Chapter 7 (validation).

45

3.2 A Development Environment for Self-Adaptive Techniques

The platform presented in this work is intended to be used for both software and
hardware development, as many self-adaptive techniques involve the co-design of software
and hardware projects. We provide support for the development of several components for
both hardware and software. First, our simulation API provides an environment for dealing
with hardware-specific issues, fulfilling RQ1, and RQ2 (see Section 2.2). To ease the design
and maintenance of hardware modules, we provide a minimal set of hardware modules that
can be modified to incorporate more features, or even combined to form new platforms. For
the software, we provide a lightweight framework for the design of self-adaptive techniques
that control the hardware resources from the application level. The goal is to organize the
resources of the platform to favor the development of these techniques. For instance, we do
not enforce any mechanism on the decision logic of techniques. Instead, we provide a set of
elements to facilitate the integration between components of the system, favoring the reuse
of project artifacts, e.g., separation of concerns between evaluators and decision logic. In
ORCA, self-adaptive techniques comprise several components. These components fall in
one of the following categories: (i) physical sensors, (ii) logical sensors, (iii) evaluators, (iv)
decision logic, (v) system state, (vi) policies, (vii) goals, (viii) procedures, (ix) actions, and
(x) switches. We explain each of these components below. Please note that these elements
may appear in others’ work with different naming. Figure 3.2 displays how we organize these
components in the system.

Hardware
level

Kernel
level

S1 C1

S1 C2

M1 M2 M3 M4

E1 E2

A1

Task
level

P
hy

si
ca

l
S

en
si

ng
Lo

gi
ca

l
S

en
si

ng
E

va
lu

at
or

s

Decision
Logic

DecisionSensing Actuation

P1

P
ro

ce
du

re
s

P2

A1 A2 A2

H1 H2 H3

A
ct

io
ns

S
w

itc
he

s

Policies and Design Goals

System State

Adaptive
Hardware

Adaptive
Software

Figure 3.2 – Organization of components for self-adaptation in ORCA. Components are dis-
tributed in hardware, kernel, and application levels, grouped for their role in the system:
sensing, decision, and actuation. Black arrows indicate the dataflow, and blue arrows indi-
cate dependencies resolved at the design time. Adaptive hardware and software have the
decision role, although they work separated from the rest of the system. The system state
is an hypothetical set representing any data relevant for decision-making.

46

3.2.1 Physical Sensing

Physical sensing corresponds to the reading of hardware sensors and counters.
Examples of counters include performance counters embedded in nowadays’s general-
purpose processors, while sensors correspond to specialized hardware to measure temper-
ature, power, and aging of chips’ components. In ORCA, we provide a couple of counters,
embedded to hardware modules of the platform — a comprehensive list of the counters in
the platform is provided within Chapter 5. We assume sensors to be mapped to the memory
space, accessible at the software level. Since data from sensors may not represent useful
data due to noise or invalid data, we delegate the treatment of data to logical sensors.

3.2.2 Logical Sensing

Logical sensing regards the treatment of raw data from physical sensors, software-
level sensing, and sensor fusing. For the first, data is usually treated by peripheral drivers,
while the other two are hardware independent. Software-level sensing includes readings
from the kernel, e.g., the number of deadlines missed by one task and CPU utilization, and
application-level counters such as response time and workload. Sensor fusing enables the
complex organization of sensors. For instance, the pose estimation of a vehicle using a
Kalman filter [79] is an example of sensor fusing. Another example can be calculating the
average temperature of the system through the mean of two temperature sensors. Data
from logical sensors is intended to be consumed by evaluators, the kernel, and other logical
sensors (composition). We present a couple of logical sensors in Chapters 6 and 7.

3.2.3 Evaluators

Evaluators are entities, usually tasks that check on the current state of the system to
identify abnormalities to the system’s functioning or to detect opportunities for performance
gains. These evaluators can calculate whether the value of a variable went over some
threshold, or even use complex machine learning algorithms to detect abnormal states. In
both cases, evaluators may decide if the system must adapt or not. In this work, we assume
these evaluators to work by periodically polling on logical sensors, although their implemen-
tation at the kernel level could permit them to work reactively. Whether evaluators decide
that the system must adapt, the decision logic is activated to plan on the next steps to be
taken by the system. An example of an evaluator can be found in Chapter 7, which relies on
the number of missed deadlines to activate the associated decision logic.

47

3.2.4 Decision Logic

Decision logic corresponds to any techniques, algorithms, or calculi for determining
a sequence of actions for the system to go from one state, usually the current state, to
another state, the desired state. Decision logic can only be activated by an evaluator, which
sets the desired state of the system. Thus, decision logic has nothing to do with deciding on
the goals of the system. Instead, decision logic has to build a plan for the system to reach
the state set by the evaluator. Thus, a decision roughly corresponds to a planning activity.
However, algorithms simpler than those from planning can be an option, since the number
of possible actions in the system is conditioned to the number of available procedures.

A system can implement several decision logics. An evaluator can trigger one of
these logics, taking into consideration the design goals and policies of the system. For
instance, one decision logic can consume less energy than another, although providing a
more accurate plan of action. If the convergence of one algorithm cannot be verified, multiple
algorithms can execute in the hope of using the results from the first algorithm to converge.
Also, multiple decision logics can act in different parts of the system if these parts do not
depend on each other. Finally, the decision logic must always observe the state of the
system since it can change during the decision-making process.

3.2.5 System State

The system state is a model consisting of sensors’ readings and history. If the
system state considers history [73], the source of the data becomes a sensor — any vari-
able in the system is a sensor if considered in the self-adaptation model. For instance, the
deadline-misses evaluator presented in Chapter 7 considers the number of deadline misses
(logical sensor) for a task since the system startup.

3.2.6 Policies and Goals

The design goals of the system regard to restrictions on the final application of the
system. For example, one system may focus on quality-of-service; another system may fo-
cus on performance; and a third system may focus on low power consumption. Policies, how-
ever, focus on constraints on the operation of the system, usually bound to non-functional
requirements. For example, one constraint can be the system to operate lower 80% of CPU
usage, or the power consumption to be always below some threshold.

48

3.2.7 Procedures

Procedures are deterministic sequences of actions. Similarly to a real-time task, a
procedure has timing requirements. However, procedures can also have explicit resources
requirements, such as energy consumption and required network bandwidth. Decision logic
uses procedures requirements to decide the best course of action to take, also considering
the state of the system. We consider that two or more procedures can produce the same
effects on the system while consuming different resources. For instance, one algorithm
for task reallocation can take more time due to it looks for the optimal configuration, while
another one may use some heuristic to find a proper place for the task to run, thus consuming
less time but offering a slightly less efficient solution.

For the sake of the integrity of the system, multiple procedures cannot be executed
at the same time if they impact on each other. This restriction enforces that the system will
not overreact to abnormal events. An example of such a situation could be migrating a critical
task to one CPU while gating the clock of that CPU at the same time, thus modifying the
real-time parameters of that task. Although we suggest using synchronization mechanisms
to avoid conflict between procedures, we are permissive on actuation, leaving the design of
synchronization mechanisms to programmers to decide.

3.2.8 Actions

Actions correspond to atomic routines that cannot abort once started and rely
mostly on built-in routines from the kernel (e.g., system calls) and support software (e.g.
standard library). Examples of actions include spawning, killing, or allocating a task. In
practice, every single function (or method) in the kernel, application, and other software el-
ements can be an action. Actions differ from procedures in that procedures correspond to
the timed execution of sequences of one or more actions, although actions can exist in the
system without being part of any procedure.

3.2.9 Switches

Switches are hardware-specific mechanisms such as DVFS and power/clock gat-
ing. To be included in the self-adaptive model, these mechanisms must allow for external
configuration. For instance, there could be a pin for controlling the operation mode of a CPU
or even pins for activating one zone or another for DVFS. These pins would be mapped into
memory space and accessed via software.

49

4. URSA: A MICRO (µ) RAPID-SIMULATION API

In this chapter, we present URSA, an application programming interface (API) for
the modeling and simulation of computing platforms. In this work, we use URSA to model
and simulate the ORCA MPSoC. We briefly discuss the motivations behind URSA in Sec-
tion 4.1, where we also present some preliminary background on system simulation. Sec-
tion 4.2 presents the simulation strategy adopted in URSA, which combines discrete event
simulation with finite state machine models. We dedicate Section 4.3 to discuss the simula-
tion API of URSA, where we point out the limitations of the chosen approach while suggest-
ing alternatives to surpass these limitations. Finally, in Section 4.4, we present ORCASIM,
a simulator made on top of the URSA API to simulate the ORCA MPSoC.

4.1 Background and Motivation

Simulation is an important activity in systems’ development life-cycle, allowing de-
velopment teams to detect defects early in the project. Similar to other verification and
testing techniques, simulation can represent savings to the project’s budgets since the costs
of correcting a bug early in a project tends to be cheaper than that later in the project [64, 78].
In this context, simulation tools play an essential role in the project of embedded systems as
they permit to validate functional aspects of the system early in the project.

Typical simulation tools are shipped in with a language, which can be either an ex-
tension of another general-purpose language (GPL) or a domain-specific language (DSL).
In both cases, these languages provide constructions for describing the behavior of systems
through models — abstractions that represent parts of systems. Another core component
of simulation tools is the simulation engine, which interprets the associated language; these
engines adopt different simulation approaches to extract information from the execution of
underlying models. Examples of DSLs for system modeling include VHDL and Verilog (and
SystemVerilog), implemented by standard on-the-shelf tools such as Mentor’s Questa [50]
and XILINX’s ISE Design Suite [84], while extensions of GPLs include System-C [1], an
extension of the C++ language; Open Virtual Platforms API (OVP) [37], an API over C lan-
guage; and Gem5 [4], supporting Python and Ruby scripts.

Simulation tools usually aim either for (i) the emulation of the system behavior,
whose goals include fast system prototyping and software validation, or (ii) highly accurate
architecture simulation, which focuses on the validation of lower-level architecture aspects
such as hardware synchronization protocols and energy evaluation. However, some tools
may fall in-between these categories [65]. Highly accurate simulation tools usually rely on
register-transfer level (RTL) languages, which is the preferred approach for modern on-the-

50

shelf tools. Advantages of RTL languages include their capability for synthesis, although
modeling must be limited to use a subset of the language, as is the case of VHDL and
SystemVerilog languages. Systems modeled in RTL have their behavior described mostly
in terms of processes and signals, and modern languages’ standards also consider object-
oriented programming (OOP) in their specification. Although RTL languages provide a vast
set of abstractions to describe systems, one drawback of using RTL is the time taken to
simulate RTL models.

As an alternative to the canonical RTL modeling, system-level simulation provides
a faster simulation environment, mostly at the cost of model accuracy. As well as in RTL,
system-level simulation permits the modeling and simulation of computing systems through
abstractions. However, system-level models may not be suitable for synthesis as languages
may not detail the internal structures of circuitry. Instead, system-level simulators focus
on the fast prototyping and simulation of systems to validate software components in the
early stages of the project, e.g., peripheral drivers, while the hardware is still under develop-
ment. Depending on the complexity of the system under simulation, system-level simulators
can even outperform physical systems [77]. It is important to note that the performance of
system-level simulators depends on the host machine’s hardware, i.e., the architecture in
which the simulator runs in.

URSA is an API for system-level modeling and simulation. As an API, URSA pro-
vides a set of classes, structures, enumerations, and other language-related assets that can
be used to create system-level, cycle-accurate simulators. Contrarily to solutions that extend
the syntax of general-purpose languages such as Spec-C [28], System-C [1], and Handel-
C [51], URSA relies exclusively on existing C++ language constructions and standard library.
Frameworks such as MyHDL [57] and JHDL [6] follow a similar approach, although they re-
quire Python and Java to run, respectively.

URSA presents a few advantages over simulators mentioned above. First, URSA
has no dependencies on libraries or tools other than the standard C++ library, facilitating
the integration of simulators created with URSA within other systems, e.g., web-based inter-
faces. Besides, C++ compilers can emit executable binaries whose execution tends to be
faster than interpreted code (in the case of Python) or binary translation (in case of Java).
Second, although a system-level simulation, URSA is capable of generating cycle-accurate
results, since simplifications to system models permit URSA to ignore the internal state
of hardware models. Lastly, the trade-off between simulation accuracy and speed can be
worked out directly in models (see Section 4.2.2). We dedicate the rest of this chapter to
discuss the simulation model behind URSA along with its API and implementation-specific
features.

51

4.2 Simulation Model

In URSA, hardware models correspond to a set of finite state machines (FSM).
Formally, a FSM [35], as Equation 4.1 shows, is a 6-tuple, where Q is the set of states, q0 is
the initial state, X is the set of inputs, Y is the set of outputs, δ is the transition function, and
F is the set of final states. URSA comprises only the simulation of synchronous systems,
that is, systems whose behavior is coordinated by clock events, i.e., cycles. Then, a cycle
corresponds to the activation of the transition function of the FSM underlying to the system
under simulation (SUS). When the SUS comprises multiple hardware modules, the transi-
tion functions of all underlying FSM are activated. Transition functions are activated one
after another, respecting the time in which they would occur in a real system. Theoretically,
some transition functions would be activated at the same time. However, a non-deterministic
choice determines what functions will be activated first, as multiple functions cannot be acti-
vated at the same time in the adopted simulation model. Finally, the activation of a transition
function, represented by an event, occurs based on the frequency of the associated hard-
ware module, also supporting multiple clock domains and both edges of the clock.

FSM =< Q, q0, X , Y , δ, F >, where q0 ∈ Q, δ : X × Y → Q, F ⊂ Q (4.1)

An event, shown in Equation 4.2, is 3-tuple where t is the time in which the transi-
tion function of the FSM m must be activated, and T is the period of the hardware module
associated to m. At each cycle, the value of T is added to t , denoting progress in simula-
tion time. It is important to note that T can change during the simulation, allowing for the
simulation of dynamic voltage-frequency scaling (DVFS)(see Section 4.2.3), for example. It
is important to note that the simulation model adopted in this work resembles the one of
discrete-event simulation (DES) [23, 42], although we do not guarantee both models to be
equivalent.

Event =< t , m, T > (4.2)

SIM =< Φ, S, t0, n, E , P >, S =
|Φ|⋃
i=1

Φi .X ∪ Φi .Y (4.3)

A simulation (SIM), as shown in Equation 4.3, is a 6-tuple, where Φ is the set
of FSM, S is the set of shared signals, t0 is the time in which the simulation begins, n is
the amount of time to run the simulation, P is the priority-queue of events, and E is the
set of initial events. At the time t0, events associated with each of the transition functions
(∀x ∈ Φ, x .δ) of all FSM are created and pushed to P. From then, the simulation engine pops

52

an event from P, activates δ once, updates t by adding T , and push the event back to P. The
simulation ends when there are no more events to occur before n, that is ∀e ∈ P, t(e) > n.
Since elements in P are sorted by t , it is guaranteed that events that occur early will be
popped from P first. Finally, FSMs are connected to each other by signals. Formally, a
signal s ∈ S is any input or output shared between two or more FSMs. By convention, two
signals with the same name are considered the same signal, for any FSM.

Input
 E is the set of initial events
 t0 is the time for the simulation to begin
 n is the time for the simulation to finish
Locals
 P is a Priority Queue
 et is the current event
 t is the current simulation time
Begin
 t ← t0
 For all e ∈ E:
 push e to P

 While t ≤ n, do:

et ← top of P
t ← et.time
call et.m.𝛿
et.time ← et.time + et.cycleTime
pop from P
push et to P

End

Algorithm: System Simulation

1.
2.
3.
4.
5.
6.
7.
8.
9.

10.
11.
12.

13.
14.
15.
16.
17.
18.
19.

20.

Algorithm 4.1 – The algorithm for system simulation used in URSA.

4.2.1 Hardware Models

Hardware models are representations of real hardware functioning, often described
in RTL. In this work, hardware models correspond to simplified versions of synthesizable
RTL models from several projects, each model corresponding to one hardware module —
it is carried out by the simulation engine. In URSA, hardware models must be described
in terms of finite state machines, using the classes provided by the API, in C++, with at
least one FSM per module. From the simulation viewpoint, there is no difference between
simulating one FSM or two for the same hardware module because, in practice, it is as if all

53

the modules were one, with several processes (FSMs) distributed all over a single model.
The FSM inputs correspond to the signal to which these processes are sensitive. Models
are also absent of clock signals as the simulation model guarantees the correct timing for
each module. Inputs of models correspond to the input signals of hardware modules, as
well as outputs corresponds to the output signals of those modules. The internal state of
the hardware, represented in RTL by variables and signal, is mapped to states in the FSM.
Figure 4.1 shows the structure of a hardware module.

Y

a/b x
 y

z

clk

a
 b

c

q0

q1

q2rst

a/y b/z

b/
y

c/x

x

δ
λ

Figure 4.1 – An illustration of a hardware model in URSA. Hardware models comprise a set
of inputs (sensitive signals), a set of outputs (non-sensitive signals), clock and reset signals
(implicit, implemented by the simulation engine), and an internal state machine (explicitly
programmed.

For this work, specifically, the following assumptions hold for modeling hardware
modules as FSM.

• The state q0 ∈ Q is the initial state, to be called the reset state.

• The must be a transition defined from every state to the reset state, including one from
the reset state to itself. This transition has the form λ/λ, with λ ∈ X and λ ∈ Y .

• The set of final states F has cardinality zero, and the simulation can end regardless
the state of any individual hardware model.

• Undefined inputs will be considered as transitions from the source state to itself with
the form t ∈ δ :< Q0, x >→< Q0,λ > | x ∈ X and λ ∈ Y .

• One state cannot have two or more transitions with the same input, i.e. non-deterministic
choices cannot exist.

4.2.2 Performance vs. Accuracy Trade-off

As stated before, the performance (and accuracy) of models depends on their im-
plementation as models are described using C++, and poor coding may jeopardize the per-
formance of the whole simulation. The same applies to accuracy, as developers may model

54

the hardware using practically any feature available in C++. For instance, the HFRiscV model
used within our platform can be either cycle or instruction-accurate. When working in cycle
accuracy mode, the model has tracking of branches and adds bubbles to the pipeline when
convenient, for example. When in instruction accuracy mode, the model has less code to
execute as instructions’ types are not observed anymore — the simulation would run faster.
By running an image containing no application (HellfireOS kernel only), we could observe
that disabling branch prediction reduced the execution time for the HFRiscV core model by
approximately 2%, for example. Of course, by removing that feature we also remove preci-
sion from the model. However, we can tune the model to work “more closely“ (or not) to the
real design as much as we need, depending on the simulation purpose. Similar effects can
be observed when disabling network congestion in router modules, memory space integrity
in memory modules, or overflow/underflow checking on buffers. See Chapter 5 for more
information on the configuration of these models.

4.2.3 DVFS Simulation and Dark Silicon

We can simulate DVFS by changing the period of a model during the simulation.
Changes to the state of models are accompanied by timing information, which should be
reported to the simulation engine right after each state transition. By manipulating timing
information, we can, for example, decrease the system’s performance by 50% by increasing
the timing twice their default value. In the same way, we can reduce the timing informa-
tion indefinitely. This strategy makes it possible to simulate dark silicon by reducing timing
information to zero, simulating a “frozen hardware“. Of course, by doing this, we enforce
DVFS zones to be common multipliers. Besides, we can surpass this limitation by inserting
fake, empty cycles to force the simulation to advance in time while not changing the state
of models. Fake cycles can be added to models by using dummy states in underling state
machines, serving as a strategy for implementing dark silicon in the platform. Tutorials for
generating such models are provided withing the appendix sections.

4.3 URSA Simulation API

We actively use object-oriented design to provide entities to model and simulate
systems. Since we design URSA having the simulation of ORCA MPSoC in mind, we
present only the classes required to simulate ORCA, included in the ORCA-SIM design.
However, one can extend these classes to simulate other systems. We developed two pack-
ages for this thesis: (i) the simulation engine package, which corresponds to the classes and
entities for the simulation engine, and (ii) the model’s package, corresponding to general-

55

purpose hardware models (e.g. memory cores). We extend the later to contemplate a
broader set of IPs by adding specialized cores (e.g. processor and on-chip network router).

4.3.1 Simulation Engine Package

The simulation engine package comprises classes for dealing with the overall simu-
lation model, including abstractions for a priority queue (PRIORITYQUEUE), events (EVENT),
and hardware model (MODEL, UNTIMEDMODEL, and TIMEMODEL). The simulation engine
(SIMULATOR) serves as a facade [27] to the whole package. A simplified class diagram
representing the class hierarchy of the simulation engine package is shown by Figure 4.2.

+ pop() : Event*
+ push(Event*) : void
+ count() : uint64_t

URSA::PiorityQueue

- queue : PriorityQueue<Events*>
+ Simulate(uint64_t)
+ Schedule(Event*, uint64_t)
+ NextEpoch()

URSA::Simulator

- time : uint64_t
- model : TimedModel

URSA::Event

- name : std::string
+ Init() : void
+ Reset() : void

abs URSA::Model

+ Cycle() : uint64_t

abs URSA::TimedModel abs URSA::UntimedModel

Inheritance
Usage
Abstract classabs

Figure 4.2 – A simplified class diagram representing the hierarchy and dependency among
classes provided within the simulation engine package. Class fields are denoted by a “-”
character, and methods are denoted by an “+” character. We intentionally omit auxiliary
fields and methods.

• The Event class models a clock event, similarly to the POSEDGE/NEGEDGE construc-
tion of SystemVerilog or CLOCK’EVENT in VHDL. An underlying model is associated
with each of these events. The execution of an event corresponds to the update of
the internal state of the associated model. As a side effect of the event execution, the
simulation time advances to the point in which that event would occur. For this reason,
events must be executed in-order; hence, these events carry a time tag within them.
For events carrying the same time tag, the simulation will execute these events follow-
ing a non-deterministic order. After their execution, events are scheduled to be ocurr
in the next hyper-cycle. An hyper-cycle correspond to the execution of the all cycles
associated to the same point in time.

56

• The PriorityQueue class provided within ORCA wraps up the standard priority queue
of C++ language (GNU’s LIBSTDC++). This priority queue is used by the simulator
class to rapidly sort events by the time that they must occur, preserving simulation’s
consistency. Once an event occurs, the simulator pops that event from the queue,
executes the underlying model, and pushes that event back to the queue. Hence,
the queue guarantees that the event with the least time tag would be popped first.
However, the same event can be placed back in the queue in any place, as the new
place depends on the time scheduled for its next execution.

• Model, TimedModel and UntimedModel are representations of hardware modules
that correspond to parts of the system under simulation. Depending on the goals of
the simulation, some hardware modules can be treated as combinational. For instance,
in this work, we consider memory operations to be instantaneous, that is, writings and
readings from the memory does not consume time. However, the CPU is timed, and
will respect the timing constraints of the RTL design, thus accessing the memory only in
certain points of the time. By removing the timing constraints from the memory core, we
alleviate much of the simulation effort, which access time roughly compares to writing
or reading from host’s memory core. For those cases, we provide the UntimedModel
class, which models modules that does not require to be scheduled in the simulation
queue. For modules that depend on the simulation clock, we provide the TimedModel
class, which has an associated Run method. This method is called once an event
is popped from the simulation queue, and returns the number of time units that the
underlying state machine spent to change states. This is a simple (although powerful)
mechanism to emulate multiple clock domains. Besides, we use the same mechanism
to treat the simulation of the processor core in this work, as it has instructions leaving
the pipeline in different amounts of cycles. Any model must inherit strictly from either
TimedModel or UntimedModel. Their base class, Model, provides general-purpose
methods to extract general model information, e.g., their name.

• Finally, the Simulator class groups other classes in the package in a single simulation
system. It contains an internal priority queue, variables to control the simulation time,
operations to start and stop the simulation, and the control of signals’ writing — which
means that the simulation will treat signals and prevent them from being wrote outside
the edge of the clock. Although we use only one instance of a simulator in this work, it
is allowed to run multiple simulations simultaneously, including communicant systems.
Additional features include the simulation of systems with multiple clock domains and
energy estimation through hardware characterization. For this purpose, the increment
of the tag must coincide with the frequency of the simulated hardware clock. It is impor-
tant to note that the Simulator class does not implement the instantiation of hardware
models, and thus it must be called from within an upper-level software layer.

57

4.3.2 Model Package

The model package provides generic hardware models to aid in the design of other
modules. These modules correspond to memory cores (MEMORY), FIFO buffers (BUFFER),
and busses (BUS). These models support reading and writing, although they have minor
differences in the way that they carry data. Since we are not interested in the internal
implementation of these models, we assume their operation to be executed within one cycle,
not requiring them to be scheduled along with the remaining hardware parts of the system;
thus, they inherit from the UNTIMEDMODEL class. An illustration of the hierarchy of the model
package is shown in Figure 4.3.

abs URSA::UntimedModel

=> uint8_t*

type URSA::M::MemData

- data : uint8_t[MEMSIZE]
+ Write(uint32_t, MemData): void
+ Read(uint32_t) : MemData

URSA::M::Memory

Inheritance
Usage
Abstract class
Template

abs
<T>

+ Write(T) : void
+ Read() : T
+ MapTo(T*)

URSA::M::Bus<T>

+ Push(T) : void
+ Top() : T
+ Pop() : void
+ Size() : uint32_t

URSA::M::Buffer<T>

Figure 4.3 – A simplified class diagram representing the hierarchy and dependency among
classes provided within the base model package. Important class fields are denoted by a “-”
character, and important class methods are denoted by an “+” character. Other fields and
classes are intentionally omitted.

• The Memory class models a generic RAM module, with operations for reading and
writing data, wiping (zero fill), and save or load binary files to it. Memory modules
implement a contiguous array of MemData elements along with variables for controlling
memory mapping and illegal operations. MemData can be defined as any data type,
and all memory operations will adjust to work with the new data type. In this work,
memory data bus width is of four bytes due to it is the maximum amount of data that
the HFRisc-V processor core can manipulate in the same cycle. The Memory class
also has a method to map peripheral interfaces into memory regions so that they can
be accessed via software.

• Buffers appear as parts of several hardware modules in ORCA. Although the modules
have different buffer implementation (e.g., routers have their implementation of buffers),
we assume the same buffer model for all these hardware, as we are more interested
in the behavior of the hardware than in performance tweaks. Buffers are implemented
as templates that can be specialized for a group of data types. The advantage of this
approach is to have the same implementation being used all along the architecture

58

regardless the width of busses. In addition to that, buffers have facilities for detecting
overflow, underflow, and special flags for full and empty checkings. We implement
buffers as a wrapper on the STD::QUEUE class from the C++ standard library.

• In URSA, hardware models communicate to each other via busses, modeled by the
Bus class, which has two operating modes. In VARIABLE mode, busses behavior be-
comes similar to the one of a variable in VHDL, where their values are available as
soon as the driver process writes to it. In SIGNAL mode, busses admit a behavior simi-
lar to the one of a signal in VHDL, where their value is available only at the end of the
current cycle. Depending on the purpose of the bus, one or another mode can be used,
but modes cannot be changed during runtime, and only busses in signal mode can be
mapped to memory spaces. An auxiliary method, MAPTO, is used to bind busses to
regions in the memory space. These regions are generated by memory modules with
the aid of GETMAP method.

4.4 ORCA-SIM, a simulator on top of URSA

We conducted simulation sessions using ORCA-SIM, a simulator made on top of
URSA to simulate the ORCA MPSoC. We developed this tool by incorporating an (i) imple-
mentation of URSA whose features we mentioned previously in this chapter, an (ii) extended
model package containing models for the hardware presented in Section 5, and a (iii) facade
application to implement the simulation flow, instantiate models, and reporting.

We added four more classes to the package model. These classes represent the
IPs of the platform: (i) DMANETIF, that models the network interface; (ii) HFRISCV, that
models the HFRiscV processor core; (iii) ROUTER, that models the network router; (IV)
and NETBRIDGE, that models models both the NBM and VEA. An overview of the class
hierarchy of the extended model package considering only the newly added classes is shown
in Figure 4.4. In the case of the HFRiscV model, we changed the existing simulator so that
it could run as one of URSA models.

Four classes compose the facade application: TILE, PROCESSINGTILE, NETWORK-
INGTILE, and ORCASIM. Tile is the superclass that models a generic tile in the architecture.
Two classes inherit from Tile: ProcessingTile, and NetworkingTile, representing a process-
ing tile and an off-chip communication tile, respectively. The OrcaSim class is the applica-
tion class that instantiates the tiles according to the configuration of the platform, connects
routers, loads memory modules, and performs other startup routines. Figure 4.5 depicts the
hierarchy of the facade application.

Since URSA provides the abstractions for discrete event simulation and hardware
modeling, the remaining parts required for a complete simulator remain in the models them-

59

+ Run() : long long unsigned int
+ Reset() : void

abs URSA::TimedModel
- sigStall : Bus<uint8_t>
- sigIntr : Bus<uin8_t>
- sigSendStatus : Bus<uin8_t>
- sigRecvStatus : Bus<uint32_t>
- sigProgSend : Bus<uint8_t>
- sigProgRecv : Bus<uint8_t>
- sigProgSize : Bus<uint32_t>
- sigProgAddr : Bus<uint32_t>
+ RecvProc() : void
+ SendProc() : void

URSA::E::DmaNetif

- sigStall : Bus<uint8_t>
- sigIntr : Bus<uint8_t>
- sram : Memory
+ Fetch() : void
+ Decode() : void
+ Execute() : void

URSA::E::HFRiscV
Inheritance
Usage
Abstract class
Enumeration
Template

abs
enum
<T>

- ibuffers : Buffer<Flit>[5]
- obuffers : Buffer<Flit>*[5]
+ Route(Flit) : Port
+ RouteProc() : void

URSA::E::Router

- bin : Buffer<Flit>
- bout : Buffer<Flit>
+ RecvProc() : void
+ SendProc() : void

URSA::E::NetBridge

0: North, 1: South, 2: East,
3: West, 4: Local

enum URSA::E::Port

Figure 4.4 – A class diagram representing the hierarchy and dependency among classes
added to the extended model package. Important class fields are denoted “-”, while methods
are denoted by “+”. Some fields and methods are intentionally omitted.

- router : Router*

abs URSA::OS::Tile

URSA::E::DmaNetifURSA::E::HFRiscV

Inheritance
Usage
Abstract class
Template

abs
<T>

URSA::E::Router URSA::E::NetBridge

- pcore : HFRiscV*
- netif : DmaNetif*
- sram : Memory*
- spadRecv : Memory*
- spadSend : Memory*

URSA::E::ProcessingTile

- nbm : NetBridge*

URSA::OS::NetworkingTile

- tiles : Tile*[x][y]
- main(int argc, char* argv[])

URSA::OS::OrcaSim

URSA::M::Bus<T>URSA::M::Buffer<T> URSA::M::Memory

URSA::Simulator

URSA::Event

Figure 4.5 – A simplified class diagram representing the hierarchy and dependency among
classes added in the facade application. Important class fields are denoted by a “-” character,
and important class methods are denoted by an “+” character. Other fields and classes are
intentionally omittedClass diagram for the facade of the simulator.

selves, plus some automation of the environment. Using URSA API, we developed models
for each of the modules in ORCA: router, NI, processor core, memory cores, FIFO, network
bridge, and virtual Ethernet controller. These models are reusable, that is, they can partake
in other simulators build over URSA API. The interface of each of the models is as presented
in Chapter 3, considering the following assumptions.

60

1. No hardware module has activity at the negative edge of the clock. Although supported
by URSA, such a feature decreases the performance of the simulation. URSA currently
supports two approaches for simulating in multiple edges. The first encompasses using
two queues, one for simulating the positive edge and another one for the negative edge.
In this case, queues would be swapped during the simulation. Another approach would
be to schedule negative edge events together positive ones, using even time tags
for one edge and odd time tags for another. In the first approach, switching queues
would dramatically decrease the performance of the simulation. For the last one, the
performance of the system would be the same, with the maximum number of cycles
per epoch limited to half the allowed value.

2. Clock wires cannot be used within the logic of the module. The grain of abstraction
used within URSA is one of a process, similar to the namesake construction in VHDL.
A process sensitive to multiple clock signals must be reworked in two or more commu-
nicating processes. For instance, routers originally had multiple clocks for each of the
adjacent buffers. We simplified the model by assuming a single clock, as in ORCA, the
same clock expands to all hardware modules.

3. Signal driving must be defined at the design time and carried out manually by model
programmers. Although URSA allows for consistency checking for multiple signal
drivers at the runtime, such a feature decreases simulation performance. For this
work, we disabled consistency checking as we have validated the hardware models
before before performing the experiments presented in Chapter 7.

4. Signal values are stable until the driver overwrites them. Since signals’ storages are
emulated by variables, treatment for don’t-care values would require the simulation
engine to update signals when drivers have not assigned any value to it in the current
cycle. Such a feature is supported by the platform, although we do not implement it
since it would add a considerable processing overhead to the simulation, increasing
simulation time.

61

5. HARDWARE COMPONENTS

In this chapter, we present the hardware components of ORCA MPSoC. The MP-
SoC comprises an arrangement of reusable tiles, which can be either off-chip communication
tiles, presented in Section 5.3, or processing tiles, presented in Section 5.4. Tiles can con-
nect through router modules, arranged in a mesh-topological network-on-chip, presented in
Section 5.2. Our contributions include the design and implementation of all hardware mod-
ules presented in this chapter, excluding the HF-RiscV processor core. It is worth to note
that although our router design follows the same behavior as Hermes’ routers, we developed
our router from scratch.

5.1 Top-Level Organization

ORCA MPSoC hardware architecture can be divided into two layers, where the
topmost layer consists of a composition of intellectual property (IP) cores to form tiles, and
the second one is tile interconnection. Two different tile compositions are herein presented:
processing tiles, which correspond to usual PE in most MPSoC platforms, and off-chip tiles,
which provide capabilities for other systems to communicate with the MPSoC. An instance of
the MPSoC corresponds to a set of tiles organized in a mesh topology, connected by routers,
forming a network-on-chip. In addition to their routers, a processing tile has memory, a
processor core, and a network interface. For the main memory, a software image is loaded to
it at the startup, containing hardware drivers, a real-time operating system, support libraries,
communication middleware, and applications.

5.2 Networking Organization and Router Modules

ORCA MPSoC interconnection relies on Hermes [56]. We created a router model
that resembles the design of Hermes routers. In Hermes, tiles are disposed in a bi-dimensional,
rectangular-shaped, mesh-based topology, and connected by their on-chip routers. Routers
can connect to up to four other routers outside the tile, attached to their NORTH, SOUTH,
WEST, and EAST ports. A fifth port, the LOCAL port, is dedicated to hardware within the
tile, providing an interface between the tile and the rest of the NoC. In this work, local ports
of routers are either connected to a virtual Ethernet controller, in the case of an off-chip
communication tile (see Section 5.3), or connected to network interfaces (NI), in case of a
processing tile (Section 5.4). Besides, routers at the border of the NoC may have up to two

62

unconnected ports, which are grounded. An illustration of a network-on-chip in ORCA is
shown in Figure 5.2.

...

Switch
Control

Crossbar

North Port

W
es

t P
or

t

South Port

Network-on-ChipRouter

Local Port

E
as

t P
or

t

... ...

...

...

...

...
...

...

tile arearouter buffer input output
- legend -

Port Connection

Figure 5.1 – Functional view of a router (left), an illustration of network-on-chip (middle), and
the connection between two adjacent routers (right).

5.2.1 Routers

Routers communicate with each other by sending packets. A packet is a sequence
(or burst) of flits, with a flit corresponding to a fixed-length string of bits, the smaller data
chunk that can be transferred through the NoC. In ORCA, the length of a flit is configurable,
although, for the sake of simplicity, we consider only a fixed width of 2 bytes (16 bits) in this
work. Once a flit arrives in one port of a router, that flit gets stored in a buffer. As well as
for flit width, the depth of buffers is configurable, and we assume a fixed depth of 16 flits in
this work. Also, the number of routers in the NoC corresponds to the number of tiles, which
allows for a theoretical value of 28 = 256 tiles (e.g., a 16x16 mesh). The maximum packet
size corresponds to 216 = 65536 flits, although we limit it to 64 flits.

The leading flit of a packet, the ADDRESS FLIT, stores the address of the destination
router. When the value of the leading flit and the address of the receiver router are equals
— routers are addressed at the design time following the physical addressing schema pre-
sented in Figure 5.2 —, the packet is delivered to the local port of that router. When the
address differs from the address of the router, it gets routed to one of the other four ports.
The router algorithm used in this work is XY, which is known to be deadlock-free [29]. In
this algorithm, the packet is forwarded all the way in X-axis of the NoC until it reaches the
same Y-coordinate of the destination router. Then, the packet is pushed towards the Y-axis
until it reaches its final destination. The routing algorithm is executed once per packet, and
consumes up to 4 cycles for the first flit, with the remaining flits following through the same
port, one flit per cycle if the buffer at the receiver port is not full.

63

physical layer addressing

... ...

02 22

01 11

00 10 20 ...

x-axis

x-
ax

is

software layer addressing

12 13 14 ...

08 09 10 11

04 05 06 07

00 01 02 03

Figure 5.2 – Addressing system used within ORCA. Physical layer addressing (left) follows
a pair (x,y) according to tile coordinate in the NoC. Software layer addressing (right) follows
a sequential pattern.

The size of a packet is determined by the second flit of the packet, the SIZE FLIT.
Since we use 2 bytes per flit, the theoretical maximum packet size is 216 − 1 = 65535 flits,
although the number of flits of packets is limited in software to up to 64 flits, with the two first
flits being necessarily the address and size flits. Since flits arrive at routers’ ports in-order,
and there is no deadlock in the network, packets are guaranteed to be eventually delivered,
with bytes in-order. The wormhole strategy is used for package switching, where the packets’
flits are sent one after another, without data interleaving. The router serves ports following
a round-robin policy, one after another in a circular queue fashion, avoiding starvation. The
switch control component performs both routing and packet switching, while the crossbar
component establishes the connection between ports. The interface for a Hermes router
module is shown in Figure 5.3.

EastWest

S
ou

th

Lo
ca

l

rx

cl
oc

k_
rx

rx da
ta

_i
n

cr
ed

it_
o

cl
oc

k_
tx

tx da

ta
_o

ut
cr

ed
it_

i

clk
reset

Router

tx

N
or

th

@address HBuffer

rx

cl
oc

k_
rx

rx da
ta

_i
n

cr
ed

it_
o

@address

Switch
Control

Crossbar
clock_tx
tx
data_out
credit_i

tx

Figure 5.3 – A router (left) and its internal components (right).

The interface of buffers is the same for all ports. In summary, four signals control
the receiving of new flits at each of the ports: CLOCK_RX, RX, DATA_IN, and CREDIT_O.
Although Hermes supports multiple clock domains, we assume the same clock signal for
all modules; thus, the signal clock_rx of all routers is bound to the global clock signal. The

64

signal RX (receive) raises when new data is available at DATA_IN. That data is copied into
the memory of the buffer, where it resides until it becomes routed to another port. May
the buffer becomes full, the CREDIT_O raises, preventing senders — whatever hardware is
connected to the port — to inject new data to the buffer. It is important to note that these
buffers were designed to work with Hermes’ routers, and their interface is not the same as
the other buffers in the system. For a comprehensive report on Hermes, please refer to
Moraes et al. [56].

5.3 Off-chip Communication Tiles

An off-chip communication tile, shown in Figure 5.4 (left), is a reusable set of IPs
that equip ORCA with capabilities for communicating with external UDP/IP networks through
a virtual Ethernet adapter (VEA) and a network bridge module (NBM). As in processing tiles
(see Section 5.4), the local port of the router is connected to hardware internal to the tile.
For off-chip communication tiles, routers are always connected to an NBM.

er
x

di
n finet
x

do
ut

fo
uttx

rx

cl
oc

k_
rx

rx da
ta

_i
n

cr
ed

it_
o

cl
oc

k_
tx

tx da

ta
_o

ut
cr

ed
it_

i
clk

reset Network Bridge

tx

R
ou

te
r I

/F

R
I/O Tile

Network
Bridge

Virtual Ethernet
Adapter

Local
 Port

to UDP/IP network

rx

V
E

A
I/F

Figure 5.4 – Overview of an off-chip communication tile (left) and the interface of a network
bridge module (right).

5.3.1 Network Bridge Module (NBM)

The NBM has two internal processes, one to translate packets incoming from the
VEA to the NoC, and another one to translate packets in the opposite direction. A buffer
similar to the one in routers provides access to the NoC, while another buffer of 32-bit width
provides access to the VEA. Two state machines regulate the behavior of the module. The
first, which translates NoC packets to UDP/IP, stacks flits that it receives from the NoC to
form a UDP packet. Then, the process adds the proper UDP headers to the packet and

65

pushes it to the VEA. The second state machine, which translates UDP packets to NoC
packets, removes UDP headers from packets and split the payload into flits. Then, these
flits are pushed into the NoC one-by-one by the local router.

5.3.2 Virtual Ethernet Adapter (VEA)

In ORCASIM, VEA modules are emulated by a UDP socket in the host machine,
thus available only when simulating the MPSoC using URSA. VEA implements two pro-
cesses, one for receiving UDP packets, and one to send UDP packets, similarly to the NBM.
A UDP server is instantiated for the former process, which pushes packets received from
the UDP/IP network into a local buffer in chunks of 32 bits. This buffer is read by the NBM,
which injects the data into the NoC. At the client-side, the VEA consumes a buffer connected
to NBM to send packets to the UDP/IP network. The mindset behind having a module such
as VEA is integrated the MPSoC with other systems, allowing for applications that would
run part in the chip and part outside the chip. Also, the NBE interface can be reused when
prototyping the system to an FPGA board, replacing the VEA by the communication method
implemented by the board (e.g., I2C). An example of a distributed application that would
favor from such a feature is given in Section 7.1.1.

5.4 Processing Tiles

Processing tiles provide computing power to ORCA MPSoC as they have the nec-
essary hardware to run tasks, consisting of memory, processor core, and network interface
(NI) modules. A NI orchestrates the functioning of a processing tile, serving as a gateway to
the processor core. The memory access is handled by a custom multiplexer, whose activa-
tion depends on the value of the stall signal of the CPU, driven by the NI. When sending or
receiving packets, the NI stalls the CPU, thus switching the memory access to the NI inter-
face. Once done copying data, the NI releases the CPU while returning the memory access
to the CPU interface. Figure 5.5 shows an overview of the organization of processing tiles.

5.4.1 Memory Core

For this work, we developed single-port memory cores, which have low area over-
head when compared to dual-port cores. However, one drawback of having single-port
cores in the design is the additional logic required by accessing protocols. In ORCA MP-
SoC, we use memory cores in two parts of the design. First, memory cores are attached

66

Interruption

Processing Tile

Network
Interface

Processor Core

Local
 Port

Main
Memory

m
ux

Memory bus

Stall

DMA
programming
interface

NI status

Router

Figure 5.5 – Overview of a processing tile and its components.

to FIFO buffers, included into the NI modules. In these cases, there is no need for access-
ing protocols due to only FIFO buffers can read and write to these memories. The second
appearance of memory cores corresponds to the main memory in processing tiles. In this
case, both the processor core and the NI have access to the same memory module. The NI,
which also has the role of DMA, coordinates the access protocol by configuring an attached
multiplexer. An illustration of the interface of a memory core used within ORCA is shown in
Figure 5.6.

data_outdata_in
address
data_rw Single-Port RAM

cl
k

re

se
t

Figure 5.6 – Illustration of the single-port memory core used in ORCA.

The memory map for the main memory module is as shown in Figure 5.7. The
organization of the memory space depends on the features defined at the design time for
the platform, supporting (i) core, (ii) NoC, and (iii) monitoring extensions. The first extension
corresponds to the memory map for a single core and is always enabled for any configu-
ration. The system image containing software code and data is loaded to the memory at
address 0x40000000, the origin address. Once started, the system will set the stack pointer
to 0x40400000, the stack base address, increasing towards the origin address. The sec-
ond extension, the NoC, presents the wires for controlling the network interface, enabling
the core to send and receive packets through the network. We present the control signals
for the network interface in Section 5.4.3. The last extension works in combination with the
monitoring library, presented in Section 6.2.1.

67

NoC
Extension

Unmapped space

 Main

 Memory

Control Signals
(network interface)

Code and
data

Stack

Unmapped space

Hardware Counters

C
on

fig
ur

ab
le

 m
em

or
y

si
ze

. D
ef

au
lts

 to
 4

M
B

.
8-bit wide

Monitoring
Extension

Single
Core

Figure 5.7 – Platform’s memory map.

5.4.2 FIFO Buffers

FIFO (first-in, first-out) is an access model for memory buffers typically used to store
temporary data, and are often called queues. We use FIFO buffers in situations where stored
data must be processed in-order, that is, the first chunk of data to be written to the memory
is the first to be read afterwards. In the case of ORCA MPSoC, buffers connect routers to
network-interfaces, and routers to network-bridges. Although the implementation of FIFO
buffers is nearly trivial, we briefly present the interface of our FIFO buffers for documenting
purposes. It is important to note that these FIFO modules are not part of routers, as Hermes
provides their queue design. Figure 5.8 shows the interface of the FIFO buffer module.

FIFO Buffer

cl
k

re

se
t

write_data
write_addr
write_enable

read_data
read_addr
read_enable

input output

memory
interface

da
ta

_i
n

ad

dr
es

s
da

ta
_r

w
da

ta
_o

ut

Figure 5.8 – Interface of a FIFO buffer.

68

5.4.3 Network Interface (NI)

The network interface (NI) module connects the router to other IPs in processing
tiles, working as a gateway for the entire tile. To reduce the potential area of the chip, we
opted to use one-port memory modules, which prevents the processor core from accessing
the main memory at the same time as the NI. A peripheral driver orchestrates the operation
of the NI, whose functioning is based on two processes: one for receiving packets, another
one for sending packets. Different from the NI presented in Ruaro et al. [67], our NI does
not require an arbiter process to work, as the processor core is unable to interact with both
sending and receiving processes at the same time. Figure 5.9 shows the interface of the NI
module and the state machines for the sending and receiving processes.

ad
dr

es
s

m
od

e
da

ta
_i

n
da

ta
_o

ut

tx cr
ed

it_
i

da
ta

_o
ut

R
ou

te
r I

/F

M
em

. I
/F

w8_conf

se
nd

s_
st

at
us

p_
ad

dr
p_

si
ze

r_
st

at
us

r_
st

ar
t

cl
k

re
se

t
st

al
l

Network Interface

RecvSend

M
M

IO
 I/

F

S0

S1

S2

S3

S5

S4

w8_size

w8_addr

config_stall

copy_release

flush

buffer_len > 0

buffer_len > 0

flits_copied =
last_size_flit

w8_payload

STALL = 1

flits_written =
last_size_flit

ACK = 1

S0

S1

S2

S3

copy_release

flush

ni_send = 1

copied_flits =
config_size /2

pushed_flits =
config_size /2

push

ACK = 1

config_stall

Figure 5.9 – NI interface (left), the state machine for the sending processes (middle), and
the state machine for the receiving process (right).

When receiving a packet, the NI waits until all flits arrive for that packet (W8_ADDR,
W8_SIZE, and W8_PAYLOAD). These flits e kept into the input buffer, which is an instance of
the FIFO module presented in Section 5.4.2 and has the size of a network package. In this
work, we use a packet size of 64 flits, although the size is configurable at the design time.
Once all flits arrive at the buffer, the processor core is interrupted (CONFIG_STALL). Then,
a peripheral driver configures the NI, which serves as a DMA module, to copy the packet
into the main memory (COPY_RELEASE). The NI writes the number of received flits to the
R_STATUS pin so that the processor core can notice the amount of memory necessary to

69

store the packet. When the last flit is copied, the NI releases the CPU, lowering the stall
signal. Then, the NI wait for the CPU to acknowledge the operation (FLUSH), and then move
to the initial state again (W8_ADDR).

When sending a packet, the processor core configures the NI to copy data from
the main memory to the output buffer (CONFIG_STALL). Once configured, the NI stalls the
CPU and copies the data, one flit per cycle, releasing the CPU when the last flit is copied
(COPY_RELEASE). The NI waits for all flit to be injected into the network by the local router
(PUSH). Once finished, it waits to lower the busy signal (FLUSH) and then proceeds to the
initial state (CONFIG_STALL).

5.4.4 HFRiscV (processor core)

Our processor core model is an adaptation of an existing simulator for the HFRiscV
processor core, hfsim [41]. That core implements either the RV32I (integer operations)
or RV32IM (“M” extension for multiplication) instruction sets of the Risc-V user mode stan-
dard [81], with 32 user-level registers in the architecture (from x04 to x31), and four core
instruction formats (R, I, S, and U-type). All registers are 32-bit wide, as is the length of
all instructions. Instructions are submitted to a 3-stage pipeline with FETCH, DECODING,
and EXECUTE stages. All instructions take 2 to 4 cycles to traverse the pipeline, where (i)
branches not taken spend two cycles only, (ii) memory operations (reads and writes) take
four cycles, and (iii) other operations take three cycles. A summary of the instructions format
considering the instruction sets implemented in the HF-RiscV core are presented below.

R-Type Instructions comprises non-immediate arithmetic (ADD and SUB), logical (XOR,
OR, AND), shifts (SLL, SLR, SLA), and compare instructions (SLT and SLTU). The “M”
extension adds new instructions of the R-type format to support integer multiplication
(MUL, MULH, MULHSU, MULHU, DIV, DIVU, REM, and REMU).

I-Type Instructions includes the immediate counterparts of R-type instructions (ADDI,
XORI, ORI, ANDI, SLTI, SLTIU, SLLI, SLRI, SLAI, SLTI, and SLTIU), loads (LB, LH, LW, LBU,
and LHU), synch (FENCE and FENCE.I), system (SYSCALL and SBREAK), and internal
counters (RDCYCLE, RDCYCLEH, RDTIME, RDTIMEH, RDINSTRET, and RDINSTRETH)
instructions.

S-Type Instructions are for stores (SB, SH, and SW). A variant, called B-type, includes
branch instructions (BEQ, BNE, BLT, BGE, BLTU, and BGEU).

U-Type Instructions includes addressing instructions (LUI and AIUPC). A variant, J-
type, correspond to the jump-and-link instructions (JAL and JALR).

70

The interface of the core, shown in Figure 5.10, exposes wiring for memory con-
nection (ADDRESS, MODE, DATA_IN, and DATA_OUT), STALL (hold the cpu state when risen),
and external I/O (EXTIO_I and EXTIO_O).

extio_i
extio_o

address
mode
data_in
data_out

clk
reset
stall

HFRiscV Processor
E

xt
er

na
l I

/O

H
an

dl
in

g
Mem. I/F

ALU BSHIFTER

DATAPATH INT_CONTROL

REGBANK

Figure 5.10 – Interface of HFRiscV processor core comprising memory interface and exter-
nal I/O handling. Internal components include ALU, barrel shifter, register bank, datapath,
and interruption controller.

5.4.5 Memory Multiplexer

In this work, the memory interface of the processor core is connected to a multi-
plexer, the MEMMUX. The activation signal of the multiplexer is the stall signal. When the
stall signal rises, the memory access is transferred to the NI. When the stall lowers, the
access is given back to the CPU. By using this mechanism, we avoid both the CPU and NI
to simultaneously access the main memory. As the memory module has a single port, we
connect the port directly to the multiplexer. Figure 5.11 shows the interface of the memory
multiplexer.

address
mode
data_in
data_out

address
mode
data_in
data_out

address
mode
data_in
data_out

Memory
interface

M
em

ory
M

ultiplexer

Network
interface I/F

stall

Processor I/F

Figure 5.11 – Memory multiplexer and its interfaces with main memory, network interface,
and processor core.

71

6. SOFTWARE COMPONENTS

In this chapter, we present the software components of ORCA, beginning with Hell-
fireOS, the operating system running in each of the processing tiles of the platform, in Sec-
tion 6.1. Two support libraries were developed in the context of this work. One library corre-
sponds to the API for interacting with sensors, which we call ORCA Monitoring, presented in
Section 6.2.1. The other one corresponds to an implementation of the publish-subscribe pat-
tern presented in Section 6.2.2. Finally, a library for off-chip communication, the client library,
is discussed in section 6.3. It is worth to mention that our contributions extend only to the
software libraries, although we present minimal information on HellfireOS for documenting
purposes.

6.1 HellfireOS

HellfireOS [40] is a preemptive, real-time operating system with support for dy-
namic, two-layer task scheduling. At the first layer, a real-time scheduler handles real-time
tasks. The real-time scheduler can use either the earliest deadline first (EDF) or rate mono-
tonic (RM) scheduling policies, configurable at the design time. In this work, we expressly
adopt the EDF algorithm. In EDF, the scheduler takes the form of a priority queue, with tasks
sorted by their deadline, from the earliest to the latest. The second layer of scheduling treats
best-effort tasks, invoked only if the real-time scheduler has not consumed the whole CPU
time. Hence, the execution of best-effort tasks cannot be guaranteed. Figure 6.1 shows the
organization of HellfireOS.

HellfireOS software organization comprises five blocks: (i) hardware abstraction
layer, (ii) kernel, (iii) device drivers, (iv) storage and networking systems, and (v) user tasks.
The hardware abstraction layer (HAL) comprises the routines for machine initialization (boot
up) and interruption management. At the kernel level, several data structures are provided:
lists and queues, mutexes, semaphores, mathematic library, access to input/output (e.g.,
printf). Task management is also part of the kernel block. Device drivers correspond to
the software for controlling the peripherals, including routines to deal with several hardware
protocols, e.g., I2C, SPI, and the NoC. Storage and networking block is not used in this work,
as we do not rely on the canonical OSI model [38] or data persistence.

Three key features make HellfireOS suitable for this work. The first regards the net-
working driver, which we could adapt to the hardware with just a few modifications, mostly
related to the functioning of the network interface, and the driver had compatibility with Her-
mes’ routers already. Second, the operating system offers support to Risc-V architecture.
Third, HellfireOS supports real-time scheduling, which is a feature extensively mentioned in

72

User Tasks

list library (list API)queue library
(queue API)

semaphore (sem API)

mutex (mutex API)
task manager (task API)

processor manager
(cpu API)

standard C library

math librarymemory allocator
condition variables

(condvar API)
task control block

task scheduler

low level driversmachine init interrupt mgmt.context switch

Kernel

Hardware Abstraction Layer
(HAL)

uhfs (filesystem api) uudp (uudp api)

ustack network protocols
Storage and Networking

Network-on-chip (NoC api)

device (Dev API)

block and character devices

I2C and SPI devices

Device Drivers

Figure 6.1 – Illustration of HellfireOS organization. The HAL provides low-level directives
dealing with component-specific issues at the hardware level. The kernel itself provides
support for the management of task and system-level API. Modules for data persistence
(storage) and networking are provided as well. Lastly, device drivers provide protocol-level
directives that may be accessed mostly by applications.

related works. Other benefits include a shipped-in library for fixed-point arithmetic, a very
tiny standard library that reassembles the implementation of the C standard library, and
routines for spawning and killing tasks, similar to those found in general-purpose operating
systems [52].

6.2 Support Libraries

We developed two software libraries for HellfireOS. The former, ORCA Monitoring,
provides access to hardware counters from the application-level, enabling the development
of self-adaptive applications that can sense. The second library, ORCA Publish-Subscribe,
allows processes to disseminate data through the system using an event-based strategy,
the publish-subscribe model. All libraries were programmed in C language, and adapted to
work with the HellfireOS kernel. We present each of these libraries below.

6.2.1 ORCA Monitoring

ORCA MPSoC is equipped with a couple of hardware counters. These counters
can be either physical, when they do exist in the hardware design, or virtual when they are
emulated by software. Regardless, all counters are exposed to the application level through
the system API, which accesses reserved memory space to read from these counters via
memory-mapped I/O, similarly to the approach used by Sarma et al. [74]. Physical sensors

73

correspond to specific registers that do not partake in components’ functionality. Instead, the
purpose of these registers is solely to store information on the performance of the system.
Counters appear to the rest of the system as a memory region, accessible through software.
Reads to that memory region returns the current value stored in the counter, and software
can write to these counters to modify their value to zero, corresponding to a reset to the
counter. Writing arbitrary values for debugging purposes is also permitted. Table 6.1 shows
physical hardware counters available in ORCA.

Table 6.1 – Counters available in ORCA Monitoring.
Counter Alias Description Access Availability

MEM_R(ψ, φ)
Returns the number of reading on memory φ of tile ψ since
the last reset. Memory codes are the following: (0) main
memory, (1) receiving memory, (2) sending memory.

System-
wide

Hardware/
software

MEM_W(ψ, φ)
Returns the number of writes on memory φ of tile ψ since
the last reset. Memory codes are the following: (0) main
memory, (1) receiving memory, (2) sending memory.

System-
wide

Hardware/
software

ROUTER_A(ψ)
Returns the number of cycles that the router of the tile ψ had
being active since the last reset. Routers are active when
at least one port is transmitting or receiveing data.

System-
wide

Hardware/
software

CPU_INST(ψ, φ)

Returns the number of instructions that the CPU of the tile
ψ executed since the last reset. Instructions are accounted
per instruction class φ, which can be: arithmetic, logical,
loads and stores, jumps, branches, and shifts.

System-
wide

Hardware/
software

CPU_CYCLE(ψ) Returns the number of cycles in that the CPU in tile ψ was
not stalled since the last reset.

System-
wide

Hardware/
software

CPU_STALL(ψ) Returns the number of cycles in that CPU in tile ψ was
stalled since the last reset.

System-
wide

Hardware/
software

SYS_TIME(ψ)
Returns current timestamp of the system, converted to mil-
liseconds. The calculi are based on the current frequency
of the CPU and the cycle counter CPU_CYCLE(ψ).

Tile only Software
only

TSK_DLM(ψ, φ) Returns the number of deadlines missed by task φ, running
in CPU ψ, since the last reset.

Tile only Software
only

SYS_UTIL(ψ) Returns the current percentage of utilization for CPU ψ.
Cannot be reset.

Tile only Software
only

HST_TIME
Returns current timestamp of the host machine, converted
to milliseconds. Depends on ORCASIM implementation
and should be the same for all tiles.

Tile only Simulation
only

6.2.2 ORCA Publish-Subscribe

ORCA Publish-Subscribe is a software library for HellfireOS that enables the design
of applications over the publish-subscribe pattern. We consider it a middleware as it interme-

74

diates the communication of the several tasks in the systems, sometimes requiring reduced
effort to design these applications when compared to the message-passing model [18]. Re-
garding performance and resource usage, the approach has been used before in the context
of MPSoCs, yet proved to add small memory and processing footprint to the system [31].

A few benefits come along with having a publish-subscribe system within ORCA,
as the pattern provides space, time, and synchronization decoupling between communicant
processes. With space decoupling, the address of communicant tasks becomes negligible
at the application level, and engineers can design their applications despite the mapping of
the tasks in the MPSoC, for example. For time decoupling, communication becomes unaf-
fected by the temporary unavailability of one task or another since data can reside in the
underlying network until it is delivered to the destination process. This feature is favored
part by the NoC, which is capable of retaining data may a process fail to read it momentarily,
and part by the kernel, which has a software-implemented buffer to stack packets until tasks
could consume them. Finally, synchronization decoupling regards the elimination of commu-
nication blocking [32]. We present the operation implemented in ORCA publish-subscribe
in Table 6.2. Three communicant parts participate in a typical publish-subscribe system:
brokers, publishers, and subscribers. We discuss each of these parts below.

Brokers

Brokers are specialized tasks that orchestrate the communication of a publish-
subscribe system. As so, we designed brokers so that they could be scheduled as if they
were real-time tasks. Since the system uses an RT kernel, brokers can have a slice of CPU
time dedicated to them. Another advantage of running brokers outside the kernel space is
that any number of brokers can be spawned in the system — a useful feature if security is
in question. Another advantage relates to fault-tolerance and resource management. When
a broker fails, another broker can be spawned in any node of the system. For this work, we
spawn brokers at the startup of the system, although we do not prevent tasks from spawning
new brokers at any time. A similar approach has been used in other systems [19].

A broker task stays listening to a configurable port, to which messages of advertise,
unadvertise, subscribe, and unsubscribe may arrive. Once a message arrives, the broker
follows the behavior presented in Table 6.2. Broker tasks partake in all publish-subscribe op-
erations except for publishing, although the broker keeps information on both publishers and
subscribers of the system. The brokers maintain tables for storing information on publishers
and subscribers. The publishers’ table is updated by advertising and unadvertise operations,
while the subscribers’ table is updated on subscribe and unsubscribe operations.

75

Table 6.2 – Operations implemented in ORCA Publish-Subscribe.
Operation Parameters Behavior

pubsub_advertise
pubsub_node_info_t pubinfo,
pubsub_node_info_t brokerinfo,
topic_t topic_name

The publisher process sends a message to the bro-
ker (brokerinfo) informing that it (pubinfo) is going to
publish to a topic (topic_name) in the near future. The
broker stores the information in its internal tables and
updates the publisher with the address of subscribers
for that topic.

pubsub_unadvertise
pubsub_node_info_t pubinfo,
pubsub_node_info_t brokerinfo,
topic_t topic_name

The publisher process sends a message to the broker
(brokerinfo) informing that it (pubinfo) ceased to pub-
lish to a topic (topic_name). The broker removes the
corresponding entry from its internal publishers’ table.

pubsub_publish topic_t topic, int8_t* content,
uint16_t size

The publisher process sends a message (content) of
size bytes to each of the subscribers of a topic (topic).
The list of subscribers is found in the publisher node,
as the broker updates all publishers when a subscriber
enters or leaves the system.

pubsub_subscribe
pubsub_node_info_t subinfo,
pubsub_node_info_t brokerinfo,
topic_t topic

The subscriber process (subinfo) sends a message to
the broker (brokerinfo) requesting a subscription in a
topic (topic). If the process is not subscribed to that
topic already, the broker adds it to its subscribers table
and looks up for publishers of that topic in the publish-
ers table. Each publisher is updated with the informa-
tion of the new subscriber, adding it to their publishers
list.

pubsub_unsubscribe
pubsub_node_info_t subinfo,
pubsub_node_info_t brokerinfo,
topic_t topic

The subscriber process (subinfo) sends a message to
the broker (brokerinfo) requesting its unsubscription
from topic topic. If the process is subscribed to that
topic, the broker removes it from its subscribers’ table
and looks up for publishers of that topic in the publish-
ers’ table. Each of the publishers is updated to remove
the subscriber from their subscribers’ list.

Publishers

As in Hameski’s work [31], publishers store information about subscribers so that
subscribers can receive messages directly from publishers. The main difference from a con-
ventional centralized publish-subscribe system is that messages are not sent to brokers,
reducing communication latency by shortening the number of hops in the network. How-
ever, the broker still has to keep the system consistent by storing proper information about
publishers and subscribers. In the end, the cost of a publish operation, in terms of network
hops, is not different than in conventional message-passing whatsoever.

Subscribers

Since the NoC’s networking protocol has additional header fields to tag messages
with channel information, we explore this feature in subscribers in a way that receiving a mes-
sage from a publisher becomes the same as receiving any message via message-passing.

76

Hence, from an application perspective, messages transmitted using the publish-subscribe
mechanism do not need to be treated separately from other messages, permitting applica-
tions to combine publish-subscribe with message-passing when convenient. The only over-
head caused by the middleware is the subscription, which happens once for each subscribed
topic and takes the same costs of sending an ordinary message via message-passing — it
takes one message to perform any subscription.

6.3 Network Client Library

The network client library (NCL) provides an application-layer protocol, implemented
over the HellfireOS communication API, to access the MPSoC nodes from outside the sys-
tem. The library is useful for situation in which the MPSoC must integrate within an hetero-
geneous system, e.g. an FPGA board containing processors running a Linux system. In
essence, the library is a driver for the off-communication module, as it is capable of translat-
ing the NoC protocol into another protocol. We used this library before to translate from the
MPSoC protocol to UDP and vice-versa (see Section 7.1.1), yet it is possible to easily adapt
the API to work with other protocols (e.g., I2C). We provide the API for the NCL in Table 6.3.

Table 6.3 – Operations implemented in the Network Client Library.
Operation Parameters Behavior

hf_send_open std::string addr,
uint32_t port

Opens a connection with the MPSoC, identified by a server ad-
dress and port. The MPSoC to have a valid UDP/IP address
within the network (requires one off-chip comm. tile). The opened
connection can be used only to send data.

hf_send

uint16_t target_cpu,
uint16_t target_port,
int8_t* buf,
uint16_t size,
uint16_t channel

Sends a message to a node within the MPSoC. In HellfireOS,
messages must be addressed to the a port, and can optionally
be tagged with a channel number.

hf_send_close std::string addr,
uint32_t port

Closes a previously opened connection for a given address and
port.

hf_recv_setup std::string addr,
uint32_t port

Opens a connection with the MPSoC, identified by a server ad-
dress and port. The MPSoC must have a valid UDP/IP address
within the network (requires one off-chip comm. tile). The opened
connection can be used only to receive data.

hf_recv

uint16_t* src_cpu,
uint16_t* src_port,

int8_t* buf,
uint16_t* size,
uint16_t* channel

Receives a message from some node in the MPSoC. The receiv-
ing operation is blocking.

hf_recv_close std::string addr,
uint32_t port

Closes a previously opened connection for a given address and
port.

77

7. EVALUATION

In this chapter, we present the evaluation of the proposed platform, both for the
ORCA MPSoC, the hardware of the platform, and URSA, the simulation API used to simu-
late ORCA. In the first part of the chapter, we discuss the functional validation of the platform,
presenting features mentioned in previous contributions (sections 7.1.1 and 7.1.2) along with
an experiment for demonstrating task reallocation (Section 7.1.3). The second part of the
chapter corresponds to the performance evaluation of ORCA-SIM, consisting of an experi-
ment to measure the performance of the simulation engine for the single-core emulation of
the Risc-V ISA (Section 7.2.1), and an experiment exploring the scalability of the simulation
(Section 7.2.2).

7.1 Functional Validation

In the next three sections, we present the functional validation for the proposed
platform, which consists of demonstrating some of the previously presented features, includ-
ing off-chip communication, energy evaluation, and task reallocation. For the former two, we
briefly summarize the contributions of two previously published papers [21, 79]. For the last
one, we developed a minimal working example from scratch.

7.1.1 Integration with a Robotics Environment

In previous work [21], we presented the integration of the proposed platform with
an environment for robotics simulation, relying on the off-chip communication tile introduced
in Section 5.3. The contributions of the work included presenting the VEA module (see Sec-
tion 5.3.2), wrappers for MPSoC protocols to work with the external system (based on the
NCL, presented in Section 6.3), and an example application implementing a random-walk
algorithm for a differential robot. We simulated the robot using Gazebo [60], a robotics sim-
ulator capable of simulating physics. The communication between the MPSoC and Gazebo
was carried out by two applications developed over the ROS middleware [59]. An illustra-
tion of the discussed environment is shown in Figure 7.1. We learned from that work that
ORCA-SIM could provide a cycle-accurate simulation environment while keeping pace with
the simulation speed of Gazebo. We achieve preliminary results regarding the simulation
performance, which in that case showed to be linear to the number of simulated tiles up to
49 tiles, as shown in Figure 7.2.

78

subscribe

Network Bridge
UDP Client

Network Bridge
UDP Server

0 1

2 3

O
R

C
A

M
P

S
oC

ROS-MPSoC
UDP Client

ROS-MPSoC
UDP Server

MPSoC-ROS
Node

mpsoc-out

mpsoc-in publis
h

subscrib
e publish

ROS-based System

several ros nodes

topics

Figure 7.1 – Organization of the MPSoC integration into a ROS system. The MPSoC-ROS
node exchanges data with the rest of the system by publishing to the mpsoc-out topic, as
well as subscribing to the mpsoc-in topic. Arrows indicate the direction of the data-flow [21].

7.671
19.614

39.769

65.737

98.249

142.743

Number of Nodes in the MPSoC

Ti
m

e
(s

ec
on

ds
)

0

50

100

150

200

10 20 30 40 50

Time (seconds) Trendline for Time (seconds) R² = 0.998

Figure 7.2 – Time taken to simulate 10M cycles for MPSoCs with 4, 9, 16, 25, 36, and 49
nodes. Results point that adding new nodes to the simulation makes the simulation time
grows almost linearly to the number of nodes [21].

79

7.1.2 Energy Consumption Estimation

In recent work [79], we deliver several upgrades to the platform along with exper-
iments for validating a couple of features. For the hardware architecture, we improved the
processor model for the HF-RiscV core, adding new functionalities in URSA API to improve
the access of memory-mapped peripherals. These changes had no impact on applications,
although they dramatically increased simulation performance. Changes to the logic of buffers
and router models were made as well. Finally, the network interface has been reworked, re-
sulting in the model presented in Section 5.4.3. Minor changes have been performed on the
simulation engine, contributing to the performance of the simulation.

The main contribution of that work is to demonstrate energy evaluation for a real-
world robotic application. The platform provides all the requirements for energy evaluation.
First, the hardware counters presented in Section 6.2.1 were used to estimate the power and
energy consumption for several parts of the MPSoC, considering the approach proposed by
Martins [48]. In that approach, hardware characterization must be done prior to the evalu-
ation — see Martins [48, 49] work for a comprehensive discussion on the characterization
process. The values for energy consumption obtained from characterization are stamped
into the counters. The system periodically read from the sensors, summing the energy con-
sumption for the several parts of the system, giving an estimation of the total consumption
for the period. The operation is repeated over and over until the end of the execution of
the system. It is worth to highlight that we did not perform characterization on the current
hardware, and the contributions regarding energy estimation correspond only to the hard-
ware counters and the calculi embedded to the platform. The user must insert the values for
characterization, and we do not provide these values for our platform.

We applied the technique for a robotics application consisting of an extended Kalman
filter (EKF) and a proportional integral derivative (PID) controller tasks. These tasks were

B

U

M

height (Z)

proper acceleration
(ACC)

orientation and
angular velocity

(GYR)

A
G

u1

u2

u3

u4

direction of the
magnetic field
(MAG)

sensors
latency
compensation

gazebo ros (to-mpsoc)

@100Hz

EKF

PID

ursa

orca mpsoc

raw
data

@10Hz

filtered
data

interpolation

ros (to-gazebo) gazebo

@100Hz

pw
m

[]
 pwm[]

motors

[0]

[1]

[2]

[3]

legend: B barometer U imu M magnetometer A accelerometer G gyroscope ros topic ros node udp socket mpsoc task

Figure 7.3 – Diagram representing the dataflow between the components of the proposed
environment [79]. Yellow boxes represent gazebo, corresponding to simulation of sensors
and motors. Green boxes represent the ROS system that encapsulate the MPSoC. The
orange box represents ORCA-SIM, simulating both the EKF and PID tasks.

80

periodically fed by the sensors installed in an unmanned aerial vehicle (UAV), simulated
in Gazebo [60], attached to a ROS [59] system, similarly to work [21] presented in Sec-
tion 7.1.1. The EKF tasks were used to estimate the pose of the vehicle using the sensors’
data, and the PID tasks were used to control the attitude and altitude of the vehicle.

As a result, we could feed the MPSoC with a data rate of 10Hz, with the platform
simulating at 1.14MHz (real-time) for a 4x4 configuration (16 tiles). For instance, the platform
used in Section 7.1.1 could run the same configuration for 200KHz only, nearly 500% slower.
Figure 7.3 presents an illustration of the discussed system.

7.1.3 Task Reallocation with Software Sensing

In this section, we demonstrate a minimal working example for the task reallocation
feature using real-time parameters of the target task. The platform is configured for a 2-by-3
system in which one of the tiles, namely tile zero, is an off-chip communication tile. The
remaining tiles, numbered from one to five, are processing tiles running real-time tasks. The
goal is to spawn new tasks in one of the processing tiles to force a specific task to miss
deadlines. Once a configured number of deadlines is missed, the system will reallocate the
task in another processing tile. We demonstrate such a feature using a producer-consumer
application with the aid of the publisher-subscriber extension. For the sake of simplicity, the
following assumptions hold.

1. The scheduling algorithm is Early Deadline First (EDF), which is optimal. Therefore,
we assume the CPU to have utilization ≤ 100% when the task set is schedulable; that
is, there is a possible execution order to avoid any task to miss its deadline.

2. The period is ten time units; that is, the task set is released every ten time units. When
the sum of all capacities for the task set is ≥ 10, at least one task will miss a deadline.

3. All tasks have period of ten time units and deadline of one time unit (10% of CPU time).

4. All tasks have capacity and deadlines set to one unit of time; thus, the maximum num-
ber of tasks in a schedulable task set has to be equals to the period. Note that the
restriction on the maximum number of simultaneous tasks is 32, although we do not
explore it further.

5. Scheduling time is negligible and considered to be instantaneous (equals to zero).

At the system startup, no task is spawned yet. Once the kernel is ready, and all
drivers and internal structures were initialized, a startup routine spawns the initial task set
for each of the processing tiles. For this example, the following tasks compose the startup

81

2Process-
ing Tile 5

41
30Off-chip

Comm.
Tile

Process-
ing Tile

Process-
ing Tile

Process-
ing Tile

Process-
ing Tile

52
41
30Off-chip

Comm.
Tile

Process-
ing Tile

Process-
ing Tile

Process-
ing Tile

Process-
ing Tile

Process-
ing Tile 52

41
Spawner

Broker

Producer

Consumer
Spawner

Requester

Spawner

Broker

Producer

Consumer Requester

Spawner

Broker

Producer

 Requester

Spawner

...

Consumer

(a) (b) (c)

Dummy1

Dummy2

Spawner

Consumer
Observer

...
Dummy1

Dummy2

XObserver
Observer

30Off-chip
Comm.
Tile

Process-
ing Tile

Process-
ing Tile

Process-
ing Tile

Process-
ing Tile

Dummy3
Dummy4

Figure 7.4 – Task set for each of the processing tiles, depicting initial allocation (a), dead-
line missing detection (b), and task reallocation (c). Arrows denote communication between
tasks. Blue arrows are for continuous communication, and red arrows indicate that commu-
nication happens once. The color code for tasks is as follows: (green) healthy, (yellow) some
deadlines missed, (orange) scheduling is unfeasible, (red) task removed from the task set.

configuration, as presented in Figure 7.4 (a). The organization of the system according to
the taxonomy presented in Section 3.2 is shown in Figure 7.5.

Lo
gi

ca
l

S
en

si
ng

Hw.
level

Kernel
level

M1

E1 A1

Task
level

E
va

lu
at

or
s

DecisionSensing Actuation

P
ro

ce
du

re
s

P1

A1
A2 A3

A
ct

io
ns

Number of deadline
missed by the producer
task in processing tile
number two.

No physical sensors or switches in use.

If M
1
≥ 3, activate

decision logic A
1
.

Can activate only
once. Decision is static: trigger

procedure P
1
.

Perform actions A
1
, A

2
, and

A
3
, in that order.

A
1
: Unsubscribe

consumer task
from topic #01

A
2
: Spawn a

new consumer
in processing
tile number
four.

A
3
: Kill the consumer in

processing tile number two.

Figure 7.5 – Modeling of a self-adaptive technique that uses task reallocation.

1. A PRODUCER task is spawned to processing tile number one. These tasks produce
packets containing a sequential number, and send these packets to the consumer
task, spawned in tile two. The delay between packages is three milliseconds (3ms).
Before sending the first packet, this task advertises to the system broker, informing that
publication will be performed on topic #01.

2. SPAWNER tasks are deployed to processing tiles two and four. Spawner tasks can
spawn tasks (including copies of itself) by invoking kernel calls in the node that they
reside in. In this demonstration, we use one spawner task to create a couple of dummy

82

tasks, forcing a deadline in processing tile two; and another spawner task to reallocate
one of the affected tasks.

3. A CONSUMER task is spawned to processing tile two. This task periodically receives
packages from the consumer task, and print their content on the standard output (em-
ulated UART). Once spawned, this task register to the system broker to subscribe to
topic #01, the same topic to which the producer task advertises to.

4. A BROKER task is spawned to processing tile number three. The behavior of the task
is as explained in Section 6.2.2.

5. An OBSERVER task resides in the same processing tile as the consumer. The observer
task monitors the number of deadlines of the consumer task, and notifies the spawner
in processing tile four in case the number of deadlines goes greater than a certain
threshold. We use three deadlines as threshold for this demonstration.

6. A REQUESTER task is placed in processing tile number five. The requester task peri-
odically asks the spawner in processing tile two to spawn new dummy tasks.

7. DUMMY tasks, implemented as empty loops, are spawned by the spawner task in node
4. Spawns occur every 100 milliseconds, with the first spawning occurring one second
after the startup (time zero).

At the startup, the kernel spawns all tasks for the initial task set. The task set is
schedulable and consumes at most 30% of CPU (worst case is processing tile number two).
Both the producer and consumer tasks have been registered with the broker for publishing
and subscribing to topic #01. At the time 100ms, the producer task start to generate packets
to the consumer tasks. New packets are generated once per 5ms. At the time 1000ms (con-
figured at the design time), the requester at tile number five starts requesting the spawner
in tile number two to spawn new dummy tasks. In HellfireOS, the kernel can have up to 32
tasks running simultaneously. At most, 28 dummy tasks could be spawned to tile number
two, as HellfireOS reserves one task slot for the idle task, a best-effort task that does not be-
long to the real-time task set, having no impact on the demonstration. Since the period of all
tasks is ten units of time, the system can theoretically schedule the initial task set plus new
six dummy tasks without missing any deadline. Once the seventh dummy task enters the
system, the scheduler cannot guarantee that the deadline for the tasks will be met. Once the
consumer task misses its third deadline (configured at the design time), the observer tasks
notify both the broker (to unsubscribe the task from topic T0) and the spawner in tile four (to
spawn a new consumer task). This process is depicted in Figure 7.4 (b).

Once the broker receives the notification from the observer, it updates the produces
(which is the only publisher for topic #01) so that the topic will not generate new messages
until a new subscriber enters the system. In meanwhile, the spawner in tile four is spawning a

83

new consumer task. The consumer registers at the broker as a subscriber of topic #01 once
it starts. Then, the broker notifies the producer, which starts to push packets to the network
once more. Since the consumer task has registered with the broker, the only destination of
the new packets is the newly spawned consumer, as shown in Figure 7.4 (c).

With the demonstration, we learned that task reallocation depends on several fea-
tures of the MPSoC. First, particular tasks for spawning and killing other tasks are necessary,
as implementing them as part of the kernel would add additional overhead to the system.
Also, these tasks can be added and removed from the system when necessary. Regarding
the reallocation time, it will depend on the performance of the network. Since we do not
transfer the context of tasks between tiles (otherwise it would be called migration instead of
reallocation), only control messages traverse the network.

Future works on task reallocation include migrating the context of tasks between
processing tiles. Other MPSoCs, e.g., HeMPs, use an external application repository so
application code can be migrated as well. In ORCA, all processing tiles share the same
kernel image, containing the same application code, so migrating the application code is not
necessary. However, such a feature is desired when working with multiple ISA, e.g., Risc-V
32I and 32IM, where the former does not require a multiplier unit. In this case, the generated
code would not be the same the multiple architectures.

7.2 Performance Evaluation

7.2.1 Single-Core Performance

Comparing simulators is a laborious task, as it includes the configuration of many
tools. Also, it is a complex activity due to the available simulators include many parameters,
and a single compilation flag may jeopardize the accuracy of the comparison. For these rea-
sons, we do not compare ORCA (either the simulation engine or ORCA-SIM itself) against
other simulators head-to-head; instead, we provide a minimal experiment to situate ORCA
in the broad group of simulation tools, mainly discussing these groups in terms of goals,
simulation performance, and accuracy.

We ran a benchmark for a few simulation tools so that we could get an insight on
time that ORCA-SIM takes for simulating a single-core Risc-V architecture when compared
to other tools. The benchmark consisted of two applications: one for a single empty loop
implementation, and another one containing a bubble sort implementation. We chose these
applications due to they do not depend on other software libraries, as we could not guarantee
that the simulation tools would support these libraries. The same applies for input and output,
as different architectures may map these peripheral in different memory regions. For each

84

pair application-simulator, we ran these applications five times, discarding the shortest and
largest times for each application, taking the mean between the remaining values as the
execution time for each pair. We performed the experiments on a Intel© CoreTM i5-6500 at
3.20GHz CPU, with Ubuntu 16.04. We show the results of this benchmark in Figure 7.6.

0.385 0.402

*gem5 executes in full system mode

M
ill

io
n

in
st

ru
ct

io
ns

 p
er

 s
ec

on
d

(M
IP

S)

Simulation Tools

Figure 7.6 – Results for Bubble Sort and For Loop applications running in several simulators.

The results point out that ORCA-SIM performance lies between SystemC and hf-
sim. As expected, some performance degradation occurs due to the features added to the
HFRisc-V processor model. Although we disabled some of these features for the experi-
ment1, ORCA-SIM could not achieve the same performance of hfsim for the Bubble Sort
application. For the For Loop application, ORCA-SIM could perform better due to the opti-
mizations to the memory access implemented in the simulator. Both ORCA-SIM performs
better than SystemC as it ignores the internal state of the hardware. For comparison pur-
poses, we considered gem5 [65], rv8 [13], and qemu [12] simulators. For gem5, running in
full system mode — which considers the internal state of the hardware —, presented the
worst performance. The other two tools use binary translation to achieve near-native speed.
As future work, we intend to explore binary translation to achieve near-native simulation
speed. However, it is important to note that binary translation is a technique for translating
non-native instruction to native instruction. Hence, it cannot provide cycle-accurate informa-
tion on the simulation. Another future work includes using a more elaborated benchmark to
compare architectures, e.g., CoreMarkTM [70].

1For the configuration of the simulators and applications used in the experiment, see https://github.com/
andersondomingues/ursa-benchmark.

https://github.com/andersondomingues/ursa-benchmark
https://github.com/andersondomingues/ursa-benchmark

85

7.2.2 Scalability and Multi-core Performance

The performance of the simulation depends on the specs of the host machine, as
well as the applications being simulated as the processor core have a different execution for
each instruction. We run this experiment in a Dell Precision Tower 3420 with four Intel(R)
Xeon(R) CPU E3-1220 v5 @ 3.00GHz, 32GiB of RAM, running Debian 10 (Buster) with
Linux kernel version 4.19.0-6 machine. The simulator was compiled with GCC 8.3 (targeting
x86_64), with optimizations (-O3, -MARCH, -MTUNE). We run ORCA-SIM five times for each
of the tested configurations, discarding the worst and best value, considering the mean
value of the remaining readings as the execution time. All configuration includes one off-
chip communication tile, plus one or more processing tiles, connected to the NoC. The same
application is loaded to all tiles, consisting of the bare-bone Bubble Sort application used in
the experiment presented in Section 7.2.1. Figure 7.7 shows the results for the experiment.

3.697

2.243
1.980

1.529

1.236

1.031
0.895

0.706
0.653

0.595 0.559

0.437
0.406 0.395

Number of Processing Tiles in the MPSoC

Si
m

ul
at

io
n

R
at

e
(M

H
z)

0.400

0.600

0.800

1.000

2.000

4.000

6.000

8.000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Simulation Rate 4.49x^-0.882

Figure 7.7 – Results for the experiment on the number of cores in the platforms. The trend
line for the power series approximation is displayed in red color.

The results point out that the simulation performance is degraded as we add more
processing tiles to the MPSoC. For a 2x2 mesh configuration (one off-chip, plus three pro-
cessing tiles), the simulation speed reaches nearly 2MHz (baseline is host time). Such a
result enables ORCA-SIM to be used as an emulator when considering that the simulation
rate approximates the clock frequency of the emulated hardware [21, 79]. When working
with more than ten nodes, the simulation rate drops below 5KHz, which seems to be imprac-

86

ticable for system emulation, even for embedded systems, which tend to operate in lower
clock frequencies when compared to general-purpose systems.

Future works on URSA includes optimizing the simulation queue and rework the
API to allow more modeling assets. For the simulation queue, we expect to replace the priory
queue from the standard template library (STL) for one handcrafted specially for URSA, due
to we observed during the experiments that most of the simulation time is consumed by
managing the queue. By doing this, we expect to decrease the simulation time and allowing
our API to be portable to other languages, as the priority queue would be part of it. For
the API itself, we intend to create abstract classes representing generic modules such as
processor cores, allowing the platform to operate with other ISA families. In the future, we
also intend to explore binary translation so that we can configure ORCA-SIM either for both
cycle-accurate simulation and emulation (similarly to qemu).

87

8. CONCLUSIONS AND FUTURE WORK

This work presented ORCA, a platform to support the development of self-adaptive
MPSoCs. The platform comprises an MPSoC architecture, simulator, software libraries,
and a framework for self-adaptation. The MPSoC combines Hermes NoC with HFRisc-V
processor cores to form a programmable NORMA system. The processing nodes of the
system run instances of the HellfireOS, a preemptive and real-time kernel. We developed
two software libraries to support the development of self-adaptive systems; the first provides
support for monitoring counters and sensors in the system for both software and hardware
components, and the second library implements the publish-subscribe pattern for on-chip
communication.

We validated the platform for an example of a self-adaptive technique. In that tech-
nique, monitors watch the number of deadline misses for a synthetic application, and acti-
vates task reallocation, moving the application to a neighbor processor core. The technique
uses both software libraries. The publish-subscribe library is used for application commu-
nication while using the monitoring library is used for capturing the number of deadlines
misses for the target application. Finally, the results presented in this thesis were collected
using ORCA-SIM, a tool that simulates the ORCA MPSoC. We developed ORCA-SIM on
top of URSA, an API for simulating computing systems.

We could successfully model and simulate several MPSoC configurations using
URSA’s API and implementation. In the future, we intend to add more features to the simu-
lator (e.g., distributed simulation). Although the focus of URSA is to support the simulation
of the proposed platform, other platforms can be simulated as well, as long as their mod-
els conform to URSA’s API. URSA project and platforms’ hardware models are available
through GNU GPL v2 licensing. All associated files and documentation can be found at
URSA’s GitHub repository (https://github.com/andersondomingues/ursa).

8.1 Author’s Words and Research Outlook

Self-adaptive systems have found their way to the world of MPSoCs, with several
studies being published in the last twenty years. The trend is to have more and more sim-
ilar studies out there. In this context, having a development platform to test and validate
self-adaptive techniques is of great value. In this thesis, we present a platform that was
made totally on open-source technology, and relies on the fresh recently-proposed Risc-V
ISA. Both features make ORCA a powerful tool for the development of new self-adaptive
techniques.

https://github.com/andersondomingues/ursa

88

However, there is much work to be done before ORCA gets all the features nec-
essary to comply with the vast range of self-adaptive techniques developed in the last two
decades. We plan to add new features to the platform so that we can reach a broader num-
ber of techniques. It is important to highlight that although we developed ORCA having in
mind a couple of other self-adaptive platforms, the research to come will shape the next
versions of the platform. Below we enlist a couple of directions for further improvement of
the platform.

• Debugging software is a time consuming-activity. In this work, we could not set up the
proper tooling for dealing with debugging, and no existing solution could be seamlessly
adapted to work for this purpose. Thus, we plan to extend ORCASIM to support the
GDB Remote Serial Protocol (RSP) [26] for remote debugging, permitting one to
inspect the state of each one of the processors during the runtime.

• Ongoing research on autonomous vehicles uses ORCA to control a quadrotor. The
software running in the MPSoC consists of two tasks: an extended Kallman filter
(EKF) and a proportional–integral–derivative (PID) controller. Both tasks are very time-
sensitive, making the ORCA MPSoC a suitable architecture to run them. Although we
could validate the software using ORCASIM, prototyping ORCA to an FPGA board
is on schedule. The FPGA will be attached to real quadrotor vehicle.

• We will add more sensing and actuation capabilities to the platform. The platform cur-
rently supports DVFS, but hardware modules have no DVFS zones defined. We plan to
define DVFS zones for each of the hardware modules. Another interesting feature
is task migration. ORCA currently supports task reallocation, which roughly compares
to kill a task in one processor and starting it in another one, losing all application data.
We intend to add task migration, that is, the system will transfer applications’ data
(stack, heap, and registers) between cores.

89

REFERENCES

[1] Accellera Systems Initiative. “SystemC”. Source: https://www.accellera.org/downloads/
standards/systemc, November 2019.

[2] Arcaini, P.; Riccobene, E.; Scandurra, P. “Modeling and Analyzing MAPE-K Feedback
Loops for Self-Adaptation”. In: IEEE/ACM International Symposium on Software
Engineering for Adaptive and Self-Managing Systems, 2015, pp. 13–23.

[3] Becker, J.; Brändle, K.; Brinkschulte, U.; Henkel, J.; Karl, W.; Köster, T.; Wenz,
M.; Wörn, H. “Digital On-Demand Computing Organism for Real- Time Systems”. In:
International Conference on Architecture of Computing Systems, 2006, pp. 17.

[4] Binkert, N.; Beckmann, B.; Black, G.; Reinhardt, S. K.; Saidi, A.; Basu, A.; Hestness,
J.; Hower, D. R.; Krishna, T.; Sardashti, S. “The Gem5 Simulator”, SIGARCH Computer
Architecture News, vol. 39–2, May 2011, pp. 1–7.

[5] Bouajila, A.; Bernauer, A.; Herkersdorf, A.; Rosenstiel, W.; Bringmann, O.; Stechele,
W. “Error Detection Techniques Applicable in an Architecture Framework and Design
Methodology for Autonomic SoCs”. In: Biologically Inspired Cooperative Computing,
2006, pp. 107–113.

[6] Brigham Young University. “JHDL: FPGA CAD TOOLS – Brian Young University”.
Source: http://www.jhdl.org/, February 2020.

[7] Brinkschulte, U.; Becker, J.; Ungerer, T. “CARUSO - An Approach towards a Network
of Low Power Autonomic Systems on Chips for Embedded Real-Time Applications”. In:
International Parallel and Distributed Processing Symposium, 2004, pp. 124–129.

[8] Brun, Y.; Di Marzo Serugendo, G.; Gacek, C.; Giese, H.; Kienle, H.; Litoiu, M.;
Müller, H.; Pezzè, M.; Shaw, M. “Engineering Self-Adaptive Systems through Feedback
Loops”. Springer Berlin Heidelberg, 2009, chap. 3, pp. 48–70.

[9] Caimi, L. L.; Fochi, V.; Wachter, E.; Moraes, F. G. “Runtime Creation of Continuous
Secure Zones in Many-Core Systems for Secure Applications”. In: IEEE Latin American
Symposium on Circuits Systems, 2018, pp. 1–4.

[10] Carara, E. A.; de Oliveira, R. P.; Calazans, N. L. V.; Moraes, F. G. “HeMPS — A
Framework for NoC-based MPSoC generation”. In: IEEE International Symposium on
Circuits and Systems, 2009, pp. 1345–1348.

[11] Castilhos, G.; Mandelli, M.; Madalozzo, G.; Moraes, F. “Distributed Resource
Management in NoC-based MPSoCs with Dynamic Cluster Sizes”. In: IEEE Computer
Society Annual Symposium on Very Large Scale Integration, 2013, pp. 153–158.

https://www.accellera.org/downloads/standards/systemc
https://www.accellera.org/downloads/standards/systemc
http://www.jhdl.org/

90

[12] Clark, M. J. “QEMU with RISC-V (RV64G, RV32G) Emulation Support”. Source: https:
//github.com/michaeljclark/riscv-qemu, February 2020.

[13] Clark, M. J. “rv8 | RISC-V simulator for x86-64”. Source: https://rv8.io, February 2020.

[14] Condon, S. “NVIDIA unveils Orin, its Next-Gen SoC for Autonomous
Vehicles and Robots”. Source: https://www.zdnet.com/article/
nvidia-unveils-orin-its-next-gen-soc-for-autonomous-vehicles-and-robots, February
2020.

[15] DeBenedictis, E. P. “It’s Time to Redefine Moore’s Law Again”, Computer, vol. 50–2,
Feb 2017, pp. 72–75.

[16] Dey, S.; Singh, A. K.; Wang, X.; McDonald-Maier, K. D. “DeadPool: Performance
Deadline Based Frequency Pooling and Thermal Management Agent in DVFS Enabled
MPSoCs”. In: IEEE International Conference on Cyber Security and Cloud Computing
/ IEEE International Conference on Edge Computing and Scalable Cloud, 2019, pp.
190–195.

[17] Diguet, J.-P. “Self-Adaptive Network On Chips”. In: Symposium on Integrated Circuits
and Systems Design, 2014, pp. 24:1–24:6.

[18] Dollimore, J.; Kindberg, T.; Coulouris, G. “Distributed Systems: Concepts and Design”.
Addison-Wesley, 2005, 5th ed., 644p.

[19] Domingues, A. R. P.; Hamerski, J. C.; Amory, A. “Broker Fault Recovery for a
Multiprocessor System-an-Chip Middleware”. In: Symposium on Integrated Circuits and
Systems Design, 2018, pp. 1–6.

[20] Domingues, A. R. P.; Hamerski, J. C.; de M. Amory, A. “A Fault Recovery Protocol for
Brokers in Centralized Publish-Subscribe Systems Targeting Multiprocessor Systems-
on-Chips”, Analog Integrated Circuits and Signal Processing, vol. 3–20, Mar 2020, pp.
1–29.

[21] Domingues, A. R. P.; Jurak, D. A.; Filho, S. J.; Amory, A. M. “Integrating an MPSoC to a
Robotics Environment”. In: IEEE Latin American Robotics Symposium, 2019, pp. 4.

[22] Ebi, T.; Kramer, D.; Schuck, C.; von Renteln, A.; Becker, J.; Brinkschulte, U.; Henkel, J.;
Karl, W. “DodOrg—A Self-adaptive Organic Many-core Architecture”. Springer Basel,
2011, chap. 4, pp. 353–368.

[23] Fishman, G. S. “Discrete-Event Simulation – Modeling, Programming and Analysis”.
Springer Science+Business Media New York, 2001, 1st ed., 554p.

https://github.com/michaeljclark/riscv-qemu
https://github.com/michaeljclark/riscv-qemu
https://rv8.io
https://www.zdnet.com/article/nvidia-unveils-orin-its-next-gen-soc-for-autonomous-vehicles-and-robots
https://www.zdnet.com/article/nvidia-unveils-orin-its-next-gen-soc-for-autonomous-vehicles-and-robots

91

[24] Fochi, V.; Caimi, L. L.; da Silva, M. H.; Moraes, F. G. “Fault-Tolerance at the
Management Level in Many-Core Systems”. In: Symposium on Integrated Circuits and
Systems Design, 2018, pp. 1–6.

[25] Fowler, M. “What I Talk About When I Talk About Platforms”. Source: https://
martinfowler.com/articles/talk-about-platforms.html, February 2020.

[26] Free Software Foundation. “Debugging with GDB - Protocol”. Source: https://ftp.gnu.
org/old-gnu/Manuals/gdb/html_node/gdb_129.html, January 2020.

[27] Gamma, E.; Helm, R.; Johnson, R.; Vlissides, J. “Design Patterns: Elements of
Reusable Object-Oriented Software”. Addison-Wesley, 1994, 1st ed., 590p.

[28] Gerstlauer, A. “The Spec-C System”. Source: http://www.cecs.uci.edu/~specc/,
February 2020.

[29] Glass, C. J.; Ni, L. M. “The Turn Model for Adaptive Routing”. In: Annual International
Symposium on Computer Architecture, 1992, pp. 278–287.

[30] Guang, L.; Plosila, J.; Isoaho, J.; Tenhunen, H. “HAMSoC : A Monitoring-Centric Design
Approach for Adaptive Parallel Computing”. CRC Press, 2011, chap. 6, pp. 135–164.

[31] Hamerski, J. “Support to Run-Time Adaptation by a Publish-Subscribe Based
Middleware for MPSoC Architectures”, Ph.D. Thesis, Pontifícia Universidade Católica
do Rio Grande do Sul, Porto Alegre, Brazil, 2019, 80p.

[32] Hamerski, J. C.; Abich, G.; Reis, R.; Ost, L.; Amory, A. “Publish-Subscribe
Programming for a NoC-based Multiprocessor System-on-Chip”. In: IEEE International
Symposium on Circuits and Systems, 2017, pp. 1–4.

[33] Hamerski, J. C.; Domingues, A. R. P.; Moraes, F. G.; Amory, A. “Evaluating Serialization
for a Publish-Subscribe Based Middleware for MPSoCs”. In: IEEE International
Conference on Electronics, Circuits and Systems, 2018, pp. 773–776.

[34] Herkersdorf, A.; Rosenstiel, W. “Towards a Framework and a Design Methodology for
Autonomic Integrated Systems”. In: Gesellschaft für Informatik Workshop on Organic
Computing, 2004, pp. 610–615.

[35] Hopcroft, J. E.; Motwani, R.; Ullman, J. D. “Introduction to Automata Theory,
Languages, and Computation”. Addison-Wesley Longman Publishing Co. Inc., 2006,
3rd ed., 550p.

[36] IBM. “An architectural blueprint for autonomic computing”. Source: https://www-03.ibm.
com/autonomic/pdfs/AC%20Blueprint%20White%20Paper%20V7.pdf, February 2020.

https://martinfowler.com/articles/talk-about-platforms.html
https://martinfowler.com/articles/talk-about-platforms.html
https://ftp.gnu.org/old-gnu/Manuals/gdb/html_node/gdb_129.html
https://ftp.gnu.org/old-gnu/Manuals/gdb/html_node/gdb_129.html
http://www.cecs.uci.edu/~specc/
https://www-03.ibm.com/autonomic/pdfs/AC%20Blueprint%20White%20Paper%20V7.pdf
https://www-03.ibm.com/autonomic/pdfs/AC%20Blueprint%20White%20Paper%20V7.pdf

92

[37] Imperas Software. “Welcome Page | Open Virtual Platforms”. Source: http://www.
ovpworld.org, November 2019.

[38] International Organization for Standardization (ISO). “International Standard ISO/IEC
7498-1”. Source: https://standards.iso.org/ittf/PubliclyAvailableStandards/s020269_
ISO_IEC_7498-1_1994(E).zip, February 2020.

[39] Isuwa, S.; Dey, S.; Singh, A. K.; McDonald-Maier, K. “Teem: Online thermal- and
energy-efficiency management on cpu-gpu mpsocs”. In: Design, Automation Test in
Europe Conference Exhibition, 2019, pp. 438–443.

[40] Johann, S. F. “sjohann81/hellfreos: HellfireOS Realtime Operating System”. Source:
https://github.com/sjohann81/hellfireos, December 2018.

[41] Johann, S. F. “sjohann81/hf-risc: HF-RISC SoC”. Source: https://github.com/
sjohann81/hf-risc, December 2018.

[42] Kofman, E.; Muzu, A.; Zeigler, B. “Theory of Modeling and Simulation: Discrete Event
and Iterative System Computational Foundations”. Elsevier Academic Press, 2019, 3rd
ed., 694p.

[43] Kramer, D.; Buchty, R.; Karl, W. “Organic Computing — A Paradigm Shift for Complex
Systems”. Springer Basel, 2011, 1st ed., 627p.

[44] Kreuzinger, J.; Schulz, A.; Pfeffer, M.; Ungerer, T.; Brinkschulte, U.; Krakowski, C.
“Real-Time Scheduling on Multithreaded Processors”. In: International Conference on
Real-Time Computing Systems and Applications, 2000, pp. 155–159.

[45] Krupitzer, C.; Roth, F. M.; VanSyckel, S.; Schiele, G.; Becker, C. “A Survey on
Engineering Approaches for Self-Adaptive Systems”, Pervasive and Mobile Computing,
vol. 17, Feb 2015, pp. 184 – 206.

[46] Kuhn, T. S. “The Structure of Scientific Revolutions”. University of Chicago Press, 1970,
1st ed., 210p.

[47] Lipsa, G.; Herkersdorf, A.; Rosenstiel, W.; Bringmann, O.; Stechele, W. “Towards
a Framework and a Design Methodology for Autonomic SoC”. In: International
Conference on Autonomic Computing, 2005, pp. 391–392.

[48] Martins, A. L. D. M. “Multi-Objective Resource Management for Many-Core Systems”,
Ph.D. Thesis, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre,
Brazil, 2018, 147p.

[49] Martins, A. L. d. M.; da Silva, A. H. L.; Rahmani, A. M.; Dutt, N.; Moraes,
F. G. “Hierarchical Adaptive Multi-Objective Resource Management for Many-Core
Systems”, Journal of Systems Architecture, vol. 97, Aug 2019, pp. 416 – 427.

http://www.ovpworld.org
http://www.ovpworld.org
https://standards.iso.org/ittf/PubliclyAvailableStandards/s020269_ISO_IEC_7498-1_1994(E).zip
https://standards.iso.org/ittf/PubliclyAvailableStandards/s020269_ISO_IEC_7498-1_1994(E).zip
https://github.com/sjohann81/hellfireos
https://github.com/sjohann81/hf-risc
https://github.com/sjohann81/hf-risc

93

[50] Mentor Graphics. “Questa advanced simulator - mentor graphics”. Source: https:
//www.mentor.com/products/fv/questa/, February 2020.

[51] Mentor Graphics. “Handel-C Synthesis Methodology – Mentor Graphics”. Source:
https://www.mentor.com/products/fpga/handel-c/, December 2019.

[52] Microsoft. “Commands by Server Role”. Source: https://docs.microsoft.com/en-us/
windows-server/administration/windows-commands/commands-by-server-role,
February 2020.

[53] Miele, A.; Kanduri, A.; Moazzemi, K.; Juhász, D.; Rahmani, A. R.; Dutt, N.; Liljeberg,
P.; Jantsch, A. “On-Chip Dynamic Resource Management”, Foundations and Trends®

in Electronic Design Automation, vol. 13–1-2, Jul 2019, pp. 1–144.

[54] Mishra, P.; Nidhi., A.; Kishore, J. K. “Custom Network on Chip architecture for Map
Generation in Autonomous Navigating Robots”. In: Annual IEEE India Conference,
2012, pp. 086–091.

[55] Moore, G. E. “Cramming More Components Onto Integrated Circuits”, IEEE Solid-State
Circuits Society Newsletter, vol. 11–3, Sep 2006, pp. 33–35.

[56] Moraes, F.; Calazans, N.; Mello, A.; Möller, L.; Ost, L. “HERMES: An Infrastructure
for Low Area Overhead Packet-Switching Networks on Chip”, Integration, vol. 38–1,
Oct 2004, pp. 69 – 93.

[57] MyHDL Community. “MyHDL”. Source: http://www.myhdl.org/, February 2020.

[58] NVIDIA. “The Benefits of Multi-core CPUs in Mobile Devices”.
Source: https://www.nvidia.com/content/PDF/tegra_white_papers/
Benefits-of-Multi-core-CPUs-in-Mobile-Devices_Ver1.2.pdf, February 2020.

[59] Open Robotics. “ROS.org | Powering the world’s robots”. Source: https://www.ros.org,
February 2020.

[60] Open Source Robotics Foundation (OSRF). “Gazebo”. Source: http://gazebosim.org,
February 2020.

[61] Pasricha, S. “Tutorial T2F: Silicon Nanophotonics for Future Manycore Chips:
Opportunities and Challenges”. In: International Conference on Very Large Scale
Integration Design and International Conference on Embedded Systems, 2018, pp. xlv–
xlvi.

[62] Pena, M. D. V.; Rodriguez-Andina, J. J.; Manic, M. “The Internet of Things: The Role of
Reconfigurable Platforms”, IEEE Industrial Electronics Magazine, vol. 11–3, Sep 2017,
pp. 6–19.

https://www.mentor.com/products/fv/questa/
https://www.mentor.com/products/fv/questa/
https://www.mentor.com/products/fpga/handel-c/
https://docs.microsoft.com/en-us/windows-server/administration/windows-commands/commands-by-server-role
https://docs.microsoft.com/en-us/windows-server/administration/windows-commands/commands-by-server-role
http://www.myhdl.org/
https://www.nvidia.com/content/PDF/tegra_white_papers/Benefits-of-Multi-core-CPUs-in-Mobile-Devices_Ver1.2.pdf
https://www.nvidia.com/content/PDF/tegra_white_papers/Benefits-of-Multi-core-CPUs-in-Mobile-Devices_Ver1.2.pdf
https://www.ros.org
http://gazebosim.org

94

[63] Porrmann, M.; Purnaprajna, M.; Puttmann, C. “Self-optimization of MPSoCs Targeting
Resource Efficiency and Fault Tolerance”. In: NASA/ESA Conference on Adaptive
Hardware and Systems, 2009, pp. 467–473.

[64] Rodrigues, E. d. M. “PLeTs : A Product Line of Model-Based Testing Tools”, Ph.D.
Thesis, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil,
2013, 130p.

[65] Roelke, A.; Stan, M. R. “RISCV5: Implementing the RISC-V ISA in gem5”. In: Workshop
on Computer Architecture Research with RISC-V, 2017, pp. 1–7.

[66] Ruaro, M.; Caimi, L.; Fochi, V.; Moraes, F. “Memphis: A Framework for Heterogeneous
Many-Core SoCs Generation and Validation”, Design Automation for Embedded
Systems, vol. 23, Mar 2019, pp. 103–122.

[67] Ruaro, M.; Lazzarotto, F. B.; Marcon, C. A.; Moraes, F. G. “DMNI: A Specialized Network
Interface for NoC-based MPSoCs”. In: IEEE International Symposium on Circuits and
Systems, 2016, pp. 1202–1205.

[68] Rupanetti, D.; Salamy, H. “Energy Efficient Scheduling with Task Migration on MPSoC
Architectures”. In: IEEE International Conference on Electro Information Technology,
2019, pp. 156–161.

[69] Rupp, K. “42 Years of Microprocessor Trend Data”. Source: https://www.karlrupp.net/
2018/02/42-years-of-microprocessor-trend-data, November 2019.

[70] Rupp, K. “CPU Benchmark - MCU Benchmark - CoreMark - EEMBC Embedded
Microprocessor Benchmark Consortium”. Source: https://www.eembc.org/coremark/,
November 2019.

[71] Sametriya, D. P.; Vasavada, N. M. “HC-CPSoC: Hybrid Cluster NoC Topology for
CPSoC”. In: International Conference on Wireless Communications, Signal Processing
and Networking, 2016, pp. 240–243.

[72] Sarma, S.; Dutt, N.; Gupta, P.; Nicolau, A.; Venkatasubramanian, N. “On-chip
Self-awareness Using Cyberphysical-systems-on-chip (CPSoC)”. In: International
Conference on Hardware/Software Codesign and System Synthesis, 2014, pp. 1–3.

[73] Sarma, S.; Dutt, N.; Gupta, P.; Venkatasubramanian, N.; Nicolau, A. “CyberPhysical-
System-On-Chip (CPSoC): A Self-Aware MPSoC Paradigm with Cross-Layer Virtual
Sensing and Actuation”. In: Design, Automation & Test in Europe Conference &
Exhibition, 2015, pp. 625–628.

[74] Sarma, S.; Dutt, N.; Venkatasubramanian, N.; Nicolau, A.; Gupta, P. “Cyberphysical-
System-On-Chip (CPSoC): A Self-Aware Design Paradigm with Cross-Layer Virtual
Sensors and Actuators”, Technical Report, University of California, Irvine, 2013, 26p.

https://www.karlrupp.net/2018/02/42-years-of-microprocessor-trend-data
https://www.karlrupp.net/2018/02/42-years-of-microprocessor-trend-data
https://www.eembc.org/coremark/

95

[75] Schuck, C.; Lamparth, S.; Becker, J. “artNoC - A Novel Multi-Functional Router
Architecture for Organic Computing”. In: International Conference on Field
Programmable Logic and Applications, 2007, pp. 371–376.

[76] Siddiqui, F.; Hagan, M.; Sezer, S. “Pro-Active Policing and Policy Enforcement
Architecture for Securing MPSoCs”. In: IEEE International System-on-Chip
Conference, 2018, pp. 140–145.

[77] Smart, K. “The Life Cycle of a Virtual Platform”. Springer US, 2010, chap. 2, pp. 7–24.

[78] Utting, M.; Legeard, B. “Practical Model-Based Testing: A Tools Approach”. Morgan
Kaufmann, 2006, 4th ed., 456p.

[79] Vancin, P. H.; Domingues, A. R. P.; Paravisi, M.; Johann, S. F. “Towards an Integrated
Software Development Environment for Robotic Applications in MPSoCs with Support
for Energy Estimations”. In: IEEE International Symposium on Circuits and Systems,
2019, pp. 6, to appear in.

[80] Wachter, E. W.; Fochi, V.; Barreto, F.; Amory, A. M.; Moraes, F. G. “A Hierarchical and
Distributed Fault Tolerant Proposal for NoC-Based MPSoCs”, IEEE Transactions on
Emerging Topics in Computing, vol. 6–4, Oct 2018, pp. 524–537.

[81] Waterman, A.; Asanović, K. “The RISC-V Instruction Set Manual, Volume I: User-Level
ISA, Document Version 2.2”. Source: https://content.riscv.org/wp-content/uploads/
2017/05/riscv-spec-v2.2.pdf, February 2020.

[82] Wireshark Foundation. “Wireshark – Go Deep.” Source: https://www.wireshark.org,
July 2020.

[83] Wolf, W.; Jerraya, A. A.; Martin, G. “Multiprocessor System-on-Chip (MPSoC)
Technology”, IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems, vol. 27–10, Oct 2008, pp. 1701–1713.

[84] Xilinx Inc. “ISE Design Suite”. Source: https://www.xilinx.com/products/design-tools/
ise-design-suite.html, February 2020.

[85] Zeppenfeld, J.; Bouajila, A.; Herkersdorf, A.; Stechele, W. “Towards Scalability
and Reliability of Autonomic Systems on Chip”. In: IEEE International Symposium
on Object/Component/Service-Oriented Real-Time Distributed Computing Workshops,
2010, pp. 73–80.

[86] Zeppenfeld, J.; Bouajila, A.; Stechele, W.; Herkersdorf, A. “Learning Classifier Tables for
Autonomic Systems on Chip”. In: Jahrestagung der Gesellschaft für Informatik, 2008,
pp. 771–778.

https://content.riscv.org/wp-content/uploads/2017/05/riscv-spec-v2.2.pdf
https://content.riscv.org/wp-content/uploads/2017/05/riscv-spec-v2.2.pdf
https://www.wireshark.org
https://www.xilinx.com/products/design-tools/ise-design-suite.html
https://www.xilinx.com/products/design-tools/ise-design-suite.html

96

[87] Zeppenfeld, J.; Herkersdorf, A. “Applying Autonomic Principles for Workload
Management in Multi-core Systems on Chip”. In: ACM International Conference on
Autonomic Computing, 2011, pp. 3–10.

[88] Zhou, J.; Sun, J.; Zhou, X.; Wei, T.; Chen, M.; Hu, S.; Hu, X. S. “Resource
Management for Improving Soft-Error and Lifetime Reliability of Real-Time MPSoCs”,
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,
vol. 38–12, Dec 2019, pp. 2215–2228.

97

APPENDIX A – TUTORIAL FOR USING THE ORCA PLATFORM

This appendix is an introductory tutorial to introduce the basics of the operation of
the ORCA platform. By the end of this tutorial, the reader should be able to download the
source code for the required components from the proper repositories, compile and set up
the components, and run a full system simulation using the ORCA platform.

The platform comprises four source bases; (i) one for the ORCA-SIM simulation
tool, (ii) one for the software assets, (iii) one hosting a synthesizable RTL project of the
MPSoC, and (iv) one for integration tools. In this tutorial, we cover the first two source
bases.

A.1 Requirements

For this tutorial, we need two different compilers; one for targeting the host ma-
chine’s architecture and another one targeting the MPSoC architecture, which implements
the RV-32i instruction set [81]. For the host machine, we advise installing GNU Compiler
Collection (GCC), preferably the latest one available. If compiling code for the MPSoC, a
cross-compiler is also necessary. One can either acquire a pre-compiled package from
hardware vendors (e.g., Si-Five) or build your cross-compiler from the source. We present
two alternatives for acquiring a compatible compiler below. In addition to the compilers, a
git client and Make are also required tools, both available from most package managers in
Unix-like systems.

We developed the platform using Debian 9 and tested for Debian 8, 9, and 10,
Ubuntu 16.04 and 18.04 systems. Although we did not perform any tests on other platforms,
the platform should work fine in any system running GCC with C++17 support.

• Si-Five’s Toolchain

– https://www.sifive.com/boards

• Johann’s Build Script

– https://github.com/sjohann81/hellfireos/tree/master/usr/tools/riscv-toolchain

A.2 Acquiring the source code

The next step is to gather the source code for the platform components from the
respective source base. One must download the source code for both the ORCA-SIM simu-

 https://www.sifive.com/boards
https://github.com/sjohann81/hellfireos/tree/master/usr/tools/riscv-toolchain

98

lator and the software assets — using git to do so is optional, although advised. We provide
the URL for both source bases below.

• ORCA-SIM

– https://github.com/andersondomingues/orca-sim

• ORCA-SOFTWARE-TOOLS

– https://github.com/andersondomingues/orca-software-tools

A.3 Compiling the simulator and software image

After downloading the source code from both source bases, we compile the re-
spective code using the previously installed compilers. First, from a system’s terminal, we
navigate to the ORCA-SIM project folder, which should be called orca-sim . To compile
the project, enter make to the terminal and wait for the project to compile. As a result, we
can observe that an executable binary named after the platforms’ name is deployed to the
orca-sim/bin folder. One can change the name of the executable, paths, and other con-
figurations by modifying the orca-sim/Configuration.mk file. Instructions regarding the
configuration parameters are provided in the same file. Finally, the generated program, the
binary, can be invoked, passing a software image file as parameters. Before we invoke the
simulator, we must generate the software image.

To generate the software image, we navigate to the orca-software-tools folder
and type make to the terminal. Similarly to the ORCA-SIM build process, the results of
the compilation are deployed to the orca-software-tools/bin folder. Note that there
are many files in the folder, as these are partial results of the many steps of the compi-
lation process. The software image is called image.bin . Please note that the compilation
of the software image requires a cross-compiler targeting the RV32i instruction set. The
provided makefile expect compilation tools to have the prefix riscvXX-unknown-elf (e.g.,
riscvXX-unknown-elf-gcc , riscvXX-unknown-ld), where XX stands for either 32 or 64.
Please note that the riscv64-unknown-gcc can also emit 32-bit instructions. Make sure
these tools are added to the environmental path (usually through the $PATH system vari-
able) before beginning the compilation process.

The software image contains the executable code and data for applications, li-
braries, and an operating system. By compiling the software image as it is, applications
and libraries for the examples provided in this thesis will be included in the compilation, all
they run on top of the HellfireOS kernel. It is worth to note that all the software is optional,
as there is no dependency between ORCA-SIM and the software image. For instance, the
compiled software image can be replaced by another image containing standalone bare-

https://github.com/andersondomingues/orca-sim
https://github.com/andersondomingues/orca-software-tools

99

metal applications. Another possible software image may include the same applications and
libraries like the one that we provide but using another operating system.

A.4 Running the simulation

After having compiled both the simulator (orca-sim/bin/orca-dma.exe) and the
software image (orca-software-tools/bin/image.bin), we invoke the simulator passing
the software image as parameter. Assuming that the source code of both components are
deployed to the same folder in the file system, we navigate to orca-sim/bin and enter
./orca-dma.exe ../orca-software-tools/bin/image.bin to the terminal.

The simulator will promptly launch, and some information will be put on the termi-
nal, including simulation speed (considering host machine execution time), the architecture
configuration (number of processor cores, memory size), and current simulation time. The
simulation can be interrupted any time by typing CTRL+C to the terminal. One can change
the Configuration.mk to simulate for a fixed number of cycles if necessary. At the end
of the simulation, the state of the simulation hardware will be reported. During the simula-
tion, the output (UART) of each processor core will be written to log files, deployed to the
orca-sim/bin/logs folder. These files can be inspected using tools such as multitail .
For that purpose, one can execute the script orca-sim/bin/output-uart.sh if multitail

is installed. The simulation results should be as shown in Figure A.1.

Figure A.1 – An example of simulation visualization using the multitail tool. Log files are
displayed in a grid layout resembling the MPSoC configuration.

100

101

APPENDIX B – TUTORIAL FOR CREATING AN UNTIMED MULTIPLIER

In this tutorial, we create an untimed multiplier and attach it to the ORCA platform’s
processor cores. A multiplier is a small piece of hardware that can perform multiplications.
For simplicity, we consider the multiplier to be untimed; that is, any clock domains do not
influence the modules’ operation. Hence, multiplication operations occur instantly, and the
result at the output will always match the product of given inputs. Of course, restrictions
apply to the size of the operands — the result will be correct if it fits in the 32-bit wide output
register. The interface of our multiplier is as shown in Figure B.1. We will write the multiplier
model from scratch, integrate it into the processor core model, and write a small software
application to test our module.

res_outop_a_in
op_b_in Untimed Multiplier

Figure B.1 – Interface of an untimed multiplier module. Operands A and B are presented by
op_a_in and op_b_in inputs. The result of the multiplication of both operands, the product,
is always available at the res_out output.

B.1 Coding the Hardware Module

In URSA, hardware modules are represented by classes that can inherit from Un-
timedModel or TimedModel classes. In the case of our multiplier, we extend the Untimed-
Model class. First, we create the header and implementation sources for our multiplier,
defining five operations, where the first two correspond to the constructor and destructor of
the class, and the other three correspond to methods for accessing the input and output of
our module. An excerpt from the header file for our multiplier is shown in Figure B.2.

01 #include <UntimedModel.h>
02
03 class UMultiplier : public UntimedModel{
04
05 private:
06 uint32_t _opa;
07 uint32_t _opb;
08
09

10 public:
11 UMultiplier::UMultiplier();
12 UMultiplier::~UMultiplier();
13
14 void UMultiplier::SetOpA(uint32_t);
15 void UMultiplier::SetOpB(uint32_t);
16
17 uint32_t UMultiplier::GetResult();
18 };

Figure B.2 – Excerpt of the header file for the multiplier model.

Our multiplier must have at least two registers of 32 bits to store both operands.
Please note that we use uint32_t as the type due to our module is capable of performing

102

only integer multiplication. For floating-point multiplication, float must be used instead.
The implementation source code for our module is shown in Figure B.3.

01 #include <UMultiplier.h>
02
03 UMultiplier::UMultiplier(std::string n)
04 : UntimedModel(n){
05 //nothing to do
06 }
07
08 UMultiplier::~UMultiplier(){
09 //nothing to do
10 }

11 void UMultiplier::SetOpA(uint32_t a){
12 _opa = a;
13 }
14
15 void UMultiplier::SetOpB(uint32_t b){
16 _opb = b;
17 }
18
19 uint32_t UMultiplier::GetResult(){
20 return _opa * _opb;
21 }

Figure B.3 – Implementation file for the multiplier model.

In this tutorial, we use the ORCA-SIM project as the basis for our implementation,
so we do not need to set up the environment from scratch. We deploy header and imple-
mentation files of our multiplier to the models folder, located in the root folder of ORCA-SIM,
editing models/Makefile to include the new hardware in the compilation. Recompile the
project, entering make to the terminal in the root folder of ORCA-SIM.

B.2 Changing between platforms

Before connecting the multiplier to the processor cores, let us change the target
platform. By default, ORCA-SIM is configured to behave as a many-architecture, comprising
a mesh of several processor cores. However, a single-core platform is also included in
ORCA-SIM. We must set the compilation to use this platform instead of the default many-
core by changing the Configuration.mk file in the root directory of ORCA-SIM. Change the
variable PLATFORM to single-core .

B.3 Connecting the multiplier to the processor core

There are a couple of ways of integrating our module in the platform‘s hardware.
For this tutorial, we include the multiplier into the processor core as a peripheral whose
inputs and outputs are mapped to the memory space. To do so, locate the source of the
processor core module and modify its header models/include/THellfireProcessor.h and
source models/src/THellfireProcessor.cpp accordingly. For the header, add include for
the multiplier header and a field to hold a pointer for a multiplier instance. For the source,
instantiate the multiplier in the processor core constructor method. The lines to be modified
are shown in Figure B.4.

103

…

Figure B.4 – A pointer to a multiplier (left) and a new instance of multiplier (right).

B.4 Interacting with the multiplier via memory-mapped I/O

A new instance of the multiplier has been added to the architecture. However, the
processor core cannot interact with the multiplier yet. We must map the inputs and outputs
of the multiplier to the memory space before the peripheral can be accessed via software.
First, we must define an address for each of the operators and a third address to hold the
multiplication result. We define the addresses show in Figure B.5, adding these definitions
to the top of the UntimedMultiplier.h file. For more information on the address availability,
see orca-sim/platforms/single-core/include/ProcessingTile.h .

01 #define MULT_OPA 0x4000F000
02 #define MULT_OPB 0x4000F004
03 #define MULT_RES 0x4000F008

Figure B.5 – Inputs and outputs of the multiplier mapped into the memory space.

The next step is to modify the processor core code access the peripheral when
reading or writing to these specific addresses, modifying the THellfireProcessor::mem_read

and THellfireProcessor::mem_write methods. An excerpt of the modified methods is
shown in Figure B.6 and Figure B.7.

 96 int32_t THellfireProcessor::mem_read ...
 97 ...
151 switch(address){
152 case IRQ_VECTOR: return s->vector;
153 ...
160 case UART_READ: return getchar();
161 case UART_DIVISOR: return 0;
162 case MULT_RES : return _mu->GetResult();
163 }

Figure B.6 – Modified mem_read method.

104

Figure B.7 – Modified mem_write method.

B.5 Accessing the multiplier through software

The last step is to write a software piece to access the multiplier and perform
some multiplications. As we use the memory-mapped I/O strategy to access our periph-
eral, there is no need to extend the ISA to include new instructions or modify the processor
core logic. Instead, the processor core can access peripheral’s inputs and output by reading
and writing to the memory space. We defined three memory addresses for the multiplier:
MULT_OPA , MULT_OPB , and MULT_RES . Every time the processor core reads from MULT_RES ,
the multiplication between MULT_OPA and MULT_OPB will be available in that address. Please
note that, in practice, nothing prevents the CPU from reading from MULT_OPA and MULT_OPB ,
neither from writing to MULT_RES . For that reason, we write a small driver software to expose
the proper API to the application and kernel software levels.

A software driver that works for our multiplier is show in Figure B.8. In the driver, we
prevent the software from executing illegal writings and readings to the peripheral. Besides,
we provide the routine int ext_imul(int a, int b) , ready to be used by application de-
velopers. It worth to note that the driver must compiled using the cross-compiler targeting
the RV32i ISA.

01 #define MULT_OPA 0x4000F000
02 #define MULT_OPB 0x4000F004
03 #define MULT_RES 0x4000F008
04
05 volatile int* __mopa_ptr
06 = (volatile int*)(MULT_OPA);
07 volatile int* __mopb_ptr
08 = (volatile int*)(MULT_OPB);
09 volatile int* __mres_ptr
10 = (volatile int*)(MULT_RES);
11
12 int ext_imul(int a, int b);

01 #include <mul_driver.h>
02
03 int ext_imul(int a, int b){
04 *__mopa_ptr = a;
05 *__mopb_ptr = b;
06 return *__mres;
07 }

(mul_driver.h) (mul_driver.c)

Figure B.8 – A simple peripheral driver for the untimed multiplier module.

105

APPENDIX C – TUTORIAL FOR CREATING TIMED MODELS

Timed models correspond to modules that are sensitive to one or more clock do-
mains. In URSA, these models have their clock cycles mapped to events, whose scheduling
depends on the frequency of the simulated hardware. In this tutorial, we create a timed
integer divisor capable of performing integer division, with the result being available at the
output after a non-fixed number of cycles. As in the last tutorial, we write a software driver
to interact with the divisor. The interface of our divisor is shown in Figure C.1.

div_out
rem_out
status_out

op_a_in
op_b_in
start_in
reset

Timed Divisor

Figure C.1 – Inputs and outputs for the divisor module. Inputs highlighted in red orange are
optional, and inputs in red are abstracted by the simulation engine.

The operands of division operations will feed two inputs, op_a_in and op_b_in ,
where the results of the division between op_a_in and op_b_in will be available at div_out ,
and the remainder of the operation will be available at rem_out . Since the timed divisor
takes more than one cycle to produce the results, we add the status_out output to the
model. The divisor have three states: idle (0), processing (1), and done (2). To start
the divisor, the processor core must write 1 to the start_in input, and write 0 later to
acknowledge the operation. Finally, our module have a reset input, which is connected to
the global reset of the system.

C.1 Modeling timed models as state machines

To simplify the implementation of our module, let us assume the algorithm for inte-
ger division by sucessive subtraction1. In other words, our module will subtract the op_b_in

from op_a_in until no more subtractions can be performed anymore. After the last sub-
traction, the number of subtractions will be pushed to div_out , and the remainder of the
division will be pushed to rem_out . Our module is capable of performing one subtraction
per cycle, taking always (op_a_in ÷ op_b_in + k) cycles to perform the whole division al-
gorithm, where k is the number of cycles spend with the handshaking protocol. We translate
the behaviour of the divisor into the transition system shown in Figure C.2.

1For a RTL implementation of the sucessive division algorithm, see https://ieeexplore.ieee.org/stamp/stamp.
jsp?tp=&arnumber=5158757.

https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5158757
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5158757

106

S0 S1 S2if start_in
is high

idle sub wait

if sta
rt_in

is low

if remainder
>= op_b_in

if remainder
< op_b_in

Figure C.2 – Transition system representing the divisor.

Although a transition system provided useful information about the behavior of the
system, it does not captures the relation between the inputs and outputs of the system. This
relation can be captured, however, by more powerful models such as finite state machines.
Below we provide the formal modeling of the divisor. It is worth to note that δ is a partial
function whose undefined elements are left to the implementation to decide.

DIV = (Q, Q0, X , Y , δ, F) (C.1)

Q = {idle, sub, wait} (C.2)

Q0 = idle (C.3)

X = {op_a_in ∈ 232, op_b_in ∈ 232, start_in ∈ 21} (C.4)

Y = {div_out ∈ 232, rem_out ∈ 232, status_out ∈ 22} (C.5)

δ : (X ×Q)→ (Y ×Q) = {(x ∈ X , idle) 7→ ((0, 0, 1), sub), ...} (C.6)

C.2 Translating the model into code

To be accepted as a valid model for simulation, any model must be a class and
must inherit from the TimedModel class orca-sim/simulation/include/TimedModel.h .
Any timed model must explicitly implement the method long long int Run() , which must
contain the implementation of the module, usually based on the underlying transition sys-
tem. Since URSA uses a discrete-event simulation system, it permits modules to skip idle
cycles to gain simulation performance. One of the advantages of this strategy is that the
models can be designed to match the behaviour of RTL models. One drawback is that the
simulation accuracy is conditioned to the model design.

Let us create two files for our module, one for the header, and one for the implemen-
tation. The header file, orca-sim/models/include/TDivisor.h , show in Figure C.3 must

107

01 #include <TimedModel.h>
02
03 class TDivisor : public TimedModel{
04
05 private:
06 USignal* _sig_opa;
07 USignal* _sig_opb;
08 USignal* _sig_start;
09 USignal* _sig_div;
10 USignal* _sig_mod;
11 USignal* _sig_status;

13 public:
11 TDivisor::TDivisor(std::string);
12 TDivisor::~TDivisor();
13 long long int TDivisor::Run();
14 USignal* TDivisor::GetSigOpa();
15 USignal* TDivisor::GetSigOpb();
16 USignal* TDivisor::GetSigStart();
17 void TDivisor::SetSigDiv(USignal*);
18 void TDivisor::SetSigMod(USignal*);
19 void TDivisor::SetSigStatus(USignal*);
20 }

Figure C.3 – Header file for the divisor module.

contain the definition of our class, which we call TDivisor . In addition to the required Run
method, we define a couple of instances of the class USignal in our module. The USignal
class orca-sim/models/include/USignal.h is used for the communication of two or more
timed models. Other communications methods are available in URSA: UBuffer.h , for FIFO
channels, and UMemory.h , for communication via shared memory.

For the implementation file, orca-sim/models/src/TDivisor.cpp , we implement
the getters and setters of the class, implement the constructor and destructor, and the Run

method. We show the implementation file in Figure C.4 without the run method.

01 #include <TDivisor.h>
02
03 TDivisor::TDivisor(std::string n)
04 : TimedModel(n){
05 _sig_opa = new USignal(0,0,0);
06 _sig_opb = new USignal(0,0,0);
07 _sig_start = new USignal(0,0,0);
08 }
09
10 TDivisor::~TDivisor(){
11 delete _sig_opa;
12 delete _sig_opb;
13 delete _sig_start;
14 }
15
16 long long int TDivisor::Run(){
17 ...
18 }

19
20 USignal* TDivisor::GetOpA(){
21 return _sig_opa ; }
22
23 USignal* TDivisor::GetOpB(){
24 return _sig_opb ; }
25
26 USignal* TDivisor::GetStart(){
27 return _sig_start ; }
28
29 void TDivisor::SetDiv(USignal* s){
30 _sig_div = s; }
31
32 void TDivisor::SetRem(USignal* s){
33 _sig_rem = s; }
34
35 void TDivisor::SetStatus(USignal* s){
36 _sig_status = s;}

Figure C.4 – Implementation file for the divisor module.

There a couple of alternatives for implementing the Run method. First, we can
design a state machine to fake idle cycles while delivering the correct result for the division
at the last cycle. This approach will require scheduling the division in each cycle and ap-
proximates its RTL design. The second approach is to truly skip idle cycles by scheduling
the division once per operation. For both approaches, the result of the division operation will

108

be delivered at the last cycle of operation. Figure C.5 illustrates the main difference between
both approaches.

87 ...
88 long long int Run(){
89
90 switch(_state){
91 case IDLE: /*...*/ break;
92 case SUB: /*...*/
93 idle_counter--; break;
93 case WAIT: /*...*/ break;
94 }
95 return 1;
96 ...

87 ...
88 long long int Run(){
89
90 switch(_state){
91 case IDLE: /*...*/ break;
92 case SUB: /*...*/
93 return op_a % op_b;
93 case WAIT: /*...*/ break;
94 }
95 return 1;
96 ...

models/src/TDivisor.cpp (approach A) models/src/TDivisor.cpp (approach B)

Figure C.5 – The Run method emulating idle cycles (left) and skipping idle cycles (right).

In approach A, we tell the simulation engine to schedule the divisor to execute in
every cycle, similarly to RTL models’ execution. The method Run must return the number of
cycles to wait until the next scheduling. In this case, one represents the next cycle. Since
the divisor executed at every cycle, the state transition from state SUB to state WAIT occurs
when the remainder of the division is less than op_b_in . Although this approach is slower
than approach B, it may be useful in case when the RTL design must be compared to the
functional models.

In approach B, we tell the simulation engine to schedule the once for each state.
When in state SUB, the functions Run will return the number of subtractions that occur
before the module determine the final result. By doing this, we skip these subtractions and
push the final result to the output in exactly one cycle. However, to keep track of model
timing, we need to wait for that many cycles before executing the next state transition. By
implementing this approach, we use of underlying host’s hardware to perform the division
operation and skip the remaining cycles, which is faster than executing every single cycle,
as done in approach A.

C.3 Creating a testbench

Testbenches written in software would work pretty much the same as testbenches
written in RTL. The goal is to validate the design of a module by pushing values to the
input and comparing the module’s outputs with the expected values. Let us create a module
named DivisorTB. This module will be our testbench for the divisor module. We present a
stub of that testbench in Figure C.6.

109

01 #include <TimedModel.h>
02 class DivisorTB: public TimedModel{
03
04 private:
05 USignal* _sig_opa; //input
06 USignal* _sig_opb;
07 USignal* _sig_start;
08 USignal* _sig_div; //output
09 USignal* _sig_rem;
10 USignal* _sig_status;

11 public:
12 DivisorTB::DivisorTB(std::string);
13 DivisorTB::~DivisorTB();
14
15 long long int DivisorTB::Run();
16
17 /* setters here */
18 /* getters here */
19
20 };

Figure C.6 – Testbench header file.

For simplicity, let our testbench perform a single division operation and compare
the achieved result with what is expected. For instance, we should push the values {opA
= 10, opB = 3, start = 1} to the input signals during the first cycle. Then, after 3 cycles we
should get the value {div = 3, mod = 1, status = 1} from the divisor. We know that the number
of cycles for the divisor to perform the division is 3 division it used successive subtractions
to find the answer. We provide the expected values for the signals in Table C.1.

Table C.1 – Implementation of requirements per platform.

Cycle Signals

op_a_in op_b_in start_in div_out rem_out status_out

1 10 3 1 0 0 0
2 10 3 1 0 0 0
3 10 3 1 0 0 0
4 10 3 1 0 0 0
5 10 3 1 3 1 1
6 10 3 0 3 1 1
7 10 3 0 3 1 0

As an exercise, we can design our testbench using state machines. Different from
most RTL languages, URSA cannot add delays to signals or schedule signals to change
at a specific point in time. Instead, we must define a state machine that could control the
hardware module’s signals, in this case, the testbench. Our testbench must implement a
state machine with at least three states: one state that injects the inputs into the divisor, one
state that waits for the divisor to complete the operation, and another state that compares
the outputs to the expected values.

110

C.4 Creating a simulation tool

The last step in the process is to create a simulation tool. This tool will instantiate
our design, connect the hardware modules, and run the simulation. Let us create a file
named platforms/MySim/MySim.cpp , where MySim is the name of the tool to be created.
In this file, we include the headers for the module that we designed before, the divisor and
the testbench. In addition to these files, we must include headers for the Event and Simulator
classes. The next step is to create instances of the hardware modules.

After creating the new instances of modules, we must connect the modules by
binding their signals. The binding process in RTL files is done almost automatically, as all
signals must be present in the modules’ interface. In URSA, signals do not require to be
in the interface to be bound to external modules. This feature permits more complex signal
binding at the cost of code readability.

Lastly, we schedule modules to run in the first simulation cycle. From then on, the
simulation engine can process the logic within these modules without any intervention. We
show the complete MySim.cpp file in Figure C.7.

01 #include <Simulator.h>
02 #include <Event.h>
03 #include <Divisor.h>
04 #include <DivisorTB.h>
05
06 int Main(){
07 Divisor* div
08 = new Divisor("div");
09 DivisorTB* tb
10 = new DivisorTB("tb");
11
12 Simulator* sim = new Simulator();
13

14 sim->Schedule(Event(1, div));
15 sim->Schedule(Event(1, tb));
16
17 div->SetOpA(tb->GetOpA());
18 div->SetOpB(tb->GetOpB());
19 div->SetStart(tb->GetStart());
20 tb->SetDiv(div->GetDiv());
21 tb->SetRem(div->GetRem());
22 tb->SetStatus(div->GetRem());
23
24 sim->Run(10);
25 }

Figure C.7 – The simulation file, MySim.cpp.

After running the program, nothing will be shown to the terminal. Since we are
using C++ to program our simulator, we can output to the terminal the values of any signal at
any time. To control the simulation’s time, we can call executions of one cycle in a for loop,
using sim->Run(1) . By doing this, we have access to the modules’ values at every cycle;
then, we can output them to the screen.

2

