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Assessment of Machine Learning Algorithms for
Near-Sensor Computing under Radiation Soft Errors

M. Garay Trindade, R. Garibotti, L. Ost, M. Letiche, J. Beaucour, and R. Possamai Bastos

Abstract—Machine learning (ML) algorithms have been re-
gaining momentum thanks to their ability to analyze substantial
and complex data, supporting artificial intelligence decisions in
cloud computing but also in near-sensor computing in end-
point devices. Both cloud and near-sensor computing are liable
to radiation-induced soft errors, especially in automotive and
aerospace safety-critical applications. In this regard, this paper
contributes by comparing the accuracy of two prominent machine
learning algorithms running on a low-power processor upset by
radiation-induced soft errors. Both ML algorithms have been
assessed with the help of a fault injection-based method able to
natively emulate soft errors directly in a development board. In
addition, neutron radiation test results suggest the most critical
situations in which mitigation solutions should address.

Index Terms—Radiation-induced soft errors, machine learning
algorithms, low-power processors.

I. INTRODUCTION

Machine learning (ML) algorithms have evolved rapidly
as an effective solution for a broad range of applications in
different industry segments, ranging from cloud computing to
the Internet of Things. Aiming to boost the use of underlying
algorithms, researchers and industry leaders are investing
heavily in the exploration of more efficient instruction set
architectures [1], ML inference processors [2], and acceler-
ators [3]. While ML benefit from the substantial amount of
resources (e.g., processors, memory) of large-scale computing
systems, executing these computationally intensive algorithms
under resource-constrained devices such as near-sensor com-
puting endpoint devices is still a challenging task. To overcome
the constraint above, researchers are investigating software
libraries/APIs aiming to support the use of efficient ML
algorithms at reduced memory footprint, which is critical to
resource-constrained devices [4]. Another approach relies on
the development of lightweight and optimized ML algorithms,
allowing their execution on low-power processors typically
embedded in near-sensor computing endpoint devices. These
seemingly benefits come at the cost of precision, which is also
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of particular importance in assessing overall ML algorithms
accuracy and applicability.

ML algorithms are employed to recognize patterns and
predict how systems (e.g., medical, automotive) would react
to unexpected circumstances. The use of the convolutional
neural network (CNN)-based pedestrian detection in cars is
a prominent example of ML algorithms application. For such
systems, software engineers must develop not only lightweight
and performance efficient ML algorithms, but also more secure
and reliable algorithms aiming to guarantee a fail-safe system
operation.

With that in mind, researchers have started to investigate
the impact of radiation-induced soft errors on the reliability of
ML techniques. For instance, the authors in [5] [6] examine
effects of soft errors in CNNs. In [7] [8], different CNN
implementations have been analyzed using an FPGA-based
fault injection approach, which emulates the occurrence of
faults by modifying the bitstream configuration. In turn, Santos
et al. [9] investigate how the presence of soft errors in GPUs
can reduce the reliability of a CNN. Rosa et al. [10] investigate
the impact of soft error on an automotive vehicle application
that is based on CNN. Results show that the occurrence of
soft errors affects the vehicle travel. Authors in [11] have
proposed a framework that performs fault injection at specific
deep neural networks (DNN) design points across the weights,
activations, and hidden states. Results show that the resilience
varies across DNNs depending on the model and data type.
While [12] has conducted soft error resilience analysis of
Bayesian machines, the work in [13] has focused on a binary
support vector machine implemented in an FPGA.

Different from the above works, this paper assesses and
compares the reliability of two ML algorithms – feed-forward
artificial neural network (ANN) and support vector machine
(SVM) – running on a popular low-power processor (Arm
Cortex-M4) under effects of radiation-induced soft errors.
Gathered results have been obtained through neutron radia-
tion tests conducted with a neutron generator as well as an
emulation-based fault injection campaign to better understand
how radiation-induced soft errors affect the reliability of the
case-study ML algorithms.

II. CASE-STUDY ML ALGORITHM MODELS

This section briefly describes two prominent ML algorithm
models that have been studied in this work: ANN and SVM.
Both models are commonly used in classification tasks, which
consist of previously learning underlying behaviors of a set of
known data through a training phase, allowing a computing
system (at a later time) classifying new data observations
(herein input vectors) accordingly.
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1) ANN Model: The basic components of an ANN are the
neurons that are organized in a layered structure. The first
layer forwards the input vector to be classified to the first
neurons. A neuron receives as input the outputs of the neurons
of the previous, performing a weighted addition of them,
evaluating the result on an activation function, and forwarding
the outcome to the next layer. Each neuron on the last layer
represents one of the possible previously-defined classes, and
the one with the greatest value determines which class has
been finally identified by the ANN. The weights are calculated
beforehand during a training phase.

2) SVM Model: The principle of a binary SVM is modeling
– during the training phase – a linear classifier the best
separates two previously-defined classes, enabling hence iden-
tifying at a later time the class of an input vector. This linear
classifier is represented as a weighted sum of the input vectors
used in the training phase. In situations demanding more than
two classes (multiclass classification), a binary SVM can be
trained for classifying between each pair of classes, choosing
the class the most commonly assigned by binary SVMs. This
approach is known as One-vs-One.

III. FAULT INJECTION-BASED ASSESSMENT METHOD

This section describes the method for assessing the relia-
bility of the case-study ML algorithm running under effects
of radiation-induced soft errors. This is based on campaigns
of single fault injections (single soft errors) that are emulated
during the execution of the case-study program (herein an ML
algorithm) – running natively on the target computing system
under test (SUT) – and remotely configured via the popular
software debugger GDB from a control computer. The SUT
is composed of a target low-power processor, data memory,
program memory, and on-board peripheral devices able to
communicate with an external control computer.

The method assesses the classification reliability of a ML
algorithm under the influence of single soft errors by counting
how often it classifies an input vector correctly, i.e. if the ML
algorithm properly identifies the previously-defined class of
the input vector. Furthermore, the method also assesses the
ML algorithm’s inability to tolerate soft errors provoking either
Computing Crashes or Critical Failures. The method workflow
comprises five phases (Figure 1): (1) generation of golden
reference results; (2) specification of fault injection profiles;
(3) fault injection campaign; (4) assessment of results; and (5)
statistical analysis of results.
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Figure 1. Fault injection-based method for assessing the reliability of an
ML algorithm (case-study program) running on a low-power processor (SUT
subcircuit) under effects of single soft errors.

1) Generation of Golden Reference Results: The case-study
ML algorithm is natively executed in the SUT under fault-free

circumstances (no presence of faults) in order to generate its
golden reference results.

2) Specification of Fault Injection Profiles: In order to
compare the reliability of different case-study ML algorithms
under possible scenarios of single soft errors in volatile
memory elements of the processor, each case study is assessed
under the same set of fault injection profiles, which is defined
according to the pseudo-code in Algorithm 1.

From the population of possible input vectors, a small
sample is randomly selected. The same criterion is applied to
the population of fault injection instants at which a memory bit
is inverted for modeling a single soft error. Each fault injection
instant is simplified here as a discrete time unit represented
by the execution period of each instruction of the case-study
program.

For the sake of separately analyzing the single soft error im-
pact on the processor memory bits, the criterion of assessment
and comparison is set to exclusively cover all memory bits of
the processor registers, considering thus the hypothesis that the
data memory, program memory, and other on-board peripheral
devices are protected by soft error mitigation techniques.

Algorithm 1 Set of Fault Injection Profiles
1: for x in [small sample of input vectors] do
2: for y in [small sample of fault injection instants] do
3: for z in [set of processor registers] do
4: for w in [set of processor register bits] do
5: FaultInjectionProfile(x, y, z, w)

3) Fault Injection Campaign: Each fault injection profile is
remotely emulated in the SUT through the command “set” in
the software debugger GDB executed in the control computer.
The case-study ML algorithm is thus run several times on
the SUT according to Algorithm 1, each run emulating a
different fault injection profile and providing a result from
the computation of a given input vector by the ML algorithm.

4) Assessment of Results: Results are compared against
their golden reference according to the following situations:

– No Failure: The result of the ML algorithm does not differ
from a golden reference, i.e. the ML algorithm correctly
computes an input vector and provides a fault-free output
vector;

– Tolerable Failure: There is a mismatch between the result
of the ML algorithm and the golden reference; however,
the resulting class is correct, i.e. the sign of the result of
the ML algorithm and the golden reference are the same;

– Computing Crash: The processor suddenly stops operat-
ing, providing no valid results from the ML algorithm
but a useful indication that radiation effects have upset
the SUT and it must be restarted and compute again the
input vector;

– Critical Failure: There is a mismatch between the result
of the ML algorithm and the golden reference, and the
resulting class is also not correct.

5) Statistical Analysis of Results: Equation 1 below ana-
lyzes the ratio of the total number of Critical Failures to the
total number of fault injection profiles assessed according to



3

R0
R1
R2
R3
R4
R5
R6
R7
R8
R9

SP (R13)
LR (R14)
PC (R15)

20% 40% 60% 80%Fault Injection Instant
(% of executed instructions)

31…….….24….……….16……………8.…..…...….0 31…….….24….……….16……………8.…..…...….0 31…….….24….……….16……………8.…..…...….0 31…….….24….……….16……………8.…..…...….0

R0
R1
R2
R3
R4
R5
R6
R7
R8
R9

SP (R13)
LR (R14)
PC (R15)

20% 40% 60% 80%Fault Injection Instant
(% of executed instructions)

31…….….24….……….16……………8.…..…...….0 31…….….24….……….16……………8.…..…...….0 31…….….24….……….16……………8.…..…...….0 31…….….24….……….16……………8.…..…...….0

No Failures
Tolerable Failures

Computing Crashes
Critical Failures

ANN

No Failures
Tolerable Failures

Computing Crashes
Critical Failures

SVM

R0
R1
R2
R3
R4
R5
R6
R7
R8
R9

SP (R13)
LR (R14)
PC (R15)

20% 40% 60% 80%Fault Injection Instant
(% of executed instructions)

31…….….24….……….16……………8.…..…...….0 31…….….24….……….16……………8.…..…...….0 31…….….24….……….16……………8.…..…...….0 31…….….24….……….16……………8.…..…...….0

R0
R1
R2
R3
R4
R5
R6
R7
R8
R9

SP (R13)
LR (R14)
PC (R15)

20% 40% 60% 80%Fault Injection Instant
(% of executed instructions)

31…….….24….……….16……………8.…..…...….0 31…….….24….……….16……………8.…..…...….0 31…….….24….……….16……………8.…..…...….0 31…….….24….……….16……………8.…..…...….0

No Failures
Tolerable Failures

Computing Crashes
Critical Failures

ANN

No Failures
Tolerable Failures

Computing Crashes
Critical Failures

SVM

Figure 2. Snapshots of the fault injection instants in the processor register map for ANN (top) and SVM (bottom) algorithms using the same set of input
vectors. This shows which registers are further stimulated and therefore the most susceptible to radiation-induced soft errors.

the specification in Algorithm 1. Similar equations compile
also the ratios of Computing Crashes, Tolerable Failures,
and No Failures. As the described method assesses the same
scenarios of single soft errors as well as the same dataset,
these equations allow thus comparing different ML algorithms,
suggesting the most reliable solutions for correctly classifying
input vectors of a given dataset even though the processor is
upset by single soft errors.

%CriticalFailures =
#CriticalFailures× 100

#FaultInjectionProfiles
(1)

The fault injection campaign in accordance with Algorithm
1 requires the emulation of a large number of fault injection
profiles that would make the assessment impractical if small
samples are not taken from the populations of possible in-
put vectors, fault injection instants, processor registers, and
processor register bits [14]. Hence, a small sample of input
vectors, a small sample of fault injection instants, and the
entire populations of processor registers and processor register
bits are combined through the aforementioned equations, being
considered each one a small sample of a normally distributed
population. The traditional Student’s t-distribution based on
such samples of small size is thus applied to estimate the
means of these populations.

IV. FAULT INJECTION-BASED ASSESSMENT

This section analyzes results of experiments that have been
carried out applying the method described in section III for
comparing the case-study ML algorithms defined in section II.

1) Description of Experiments: The STM32 NUCLEO-
L45RE-P development kit has been used as the SUT, which
includes the low-power processor Arm Cortex-M4. While the
SVM algorithm has been implemented in C language, the
ANN algorithm has been optimized using the STM32 X-
CUBE-AI package, which is a software that generates program
code from a high-level description of an ANN. The Iris flower

dataset [15] has been used to train both case-study ML algo-
rithms before the fault injection campaign. The dataset consists
of samples representing flowers from three different species.
The fault injection campaign experiment has indeed assessed
ML algorithms already trained, while operating for classifying
samples (herein input vectors) of a dataset. The program code
of the case-study ML algorithms have been loaded one at a
time into the SUT using GDB. Furthermore, a custom-built
script automates the implementation of the pseudo-code in
Algorithm 1 for both case-study ML algorithms.

For the specification of fault injection profiles according
to section III, one sample (input vector) has been randomly
taken from each flower specie to maintain the diversity of
the original dataset, making thus the small sample of input
vectors defined in Algorithm 1. On the other hand, the small
sample of fault injection instants has been taken considering
the following criterion: firstly injecting a single soft error when
20% of the instructions of the case-study program (ANN or
SVM) have been executed. After in a new run of the case-
study ML algorithm, when 40% of the instructions have been
executed, and so on for 40%, 60%, and 80%. Regarding the set
of processor registers, only the ones used by the case-study ML
algorithms have been assessed, covering all their bits. The only
register that the method is not able to assess is the $CONTROL
as a fault injected causes the GDB to disconnect from the SUT.

2) Analysis of Results by Register: Figure 2 shows effects
of single soft errors in processor registers when running
the case-study ML algorithms, both classifying the same set
of input vectors from the Iris flower dataset. The revealed
situations are illustrated by general-purpose registers (from R0
to R9) and control registers (SP, LR, and PC).

For general-purpose registers, most faults have produced
No Failure. These registers are normally used to manipulate
data and implement calculations. In this sense, if the program
has a large number of variables or intensive calculations, it
is possible to frequently back up its values in the system
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Figure 3. Summary of situations induced by the fault injection campaign in
the ANN and SVM algorithms.

stack, and depending on the moment when an error occurs, a
register can no longer be used or be naturally rewritten by the
code, which explains most non-occurrence of failures. When a
injected fault manifests a failure (including crashes), Figure 2
shows that a Computing Crash is more likely to occur. As
general-purpose registers are used to store pointers to tables
that contain the weights used by the ML algorithm, an error in
them may cause the program to fail whenever it tries to use it
to access the weights. However, the most dangerous is when
a register bit flips and it is storing an intermediate calculation
value from the ML algorithm. This error can spread silently to
the final values and affect (Critical Failures) or not (Tolerable
Failures) the final classification issued.

On the other hand, control registers are always very sensitive
to faults, as they are directly linked to memory. For example,
the PC register contains the address of the next instruction
to be executed by the processor. If one of its bits flips, the
code may jump to an invalid memory location or interrupt the
execution flow. In regard to LR, the failures are more likely
to happen due to the different levels of nested function calls.
In the SVM, there are no nested function calls, while there
are in the ANN. When a nested function call takes place, a
common practice is to store the LR value, which contains the
return address of the current function being executed, in the
system stack at the beginning of a function and reload the
value before returning. Therefore, our SVM implementation
is more sensitive to faults on the LR w.r.t the ANN, as shown
in Figure 2. In contrast, SP is more sensitive to ANN than
SVM, as our implementation makes heavy use of the stack.

3) Analysis of Global Results: Figure 3 presents the sum-
mary of the fault injection campaigns for the ANN and SVM
algorithms. The values have been calculated as shown in
section III-5, combining all results.

Looking closely in Figure 3, Critical Failures, although cru-
cial, are very rare, falling below 2% for both ML algorithms.
This shows the robustness of the output presented by the two
ML algorithms when they do not stop by Computing crashes.

In general, Figure 3 suggests that the SVM algorithm
presents a slightly better reliability than the ANN when under
the influence of single soft errors.

V. RADIATION TEST-BASED ASSESSMENT

The case-study ML algorithm ANN has been tested under a
neutron generator in the same SUT used in the fault injection
campaign. The experiment has been conducted at the TO-
MOH9 beam line located at the Institut Laue-Langevin (ILL).
The TOMOH9 is a tomography beam line with a spectrum
of neutron energy between 1 to 2 MeV and a flux during the
experiment on the order of 1.8 · 105 neutrons / (cm2 · s).

The SUT has been irradiated for 4 hours and 30 minutes,
yielding a total fluence of 2.916 · 109 neutrons / cm2. During
this period, 24 faults have been detected, accounting for a
cross-section of 8.230 ·10−9 cm2. Among those, 3 faults have
provoked Critical Failures, 19 faults have led the SUT to
Computing Crashes, and 2 faults have manifested as Tolerable
Failures. Note that the high number of Computing Crashes
in the radiation test corroborates the results obtained in the
fault injection campaign, which shows the Computing Crashes
are the most common situations, suggesting that possible
solutions of soft error mitigation should preferentially focus
on addressing them.

VI. CONCLUSIONS AND ONGOING WORKS

This paper provides findings suggesting the case-study ML
algorithm SVM is slightly more reliable than the ANN to
classify the same data observations under scenarios of single
soft errors in the processor. In addition, neutron radiation
tests of the ANN show that the majority of detected faults
produces Computing Crashes, being them naturally detectable
without any additional fault detection technique but requiring
to compute again the ANN operation.

In terms of future works, we intend to perform a deeper
comparison of both ML through additional fault injection
campaigns. We are currently broadening the coverage of our
fault injection campaign to obtain more details of the effect
of faults on our implementations.
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