
Behavior-Driven Development - A case study on its impacts on
agile development teams

Nicolas Nascimento
PUCRS, School of Technology

Porto Alegre, RS, Brazil

nicolas.nascimento@pucrs.br

Alan R. Santos
PUCRS, School of Technology

Porto Alegre, RS, Brazil

alan.ricardo@acad.pucrs.br

Afonso Sales
PUCRS, School of Technology

Porto Alegre, RS, Brazil

afonso.sales@pucrs.br

Rafael Chanin
PUCRS, School of Technology

Porto Alegre, RS, Brazil

rafael.chanin@pucrs.br

ABSTRACT

Software development practices which enhance software qual-

ity and help teams better develop collaboratively have received

attention by the academic community. Among these techniques

is Behavior-Driven Development (BDD), a development method

which proposes software to be developed focusing primarily on

its expected behavior. In this context, this paper investigates how

BDD impacts agile software development teams. In order to achieve

this, we have conducted a case study on a mobile application de-

velopment environment which develops software using agile. In

total, 42 interviews were performed. Our results indicate that BDD

can have positive impacts, increasing collaboration among team

members, and negative impacts, like difficulties in writing unit tests.

We concluded that BDD has more positive than negative outcomes.

CCS CONCEPTS

• Social and professional topics→ Software engineering ed-

ucation; • Applied computing → Interactive learning envi-

ronments; Collaborative learning.

KEYWORDS

Software Engineering, Behavior-Driven Development, Agile Devel-

opment, Challenge Based Learning

ACM Reference Format:

Nicolas Nascimento, Alan R. Santos, Afonso Sales, and Rafael Chanin. 2020.

Behavior-Driven Development - A case study on its impacts on agile de-

velopment teams. In IEEE/ACM 42nd International Conference on Software

Engineering Workshops (ICSEW’20), Oct 5–11, 2020, Seoul, Republic of Korea.

ACM, New York, NY, USA, 8 pages. https://doi.org/10.1145/3387940.3391480

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ICSEW’20, Oct 5–11, 2020, Seoul, Republic of Korea

© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-7963-2/20/05.
https://doi.org/10.1145/3387940.3391480

1 INTRODUCTION

The adoption of agile development makes software processes more

flexible. If requirements or technology change, this methodology

makes it easier to adapt and learn in order to keep delivering value

to customers. Moreover, agile development focuses more on the

human aspects of software engineering rather than its processes [7].

In addition, studies have shown that many factors play a role in

developing software [15], among of which are human factors [11].

In this fast-changing environment, maintaining reliability and

efficiently collaborating with stakeholders have been a few of the

industry challenges and have led to the emergence of some develop-

ment techniques, among of which is Behavior-Driven Development

(BDD) [14]. BDD is a series of software development practices,

proposed by Dan North [14], which aims at helping software de-

velopment teams to build software which is both more reliable and

more aligned with the needs of customers.

In order to further understand the impact of BDD in agile soft-

ware development teams, we have performed a case study in a mo-

bile application development course. The course teaches students

using an active learning framework, Challenge Based Learning [13].

Our preliminary results indicate that BDD can have many positive

impacts, such as better collaboration among team members and

some negative impacts, such as difficulties in writing unit tests.

The remainder of this paper is organized as follows. Section 2

briefly contextualizes important concepts. In Section 3, we present

the scientific approach used for obtaining, evaluating and analysing

of the collected data. Following this, Section 4 depicts the results and

Section 5 presents a brief discussion and highlights some important

findings. Section 6 describes some threats to the study. Finally,

Section 7 concludes the paper with some final thoughts and future

work.

2 BACKGROUND

As agile is a more common theme in software engineering research,

we have chosen to give a special focus on the two specific aspects of

this work. Thus, appropriate background only about these themes

is provided as follows.

2.1 Challenge Based Learning (CBL)

Teaching students can be done inmultiple ways. Traditionally, learn-

ing is mostly based on lectures, a teacher-centered approach which

109

2020 IEEE/ACM 42nd International Conference on Software Engineering Workshops (ICSEW)

usually provides low levels of interaction. On the other hand, active

learning is an approach that proposes high levels of interaction and

stimulates students to perform not only low-order cognitive tasks,

such as reading and writing, but also high-order ones, including

debating, analysing and decision making [1, 6, 9].

There are several active learning methodologies that have been

used in an educational setting. Problem Based Learning, Project

Based Learning, Task Based Learning and Challenge Based Learning

are just a few examples of these frameworks. “The foundations of

experiential learning can be found within the history of most cultures,

but were formally organized and presented by David Kolb drawing

heavily on the works of John Dewey and Jean Piaget” [18]. Challenge

Based Learning (CBL) [13] is a learning framework based on solving

real world challenges.

The CBL process begins with the definition of a big idea, which is

a broad concept that can be explored in several ways. The big idea

has to be engaging and important to students. Once the big idea is

chosen and the essential question is created, then the challenge is

defined. From this point, students must come up with the guiding

questions and guiding activities and resources, which will guide

them to develop a successful solution. The next step is analysis,

which will set the foundation for the definition of the solution. Once

the solution is agreed upon, the implementation begins. Finally,

evaluation is undertaken in order to check out the whole process

and verify if the solution can be refined.

The CBL framework is flexible. In this sense, a wide variety of

topics can be taught through CBL, including mobile application de-

velopment (MAD), and it can be integrated with other frameworks,

including Scrum and Lean.

2.2 Behavior-Driven Development (BDD)

Dan North [14] stated that BDD is a conjunction of multiple al-

ready existent concepts, which can be used together to help the

development cycle. BDD is also sometimes associated with another

development methodology called Acceptance Test-Driven Develop-

ment (ATDD)[8], which also augments TDD[2].

As a development methodology, BDD emphasizes test cases

which are written in a common language, derived from Domain

Driven Design [5]. The specification of these test cases is done using

scenarios (also known as BDD Scenarios), which should describe

features of a system.

BDD Scenarios are used to further enhance the descriptive ca-

pabilities of user stories, which are commonly used as lightweight

requirements specification in agile software development. Regard-

ing formatting for specifying these scenarios, a structured language

is usually applied, known as Gherkin [3]. Figure 1 shows a possible

template, based on Gherkin, which can be used to specify scenar-

ios. Besides on its description, and based on this template, BDD

scenarios can be split into three core elements: Given,When and

Then.
(1) Given: The context assumed for this scenario execution, e.g.: “Being logged
in” or “Being on the home screen”.

(2) When: An action or event which happens given the provided context, e.g.:
“Press the login button” or “Type a character”.

(3) Then: The expected outcome of the system for the provided action and context,
e.g.: “Present a success alert” or “Redirect to Home Screen”.

In addition to this, each element can have additional context.

This is expressed in the template by the word “AND”.

Figure 1: An example template based on [19] for specifying

scenarios

In terms of key characteristics associated with BDD, Solis et al.

[20] defined a few key characteristics which are inherent to BDD.

Highlighting a few of those, BDD is composed of:
(1) Ubiquitous Language - During development, stakeholders and the develop-
ment team should be able to cooperate and communicate using a common
language. This language should contain enough terms so that any idea re-
garding the software product under development could be discussed. This
can be done by establishing a dictionary at the beginning of the project.

(2) Iterative Decomposition Process - Development should happen iteratively
with provided time slot as in the beginning of the development process both
the customer and the development team are not certain about the requirements
of the software being developed.

(3) Plain Text Description with User Story and Scenario Templates - Re-
quirements specification in BDD should be performed using user stories
augmented by BDD-scenarios. These specifications can be written in plain
text and are only required to follow a pre-defined template, provided by the
framework.

(4) Automated Acceptance Testing with Mapping Rules - After extracting
behavior using stories augmented with scenarios, it becomes a task for the
development team to properly translate this behavior into actionable tests.
Ideally, these tests should be easily created from the plain text specification.
This is usually achieve by using a BDD development toolkit.

(5) Readable Behavior Oriented Specific Code - When implementing the
requirements specified previously, the generated code (methods, classes, etc)
should indicate what its purpose is clearly. This implementation code should
describe behavior and follow the ubiquitous language defined for the project.

In this context, our goal is to investigate the impact of BDD

in agile software development teams. We have applied BDD in a

two years mobile application development course that uses CBL to

create real world projects. All the projects were executed by agile

software development teams.

3 METHODOLOGY

In order to understand the impact of BDD in agile software devel-

opment teams, we have performed a case study in the two-year

mobile development course that teaches iOS, tvOS and watchOS de-

velopment to undergraduate students. During the course students

learn through CBL challenges as described by Nichols et al. [13].

Students are introduced to the development ecosystem of Apple

platforms and learn by working on real world problems. Besides

that, students can choose to focus on development or design aspects

of mobile application development. They are expected to dedicate

20 hours per week at course activities.

As a research method, case studies can be used for software

engineering research, as they allow the understanding of a certain

phenomena in its natural occurring context [17] and are suited to

evaluate a method and tool [10].

As our goal was to understand the impact of BDD, with few

hypothesis being previously established, we have chosen to conduct

an exploratory study. As such, case study methodology is suited to

110

be used as it enables the research to extract new insights and ideas,

to understand what is happening and to generate new hypothesis

for other researches [17].

3.1 Case Study Protocol

Our protocol follows the guidelines proposed by Kitchenham et al.

[10]. Thus, the objective of this case study is to identify some of

the benefits and challenges of using BDD in agile software

development teams. In this sense, this paper aims at answering

two research questions:

• RQ1: “What are the positive impacts of developing software

using BDD?”

• RQ2: “What are the negative impacts of developing software

using BDD?”

3.2 Data Collection

Regarding data collection, we have chosen to collect our data

through semi-structured interviews [16]. The total number of inter-

views was 42. These 42 interviews were performed in two different

stages in the case study: before using BDD (e.g., pre-BDD) and af-

ter using BDD (e.g., post-BDD). The interviews conducted in both

stages were aided by interview questions. The pre-BDD interviews

helped us to establish a baseline against which to compare the

results of using BDD. These interviews were conducted right af-

ter teams had finished developing software in the context of CBL

Nano-Challenge (e.g., 1 week long). Thus, the post-BDD interviews

helped us assess the benefits and challenges of developing software

using BDD.

Participants in the study had been attending the course for six (6)

months and thus had had the chance to work in software develop-

ment projects using agile. In addition, some students had previous

professional experience developing software.

The average team size in which the participants had worked on

was 3.3334. Furthermore, most teams were working together for

the first time.

It is also relevant mentioning that the CBL Nano-Challenges

performed by participants followed the conceptual model proposed

by Santos et al. [18]. In this model, students first perform the initial

phases of CBL and then use the Scrum framework for developing a

software solution.

Aside from the demographic questions, the interview questions

used in this case study are presented in Table 1. It is important to

note that questions which required the interviewee to know BDD

were only asked in the post-BDD stage.

In an attempt to understand the impacts of BDD in each part

of the software development lifecycle, we have split the interview

questions into four groups, as follows:
(1) Questions 1, 2 and 3 - These questions focus on the project requirements
phase, addressing elicitation, specification and the impact of BDD in this
phase.

(2) Questions 4, 5 and 6 - These questions focus on feature development. A feature,
as defined by Coad [4], is as function which is valuable for the client and which
can be developed in up to two weeks. In our context, feature development
indicates the process of proving an implementation for a feature. As such,
they address the presence of ambiguities during the understanding of features
which suffered changes and the impact of BDD in this phase.

(3) Questions 7, 8, 9 and 10: These questions focus on implementation quality.
More specifically, they address overall quality, number of bugs, documentation
and the impact of BDD in this phase.

(4) Questions 11 and 12: These questions address the overall impact of BDD, for
the entire development lifecycle.

Table 1: Interview questions

Question Phases

1 How did you elicit the project requirements? Pre + Post

2 How did you specify the project requirements? Pre + Post

3 What was the impact of BDD in the requirements elicita-
tion/specification?

Post

4 Was there any ambiguity in the requirements? Pre + Post

5 Was there any requirement developed which was very differ-
ent or completely modified?

Pre + Post

6 What was the impact of BDD in the process of translating
requirements to actual functionalities?

Post

7 How was the project in terms of code quality? Pre + Post

8 How was the project was in terms of bugs? Pre + Post

9 How did you document functionalities of the project? Pre + Post

10 What was the impact of BDD in the implementation? Post

11 What are the main benefits of developing using BDD? Post

12 What are the main challenges of developing using BDD? Post

In order to avoid biases, we have begun our data collection with

this pre-BDD stage. This stage had a total of 27 interviews. The

first 6 interviews were meta interviews, serving exclusively as a

pilot study to improve the quality of the questions being used for

actual interviews. This 6 interviews have enabled us to perform

small improvements to the interview questions. After this, we have

conducted 21 actual interviews. During this process, each partici-

pant was given the full context of the research and was told that

participation was voluntary and it had no impact on their internal

assessment process. Besides that, all interviews had their audio con-

tent recorded. This process, performed in both stages, is illustrated

in Figure 2.

Figure 2: Process used to obtain results from interviews

The pre-BDD stage interviews were performed right after teams

had developed software in the context of a CBL Nano-Challenge,

which lasted one week. Teams developed software using agile and

no interference was performed.

In the post-BDD stage, we have also conducted 27 interviews.

Maintaining the improvement procedure used in the first stage,

we have conducted 6 meta interviews in a pilot study. These meta

interviews, besides helping to improve the overall quality of ques-

tions in our interview questions, helped us to add two additional

questions at the end of the interview. These additional questions

directly address the benefits and challenges of using BDD. After

adding these questions, we proceed to conduct the next 21 inter-

views. We have performed the same procedures as the pre-BDD

stage and these interviews were recorded as well.

The post-BDD stage interviews were performed right after teams

had developed software in the context of a CBL Nano-Challenge

(different from the pre-BDD stage). Teams were introduced to BDD

111

practices through lecturing and practical activities before starting

their Nano-Challenge. At any time during the development phase of

the projects, participants could reach to a senior instructor in case

any doubts or questions aroused. In this context, the BDD-scenarios

were created in any tools participants were comfortable working

on. The only restriction was related to the executable specification

aspect of BDD, in which case Quick1 & Nimble2 were used, due to

their iOS-specific nature.

Another important point is the distribution of participants in

the interviews. We have created three groups in which participants

were distributed. The first group had 10 people whose participation

was restricted to the pre-BDD interviews. The second group had

11 people and its participants were interviewed in both interview

phases. The third group had 10 people who were only interviewed

in the post-BDD phase. Figure 3 illustrates the distribution of par-

ticipants in the interviews.

Figure 3: Distribution of participants in the two interviews

phases

These groups aimed at increasing the insights generated and

allowed us to reduce any bias that the participants might have

towards the interviews questions.

After obtaining the results from both pre-BDD and post-BDD

phases, we have proceeded to the analysis phase. The analysis per-

formed was qualitative and followed the guidelines proposed by

Runeson and Höst [17]. Our analysis aimed at generating hypothe-

sis from the data, thus, we had little to none prior hypothesis.

In this phase, we first performed transcription of the audio

recorded in the interviews. In total, we have generated 8 hours, 17

minutes of recorded material. The transcripts from these recording

generated 20.207 words. We have chosen to perform this process

manually. This was performed as it gives the researcher the oppor-

tunity to further extract insights from the interview data during

the transcription process. These transcription were arranged in a

spreadsheet to ease the analysis process.

Using the spreadsheet, we began further analysis of the data.

The analysis was done using two strategies: clustering and catego-

rization. We first clustered answers which presented similar results,

counting the number of occurrences. Afterwards, the generated

clusters were categorized (which could be one or more). As a final

step, we have grouped similar categories. These strategies were

used for both pre-BDD and post-BDD results.

1github.com/Quick/Quick
2github.com/Quick/Nimble

Finally, using the available data and generated analysis, we were

able to extract insights from the data. The results of our analysis

are presented in the following section.

4 RESULTS

From a demography standpoint, all participants were actively at-

tending undergraduate courses (they were around the 5th and 6th

semester). Their average age is 23.9 years old, and all participants

have less than 2 years experience in software development (having

at least six months of experience on software development).

Following demographyc results, we proceed to gather results

from the interviews. In order to ease analysis, we have split our

results into four groups:

(1) Project requirements - The process of elicitation and specification of project
requirements;

(2) Feature development - The process of translating project requirements in
actual implementations;

(3) Implementation quality - The overall quality of code being developed;
(4) BDD impact - The reported impact of BDD in the development process, both
positive and negative.

4.1 Project Requirements

In terms of project requirements, we have first assessed the reg-

ular processes used by development teams and then performed a

comparison of these processes after the introduction of BDD.

These was done by analysing the first three (3) questions of the

interviews as they directly address aspects such as elicitation and

specification of requirements. It is important to note that the last

question, from this group of three, was only answered by partici-

pants who were interviewed in the post-BDD phase.

4.1.1 Elicitation. Prior to the introduction of BDD, the most re-

ported (10 out of 21) way in which requirements were elicited by the

teams was by building up on an individual idea of a team member

who had an app idea prior to the team formation. The second most

used technique was by properly understanding scope limitations,

such as the timeframe.

After the introduction of BDD, the most reported (13 out of

21) way for requirements elicitation did not change and was still

by following an individual idea from a team member. However,

the second most reported way was through the interaction of team

members (12 out of 21). This may indicate that BDD promoted more

interactions among team members, thus helping in the elicitation

process. However, this is just an indicative, as some reports are

complementary to others and could be used in conjunction.

4.1.2 Specification. Prior to the introduction of BDD, participants

reported using many different techniques in order to specify soft-

ware requirements. The threemost reported oneswereVerbalization

(9 out of 21), where requirements were not specified in any written

format and were only defined through conversations, Unstructured

annotations (7 out of 21), where requirements were specified us-

ing an informal written format, and To-do lists (5 out 21), where

requirements were specified by defining the tasks which would be

performed directly. One interesting results from this phase was that

only two (2) participants reported using lightweight specification,

such as User Stories.

After the introduction of BDD, every participant performed their

specification using User Stories and Scenarios. One interesting

112

result from this interview phase was that participants found it

difficult to understand that scenarios were augmentation of user

stories and some reported thinking scenarios encompassed user

stories.

4.1.3 Requirements - BDD Impact. Regarding the specific impact of

BDD in the project requirements phase, participants have reported

many positive aspects and some negative aspects.

Starting by the positive aspects, the three most reported positive

aspects were feature clarification, where both team and individual

found it easier to correctly understand what was supposed to be

developed, ease of development, where the overall software devel-

opment process was facilitated, and project alignment, where the

team managed to develop a common idea of the project.

In terms of negative aspects, participants reported four (4) as-

pects, which were lack of impact, poor execution, initial confusion

and difficulty to change development mindset. The number of nega-

tive reports, in general, was low (5 reports, against 31 positive).

4.2 Feature Development

Following a similar procedure to the previous section, we have first

assessed how participants performed the translation of require-

ments when implementing features in their regular process. After

that, we compared the results from this stage with the ones from

post-BDD.

This step was performed by analysing the answers of three ques-

tions from the interview questions (questions number 4, 5 and 6).

It is important to mention that the last question analysed in this

subsection was only answered by participants of the post-BDD

phase.

4.2.1 Ambiguity. Prior to the introduction of BDD, the majority of

the participants (16 out of 21) reported that their projects had some

type of ambiguity when translating the requirements into concrete

features. The most frequent types of comments on the ambiguities

were that they were related to the application mechanics (5 out of

16), had low impact on the development process (5 out of 16) or

were related to the application interaction.

After the introduction of BDD, there were less reported ambigu-

ities, with the most frequent report (13 out of 21) being that there

were not ambiguities in the translation process. In addition, the

ambiguities reported by the some participants was related to the

creation of BDD scenarios, the creation of tests and implementation.

4.2.2 Feature Changes. In terms of features which were specified

and changed during the development process, while in the pre-

BDD phase, the majority of the participants (11 out of 21) reported

not having changed any of the specified features. The remaining

participants reported that their project changed during the develop-

ment phase. Some of these changes included application mechanics,

technological limitations and design updates.

In the post-BDD phase, results were similar. Not changing any

aspect of the features remained the most reported item by the

participants (13 out of 21), followed by changes in the BDD scenarios

and the creation of new scenarios.

4.2.3 Feature Development - BDD Impact. Regarding the specific

impact of BDD in this phase of development, results are very diverse.

Participants described a total of 13 different positive aspects and 9

negative aspects. These aspects are presented in Table 2 and Table 3

respectively. It is important to note that these results were obtained

only from the post-BDD interviews.

Table 2: Positive aspects reported by participants

Aspect Occurrences

Better understanding of features 8

Ensure correct execution 4

Team alignment 2

Reduction of unexpected changes 2

Reduction in implementation problems 1

Broader vision 1

Improvement in the development process 1

Facilitation in the requirements communication process 1

Project guide 1

Facilitation in the development process 1

Reduction in re-work 1

Reduction in user story breakdown difficulty 1

Facilitation of communication among team members with
different expertise levels

1

Table 3: Negative aspects reported by participants

Aspect Occurrences

Difficult to execute 3

Difficult to adopt initially 1

More suited for large projects 1

Meaningless 1

Equivalent to a User Story 1

Value only visible at the end of the process 1

Need for previous planning 1

Easy for some scenarios, difficult for others 1

Low gain (considering learning curve) 1

4.3 Implementation Qualtiy

To address implementation quality, we have followed a similar

procedure to the two previous steps, comparing the pre-BDD and

post-BDD reports regarding this specific aspect.

This step of the analysis considered results from four questions

of the interview questions (numbers 7, 8, 9 and 10). As with the

other phases, the last question was only answered by participants

in the post-BDD phase.

4.3.1 Overal code quality. In order to assess the impact of BDD in

the implementation quality, we have gathered the overall reported

code quality of participants prior and after the introduction of BDD.

This generated a three categories (good, average and bad), which

summarize reports of the participants. As some of participants did

not directly state their implementation quality, we have used the

overall report as a matching mechanism to associate the report with

one of the generated categories. Table 4 presents the distribution

of overall reports from participants.

4.3.2 Bugs. In terms of number of reported bugs, prior to the

introduction of BDD, the majority of the participants reported code

had either many bugs or some bugs (14 out of 21). In the post-BDD

phase, results were somewhat similar, with a slight diminish in the

113

Table 4: Code quality reported by participants

Overall Qualtiy Pre-BDD Post-BDD Difference

Good 6 11 +5

Average 8 6 -2

Bad 7 4 -3

number of reports of many bugs and a slight increase in the reports

of no bugs. Table 5 presents a comparison of the results from these

phases.

Table 5: Bug category for projects

Overall Qualtiy Pre-BDD Post-BDD Difference

Many bugs 9 5 -4

Some Bugs 8 9 +1

No Bugs 4 7 +3

4.3.3 Documentation. In terms of documentation used during the

development of projects, in the pre-BDD interviews, the vast major-

ity (19 out of 21) of participants used some type of documentation.

However, the most reported type of documentation was code com-

ments. The results for this phase are presented in Table 6.

Table 6: Documentation types reported (Pre-BDD)

Type Occurrences

Code comments 15

Code 8

List of tasks 3

No documentation 2

Product Backlog 1

Diagrams 1

In the post-BDD phase, results have changed slightly. Among

of these changes is the usage of BDD Scenarios as documentation

(6 reports out of 21). The results from these phase are present in

Table 7.

Table 7: Documentation types reported (Post-BDD)

Type Occurrences

Code comments 9

BDD Scenarios 6

Executable Specifications (BDD Tests) 5

User stories 5

No Documentation 4

List of tasks 1

4.3.4 Implementation Quality - BDD Impact. Finally, in order to

generate a broad vision of the impact of BDD in the implementa-

tion quality, we have used question number 11 of the interview

questions. Participants reported many positive (16) and negative

(14) influences of BDD in the implementation. Tables 8 and 9 re-

spectively present the positive and negative aspects reported by

participants.

One interesting result from this question was that the majority

of those who reported negative aspects of BDD did not think it is

bad. Rather, they report not being able to properly use it.

Table 8: Positive impacts of BDD in implementation

Item Occurrences

Improvement in implementation quality 5

Organization & Planning 5

Clear implementation 3

Facilitated implementation 2

Right (client expectations) implementation 2

Reduction in re-work 2

Reduction in ambiguities 1

Modularization 1

Custom execution 1

Simultaneous Development and Testing 1

Correct (functional) implementation 1

Product-oriented vision 1

Improvement in task division 1

High-level of impact in implementation 1

Perception of the need for good scenarios 1

Suited for documentation 1

Table 9: Negative impacts of BDD in implementation

Item Occurrences

No changes 3

Meaningless 2

Poor tests 2

Difficult in terms of UI 1

Difficult for unexperienced developers 1

Project too simple for BDD 1

Bigger projects can benefit more 1

Other paradigms provide better guidance 1

Low impact 1

Slower implementation 1

Testing becomes difficult 1

High learning curve 1

Lack of team commitment (to BDD) 1

Lack of time 1

4.4 BDD Impact

Finally, regarding the perceptions of BDD, we have gathered results

from the last two (2) questions of the interview questions performed

with participants. These questions were only performed in the

post-BDD phase, as participants had been asked specific questions

about their perception of BDD. In this sense, Table 10 presents the

positive aspects of BDD reported by participants. In contrast, Table

11 presents the reported negative aspects of BDD.

5 DISCUSSION

The results from our case study present a view of the impact of

introducing BDD to the development lifecycle of agile software

development teams in the context of a software development course.

Aiming at answering the proposed research questions of this work,

we further discuss these results in the following subsections.

114

Table 10: Positive aspects of BDD

Aspect Occurrences

Better Comprehension of feature under development 4

Team alignment 3

Eased task division 3

Correct (functional) development 3

Right (client expectations) development 3

Reduction in ambiguities 3

Eased project comprehension 3

Clearer project 2

Eased project contextualization 2

Eased project organization 2

Faster development 2

Awareness of final product requirements 1

Conjunct development and testing 1

Eased project execution 1

Eased project testing 1

High market usage 1

Improved requirements 1

Improved documentation 1

Improved prioritization 1

Improved project planning 1

Value perception in larger projects 1

Automatic testing 1

Reduction in ’course’ changes 1

Table 11: Negative aspects of BDD

Aspect Occurrences

Tests writing 8

Test-driven development 8

Scenario creation 4

Initial process 3

Reduction in development time 3

Lack of experience with BDD 2

Small scope 2

Team engagement with BDD 2

Scenario comprehension 1

Up-front need of complete project comprehension 1

Team size 1

Task distribution 1

Scenario precision 1

Limitation in test amount 1

5.1 RQ1 - What are the positive impacts of
developing software using BDD?

The initial phases of development, where project requirements are

generated and specified, seems to have suffered positive influence.

An example is the report from participants about the elicitation

phase, where the second most used technique was the interaction

of team members. This result is aligned with proposed benefits

of BDD [19]. Moraes [12], in her master thesis, has found that

using BDD encourages team members to collaborate. This could

indicate that the elicitation process has changed due to the increase

in team member collaborations. In addition to this, participants

have reported multiple positive aspects which may be due to the

use of BDD, such as an increase in feature understanding.

Project requirement specification has also drastically changed

as, prior to the introduction of BDD, participants would most-likely

specify project requirements in informal ways, such as verbalization

and unstructured annotations. The combination of user-stories and

scenarios was the specification method used by all participants

in the second phase of interviews. This result is not particularly

surprising as participants were using BDD in their development

lifecycle and this specification method is proposed in the BDD

framework [19].

Reports from participants also indicate that the process of feature

development was improved. The majority of the post-BDD partici-

pants have reported a more clear understanding of the project after

adopting BDD. This could be connected with the reduction in the

number of ambiguities, which were also reported by participants

in the post-BDD phase.

In terms of implementation quality, BDD seems to have had

a positive impact on the development of projects. The most re-

ported positive aspect of BDD were its clarification of features

which need to be developed. This means that the development team

would spend less time debating a feature and more time actually

implementing it as the creation of scenarios, where everyone is

allowed to participate and contribute, helps to ensure a collective

understanding of the user stories.

Moreover, regarding the implementation process, results from

the documentation types reported show that both BDD scenarios

and BDD executable specifications were considered as documen-

tations by participants, even though code comments remained as

the main documentation type. One interesting result from this was

that no participant reported code as being the documentation of

the project, whereas 8 participants reported this in the pre-BDD

phase (Table 6).

Finally, analysing the results from the second to last question,

BDD seems to have helped teams develop software in multiple

ways. By allowing team members to better comprehend features

under development and by improving team alignment, BDD helped

teams have a clear vision of the project. Besides that, participants

reported felling their implementation was both correct, meaning

that it had less bugs and had a better overall organization. Finally,

another interesting result is an eased process of task division, a

common activity in agile teams.

5.2 RQ2 - What are the negative impacts of
developing software using BDD?

Regarding negative impacts of BDD, in the beginning of the de-

velopment lifecycle, there were negative aspects reported, with

problems being due to poor execution of BDD, initial confusion and

a difficult to change (we are excluding the inability to see value in

the methodology, which is probably related to lack of commitment

of the development team). A possible cause for these problems is

the fact the agile teams were using BDD for the first time and natu-

rally went though the learning curve of the framework. This should

also be considered for other negative impacts, as some might have

happened because some of the participants were using BDD for the

first time.

Results from the question related to the feature development

were similar in terms of quantity. The number of reported features

which did not change during development was very similar both in

the pre and post-BDD phases (an increase of 13 reports against 11).

In addition, participants reported having trouble to both create and

115

change BDD scenarios. This may indicate that the increased levels

of interaction among team members was not enough to decrease

the number of features which were not completely clear during

development. Furthermore, many of the negative aspects reported

by participants were related to lack of experience using BDD, which

could indicate more experience would remove this issue.

In terms of implementation, the BDD process seems to have

been difficult to be executed, as reported by some participants. In

addition to this, both the overall code quality and the number of

bugs seem to have improved from the process of BDD. However,

this is difficult to assume as there were no pre-established criteria

for those metrics and their reports could be subjetive to what a

participant take into account when classifying their code as “good”

or “bad”.

Finally, results from the last question, which directly addresses

the negative aspects of BDD, have shown that writing tests and

developing based on tests (a shared practice between BDD and

TDD) were the main challenges. In addition, the first experience

with BDD can be challenging, as the learning curve is somewhat

large. Furthermore, results indicate that developers have a feeling

where performing the processes of BDD, such as writing executable

specification and creating scenarios, can decrease the time of de-

velopment. Even with this, results indicate that participants were

able to perceive the value of these processes and are not completely

unhappy with them.

6 THREATS TO VALIDITY

Our study was conducted with a limited number of respondents

and from the same iOS development course. In addition, our results

are drawn based on participants viewpoint - students (development

teams), thus being a subjective opinion. Therefore, the results re-

ported in this study are dependent on the participants’ honesty,

perceptiveness and judgment.

It is also important to notice that part of project participants

were attending a training course without previous experience with

other software engineering practices and approaches. Also, as the

translation and coding processes were manually performed and

even ensuring they were correctly executed, errors could have been

made and consequently have influenced our results.

Finally, as both projects were performed sequentially and partic-

ipants were developing software in an education context, it is pos-

sible that the experience from the first project somehow improved

their development skills, changing their development practices.

7 CONCLUSION

This paper has performed an assessment of the impacts of BDD

in agile software development teams. The case study explored the

positive and negative impacts of BDD in a two-year mobile develop-

ment course where participants were working in an agile software

development environment.

We have found indicatives in our study that BDD can help de-

velopment teams in most of the phases of the software develop-

ment lifecycle. Project requirements creation may benefit as teams

showed more levels of interaction in contrast to when BDD was not

applied. During feature development, developers can benefit manly

by better understanding of feature encompasses. Quality imple-

mentation can also benefit as participants reported BDD improves

quality implementation and better documenting their projects.

However, inherent aspects of BDD, including writing tests and

creating scenarios has been reported as a challenge by participants.

In addition, lack of experience and commitment with BDD is a

possible influenced for this negative result.

Overall, our results indicate that BDD can provide more benefits

than harms to the development lifecycle and, as future work, wewill

perform another case study to address whether more experienced

developers can further improve the software development lifecycle

by using BDD.

REFERENCES
[1] K. Ahmad and P. Gestwicki. 2013. Studio-based Learning and App Inventor for

Android in an Introductory CS Course for Non-majors. In Proceeding of the 44th
ACM Technical Symposium on Computer Science Education (Denver, Colorado,
USA) (SIGCSE ’13). ACM, New York, NY, USA, 287–292.

[2] Kent Beck. 2003. Test-driven development: by example. Addison-Wesley Profes-
sional.

[3] David Chelimsky, Dave Astels, Bryan Helmkamp, Dan North, Zach Dennis, and
Aslak Hellesoy. 2010. The RSpec Book: Behaviour Driven Development with
Rspec. Cucumber, and Friends, Pragmatic Bookshelf (2010).

[4] Peter Coad, Jeff de Luca, and Eric Lefebvre. 1999. Java modeling color with UML:
Enterprise components and process with Cdrom. Prentice Hall PTR.

[5] Eric Evans. 2004. Domain-driven design: tackling complexity in the heart of software.
Addison-Wesley Professional.

[6] M. Fetaji and B. Fetaji. 2009. Analyses of mobile learning software solution in
education using the task based learning approach. In Information Technology
Interfaces, 2009. ITI ’09. Proc. of the ITI 2009 31st Int. Conf. on. 373–378.

[7] H. K. Flora and S. V. Chande. 2013. A Review and Analysis on Mobile Application
Development Processes using Agile Methodologies. International Journal of
Research in Computer Science 3, 4 (July 2013), 8–18.

[8] Markus Gärtner. 2012. ATDD by example: a practical guide to acceptance test-driven
development. Addison-Wesley.

[9] P. Gestwicki and K. Ahmad. 2011. App Inventor for Android with Studio-based
Learning. Journal of Computing Sciences in Colleges 27, 1 (Oct. 2011), 55–63.

[10] Barbara Kitchenham, Lesley Pickard, and Shari Lawrence Pfleeger. 1995. Case
studies for method and tool evaluation. IEEE software 12, 4 (1995), 52–62.

[11] Paul Luo Li, Andrew J Ko, and Jiamin Zhu. 2015. What makes a great soft-
ware engineer?. In Proceedings of the 37th International Conference on Software
Engineering-Volume 1. IEEE Press, 700–710.

[12] Lauriane Moraes. 2016. An Empirical Study on the Use of BDD and its Support to
Requirements Engineering. Master’s thesis. Pontifical Catholic University of Rio
Grande do Sul, Brazil.

[13] M. Nichols, K. Cator, and M. Torres. 2016. Challenge Based Learning Guide. Digital
Promise, Redwood City, CA, USA.

[14] Dan North et al. 2006. Introducing bdd. Better Software 12 (2006).
[15] Paul Ralph and Paul Kelly. 2014. The dimensions of software engineering success.

In Proceedings of the 36th International Conference on Software Engineering. ACM,
24–35.

[16] Colin Robson. 2011. Real world research. Vol. 3. Wiley Chichester.
[17] Per Runeson and Martin Höst. 2009. Guidelines for conducting and reporting

case study research in software engineering. Empirical software engineering 14, 2
(2009), 131.

[18] A.R. Santos, A. Sales, P. Fernandes, and M. Nichols. 2015. Combining Challenge-
Based Learning and Scrum Framework for Mobile Application Development. In
Proceedings of the 2015 ACM Conference on Innovation and Technology in Computer
Science Education (ITiCSE’15). Vilnius, Lithuania, 189–194.

[19] John Ferguson Smart. 2014. BDD in Action. Manning Publications.
[20] Carlos Solis and XiaofengWang. 2011. A study of the characteristics of behaviour

driven development. In 2011 37th EUROMICROConference on Software Engineering
and Advanced Applications. IEEE, 383–387.

116

