
ESCOLA POLITÉCNICA

PROGRAMA DE PÓS-GRADUAÇÃO EM CIÊNCIA DA COMPUTAÇÃO

DOUTORADO EM CIÊNCIA DA COMPUTAÇÃO

RAFAEL MATONE CHANIN

A FRAMEWORK TO DESIGN SOFTWARE STARTUPS COURSES IN
SOFTWARE ENGINEERING UNDERGRADUATE CURRICULUM

Porto Alegre

2020

1

PONTIFICAL CATHOLIC UNIVERSITY OF RIO GRANDE DO SUL
SCHOOL OF TECHNOLOGY

COMPUTER SCIENCE GRADUATE PROGRAM

A FRAMEWORK TO DESIGN
SOFTWARE STARTUPS

COURSES IN SOFTWARE
ENGINEERING

UNDERGRADUATE
CURRICULUM

RAFAEL MATONE CHANIN

Doctoral Thesis submitted to the Pontifical
Catholic University of Rio Grande do Sul
in partial fulfillment of the requirements
for the degree of Ph. D. in Computer
Science.

Advisor: Prof. Rafael Prikladnicki
Co-Advisor: Prof. Afonso Sales

Porto Alegre
2020

REPLACE THIS PAGE WITH
THE LIBRARY CATALOG

PAGE

Stamp

REPLACE THIS PAGE WITH
THE COMMITTEE FORMS

Stamp

Stamp

I dedicate this work to my family.

“Don’t worry about failures, worry about the
chances you miss when you don’t even try.”
(Jack Canfield)

ACKNOWLEDGMENTS

First of all I would like to thanks my advisor, Dr. Rafael Prikladnicki, and my co-
advisor, Dr. Afonso Sales, for all their support, advice, and endless patience during my
research. I would also like to mention the contributions given by Dr. Alan Santos, who gave
me a great support in the beginning of this journey.

I would like to thank my committee members, Dr. Sabrina Marczak, Dr. Lúcia
Giraffa and Dr. Alfredo Goldman for their helpful feedback during my PhD qualification, and
for taking their time and effort to help me with my work1.

I am also grateful to the SSRN (the Software Startup Research Network). This
group helped me a lot in the development of my thesis. I would like to make a special
reference to Jorge Melegati, Dr. Xiaofeng Wang, and Dr. Pekka Abrahamsson.

Finally, to the most important people on this planet: my wife Roberta, and my
daughters Luisa, and Nina. Thank you for being there for me. This work is for you.

1This work was achieved in cooperation with HP Brasil Indústria e Comércio de Equipamentos Eletrônicos
LTDA. using incentives of Brazilian Informatics Law (Law nº 8.2.48 of 1991).

UM FRAMEWORK PARA CRIAR DISCIPLINAS DE SOFTWARE
STARTUPS NO CURRÍCULO DOS CURSOS DE GRADUAÇÃO EM

ENGENHARIA DE SOFTWARE

RESUMO

Os avanços tecnológicos possibilitaram que pessoas desenvolvessem produtos e
serviços que podem alcançar milhões de pessoas ao redor do mundo. Estas iniciativas, que
são criadas em um cenário de extrema incerteza, são chamadas de startups. Facebook e
Google são exemplos de empresas de sucesso que um dia foram startups. No entanto,
a maioria das startups quebra nos seus primeiros anos de vida. No contexto educacio-
nal, apesar das universidades estarem adaptando seus currículos para inserir conceitos
relativos a startups, o desafio é: como prover uma experiência real para que alunos de en-
genharia de software desenvolvam software startups? Para buscar resolver este problema,
o objetivo desta pesquisa é propor um framework que pode servir de guia para professo-
res entregarem conteúdos referentes a software startups. Este trabalho foi dividido em três
fases: exploratória, proposta inicial, e avaliação e evolução. Na fase exploratória, serão
aprofundados os conhecimentos em startups de software e na forma como esse conteúdo
é ensinado para os estudantes. Isso foi feito através de estudos empíricos, como um ma-
peamento sistemático da literatura, surveys, e estudos de casos. A partir destes estudos
foi proposto um framework inicial, que foi chamado de Challenge Based Startup Learning.
Finalmente, na fase de avaliação e evolução será conduzido um painel com especialistas
com o intuito de obter feedback para poder melhorar e evoluir o framework. Dessa forma,
esta pesquisa tem como objetivo contribuir nas formas e técnicas de se ensinar software
startups no contexto dos currículos de graduação de engenharia de software.

Palavras-Chave: Ensino em Engenharia de Software, Ensino em Startup, Ensino em Em-
preendedorismo, Metodologias Ativas, Startups, Startups de Software.

A FRAMEWORK TO DESIGN SOFTWARE STARTUPS COURSES IN
SOFTWARE ENGINEERING UNDERGRADUATE CURRICULUM

ABSTRACT

The advances in technology have enabled people to develop services and products
that can reach millions of people around the world. These endeavours, that are developed
under high uncertainty, are called startups. Facebook and Google are examples of success-
ful companies that once were startups. However, most startups fail in their first years of life.
From an education standpoint, even though universities are adapting their curricula in order
to embrace startup education content, the challenge still remains: how can we provide real
world experiences for software engineering students to develop relevant software startups?
In order to fill this gap, the goal of this research is to propose a framework that can serve
as guidance to faculty to better deliver software startup content to software engineering stu-
dents. The work was divided into three research phases: exploratory, initial proposal, and
evaluation and evolution. In the exploratory phase we deepen our understanding on soft-
ware startup, as well as on how these concepts are taught to students. This was pursued
through empirical studies, such as systematic mapping review, surveys, and case studies.
From these results, an initial proposal of the framework was developed - the Challenge
Based Startup Learning. Finally, in the evaluation and evolution phase, we conducted an ex-
pert panel in order to gather feedback from specialists, so we could improve the framework.
Therefore, this research aims at contributing to the educational community when it comes to
teaching software startups in the context of undergraduate software engineering curriculum.

Keywords: Software Engineering Education, Startup Education, Entrepreneurship Educa-
tion, Active Learning Methodology, Startups, Software Startups.

LIST OF FIGURES

Figure 2.1 – Lean Startup process [Rie11]. 32

Figure 2.2 – Customer Development process [Bla13]. 33

Figure 3.1 – Research methodology. 52

Figure 4.1 – Systematic mapping process. 55

Figure 4.2 – Classification scheme workflow. 59

Figure 4.3 – Distribution of primary studies by year. 63

Figure 4.4 – Distribution of primary studies by type of forum. 63

Figure 4.5 – Systematic map by paper rank, research type and focus. 64

Figure 4.6 – Systematic map by focus, research type and contribution. 64

Figure 4.7 – Systematic map by contribution, research method and paper rank. . . 65

Figure 5.1 – A schematic view of group A’s thesis. 77

Figure 5.2 – Flow draw by the second group. 78

Figure 5.3 – Students’ perceptions on validation. 80

Figure 6.1 – Courses that have spawned real startups. 87

Figure 6.2 – Real X Toy Projects. 88

Figure 6.3 – Courses requiring software to be developed. 89

Figure 6.4 – Courses requiring a prototype to be developed. 89

Figure 7.1 – CBL framework (Author: Course Instructor). 95

Figure 7.2 – Students’ engagement. 97

Figure 7.3 – Reasons that engaged students in their project. 98

Figure 7.4 – Difficulties during the Investigate phase. 99

Figure 7.5 – Difficulties during the Act phase. 99

Figure 7.6 – Percentage of students who pivoted during the investigate phase. . . . 100

Figure 7.7 – Percentage of students who pivoted during the act phase. 100

Figure 8.1 – Challenge Based Startup Learning framework. 104

Figure 9.1 – Proposed Challenge Based Startup Learning framework. 117

Figure 9.2 – Engage phase. 118

Figure 9.3 – Content creation. 119

Figure 9.4 – Customer interview. 119

Figure 9.5 – Value proposition testing. 120

Figure 9.6 – Prototyping. 120

Figure 9.7 – Development. 121

LIST OF TABLES

Table 2.1 – Active methodology comparison. 38

Table 2.2 – Software engineering entrepreneurship track. 41

Table 2.3 – Software engineering entrepreneurship track by program. 46

Table 4.1 – Search string. 56

Table 4.2 – Search strategy. 57

Table 4.3 – Retrieved papers. 57

Table 4.4 – Spreadsheet basic information. 58

Table 4.5 – Classification scheme. 61

Table 4.6 – Systematic map overview. 62

Table 5.1 – Themes found in first phase. 79

Table 6.1 – Instructors per country. 86

Table 7.1 – Course schedule. 94

Table 7.2 – Attributes that motivate students. 97

Table 8.1 – Schedule overview. 106

Table 8.2 – Engage phase. 107

Table 8.3 – Call to action results. 107

Table 9.1 – Experts’ background. 113

CONTENTS

1 INTRODUCTION . 25

1.1 GOALS AND ACTIVITIES . 26

1.2 DOCUMENT STRUCTURE . 27

2 THEORETICAL BACKGROUND . 29

2.1 DIGITAL ENTREPRENEURSHIP . 29

2.1.1 SOFTWARE STARTUPS . 29

2.1.2 LEAN STARTUP . 31

2.1.3 CUSTOMER DEVELOPMENT . 32

2.2 ENTREPRENEURIAL EDUCATION FOR THE 21ST CENTURY 33

2.2.1 PROBLEM-BASED LEARNING . 34

2.2.2 PROJECT-BASED LEARNING . 35

2.2.3 TASK-BASED LEARNING . 36

2.2.4 CHALLENGE BASED LEARNING . 36

2.2.5 METHODOLOGIES’ COMPARISON . 37

2.3 ENTREPRENEURSHIP IN SOFTWARE ENGINEERING EDUCATION 38

2.3.1 CURRENT GUIDELINES FOR THE BRAZILIAN SE CURRICULUM 40

2.3.2 ENTREPRENEURSHIP IN THE CONTEXT OF SE PROGRAMS IN BRAZIL . . 42

2.3.3 SOFTWARE ENGINEERING PROGRAMS SAMPLES ANALYSIS 46

3 RESEARCH METHODOLOGY . 49

3.1 METHODOLOGICAL BACKGROUND . 49

3.1.1 SYSTEMATIC MAPPING STUDY . 49

3.1.2 CASE STUDY . 50

3.1.3 SURVEY . 50

3.1.4 EXPERT PANEL . 51

3.2 RESEARCH DESIGN . 51

4 SYSTEMATIC MAPPING STUDY . 55

4.1 SYSTEMATIC MAPPING REVIEW RESEARCH METHODOLOGY 55

4.1.1 DATA SOURCES AND SEARCH STRATEGY . 56

4.1.2 SCREENING OF PAPERS . 58

4.1.3 KEYWORDING . 58

4.1.4 DATA EXTRACTION AND MAPPING . 59

4.1.5 THREATS TO VALIDITY . 60

4.1.6 CLASSIFICATION SCHEME . 60

4.2 RESULTS OF THE SYSTEMATIC MAPPING . 61

4.3 RESEARCH QUESTIONS ANALYSIS . 65

4.3.1 RQ2. WHICH TOOLS, MODELS, METHODOLOGIES AND FRAMEWORKS
ARE APPLIED IN A SOFTWARE STARTUP EDUCATION CONTEXT FOR
SOFTWARE ENGINEERING STUDENTS? . 65

4.3.2 RQ3. WHAT ARE THE REPORTED BEST PRACTICES IN REGARDS TO
TEACHING SOFTWARE STARTUP FOR SOFTWARE ENGINEERING STU-
DENTS? . 68

4.4 SYSTEMATIC MAPPING STUDY FINAL REMARKS . 70

5 STUDENTS’ PERCEPTION ON LEAN PRINCIPLES: A MULTI-METHOD STUDY 73

5.1 STUDENTS’ PERCEPTION ON LEAN PRINCIPLES - RESEARCH DESIGN . . 73

5.1.1 DATA COLLECTION . 74

5.1.2 DATA ANALYSIS . 75

5.2 RESULTS ANALYSIS . 76

5.2.1 SURVEY RESULTS . 80

5.3 DISCUSSION . 81

5.3.1 THREATS TO VALIDITY . 82

5.4 STUDENTS’ PERCEPTION ON LEAN PRINCIPLES FINAL REMARKS 83

6 SURVEY ON SOFTWARE STARTUP EDUCATION . 85

6.1 SURVEY ON SOFTWARE STARTUP EDUCATION - RESEARCH METHOD . . 85

6.2 RESULTS . 86

6.3 SURVEY ON SOFTWARE STARTUP EDUCATION FINAL REMARKS 90

7 TEACHING SOFTWARE STARTUPS USING CHALLENGE BASED LEARN-
ING: A CASE STUDY . 93

7.1 METHODOLOGY . 93

7.1.1 STEP 1: ENGAGE . 93

7.1.2 STEP 2: INVESTIGATE . 94

7.1.3 STEP 3: ACT . 95

7.2 DATA COLLECTION . 96

7.3 EVALUATION . 96

7.3.1 STUDENTS’ ENGAGEMENT . 96

7.3.2 STUDENTS’ DIFFICULTIES . 98

7.3.3 STUDENTS’ AND TEACHERS’ PERCEPTIONS . 101

7.4 TEACHING SOFTWARE STARTUPS USING CBL FINAL REMARKS 102

8 INITIAL PROPOSAL - CHALLENGE BASED STARTUP LEARNING 103

8.1 FRAMEWORK APPLICATION AND PRELIMINARY RESULTS 106

8.2 SURVEY . 108

8.3 CHALLENGE BASED STARTUP LEARNING FINAL REMARKS 109

9 EVALUATION AND EVOLUTION OF THE FRAMEWORK 111

9.1 INTERVIEW PROTOCOL . 111

9.2 EXPERTS DEMOGRAPHICS . 112

9.3 EXPERT PANEL RESULTS . 113

9.3.1 POSITIVE ASPECTS . 114

9.3.2 NEGATIVE ASPECTS . 114

9.3.3 IMPROVEMENT OPPORTUNITIES . 115

9.3.4 KEY FINDINGS . 116

9.4 PROPOSED FRAMEWORK . 117

9.5 EXPERT PANEL FINAL REMARKS AND RECOMMENDATIONS FOR SE PRO-
GRAMS . 121

10 CONCLUSIONS . 125

10.1 REVIEW OF RESEARCH QUESTIONS AND OBJECTIVES 125

10.2 CONTRIBUTIONS OF THIS WORK . 127

10.3 FUTURE WORK . 128

10.4 PUBLICATIONS . 129

REFERENCES . 133

APPENDIX A – Students’ Perception on Lean Principles Research Protocol . . . 147

APPENDIX B – Software Startup Education Research Protocol 149

APPENDIX C – Teaching Software Startups using CBL Research Protocol 155

25

1. INTRODUCTION

In the last decade, we have witnessed significant advances in technology, specially
after the popularization of the Internet. Today, any person with software development skills
is able to create applications that can be reached by millions (and even billions) of peo-
ple [GPU+15]. Companies such as Google, Netflix, and WhatsApp are examples of these
applications.

These endeavours, that are developed under high uncertainty, are called star-
tups [BD12]. Most startups follow the Lean Startup methodology, which combines short
software development cycles with constant interaction with users [Rie11]. The goal is to
reduce risk by focusing on constant learning [CSS+18]. A startup needs to find a business
model as quickly as possible, otherwise it may run out of resources before turning itself into
a company. Therefore, a startup must focus on understanding what customers need, what
they expect, and how much they are willing to pay for a solution [Col05].

Unfortunately, the majority of the startups do not survive the first two years of their
existence [GPU+15]. External factors, such as competition and market instability, definitely
account for this result. However, internal factors also play a key role in this regard [KMN08].
Teams that lack experience working with real projects and real customers tend to feel the
pressure when results do not come up as expected. In addition, technical founders usually
lack the business experience and knowledge that is necessary to run a successful company.

A startup priority is to find its business model, causing software quality to end up
not being a major concern [GUP+14]. The sooner a startup can present its product or service
to customers, the earlier it can get feedback to adjust the system. Therefore, failure must be
accepted as part of the process [GUP+14].

From an education perspective, entrepreneurship has already been identified as a
key component that needs to be further explored [FHL+17]. However, teaching entrepreneur-
ship is not an easy task, since the focus is more on soft skills (such as teamwork, creativity,
and self-awareness), rather than on hard skills. In addition, Fagerholm et al. [FHL+17] have
also pointed out that it is not clear how education institutions can provide entrepreneurial
content to engineers without jeopardizing the learning on core principles (such as program-
ming).

Several software engineering/computer science programs have focused on en-
trepreneurship in the last years ([dCA13, Har15, KAP+06]). In addition, several technology-
related courses are adapting their curricula in order to include startup/entrepreneurship con-
tent [DR08]. One of the biggest challenges reported on these studies is the lack of a realistic
environment for student to work on their startups [PML+15]. Since the main goal of a startup
is to solve real customers’ problems, faculty must find ways to provide real challenges to
students.

26

In this context, there is an opportunity to further study how entrepreneurship and
software startup concepts, such as Lean Startup and Customer Development, are being
taught to software engineering students. This process allow us to identify best practices as
well as gaps and improvement points. As a result, a framework that can serve as guidance
to faculty to better deliver software startup content to students is proposed. In order to do
so, the research question proposed for this thesis is:

How can we teach software startup related concepts to software engineering
students?

In order to answer the main research question of this study, we broke down this
goal into the following questions:

• RQ1: What is the state-of-art in literature in regards to software startup education for
software engineering students?

• RQ2: Which tools, models, methodologies and frameworks are applied in a software
startup education context for software engineering students?

• RQ3: What are the reported best practices in regards to teaching software startup for
software engineering students?

• RQ4: What are the benefits and challenges of software engineering students learning
the Lean Startup approach?

1.1 Goals and Activities

The goal of this research is to create a framework to help faculty and the academic
community to teach software startup content. The framework will be developed in the soft-
ware engineering context. In order to do so, we proposed the following activities:

• Study software startup related concepts in order to understand them in depth;

• Conduct a systematic mapping study on software startup education for software engi-
neering students;

• Understand how software engineering students perceive software startup concepts;

• Understand how instructors around the world teach software startup to software engi-
neering students;

• Create a framework to teach software startup to software engineering students;

27

• Evaluate and refine the proposed framework;

• Propose an implementation of the framework in software engineering programs in
Brazil;

• Document and report results to the scientific community.

1.2 Document Structure

The remainder of this document is organized as follows: Chapter 2 presents the
background on fundamental concepts. Chapter 3 describes the proposed research method-
ology. Chapters 4, 5, 6, and 7 present the experimental studies undertaken in the first phase
of this research. Chapter 8 introduces the initial proposal for this study. Chapter 9 depicts
the evaluation and evolution of the proposed framework. Finally, Chapter 10 shows our
conclusion and final thoughts.

28

29

2. THEORETICAL BACKGROUND

This chapter presents the background on the core concepts related to this research:
digital entrepreneurship, which is broken down into Software Startups, Lean Startup, and
Customer Development, entrepreneurial education for the 21st century, including several
active learning methodologies, and entrepreneurship in software engineering education.

2.1 Digital Entrepreneurship

In this section, we explore three important concepts related to digital entrepreneur-
ship: software startups Lean Startup and Customer Development.

2.1.1 Software Startups

Though software startups have recently had a large economic impact across the
globe, there is no clear consensus on what exactly a software startup is [UAW+16]. Startups
are not simply small, new companies seeking to grow into larger corporations, nor is there a
clear point after which a startup has clearly grown into a mature company. Despite the lack
of a consensus on an exact definition, some shared understanding of characteristics that
define startups does exist.

Startups operate under a lack of resources, both in terms of time, manpower, and
finances [PGU+14, Sut00]. They largely rely on external funding especially early on in their
lifecycles, and have little to no prior operating history [Bla13, Sut00]. Though not every sin-
gle startup is a software startup or even focused on technology-based products, startups by
definition are often nonetheless considered to be software or more generally tech compa-
nies, especially by practitioners [Bla13]. Software startups specifically, however, operate in
particularly volatile markets, using current top-of-the-line technologies to engineer innova-
tive products and services [HHO03]. This, combined with the scarcity of resources, leads to
software startups generally operating under highly uncertain conditions [Rie11].

Perhaps the most important difference between a conventional small business and
a startup is that startups are characterized by clear intentions for high growth. While small
companies generally wish to grow, and will usually do so if presented with a clear opportu-
nity, startups are founded with plans for high potential growth from their inception. Indeed,
startups typically seek a particularly highly scalable business model [Bla13]. In the case of
software startups in particular, this is further highlighted by the digital nature of software:
digital goods are easily distributed or sold world-wide.

30

Another important characteristic of a startup is that startups are temporary: a
startup does not want to keep being a startup. A startup will either fail somewhere along
the way or grow into a mature organization. Though it is unclear when exactly a startup
ceases to be a startup, drawing from the definition of Blank [Bla13], one could argue that a
startup ceases to be a startup when it has found the highly scalable and sustainable busi-
ness model it sought.

For the purpose of this study, we consider startups to be temporary organizations
seeking a highly scalable business model. Software startups, on the other hand, are con-
sidered startups that deliver value primarily through software. For instance, though Uber is
a taxi company, it nonetheless delivers its value to its customer through the software used
to access the service; after all, it does not actually own a single taxi.

Software startups are typically associated with success stories such as that of the
aforementioned Uber. However, the majority of software startups fail [Cro02], with some
estimates citing numbers as high as 95%. Despite their high rate of failure, software star-
tups have had a notable impact on the economies of more developed countries, especially
in the last decade [UAW+16]. As a result of recent technological advances, an average su-
permarket laptop can now be used to develop software which can then be hosted in the
cloud, whereas twenty years ago the cost of developing and distributing software was much
higher. This sharp decrease in required resources in software development has resulted in
an increasing number of software startups.

As software startups have become more numerous and impactful at an interna-
tional economic level [UAW+16], they have also become increasingly relevant from the point
of view of education. It is not uncommon for software engineering students to involve them-
selves in software startups both during their studies and after graduation. In fact, software
startup practitioners in general tend to be inexperienced [KCM+14, Sut00]. Just as en-
trepreneurship in general is taught in educational institutes across the globe, startups as one
of its facets have grown prominent enough to warrant unique focus. As established in this
section, startups differ from conventional small companies, making generic entrepreneurship
education not fully applicable to them.

In terms of business, whereas founding a conventional company would see one
write a detailed business plan for investors and perhaps take out a loan cover material costs
as well, startups prefer one-page-long business model canvases over business plans and
are far more focused on acquiring outside funding through short public talks referred to as
pitches. Though startups are not completely unlike conventional small businesses at their
core, startup entrepreneurship has grown into a sub-culture with its own community and jar-
gon. Startup events across the globe attract famous practitioner speakers and also success-
ful startups that bring motivational success stories for up-and-coming startup practitioners.

Startup incubator organizations and various startup-related societies support star-
tups during various stages of their lifecycles. As a result, startup companies use constructs

31

that differ from conventional business vocabulary and have their own practices, for instance,
in terms of searching for investments.

In regards to software development processes, software startups have been shown
to develop software differently from small, medium-size and large corporations [PGU+14].
Software startups often use varying agile methods and practices, or even develop software
purely ad hoc [PGU+14]. Similarly, software startups are characterized by particularly high
levels of technical debt. As time-to-market is essential and the lack of resources forces
software startups to develop quickly, software startups often accumulate technical debt. After
all, in the case of failure, which is the fate of most software startups [UAW+16], that technical
debt will never have to be addressed. Of course this issue is not exclusive to startups.
Software projects from all sorts suffer from technical debt; however, due to the nature of
startups, this is some almost impossible to avoid.

Just as organizations such as startup incubators and various startup event orga-
nizations have sprouted to support the high number of emerging software startups, some
scholars have also begun to devise and carry out startup-related university courses. Whereas
business and entrepreneurial education in general has a long-standing history in the academia,
startup and software startup education as its subset is still in its infancy.

2.1.2 Lean Startup

Inspired by the Customer Development and Lean Manufacturing, Eric Ries pro-
posed the Lean Startup [Rie11]. This methodology has the premise that every startup is a
set of experiments to test hypotheses the startup makes about a given business idea. In
order to do so, startups build Minimum Viable Products (MVPs) [Li07].

An MVP is used to collect feedback from potential users/customers in order to
identify and to model the next experiment [GUP+14]. One of the common issues with this
approach is to understand what “minimal” and “viable” means [LT16]. The development of an
MVP should focus on the smallest effort in order to test a given assumption of the business
model and to obtain maximum validated learning. Figure 2.1 presents the Lean Startup
process.

In addition to the process itself, the Lean Startup methodology is based on a set of
5 principles:

1. Entrepreneurs are everywhere: there is no special setting to work on a startup. It can
be in an office, in a garage, and even from home;

2. Entrepreneurship is management : a startup is not just a technical product. It requires
management as any other organization;

32

Figure 2.1 – Lean Startup process [Rie11].

3. Validated learning: the goal of a startup is to learn about a given context/market. The
mindset should be focused on creating and validating experiments;

4. Innovation accounting: the focus should be on measuring progress, setting up mile-
stones, and on prioritizing task;

5. Build-measure-learn: all processes should be geared to accelerate the feedback loop.

Despite of the Lean Startup popularity, it is an approach proposed in a non-scientific
book based on anecdotal evidences. Nevertheless, according to Frederiksen and Brem [FB17],
there is substantial evidence in scientific literature to support the Lean Startup efficacy.

2.1.3 Customer Development

Steve Blank [Bla13] proposed and created the Customer Development process
based on the premise that most startups fail from lack of customers, rather than product
development issues. He argues that there are several processes to manage product devel-
opment, but there is no formal process to manage customer development.

The Customer Development process is divided into four phases (see Figure 2.2):

33

• Customer Discovery : state and validate both the problem and the customer hypothe-
ses. A startup should only move to the next phase once there are evidences that a
group of customers are willing to pay to solve a given problem;

• Customer Validation: develop and test a sales process. If the startup is not able to
validate the model, it has to go back to the discovery phase. This move is called pivot ;

• Customer Creation: once the business model is validated, it is time to grow the cus-
tomer base in order to validate the business feasibility;

• Company Building: put formal management into place and create growth strategies to
scale the business.

Figure 2.2 – Customer Development process [Bla13].

If a startup is not able to validate its business model before running out of resources,
it will not succeed. Hence, it is very important to perform an effective customer discovery
process [BCC16]. This can be done by interviewing potential customers, using marketing
strategies, such as developing landing pages or online advertisements to validate a given
value proposition, or even by manually delivering the product/service to the customer (the
concierge approach).

2.2 Entrepreneurial Education for the 21st Century

Entrepreneurs are a heterogeneous group. Therefore, there is a need for pedagogi-
cal approaches that encompasses all types of students; from those less creative, to the ones
that are capable of developing amazing solutions [FHL+17]. Berglund and Wennberg [BW06]
suggest the implementation of flexible educational structures, embracing both individual and
group needs.

Gorman et al. [GHK97] developed a ten-year literature review on entrepreneurship
education and they found out interesting insights. One of them is that entrepreneurship
education should focus on developing students’ soft skills et al. [GHK97]. The idea behind

34

this conclusion is that most startups do not fail because they can not (technically) build their
products; they fail from lacking managerial and personal skills. The second insight, which
is connected to the first one, is that education should be focused on concrete experiences
through active participation on projects and tasks.

In addition, Gorman et al. [GHK97] research clearly indicates that the vast major-
ity of knowledge and skills required to become an entrepreneur can be taught. Moreover,
teaching methods and strategies can be improved through active participation. Another in-
teresting take away from this research is that even though educational programs can, at
least, encourage students to pursue a career as a business owner, small business owners
resist startup training. Because of that, the authors suggest that startup training and educa-
tion should occur in an environment where the university has control over the process. Even
though it may seem to be a good idea to involve students in real startup organizations, there
is a risk of jeopardising learning, specially if the startup does not have mature processes
implemented.

In regards to teaching methodologies, experiential learning seems to be the most
acknowledged approach in this context. Problem-Based Learning, Project-Based Learn-
ing, Task-Based Learning, and Challenge Based Learning are just a few examples of these
frameworks. These approaches engage students and improve their performance [DSVDBS05,
IPSL09]. Moreover, they move students from being a spectator to being actively engaged
into solving real world problems [Inc08, Inc09]. The following sections briefly describe the
four aforementioned approaches.

2.2.1 Problem-Based Learning

The Problem-Based Learning methodology (PBL) is centered on working on open-
ended problem instead of presenting content to students [MG09]. In this process, there is no
single solution to a given problem; students must collaborate in order to develop their own
solution according to their resources and skills [İB13]. In order to do so, they must not only
develop the skills to look for the knowledge needed to solve the problem, but they also need
to develop soft skills, such as communication and leadership.

In this context, instructors should prepare classes in such a way that students feel
comfortable asking as many question as they need. The problem can be presented in any
format: text, image, or video. This process must present a situation that contains a problem.
If possible, this scenario should be broad and open with little or no specification.

Once the problem is presented and clarified, students develop hypothesis and a
plan in order to learn more about the situation so they can find the solution. Of course it is
good if students find a solution, but the process is more important than the solution itself; the
learning happens by asking questions and by researching the topics around the problem.

35

In sum, the PBL process can be describe in the following stages:

1. The situation is presented to students;

2. The problem is defined;

3. Student create hypothesis and define a work plan;

4. Research;

5. Lessons learned and conclusions regarding the problem.

Throughout this process students must become more independent and active. In-
structors should act as facilitators; they must stimulate and engage students as well as help
them in case they get stuck or if they are going to the wrong direction. Instructors should
also provide advice and assistance. This means that instructors play an important role in this
context. Since students are partially responsible for their learning, if there is no guidance the
learning process may be jeopardise.

2.2.2 Project-Based Learning

Project-Based Learning (PRBL) is very similar to the Problem-Based Learning
methodology. However, in this case, students work on a specific project, rather than on
a problem [FW03]. Thomas [Tho00] argues that by working on a project, students must
learn planning, investigation, execution, and decision-making. The biggest challenge on im-
plementing this approach in an educational environment lies on changing the “traditional”
roles of both students and instructors. While students must take action into the learning
process, instructors become tutors [IPSL09].

Another difference between PBL and PRBL is that the former focuses on the acqui-
sition of knowledge, while the later focuses on the application of knowledge. Since knowl-
edge is acquired during the course of the project, PRBL is prone to the same problem as
PBL, which is not going deep enough into the content.

In order to avoid this issue, students need to be assessed during the process so
instructors can understand whether knowledge is being acquired or not. However, assessing
is hard in both PBL and PRBL since exams, for instance, usually focus on technical content
and not on the learning process. Thus, instructors must find the right approaches and tools
to measure not only hard skills, but also soft skills.

According to Pardo [Par14], instructors should observe students throughout the
process and ask for reports and presentations. Although observations are somehow sub-
jectives, this approach is better than just assessing student though an exam.

36

2.2.3 Task-Based Learning

The Task-Based Learning methodology (TBL), as the name suggests, focus the
learning process by working on tasks. This approach is similar to the Project-Based Learning
one, but tasks are considered smaller portions of work if compared to projects. The learning
process is broken down into the pre-task activity (when students are exposed to the task),
the planning, the execution, and the evaluation [FF09].

According to Fetaji [FF09], this approach has three main advantages:

1. Learning designed around tasks is more effective than traditional memory-based or
purely apprenticeship-type learning;

2. Learning structured around tasks is an efficient approach to learning;

3. Task-based learning is likely to lead to more relevant and appropriate education.

Fetaji [FF09] also mentions that TBL offers action and reflection. In other words,
students can put their learning into practice and can also reflection on the learning process.

2.2.4 Challenge Based Learning

Challenge Based Learning (CBL) [NCT16] was developed by educators working
with Apple Inc. [NC08] and has been implemented both in educational and corporate envi-
ronments. It is a learning framework based on solving real world challenges and problems.
From an education standpoint, students obtain knowledge by working with technology on
open-ended problems and challenges in collaborative and (when possible) heterogeneous
teams.

During the CBL learning process, professors/lecturers, students and other stake-
holders work together as active collaborators. Divergent thinking and creativity are stimu-
lated throughout the whole process. Moreover, the focus is not only on the final deliverable
(the challenge solution), but also on the learning process itself. Students and lecturers must
reflect from time to time on their learning/teaching evolution.

The CBL framework is divided into three interconnected phases: Engage, Investi-
gate and Act. Each phase includes a different set of activities:

• Engage:

Big Idea: a broad concept that can be explored. It has to be a topic that is engaging
for students;

37

Essential Question: the question related to the Big Idea that students want to ex-
plore;

Challenge: a call to action derived from the essential question. It should be action-
able and exciting.

• Investigate:

Guiding Questions: questions related to the challenge. Includes everything that
needs to be learned;

Guiding Activities and Resources: list of activities and resources that can help
students pursue the challenge;

Analysis: sets the foundation to develop the solution to the challenge.

• Act :

Solution Development : based on the learnings from the previous steps, the solu-
tion is implemented;

Evaluation: verifies if the solution has addressed the challenge or if it needs refine-
ment.

Johnson and Adams [JA11] have showed that the use of active learning method-
ologies improves students’ learning when compared to traditional methods. Additionally,
the engagement and the soft skills acquired during the process is also perceived as a big
advantage not only for students, but also for other stakeholders involved.

2.2.5 Methodologies’ Comparison

Santos [San16] developed a comparison among several active learning method-
ologies in his PhD thesis. Table 2.1 presents the most important aspects to be observed
regarding these methodologies.

38

Attribute CBL PBL PRBL TBL

Focus on students’ autonomy X X X

Teamwork X X X X

Reflection X X X X

Everyone is a learner X

Work on real world challenges X

Use of technology X

Table 2.1 – Active methodology comparison.

It is important to point out that even though only CBL was designed to work with
technology, the other methodologies have also been adapted to work on a technology en-
vironment [San16]. The same is valid for the “real world challenges” attribute. PBL, for
instance, is often adapted to work with real world problems. The point is that CBL is the
only methodology that explicitly prescribes all aforementioned attributes. In addition, CBL
seems to fit well with the characteristics of a software startup, since it aims at solving a real
world problem by using technology. Because of these reasons, we chose CBL as the active
methodology to further explore the objectives of this work.

2.3 Entrepreneurship in Software Engineering Education

Nowadays, business education is becoming so relevant that some universities across
the world have already recognized the importance of providing entrepreneurial skills to en-
gineering students [PML+15]. The fact is that being technically competent is not enough.
Understanding customers’ needs and knowing how to deliver real value to people is a must
in this new economy. Even though some initiatives can be perceived in the academic world,
the lack of business education to software engineering students has been a noted issue for a
long time. Back in 2000, Shaw [Sha00] already observed that software engineering students
rarely faced non-technical issues. In 2009, a survey of 119 Spanish students reported that
they were not receiving enough training in innovation and entrepreneurship [ESRTCBS09].
Several courses have focused on entrepreneurship for software engineering students in the
last years [dCA13, Har15] and other studies focused on the importance of business concepts
for technical students [KAP+06].

Some entrepreneurship courses teach emerging methodologies for startup devel-
opment like Lean Startup [Har15, Nob11, WKA16] and Customer Development [CPF+17].
Fitzgerald and Stol [FS17] argue that these methodologies are consequence of the need of

39

a closer integration between business needs and development. However, despite of con-
sisting interesting concepts and ideas, these methodologies can be difficult to comprehend
and to apply in practice [BOBL13], which may hinder software engineering students to grasp
business skills by following the courses.

In addition, when dealing with real users/customers, students need to be creative
in order solve problems that may arise. In other words, students must not only develop
software development skills, but also many soft skills, such as critical thinking, adaptability,
and teamwork. This combination enables students to be prepared to deliver software that is
not only technically well-design, but that also delivers value to a group of people [PML+15].

Encouraging working with rapid and iterative development cycles, along with con-
stant feedback as well as self-evaluation is harder in an academic setting, due to students’
lack of experience [GSX15]. However, in order to meet current market demands in term of
software development skills, it is necessary to combine creativity and innovation along with
technical knowledge [DKI+10].

Thus, it is crucial to implement an engaging and collaborative approach in order
to help students understand what is takes to develop a real startup. One of the methodolo-
gies that combines the educational process with interactive learning and applied to everyday
challenges, for instance, is the Challenge Based Learning (CBL) [NCT16]. This methodology
works well not only in real world projects, but also in educational settings [SSFK18, SSFN15].
CBL encourages problem-solving through activities such as reflections, self and team eval-
uations and challenges carried out during the process [NC08].

There are a few publications that connect Challenged Based Learning and software
development practices [BNRM17, SSFN15]. Agile practices are often used in a startup
context. In this sense, our work was inspired by Santos et al. [SSFN15], which presented
the first framework that formally combines CBL methodology and Scrum.

Santos et al. [SSFN15] explored a case study of an iOS development course that
used CBL as the methodology for teaching. Even though there was no formal software devel-
opment process put it place when the first course was offered, it became clear that student
would need one. Therefore, a framework was proposed and implemented. In this frame-
work, students do not start implementing their mobile application until they are done with
their investigation. If something goes wrong during this step, it might be to late to go back
and adapt the solution. Moreover, the model does not make any reference to outside users
or customers. Even though this work presents a great methodology for teaching mobile ap-
plication development, the lack of real users/customers interaction is clearly a gap. Teachers
can assess whether students learned how to develop a given mobile application. However,
nothing is mentioned regarding the validation of the proposed solution by real users. This is
the gap that this work intend to explore.

40

2.3.1 Current Guidelines for the Brazilian SE Curriculum

In Brazil, there is a guideline provided by the Brazilian Computer Association [AZN+17]
for all computer-related undergraduate programs. This document is a very useful resource
for universities implementing such programs. In regards to software engineering programs,
there is a specific track called “Entrepreneurship and Innovation” that encourage software
engineering programs to develop entrepreneurship concepts not only within an organization,
but also when creating a new company.

This document was created by a group formed by several Brazilian undergraduate
institutions. The goal is to offer guidance and orientation regarding the professional forma-
tion in software engineering for new and existing programs.

The guidelines are based on a work proposed by Nunes et al. [NYN16], which
focuses on competencies refinement. According to the authors, competency is the ability
to articulate and to consolidate knowledge, abilities and atitudes, putting them into action
by solving problems and by dealing with unpredictable situations in a given context. By
analysing these competencies, it is possible to determine what need to be taught in the
classroom.

Software engineering programs are somehow recent in Brazil. The first program
was created and approved in 2008. Currently (at the time of writing this thesis), there are
around 50 universities that offer software engineering programs, according to the National
Higher Level Education Database Programs1.

Even though different computer-related programs have different focuses, they all
share a common knowledge base. Topics such as math, algorithms, and software de-
velopment processes are present in all programs. When it comes to entrepreneurship-
related knowledge, the following aspects are expected from software engineering gradu-
ates [AZN+17]:

• ability to reflect over a software project in order to understand its impact on people and
on society;

• understand the economic and financial aspects associated with a new software project;

• recognize the importance of innovation and creativity as well as business opportunities;

• identify new business opportunities and develop innovative solutions.

In regards to tracks, the guideline suggests 7 main topics:

1. Computing fundamentais, math and processes;
1http://emec.mec.gov.br/

41

2. Entrepreneurship and innovation;

3. Professional practices and abilities;

4. Software processes and management;

5. Software requirements, analysis, and design;

6. Software development and testing;

7. Software quality.

For each of track, competencies and contents are derived and classified according
to depth of knowledge suggested. The classification entails the following components:

• Knowledge: remembering a given content that was taught in class.

• Comprehension: understanding a given content that was taught in class.

• Application: using a given content in new and concrete situations.

As it can be observed by looking at the tracks, there is a clear focus on en-
trepreneurship and innovation in the guideline for the Brazilian software engineering cur-
riculum. The goal of this track is to encourage students to create and develop innovative
businesses within organizations as well as building a new company. Table 2.2 summarizes
the competencies that should be developed along with the corresponding classification and
content, which is described in the guidelines provided by the Brazilian Computer Associa-
tion [AZN+17].

Competencies Classification Content

Identify business opportunities Comprehension Entrepreneurship

Create business models, transforming
ideas into products or services

Application Entrepreneurship, business modelling,
and business model frameworks

Plan innovative projects Application Entrepreneurship, business planning

Fundraising for innovative projects Comprehension Entrepreneurship, and funding

Manage innovative businesses Comprehension Entrepreneurship, business adminis-
tration, and marketing

Table 2.2 – Software engineering entrepreneurship track.

Regarding teaching methodologies, the guideline suggests that software engineer-
ing programs should focus on student-centered strategies so that student can learn by re-
flecting over practical activities. Project based learning, problem based learning, competency-
based learning, and case studies are mentioned in the document as possible methodologies
to be used in order to deliver a better experience to students.

42

Moreover, the author of these guidelines are also concerned about soft skills de-
velopment, such as communication, negotiation, teamwork, leadership, and management.
In today’s world, it is vital to address such skills since the market is becoming more complex
as well as more competitive.

In sum, as it can be observed, the guidelines regarding entrepreneurship are some-
how generic; the document provides a vision for this track, but it does not explain how this
concepts and contents could be applied in practice in a classroom environment. Therefore,
in the next section we will understand how some of the software engineering programs in
Brazil are interpreting and implementing this track in their contexts.

2.3.2 Entrepreneurship in the context of SE Programs in Brazil

In this section we will study a sample of the software engineering programs of-
fered in Brazil in regards to their implementation of entrepreneurial concepts. We choose
7 programs to fully analyze. This sample was picked based on their overall evaluation by
the Ministry of National Education. In Brazil, every higher education program (either private
or public) is evaluated by a set of parameters, such as students’ grade on a national exam
(ENADE), number for MSc and PhD professors, facilities and class activities and resources.
In some situation, government representatives visit the university in order to further evaluate
the context. This process assign a grade between 1 and 5 to the program. Details about this
process can be found in the Ministry of National Education website2.

Given this explanation regarding higher education program evaluation, we selected
7 programs - 4 programs that currently hold the highest grade (5), and 3 programs holding
an overall evaluation of 4. The rationale behind this approach is that we definitely need to
analyze some of the best programs in the country, but it is also interesting to verify whether
other good programs also provide interesting insights. Moreover, programs with low or no
evaluation could mean that they are still new or under development. Therefore, we decided
not to take those programs into account at this moment.

PUCRS

The software engineering program at Pontifícia Universidade Católica do Rio Grande
do Sul (PUCRS)3 was created in 2014, and currently holds a 5 on the aforementioned gov-
ernment assessment. One interesting aspect of this program is software engineering ex-
perimental agency. This lab was conceived to be a hands-on learning environment that (i)
allows students to work on real projects, but always focusing on the learning process (ii) inte-

2http://emec.mec.gov.br
3https://www.pucrs.br/politecnica/curso/engenharia-de-software/

43

grates all concepts learned throughout the program; (iii) connects students with researchers
as well as companies or other stakeholders that would be interested in working together on
a software project. This is definitely an innovative and creative approach to teach software
engineering concepts to students. Moreover, students are introduced to entrepreneurship
concepts since they ended up working with startups and other similar organizations.

Aside from that, the program offers a 2-credit course, called Entrepreneurial Ed-
ucation, in which students learn entrepreneurial concepts. In addition, they study other
important aspects, such as motivation and leadership. They also oversee practical aspects
by looking at important tools that help entrepreneurs on modelling their businesses (such as
the business model canvas), as well as the steps that need to be undertaken in order to do
so.

In sum, software engineering experimental agency seems to be a great opportunity
for students to develop entrepreneurial skills, although this is not the primary focus of the
agency. In regards to course offerings, it looks like a 2-credit course can only give students
an overview of the entrepreneurial process, with no time to actually to the learning into
practice.

UnB

The software engineering program at Universidade de Brasília (UnB)4 was created
in 2008 and it also holds a 5 for its government assessment. One of the program’s main ob-
jetives is to implement pedagogical practices that foster autonomy, creativity, critical thinking,
entrepreneurial mindset, in order to give students the opportunity to think about developing
new organizations.

The program offers a course called Project Development I and II, which accounts
for 120 hours. According to our analysis, this course has a similar goal as the software engi-
neering experimental agency offered by PUCRS. It is an opportunity for students to work on
a project-based course so they can put their learning into practice. According to the course
syllabus, the core focus is the development of soft skills, such as communication, and team-
work, as well as some hard skills related to software development life cycle. The document
mentions that students have the opportunity to understand entrepreneurial concepts.

It looks like this program provides a great hands-on opportunity for students to
practice their software engineering knowledge by working on real projects as well as on toy
projects. However, it seems that entrepreneurial concepts are not at the core of this process.

4http://fga.unb.br/software/engenharia-de-software

44

UTFPR

At UTFPR (Universidade Tecnológica Federal do Paraná)5, the software engineer-
ing program was created in 2014 and currently holds a 5 for its government assessment.
Interestedly, one of the program’s main objetives is exactly the same as the one of UnB,
which is to implement pedagogical practices that foster autonomy, creativity, critical thinking,
entrepreneurial mindset, in order to give students the opportunity to think about developing
new organizations.

This objective is translated in this program as a 2-credit course called Entrepreneur-
ship, in which students study business plan, business opportunity, and entrepreneurial pro-
file. The program also offer 2 other courses as electives - Knowledge Management, and
Leadership and Management - that are suppose to foster entrepreneurial mindset. How-
ever, by looking the courses syllabus the focus of both courses are mostly on established
organization.

In this program, it looks like students briefly and superficially touch on entrepreneurial
concepts throughout the program. In other words, they do not actually practice the process
of developing a startup or any other new venture.

UFG

The software engineering program at Universidade Federal de Goiás (UFG)6, which
holds a 5 for its government assessment, was created in 2008. In the programs goals and
objectives, there is no reference to entrepreneurship; the objetives are focuses on software
engineering processes and practices.

In regards to courses related to entrepreneurship, none of the courses of this pro-
gram focus directly on this concept. There is one course - Ethics, Rules, and Professional
Behavior - that mentions in its syllabus a few topics and concepts related to the development
of entrepreneurial mindset.

By looking at this program website, as well as its pedagogical project document, it
looks like there is no focus on fostering the development of new startups or new ventures.

UFMS

At UFMS (Fundação Universidade Federal de Mato Grosso do Sul)7, the software
engineering program was created in 2017 and currently holds a 4 for its government assess-
ment. One of the program’s main objetives is to foster creativity and an innovation mindset,
by understanding business perspectives and opportunities.

5http://portal.utfpr.edu.br/cp/engenhariadesoftware
6https://inf.ufg.br/p/30140-engenharia-de-software
7https://www.facom.ufms.br/engenharia-de-software/

45

The program offers 2 courses related to entrepreneurship. The first one is a 2-
credit course called Entrepreneurship. The goal of this course is to teach basic concepts,
and to motivate students to become entrepreneurs. It also touches on building sustainable
and scalable business models by developing a business plan. The second one is a 4-credit
course called Introduction to Administration, which focuses on organizations environment,
strategies, planning, and management.

Even though there are 6 credits in this program designed for entrepreneurial ac-
tivities, the 4-credit course (Introduction to Administration) is clearly focused on established
companies processes. The only moment in which students in fact study and work with en-
trepreneurial concepts is on the Entrepreneurship course.

UniCesumar

The software engineering program at Centro Universitário de Maringá (UniCe-
sumar)8 was created in 2013 in an online format only. One of the program’s objetive is
to implement pedagogical practices that foster autonomy, creativity, critical thinking, en-
trepreneurial mindset, in order to give students the opportunity to think about developing
new organizations (the same as the one of UnB and UTFPR).

The program offers in the last semester a 4-credit course called Entrepreneurship.
This course focuses on explaining the importance of entrepreneurship by developing and
creating a business plan for a company. It also touches on legal and ethic aspects related to
running an organization. Finally, the course also entails planning, organization, coordination,
leadership in regards to production, marketing, finance and human resources.

By analyzing the program website as well as its pedagogical project document, it
looks like the focus (in regards to entrepreneurship) on established organization, and not on
startups or new ventures.

UniPampa

The software engineering program at UniPampa (Universidade Federal do Pampa)9,
which holds a 4 for its government assessment, was created in 2009. One of the program’s
main objetives is to train students into applying their knowledge in an innovative and en-
trepreneurial way, contributing to the development of the society.

The program offers one 4-credit course called Administrations and Entrepreneur-
ship, which focuses on applying management and administrative strategies into decision
making processes. The course also touches on business model and on business plan. In-
terestingly, this program also offers a 2-credit course as elective, in which students learn

8https://www.unicesumar.edu.br/ead/cursos-graduacao/engenharia-de-software/
9http://cursos.unipampa.edu.br/cursos/engenhariadesoftware/?page_id=3

46

startup concepts and business model in the context of software engineering. This is was the
only reference to the term "startup" in all 7 programs analyzed in this thesis.

2.3.3 Software Engineering Programs Samples Analysis

After analyzing each of the selected program, we mapped them out against the
expected competencies and classifications depicted in Table 2.2. The result of this process
is shown in Table 2.3. The labels presented in the table are depicted as follows:

• K: Knowledge (remembering a given content that was taught in class).

• C: Comprehension (understanding a given content that was taught in class).

• A: Application (using a given content in new and concrete situations).

• N: Not Application (in case there is no clear reference to that competence).

Expected Competencies Expected
Classification

PUCRS UnB UTFPR UFG UFMS UniCesumar UniPampa

Identify business opportunities C K K C N C C K

Create business models, transforming
ideas into products or services

A C C C N C C C

Plan innovative projects A C C C N C C C

Fundraising for innovative projects C N N N N N N N

Manage innovative businesses C C C C N C C C

Table 2.3 – Software engineering entrepreneurship track by program.

As it can be observed in Table 2.3, there are several gaps between the expected
competencies suggested by the guidelines of the Brazilian Software Engineering Curriculum,
and the actual ones explored in the 7 programs analyzed. The most important gap based
on the collected data, which is presented in all programs, is the lack of application in regards
to creating business models, transforming ideas into products or services, and in planning
innovative projects. It can also be noticed that none of the programs analyzed touch on
fundraising for innovative projects. Even though this topic is not as relevant as the others
since we are working with first time entrepreneurs, it would be better if this topic was as least
mentioned to students at some point.

It is important to mention that this analysis was done based on the documents
provided by each university, as well as their websites. Moreover, it was performed only by
the author of this thesis. Therefore, there is a threat to validity to this process regarding the
research bias.

Finally, the guidelines of the Brazilian Software Engineering Curriculum, developed
by the Brazilian Computer Association [AZN+17], provide great insights and guidance on
how to build an effective software engineering curriculum. As already mentioned in this

47

section, this document mentions the importance of student-centered approaches, active-
based methodologies, and experiential learnings strategies. These methods not only help
engaging students, but they also touch on important soft skills that need to be developed.
Nevertheless, this document does not address examples on how these strategies can be
implemented in a classroom environment. On one hand, this is positive, since it leaves the
floor open for universities to be creative and to adapt these guidelines according to their
reality. On the other hand, if the university has no background or previous experience with a
given topic, it might lead to an ineffective implementation of a given track.

48

49

3. RESEARCH METHODOLOGY

In this chapter, we discuss aspects related to the research methodology followed
in this thesis. In Section 3.1 we explain the research methods used in this work. Section 3.2
depicts the research design.

3.1 Methodological Background

In this research, the following research methods were used: systematic mapping
study, case study, survey, and expert panel. Each of these methods is explained as follows.

3.1.1 Systematic Mapping Study

According to Petersen et al. [PFMM08], “a software engineering systematic map is
a defined method to build a classification scheme and structure a software engineering field
of interest.” Based on these scheme an analysis is drawn, which focuses on frequencies
of publications for the designed categories. Thus, the context of the research field can
be determined. In addition, other insights can be taken depending on defined research
questions.

The first stages of a systematic mapping study are very similar to those of a system-
atic literature review [BTBK08]. However the research question tend to be much broader,
in order to address the wider scope of this type of study. Theses stages are detailed as
follows [BTBK08]:

1. The search stage: identification of primary studies that may contain relevant research
results;

2. The inclusion/exclusion stage: selecting the appropriate primary studies from these
after further examination;

3. The bias/validity: if appropriate, performing a quality assessment of the selected stud-
ies.

In the context of this research, a systematic mapping study was performed in the
beginning of the process so we could understand the field in order to identify opportunities
and gaps. This process addresses RQ1, RQ2, and RQ3.

50

3.1.2 Case Study

A case study is an empirical inquiry that investigates a contemporary phenomenon
within its context, especially when the boundaries between phenomenon and context are
not clearly evident [Yin03]. Its designs can be single-case or multiple-case studies, and they
may entail a single unit or multiple units of analysis [Yin03].

In the context of software engineering, case studies are relevant for the evalua-
tion of software engineering tools and methods, since they can avoid the problems that are
usually associated with experiments [SDJ07]. In addition, case studies offer in-depth under-
standing of the context of a certain phenomena, and can reveal cause-effect relationships
among events [ESSD08].

Data sources from case studies can be derived from a variety of ways. For in-
stance, quantitative data involve classes and numbers. Qualitative data (from observations
and interviews) can offer great insights due to the amount of information involved. When
researchers are working on an initial investigation, the case study is called “exploratory”,
whereas when they are testing existing theories the case is called “confirmatory” [ESSD08].

In this thesis, a case study was performed during our study on student’s perception
on lean principles (addressing RQ4), as well as on the application of the Challenged Based
Learning methodology in an entrepreneurship course focusing on teaching software startups
(addressing RQ2).

3.1.3 Survey

As the name suggests, survey research is the process of conducting research using
surveys that are sent to respondents by the researchers [Bab90]. The data collected from
this process is then analyzed in order to draw conclusions. Surveys are appropriate when
the focus of the research is on the “what”, “how”, or “why” of a given situation. In addition this
method also applies when it is not possible to control independent and dependent variables.

Data collection is usually done by one of these methods: phone, email, online form
or face-to-face. Each of these approaches give researches advantages as well as disad-
vantages. For instance, a face-to-face survey takes more time and it is harder to perform,
but give researchers more thorough data. On the other hand, online forms are easier to
distribute, but usually do not retrieve in-depth data.

Surveys are relatively inexpensive; a lot can be done online and almost for free. As
already mentioned, surveys are flexible since they can be done in a variety of ways. Finally,
since it is possible to run an anonymous survey, respondents can be more candid, bringing
valuable information to researchers.

51

In this research, a survey was performed in our study on student’s perception on
lean principles (addressing RQ4), as well as on our software startup education study (ad-
dressing RQ3).

3.1.4 Expert Panel

An expert panel is an exploratory study that aims at the strengths and weaknesses
of given method, process, model, practice, or technique [BHB+05]. It entails a group of
experts recognized in at least one of the fields addressed by the proposed research. Data
from this process helps to construct models or frameworks and to validate them [SC01].

The idea of using expert to evaluate a given process is very valuable, since experts
can help prevent requirement defects [BHB+05]. Moreover, due to their expertise in the field,
they can make wise and useful recommendations on why a given process is good or bad.
Even though experts might share different opinions on a given subject, conclusions and
recommendations are usually drawn by consensus.

The value of expert knowledge is recognized by the capture expert judgment, the
ability of experts to predict techniques to prevent requirement defects and in their analysis
of the accuracy of several methods of estimating project effort [BHB+05]. It reaches conclu-
sions and recommendations through consensus [Slo03].

In the context of this thesis, the expert panel was used to evaluate the initial pro-
posed framework for teaching software startup concepts to software engineering students.

3.2 Research Design

In this section, we depict the research design used in this thesis. Figure 3.1
presents the selected methods and the timeline for the execution of this study. The pro-
cess was inspired by a methodology proposed by Shull et al. [SCT01], and further extended
by Mafra et al. [MBT06]. In order to answers the main research questions of this work - How
can we teach software startup related concepts to software engineering students? - we pro-
posed a constructive approach. This process allows us to evaluate the effectiveness of a
given approach under realistic conditions by identifying strengths, as well as improvement
opportunities [SCT01].

Each step of the proposed methodology is organized as follows:

• Phase 1 - Exploratory: The first step consisted of executing four studies. The goal
of Phase 1 was to deepen our understanding on software startup related concepts, as
well as on how these concepts are taught to students. By identifying best practices

52

Figure 3.1 – Research methodology.

and improvements opportunities, it would be possible to develop a framework that can
help faculty deliver software startup concepts to students in a consistent manner. In
addition, we studied teaching methodologies in order to identify which one(s) is(are)
best suited for teaching software startups.

During this phase, a systematic mapping review on software startup education was
performed in order to identify how this topic is being reported in the literature. In order
to do so, we will follow the guidelines proposed by Petersen et al. [PFMM08] and by
Budgen et al. [BTBK08].

In addition, we ran three other experimental studies. The first one was a multi-method
study (two case-studies and a survey) aimed at understanding how students perceive
software startup concepts. The goal was to identify whether there was a gap between
theoretical and practical understanding of such topics.

The second experimental study was a survey on faculty that teaches software startup
to software engineering students. The goal was to collect best practices as well as
lessons learned.

Finally, the third experimental study was a case study on the application of the Chal-
lenged Based Learning methodology in an entrepreneurship course focusing on teach-
ing software startups. The goal was to understand how the methodology helps stu-
dents to grasp software startup concepts, as well as to retrieve aspects that could be
improved in order to better deliver value in a classroom environment.

53

These studies are presented and detailed in Chapters 4, 5, 6, and 7 respectively. Once
we found enough evidence in the literature and on the experimental studies described
above, an initial proposal of the framework was developed. The goal of this initial
proposal was to have a starting point for further discussions and analysis.

• Phase 2 - Initial Proposal: Based on the findings discovered in the previous phase,
an initial proposal named Challenge Based Startup Learning was developed in order
to be further evaluated. This initial proposal is detailed in Chapter 8;

• Phase 3 - Evaluation and Evolution: The third phase of this research included the
evaluation and evolution of the initial proposal. In order to do so, we conducted an
expert panel. This approach is a recognized way to perform an initial evaluation of
a proposal [SC01]. The reason for that is that an expert panel allows interviewers
to analyze the responses from interviewees in a less rigid way. In this sense, our
goal was to gather insights from experts regarding the framework, and also to look for
improvements opportunities. This study is presented in Chapter 9. At the end of this
process, we proposed a set of recommendations for software engineering programs
in Brazil to teach software startup concepts by using the Challenge Based Startup
Learning framework.

54

55

4. SYSTEMATIC MAPPING STUDY

The goal of this study was to identify the main academic contributions on software
engineering education in the software startup context. In order to do so, we perform a
systematic mapping study [BTBK08, PFMM08] aimed at:

• understanding the state-of-the-art research on software startup development educa-
tion for software engineering students;

• collecting best practices and methodologies used on software startup education for
software engineering students;

• identifying gaps for future studies.

From an initial set of 268 papers, we have identified 39 primary studies worth ana-
lyzing from 5 distinct scientific databases.

4.1 Systematic Mapping Review Research Methodology

The goal of this systematic mapping study is to determine and characterize the
state-of-the-art on software startup development education. In order to do so, we carried out
this systematic mapping following the recommendation of the most influential researchers
in this area [BTBK08, KBB11, PFMM08]. Figure 4.1, which was adapted from Petersen et
al. [PFMM08] presents the process undertaken to perform the systematic mapping study.
The remainder of this section depicts the planning of each step of this study.

Review Scope

Outcomes

Process Steps

Research Questions
Definition

All Papers Relevant Papers Classification
Scheme

Systematic Map

Data Extraction
and Mapping

Conduct Search Screening of
Papers

Keywording

Figure 4.1 – Systematic mapping process.

Research questions definition

This study addresses the following questions of this thesis:

56

• RQ1: What is the state-of-art in literature in regards to software startup education for
software engineering students?

• RQ2: Which tools, models, methodologies and frameworks are applied in a software
startup education context for software engineering students?

• RQ3: What are the reported best practices in regards to teaching software startup for
software engineering students?

RQ1 is a general research question, that will be explored by running the systematic
mapping study. The purpose of RQ2 is to understand if there are tools, models, methodolo-
gies and frameworks that are somehow new to the technology education context and that
have been used specifically to teach software startups processes. With RQ3 we intend to an-
alyze which teaching strategies and best practices are put in place. Since software startups
have the goal to solve real-world problems [Bla13], there is a possibility that non-traditional
teaching approaches could be used.

4.1.1 Data sources and search strategy

With regard to identifying the primary studies for this systematic mapping study,
we designed a search string following the guidelines proposed by Kitchenham and Char-
ters [KC07]. The search string is composed by the population, intervention and outcomes
expected. We omitted the comparison and the context structures since we were focusing
on a more exploratory research. The final search string used in this study is presented in
Table 4.1.

Population (Software Engineering OR Software Development)

AND

Intervention (Software Startup OR Startup OR Entrepreneurship)

AND

Outcome (Education OR Undergraduate OR Graduate OR

Teaching OR Educating OR Training)

Table 4.1 – Search string.

The search strategy is summarized in Table 4.2. The databases sources were
chosen based on the list proposed by Kitchenham and Charters [KC07]. Two databases
(Citeseer library and Inspec) were left out of this research due to difficulties in using these
platforms; results were not matching the string search criteria at all. In addition, Google

57

Scholar was also used, but only to double check the results. In regards to the publication
period, we decided to begin in 1998 since this is the time in which the concept of software
startup, as defined by Ries [Rie11], started to be formed and studied.

Databases searched ACM Digital Library

IEEExplore

Scopus

El Compendex

Science@Direct

Selection Criteria available online

written in English

from 1998 to May 2018

in: Journals/Conferences/Workshops/Symposiums

4 pages minimum

Search applied to Title

Abstract

Keywords

Table 4.2 – Search strategy.

Moreover, we only included papers that were accepted in journals, conferences,
workshops and symposiums. Keynote presentations, extended abstracts and papers with
less than 4 pages were also excluded from the research criteria since they usually do not
present in-depth analysis. The focus was to identify papers that could present at least pre-
liminary studies on the research topic. After following all these steps, we came across 268
papers. Table 4.3 presents the number of publication retrieved from each database.

Database Papers

ACM Digital Library (http://dl.acm.org/) 58

IEEExplore (http://ieeexplore.ieee.org/) 56

Scopus (https://www.scopus.com/) 67

El Compendex (https://www.engineeringvillage.com/) 85

Science@Direct (http://www.sciencedirect.com/) 2

Total 268

Table 4.3 – Retrieved papers.

58

4.1.2 Screening of Papers

Once papers were retrieved from the databases, a spreadsheet was created in
order to organize the information for the screening process. Table 4.4 summarizes the basic
information collected from each of the 268 studies initially selected.

Information retrieved Explanation

Database ACM, Science@Direct, Scopus, IEEExplore, El Compen-
dex

Title Paper title

Year Year published

Authors List of all authors

Type of forum Journal, conference, workshop, symposium

Abstract Paper abstract

Keywords Paper keywords

Status 1 Duplicate

Status 2 Do not fit into the criteria

Status 3 Is relevant

Table 4.4 – Spreadsheet basic information.

The screening process started by excluding duplicates, which accounted for 76
items, leaving the spreadsheet with 192 papers. This was done by assigning the value “0”
(zero) on the Status 1 column in the corresponding row of the duplicates. After that, we
followed the exclusion criteria. This process eliminated 77 items, leaving the spreadsheet
with 115 papers. This was done by assigning the value “0” (zero) on the Status 2 column
in the corresponding row of those studies that did not fit into the criteria. Finally, in the last
step of the screening process, we read the title, abstract and keywords in order to verify if
the paper is relevant in regards to our research goal. This was done by assigning the value
“0” (zero) on the Status 3 column in the corresponding row of those papers we understand
were not relevant to answer the research goal. At the end, our screening process led to 39
primary studies to be fully analyzed.

4.1.3 Keywording

According to Petersen et al. [PFMM08], “keywording is a way to reduce the time
needed in developing the classification scheme and ensuring that the scheme takes the

59

existing studies into account”. This process is illustrated in Figure 4.2. This figure was
adapted from Petersen et al. [PFMM08]. It starts by reading abstracts of the primary studies
in order to look for keywords that identifies the main contribution area of the paper. The goal
is to create a set of categories in which papers can be combined. If meaningful keywords
cannot be found by reading the abstracts, researches may look for them in the introduction
and conclusion sections of the papers.

Abstract ArticleKeywording Classification

Scheme

Update

Scheme

Sort Article

into Scheme

Systematic

Map

Figure 4.2 – Classification scheme workflow.

It is important to point out that the classification scheme can evolve and change
during the systematic mapping process. As researches read the papers thoroughly, new
categories/classifications may appear and others might merge or disappear.

4.1.4 Data extraction and mapping

The data extraction and mapping was performed by using two tools: a spreadsheet,
and the software Mendeley1. Mendeley is an application that helps users manage papers
for research purpose.

In addition to the information mentioned in Table 4.4, we added the following infor-
mation to the spreadsheet:

• Focus Facet: the categories created during the classification scheme process;

• Contribution Facet: type of contribution. Based on a work from Shaw [Sha03], and
from Paternoster et al. [PGU+14];

• Research Method: method used on the research (case study, survey, etc.);

• Research Type: type of research (adapted from Wieringa et al. [WMMR06]);
1https://www.mendeley.com

60

• Paper Rank: a grade from 0 to 10, based on the work from Salleh et al. [SMG11].
Details on Table 4.5;

• Contribution: important take aways from the study.

4.1.5 Threats to Validity

There are several threats in this process that could invalidate the systematic map-
ping. If the search strategy is not done correctly, the retrieved papers may not account for
all studies that could answers the research questions. In addition, data extraction and paper
classification is also an important step that should be done carefully. Finally, it is important to
pay attention to researches’ bias. In order to mitigate these threats, we followed the recom-
mendations from Petersen et al. [PFMM08] during the whole systematic mapping process.

Aside from the systematic mapping process itself, we understand there are two
important threats that requires attention. The first is related to publication bias. We are more
likely to find papers reporting positive experiments regarding software startup education,
rather than failure ones. It is very difficult to mitigate this risk since we only have access to
published data, naturally. The second threat, and most important one, has to do with the
interdisciplinary aspect of software startups. Since this topic overlaps with entrepreneurial
education, this work could be missing relevant sources from the business area. Even though
we are aware of this issue, we are not considering studies from other research areas.

4.1.6 Classification Scheme

In this section we detail the classification scheme proposed for this systematic map-
ping. We have defined five categories: focus, contribution, research method, research type,
and paper rank.

The paper rank facet, based on the work of Salleh et al. [SMG11], is divided into 8
questions. The two questions directly related to RQ1 and RQ2 are worth 2 points. All other
questions are worth 1 point. If a given question is fully answered by reading a study, it gets
the total points for that question; if it is partially answered, it gets half of the points; if it is
inconclusive or if it does not answer the question, it gets zero points. Once a study is graded,
it falls into one of these three categories:

• High rank: 8 to 10 points;

• Medium rank: between 5 and 8 points;

• Low rank: 0 to 5 points.

61

Table 4.5, inspired by Paternoster et al. [PGU+14], presents the whole classification
scheme for this study.

Category Description

Research Method Facet

Case Study A report about an specific situation that has been studied [KPP95].

Empirical Study Study based on empirical evidence [PPV00].

Experimental Study A study in which an intervention is introduced to observe its effects [SHH+05].

Survey A process to collect data, analyze the information and report the results [PK01].

Research Type Facet

Evaluation Research Evaluation of a technique that was put into practice.

Experience Paper Personal experience of the author depicting how something has been done in practice.

Opinion Paper Personal opinion on whether a certain technique is good or bad.

Philosophical Paper New way of looking at an existing context.

Solution Proposal The proposition of a solution to a problem.

Validation Research New techniques being implemented in experiments, simulations or in practice.

Contribution Facet

Advice/Implication Recommendations based on personal opinions.

Framework/Method Framework/Method used to teach (or to learn) software engineering in a software startup context.

Guidelines Advices based on the research results.

Lessons Learned Actionable advices derived from the obtained research results.

Model Representation of a given context based on a conceptualized process.

Tool Tools used to teach (or to learn) software engineering in a software startup context.

Focus Facet

Teaching The focus is on classroom education strategies.

Real Projects Startup software development education is based on real-world project execution.

Multidiscipline Multidisciplinary activities are mentioned as key to startup software development education.

Environment The paper focuses on the environmental issues that affect startup software development education.

Paper Rank Facet

References Is the study well referred? (1 point)

Paper Goal Is the goal clearly stated? (1 point)

Sample Observation Data collection and sample strategy was carried out correctly? (1 point)

Method The analysis methodology was well applied? (1 point)

Clear Description Is the context of the study clearly described? (1 point)

Findings Are findings credible? (1 point)

RQ2 Does the paper answer RQ2? (2 points)

RQ3 Does the paper answer RQ3? (2 points)

Table 4.5 – Classification scheme.

4.2 Results of the Systematic Mapping

The search process was carried out by following the process described in Fig-
ure 4.1. From an initial set of 268 papers identified through the search strategy, we have
come across 39 primary studies. The systematic map overview is presented in Table 4.6.

62

1st Author (year) Research method Research type Contribution Focus Paper Rank

Fagerholm (2017) [FHL+17] Experiment Experience Paper Lessons Learned Teaching 9.5

Génova (2016) [GG17] Empirical Study Philosophical Paper Model Teaching 9.5

Järvi (2015) [JTH15] Case Study Evaluation Research Lessons Learned Teaching 9.5

Schilling (2010) [SK10] Case Study Evaluation Research Guidelines Teaching 9.5

Adorjan (2017) [AM17] Survey Evaluation Research Lessons Learned Teaching 9.0

Buffardi (2017) [BRR17a] Experiment Evaluation Research Guidelines Multidiscipline 9.0

Izurieta (2016) [ITOGI16] Case Study Experience Paper Framework/Method Real Projects 9.0

Zaina (2015) [ZA15] Case Study Evaluation Research Framework/Method Teaching 9.0

Chesney (2014) [Che14] Case Study Evaluation Research Guidelines Real Projects 9.0

Currie (2011) [CDK11] Case Study Experience Paper Framework/Method Real Projects 9.0

Salas (2017) [Sal17] Survey Experience Paper Lessons Learned Teaching 8.5

de Lange (2016) [dLNKK16] Case Study Validation Research Framework/Method Environment 8.5

Zhang (2015) [Zha15] Experiment Solution Proposal Model Teaching 8.5

Daimi (2008) [DR08] Empirical Study Solution Proposal Guidelines Teaching 8.5

Joseph (2006) [Jos06] Case Study Evaluation Research Lessons Learned Multidiscipline 8.5

Boutell (2017) [BF17] Survey Evaluation Research Lessons Learned Real Projects 8.0

Devadiga (2017) [Dev17] Survey Experience Paper Guidelines Teaching 8.0

Ribeiro (2016) [RAF16] Case Study Experience Paper Lessons Learned Environment 8.0

Vitolo (2016) [VHB16] Experiment Evaluation Research Lessons Learned Multidiscipline 8.0

McMahon (2014) [McM14] Case Study Experience Paper Lessons Learned Teaching 8.0

Kaltenecker (2013) [KHH13] Empirical Study Philosophical Paper Lessons Learned Teaching 8.0

Chenoweth (2008) [Che08] Survey Experience Paper Guidelines Teaching 8.0

Buffardi (2017) [BRR17b] Case Study Solution Proposal Framework/Method Multidiscipline 7.5

Porter (2015) [PML+15] Case Study Solution Proposal Lessons Learned Multidiscipline 7.5

Nguyen-Duc (2016) [NDSA16] Case Study Evaluation Research Model Teaching 7.5

Bharadwaj (2014) [Bha14] Experiment Experience Paper Framework/Method Teaching 7.5

Breytenbach (2013) [BdVH13] Case Study Experience Paper Lessons Learned Environment 7.5

Ko (2017) [Ko17] Empirical Study Experience Paper Advice/Implication Environment 6.5

Heintz(2014) [HK14] Case Study Experience Paper Lessons Learned Teaching 6.5

Pauca (2012) [PG12] Case Study Solution Proposal Framework/Method Real Projects 6.5

Ford (2004) [FGW04] Case Study Experience Paper Lessons Learned Multidiscipline 6.5

Barbe (2010) [Bar10] Empirical Study Experience Paper Model Environment 6.5

Gross (2000) [Gro00] Survey Evaluation Research Lessons Learned Teaching 6.5

Q.-Sarmiento (2018) [QSEMD+18] Case Study Solution Proposal Model Teaching 6.0

Sun (2009) [SXT+09] Empirical Study Philosophical Paper Model Environment 5.0

Sarraipa (2016) [SFMJ+16] Case Study Solution Proposal Advice/Implication Environment 4.5

Engelsma (2014) [Eng14] Case Study Experience Paper Lessons Learned Real Projects 4.5

Rioja Del Rio (2014) [RMEDJ14] Empirical Study Opinion Paper Tool Teaching 4.5

Pauli (2008) [PLB08] Case Study Experience Paper Lessons Learned Real Projects 2.0

Table 4.6 – Systematic map overview.

Figure 4.3 presents the distribution of the primary studies according to the year
they were published. It is clear that the majority of the studies are recent. More than half of
the selected studies are from 2014 to May 2018. This result is somehow interesting, since
studies on software startup started almost 10 years earlier [PGU+14]. It could be a sign that
the interest for software startup education research has began not long ago.

In addition, the majority of the primary studies selected were published in confer-
ences (see Figure 4.4). Even though the quality of a paper is not directly related to the type
of forum it is published, the scientific community understands that studies published in jour-
nals tend to be more valuable than those in other forums. Only 5 out of the 39 studies in this
systematic mapping review were published in journals. By combining this information with

63

Figure 4.3 – Distribution of primary studies by year.

the data from Figure 4.3, we can see that, in fact, software startup education just started to
be explored by the scientific community.

Figure 4.4 – Distribution of primary studies by type of forum.

Finally, we followed the guidelines from Petersen et al. [PFMM08] and used bubble
plots to combine and compare the different facets that were defined in the classification
scheme. In these plots, the axis correspond to categories taken from the scheme. The size
of the bubble represents the number of primary studies in a given intersection. By doing so,
it becomes easier to visualize and to analyze the data.

Figure 4.5 presents the first of the three bubble plots designed for this study. It
combines the paper rank facet, with the research type facet and the focus facet. To begin
with, most studies were considered as medium and as high rank. In regards to the research

64

type facet, there is only one validation research paper. This could be an indication of a gap in
the software startup education context. The focus facet data indicates that most studies are
related to teaching related content. This fact does not come as a surprise; on the contrary,
it reveals that the results are aligned with the research questions proposed.

<= 5

Real
Projects

>= 8

Paper

Rank

Focus

Facet

Research

Type

Facet

5 > AND < 8

Environment Teaching MultidisciplineEvaluation
Research

Philosophical
Paper

Solution
Proposal

Opinion
Paper

Experience
Paper

Validation
Research

12 2

54 3

13

6

89

2.56%

1

2.56%

1

2.56%

1

2.56%

1

2.56%

1

2.56%

15.38%

20.51%23.08%

5.13%

2

5.13%

33.33%

7.69%

3

7.69%

3

7.69%

10.26%

4

10.26%

12.82%

5.13%

2

5.13%

2

5.13%

2

5.13%

2

5.13%

Figure 4.5 – Systematic map by paper rank, research type and focus.

In Figure 4.6 we show the bubble plot that combines the focus facet, with the re-
search type facet and the contribution facet. Regarding the contribution facet, most studies
derive lessons learned across all focus categories. On the research type facet, we see a
similar behavior when it comes to experience papers; there is at least one paper for each
focus facet that was categorized as experience paper.

Real
projects

Focus

Facet

Contribution

Facet

Research

Type

Facet

Environment

Teaching

Multidiscipline

Evaluation
Research

Philosophical
Paper

Solution
Proposal

Opinion
Paper

Experience
Paper

Validation
Research

Framework/
Method

Advice/
Implication

Guidelines Model Lessons
Learned

Tool

1

2.56%

1

2.56%

1

2.56%

1

2.56%

1

2.56%

1

2.56%

1

2.56%

1

2.56%

1

2.56%

1

2.56%

2

5.13%

2

5.13%

2

5.13%

2

5.13%

4

10.26%

4

10.26%

4

10.26%

4

10.26%

17.95%

3

7.69%

3

7.69%

4

10.26%

2

5.13%

2

5.13%

2

5.13%

1

2.56%

3

7.69%

3

7.69%

6

15.38%

7
8

20.51%

Figure 4.6 – Systematic map by focus, research type and contribution.

In our last bubble plot (Figure 4.7) we combined the contribution facet, with the
research method facet and the paper rank facet. The majority of the selected studies (54%)
are case studies. Nearly half of the case studies delivers lessons learned. It appears to
have an interesting opportunity to explore different research methods in order to evaluate
the research questions proposed in this paper. In addition, there is a clear gap on tools and
on advice/implication when it comes to the contribution facet.

65

Contribution

Facet

Paper

Rank

Facet

Research

Method

Facet Case
Study

Empirical
Study

Experiment Survey

Framework/
Method

Advice/
Implication

Guidelines

Model

Lessons
Learned

Tool
1

2.56%

1

2.56%

1

2.56%

1

2.56%

1

2.56%

1

2.56%
1

2.56%

1

2.56%

1

2.56%

1

2.56%

1

2.56%

5

12.82%

6

15.38%

6

15.38%

2

5.13%

2

5.13%

3

7.69%

4

10.26%

>= 85 > AND < 8<= 5

1

2.56%

3

7.69%

3

7.69%

2

5.13%

2

5.13%

2

5.13%

2

5.13%

10

25.64%

10

25.64%

4

10.26%

Figure 4.7 – Systematic map by contribution, research method and paper rank.

4.3 Research Questions Analysis

In this section we analyze the two research questions proposed for this study (RQ2
and RQ3). For each question we combined the information developed in Section 4.2 with
the insights and learnings from each of the 39 primary study selected.

4.3.1 RQ2. Which tools, models, methodologies and frameworks are applied in a soft-
ware startup education context for software engineering students?

The overview of this systematic mapping study detailed in Table 4.6, indicates that
there is one study [RMEDJ14] contributing with tools, six studies [Bar10, GG17, NDSA16,
QSEMD+18, SXT+09, Zha15] focusing on models, and seven studies [Bha14, BRR17b,
CDK11, dLNKK16, ITOGI16, PG12, ZA15] exploring methods and methodologies. By com-
bining and summarizing this information, the main contributions to the field are:

• Business Model Canvas: helps students define a vision for their business model. It is
specially useful when dealing with technology students, since the canvas goes beyond
the product and also focus on the market;

66

• Customer Development Process: proposed by Blank and Dorf [BD12], this model helps
students take actionable steps in order to validate business hypothesis;

• Design Thinking: very useful during the ideation phase, but it is also used further in
the process when creative solutions need to be developed;

• Agile: when students start coding, agile is the preferred software development ap-
proach. This is no surprise since the software development process should be flexible
due to the characteristics of a startup.

In regards to tools, Rioja Del Rio et al. [RMEDJ14] suggests the use of the Busi-
ness Model Canvas (BMC) [OP10] combined with software startup projects developed in
the classroom. The argument is that the BMC gives students the opportunity to analyze all
aspects of a business model, and not only the software itself. The BMC entails the value
proposition of the business, the customer segment, the channels to reach customers, the re-
lationships established with customers, key resources, key activities, key partners, revenue
streams and cost structure.

The studies that presented models that are applied in software startup education
revealed interesting insights. Génova and González [GG17] claim that there are three stages
in a complete engineering education process: instruction (traditional education environment,
with exams and projects), training (when students receive a problem and choose the mean
to solve it) and mentoring (when students are able to self-propose their own objectives).
The authors postulate that “education is incomplete if the third stage is not reached”. From
an education institution perspective, there are several challenges to achieve the third stage.
For instance, if students self-propose their goals and objective, how can it be evaluated
fairly? Furthermore, the authors question if it is possible to actually teach creativity and self-
determination. In sum, this study presents a gap in the software engineering educational
process and it clearly states that if software engineering schools do not offer opportunities
for students to achieve the third stage, they will not become real engineers; they will be
producing “programmed machines”. From a startup education perspective, achieving the
third stage is crucial. Otherwise educational institution will be mostly graduating workers
rather than entrepreneurs.

Zhang [Zha15] proposes a model that combines technology, business and environ-
ment. The argument is that technical and business knowledge forms the foundation for the
software startup learning process. However, the environment plays a key role in this pro-
cess. There are several resources that students usually are unaware of, such as networking
events, mentoring, funding resources and incubators. By putting all these components to-
gether, students have the opportunity to experience the creation and the development of a
startup within a meaningful context. However, this is not easy to achieve in practice and
some tradeoffs need to be observed. One instructor alone usually cannot deliver all the con-
tent. There is a need of at least two instructors (one for the business and the other for the

67

technical lectures). This means that two different schools (the business school and the IT
school) should coordinate activities and efforts. In regards to content, faculty should be care-
ful not to deliver materials that would be uninteresting for a groups of students, i.e., going
deep on coding in a classroom full of business students. Going further, faculty should im-
plement strategies to manage conflict that may arise due to students’ different backgrounds.
Another important factor that should be taken into account is whether the course is full-time
or part-time. Teaching students that work during the day and study at night is completely
different than teaching students that are 100% focused on their studies.

The model proposed by Barbe [Bar10] intends to connect all aspects of a startup
process creation and development. It goes from the basic technical knowledge all the way
to business acceleration and funding. The reasoning for creating this model was that busi-
nesses can be created by technical founders. However, if they lack business and soft skills,
they will either fail or will need to hire people with these skills. Therefore, in this context,
students not only learn the technical foundations for developing a software startup, but they
are also exposed to the whole startup development process.

Zaina and Álvaro [ZA15] propose a methodology that combines user-centered de-
sign [RC08] and Lean Startup [Rie11] in order to foster innovation and entrepreneurial be-
havior in a software engineering course. The authors argue that computer related courses
usually focus only on technical issues, and it does not encourage students to be creative,
innovative, and to open businesses. Two case studies were conducted in order to verify
the effectiveness of the methodology. Results indicate that students not only learned impor-
tant business concepts, but also perceived the importance of understanding real customers’
needs.

Buffardi et al. [BRR17b] argue that it is very hard to emulate real world projects
in an academic setting. When students work with “toy” projects, they might learn techni-
cal content, but they will not experience real customer pressure, competition, and other
“real life” situations. The study also presents an interesting information (from Nurkkala and
Brandle [NB11]) regarding the gaps between software engineering students’ and industrial
software engineers’ experiences. They are sixfold: (i) real product versus a project; (ii) long
duration versus short duration; (iii) low turnover versus high turnover; (iv) high complexity
versus low complexity; (v) needs maintenance versus no maintenance; and (vi) real cus-
tomers versus no customers.

Therefore, a methodology was proposed in order to minimize these gaps. The idea
was to promote collaboration between software engineering and entrepreneurship students
(who would act as customers). Even though software engineering students reported that
the experience was relevant to them, the whole process just mimics a real project context.
It is not ideal, but it gives students a good perception about what it takes to develop a real
startup. In this kind of situations, instructors need to evaluate the trade-offs. Depending on
the characteristics of the course, it may be too difficult to address real projects.

68

In Pauca and Guy [PG12], the difference between working in a academic setting
versus developing a real project is also highlighted. Software projects developed in class-
room are usually trivial, uninteresting or not meaningful to students, according to the authors.
When students work with real challenges and problems that can affect society, the engage-
ment goes up significantly. This concept was labeled socially relevant computing [BNS08].
Hence, the methodology consists of combining mobile application development, agile meth-
ods for project management [SB01], and social relevant projects. Results from a case study
indicate that this approach can foster the creation of software startups since several students
continued to work on their projects as a business after the end of the course.

Discussion. In sum, there is no single approach to address software startup edu-
cation. Several strategies have being used in order to teach software startup. Some of them
are focused on encouraging creativity, big-picture thinking, and critical thinking, while others
focus on method, attention to detail, and in-depth analysis. Since courses have a limited
amount of time, faculty need to evaluate the trade-offs associated with each approach.

4.3.2 RQ3. What are the reported best practices in regards to teaching software startup
for software engineering students?

We have extracted several practices and lessons learned from the 39 primary stud-
ies. In the remainder of this section we discuss them according to the focus facet of the
classification schema.

Teaching. From a teaching perspective, several insights and best practices were
found. Several authors argue that software startup courses should not have explicit learning
goals nor exams. The learning happens as students go through the process (for instance,
talking to customers, working in teams, or building an MVP). In this sense, a flipped class-
room approach is ideal. Traditional lectures should be used only to deliver basic concepts.
Thus, the journey is more important than the endpoint; the goal of the course should be the
experience of the software startup development process, and not just a single deliverable at
the end.

Students are generally evaluated by writing personal and team reports as well as
by presenting the progress of their projects. Therefore it is important to document every step
of the process, from ideation to the final deliverable/presentation. If the class is taught by
multiple instructors, it is important to establish consistency regarding grading. Prior to the
beginning of the course, faculty needs to agree upon assessment instruments and rules.

Regarding teams, four or five members is ideal according to our research. Working
with more than five people requires a lot of coordination, whereas having less than four
members could result in a poor team composition. Teams should always choose a leader,

69

who will act as a “team liaison”. Instructors should set up a time to meet with each team
individually on a regular basis. The goal is to receive general advice as well as to verify if
the method is being followed. It is important to point out that this is not a rule; depending on
the project configuration and on the maturity of the team, it is definitely possible to work with
more than five people.

Moreover, teams should present their progress to the whole class several times
during the semester. By doing so, they can receive and give feedback to each other. Addi-
tionally, this approach helps students developing their oral communication skills.

When it come to software development tools and processes, some authors suggest
that students should use the same project portals, repositories and software development
language. From the faculty point of view, it is very hard to help teams if each of them is
using different technologies. Another advantage is that students may help each other if
technology is the same across projects. The problem with this approach is that not always a
single programming language fits well into all projects; in the real world, people choose the
programming language that makes more sense to the context of their application.

Finally, product development is different from innovation development. The former
is straight forward, while the latter is chaotic. In order to add structure to the innovation
process, tools, such as the Business Model Canvas and methodologies, such as Customer
Development and Design Thinking must be introduced. For the project management pro-
cess, agile was the most recommended approach.

Real Projects. Customer and problem should never be given students. They need
to explore these issues through interviews or other research methods. Otherwise learning is
limited to software engineering, project management and teamwork. It is possible, however,
to connect students to the industry to look for problems worth solving. This approach not
only gives students the opportunity to connect with corporate executives and managers, but
it also helps in finding real problems. Anyway, it is always important to leave the floor open
for students to define their own projects; students should only pick an industry problem if it
is exciting enough for the team to work on.

Multidiscipline. Opportunities should aim at cross-discipline collaboration. Soft-
ware engineering/computer science courses and business courses should be combined
and taught together in the same classroom by two or more instructors. Even though this
approach requires coordination among faculty since class planning and execution is time-
consuming, it is a great opportunity to mix up students with different skills in order to work
in multidisciplinary projects. In this situations, faculty should not allow teams with only one
skill set. Teams must have software engineering as well as business skills across members.
There is a lot of learning when students with different backgrounds share experiences among
themselves. Additionally, faculty must be aware that managing students from different back-
grounds require patience and ability to solve conflicts. It is recommended to set the ground

70

rules at the beginning of the course. Moreover, teams should also develop self-governance
guidelines that address how they will make decisions and resolve conflicts.

Environment. When possible, faculty should create opportunities for external vali-
dations. If students fail in finding customers, faculty should look for partners (such as corpo-
rate executives, or startup founders) to give feedback to students. It is not ideal, but at least
student have the opportunity to discuss their projects with an experienced person. Usually
these partners can be found within the university ecosystem (such as in a technology park),
and they can also serve as mentors and advisors.

Discussion. It is very difficult to provide a realistic setting for students in the con-
text of software startup development. It often comes at the expense of practices, processes,
and goals. Even when connections with real world problems and people are made, in several
cases students do not continue working on the projects once the course is over. However,
successful cases were reported. Some projects actually end up being embraced by univer-
sity incubators. However, this only happened when there was a formal and close connection
between the course and the ecosystem.

Another important take away is related to courses ordering and organization. Heintz
and Klein [HK14] suggest that software engineering courses should begin by showing stu-
dents the “big picture”, rather than making them take foundational courses (such as Math)
early on. The argument is that students do not get engaged if they do not see the purpose
of a given content. Once students understand the whole process, there is a bigger chance
they will see value in the “traditional” courses they are taking.

4.4 Systematic Mapping Study Final Remarks

We conducted a systematic mapping study in order to identify and characterize the
main academic contributions on software engineering education in the context of software
startups. The goal was to understand which tools, frameworks, models, methodologies and
best practices are applied in this matter. After performing the research, we classified the
studies according to five facets: focus, contribution, research method, research type, and
paper rank. The focus facet revealed that studies fell into one of the following categories:
real projects, multidiscipline, environment, and teaching. This information is consistent with
data found in the literature [GPU+15, GUP+14, NDSA15, PGU+14]; a startup tries to solve
real world problems, it needs a multidisciplinary team to succeed, and the environment plays
a key role.

Our results indicate that research on software startup education is taken its first
steps. Most studies in the area are recent and the majority were published in conferences

71

and symposiums, and fewer in journals. This is clearly an indication that there is a lot more
to be explored.

In regards to RQ2 - Which tools, models, methodologies and frameworks are ap-
plied in a software startup education context for software engineering students? - we could
identify that there is no consensus regarding tools, models, methodologies and frameworks
for teaching software startups. We raise two hypothesis for this matter. The first one is re-
lated to adaptability and context. Depending on the focus of the course, a different strategy
and a different set of tools and methods are needed. The second hypothesis is that this
field is just starting to be explored by the scientific community. Therefore, there could be an
opportunity to design a single approach to be used in software startup education.

RQ3 - What are the reported best practices in regards to teaching software startup
for software engineering students? - brought interesting insights and take aways from soft-
ware startup teaching experiences. Even knowing that a startup addresses a real world
problem, offering this experience is challenging. The connection between the educational
setting and the university ecosystem, such as technology parks and incubators, seems to
minimize this gap.

In conclusion, this systematic mapping was a first attempt to better understand how
software startup is taught to software engineers in educational institutions. We understand
that several opportunities were created and can be explored from the findings we carried
out. We intend to examine the identified gaps in order to develop further research on the
proposed topic.

The experimental study described in this chapter was presented [CSPP18a] at
the 22nd International Conference on Evaluation and Assessment in Software Engineering
(EASE) in 2018.

72

73

5. STUDENTS’ PERCEPTION ON LEAN PRINCIPLES: A
MULTI-METHOD STUDY

As already mentioned in this document, some entrepreneurship courses teach
emerging methodologies for startup development like Lean Startup [Har15, Nob11, WKA16]
and Customer Development [CPF+17]. Fitzgerald and Stol [FS17] argue that these method-
ologies are consequence of the need of a closer integration between business needs and
development. However, despite of consisting interesting concepts and ideas, these method-
ologies can be difficult to comprehend and to apply in practice [BOBL13], which may hinder
software engineering students to grasp business skills by following the courses. To the best
of our knowledge, this is a problem that has not been investigated in the literature. Therefore,
this study focuses on the following research question:

• RQ4: What are the benefits and challenges of software engineering students learning
the Lean Startup approach?

To answer the research question presented, we performed a multi-method study
composed of two parts. Firstly, we studied two different teams of students learning by ap-
plying the Lean Startup methodology to develop a new product or service. A set of benefits
and challenges in the learning process perceived by the students were identified. Sec-
ondly, we conducted a survey to a group of students from a mobile application development
course that also taught Lean Startup and Customer Development concepts to further ex-
amine some specific challenges discovered in the case study. We analyzed data in both
parts using thematic analysis, a technique for identifying, analyzing and reporting patterns
(themes) in qualitative data [SCC98]. The results indicate that students understand the im-
portance of collaboration with other courses, such as business development and marketing,
and the importance of user involvement in development. However, they tend to simplify
concepts, trying to adapt them to what they are familiar with, sometimes losing the main
concepts behind the principles. This research protocol is depicted in Appendix A.

5.1 Students’ Perception on Lean Principles - Research Design

In order to answer our research question RQ4 - What are the benefits and chal-
lenges of software engineering students learning the Lean Startup approach? - we followed
a multi-method study design composed of two parts: (1) a multiple case study conducted in
two sites, and (2) a survey applied to software engineering students in a third site.

74

5.1.1 Data collection

The first part consisted of a multiple case study [Yin03] based on two cases within
different educational configurations:

Case A. Two students in the end of a software engineering course in a Brazilian
university employed Lean Startup and agile methodologies in their bachelor thesis project.
The group initially consisted of three students but after a few months one student dropped
out. The project consisted of building a website to inform students, professors and employ-
ees about events occurring in the university campus. It took approximately nine months.
Nonetheless, the effort was not equally distributed along the period.

Case B. Four students, one from a Masters and three from a Bachelor program in
software engineering from an Italian university participated in the optional Lean Entrepreneur-
ship course. The setup of the course was project-based, following a learning-by-doing style
(the course was described in a paper written by Wang et al. [WKA16]). Students developed
a project based on the business idea of their own: a platform to connect car owners keen to
rent their cars to possible renters when they were not using them. This course lasted four
months.

We collected data mainly in the end of each project. For Case A, students devel-
oped an undergraduate project thesis to be presented for evaluation that described all the
tools used as well as the project history. The team described the product development in
three iterations. Each iteration description had the following sections: building, diffusion,
metrics and learning. We also included the emails exchanged between the advisor and the
team. An initial set consisted of 150 emails had a team member as the sender or receiver. A
subject analysis revealed that 10 of them were not related to the project. Most of them were
about deadlines and meetings arrangements. We analyzed those related to the difficulties
encountered by team members.

For Case B, the course ended with a retrospective session conducted by the teacher
in which the group depicted the project history. During the retrospective, students were
asked to draw the journey during the course on an A0 paper sheet, using whatever format or
notion that they deemed appropriate. Then they were asked to explain the drawn diagram.
The retrospective session took more than one hour, and in the first nine minutes the team
discussed internally what to drew. We recorded, and later transcribed, all conversations and
discussions during the retrospective session.

The second part of this study consisted of a survey undertaken in a 2-year iOS ap-
plication development course in Brazil. The class was composed of 40 students with strong
software engineering background and 10 design students specialized in user experience for
mobile applications.

75

During the course, students conducted various software development projects,
classified as small tasks, nano and mini-challenges. At the end of the course, students
worked on a final software development project (a big-challenge activity) which had a six-
month duration. They always worked in groups (between three and six students) composed
of developers and at least one designer.

The survey was performed following the guidelines and best practices proposed
by Wohlin et al. [WRH+12]. Since this study focuses on software engineering students, we
did not apply the survey on the design students. Therefore, the survey was sent to 40
individuals.

All students that participated in this survey have already received lessons on Lean
Startup and Customer Development and have practiced and applied these concepts in var-
ious activities. The survey was intended to further explore the challenges identified in our
multiple case study. In order to do so, we decided to present a small scenario that asked
students how they could contribute to a project. The scenario is described as follows:

“An entrepreneur friend of yours comes to you with a project idea that he had not
yet implemented. He wants to create an app/system that connects elderly people with tech-
nology teachers. His idea is to help people to get into the digital world (learn how to use an
email, Facebook, Instagram, etc). At first, the business model would be to charge the elderly
for the class and keep a commission (between 5% and 10%) and pass the remaining to the
teacher. You like the idea and join the project. Before leaving, you received a task: describe,
in your opinion, what and how you can help. The idea is to present the next steps and (given
your expertise) how you are going to help this project.”

The idea behind this approach was to leave the floor open to students to develop
their thoughts freely; we believe that if we had mentioned explicitly that we were working on
a survey about Lean Startup/Customer Development, students would have been induced to
answer accordingly. Students were asked to write down their answers in a text editor and
send them to author of this document.

5.1.2 Data analysis

The data analysis conducted in both parts employed mainly thematic analysis, fol-
lowing the scheme proposed by Braun and Clarke [BC06]. Although suggested to psy-
chological studies, this approach has been commonly used in software engineering re-
search [CD11].

76

In the first part, we labeled relevant pieces of data and initial themes emerged.
The labeled excerpts were then grouped together. Through a comparison between them,
we made some improvements. In addition, we conducted a cross-case analysis to compare
the two cases related to their setup and results according to the themes identified in each
individual case. In the second part, we analyzed the survey responses under the themes
identified in the case studies.

5.2 Results Analysis

This section presents our results. The first subsection presents findings from the
multiple case study: a detailed description of each case and a cross-case analysis. The
second subsection displays the survey results.

Multiple-case study

Case A. In this case, students never mentioned a business model for their project.
Although Lean Startup can be useful to non-profit organizations, there was no concerns
about how to support the project financially. One possibility that students mentioned in
emails were that the project could substitute the pre-existent university events page. In this
sense, also in the emails, there was a concern from the advisor about why users should
switch to the new product. Regarding design and user experience, in the thesis, the text
mentioned that suggestions made during first iteration focused on design aspects and still in
the third iteration: “most of the critics [...] were related to the experience provided by the site
and that it was not attractive enough”. Finally, for marketing and distribution, the difficulties
were users acquisition and engagement. The first was present in each interaction descrip-
tion and they also wrote: “with the acquired learning, it was clear the importance of time
spent in marketing”. The latter was present in an email from one of team members: “en-
gagement: one of the challenges is to make the user to come back and give her interaction
ways that make her want to come back every week to see all the events”.

In the thesis, students made a conceptual error: they used the word “hypothesis” to
describe a list of features, such as “create an interface”. They confused hypothesis testing
with building incrementally. A possible explanation is that the Build-Measure-Learn cycle first
step is to formulate hypothesis, so they felt obligated to write a hypothesis while reporting
this interaction. Nevertheless, they followed a cyclical process as described in their thesis
(Figure 5.1).

It is interesting to show pieces of data where students highlight their learning: “that
demonstrated the importance of keeping development always in touch with the final user” or
“the importance that the client represents in the process”. Additionally, in their conclusions,

77

Building Diffusion Metrics Learning

Figure 5.1 – A schematic view of group A’s thesis.

they stated that: “not always the concept about a project or a product idea by developers
point of view is, in fact, a need to the target users”.

Case B. From a business perspective, the second group mentioned that the advisor
drew attention to the need of a specific insurance to make the product viable. Although such
insurance was fundamental to the product viability, the group had already started developing
software architecture. Regarding design and UX, they said that they still needed help to
understand “what the consumer wants”. They also mentioned that they were not able to
create an interesting logo that could enhance product adoption.

The tendency to follow a straight path is clear in the picture the second group drew
(Figure 5.2). Although classes in the course advocated the Build-Measure-Learn cycle from
the Lean Startup methodology [Rie11], the depicted flow still recalls the waterfall process.
The group also mentioned in the retrospective while discussing the insurance: “we started
the implementation of the website after the form. We didn’t think about it”. During the
retrospective, the team also made a conceptual error: when asked what an MVP was, they
replied: “MVP is just the minimum set of features we should put in our platform”. Instead,
according to Lean Startup, MVP is the minimum set of experiments one should run to test a
hypothesis.

As takeaways from the course, this group mentioned: “what the consumer wants is
more important than you implementing” and “if it does not put value to the market, there’s
no sense to making it”.

Cross-case analysis. Although students had similar team sizes and backgrounds,
they followed really different processes. The first group performed a cyclical process trying
to formulate hypothesis and to validate them, that is, following a Build-Measure-Learn cycle.
They also focused on customer feedback that comprehends a good part of the methodol-
ogy [GCRB15]. Meanwhile, the second group basically followed a straight plan (having the
idea, gathering requirements, designing and testing the idea, development, platform testing
and deployment), even after participating in classes about the Lean Startup methodology. In
software startups, Giardino et al. [GWA14] already saw this plan driven approach as waste
and a reason for startups’ failure. Meanwhile, Bosch et al. [BOBL13] argue that agile and
lean practices are better for early stage software startups.

A possible explanation is that in the first group, students was more engaged in
learning the methodology or really developing a viable product. Another possibility would be

78

Figure 5.2 – Flow draw by the second group.

that they are better students than the second group. Even if these hypotheses are correct,
an element should have been more important to guide a group: the advisor. For the second
group, the advisor had an important act telling them about the insurance issue. However,
students did not mention anything else about her performance. For the first group, the
advisor highlighting the importance of customer feedback and hypothesis testing, guiding
the students to focus on them. The second group mentioned another interesting point: “it’s
different from the other courses: you’re given [a task] and deliver [it]; that is, there’s no
market connection”.

There were, though, some similarities between the two cases. First, neither teams
worried about business issues: Case A students did not come up with a clear business
model and Case B students ignored concerns about insurance and continued developing
the technical solution. Of course, the academic environment may be the reason of such
insouciance about business. Second, both teams recognized the importance of validation
and customer feedback.

Thematic analysis identified 9 themes categorized in the two categories: Benefits
and Challenges, as described in Table 5.1.

79

Category Theme

Benefits

Business learning

Design learning

Feedback importance

Marketing learning

Success based on metrics

Team building learning

User experience learning

Challenges
Business perspective ignored

Conceptual errors

Table 5.1 – Themes found in first phase.

The benefits include students learning regarding different areas:

• Design: for instance, all suggestions in the first iteration of Case A concerned design
issues;

• Team building: like a student in Case B mentioned: “people from different back-
grounds can give different opinions” ;

• Marketing and distribution: as Case A thesis states: “with the acquired knowledge it
is clear the importance of time dedicated to distribution” ;

• Business: Case A thesis states: “not always the idea of determined project or idea
from the perspective of developers is, in fact, a necessity of targeted users”.

Besides that, several excerpts show the importance of user feedback during projects
development. For instance, in Case A’s students wrote: “Although the alerts page visits had
a peak after launching, the feature was abandoned by users, generating almost no visits.
This shows that possibly it wouldn’t be interest to invest in its development.”

The challenges comprise the avoidance to tackle business issues as mentioned
earlier, the tendency to follow a straight plan focusing on technical challenges and the dif-
ficulty to understand some concepts, like MVP. In this regard, in Case A, students used
hypothesis as a synonym of prototype. Besides that, team members from Case B defined
MVP as “just the minimum set of features we should put in our platform” instead of the
correct concept of validation.

80

5.2.1 Survey results

From the 40 students surveyed, 37 answered (92,5% response rate). In the large
majority (28 times), students focused on the validation of the idea, highlighting the busi-
ness learning the course enabled. In their answers, students generally described how they
would perform validation. The most common technique was interview, mentioned 11 times.
In a student words: “To interview the target audience and to understand what is its real
needs and difficulties.”. Other tools mentioned were prototype (6), concierge (2) and talk-
ing to close people, like relatives (2). However, several students (6) did not detail how they
would perform the validation they proposed. In summary, there is no learning cycle, in Lean
Startup terms, in this process. Even though some learning happens during validation, this
approach resembles a traditional software/business requirement process. These answers
also illustrate conceptual errors students made. Figure 5.3 summarizes this idea: students
understand validation as a step to get to the implementation, and not as a learning process.

Figure 5.3 – Students’ perceptions on validation.

As another example of conceptual errors, five respondents criticized the idea with-
out proposing to validate it. One student said that he would not participate in the project: “I
think the idea will not work, because doing an app to connect people that do not know how
to use technology will not be effective to reach them, because they will never succeed to use
this app without previous knowledge. The app will not reach its target audience. I suggest
to pivot the idea.”. It is understandable to have personal opinions about an idea. However,
the Lean Startup process makes it clear that one should look for facts, and not opinions.
This outcome showed us how personal opinions and beliefs have a significant influence on
startup projects.

81

Five times students focused on promote themselves to the fictional job and three of
them would not even test the idea. For instance, “I could contribute by developing the project,
helping with brainstorm dynamics, prototypes ideas, etc. I could also help to put the platform
website up, the meeting schedule service and an iOS app, organizing and managing the
team if necessary.”.

Three students highlighted the importance of listening to user feedback. One stu-
dent mentioned that “it is highly important, as soon as we develop some features, to test with
the audience in order to receive feedback so possible changes could be made”.

Marketing and distribution concerns were mentioned 3 times. For instance, one
student said: “Besides that, I would do ads in games that elderly people use to play [some
mobile games] and advertise the platform there”.

Students mentioned concerns about user experience 6 times. One student de-
scribed: “To facilitate the app user flow and to avoid that the user loses herself, I would leave
the minimum of options available in the screens. Besides that, I would put some gamification
elements to make the user experience more pleasant”.

5.3 Discussion

Our results suggest that a Lean Startup or Customer Development course indeed
makes software engineering students aware of business related concerns of a software
product like marketing. In our case studies, both groups tried to validate their business
assumptions about users, although to different levels of success. Moreover, Case A also
faced several issues about user interface and distribution. One reason that Team B have not
have confronted them may be the shorter period spent in the project. Students’ statements
about learning also corroborate this observation.

Nevertheless, students face difficulties to avoid a straight plan focusing on technical
challenges. They had already absorbed the plan-driven idea of “getting things done”. From
the first phase, two facts support this finding: from Case A, the observation that the group
tended to focus on developing the solution and, from Case B, the flow students drew. In the
second phase, such an issue happens when students described technical plans on what to
be done next, ignoring a validation stage. Even when they suggested a validation stage, they
do not think it in a cyclical manner: adding a validation as an initial stage to be performed
before implementation.

In addition, students still struggle to understand concepts such as MVP and vali-
dation, generally using them as synonyms of simpler and already known concepts: MVPs
as prototypes and validations as interviews. For example, students in Case B defined incor-
rectly an MVP as a product with a small set of features, ignoring the concept of business hy-

82

pothesis. In Case A, students wrongly used the term “hypothesis” to designate a prototype.
For validation, Case B students and many survey respondents described the employment of
interviews without further details.

Based on our findings, we suggest that software engineering students to be im-
mersed in the concept of software business and customer relationships earlier in their forma-
tion process. More practical courses with real users or customers could be a solution. Such
courses would be in line with the move from product to services seen in software products
where “companies must transition from working with planned releases with detailed require-
ment specifications to continuously experimenting with customers” [Bos16]. Since Case A’s
results were slightly better than Case B (students performed a cyclical process focused on
customer feedback), some indications could be gathered from Case A which suggest how
to improve students’ business capabilities. In this case, the advisor encouraged students to
work in cycles and real users interacted with the platform. The problems they had with im-
precise concepts and the lack of concern about the project’s business sustainability should
be the focus for improvement in the future courses.

5.3.1 Threats to validity

Runeson and Höst [RH08] describe a common scheme to assess threats to validity
when reporting a case study composed by four aspects: construct validity, internal validity,
external validity and reliability.

Construct validity reflects “to what extent the operational measures that are stud-
ied really represent what the researcher have in mind” [RH08]. The use of multiple informa-
tion sources for both case studies reduces this issue as suggested by Yin [Yin03].

Internal validity is related to causal relationships and represents the possibility
of other factors not taken into account also explain a consequence. Although this study is
exploratory, we used pieces of data to support each claim in data analysis and explored
alternative explanations like students drivers. Triangulation of data from different sources
within each case study also improved internal validity [LSS05]. Another threat was that one
of the researchers was the first group mentor; it could have biased the data analysis. The
use of three student groups in three different scenarios in two countries improved external
validity.

The use of thematic analysis improved the reliability which goal is “to minimize
errors and biases in the study”, that is, if another researcher performs the same study in the
future, she reaches the same results [Yin03]. Besides that, this study describes all steps
performed in data collection and analysis.

83

5.4 Students’ Perception on Lean Principles Final Remarks

This study focused on the challenges and benefits of startup methodologies courses
for software engineering students. We performed a multiple-case study and a survey with
students in three different contexts from two countries. Our results indicate that students
understood the importance of business concepts and developed several soft skills, but
still struggle to understand key aspects of the Lean Startup methodology, usually over-
simplifying them, and experience a tendency to follow a straight path focused on technical
success.

Based on the difficulties found, we proposed some insights that could be used to
create or improve business and innovation related courses taught to computer science and
similar areas. Lecturers should be concerned with important concepts, like MVP and valida-
tion, and perform a deeper inspection to check students’ understanding of these concepts.
They should also organize their practical courses to encourage students to follow a cyclical
path avoiding the tendency to pursue a straight path.

Our results stimulate further studies on introducing business and innovation educa-
tion into software engineering courses. For instance, it would be interesting to verify whether
introducing these concepts in the beginning of the course, when students are less biased,
could bring better learning results.

The experimental study described in this chapter was presented at the 50th ACM
Technical Symposium on Computer Science Education (SIGCSE) in 2019 [MCW+19].

84

85

6. SURVEY ON SOFTWARE STARTUP EDUCATION

The goal of this experiment is to understand how software startup is taught by
lecturers/professor across the world. So far, we do not know how courses are carried out
aside from papers describing individual experiences. Therefore, this study focused on un-
derstanding how software startup courses are taught in universities, specially in regards to
the multidisciplinary context of a software startup. In regards to the purpose of this thesis,
this study focuses on the following research question:

• RQ3: What are the reported best practices in regards to teaching software startup for
software engineering students?

6.1 Survey on Software Startup Education - Research Method

In order to study the current state of practice of software startup education in uni-
versities, we devised a qualitative, largely open-ended survey. The goal of the survey was to
understand in detail how software startups are currently taught in universities world-wide. In
creating the survey, papers discussing software startup courses in universities, alongside our
own teaching experiences in the same area, were used to ensure that the questions covered
all aspects of such courses, ranging from duration to group size where applicable. Though
some questions were given multiple choice answer options, most of the survey consisted of
open-ended questions. Open-ended questions were utilized to gather data as rich as possi-
ble with a survey while still consuming less resources from the responder than a qualitative
interview would have. Similarly, a survey was selected as the method of data collection over
interviews due to the nature of the phenomenon being studied. Though interviews would no
doubt have achieved the same goal, we considered the resource-intensiveness of interviews
to be a problem when interviewing other scholars. Furthermore, university education as an
area of study and course-based university teaching is a well-understood phenomenon that
can arguably be comprehensively covered with pre-determined questions.

The survey contained questions about both the course and the teacher(s). Aside
from the way software startups are being taught, we were also interested in understanding
which disciplines were concerned with them the most. In addition to focusing on teaching
methods, the questions also covered the basic course information: course length, course
name, which discipline the course is a part of, whether the course is mandatory or optional
and other such generic university course information. Aside from asking how the course is
held, we also aimed to find out some of the reasoning behind the choices by asking some
why-based questions. The survey protocol can be found in Appendix B.

86

The survey was sent out to individuals involved in teaching software startups in
universities. Aside from contacting such individuals we knew beforehand, we searched for
such courses online and contacted the teachers.

6.2 Results

In this section we present the results based on the 15 responses gathered during
this process. Table 6.1 presents the countries involved as well as the number of instruc-
tors per country. Perhaps due to the nature of software startups, all of the responses have
described courses either involving a high degree of practical work or focusing entirely on
practical project work on a hypothetical or real software startup. As software startups op-
erate under a lack of resources, have little to no operating history, and typically consist of
inexperienced (developers or otherwise) individuals [UAW+16], it is indeed possible and even
rather simple to replicate or simulate experience in a university course setting, just as it is
possible to have the students attempt to found a real-world software startup in the process.
Indeed, all courses were described to be practice-oriented courses involving teamwork.

Table 6.1 – Instructors per country.
Country # of instructors

Brazil 3
Germany 2

USA 2
Denmark 1
Finland 2

Italy 2
Netherlands 1

Slovakia 1
Sweden 1

We also asked instructors if they had previously worked on a startup. This infor-
mation is somewhat important since this experience can bring more value to the classroom.
Roughly half of them (7 out of 15) had already experienced the creation of a startup.

In regards to the multidisciplinary context of software startups, these organizations
are software companies operating in terms of academic disciplines, in an area combining
business and information technology. This was also reflected in the responses. Twelve of
the fifteen courses were open to either a combination of IT and business students, or all
students regardless of their major. Furthermore, all of the courses described in the sur-
veys involved team-based work between students, and largely encouraged multidisciplinary
teams including both business and IT students, as well as others if applicable. Student team

87

sizes in the courses were varied but the common consensus was that at least three students
would ideally be in a team as “2 is not a team, it is a pair”, as one of the responses remarked.
Conversely, five students per team was generally considered to be a soft upper limit, with
multiple responses arguing that more than five students in a team would be likely to create
problems in work distribution among the team.

Whereas all of the courses involved practical work, the nature of it was varied be-
tween responses. Some courses were more focused on software engineering with a sec-
ondary focus on the entrepreneurship aspect, whereas other courses were more focused
on the entrepreneurship and innovation aspect with a secondary, if any, focus on practical
software engineering. In two cases, the student teams would work on external commissions
from real-world customers, although the trend seemed to be that the students were expected
to develop their own ideas. These ideas, then, were worked on during the courses, and while
they were never required to become real software startups, the students were typically en-
couraged to do so. In some cases, the students had indeed gone on to create successful
real-world startups based on their ideas from the courses. As we can see in Figure 6.1, only
3 of the 15 courses have spawned successful real world startups.

Figure 6.1 – Courses that have spawned real startups.

A clear line between a mock-up startup and a real startup in the courses described
in the responses was not generally drawn. Even though the startups were not all intended to
be real-world startups, or to become ones at a later point in time, all teams were expected to
validate their ideas in some way, verifying that they would satisfy a real need. This typically
meant carrying out surveys and interviewing potential customers, or even creating actual
landing pages and social media profiles for the course startup. This was also the approach
used for other work on the startups: for instance, in one of the courses everyone would pitch
to real investors at a course end event, even if they had no plans of actually continuing to
work on the idea after the course. In this fashion, teams that wanted to create a real startup
based on the idea were free to do so without needing to take any actual steps, and the ones

88

that were there purely for educational purposes nonetheless created a mock-up startup as
if they had been working on a real one. Only one of the courses was described to be purely
educational. According to the data provided by this survey, we concluded that 10 of the
courses aimed at developing real startups (see Figure 6.2).

Figure 6.2 – Real X Toy Projects.

Past these similarities, however, the way the courses were carried out on the level
of smaller details was highly varied. For example, in terms of deliverables or gradable tasks,
some courses would require the students develop a working piece of software whereas other
courses would focus more on honing the idea and then pitching the idea as the final result of
the course. Figure 6.3 shows how many courses required that students develop a real piece
of software, whereas Figure 6.4 presents how many courses required hat students develop
a prototype. It is interesting to note that 4 courses do not required neither a real piece of
software nor a prototype to be developed.

Figure 6.3 – Courses requiring software to be developed.

89

In the cases where software development was to be carried out, agile methods,
mostly ScrumBut, were typically followed, but on the other hand programming language and
platform were typically not pre-determined. Seeing as the idea being carried out largely
determines how it could (or should) be done, this is understandable unless the course is
more focused on teaching, for instance, mobile application programming for Android while
simultaneously teaching startup entrepreneurship. The way the students were supervised
during the course also highly depended on the required deliverables of the course.

Figure 6.4 – Courses requiring a prototype to be developed.

Though the courses focused on practical work, they featured weekly or otherwise
regular lectures. Aside from teaching relevant theories such as the Lean Startup Methodol-
ogy [Rie11], the lectures were typically used to support the practical work more closely as
well. Past the Lean Startup methodology, little consensus existed on which methods or the-
ories to teach. In fact, the learning goals for the courses were notably varied, which serves
to highlight the differences in the foci of the courses. Learning goals listed in the responses
included:

• Strategies to test out business hypotheses;

• Practical programming skills;

• Project management skills;

• Helping students discover which aspects of entrepreneurship they like the most per-
sonally;

• Innovative business practices;

• Being a startup practitioner;

• Agile software development methods;

90

• Team skills;

• Using practitioner tools such as GitHub;

• Entrepreneurship.

Based on the number of responses, we have outlined some of the general trends
in the way software startups are taught in universities. The more general trends in the way
software startups are taught can already be seen in the data in order to provide a tentative
answer to our research question. However, due to our sample size it is not realistic to draw
any further conclusion. The combination of this study with others from this thesis can help
us defining and proposing our framework.

6.3 Survey on Software Startup Education Final Remarks

To summarize our findings, the described courses focus on carrying out practical
work, either in the form of software engineering, creating a startup idea and developing it
further, or both. The courses generally involve creating a mock-up startup in student teams
and, at minimum, coming up with an idea and developing it into a business plan. No clear
line is usually drawn between mock-up startups and real startups in that the student teams
are expected to carry out the same tasks regardless of their own goal with their course
startup or startup idea. The courses often encourage students to create a real startup with
their idea but do not require them to do so.

In regard to the multidisciplinary nature of a software startup, some of the courses
focus primarily on one aspect of software startups such as software engineering and practi-
cal programming. These courses are typically only open to students of that subject such as
software engineering. However, most courses seem to either involve students from different
disciplines, typically from business and IT ones, in order to create multidisciplinary teams.
Such multidisciplinary courses seem to be more common than those focused aimed at only
students of software engineering, for instance.

Another important point is that startup-related concepts are seen as an integral
part of entrepreneurship by now. Notably, the courses were not necessarily referred to as
startup courses of any kind. In fact, only three out of the ten responses so far had the
construct startup in the course title. The course titles were more associated with innovation,
entrepreneurship, and software engineering practice.

Finally, it is very likely that courses described in academic papers present non-
conventional educational ideas rather than tried-and-true methods for teaching. There is
no reason to write a paper about a lecture-based course on software startups that ends in
an exam about a book and the course content. Thus, in contacting the authors of various

91

papers in relation to our survey, the data has become biased in this fashion. It is unlikely that
all or even most courses on software startups would be so focused on practice, even though
it would appear that the amount of practice-focused courses in the area could be higher than
usual.

The experimental study described in this chapter was presented [CKK+18] at the
Software-intensive Business Workshop on Start-ups, Platforms and Ecosystems (SiBW) in
2018.

92

93

7. TEACHING SOFTWARE STARTUPS USING CHALLENGE
BASED LEARNING: A CASE STUDY

The goal of this study is to apply Challenge Based Learning (CBL) in an under-
graduate entrepreneurship course which focuses on software startups in order to identify
strength and weaknesses of such methodology. By running this experiment we expect to
further understand how CBL could be adapted in order to address software startup related
concepts. The research protocol for this study is depicted in Appendix C. In regards to the
purpose of this thesis, this study focuses on the following research question:

• RQ2: Which tools, models, methodologies and frameworks are applied in a software
startup education context for software engineering students?

7.1 Methodology

The methodology was applied in an undergraduate software startup entrepreneur-
ship course with 30 students. Meetings were held twice a week for one hour and 40 minutes
for a period of four months. Table 7.1 summarizes the course schedule.

Figure 7.1 presents a graphical representation of the CBL methodology drawn by
one of the students in the class. It is important to point out that we have chosen CBL instead
of other active learning methodology because CBL focuses on real-world problems that are
connected to students. This is the context in which a startup is developed.

7.1.1 Step 1: Engage

In the first month, students defined the Big Idea and completed the engagement
stage. During this period, through lectures and activities, the CBL methodology was pre-
sented and students began the Engage phase. The identification and definition of the Big
Ideas started by students bringing several themes of interest to the classroom. In this way,
they could find common interests and formed teams according to those ideas. The result
of this process was the formation of five teams. Once Big Ideas and teams were defined
and formed, students explored their Essential Question in order to get to a Challenge to
be solved. At the end of this stage, students not only delivered their results, but they also
carried out the first reflection on their learning process.

94

Table 7.1 – Course schedule.
Phase Class Topic Goal

E
ng

ag
e

1, 2 Course introduction Present the course format, objetives and goals

3, 4
Introduction to the CBL
methodology

Understand the purpose of the CBL and explore its
phases (Engage, Investigate, and Act)

5, 6
Definition of Big Ideas
and Essential Questions

Brainstorm on Big Ideas; team formation; Big Idea and
Essential Questions definition

7, 8 Initial research
Challenge definition. Teams begin to organize their re-
search process. Guiding Questions, Activities, and Re-
sources definition

In
ve

st
ig

at
e 9, 10 Market research Teams should begin their field research according to

the guiding questions raised

11, 12 Field research analysis Data analysis; teams should evaluate their preliminary
results

13, 14 Planning and prototyping
Finalize investigation; define solution; begin working on
requirements for the given solution

A
ct

15, 16 Solution development I Prototype construction and development

17, 18 Solution development II Prototype construction and development

19, 20 Investments Understand the resources needed to develop the solu-
tion

21, 22 Solution evaluation Validate solution with potencial users and customers

23, 24 Pitch Understand the process of delivering an effective pitch
presentation

25, 26 Fundraising and Partner-
ships

Understand the process of raising capital for a startup

27, 28 Project Presentation Present the project to a group of investors

7.1.2 Step 2: Investigate

From the second month of the course, students carried out the research phase
by defining Guiding Questions, Activities and Resources. During this period, students con-
ducted a review of the literature on their topic in addition to working on a field research with
potential users of the product or service. Moreover, students were encouraged to validate
the relevance of their projects, as well as to make changes to their research project. Stu-
dents could even go back to the Engage phase in order to modify their challenge. At the end
of this stage, students delivered their research findings (as a report) and also their second
reflection on the learning process.

95

Figure 7.1 – CBL framework (Author: Course Instructor).

7.1.3 Step 3: Act

After the research phase, students developed their solution for the proposed chal-
lenge based on their research findings. During this stage, students evaluated and validated
their final project with potential users and customers in order to verify whether the solution
meet their needs. At the end of the semester, students presented the process they went
through as a pitch presentation. The deliverables of this stage were a report summarizing
the whole CBL process - from ideation to the final solution. In addition, the final reflection
was carried out in order to explore students’ learnings and also to verify whether the CBL
methodology was relevant to them.

96

7.2 Data Collection

Data was collected from students’ deliverables (reports and presentations) as well
as from reflections. Reflections were conducted on the following prompt: “what did you learn
the most in this phase? What did you struggle with? Is there anything that could be done
differently?”. Reflections were done individually and privately. This encouraged students
to be more open to share their thoughts. In addition to this information, at the end of the
course a questionnaire was applied so we could collect and explore more data regarding the
development of the projects. The results of this process is explored in Section 7.3. Finally,
we also collected a reflection from the teacher, so we could understand his perception not
only in regards to the CBL methodology, but also on students’ involvement and engagement.

7.3 Evaluation

We present in this section some research findings as well as the teacher and stu-
dents’ perception about the use of CBL in the classroom environment for startup develop-
ment.

7.3.1 Students’ Engagement

The first question we asked students was related to their engagement. The goal
was to understand how connected they were with class activities, project and also with their
peers. Figure 7.2 presents the results. As it can be observed, 25 out of the 30 students
reported to be highly engaged. This outcome is outstanding, since it is very rare to keep
students excited throughout the whole process.

Table 7.2 presents the most important attributes that motivated students in regards
to the whole course. This data was collected through an open-ended question. Students
could say as many attributes as they wanted. In total, we had collected 44 attributes. It is
important to point out that we grouped similar answers together according to their meanings
and contexts. As we can see in Table 7.2, self-interest was the most cited reason for stu-
dents’ motivation. In addition, we can observe the importance of being connected to the Big
Idea and to the team.

We also wanted to know the reasons why students were engaged to their projects.
Figure 7.3 presents the outcomes. Making a difference in people’s lives seems the be the
most important factor for students to work on their projects. It is interesting that none of them
pointed out the opportunity of making money. This seems to be a characteristic of the new

97

Figure 7.2 – Students’ engagement.

Table 7.2 – Attributes that motivate students.
times Attribute

10 Self-interest
6 Connection with the Big Idea
6 High involvement with the team
5 Team motivation
4 Good communication with the peers
3 Impact generation
3 Learning experience
2 Solution for you or people close to you
1 High number of users
1 Confidence
1 Recognition by the team
1 Startup development
1 Working in teams

generation; money will always be important, but being engaged and connected to a given
project is more relevant.

Teamwork was also a point of interest to us. Hence, we asked students about team
engagement. Twenty one students reported that all participants were equally involved in their
project’s activities and that they all collaborated to better find the solution to the proposed
challenge. Seven students understood that their teams were not as excited as they should
be, and only two students mentioned that teamwork was below expectation. It is interesting
to notice the different perceptions among students. Even though the majority of them were
comfortable with their peers, a few students felt that they could have done better than they
did.

98

Figure 7.3 – Reasons that engaged students in their project.

Another important aspect that we were interested in was how students were open
to new ideas and thoughts. Since CBL fosters and stimulates engagement, we wanted to
know how this process worked and how students felt about it. Almost all students (25 of
them) stated that their ideas and thoughts were heard and accepted by their peers. Four
students reported that their ideas were partially accepted by others, and only one student
had the perception that his ideas were never taken into account throughout the process.

In order to verify whether the three CBL phases (Engage, Investigate, and Act)
were important to students, we asked students if the framework helped them going further
into the process of creating their startups. All students agreed that CBL was important
specially because of the Engage phase. Defining an essential question and a challenge
helped teams understand their goals. Once the goal is clear, it is much easier to investigate
on it.

7.3.2 Students’ Difficulties

We also asked students about their difficulties and problems throughout the pro-
cess specially in regards to the development of a startup. We divided our question into two
moments. The first one was related to the Investigate phase (Figure 7.4) and the second
one to the Act phase (Figure 7.5).

It is clear that availability was a key problem during the investigation phase. We
have a few hypothesis that could be further analyzed. Since this is a software engineering
undergraduate course, maybe students are not very comfortable with doing actual research
(specially field research, when they have to talk to real users). This is not a common activity
for a software engineering student. Another possibility is that students were not able to
organize themselves to work on this activity.

99

Figure 7.4 – Difficulties during the Investigate phase.

Figure 7.5 – Difficulties during the Act phase.

In regard to the difficulties during the Act phase, the solution development was a
critical point. We further found out that students felts that they did not have enough time
during the semester to work on their solution. Some students even suggested that this
class should be two-semester long. In this way, they would have more time to develop their
solutions. Regardless of this perception, the professor stated that the students’ solutions
were appropriate for the scope of the course.

Finally, we wanted to understand how students dealt with when they needed to
pivot their idea. In the CBL context, a pivot means that the current step must the revisited,
or it is necessary to go back and redesign their previous step. For example, if a team is on
the investigation phase and they find out that the challenge is not worth solving, they need
to return to the Engage phase in order to adjust it according to their findings.

Figure 7.6 shows that only nine students understood the need to modify one or
more aspects of the project during the investigation phase. This means that they either had

100

to adapt their strategy during investigation or they had to go back to the Engage phase to
adjust their challenge.

Figure 7.6 – Percentage of students who pivoted during the investigate phase.

During the Act phase, however, more students felt the need to adjust part of the
process (see Figure 7.7). This happened probably due to the fact that when teams begin
working on their solutions, it becomes clearer whether or not they are closer to solve the
challenge. Therefore, more adjustments might be needed in order to nail on the solution.

Figure 7.7 – Percentage of students who pivoted during the act phase.

Regarding assessment, this course had no written exam. Students were evalu-
ated throughout the whole process by presenting their evolution on a weekly basis. This
accounted for 60% of their grades. The remaining 40% was related to the final pitch presen-
tation. It is important to point out this assessment configuration has nothing to do with the
CBL process. The goal of this approach is to focus on the journey and not only at the end
result.

101

7.3.3 Students’ and Teachers’ Perceptions

In addition to the questionnaire, students and faculty perceptions were also col-
lected through reflections. The purpose of this analysis was to identify positive and negative
aspects as well as improvement points in regards to the CBL methodology.

From faculty stand point the application of this methodology was very interesting,
because it brought to the classroom the construction of a business project based on a real
opportunity. According to the professor, the methodology allowed students to work on a
solution based on a consistent research process. Since students were connected to the
challenge they were trying to solve, the level of engagement grew as teams learned more
about the context their were working on. Even though teamwork is not a trivial process, by
focusing on users’ needs, team members were able to solve conflicts more easily, since they
were excited about delivering value to people they care about. A negative aspect would be
the lack of time to work on the Act phase. When students got the work on their solutions,
the semester was almost over. The professor suggested breaking down this course into two
semesters, so students could investigate in the first semester, and focus an entire semester
to work on their solutions.

In regards to the students’ perceptions on the CBL methodology, what called our
attention was the lack of engagement in the beginning of the semester. Most students
admitted that their focus was on passing the course. They were not concern about what
they would be learning. However, the Engage phase was key to change this perception.
Since students were working on something they cared about, engagement went up. One
student said: “I never like when teachers ask us to research on a given topic. However,
when it is something that I have an interest on, the game changes; it becomes more fun. I
did not even realized I was actually studying.”

One interesting aspect about the Investigate phase is that some students felt frus-
trated about their findings, since they could not validate their hypothesis and had to restruc-
ture their challenge. However, this was a big learning point: the process of developing a
business is cyclical. There is a need to iterate with customers and users in order to under-
stand exactly what they want. The professor helped students dealing with this frustration by
explaining that it would be way worse if they had build a whole solution that would be useless
to users. In fact, these students saved time.

Students also agreed that there was not too much time to work on the solution.
One team mentioned that they would continue working on the project after the course was
over. However, this was an important take away from this course: one semester might not
be enough to fully experience a software business creation.

102

7.4 Teaching Software Startups Using CBL Final Remarks

The use of CBL as a learning methodology for startups development have provided
many positive dimensions to students, including the possibility of collaborative work, the
reflection process for their learning process, the active searching for technical knowledge,
as well as the personal involvement to solve a real problem.

Unlike other learning methodologies e.g.: Problem or Project Based Learning, the
CBL foundations are characterized by the active and experiential learning, where students
can actively acquire knowledge through work on open-ended problems. The possibility and
flexibility of allowing students to choose their own projects and problems to be solved are
great differential that increase students’ engagement throughout the learning process.

During one semester students needed to define which problem and customer would
be tested in order to run a set of experiments and to validate whether their problem was
relevant for possible customers, collect customers’ feedback, and to develop a solution for
the problem, and test whether the business could gain traction. This process in a short
period time was one of the big challenges faced for those who want to create a startup,
specially for undergraduate students with no experience in dealing with real users.

Collecting information from real users is always a challenging and difficult task.
Many students have reported that interaction with users, as well as the constant discovery
of new requirements in the searching for the solution of the problem have created some
barriers to develop an efficient solution of the problem. One possible solution for this situation
could be the application of Lean Startup strategies into the methodology, where customer
interaction must occur in short cycles of time during the solution development, maximizing
the learning process and minimizing the risks of a useless solution.

The experimental study described in this chapter was presented at the XXXIII
Brazilian Symposium on Software Engineering (SBES) in 2019 [DSC+19].

103

8. INITIAL PROPOSAL - CHALLENGE BASED STARTUP
LEARNING

As mentioned in Section 2.3, the combination of CBL and Scrum was very effective
in regards to teaching students how to develop mobile applications from a technical point of
view. However, the framework fails to address the challenge from the point of view of the
people affected by it. Linus Torvalds, the creator of Linux, once said that “any program is only
as good as it is useful”. Thus, it is crucial that students begin the process with this mindset.
The goal of a startup, as already mentioned in this work, is to create a sustainable and
scalable business. Therefore, knowing how to build a mobile application (or any software
application for that matter) is not enough; the system has to be useful for a given group of
people.

In this sense, the proposed framework is a result of applying CBL, Lean Startup,
Customer Development and software development strategies, for two years in an undergrad-
uate digital entrepreneurship course. By doing so, learners not only have the opportunity to
develop the necessary technical skills, but they can also connect themselves with poten-
tial users/customers in order to gain real world experience. It is important to point out that
the main goal of this framework is not to teach how to develop a successful startup (even
though this would be great for students and the community), but to teach the software startup
development process.

Figure 8.1 presents the Challenge Based Startup Learning framework overview.
The process starts in the engage phase, where students define their big idea, essential
question and the challenge, using design thinking and brainstorming processes. This phase
is straightforward and it follows the regular CBL model. It is critical for students to build
engagement and excitement. If students are not really connected to the challenge, they
should revisit this step; any startup begins from a founder’s vision about an idea. If there is
not enough excitement about it, students may quickly abandon the project, as it happens in
real life [GUP+14].

Once this first step is completed, learners can move to the sprints phase. Sprint
length as well as the number of sprints should be defined according to the time and the
context of the course. In regards to the length, we suggest a minimum of two-week and a
maximum of four-week period. As it can be observed in the framework, each sprint combines
activities from the investigation and act phases. At the beginning of this process, naturally,
students need to focus more on investigating the proposed challenge as well as the potential
stakeholder affected by it. In order to do so, Customer Development and Lean Startup
strategies can be put in place. As students gather the necessary information and begin to
validate their hypothesis, they may plan further sprints focusing more on the execution (act
phase), i.e., delivering software. However, if students fail in this process and are not able

104

Figure 8.1 – Challenge Based Startup Learning framework.

to validate their assumptions, they should pivot [BD12] and remain in the same step until
information is validated. It is also possible to move back in the framework in case students
understand that more investigation is needed.

In the first sprint, we suggest running interviews in order to gather information re-
garding the challenge. The goal is to validate whether a group of people carry the same
problem. To begin with, potential users/customers need to be defined. Using the con-
cept of personas [Coo99] can help students achieve this task (other strategies to define
user/customers are also valid; this is just a suggestion). Once the persona is developed,
guiding questions and guiding activities are designed. The general rules for running inter-
views are [SRS13]:

• No leading question: asking “Do you prefer A or B?” may lead an interviewee to say A,
when in fact the person prefers C;

• Ask open-ended questions: interviewers may find interesting information when asking
for stories;

• No pitching: it is a moment about learning, not about selling;

• Ask questions about the past : people are awful at predicting the future. Past behavior
are best predictor of future behavior;

Even though it is not statistically relevant, talking to 20 people should be enough
to understand the process and to look for a pattern. If the problem is not validated or no

105

pattern is found, the team should pivot and redesign the interview process. Since we are
talking about a learning environment, it is not wrong to move forward in the framework even
if assumptions are not validated as long as both students and teachers are aware of this
situation.

For the next sprint, we suggest a value proposition testing. Developing a landing
page with a call to action process, structuring a social media page, or creating a video are
some of the strategies to be put in place. The goal is to learn whether potential users/customers
can be attracted, and if they are somehow interested in the value proposition proposed. A
big challenge in this step is to find the right channels to promote the action. Once more, if
students fail in this experiment, they should pivot and rethink about the strategy.

Creating and maintaining audience is defined as the next step. Designing a blog
or a social media channel are two great ways to do it. The goal is to create content that will
attract and engage potential users/customers. By succeeding in this step students will have
real people to test and to try out the proposed solution.

It is important to point out that all these Lean Startup and Customer Development
strategies can and should be continuously executed. For instance, if a blog is designed,
content should be created on a regular basis in order to keep people interested on the topic.

At this point, students should have enough information to create the first prototype
or the first version of the solution. Sprints should be organized in such a way that, at the end
of them, there is always something to show to potential users. Even if the solution presents
bugs or it is not ideally designed, it is better to collect users’ feedback as soon as possible
than waiting until the software is “perfect” [Rie11].

As it can be observed in the framework, reflections occur throughout the whole
process. At the end of each sprint, it is important to stop for a few moments to reflect over
the experience. This material should be used by teachers to improve the process as well as
to help students overcome problems and difficulties. This process is done by either recording
a video or by writing a small essay.

Lecturers must be aware that students might struggle in finding a topic to work
on. If that is the case, it is interesting to have a list of big ideas to present to students. In
addition, working with pivots can be risky due to time restrictions of a semester. If students
need to pivot in one of the proposed steps, we suggest two alternatives: (i) give students
more time to work on that step and reduce the time at the end of the semester for the solution
development; (ii) explain to students that they should have pivoted if this was a real project.
However, they need to move on to the next phase so they can experience the whole startup
creation process.

Regarding assessment, the focus is always on the process rather than the final
result. In other words, even if students fail in collecting enough responses from interviews,

106

for instance, they should be graded based on how well the interview was designed and
conducted, and not by the number of responses.

8.1 Framework Application and Preliminary Results

The proposed framework was applied in an undergraduate digital entrepreneurship
course that lasted one semester. Table 8.1 presents the schedule overview of the course. At
the end of each activity, students also deliver a reflection document. The semester started
by presenting the basic concepts (Challenge Based Learning, Lean Startup, Customer De-
velopment and Scrum). Right after this moment, the class was divided into five teams of
three to four students and groups began to work on their Big Ideas, Essential Question, and
Challenge. The result of this process is presented in Table 8.2.

Week Activity Deliverable

1 Basic concepts Exercises

2 Engage phase Big Idea, Essential Question, and Challenge

3–4 Sprints Interview results

5–6 Sprints Value proposition testing results

7–8 Sprints Content creation

9–12 Sprints Low-fidelity prototype

13–16 Sprints High-fidelity prototype

Table 8.1 – Schedule overview.

Once the challenge was defined, teams moved to the sprints phase. Sprint length
was set to two weeks so we could have seven sprints in total. In the first sprint, teams
designed their strategy to gather information through interviews and observations. Some
groups developed online surveys, while others decided to personally talk to potential users.
A key learning point was that even though online surveys can bring more data, personal
interviews bring more knowledge, since students can interact with people and go to different
directions depending on the answers they get. Even though all teams concluded that they
needed more data to support their findings, we decided to move to the next experiment so
they could learn and experience other techniques.

In the following sprint, teams were required to design a landing page presenting
their value proposition with a call to action process (all teams created a form to collect
information, such as name and email). Then, teams needed to announce and promote their
page in order to test acceptance. Results are presented in Table 8.3. The data in the table
shows the number of page views each project obtained and the correspondent conversion

107

Big Idea Essencial Question Challenge

Tourism What people look for when visiting an-
other country?

Deliver a great experience for people
visiting St. Barth.

Charity What makes people engage in charity
events?

Make donation easier for everyone.

Finance How does the use of cash impact the
life of students?

Make payments easier.

International Culture How does people interact when visiting
another country?

Make connections that matter.

Entertainment What people look for when going out? Deliver the best venue option accord-
ing to your taste.

Table 8.2 – Engage phase.

rate (percentage of people that filled out and submitted information through the form). All
teams were very disappointed with the results. However, the biggest learning happened
here; students realized it is not easy to get someone’s attention.

Big Idea Page Views Conversion

Tourism 422 2.4%

Charity 276 0.36%

Finance 312 2.6%

International Culture 188 1.6%

Entertainment 205 4.4%

Table 8.3 – Call to action results.

The next sprint was focused on content creation. Teams had to decide on devel-
oping either a blog or a Facebook page in order to develop a community around their idea.
Although this activity began in the third sprint, teams were asked to generate content until
the end of the semester.

The goal of the last four sprints was to develop a working version of the proposed
solution in order to collect feedback from users. The backlog for each project was organized
is such a way that by the end of the fifth sprint an MVP had to be available in production (a
low-fidelity prototype). Three teams (the tourism, the charity and entertainment ones) were
able to meet this deadline. The other two groups were only able to deliver their first version
of the project on the sixth sprint. Bad backlog management was the cause of such delay.
It was no coincidence that the groups that manage to deliver earlier were able to get real
users feedback and improved their solutions, while the other two groups did not have time to
do so.

108

8.2 Survey

In order to evaluate the framework, an individual survey was conducted at the end
of the Engage phase and after sprints one, two, three, five and seven. The main goal was
to verify whether students understood the process of creating a real startup. The sample
population was the total number of students in the class (18 students), and questions were
designed to cover students’ perceptions of the whole process as well as of each deliverable
(interview process, landing page, content creation, and the solution). Questions were asked
on a six–point Likert scale (totally disagree, disagree, somewhat disagree, somewhat agree,
agree, and totally agree). The choice for an even-numbered scale was to avoid neutral
positions. In addition, we also analyzed the data from students’ reflections. At the end of
each sprint students were asked to document their perceptions and thoughts.

In regards to the Engage phase, 83% of the students totally agreed and 17%
agreed that the CBL process helped them finding an engaging challenge to work on. From
a startup point of view, this is very important since founders need to share the same vision
and need to be equally engaged in the project.

After the first sprint, students were asked a question about the interview process
and another one about their motivation so far. In this case, 94% of the students totally agreed
that the interview process was very helpful in understanding people’s perception over a given
problem. Regarding their motivation, 55% agreed and 45% somewhat agreed that they were
satisfied and motivated with the results so far. Further analysis indicated that some students
were frustrated about the difficulties in getting responses. This point was later explored in
the classroom to show students how hard it is to grab people’s attention; and running a
startup is all about that.

The landing page development activity survey presented interesting results. All
students totally agreed that performing a value proposition testing was a great way to play
with conversions. Even though conversion rates were below their expectations, motivation
and engagement went up at the end of the third sprint.

Regarding content creation, one student somewhat disagreed, ten students some-
what agreed, and seven students agreed that this activity was helpful for the startup process
development. At this point, students could not see the value of creating a community (that
would be further testing and evaluating their systems).

At the end of the fifth sprint, as already mentioned, three teams managed to have
a working version of their proposed solution, while two teams could not meet the deadline.
Interestingly, 95% of students totally agreed and 5% agreed that having gone through a few
experiments before building the software gave them good insights and information to better
define the product backlog as well as to correctly prioritize tasks. All students were highly
engaged and motivated by the process.

109

Finally, the overall perception of the Challenge Based Startup Learning framework
was that it gave students a great experience on what it takes to run a real startup. All
students totally agreed on that statement. Besides, some students mentioned that it was
very engaging to work on projects that can really make a difference in people’s lives.

8.3 Challenge Based Startup Learning Final Remarks

In this chapter we presented the Challenge Based Startup Learning, a framework
that combines Challenge Based Learning, Lean Startup, Customer Development and soft-
ware development techniques. Our preliminary results indicate that the framework can help
students experience the process of creating a real startup.

This is the initial proposal of the framework. The intention is to introduce the first
insights and thoughts regarding our proposition. Further investigation and research still
needs to be done in order to test other variables. We are aware that there is not enough
data to support the validity of the framework yet.

The experimental study described in this chapter was presented [CSPP18b] at the
23rd Annual ACM Conference on Innovation and Technology in Computer Science Educa-
tion (ITICSE) in 2018.

110

111

9. EVALUATION AND EVOLUTION OF THE FRAMEWORK

In order to evaluate and analyze the proposed framework, we decided to run an
expert panel. According to Beecham et al. [BHB+05], an expert panel is as exploratory study
that focuses on analyzing a model, process, method, practice or technique in order to look
for strengths, weaknesses, and improvement points. Experts’ knowledge and experience
bring a lot of value since they can come up with new ideas and thoughts, and they can help
researchers avoiding taking the wrong directions [BHB+05].

The selected experts should have previous knowledge of some of the topics related
to the research under evaluation. The information gathered from these panels are useful
to evolve and to validate models [SC01]. Shepperd and Cartwright [SC01] also mention
that an expert panel is a recognized way of performing an initial evaluation of a model. In
addition, expert panels are appropriate when evaluating complex or technical contexts that
may require a very specific knowledge [Slo03].

The expert panel process was undertaking following the recommendations given
by Slocum [Slo03]. We have set three main goals for this research:

• Gather the view of experts about the current Challenge Based Startup Learning frame-
work [CSPP18b];

• Collect suggestions and improvement points for the framework; and

• Propose an evolution of the framework, based on the experts recommendations.

We have selected 14 experts to evaluate the current Challenge Based Startup
Learning framework. According to Beecham et al. [BHB+05], there is no problem work-
ing with a small sample of experts. The goal is not to find statistical explanations, but rather
to gain expert feedback on a given context. These experts were chosen due to their previous
experience working with Challenge Based Learning, and startups.

9.1 Interview Protocol

The interview was performed face-to-face with each of the experts. At the begin-
ning of each conversation the current model (as presented in Fig. 8.1) was presented and
described in details. The paper describing the model [CSPP18b] was also used in order to
present an example of a case study.

After the presentation, the following questions were asked for each of the experts:

1. Your location (city/country/institution);

112

2. Academic experience (in years);

3. Industry experience (in years);

4. Challenge Based Learning experience (in years);

5. Challenge Based Learning knowledge (0 - 5);

6. Lean Startup experience (in years);

7. Lean Startup knowledge (0 - 5);

8. Positive aspects of the proposed framework;

9. Negative aspects of the proposed framework;

10. Improvement opportunities;

11. Suggestions/comments.

The idea behind asking for the expert’s knowledge on Challenge Based Learning
and Lean Startup on a scale from 0 to 5 was to clearly differentiate experience from knowl-
edge. One may have studied Lean Startup for years, for instance, but may have never
applied the methodology in a real startup.

In addition, it is important to point out that all experts involved in this process had
at least one year of Challenge Based Learning experience. One might wonder how some-
one who had never seen Challenge Based Learning before would react to this framework.
However, we decided that, for this study, we would only take into consideration experts that
have worked with Challenge based Learning.

9.2 Experts Demographics

The details regarding the experts background and experience is presented in Ta-
ble 9.1. The labels presented in the table are depicted as follows:

• AE: Academic experience (in years):

• IE: Industry experience (in years);

• CBLE: Challenge Based Learning experience (in years);

• CBLK: Challenge Based Learning knowledge (scale from 0 to 5);

• LSE: Lean Startup experience (in years);

113

Table 9.1 – Experts’ background.
Country AE IE CBLE CBLK LSE LSK

Brazil 10 8 1 3 5 3

Brazil 2 3 2 4 3 4

Brazil 11 2 5 5 3 4

Brazil 12 10 2 4 3 4

Brazil 4 6 4 5 2 2

Brazil 5 4 5 4 2 3

Brazil 17 9 4 5 1 2

Brazil 1 8 1 4 3 4

Brazil 4 25 4 4 0 4

Brazil 16 15 5 5 0 1

Brazil 5 4 3 5 2 3

Indonesia 3 17 1 3 0 0

Italy 3 25 3 5 3 3

Italy 3 5 3 5 1 1

• LSK: Lean Startup knowledge (scale from 0 to 5).

There is a lot of diversity across all data presented in Table 9.1. The average
academic experience of the group is 7 years, although it varies from 1 to 17 years. When
it comes to industry experience, the average is 10 years. Regarding CBL experience, no
expert knew CBL for more than 5 years, indicating that it is fairly new concept to them. The
same happened to Lean Startup experience, although in this case three experts reported
having no experience working with this methodology.

9.3 Expert Panel Results

Following the interview protocol described in Section 9.1 we gathered positive and
negative aspects related to the proposed framework, as well as improvement opportunities
and other suggestions by using an open coding strategy. The following sections depict the
most relevant and important points related to each of these information.

114

9.3.1 Positive Aspects

To begin with, seven experts mentioned that it is interesting to see how all these
processes and methodologies can fit well together. When it comes to the development
of innovative projects using CBL, they could see how Lean Startup can really support the
process. Since most of the time students do not have experience working with startups, the
framework can give them a real feeling of what it takes to develop a startup. In sum, it is a
good attempt to build bridges across learning methods that have a lot in common.

Four experts focused their positive feedback on the interview process suggested by
the framework. They argued that this was a great idea, since software engineering students,
in general, do not have any experience interviewing other people. One of the experts says
“students go to the streets with no background about how to talk to people in order to pull,
and not to push information”. Another expert mentioned that “the framework reflects the
natural way to make validation. I liked the interviews”.

Regarding the build-measure-learn process, all experts emphasized that the frame-
work gives a lot of room for experimentation, failure and learning. Interestingly, this is exactly
what a startup is all about. In this sense, it seems the framework can help students under-
stand in practice the process a startup go through. One expert mentioned that the framework
“provides structure during the investigation/act phase, which is often blurry because CBL is
not explicitly tuned to designing a specific product or service”.

Finally, one expert pointed out that this framework can help instructors into motivat-
ing students to develop their own startups. Since it is easy to comprehend and to replicate,
the framework can also be used as a way to bring more students into the entrepreneurship
world.

9.3.2 Negative Aspects

One of the main issue that almost all experts pointed out as a negative aspect
is that, depending on the type of project students are working on, it may take time to run
experiments. In these situations, the framework should propose or suggest a way to avoid
this problem. In addition, if the course is too short (for instance, two months or less), the
framework might not work for the same reason: time constraints.

Six experts mentioned that the framework focuses more on agile development
(scrum) rather than on Lean Startup. By looking at Fig. 8.1, aside from the pivots, in fact
there is not any other reference to the Lean Startup methodology.

Regarding the reflections, a few experts did not quite understand its role throughout
process. Moreover, it was also not clear to them how much guidance is embedded in the

115

framework in terms of basic questions anyone should make. For instance, should students
come up with guiding questions and activities or this structure would be provided by the
instructor?

Half of the experts believed that there could be a risk working with this framework
when students do not have prior CBL, Scrum and Lean Startup knowledge. They argued
that either students should know them, or these concepts need to be presented and explored
in advance.

An interesting point that one expert mentioned is that the framework is limited to
four sprints. Even though this is actually not true (instructors can run as many sprints as
needed), the framework - as presented today - might lead to this conclusion.

9.3.3 Improvement Opportunities

Several experts mentioned that the framework should guide students into the pro-
cess. They agree that the proposed framework is a good start, but students might feel lost
when they actually need to work on the activities. Suggestions on this issue were related
to proposing at least a few guiding questions and activities for each sprint, but students can
and should come up with more questions and activities. However, the main ones (such as
“who is my customer?”) have to be explicitly presented.

In regards to the Engage phase, some experts asked how students get to a chal-
lenge. Even though this process is suppose to be similar to the “regular” CBL methodology,
experts suggested that tools and methods could be offered to help students into this pro-
cess. For instance, they could learn how to run a brainstorming session in order to come up
with as many ideas as possible, combine them and later agree upon a single one.

When it comes to Lean Startup processes and tools, experts suggested to explicitly
present which tools or methods could be used in each part of the process. For instance, if
students are validating a value proposition, the framework could suggest the use of a landing
page.

One interesting point that was raised by most experts was related to content cre-
ation. In the current framework, content creation is performed in one of the sprints. Experts
believed that this activity should begin as soon as possible and it should never stop. The
sooner students begin to create a relationship with an audience, the sooner they have a
chance to test out a hypothesis with real people.

Regarding pivoting, one expert observed that the framework does not allow pivoting
during the Engage phase. Students need to know that they can change a challenge, an
essential question, or even a big idea.

116

Even though the framework clearly shows that reflections happens throughout the
whole process, some experts pointed out that it would be better if there was an explicit
reflection moment after the end of each sprint. In this case, students would know that before
moving to the next sprint, they have to reflect on the work performed in the previous sprint.

Finally, there was an interesting discussion on defining key achievements or learn-
ing goals for each sprint. In other words, how students know they can move to the next
sprint? Is it a matter of hypothesis validation, achieving a set of milestones, or both?

9.3.4 Key Findings

After gathering all information from the expert panel, the authors analyzed the data
in order to agree upon the main take aways. The goal was to further propose changes and
improvements to the current Challenge Based Startup Learning framework.

We came across seven improvement points we believed that could be incorporated
or adapted to the current framework in order to better deliver value to students:

1. Make it clear that the framework is not limit to a given number of sprints. Even though
the framework depicted in Fig. 8.1 present the last sprint as “N”, indicating that there
can be more sprints, we understood this information can be more visible.

2. Guiding questions, activities and resources for each sprint (including the Engage phase)
should be provided by instructors. Students can and should come up with other guid-
ing questions and activities. However, it is important for them to have at least a few
essential questions already defined, specially because in most cases students do not
have any background on software startup development.

3. Lean Startup processes and tools could be explicit explored throughout the process.
As pointed out by the experts, the framework does not refer to any Lean Startup tool
or process aside from the pivoting.

4. Content creation can begin as soon as the challenge is defined. The idea is that
students will have more chances to interact with real users if they start connecting with
them as early as possible. In addition, this process should persevere until the end of
the project/course.

5. Allow pivoting during the Engage phase. In fact, it is possible to revisit the Engage
phase in the regular CBL methodology. The idea is to make it clear that students can
change their main assumptions.

117

6. Reflections should happen at the end of each sprint. After running any experiment, it
is a good idea to make students reflect on their work. By providing this opportunity at
the end of each sprint, students can reflect more often on their learning process.

7. Defined key achievements and/or goals for each sprint. It is important that students
know what is expected from them at the end of each sprint. By having clear goals
students can create a vision on the path they have to take.

It is worth mentioning that the order of these items is random; we did not intend to
prioritize them in any manner. The goal is to make changes in the framework in such a way
we can accommodate all seven aforementioned improvements.

9.4 Proposed Framework

The updated overview version of the Challenge Based Startup Learning framework
is presented in Fig. 9.1. We tried to translate most of the suggestions from the experts
directly into one image. However, we could find a way to include the details regarding guiding
questions, activities and resources, and sprint goals.

Figure 9.1 – Proposed Challenge Based Startup Learning framework.

Therefore, we decided to add extra layers to the framework in order to better guide
students into the process. It is important to mention that all the suggested guiding questions,
guiding activities, resources, and sprint goals are just a starting point; they were defined by
the authors based on their own experience and the guidelines proposed by Blank [Bla13].

118

However, students and instructors should add their own ideas according to the context of
the class and of the project being developed.

The first layer, presented in Fig. 9.2, entailed the Engage phase. The goal is to
define a big idea, an essential question and a challenge. In order to do so, it is crucial for
students to discuss their passions and the problems they want to solve.

Figure 9.2 – Engage phase.

Once students have the topic they will be working on as well as the challenge,
they can begin working on content creation (see Fig. 9.3). This is an ongoing process (see
Fig. 9.1), and students should be aware that the sooner they are able to generate content and
engage potential users/customers, the better the chances of having real people interacting
with them.

Fig. 9.4 entails examples of guiding questions, activities, and resources for the
interview sprint. Students should reflect at least on who their customer is, what problems
do they have, how they are dealing with these problems today, and where they can find
these customers. This is an important step when developing a startup since one of the
main reasons they fail, according to Steve Blank, is because founders focus on product
development rather than on Customer Development [Bla13].

When it comes to value proposition testing (see Fig. 9.5), students must focus on
the benefits they would like to deliver to their customers. Developing a landing page can be
an effective way to test it. In addition, students must be aware that it is important to measure
customers’ interest somehow. This measurement can be performed by asking them to fill
out a form or just by providing their emails. In fact, any kind of currency a customer provides
is a way to measure their interest.

119

Figure 9.3 – Content creation.

Figure 9.4 – Customer interview.

The prototyping sprint(s), depicted in Fig. 9.6, is the moment where students start
thinking about their solution. Since they already gathered a lot of information from running
interviews, testing their value proposition, and interacting with potencial customers (through
content creation), it is now time to develop prototypes in order to get more feedback from
customers. If there is enough time, it is interesting that students develop both a low fidelity

120

Figure 9.5 – Value proposition testing.

prototype as well as a high fidelity one. By doing so, students will have the opportunity to
experience the evolution of the prototype development process.

Figure 9.6 – Prototyping.

Finally, when there is an opportunity to actually develop a piece of software based
on all knowledge acquired during the process, students can move to the development sprints
(see Fig. 9.7). This is the moment where students can not only practice their software
development skills, but also their knowledge on software startup processes.

121

Figure 9.7 – Development.

It is important that instructors guide students into developing software based on
the learnings acquired during the previous sprints. As Ash Maurya mentioned in one of his
studies [Mau12], it is important to avoid the innovator’s bias for the solution. In other words,
students (and entrepreneurs) should fall in love with the problem, not the solution.

As a final remark, it is important to mention that all these phases (Engage, Content
Creation, Interview, Value Proposition Testing, Prototyping, and Development) are flexible in
terms of timeframe; they should all be adapted according to the course context. For instance,
if there is no pre-requisite for the course (for instance, programming), maybe instructors
should take away the development sprints. In other words, the Challenge Based Startup
Learning framework can be seen as building blocks.

Another important point is related to the reflections. As students move forward (or
even backwards) into the framework, it is vital that they stop for a moment to think through
their learning process. This is a key component of the CBL framework since it helps both
students and instructors into adjusting the process on the fly. Additionally, reflections deepen
the relationship among students as well as between students and instructors [NCT16].

9.5 Expert Panel Final Remarks and Recommendations for SE Programs

In this chapter we presented an evaluation and evolution of the Challenge Based
Startup Learning framework performed through an expert panel. The panel was formed by
14 people from different backgrounds and locations, and they all have previously worked

122

with the Challenge Based Learning methodology. The process was very interesting since it
resulted in great contribution for the future development of the framework.

It is worth mentioning that the framework should be adapted to the context of the
educational setting; instructors must be sensitive to the course objectives and goals and use
the framework accordingly. For instance, if the instructor would like to use the framework in
a software development course, it is important to give students the opportunity to code their
solution. On the other hand, if the course has no pre-requisite, it might be a good idea to
stop at the prototyping phase (since students may not be coders).

Additionally, when it comes to startup development it is important to embrace the
culture of failure and the “love for the problem” mindset. We believe that this framework can
help students into understanding that a software startup journey differs from other software
development contexts. There are several unknown variables that needed to be addressed
along the way in order to increase the chances of success.

In Section 2.3.1 we presented details on how the Brazilian Computer Association
suggests the implementation of the software engineering curriculum regarding entrepreneur-
ship [AZN+17]. Moreover, we analyzed 7 software engineering programs in Brazil in order
to verify how these guidelines were put into practice. We concluded that even though the
document provides great insights and guidance, it does not bring clear examples on how
universities can effectively implement those guidelines. After studying seven software en-
gineering programs we could observe and confirm that, in fact, there is no pattern when it
comes to providing entrepreneurship and software startups concepts to students.

In this context, we come up with a set of recommendations on how to implement the
proposed framework comprising the expected competencies software engineering students
must develop according to the software engineering curriculum regarding entrepreneur-
ship [AZN+17]:

1. Courses length: 4-credits (or 60 hours) is the minimum timeframe recommended.
Since students must go through the process of developing a real startup, they need
time not only to develop the experiments, but also to gather feedback from real users
or customers. Therefore, the more time they have to work on their projects, the greater
the experience becomes. In a 2-credit course students can go through the content, but
there is not enough time to practice the process.

2. Multidiscipline: Whenever possible, courses should be open to students from other
fields (such as business, marketing, and design). This brings more value to the pro-
cess, due to the multidisciplinary nature of software startups.

3. Identify business opportunities: By going through the Engage phase and the Investi-
gation phase (running customers interview, for instance) proposed by the framework,
students can not only comprehend the process of identification of business opportuni-
ties, but they can also apply this concept in practice. Thus, it is crucial that instructors

123

provide the opportunity for students to interact with real users so students can validate
(or invalidate) the opportunities they envisioned.

4. Create business models, transforming ideas into products or services: the use of tools
such as de Business Model Canvas [OP10] or the Lean Canvas [Mau12] help students
defining a vision for their business model. These tools are very useful when dealing
with technology students (such as software engineering students), since they goes
beyond the product and also focus on market aspects.

5. Plan innovative projects: Planning an innovative project (such as a startup) is about
learning. The Lean Startup process [Rie11] prescribes that all processes should be
geared to accelerate the feedback loop (Build-measure-learn). As it can be observed in
the proposed framework, every step is designed to go through these steps. If students
invalidate a given hypothesis of their business model, they must pivot in order to create
a new experiment. Moreover, after each sprint, students must reflect on their learning.
This step is extremely important since it gives students the opportunity to evaluate
whether they are absorbing the content.

6. Fundraising for innovative projects: Although the proposed framework does not specif-
ically touch on this topic, it is simple for instructors to cover this content in one class.
Topics that can be presented to students: angel investment, incubators and accelera-
tors, and crowdfunding.

7. Manage innovative businesses: the suggested approach is to combine the Customer
Development process [BD12] with agile methodologies. As already presented in the
proposed framework, it is important that students learn that both product and cus-
tomers must be developed in parallel. Content creation and value proposition testing
are examples of Customer Development approaches, whereas prototyping and the
product development itself are examples of product development approaches.

The experimental study described in this chapter was presented at the 10th Inter-
national Conference on Software Business (ICSOB) in 2019 [CSPP19].

124

125

10. CONCLUSIONS

This chapter concludes the research undertaken in this thesis and it also presents
directions for future work. In Section 10.1 we review the research objectives of this work.
Section 10.2 summarizes the contributions of this thesis. In Section 10.3 we presents sug-
gestions for future work. Finally, in Section 10.4 we list all publications that were published
or accepted for publication since the beginning of this research.

10.1 Review of Research Questions and Objectives

The primary research objective of this thesis was to develop a framework to help
faculty and the academic community to better deliver software startup content to software
engineering students. This goal was derived from the main research questions of this work:
How can we teach software startup related concepts to software engineering students?.

In order to answer the main research question of this study, we broke down this
objetive into the following questions:

• RQ1: What is the state-of-art in literature in regards to software startup education for
software engineering students?

• RQ2: Which tools, models, methodologies and frameworks are applied in a software
startup education context for software engineering students?

• RQ3: What are the reported best practices in regards to teaching software startup for
software engineering students?

• RQ4: What are the benefits and challenges of software engineering students learning
the Lean Startup approach?

Moreover, the following activities were proposed in order to answers the research
questions:

• Study software startup related concepts in order to understand them in depth;

• Conduct a systematic mapping study on software startup education for software engi-
neering students;

• Understand how software engineering students perceive software startup concepts;

• Understand how instructors around the world teach software startup to software engi-
neering students;

126

• Propose a framework/model to teach software startup to software engineering stu-
dents;

• Evaluate and refine the proposed framework;

• Propose an implementation of the framework in software engineering programs in
Brazil;

• Document and report results to the scientific community.

The literature review presented in Chapter 2 gave the author of this thesis the op-
portunity to study Software Startups, Lean Startup, Customer Development, as well as,
methodologies and approaches to better deliver entrepreneurial concepts in a classroom
environment. Thus, this step was crucial to the following steps of this research.

The following activity was to conduct a systematic mapping study on software
startup education in order to understand the state-of-the-art is this topic, and alto to collect
best practices and methodologies used on software startup education for software engineer-
ing students. This study was presented in Chapter 4. We have found 39 primary studies and
found very interesting insights, such as the difficulty to provide a real world experience to
students, and the need to apply an active learning methodology in order to give students the
opportunity to try out the process of developing a new startup. This study addressed RQ1,
RQ2, and RQ3.

In order to understand how software engineering students perceive software startup
concepts, we performed a multi-method study comprised by a survey and by two case stud-
ies (see Chapter 5). This study was very interesting since it has indicated that students
understood the importance of business concepts, but they struggle to grasp key aspects of
the Lean Startup methodology; they tend to over-simplifying them. In addition, students look
for a straight path rather than actually going for the build-measure-learn process. This study
addressed RQ4.

In regards to understanding how instructors around the world teach software startup
to software engineering students, we conducted a survey with 15 instructors/professors that
teach such courses. The details of this study is depicted in Chapter 6. We have found
out that in most cases students are not required to create a real startup; they can develop
mock-ups or “toy” projects. Another interesting insight was related to the multidisciplinary
aspect of software startups. When courses are opened to students from other fields other
than software engineering, the outcome tend to be better. This study addressed RQ3.

In order to bring more data to answer RQ2, we conducted a case study (presented
in Chapter 7), in which we applied the Challenge Based Learning methodology in a software
startup course. After this process, there was enough information to propose a first version of
the framework that would help instructors when teaching software startup to software engi-
neering students. This framework was called Challenge Based Startup Learning, since it is

127

a combination of the CBL methodology along with Lean Startup and Customer Development
concepts. The details of this initial proposal is depicted in Chapter 8.

Finally, the proposed framework was evaluated and refined by running a Expert
Panel. This process was very important since it brought great insights from people with a lot
of experience in the area. Furthermore, a set of recommendations were designed for those
who would like to try out the framework in their academic environment. This whole process
is presented in Chapter 9.

By addressing all 4 research questions in the aforementioned studies, we can con-
clude that the main research question of this thesis - How can we teach software startup
related concepts to software engineering students? - was also explored and addressed.
The creation of the framework, the Challenge Based Startup Learning, along with the
recommendations on how to implementing it in a software engineering curriculum can help
instructors when teaching software startup related concepts to their students.

It is important to mention that the Challenge Based Startup Learning framework
can be adapted to other educational settings. Even though the framework was developed
focusing on software engineering students, faculty can adapt it according to the context. For
instance, if a designer instructor wants to use the framework in his/her class, it seems obvi-
ous that students will not code their final solution. The last sprints could focus on improving
their prototypes. Moreover, this framework can also be adapted for graduate courses; it is
just a matter of adapting the framework accordingly.

In addition, one should look at this framework as a guidance for the software startup
teaching process. Its flexibility allows faculty to work on a single course with it, but it is also
possible to combine courses, and even to develop a whole program based on this framework.

Finally, all studies presented in this thesis were documented and presented to the
scientific community. Other studies that were not a part of this work were also undertaken
throughout this process. A list of all publications are presented further in this chapter in
Section 10.4.

10.2 Contributions of this Work

New startups are created every day; some of them are known for reaching billions
of people across the globe. Sadly, most startups do not succeed [GPU+15]. Even though
there are many factors that could lead to the failure of a startup, bad software engineering
practices is pointed out as a key reason [Col05, GPU+15].

Most universities across the world have already recognized the importance of pro-
viding entrepreneurial skills to engineering students [PML+15]. Being technically competent
is a must, but it is not enough. Knowing how to develop, market, and sell products and ser-

128

vices is essencial to survive in the reality we live in. Several institutions are already providing
programs and courses focused on entrepreneurship in order to fulfill this need [CCD13].

This work proposed the creation of a framework that can help academic institutions
to teach software startup related concepts to their students. In this context, the goal was to
provide faculty with the necessary tools to help students to grasp software startup principles
and experience the creation and development of a software startup.

Moreover, this thesis contributes to reinforce the importance of multidiscipline in
software engineering. A software is only useful when it solves a real problem, or when
it improves a given process. Therefore, students must understand that they need to go
beyond technical aspects of software engineering, and embracing the whole context.

From a scientific perspective, we hope to foster the discussion as well as the evo-
lution of this topic. As it could be observed in this work (specially in the systematic mapping
review), research on software startup education is taken its first steps. There is a good
opportunity to further explore the topic.

It is very important to mention the connections and contributions made through the
Software Startup Global Research Network (SSRN)1. This research group is composed by
over 50 people across the globe. In 2017 we were able to bring Prof. Pekka Abrahamsson
to Porto Alegre as a visiting professor to teach a software startup graduate course in our
Computer Science program. Our partnership with the SSRN has contributed with 9 papers
to the scientific community. I would also like to make a special reference to Dr. XiaoFeng
Wang and Jorge Melegati, from Free University of Bozen-Bolzano, for having worked closely
with us since we joined the network.

10.3 Future Work

This thesis presented several contributions in regards to software startup educa-
tion. The main contribution, of course, is the Challenge Based Startup Learning framework,
which can serve as a guide to enrich and to develop courses that teach student how to
create software startups. In this sense, we see a couple of directions for future work.

The first one is the application of the current version of the framework in an aca-
demic setting for further evaluation and evolution. Due to the 2020 pandemic and the social
distancing required to stay safe, it was not possible to test and to evaluate the framework.
When classes went online, the whole context changed and we understood it was risky to
try out the framework with all these new variables. In other words, results would have been
significantly influenced by this unusual situation.

1https://softwarestartups.org/

129

The second proposal is to study the use of other teaching methodologies combined
with software startup concepts. In this thesis, we chose Challenge Based Learning due to
the explicit connection that it makes with technology and real world problems (aside from
being an active teaching methodology). However, there might be situations in which other
methodologies work better. There are other techniques and methodologies, such as Design
Thinking or Game-Based Learning, that could be evaluated and may be used depending on
the context.

10.4 Publications

Throughout my journey as a PhD student, I worked on several studies that were
either published of accepted for publication.

This first set of studies were partially or entirely related to this thesis.

1. Chanin, R.; Melegati, J.; Detoni, M.; Wang, X.; Prikladnicki, R.; Sales, A. “An Analysis
of Students’ Perception Towards User Involvement in a Software Engineering Under-
graduate Curriculum”. In: Proceedings of the 12th International Conference on Com-
puter Supported Education, 2020, pp. 325–332.

2. Chanin, R.; Sales, A.; Prikladnicki, R. “Software Startup Education: A Transition From
Theory to Practice”. In: Fundamentals of Software Startups - Essential Engineering
and Business Aspects, Springer, 2020, chap. 13, pp. 217–234.

3. Chanin, R.; Melegati, J.; Sales, A.; Detoni, M.; Wang, X.; Prikladnicki, R. “Incorporat-
ing Real Projects Into a Software Engineering Undergraduate Curriculum”. In: Pro-
ceedings of the 41st International Conference on Software Engineering: Companion
Proceedings, 2019, pp. 250–251.

4. Chanin, R.; Sales, A.; Pompermaier, L. B.; Prikladnicki, R. “Improving a Startup Learn-
ing Framework Through an Expert Panel”. In: Proceedings of the 10th International
Conference on Software Business, 2019, pp. 306–320.

5. Nascimento, N.; Santos, A. R.; Sales, A.; Chanin, R. “An Investigation of Influencing
Factors When Teaching on Active Learning Environments”. In: Proceedings of the
33rd Brazilian Symposium on Software Engineering, 2019, pp. 517–522.

6. Detoni, M.; Sales, A.; Chanin, R.; Villwock, L. H.; Santos, A. R. “Using Challenge
Based Learning to Create an Engaging Classroom Environment to Teach Software
Startups”. In: Proceedings of the 33rd Brazilian Symposium on Software Engineering,
2019, pp. 547–552.

130

7. Melegati, J.; Chanin, R.; Wang, X.; Sales, A.; Prikladnicki, R. “Perceived Benefits and
Challenges of Learning Startup Methodologies for Software Engineering Students”. In:
Proceedings of the 50th ACM Technical Symposium on Computer Science Education,
2019, pp. 204–210.

8. Chanin, R.; Sales, A.; Pompermaier, L.; Prikladnicki, R. “A Systematic Mapping Study
on Software Startups Education”. In: Proceedings of the 22nd International Confer-
ence on Evaluation and Assessment in Software Engineering, 2018, pp. 163–168.

9. Chanin, R.; Sales, A.; Santos, A.; Pompermaier, L.; Prikladnicki, R. “A Collaborative
Approach to Teaching Software Startups: Findings From a Study Using Challenge
Based Learning”. In: Proceedings of the 11th International Workshop on Cooperative
and Human Aspects of Software Engineering, 2018, pp. 9–12.

10. Chanin, R.; Sales, A.; Pompermaier, L. B.; Prikladnicki, R. “Startup Software Devel-
opment Education: a Systematic Mapping Study”. In: Proceedings of the 40th In-
ternational Conference on Software Engineering: Companion Proceedings, 2018, pp.
143–144.

11. Chanin, R.; Sales, A.; Pompermaier, L.; Prikladnicki, R. “Challenge Based Startup
Learning: A Framework to Teach Software Startup”. In: Proceedings of the 23rd An-
nual ACM Conference on Innovation and Technology in Computer Science Education,
2018, pp. 266–271.

12. Chanin, R.; Santos, A.; Nascimento, N.; Sales, A.; Pompermaier, L.; Prikladnicki, R.
“Integrating Challenge Based Learning Into a Smart Learning Environment: Findings
From a Mobile Application Development Course”. In: Proceedings of the 30th Inter-
national Conference on Software Engineering and Knowledge Engineering, 2018, pp.
704–706.

13. Chanin, R.; Khanna, D.; Kemell, K.; Xiaofeng, W.; Sales, A.; Prikladnicki, R.; Abra-
hamsson, P. “Software Startup Education Around the World: A Preliminary Analysis”.
In: Proceedings of the 1st International Workshop on Software-intensive Business:
Start-ups, Ecosystems and Platforms, 2018, pp. 219–229.

This second set of studies were were not related to this thesis. Nevertheless, I
have contributed to each one of them by gathering data, running experiments, or by writ-
ing/reviewing them.

1. Cardoso, T. E.; Santos, A. R.; Chanin, R.; Sales, A. “Communication Practices in Con-
tinuous Software Development”. In: Proceedings of the 11th International Conference
on Software Business, 2020, pp. accepted for publication.

131

2. Nascimento, N.; Santos, A. R.; Sales, A.; Chanin, R. "Behavior-Driven Development:
An Expert Panel to Evaluate Benefits and Challenges". In Proceedings of the 34th
Brazilian Symposium on Software Engineering, 2020, pp. accepted for publication.

3. OliveiraJr, E.; Leal, G.; Valente, M.; Morandini, M.; Prikladnicki, R.; Pompermaier, L.;
Chanin, R.; Caldeira, C.; Machado, L.; de Souza, C. "Surveying the Impacts of COVID-
19 on the Perceived Productivity of Brazilian Software Developers". In Proceedings
of the 34th Brazilian Symposium on Software Engineering, 2020, pp. accepted for
publication.

4. Melegati, J.; Chanin, R.; Sales, A.; Prikladnicki, R.; Wang, X. “MVP and Experimenta-
tion in Software Startups: a Qualitative Survey”. In: Proceedings of the 46th Euromicro
Conference on Software Engineering and Advanced Applications, 2020, pp. 322–325.

5. Kemell, K.; Elonen, A.; Suoranta, M.; Nguyen-Duc, A.; Garbajosa, J.; Chanin, R.;
Melegati, J.; Rafiq, U.; Aldaeej, A.; Assyne, N.; Sales, A.; Hyrynsalmi, S.; Risku, J.;
Edison, H.; Abrahamsson, P. “Business model canvas should pay more attention to
the software startup team”. In: Proceedings of the 46th Euromicro Conference on
Software Engineering and Advanced Applications, 2020, pp. 342–345.

6. Nascimento, N.; Santos, A. R.; Sales, A.; Chanin, R. “Behavior-Driven Development:
A Case Study on its Impacts on Agile Development Teams”. Proceedings of the 13th
International Workshop on Cooperative and Human Aspects of Software Engineering,
2020, pp. 109–116.

7. Melegati, J.; Chanin, R.; Sales, A.; Prikladnicki, R. “Towards Specific Software Engi-
neering Practices for Early-Stage Startups”. In: Proceedings of the 21st Agile Pro-
cesses in Software Engineering and Extreme Programming - Workshops, 2020, pp.
18–22.

8. Chanin, R.; Pompermaier, L. B.; Sales, A.; Prikladnicki, R. “Collaborative Practices for
Software Requirements Gathering in Software Startups”. In: Proceedings of the 12th
International Workshop on Cooperative and Human Aspects of Software Engineering,
2019, pp. 31–32.

9. Cardoso, T. E.; Santos, A. R.; Chanin, R.; Sales, A. “Change Management Practices
for Continuous Delivery - A Systematic Literature Mapping”. In: Proceedings of the
10th International Conference on Software Business, 2019, pp. 175–182.

10. Pompermaier, L. B.; Chanin, R.; Sales, A.; Prikladnicki, R. “MVP Development Pro-
cess for Software Startups”. In: Proceedings of the 10th International Conference on
Software Business, 2019, pp. 409–412.

132

11. Melegati, J.; Chanin, R.; Wang, X.; Sales, A.; Prikladnicki, R. “Enablers and Inhibitors
of Experimentation in Early-Stage Software Startups”. In: Proceedings of the 20th
International Conference on Product-Focused Software Process Improvement, 2019,
pp. 554–569.

12. Bajwa, S.; Wang, X.; Duc, A.; Chanin, R.; Prikladnicki, R.and Pompermaier, L.; Abra-
hamsson, P. “Start-ups must be ready to pivot”, IEEE Software, vol. 34–3, 2017, pp.
18–22.

13. Chanin, R.; Pompermaier, L.; Fraga, K.; Sales, A.; Prikladnicki, R. “Applying Cus-
tomer Development for Software Requirements in a Startup Development Program”.
In: Proceedings of the 1st International Workshop on Software Engineering for Star-
tups, 2017, pp. 2–5.

14. Pompermaier, L.; Chanin, R.; Sales, A.; Fraga, K.; Prikladnicki, R. “An Empirical Study
on Software Engineering and Software Startups: Findings From Cases in an Innova-
tion Ecosystem”. In: Proceedings of the 29th International Conference on Software
Engineering and Knowledge Engineering, 2017, pp. 48–51.

133

REFERENCES

[AM17] Adorjan, A.; Matturro, G. “’24 Hours of Innovation’ - A Report on
Students’ and Teachers’ Perspectives as a Way to Foster Entrepreneurship
Competences in Engineering”. In: Proceedings of the 1st IEEE World
Conference on Engineering Education, 2017, pp. 43–46.

[AZN+17] Araujo, R.; Zorzo, A.; Nunes, D.; Matos, E.; Steinmacher, I.; Leite, J.; Correia,
R.; Martins, S. “Referenciais de Formação para os Cursos de Graduação em
Computação 2017”. Sociedade Brasileira de Computação, 2017, 153p.

[Bab90] Babbie, R. “Survey Research Methods”. Wadsworth Publishing Company,
1990, 395p.

[Bar10] Barbe, D. “A Model of Cross Disciplinary Education, Technology Transfer
and Teaching Non-Technical Skills for Engineers”. In: Proceedings of the 1st
IEEE Transforming Engineering Education: Creating Interdisciplinary Skills
for Complex Global Environments, 2010, pp. 1–32.

[BC06] Braun, V.; Clarke, V. “Using Thematic Analysis in Psychology”, Qualitative
Research in Psychology, vol. 3–2, Jan 2006, pp. 77–101.

[BCC16] Batova, T.; Clark, D.; Card, D. “Challenges of Lean Customer Discovery
as Invention”. In: Proceedings of the 6th IEEE International Professional
Communication Conference, 2016, pp. 1–5.

[BD12] Blank, S.; Dorf, B. “The Startup Owner’s Manual: The Step-by-step Guide
for Building a Great Company”. K&S Ranch, Incorporated, 2012, 571p.

[BdVH13] Breytenbach, J.; de Villiers, C.; Hearn, G. “Directing the South African
ICT Labour Force Towards Growth Sectors: A case for Non-Institutional
Scarce Skills Transition and Reskilling Courses”. In: Proceedings of the 14th
International Conference on Information Systems Education and Research,
2013, pp. 1–14.

[BF17] Boutell, M. R.; Fisher, D. S. “Entrepreneurial minded learning in app
development courses”. In: Proceedings of the 47th Annual Frontiers In
Education Conference, 2017, pp. 1–8.

[Bha14] Bharadwaj, A. “An Evaluation of Teaching Theoretical Graduate Engineering
Courses Adapting Different Techniques”. In: Proceedings of the 2nd
IEEE International Conference on MOOC, Innovation and Technology in
Education, 2014, pp. 84–88.

134

[BHB+05] Beecham, S.; Hall, T.; Britton, C.; Cottee, M.; Rainer, A. “Using an Expert
Panel to Validate a Requirements Process Improvement Model”, Journal of
Systems and Software, vol. 76–3, Jun 2005, pp. 251–275.

[Bla13] Blank, S. “The Four Steps to the Epiphany: Successful Strategies for
Products That Win”. K&S Ranch, Incorporated, 2013, 370p.

[BNRM17] Binder, F. V.; Nichols, M.; Reinehr, S.; Malucelli, A. “Challenge Based
Learning Applied to Mobile Software Development Teaching”. In:
Proceedings of the 30th IEEE Conference on Software Engineering
Education and Training, 2017, pp. 57–64.

[BNS08] Buckley, M.; Nordlinger, J.; Subramanian, D. “Socially relevant computing”,
ACM Special Interest Group on Computer Science Education Bulletin,
vol. 40–1, Mar 2008, pp. 347–351.

[BOBL13] Bosch, J.; Olsson, H. H.; Björk, J.; Ljungblad, J. “The Early Stage Software
Startup Development Model: A Framework for Operationalizing Lean
Principles in Software Startups”. In: Proceedings of the 4th International
Conference on Lean Enterprise Software and Systems, 2013, pp. 1–15.

[Bos16] Bosch, J. “Speed, Data, and Ecosystems: The Future of Software
Engineering”, IEEE Software, vol. 33–1, Jan 2016, pp. 82–88.

[BRR17a] Buffardi, K.; Robb, C.; Rahn, D. “Learning Agile with Tech Startup Software
Engineering Projects”. In: Proceedings of the 22nd Annual Conference on
Innovation and Technology in Computer Science Education, 2017, pp. 28–
33.

[BRR17b] Buffardi, K.; Robb, C.; Rahn, D. “Tech Startups: Realistic Software
Engineering Projects With Interdisciplinary Collaboration”, Journal of
Computing Sciences in Colleges, vol. 32–4, Apr 2017, pp. 93–98.

[BTBK08] Budgen, D.; Turner, M.; Brereton, P.; Kitchenham, B. “Using Mapping Studies
in Software Engineering”. In: Proceedings of the 20th Annual Workshop of
the Psychology of Programming Interest Group, 2008, pp. 195–204.

[BW06] Berglund, H.; Wennberg, K. “Creativity Among Entrepreneurship Students:
Comparing Engineering and Business Education”, International Journal
of Continuing Engineering Education and Life Long Learning, vol. 16–5,
Jan 2006, pp. 366–379.

[CCD13] Case, S.; Coleman, M. S.; Deshpande, G. “The Innovative and
Entrepreneurial University: Higher Education, Innovation and

135

Entrepreneurship in Focus”, Technical Report, US Department of
Commerce, Economic Development Administration, 2013, 102p.

[CD11] Cruzes, D. S.; Dyba, T. “Recommended Steps for Thematic Synthesis in
Software Engineering”. In: Proceedings of the 5th International Symposium
on Empirical Software Engineering and Measurement, 2011, pp. 275–284.

[CDK11] Currie, E.; Doboli, S.; Kamberova, G. “Developing the next generation of
entrepreneurs”. In: Proceedings of the 41st Annual Frontiers In Education
Conference, 2011, pp. 1–6.

[Che08] Chenoweth, S. “Undergraduate Software Engineering Students in Startup
Businesses”. In: Proceedings of the 21st IEEE Conference on Software
Engineering Education and Training, 2008, pp. 118–125.

[Che14] Chesney, D. “Social Context, Singular Focus”. In: Proceedings of the 44th
Annual Frontiers In Education Conference, 2014, pp. 1–6.

[CKK+18] Chanin, R.; Khanna, D.; Kemell, K.; Xiaofeng, W.; Sales, A.; Prikladnicki,
R.; Abrahamsson, P. “Software Startup Education Around the World: A
Preliminary Analysis”. In: Proceedings of the 1st International Workshop on
Software-intensive Business: Start-ups, Ecosystems and Platforms, 2018,
pp. 219–229.

[Col05] Coleman, G. “An Empirical Study of Software Process in Practice”. In:
Proceedings of the 38th Annual Hawaii International Conference on System
Sciences, 2005, pp. 1–6.

[Coo99] Cooper, A. “The Inmates Are Running the Asylum”. Macmillan Publishing
Co., Inc., 1999, 261p.

[CPF+17] Chanin, R.; Pompermaier, L.; Fraga, K.; Sales, A.; Prikladnicki, R.
“Applying Customer Development for Software Requirements in a Startup
Development Program”. In: Proceedings of the 1st IEEE/ACM International
Workshop on Software Engineering for Startups, 2017, pp. 2–5.

[Cro02] Crowne, M. “Why Software Product Startups Fail And What to do About it.
Evolution of Software Product Development in Startup Companies”, IEEE
International Engineering Management Conference, vol. 1, Aug 2002, pp.
338–343.

[CSPP18a] Chanin, R.; Sales, A.; Pompermaier, L.; Prikladnicki, R. “A Systematic
Mapping Study On Software Startups Education”. In: Proceedings of the
22nd International Conference on Evaluation and Assessment in Software
Engineering, 2018, pp. 163–168.

136

[CSPP18b] Chanin, R.; Sales, A.; Pompermaier, L.; Prikladnicki, R. “Challenge Based
Startup Learning: A Framework to Teach Software Startup”. In: Proceedings
of the 23nd Annual Conference on Innovation and Technology in Computer
Science Education, 2018, pp. 266–271.

[CSPP19] Chanin, R.; Sales, A.; Pompermaier, L. B.; Prikladnicki, R. “Improving a
Startup Learning Framework Through an Expert Panel”. In: Proceedings of
the 10th International Conference on Software Business, 2019, pp. 306–
320.

[CSS+18] Chanin, R.; Sales, A.; Santos, A.; Pompermaier, L.; Prikladnicki, R. “A
Collaborative Approach to Teaching Software Startups: Findings from a
Study Using Challenge Based Learning”. In: Proceedings of the 11th
Workshop on Cooperative and Human Aspects of Software Engineering,
2018, pp. 9–12.

[dCA13] da Cruz, E. F. Z.; Alvaro, A. “Introduction of Entrepreneurship And Innovation
Subjects in a Computer Science Course in Brazil”. In: Proceedings of the
43rd Annual Frontiers In Education Conference, 2013, pp. 1881–1887.

[Dev17] Devadiga, N. M. “Software Engineering Education: Converging with the
Startup Industry”. In: Proceedings of the 30th IEEE Conference on Software
Engineering Education and Training, 2017, pp. 192–196.

[DKI+10] Doboli, S.; Kamberova, G. L.; Impagliazzo, J.; Fu, X.; Currie, E. “A
Model of Entrepreneurship Education for Computer Science And Computer
Engineering Students”. In: Proceedings of the 40th Annual Frontiers In
Education Conference, 2010, pp. 1–6.

[dLNKK16] de Lange, P.; Nicolaescu, P.; Klamma, R.; Koren, I. “DevOpsUse for Rapid
Training of Agile Practices Within Undergraduate and Startup Communities”.
In: Proceedings of the 11th European Conference on Technology Enhanced
Learning, 2016, pp. 570–574.

[DR08] Daimi, K.; Rayess, N. “The Role of Software Entrepreneurship in Computer
Science Curriculum”. In: Proceedings of the 38th Annual Frontiers In
Education Conference, 2008, pp. 332–338.

[DSC+19] Detoni, M.; Sales, A.; Chanin, R.; Villwock, L. H.; Santos, A. R. “Using
Challenge Based Learning to Create an Engaging Classroom Environment
to Teach Software Startups”. In: Proceedings of the 33rd Brazilian
Symposium on Software Engineering, 2019, pp. 547–552.

137

[DSVDBS05] Dochy, F.; Segers, M.; Van Den Bossche, P.; Struyven, K. “Students’
Perceptions of a Problem-Based Learning Environment”, Learning
Environments Research, vol. 8–1, Jan 2005, pp. 41–66.

[Eng14] Engelsma, J. “Best Practices for Industry-Sponsored CS Capstone
Courses”, Journal of Computing Sciences in Colleges, vol. 30–1, Oct 2014,
pp. 18–28.

[ESRTCBS09] Edwards, M.; Sánchez-Ruiz, L. M.; Tovar-Caro, E.; Ballester-Sarrias, E.
“Engineering Students’ Perceptions of Innovation And Entrepreneurship
Competences”. In: Proceedings of the 39th Annual Frontiers In Education
Conference, 2009, pp. 1–5.

[ESSD08] Easterbrook, S.; Singer, J.; Storey, M.-A.; Damian, D. “Selecting Empirical
Methods for Software Engineering Research”. Springer London, 2008,
chap. 11, pp. 285–311.

[FB17] Frederiksen, D.; Brem, A. “How Do Entrepreneurs Think They Create Value?
A Scientific Reflection of Eric Ries’ Lean Startup Approach”, International
Entrepreneurship and Management Journal, vol. 13–1, Oct 2017, pp. 169–
189.

[FF09] Fetaji, M.; Fetaji, B. “Analyses of Mobile Learning Software Solution in
Education Using the Task Based Learning Approach”. In: Proceedings of the
31st International Conference on Information Technology Interfaces, 2009,
pp. 373–378.

[FGW04] Ford, R.; Goodrich, J.; Weissbach, R. “A Multidisciplinary Business And
Engineering Course in Product Development And Entrepreneurship”. In:
Proceedings of the 34th Annual Frontiers In Education Conference, 2004,
pp. 1–6.

[FHL+17] Fagerholm, F.; Hellas, A.; Luukkainen, M.; Kyllönen, K.; Yaman, S.;
Mäenpää, H. “Patterns for designing and implementing an environment
for software start-up education”. In: Proceedings of the 43rd Euromicro
Conference on Software Engineering and Advanced Applications, 2017, pp.
133–140.

[FS17] Fitzgerald, B.; Stol, K. “Continuous Software Engineering: A Roadmap and
Agenda”, Journal of Systems and Software, vol. 123, Jan 2017, pp. 176–
189.

[FW03] Fernandez, E.; Williamson, D. “Using Project-Based Learning to Teach
Object Oriented Application Development”. In: Proceedings of the 4th
Conference on Information Technology Curriculum, 2003, pp. 37–40.

138

[GCRB15] Ghezzi, A.; Cavallaro, A.; Rangone, A.; Balocco, R. “A Comparative Study
on the Impact of Business Model Design & Lean Startup Approach versus
Traditional Business Plan on Mobile Startups Performance”. In: Proceedings
of the 17th International Conference on Enterprise Information Systems,
2015, pp. 196–203.

[GG17] Génova, G.; González, M. “Educational Encounters of the Third Kind”,
Science and Engineering Ethics, vol. 23–6, Dec 2017, pp. 1791–1800.

[GHK97] Gorman, G.; Hanlon, D.; King, W. “Some Research Perspectives on
Entrepreneurship Education, Enterprise Education and Education for Small
Business Management: A Ten-Year Literature Review”, International Small
Business Journal, vol. 15–3, Apr 1997, pp. 56–77.

[GPU+15] Giardino, C.; Paternoster, N.; Unterkalmsteiner, M.; Gorschek, T.;
Abrahamsson, P. “Software Development in Startup Companies: The
Greenfield Startup Model”, IEEE Transactions on Software Engineering,
vol. 42–6, Dec 2015, pp. 585–604.

[Gro00] Gross, W. “An Approach to Teaching Entrepreneurship to Engineers”. In:
Proceedings of the 6th IEEE Engineering Management Society, 2000, pp.
648–652.

[GSX15] Gary, K. A.; Sohoni, S.; Xavier, S. “Pre-Conference Workshop: Agile
Teaching And Learning”. In: Proceedings of the 35th Annual Frontiers In
Education Conference, 2015, pp. 1–2.

[GUP+14] Giardino, C.; Unterkalmsteiner, M.; Paternoster, N.; Gorschek, T.;
Abrahamsson, P. “What Do We Know About Software Development in
Startups?”, IEEE Software, vol. 31–5, Sep 2014, pp. 28–32.

[GWA14] Giardino, C.; Wang, X.; Abrahamsson, P. “Why Early-Stage Software
Startups Fail: A Behavioral Framework”. In: Proceedings of the 5th
International Conference on Software Business, 2014, pp. 27–41.

[Har15] Harms, R. “Self-Regulated Learning, Team Learning And Project
Performance in Entrepreneurship Education: Learning in a Lean Startup
Environment”, Technological Forecasting and Social Change, vol. 100,
Nov 2015, pp. 21–28.

[HHO03] Hilmola, O.; Helo, P.; Ojala, L. “The Value of Product Development Lead
Time in Software Startup”, System Dynamics Review, vol. 19–1, Jan 2003,
pp. 75–82.

139

[HK14] Heintz, F.; Klein, K. I. “The Design of Sweden’s First 5-year Computer
Science And Software Engineering Program”. In: Proceedings of the 45th
ACM Technical Symposium on Computer Science Education, 2014, pp. 199–
204.

[İB13] İnel, D.; Balım, A. “Concept Cartoons Assisted Problem Based Learning
Method in Science and Technology Teaching and Students’ Views”, Procedia
- Social and Behavioral Sciences, vol. 93, Oct 2013, pp. 376–380.

[Inc08] Inc., A. “Apple Classrooms of Tomorrow - Today”, Technical Report, Apple
Inc., 2008, 41p.

[Inc09] Inc., A. “Challenge Based Learning: A Classroom Guide”, Technical Report,
Apple Inc., 2009, 40p.

[IPSL09] Ikonen, A.; Piironen, A.; Saurén, K.; Lankinen, P. “Cdio Concept in Challenge
Based Learning”. In: Proceedings of the 4th Workshop on Embedded
Systems Education, 2009, pp. 27–32.

[ITOGI16] Izurieta, C.; Trenk, M.; O’Bleness, M.; Gunderson-Izurieta, S. “The
Effectiveness of Software Development Instruction through the Software
Factory Method for High School Students”. In: Proceedings of the 123rd
American Society for Engineering and Education Annual Conference and
Exposition, 2016, pp. 26–29.

[JA11] Johnson, L.; Adams, S. “Challenge Based Learning: The Report from the
Implementation Project”, Technical Report, The New Media Consortium,
2011, 39p.

[Jos06] Joseph, A. “Interdisciplinarity, Financial Software Product Development, And
Entrepreneurship in an Urban University”, American Society for Engineering
Education, vol. 11–1, Jan 2006, pp. 812.1–812.13.

[JTH15] Järvi, A.; Taajamaa, V.; Hyrynsalmi, S. “Lean Software Startup – An
Experience Report from an Entrepreneurial Software Business Course”.
In: Proceedings of the 6th International Conference on Software Business,
2015, pp. 230–244.

[KAP+06] Kontio, J.; Ahokas, M.; Poyry, P.; Warsta, J.; Makela, M. M.; Tyrvainen,
P. “Software Business Education for Software Engineers: Towards an
Integrated Curriculum”. In: Proceedings of the 19th Conference on Software
Engineering Education and Training Workshops, 2006, pp. 4–7.

140

[KBB11] Kitchenham, B.; Budgen, D.; Brereton, O. “Using Mapping Studies as
the Basis Ror Further Research - A Participant-Observer Case Study”,
Information and Software Technology, vol. 53–6, Jun 2011, pp. 638–651.

[KC07] Kitchenham, B.; Charters, S. “Guidelines For Performing Systematic
Literature Reviews in Software Engineering”, Technical Report, Keele
University and Durham University Joint Report, 2007, 57p.

[KCM+14] Kon, F.; Cukier, D.; Melo, C.; Hazzan, O.; Yuklea, H. “A Panorama of the
Israeli Software Startup Ecosystem”, Technical Report, SSRN, 2014, 28p.

[KHH13] Kaltenecker, N.; Hoerndlein, C.; Hess, T. “The Drivers of Entrepreneurial
Intentions - An Empirical Study Among Information Systems And Computer
Science Students”. In: Proceedings of the 19th Americas Conference of
Information Systems, 2013, pp. 1–8.

[KMN08] Kajko-Mattsson, M.; Nikitina, N. “From Knowing Nothing to Knowing a Little:
Experiences Gained From Process Improvement in a Start-Up Company”.
In: Proceedings of the 1st International Conference on Computer Science
and Software Engineering, 2008, pp. 617–621.

[Ko17] Ko, A. J. “A Three-Year Participant Observation of Software Startup Software
Evolution”. In: Proceedings of the 39th International Conference on Software
Engineering, 2017, pp. 3–12.

[KPP95] Kitchenham, B.; Pickard, L.; Pfleeger, S. “Case Studies for Method and Tool
Evaluation”, IEEE Software, vol. 12–4, Jul 1995, pp. 52–62.

[Li07] Li, S.-C. “The Role of Value Proposition and Value Co-Production in New
Internet Startups: How New Venture e-Businesses Achieve Competitive
Advantage”. In: Proceedings of the 7th Portland International Center for
Management of Engineering and Technology Conference, 2007, pp. 1126–
1132.

[LSS05] Lethbridge, T.; Sim, S.; Singer, J. “Studying Software Engineers: Data
Collection Techniques for Software Field Studies”, Empirical Software
Engineering, vol. 10–3, Jul 2005, pp. 311–341.

[LT16] Lenarduzzi, V.; Taibi, D. “Mvp explained: A systematic mapping study on the
definitions of minimal viable product”. In: Proceedings of the 42th Euromicro
Conference on Software Engineering and Advanced Applications, 2016, pp.
112–119.

[Mau12] Maurya, A. “Running Lean: Iterate From Plan A to a Plan That Works”.
O’Reilly Media, Inc., 2012, 207p.

141

[MBT06] Mafra, S. N.; Barcelos, R. F.; Travassos, G. H. “Aplicando uma Metodologia
Baseada em Evidência na Definição de Novas Tecnologias de Software”.
In: Proceedings of the 20th Brazilian Symposium on Software Engineering,
2006, pp. 239–254.

[McM14] McMahon, E. “From Product Development to Innovation”. In: Proceedings
of the 35th American Society for Engineering Management International
Annual Conference, 2014, pp. 118–127.

[MCW+19] Melegati, J.; Chanin, R.; Wang, X.; Sales, A.; Prikladnicki, R. “Perceived
Benefits and Challenges of Learning Startup Methodologies for Software
Engineering Students”. In: Proceedings of the 50th ACM Technical
Symposium on Computer Science Education, 2019, pp. 204–210.

[MG09] Marcangelo, C.; Gibbon, C. “Problem based learning evaluation toolkit”,
Technical Report, Higher Education Academy Health Sciences and Practice
Subject Centre, 2009, 6p.

[NB11] Nurkkala, T.; Brandle, S. “Software Studio: Teaching Professional Software
Engineering”. In: Proceedings of the 42nd ACM Technical Symposium on
Computer Science Education, 2011, pp. 153–158.

[NC08] Nichols, M.; Cator, K. “Challenge Based Learning White Paper”, Technical
Report, Apple Inc., 2008, 23p.

[NCT16] Nichols, M.; Cator, K.; Torres, M. “Challenge Based Learning Guide”. Digital
Promise, 2016, 59p.

[NDSA15] Nguyen-Duc, A.; Seppänen, P.; Abrahamsson, P. “Hunter-gatherer Cycle: A
Conceptual Model of the Evolution of Software Startups”. In: Proceedings
of the 9th International Conference on Software and System Process, 2015,
pp. 199–203.

[NDSA16] Nguyen-Duc, A.; Shah, S.; Ambrahamsson, P. “Towards an Early Stage
Software Startups Evolution Model”. In: Proceedings of the 42nd Euromicro
Conference on Software Engineering and Advanced Applications, 2016, pp.
120–127.

[Nob11] Nobel, C. “Teaching a ’Lean Startup’ Strategy”. URL https://https://hbswk.
hbs.edu/item/teaching-a-lean-startup-strategy, Accessed: 2020-10-10.

[NYN16] Nunes, D. J.; Yamaguti, M.; Nunes, I. “Refinamento de Competências do
Egresso do Curso de Engenharia de Software”. In: Proceedings of the 9th
Education in Software Engineering Forum, 2016, pp. 143–155.

https://https://hbswk.hbs.edu/item/teaching-a-lean-startup-strategy
https://https://hbswk.hbs.edu/item/teaching-a-lean-startup-strategy

142

[OP10] Osterwalder, A.; Pigneur, Y. “Business Model Generation: A Handbook For
Visionaries, Game Changers, And Challengers”. John Wiley & Sons, 2010,
278p.

[Par14] Pardo, A. “Problem-Based Learning Combined With Project-Based
Learning: A Pilot Application in Digital Signal Processing”. In: Proceedings
of the 11th Technologies Applied to Electronics Teaching Conference, 2014,
pp. 1–5.

[PFMM08] Petersen, K.; Feldt, R.; Mujtaba, S.; Mattsson, M. “Systematic Mapping
Studies in Software Engineering”. In: Proceedings of the 12th International
Conference on Evaluation and Assessment in Software Engineering, 2008,
pp. 68–77.

[PG12] Pauca, V.; Guy, R. “Mobile Apps for the Greater Good: A Socially Relevant
Approach to Software Engineering”. In: Proceedings of the 43rd ACM
Technical Symposium on Computer Science Education, 2012, pp. 535–540.

[PGU+14] Paternoster, N.; Giardino, C.; Unterkalmsteiner, M.; Gorschek, T.;
Abrahamsson, P. “Software Development in Startup Companies: A
Systematic Mapping Study”, Information and Software Technology,
vol. 56–10, Oct 2014, pp. 1200–1218.

[PK01] Pfleeger, S.; Kitchenham, B. “Principles of Survey Research: Part 1:
Turning Lemons into Lemonade”, ACM Special Interest Group on Software
Engineering Software Engineering Notes, vol. 26–6, Nov 2001, pp. 16–18.

[PLB08] Pauli, J.; Lawrence, T.; Brown, B. “Development of a New Software
Product From a Classroom Project”. In: Proceedings of the 5th International
Conference on Information Technology: New Generations, 2008, pp. 97–
100.

[PML+15] Porter, J.; Morgan, J.; Lester, R.; Steele, A.; Vanegas, J.; Hill, R. “A Course in
Innovative Product Design: A Collaboration Between Architecture, Business,
And Engineering”. In: Proceedings of the 45th Annual Frontiers In Education
Conference, 2015, pp. 1–5.

[PPV00] Perry, D.; Porter, A.; Votta, L. “Empirical Studies of Software Engineering:
A Roadmap”. In: Proceedings of the 22nd International Conference on
Software Engineering, 2000, pp. 345–355.

[QSEMD+18] Quezada-Sarmiento, P. A.; Enciso, L.; Mayorga-Diaz, M. P.;
Mengual-Ándres, S.; Hernandez, W.; Vivanco-Ochoa, J. V.; Carrión, P. V.
“Promoting Innovation And Entrepreneurship Skills in Professionals in

143

Software Engineering Training: An Approach to the Academy And Bodies of
Knowledge Context”. In: Proceedings of the 9th IEEE Global Engineering
Education Conference, 2018, pp. 796–799.

[RAF16] Ribeiro, C.; Aleixo, F.; Freire, M. “Driving Academic Spin-off by Software
Development Process: A Case Study in Federal Institute of Rio Grande
do Norte-Brazil”. In: Proceedings of the 17th International Conference on
Product-Focused Software Process Improvement, 2016, pp. 636–639.

[RC08] Rubin, J.; Chisnell, D. “Handbook of Usability Testing: How to Plan, Design
And Conduct Effective Tests”. John Wiley & Sons, 2008, 348p.

[RH08] Runeson, P.; Höst, M. “Guidelines for Conducting And Reporting Case
Study Research in Software Engineering”, Empirical Software Engineering,
vol. 14–2, Dec 2008, pp. 131–164.

[Rie11] Ries, E. “The Lean Startup: How Today’s Entrepreneurs Use Continuous
Innovation to Create Radically Successful Businesses”. Crown Business,
2011, 320p.

[RMEDJ14] Rio, C. R. D.; Morgado-Estevez, A.; Dominguez-Jimenez, J.
“Entrepreneurship And Lean Manufacturing For Software Engineering”. In:
Proceedings of the 42nd European Society for Engineering Education
Annual Conference, 2014, pp. 1–8.

[Sal17] Salas, R. P. “Teaching Entrepreneurship in Computer Science: Lessons
Learned”. In: Proceedings of the 47th Annual Frontiers In Education
Conference, 2017, pp. 1–7.

[San16] dos Santos, A. R. “Um Método de Aprendizagem Baseada em Desafios: Um
Estudo de Caso em Ambientes de Desenvolvimento de Aplicativos”, Ph.D.
Thesis, PUCRS, 2016, 179p.

[SB01] Schwaber, K.; Beedle, M. “Agile Software Development with Scrum”.
Prentice Hall PTR, 2001, 158p.

[SC01] Shepperd, M.; Cartwright, M. “Predicting With Sparse Data”, IEEE
Transactions on Software Engineering, vol. 27–11, Jan 2001, pp. 987–998.

[SCC98] Strauss, A.; Corbin, J.; Corbin, J. “Basics of Qualitative Research:
Techniques and Procedures for Developing Grounded Theory”. SAGE
Publications, 1998, 312p.

[SCT01] Shull, F.; Carver, J.; Travassos, G. H. “An Empirical Methodology for
Introducing Software Processes”, ACM Special Interest Group on Software

144

Engineering Software Engineering Notes, vol. 26–5, Sep. 2001, pp. 288–
296.

[SDJ07] Sjøberg, D. I. K.; Dybå, T.; Jørgensen, M. “The Future of Empirical Methods
in Software Engineering Research”. In: Proceedings of the 1st Future of
Software Engineering Workshop, 2007, pp. 358–378.

[SFMJ+16] Sarraipa, J.; Ferreira, F.; Marcelino-Jesus, E.; Artifice, A.; Lima, C.;
Kaddar, M. “Technological Innovations Tackling Students Dropout”. In:
Proceedings of the 7th International Conference on Software Development
and Technologies for Enhancing Accessibility and Fighting Info-exclusion,
2016, pp. 112–118.

[Sha00] Shaw, M. “Software Engineering Education”. In: Proceedings of the 22nd
International Conference on Software Engineering, 2000, pp. 371–380.

[Sha03] Shaw, M. “Writing Good Software Engineering Research Papers:
Minitutorial”. In: Proceedings of the 25th International Conference on
Software Engineering, 2003, pp. 726–736.

[SHH+05] Sjoeberg, D.; Hannay, J.; Hansen, O.; Kampenes, V.; Karahasanovic, A.;
Liborg, N.; Rekdal, A. “A Survey of Controlled Experiments in Software
Engineering”, IEEE Transactions on Software Engineering, vol. 31–9,
Oct 2005, pp. 733–753.

[SK10] Schilling, J.; Klamma, R. “The Difficult Bridge Between University And
Industry: A Case Study in Computer Science Teaching”, Assessment &
Evaluation in Higher Education, vol. 35–4, Jul 2010, pp. 367–380.

[Slo03] Slocum, N. “Participatory Methods Toolkit: A practitioner’s manual”. Belgian
Advertising, 2003, 167p.

[SMG11] Salleh, N.; Mendes, E.; Grundy, J. “Empirical Studies of Pair Programming
for CS/SE Teaching in Higher Education: A Systematic Literature Review”,
IEEE Transactions on Software Engineering, vol. 37–4, Jul 2011, pp. 509–
525.

[SRS13] Scheinrock, J.; Richter-Sand, M. “The Agile Startup: Quick and Dirty
Lessons Every Entrepreneur Should Know”. John Wiley & Sons, 2013,
349p.

[SSFK18] Santos, A.; Sales, A.; Fernandes, P.; Kroll, J. “Challenge-Based Learning: a
Brazilian Case Study”. In: Proceedings of the 40th International Conference
on Software Engineering: Companion Proceedings, 2018, pp. 155–156.

145

[SSFN15] Santos, A.; Sales, A.; Fernandes, P.; Nichols, M. “Combining Challenge-
Based Learning and Scrum Framework for Mobile Application Development”.
In: Proceedings of the 20th Annual Conference on Innovation and
Technology in Computer Science Education, 2015, pp. 189–194.

[Sut00] Sutton, S. M. “The Role of Process in Software Start-up”, IEEE Software,
vol. 17–4, Jul 2000, pp. 33–39.

[SXT+09] Sun, D.; Xue, J.; Tan, X.; Liu, P.; Sun, Z.; Yao, J. “Model Analysis of
Talents’ Abilities and Qualities for Information-Based Entrepreneurship”. In:
Proceedings of the 1st International Conference on Information Science and
Engineering, 2009, pp. 2968–2971.

[Tho00] Thomas, J. “A Review of Research on Project-Based Learning”, Technical
Report, Autodesk Foundation, 2000, 49p.

[UAW+16] Unterkalmsteiner, M.; Abrahamsson, P.; Wang, X.; Nguyen-Duc, A.;
Shah, S.; Bajwa, S.; Baltes, G.; Conboy, K.; Cullina, E.; Dennehy, D.;
et al.. “Software Startups - A Research Agenda”, e-Informatica Software
Engineering Journal, vol. 10–1, Oct 2016, pp. 89–124.

[VHB16] Vitolo, T.; Hersch, K.; Brinkman, B. “Making the Connection: Successful
Cross Campus Collaboration Among Students”. In: Proceedings of the 46th
Annual Frontiers In Education Conference, 2016, pp. 1–7.

[WKA16] Wang, X.; Khanna, D.; Abrahamsson, P. “Teaching Lean Startup at
University: An Experience Report”. In: Proceedings of the 2nd International
Workshop on Software Startups, 2016, pp. 1–4.

[WMMR06] Wieringa, R.; Maiden, N.; Mead, N.; Rolland, C. “Requirements Engineering
Paper Classification and Evaluation Criteria: A Proposal and a Discussion”,
Requirements Engineering, vol. 11–1, Mar 2006, pp. 102–107.

[WRH+12] Wohlin, C.; Runeson, P.; Höst, M.; Ohlsson, M.; Regnell, B.; Wesslén, A.
“Experimentation in Software Engineering”. Springer Science & Business
Media, 2012, 236p.

[Yin03] Yin, R. “Case Study Research: Design and Methods”. SAGE Publications,
2003, 181p.

[ZA15] Zaina, L.; Alvaro, A. “A Design Methodology for User-centered Innovation
in the Software Development Area”, Journal of Systems and Software, vol.
110–C, Dec 2015, pp. 155–177.

146

[Zha15] Zhang, S. “A Technology-Business-Environment Model for Effective Internet
Entrepreneurship Education”. In: Proceedings of the 12th International
Conference on Information Technology-New Generations, 2015, pp. 632–
637.

147

APPENDIX A – STUDENTS’ PERCEPTION ON LEAN PRINCIPLES
RESEARCH PROTOCOL

Study Protocol

Goal

Understand how students perceive and grasp software startups concepts, such as
the Lean Startup Methodology.

Study Design and Methodology

We have designed a multi-mathod study composed by two case studies and one
survey. Data was analyzed using thematic analysis.

Research Question

• What are the benefits and challenges of software engineering students learning the
Lean Startup approach?

Participants

• Two students in the end of a Software Engineering course in a Brazilian university
employed Lean Startup and agile methodologies in their bachelor thesis project - Case
Study A.

• Four students, one from a Masters and three from a Bachelor program in Software En-
gineering from an Italian university participated in the optional Lean Entrepreneurship
course - Case Study B.

• 40 students from a iOS application development course in Brazil - Survey.

Data Collection

• For case study A, we analyzed the content of the thesis, as well as the emails ex-
changed between the students and their advisor.

• For case study B, data was collected through a retrospective session. Students were
required to draw the project history as well as to describe positive and negative aspects
regarding the process.

148

• For the survey, students were presented a small scenario and they had to describe
how they could contribute to the project. This scenario was already presented in Sec-
tion 5.1.

Data Analysis

The data analysis conducted in both parts employed mainly thematic analysis, fol-
lowing the scheme proposed by Braun and Clarke [BC06]. Although suggested to psy-
chological studies, this approach has been commonly used in Software Engineering re-
search [CD11].

149

APPENDIX B – SOFTWARE STARTUP EDUCATION RESEARCH
PROTOCOL

Study Protocol

Goal

Understand how software startup is taught by lecturers/professor across the world.

Study Design and Methodology

We have designed a qualitative, largely open-ended survey. The goal of this survey
was to understand in detail how software startups are currently taught in universities world-
wide.

Research Questions

• Which teaching methods are used to teach software startups?

• Do students need to develop a real piece of software?

• Is the course somehow connected with the IT department?

Participants

Individuals involved in teaching software startups in universities.

Data Collection

Aside from contacting such individuals we knew beforehand, we searched for such
courses online and contacted the teachers.

Data Analysis

First, We fully analyzed each response individually. Then, we compared and com-
bined responses in order to find patters and interesting insights. Since we designed a lengthy
survey, we were more interested in quality rather than quantity.

150

Survey Presentation and Questions

Hello, we are a part of SSRN (Software Startup Global Research Network) and we
are running a research on Software Startup Education. If you teach startup development
related courses, your contribution will be really valuable to us. This survey is comprised
of less than 50 questions and it won’t take more than 15 minutes of your time.

Thank you,

Rafael Chanin, Dron Khanna, Kai-Kristian Kemell, Wang Xiaofeng, Rafael Priklad-
nicki, Afonso Sales, Pekka Abrahamsson

1. How old are you?

2. What is your Gender?

Male

Female

Prefer not to Answer

3. What is your highest degree? (For instance, PhD, MsC, BsC.)

4. Where do you teach and what is your job title? (Please, specify the university name
and your title - professor, tutor, etc.)

5. What is your background field?

Software Engineering

Information Systems

Business/Economics

Other

6. Have you ever been involved in a startup yourself? If yes, please tell us briefly about
this experience.

7. How many time has your startup course been held so far?

8. What is the name of the course? If possible, can you provide a link to the course
description online?

9. How does the course posit itself in the curriculum of your department or the university?
Which subject is it a part of? (Faculty of Computer Science, Engineering, Design,
Economics, etc.)

151

10. Who can participate in the course? Is the course open to all students or limited to
students of some majors, or even open to students from other universities (through
some kind of collaboration between Universities)?

11. Is the course mandatory or optional, and for whom?

12. Do the students work on a real startup during the course, or is the course focused
exclusively on theory?

13. Briefly describe the course (length, goals, how many hours per week, average number
of students, etc).

14. What are the main learning goals of the course?

15. Does the course have other goals, such as fostering student entrepreneurship? (For
instance, connecting students with other technology parks, investors, etc.)

16. How are student graded (project, exams, etc)? (If students work on a startup during
the course, how is the practical startup work graded?)

17. Do you follow a formal methodology to teach? If yes, what it is?

18. What tools are used during the course? (For instance, Business Model Canvas, Vali-
dation Board, or any software tool.)

19. Are the student startup teams multidisciplinary (e.g., one developer, one designer, one
business student per team) or can they comprise of any combination of students?

20. How large are the student teams ideally?

21. Is there a lower limit for team size? If yes, what is it and what it the reason for that
limit?

22. Is there an upper limit for team size? If yes, what is it and what it the reason for that
limit?

23. How many teachers/instructors are involved in the course? Please briefly describe
their roles.

24. Are there outside practitioners involved as mentors or visiting lecturers? If yes, please
describe their role in the course.

25. How is the progress of the student startup teams tracked during the course?

26. Why have you chosen to teach the class this way? Have you tried something in the
past that did not work, for instance?

152

27. Based on your experiences with the course or course feedback, what have you learned?
What has worked and what has not? Do you plan on changing the course in the future
based on the feedback?

28. Describe the ideation process. Do students come up with their own ideas or are they
given ideas?

29. Are student startups created for educational purposes only or are they potentially real
startups? Can students who are already involved in a startup participate in the course
using that startup to do so?

30. How do the students validate their ideas? What processes or tools do they use?

31. Is pivoting a part of the process? If yes, how do the students know when to pivot?

32. How do the students in the course generally market their idea?

33. What startup-related deliverables are required to pass the course? What is required of
the startup during the course?

34. Are ideas pitched during the course? If yes, in what setting (e.g., course event, practi-
tioner event)?

35. Has the course spawned any successful real world startups? If yes, please briefly
describe these startups.

36. Is it common for students to keep working on their startup after the course ends? Is
there any help they can receive from the people involved in the course if they wish to
do so?

37. Are students expected to spend money on their startups? Are they provided with funds
or are they expected to use their own funds?

38. Is the course somehow connected with the Computer Science/Software Engineering/IT
department? If yes, how so?

39. Is there any specific Computer Science/Software Engineering pre-requisite to take the
course? If yes, what are they?

40. Is there specific Computer Science/Software Engineering content taught in the course?
If yes, can you specify them?

41. Do students need to develop a real piece of software?

If so...

What software development methodology is used?

153

What language/framework is used?

What platform (e.g. Android, iOS, web) is used, or are the students free to choose
one?

How are software requirements gathered?

Do they set up an analytics to measure conversions? If not, do they measure it
some other way?

Does the course include teaching software development practices, or are students
expected to know all the required skills and tools beforehand?

42. Do students need to develop a prototype using existing tools (such as WIX, or Word-
Press)?

If so...

Which tools do the students use?

Do they set up an analytics to measure conversions in their prototype? If not, do
they measure it some other way?

Are there any limitations in using these tools or students can get around in terms
of the evolution of the solution?

43. Any other comments or information you believe it is important to provide?

154

155

APPENDIX C – TEACHING SOFTWARE STARTUPS USING CBL
RESEARCH PROTOCOL

Study Protocol

Goal

Identify strength and weaknesses when using Challenge Based Learning in a soft-
ware startup course.

Study Design and Methodology

We have designed a case study in which we observed students during their activi-
ties.

Research Questions

• Does CBL help engaging students when working on software startup projects?

• What are the strength and weaknesses of such methodology when teaching software
startups?

Participants

• 30 students from an undergraduate software startup entrepreneurship course.

• The instructor of the course.

Data Collection

Data was collected from students’ deliverables (reports and presentations) as well
as from reflections (which is a component of the CBL framework). Reflections were done
individually and privately by students and the instructor. At the end of the course a question-
naire was also applied to students.

Data Analysis

The data analysis conducted employed mainly thematic analysis, following the
scheme proposed by Braun and Clarke [BC06].

156

Final Questionnaire

1. You have an idea for a startup. How would you plan the development and validation
processes?

2. Which steps would you propose in order to develop this project?

3. In your opinion, what are the critical steps involved in this process?

4. I believe that it is mandatory to explore the problem before start the development of the
product.

Totally agree

Partially agree

Indifferent

Partially disagree

Totally disagree

5. I believe that the final product should be developed along with the definition of the
problem.

Totally agree

Partially agree

Indifferent

Partially disagree

Totally disagree

6. I believe that the project development should be done in a sequencial order, such as,
problem definition, validation, and product development.

Totally agree

Partially agree

Indifferent

Partially disagree

Totally disagree

7. I believe that is mandatory to review the previous steps during product development,
as new demands and needs appear.

Totally agree

Partially agree

157

Indifferent

Partially disagree

Totally disagree

8. I believe that potencial users should participate in the development of the product.

Totally agree

Partially agree

Indifferent

Partially disagree

Totally disagree

9. I believe that all steps of a product development should happen simultaneously, such
as problem definition, validation, and product development.

Totally agree

Partially agree

Indifferent

Partially disagree

Totally disagree

10. I believe that a startup should be development with an interdisciplinary team.

Totally agree

Partially agree

Indifferent

Partially disagree

Totally disagree

11. I believe that a successful project is the one with a lot of customers.

Totally agree

Partially agree

Indifferent

Partially disagree

Totally disagree

12. I believe that before the development of a product it is mandatory to analyze customers’
needs.

Totally agree

158

Partially agree

Indifferent

Partially disagree

Totally disagree

13. I believe that a successful project has more quality in terms of software than its com-
petitors.

Totally agree

Partially agree

Indifferent

Partially disagree

Totally disagree

14. I believe that a successful project is the one with a relevant problem to be solved.

Totally agree

Partially agree

Indifferent

Partially disagree

Totally disagree

