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Abstract— Resting-State functional magnetic resonance 

imaging (rs-fMRI) provides the assessment of some brain 

functions without tasks. Through rs-fMRI, it is possible to 

discover that the brain is organized in spatially distributed and 

interconnected brain regions. Studies suggest that aging and 

certain neurological or neuropsychiatric diseases affect brain 

connectivity, such as Alzheimer's disease (AD) and mild cognitive 

impairment (MCI). The general objective of this work is to 

investigate the evolution of the brain connectivity of individuals 

with healthy aging who convert to MCI, and individuals with MCI 

who convert to AD, using rs-fMRI and analysis based on graph 

theory (GT). The processing was implemented in SPM12-

MATLAB, and the analysis was performed in the CONN Toolbox. 

The GT metrics chosen to describe the main topological 

characteristics of the networks were: characteristic path length, 

global efficiency, local efficiency, clustering coefficient, and 

degree. Two main findings emerged from this study. When using 

GT metrics and analyzing healthy subjects converting to MCI, it 

was possible to observe a decrease in all GT metrics. Second, 

changes in GT metrics indicated a rupture in the functional 

connectivity when the cognitive decline occurs from healthy aging 

to MCI, and from MCI to AD. 

Keywords — brain connectivity, graph theory, AD, MCI. 

I. INTRODUCTION 

As in the early years of life, in aging, the brain undergoes 

notable changes as structure and function tend to decline. The 

decline is associated with cognitive skills and is common in 

healthy aging. However, the decline may be more pronounced 

due to some diseases, such as Alzheimer's disease (AD). AD is 

a neurodegenerative disease characterized by progressive 

impairment of memory and executive functions. It is the most 

common dementia associated with aging and affects millions 

of older people worldwide [1]. There is an intermediate stage 

between typical aging and dementia, known as mild cognitive 

impairment (MCI). Individuals with MCI are characterized 

mainly by impairments in learning and memory, although 

cognitive deficits are also frequent. An increasing number of 

studies have shown that these declines are related to changes 

in functional brain connectivity [2]. 

The diagnosis of AD is classically based on clinical and 

cognitive assessments and, in general, diagnosed individuals 

already have severe brain damage [3]. Therefore, resting-state 

functional magnetic resonance imaging (rs-fMRI) has been 

taking an important and promising role in the early detection 

of the disease. This imaging technique allows us to measure 

the brain's spontaneous activity and evaluate functional 

connectivity without tasks. Functional connectivity was 

defined initially as a temporal dependence on neural activity 

patterns, manifested by the BOLD signal (Blood Oxygen Level 

Dependent) from anatomically separated regions [4]. It allows 

neurons to display a wide range of physiological responses, 

distribute information, and coordinate activities over short and 

long distances [5]. Therefore, it is widely studied in the context 

of brain diseases and disorders that alter the individual's 

cognitive process, with AD being the one with the most 

significant changes.  

From rs-fMRI, it is possible to identify that the brain is 

organized in resting-state networks (RSNs), consisting of brain 

regions spatially distributed and interconnected, linked by 

long-distance structural connections [6]. Six RSNs were 

identified: Default Mode Network (DMN), visual network, 

sensory-motor, executive control, salience, dorsal and auditory 

attention. Studies showed that DMN has a decrease in 

functional connectivity associated with cognitively healthy 

aging [7, 8], is made up of regions known to be affected in 

prodromal AD. Studies suggest that certain neurological and/or 

neuropsychiatric diseases affect brain connectivity, such as 

MCI [10] and AD [11], multiple sclerosis (MS) [12], 

schizophrenia [13], depression [14] and autism [15]. 

Graph Theory (GT) is widely used to analyze brain 

connectivity since it allows the description as a single 

interrelated network. GT uses a wide variety of local and global 

network metrics to characterize brain network architecture [9]. 

The analysis of functional connectivity using rs-fMRI 

represents a new and promising approach to understand how 

neurodegenerative diseases can lead to connection interruption 

in brain networks [16, 17]. Quantification using GT can 

capture and compare variations in the brain network topology 
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of individuals with the disease concerning healthy participants 

[16, 18]. According to previous studies, a decrease in degree 

and global efficiency, and an increase in characteristic path 

length and local efficiency indicate a rupture or decrease in the 

functional connectivity in individuals with AD compared to 

healthy controls [2, 3, 5, 6, 9]. These variations provide 

connectivity characteristics that can be investigated in the 

context of a comparison between groups, producing new 

biomarkers for brain and mental disorders. However, the vast 

majority of studies use cross-sectional samples when analyzing 

AD progression. The assessment at one time-point might not 

represent how functional connectivity alters the brain 

topology, requiring more longitudinal studies to characterize 

the disease progression better. 

This work aims to investigate the evolution of the brain 

connectivity of individuals with healthy aging who convert to 

MCI, and individuals with MCI who convert to AD, using rs-

fMRI and analysis based on GT. 

 

II. METHODOLOGY 

A. Data 

Structural MRI and rs-fMRI data were collected from the 

public database ADNI (Alzheimer's Disease Neuroimaging 

Initiative). ADNI was launched in 2003 as a public-private 

partnership, led by Principal Investigator Michael W. Weriner, 

MD. ADNI's primary goal has been to test whether serial MRI, 

PET, other biological markers, and clinical and 

neuropsychological assessment can be combined to measure 

the progression of mild cognitive impairment (MCI) and early 

Alzheimer's disease (AD). 

The data contains longitudinal data from individuals who 

experienced disease progression throughout the study, who 

converted from one state to another. The conversions 

investigated in this study were from the healthy aging 

individuals (CN) to MCI (Group CN-MCI), and from 

individuals with MCI to AD (Group MCI-AD). Samples were 

divided into two conditions: when the acquisition was 

produced in the baseline, and later, the follow-up was acquired. 

The first condition refers to individuals before converting, that 

is, CN individuals from the CN-MCI group (CN1) and MCI 

individuals from the MCI-AD group (MCI1). The second 

condition refers to individuals who converted, that is, 

individuals from the MCI group of the CN-MCI (MCI2) and 

individuals from the AD group of the MCI-AD (AD2). Thus, 

we will have four conditions: CN1, MCI1, MCI2, and AD2. In 

total, five individuals were found to convert CN–MCI and five 

individuals to convert MCI–AD. 

The data were always selected from Siemens MRI 

equipment, with a tridimensional T1 -weighted (T1 3D) and 

without significant movement during the acquisition. 

 

B. Pre-processing 

All the processing steps, construction of the connectivity 

matrix, and calculation of graph metrics were performed using 

the CONN toolbox (http://www.conn-toolbox.org) 

implemented in the software Statistical Parametric Mapping 12 

(SPM12) in MATLAB. 

The first three images of each rs-fMRI acquisition were 

discarded to reduce the initial fluctuation of the BOLD signal 

[2,]. As the functional acquisition is acquired in an interleaved 

way, the slice time correction was performed to correct the 

time differences between the slices, and afterward, they were 

realigned. The purpose of the realignment is to remove mainly 

the motion artifact in time series, redirecting all images in 

relation to the reference slice. Participants with head 

movement above 1.5 mm or above 1.5° in rotation were 

excluded. Next, the coregistration between functional and 

structural acquisitions (T1 3D) was executed. The resulting 

images were normalized to the MNI space (Montreal 

Neurological Institute) and resampled in 2 mm isotropic 

voxels. Segmentation divided the brain into masks of gray 

matter, white matter, and cerebrospinal fluid (CSF). Images 

were smoothed by performing a spatial convolution with a 6 

mm Gaussian kernel and a bandpass filter 0.0008 - 0.09 Hz. 

After this initial pre-processing step, the confounding 

factors were regressed to reduce noise, which may include 

respiratory, cardiac movements, and residual effects of head 

movements present in the BOLD signal. Confounding effects 

included: the white matter and CSF noise components [20]; 

movement parameters using Friston model 24 [21]; and outlier 

scrubbing, used to remove any influence from outliers (voxels 

that are outside the values of the BOLD signal and are 

identified as noise) in the BOLD signal [22]. 

 

C. Construction Networks  

The RSNs were constructed using regions of interest (ROI) 

distributed throughout the brain. These regions were obtained 

by parceling the gray matter (excluding the cerebellum) from 

the rs-fMRI data pre-processed in thirty ROIs, using the 

cortical and subcortical areas of the Harvard-Oxford atlas. The 

thirty ROIs cover the following networks: 

• Default Mode Network (DMN): MPFC (medial prefrontal 

cortex), LP (bilateral parietal) and PCC (posterior 

cingulate cortex). 

• Sensory Motor: Bilateral and superior lateral. 

• Visual: bilateral, medial and occipital lateral. 

1515



• Overhang: ACC (anterior cingulate cortex), AI (anterior 

insula) bilateral, RPFC (rostral prefrontal cortex) bilateral 

and SMG (supramarginal gyrus) bilateral. 

• Dorsal attention: bilateral FEF (frontal eye fields) and 

bilateral IPS (intraparietal sulcus). 

• Frontal Parietal: LPFC (lateral prefrontal cortex) bilateral 

and PPC (posterior parietal cortex) bilateral. 

• Language: bilateral IFG (inferior frontal gyrus) and 

bilateral pSTG (superior temporal gyrus). 

For each individual, the time series of the BOLD signal was 

extracted from each ROI, and the correlation coefficients 

between the time series of each pair of all ROIs were calculated 

using Pearson's bivariate correlation. The correlation 

coefficients were converted into Z-scores normally distributed 

using Fisher's transformation. Thus, a functional connectivity 

matrix 30 x 30 elements (ROIs) was built. The value of each 

element of the matrix was the bivariate correlation coefficient 

of the Z transform, representing the node between each pair of 

the regions that define the edges. 

 

D. Graph Theory 

All values of the functional connectivity matrix were 

calculated using a certain threshold (K). According to a 

previous study [24], using intermediate threshold level K = 

0.15, GT metrics showed results with a high degree of 

reliability. Thus, graph metrics were calculated using K = 0.15 

and a p <0.05 in the connectivity matrix. The graph metrics 

chosen to describe the main topological characteristics of the 

networks were: characteristic path length, global efficiency, 

local efficiency, clustering coefficient, and degree [9].  

 

E. Statistical analysis 

Statistical analysis was performed in two stages. First, one-

sample Student's t-tests were calculated for individuals in the 

baseline condition (CN1 and MCI1) to determine the functional 

connectivity between networks and the graph metrics. Then, 

we used the analysis of variance (ANOVA) in the four 

conditions to examine the main effects of time in the group. 

The following hypotheses were evaluated: CN1 <MCI2 and 

MCI1 <AD2, to determine if there is an increase in both 

connectivity strength and metrics throughout longitudinal 

cognitive decline; CN1> MCI2 and MCI2> AD2 to determine if 

there is a reduction in both connectivity strength and metrics.  

 

III. RESULTS 

A. Demographic data 

The individuals' demographic data in this study are shown 

in Table 1 with the minimum and maximum age in years, 

formal education in years, and two cognitive tests: MMSE 

(Mini-mental State Exam) and the CDR-SB values (Clinical 

Dementia Ratio - Sum of Box Scores). 

 

 

 
Table 1 Demographic data of baseline and follow-up groups 

  Baseline Follow-up  Baseline Follow-up  

  CN MCI MCI  AD 

Age (years) 65.5 – 91.5 62.2 – 88.3 66.6 – 93.5 63.2 – 89.4 

Gender (M/F) 3/3 4/1 3/3 4/1 

Education 

(years) 
12 - 20 12 - 18 12 - 20 12 - 18 

MMSE 22 - 30 23 - 30 24 - 30 19 - 27 

CDR-SB 0 – 0.5 0.5 - 4 0 – 3.5 2.5 - 10 

Abbreviations: MMSE – Mini-mental state exam; CDR-SB - Clinical 

Dementia Ratio – Sum of Box Scores; CN – Controle; MCI – mild cognitive 
impairment; AD - Alzheimer; M – Male; F – Female 

 

B. Graph Theory 

Table 2 shows the highest correlations between the graph 

metrics and the networks in CN1 baseline condition. All 

network regions were identified in the metrics, totaling 100% 

connections. 

 
Table 2 Correlation between metrics and regions in CN1 baseline condition 

Metric Network t value p-FDR 

Global efficiency  Salience 41.22 0.000023 
Local efficiency Visual 109.78 0.000001 

Characteristic path length Salience 25.01 0.000228 

Clustering coefficient Visual 43.85 0.000024 
Degree Dorsal Attention 19 0.000678 

 

Table 3 indicates the highest correlations values between the 

graph metrics and the networks in MCI1 baseline condition. All 

network regions were identified in the metrics, totaling 100% 

connections. 

 
Table 3 Correlation between metrics and regions in MCI1 baseline condition 

Metric Network t value p-FDR 

Global efficiency  Visual 19.58 0.000212 
Local efficiency Salience 21.23 0.000536 

Characteristic path length Fronto Parietal 15.88 0.000726 

Clustering coefficient Visual 16.67 0.000587 
Degree Fronto Parietal 8.96 0.008164 

 

Comparing baseline and follow-up condition CN1 > MCI2, 

correlations indicate a reduction in all graph metrics, shown in 

Table 4. No correlations indicated an increase in graph metrics 

in the networks, meaning, in the comparison of baseline and 

follow-up condition CN1 <MCI2 no significant values were 

found (p <0.05). 
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Table 4 Comparison of graph metrics between CN1 and MCI2 groups. 

(CN1 > MCI2) 

Metric Network t value p 

Global efficiency  Visual 
Sensory Motor 

-2.19   
-2.16 

0.046905 
0.048176 

Local efficiency Visual 

DMN 
Dorsal Attention 

Salience 

-7.16 

-3.47 
-3.46 

-2.45 

0.009467 

0.036995 
0.020364 

0.045749 

Characteristic path length Fronto Parietal -3.39 0.038529 
Clustering coefficient DMN 

Visual 
Dorsal Attention 

Sensory Motor 

Salience 

-6.45 

-5.66 
-4.74 

-2.60 

-2.60 

0.011603 

0.014894 
0.008830 

0.040032 

0.010251 
Degree Salience 

Sensory Motor 

Language 
Visual 

-3.16 

-2.62 

-2.48 
-2.26 

0.017125 

0.029432 

0.034032 
0.043491 

 

Comparing baseline and follow-up MCI1 > AD2, the 

correlations indicate a reduction in networks using graph 

metrics were shown in Table 5. Comparing baseline and 

follow-up MCI1 < AD2, the correlations indicate an increase in 

networks using graph metrics were shown in Table 6. 

 
Table 5 Comparison of graph metrics between MCI1 and AD2 groups. 

(MCI1 > AD2 

Metric Network t value p 

Global efficiency  Fronto Parietal 

Visual 

Salience 

-6.18   

-3.36 

-2.30 

0.001741 

0.014162 

0.041666 
Degree Fronto Parietal 

Visual 

Salience 

-6.08 

-3.51 

-3.26 

0.001850 

0.012356 

0, 016061 

 
Table 6 Comparison of graph metrics between MCI1 and AD2 groups. 

(MCI1 < AD2) 

Metric Network t value p 

Local efficiency  Salience 
Visual 

5.25 
2.20 

0.017189 
0.046220 

Characteristic path length 

 
Clustering coefficient 

Fronto Parietal 

Visual 
Salience 

Visual 

3.40 

2.72 
5.67 

2.56 

0.013690 

0.026431 
0.014847 

0.031212 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A comparison of the representation of the global efficiency 

metric between CN1> MCI2 and MCI1 <AD2 can be seen in 

Fig. 1.  

 

 

Fig. 1 Representation of the global efficiency metric in the brain sagittal plan. 

The circles represent the nodes, and the bars are the edges (strength of 

connectivity between the ROIs). Superior: Comparing CN1 > MCI2. Inferior: 

Comparing MCI1 > AD2 

 

IV. DISCUSSIONS AND CONCLUSION 

This study aimed to investigate the evolution of brain 

connectivity in individuals with healthy aging who had 

cognitive decline, converting to MCI, and individuals with 

MCI who converted to AD, using rs-fMRI and GT. The 

findings suggest brain topologies of different networks in 

individuals converting from healthy aging to MCI and from 

MCI to AD. 

Two main findings emerge from this study. When using GT 

metrics, comparing only the conditions CN1 and MCI1 (Tables 

2 and 3) was possible to observe a decrease in all metrics. 

Second, both groups showed changes in metrics that indicate a 

rupture in the functional connectivity when the cognitive 

decline occurs (Tables 4, 5, and 6).  

The first finding refers to the baseline conditions, 

comparing Tables 2 and 3. A reduction was found in all graph 

metrics in individuals before converting to MCI2 (Table 2) and 

AD2 (Table 3), that is, the follow-up group. These findings of 

decreased metrics in individuals with AD agree with previous 

studies [25, 26]. However, no studies were found to assess 

longitudinal changes in individuals' functional connectivity 
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when the cognitive decline occurs using graph theory, as 

performed in this work.  

The second finding refers to the changes that occurred 

between the groups. Only a reduction in metrics graphs was 

observed in healthy aging subjects that convert to MCI (Table 

4). The average values of GT metrics, from the highest to the 

lowest reduction, are: clustering coefficient (t = -4.41), local 

efficiency (t = -3.79), characteristic path length (t = -3.39) 

degree (t = -2.57) and global efficiency (t = -2.18). In 

converting individuals MCI to AD; however, graph metrics 

showed a reduction (Table 5) in some metrics and an increase 

(Table 6) in others. The average values of the metrics that 

decreased with cognitive decline in this group were: degree (t 

= -4.04) and global efficiency (t = -3.8). There was an increase 

in the average values of the metrics: clustering coefficient (t = 

3.86), local efficiency (t = 3.73) and characteristic path length 

(t = 2.95). Thus, one observed that the cognitive decline 

presents a reduction of two metrics in both groups of 

individuals with advancing cognitive decline: global efficiency 

and degree. However, when the cognitive decline of the MCI 

group occurs, and subjects are considered with AD in follow-

up, some graph metrics increased. 

Analyzing MMSE and CDR-SB results, it is noted that there 

was practically no difference in the MMSE average compared 

to the baseline and follow-up group CN-MCI. The difference 

in diagnosis is due to CDR-SB values. When comparing the 

MCI-AD group at baseline and follow-up, there is a difference 

in MMSE and CDR-SB.  

Our results highlight a topology of the brain networks with 

several similarities found in other studies. However, the 

comparison of our results is limited to cross-sectional studies 

of individuals with AD and MCI. Such studies suggest that a 

more prominent topological alteration occurs in individuals 

with AD and intermediate in individuals affected with MCI 

[27, 28]. Tijms et al. [29] evaluated GT metrics in AD 

individuals compared with control individuals, showing an 

increase in characteristic path length and clustering coefficient 

and a decrease in global efficiency. These findings are 

consistent with the results found in our study. 

Other studies evaluating the efficiencies and the 

characteristic path length of graph metrics and the diseases of 

aging, found an increase in local efficiency, a reduction in 

global efficiency and an increase in the characteristic path 

length in patients with MCI and AD [30, 31, 32, 33]. The study 

by Yao and collaborators [27] determined the metrics of graphs 

comparing individuals with MCI and control individuals, 

showing no significant difference in clustering coefficient and 

characteristic path length, but there was a decrease in degree. 

Other studies [34,35] have shown that the functional 

connectivity of DMN in MCI and AD individuals suffer a 

rupture in connectivity by decreasing the clustering coefficient 

and increasing local efficiency and the characteristic path 

length. Our results showed a decrease in DMN in local 

efficiency and clustering coefficient in the CN-MCI group. In 

the MCI-AD group, no significant difference was found (p 

<0.05). Despite the consistency of our results with most 

studies, there are some divergences, particularly in the 

converter group of healthy aging who progress to MCI. 

However, as most studies do not carry out longitudinal 

monitoring of individuals, our results need to be confirmed 

through analysis with a larger sample.  

The importance of quantifying global and local efficiency 

metrics is related to the exchange of brain information both at 

an anatomical (local) or distant (global) level. High-efficiency 

networks ensure that brain regions effectively process and 

share specific information; simultaneously, these exchanges of 

information must be unified to create groups of brain states 

(networks). GT's metrics provide a quantitative view of the 

relevant network parameters that affect the performance of 

these networks, such as the speed of information transfer and 

the robustness of connection changes due to disease [36]. Brain 

networks characterized by a high degree, clustering coefficient, 

and low characteristic path length are related to a model of 

complex brain networks, which maximizes the efficiency of 

information propagation [24]. Comparing this information 

with our results and previous studies, we identified a rupture in 

functional connectivity in individuals who convert from MCI 

to AD. This rupture was identified by the increase in the metric 

of characteristic path length, local efficiency, and clustering 

coefficient, and a decrease in global efficiency and degree. In 

individuals who convert from controls to MCI, we find the 

opposite results in some metrics. It might identify a decrease 

in functional connectivity, but not as marked as the other 

group.  The group with the most significant difference in 

MMSE and CDR-SB averages is directly correlated with TG 

metrics' variations that identify rupture in connectivity. 

Regarding the longitudinal assessment of healthy aging who 

convert to MCI, one of the hypotheses for conflicting results is 

the fact that MCI is an intermediate level before DA, where the 

networks have not been significantly changed, so that they 

reflect in their metrics, as discussed in other studies [27, 28, 

29]. 

Besides, the main reason for the variations found in this 

study is the exclusive use of longitudinal data. Other studies 

have evaluated the brain's functional connectivity in the 

progression from MCI to AD [37, 38], but have not used graph 

metrics. Such studies have found disruptions in the brain 

networks, but it is impossible to characterize the brain topology 

of the functional networks completely without the information 

from the graph metrics data. 

The main limitation of this study is that it was carried out 

with a small sample size, which can mitigate the statistical 

power in detecting the differences between the groups in some 

of our measurements, mainly in the metrics of graphs. Thus, 
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further studies have to increase the number of subjects to 

validate our findings. 
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