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ABSTRAÇÕES DE PROGRAMAÇÃO DE ALTO NÍVEL PARA
PARALELISMO DE FLUXO CONTÍNUO DE DADOS EM GPUS

RESUMO

O crescimento e disseminação das arquiteturas paralelas têm conduzido a busca
por maior poder computacional com hardware massivamente paralelo tais como as unidades
de processamento gráfico (GPUs). Essa nova arquitetura de computador heterogênea
composta de unidade de processamento central (CPUs) com múltiplos núcleos e GPUs
com muitos núcleos se tornou comum, possibilitando novas aplicações de software tais
como carros com direção autônoma, ray tracing em tempo real, aprendizado profundo, e
realidade virtual (VR), que são caracterizadas como aplicações de processamento de fluxo
contínuo de dados. Porém, esse ambiente heterogêneo apresenta um desafio adicional para
o desenvolvimento de software, que ainda está no processo de adaptação para o paradigma
de processamento paralelo em sistemas com múltiplos núcleos, onde programadores têm a
disposição várias interfaces de programação de aplicações (APIs) que oferecem diferentes
níveis de abstração. A exploração de paralelismo em GPU é feito usando ambos CUDA e
OpenCL pela academia e pela indústria, cujos desenvolvedores precisam lidar com conceitos
de arquitetura de baixo nível para explorar o paralelismo de GPU eficientemente em suas
aplicações. Existe uma carência de abstrações de programação paralela ao: 1) paralelizar
código para GPUs, e 2) necessitar abstrações de programação de alto nível que lidam com
o paralelismo de CPU e GPU combinados. Infelizmente, os desenvolvedores precisam
ser programadores especialistas em sistemas operacionais e conhecer a arquitetura do
hardware para permitir a exploração eficiente de paralelismo. Como contribuição à primeira
carência, criou-se a GSPARLIB, uma nova biblioteca de programação paralela estruturada
para explorar paralelismo de GPU que provê uma API de programação unificada e um
ambiente de execução agnóstico ao driver da plataforma de hardware. Ela oferece os
padrões paralelos Map e Reduce sobre os drivers CUDA e OpenCL. O seu desempenho



foi avaliado comparando com APIs do estado da arte, onde experimentos revelaram um
desempenho comparável a eficiente. Como contribuição à segunda carência, estendeu-se a
linguagem específica de domínio (DSL) SPar, que já foi testada e provada como sendo de
alto nível e produtiva para expressar paralelismo de fluxo contínuo de dados com anotações
C++ em CPUs de múltiplos núcleos. Neste trabalho, foram propostas e implementadas
novas anotações que aumentam a expressividade para combinar o paralelismo de fluxo
contínuo de dados em CPUs existente com o paralelismo de dados em GPUs. Também
foram providenciadas novas regras de transformação baseadas em padrões, que foram
implementadas no compilador almejando transformações automáticas de código-fonte para
código-fonte usando a GSPARLIB para exploração de paralelismo de GPU. Os experimentos
demonstram que o compilador da SPar é capaz de gerar padrões paralelos de paralelismo
de fluxo contínuo de dados e de dados sem nenhuma redução de desempenho significativa
quando comparada com código escrito pelo programador. Graças a esses avanços na
SPar, este trabalho é o primeiro a prover anotações C++11 de alto nível como uma API
que não requer refatoração significativa de código em programas sequenciais, para permitir
a exploração de paralelismo em CPU de múltiplos núcleos e GPU de muitos núcleos em
aplicações de processamento de fluxo contínuo de dados.

Palavras-Chave: Programação paralela, geração de código paralelo, programação para
GPU, computação heterogênea, paralelismo de fluxo, aplicações de processamento de
fluxo, linguagem específica de domínio, padrões de programação paralela, biblioteca
de esqueletos algorítmicos, esqueletos algorítmicos, C++, Map, Reduce.



HIGH-LEVEL PROGRAMMING ABSTRACTIONS FOR STREAM
PARALLELISM ON GPUS

ABSTRACT

The growth and spread of parallel architectures have driven the pursuit of greater
computing power with massively parallel hardware such as the Graphics Processing Units
(GPUs). This new heterogeneous computer architecture composed of multi-core Central
Processing Units (CPUs) and many-core GPUs became usual, enabling novel software appli-
cations such as self-driving cars, real-time ray tracing, deep learning, and Virtual Reality (VR),
which are characterized as stream processing applications. However, this heterogeneous en-
vironment poses an additional challenge to software development, which is still in the process
of adapting to the parallel processing paradigm on multi-core systems, where programmers
are supported by several Application Programming Interfaces (APIs) that offer different ab-
straction levels. The parallelism exploitation in GPU is done using both CUDA and OpenCL for
academia and industry, whose developers have to deal with low-level architecture concepts
to efficiently exploit GPU parallelism in their applications. There is still a lack of parallel
programming abstractions when: 1) parallelizing code on GPUs, and 2) needing higher-level
programming abstractions that deal with both CPU and GPU parallelism. Unfortunately,
developers still have to be expert programmers on system and architecture to enable efficient
hardware parallelism exploitation in this architectural environment. To contribute to the first
problem, we created GSPARLIB, a novel structured parallel programming library for exploiting
GPU parallelism that provides a unified programming API and driver-agnostic runtime. It
offers Map and Reduce parallel patterns on top of CUDA and OpenCL drivers. We evaluate
its performance comparing with state-of-the-art APIs, where the experiments revealed a
comparable and efficient performance. For contributing to the second problem, we extended
the SPar Domain-Specific Language (DSL), which has been proved to be high-level and
productive for expressing stream parallelism with C++ annotations in multi-core CPUs. In this



work, we propose and implement new annotations that increase expressiveness to combine
the current stream parallelism on CPUs and data parallelism on GPUs. We also provide new
pattern-based transformation rules that were implemented in the compiler targeting automatic
source-to-source code transformations using GSPARLIB for GPU parallelism exploitation.
Our experiments demonstrate that SPar compiler is able to generate stream and data parallel
patterns without significant performance penalty compared to handwritten code. Thanks
to these advances in SPar, our work is the first on providing high-level C++11 annotations
as an API that does not require significant code refactoring in sequential programs while
enabling multi-core CPU and many-core GPU parallelism exploitation for stream processing
applications.

Keywords: Parallel programming, parallel code generation, GPU programming, heteroge-
neous computing, stream parallelism, stream processing applications, domain specific
language, parallel patterns, skeleton library, algorithmic skeletons, C++, Map, Reduce.
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1. INTRODUCTION

Since the dawn of the information age, the semiconductor industry has been guided
by Moore’s law [Moo65], crunching more transistors in a single chip. At the beginning of the
XXI century, physical limitations have imposed restrictions on the possibility to increase the
clock speed of these components. Then, the semiconductor industry started to integrate
more and more processing cores in a single chip to increase the computing power [Pac11],
creating the multi-core processors.

Until the XXI century, most software developers did not worry much about the
applications’ performance since faster machines appeared that were able to execute the same
code faster [KmWH16]. Although parallel programming dates back to the 1960s, it became
more important in the last years because this slow down in increasing processor’s clock speed
started in 2003 and stabilized in 2005, when the first multi-core CPU (Central Processing
Unit) arrived in the desktop computers and became widespread [GM12]. Consequently, to
speed up software performance, parallelism exploitation becomes mandatory.

The multi-core CPUs attempt to keep the sequential execution speed while also
providing parallel processing. On the other hand, the many-core architecture, whose main
player is the GPU (Graphics Processing Unit), focused on providing massive parallelism. This
massively parallel hardware offers high-performance throughput concerning floating-point
operations per second (FLOPS). In recent years, the maximum performance of GPUs in
FLOPS has been around 10 times more than those of CPUs [KmWH16]. Since its cores are
simpler and operate at lower clock speed, it is worth noting that any computing problem would
not work better on the GPU than CPU, although GPUs have more FLOPS and thousands
of GPU cores available. Differently, multi-core CPUs provide robust cores and larger cache
memories to maintain the speed of running sequential programs.

This evolution in hardware technology enabled novel software applications to be-
come reality, such as self-driving cars [HLLR14], real-time ray tracing [HAM19], deep learning,
and virtual reality (VR). Many of these are stream processing applications, on which the
data to be processed is received continuously from a data producer, such as cameras and
sensors [TA10]. Each data item generated by the data producers is pushed into the input
stream of a stream processing application. This application applies a sequence of operators
over each data item and may produce a stream of output items, which can be stored or
handed to another application. For example, self-driving cars contains many sensors and
cameras, which generates data to be processed by a sequence of operations that identify
lanes and objects, and ultimately control the car based on the analysis performed by these
operators. The ray tracing technique is applied in a sequence of frames to generate a video
or a video-game scene, which must take into account the inputs from the user that is playing
the media. The virtual reality processes the data coming from device sensors to generate
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realistic imagery. These kind of application usually have strict performance requirements
such as latency or throughput. In turn, this requires programmers to efficiently utilize the
underlying hardware.

The called multi-core machines or multi-core systems were the semiconductor
industry’s response to the desire of developers and users for faster machines when the
clock rates stalled. However, this caused a big impact on software development [KmWH16].
Developers, which were used to sequential software development following von Neumann’s
architecture, have now to learn how to develop software specifically to take advantage of
parallel processing. Currently, although the vast majority of programming languages already
have native support for parallel processing, this is still a cumbersome task for inexperienced
programmers.

More recently, the rise of massively parallel hardware and the performance differ-
ences of the multi-core and many-core architectures led developers to move computationally
intensive (parallel) parts of the program to accelerators (such as GPUs). Programming
applications to exploit more than one parallel architecture is known as heterogeneous parallel
programming. In this sense, programming for many-core hardware poses additional chal-
lenges concerning parallel programming for multi-core machines, due to the differences in
the architectural design.

The algorithmic skeletons [Col89, Col04] and parallel patterns [MSM04] are ap-
proaches to ease parallel software development. These algorithmic structures provide
benefits such as simplified programming, increased portability and code re-use, improved
performance, and semi-automatic optimizations [Col04]. These approaches are also known
and referred to as structured parallel programming approaches [MRR12]. The parallel pat-
terns are classified according to the type of parallelism they exploit. For example, stream
processing applications expose stream parallelism, on which each processing step can
process different data at the same time. On the other hand, applications that apply the same
operation in different subsets of the same data expose data parallelism, which is suitable
for processing in many-core architectures. In this context, software developers concerns
are also separated. System programmers are those who develop tools or use low-level
approaches for efficient parallelism exploitation, and application programmers are those who
develop applications focusing in business rules and leverages the system programmers’
tools to exploit the underlying hardware. Therefore, targeting both application and system
programmers, the industry and academia provided several tools based on parallel patterns to
assist in the task of developing parallel software [Ora20, Mic17, ADKT17, Rei07].

The de facto standard APIs for general purpose GPU programming (GPGPU) are
CUDA and OpenCL. The first is a proprietary technology of NVIDIA and only supports devices
from this manufacturer while the second is an open-source specification aiming at code
portability among different manufacturers. Although CUDA offers an API with a higher-level of
abstraction than OpenCL, it still requires programmers to refactor the application code and
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be concerned about hardware details in order to exploit GPU parallelism. The programmer
must worry about moving data between the main memory and the GPU memory, calculating
the parallelism degree according to the device limits, invoking the kernel asynchronously in a
special syntax, and releasing resources associated to the GPU device. If the programmer
has to exploit both multi-core and many-core parallelism, more challenges arise since not all
objects from the GPU programming APIs are thread-safe. Consequently, operating system
synchronization mechanisms are necessary to synchronize the computation (e.g. by using
mutexes).

Given that most of the structured parallel programming tools were focused in multi-
core and cluster architectures, the computational power of GPUs sparked interest to support
heterogeneous parallelism programming in systems composed of multi-core CPUs with
many-core GPUs. While tools such as SkePU [ELK18] and SkelCL [SKG11] does not offer
efficient abstractions for stream parallelism, other tools such as the compilers from StreamIt
to CUDA [UGT09, HSW+11] does not consider the data parallelism exposed by the stream
processing applications. Even tools that support stream and data parallelism, such as
FastFlow [APD+15], requires significant code refactoring in order to exploit the heterogeneous
hardware.

Ideally, the tools developed by system programmers should provide efficient ab-
stractions that does not requires stream processing application programmers to learn hard-
ware details in order to exploit the parallelism available in the computer architecture. To
this end, SPar [GDTF17] is a domain-specific language (DSL) compatible with C++11 fo-
cused on expressing stream parallelism in a simple way. It offers high-level abstractions
that allows programmers to exploit parallelism in multi-core processors by simply adding
C++11 annotations to the sequential source code. It has demonstrated the capability
of offering high productivity while maintaining a performance very close to other frame-
works [GHDF18, GHDF17, GHL+17]. Therefore, the main question that drives this research
is, can we provide high-level abstractions like SPar offers for multi-core CPUs while
exploiting combined stream and data parallelism in heterogeneous computer archi-
tectures composed of multi-core CPUs and many-core GPUs?

For this research question, Figure 1.1 highlights the contributions of our work (in
dashed black line) within the larger research framework proposed by [Gri16]. At this moment,
SPar generates C++ code with FastFlow [GDTF17], TBB [HGDF20], and OpenMP [Hof20]
libraries to exploit stream parallelism in multi-cores, and DSParLib [Pie20] for cluster (dis-
tributed memory) architectures. It is worth mentioning that the work from Löff [Lö20], which
aims at exploiting data parallelism using SPar abstractions for multi-cores, was developed
concurrently with this work. There are similarities between our works, but they were developed
independently and are mostly unrelated. Yet for multi-core systems, SPar has been studied
to cover autonomously and abstractly support the number of replicas management [VGF20]
and extends for service level objectives via code annotations [GSV+18, GVS+19].
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The SPar compiler was generated from CINCLE (Compiler Infrastructure for New
C/C++ Language Extensions). In the application layer, there is GMaVis, an high-level descrip-
tion language for geospatial visualization [Led16]. In this layer, applications are also end-user
software that use SPar to exploit stream parallelism. Our work extends SPar language to ex-
press data parallelism and includes support for GPU architectures by generating parallel code
using our new library called GSPARLIB. Using it as runtime library was important in the pro-
cess of providing high-level programming abstractions and avoiding lock-in vendor since both
CUDA and OpenCL are widely and efficiently used for GPU parallelism exploitation. Most of
the tools for data parallelism in GPUs focus in one or another [NVI19, Lut15, SKG11, ZM11].
From the structured parallel programming approaches, SkePU offers support for both drivers,
however, it lacks thread-safety which is necessary to integrate with other tools (such as SPar,
FastFlow or TBB). Moreover, there are opportunities to extend the support space in the
research framework for other architectures such as Field Programmable Gate Array (FPGA)
and Tensor Processing Unit (TPU).

Figure 1.1: SPar’s research framework. Adapted from [Gri16].

Our main goal is to design efficient and high-level parallel programming abstractions
for expressing parallelism on stream processing applications targeting heterogeneous parallel
computer architectures. Therefore, this work provides the following scientific contributions:

• a new structured parallel programming API (GSPARLIB) for heterogeneous parallel
computer architectures equipped with multi-core CPU and many-core GPU, which
supports different GPU drivers as well as provides an efficient and unified parallelism
abstraction;

• an extension to SPar language to express data parallelism along with stream parallelism
without substantial changes to the original syntax and semantics;
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• a set of new definitions and source-to-source transformation rules targeting stream and
data parallel patterns;

• a new compiler algorithm to automatic generate parallel code targeting data parallelism
in GPU combined with stream parallelism on CPU; and

• a set of experiments using real-world applications to evaluate the performance and
programmability of SPar and GSPARLIB.

The remainder of this document is organized as follows: Chapter 2 presents the
background and context for this study, including an overview of solutions for GPU program-
ming and the current SPar transformation rules and status. Chapter 3 presents other works
related to ours, highlighting the differences. Chapter 4 introduces GSPARLIB, our structured
programming library for GPU parallelism exploitation, including considerations and a per-
formance comparison with other similar tools. Chapter 5 presents our extension to SPar
language in order to support data parallel patterns in heterogeneous computer architectures
by using GSPARLIB as runtime system. Finally, Chapter 6 presents the conclusions and
future works.
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2. BACKGROUND

Hardware improvements in the last years have been following the growing trend
of data volume generated by the usage of digital technologies. A large number of tasks,
formerly performed without extensive use of technology, is being computerized. However, the
emergence of hardware with the potential to process this new volume of data brings in the
challenge to develop software capable of exploiting the newly available computational power.

In this chapter we introduce the main concepts related to the objectives of our work.
We start by introducing stream processing applications and their characteristics in Section 2.1,
then we present the structured parallel programming perspective and the parallel patterns in
Section 2.2. The concept of GPU parallel programming and the tools that ease this task are
presented in Sections 2.3 and 2.4, respectively. Finally, Section 2.5 presents SPar, a DSL
focused on stream parallelism, which we aim to improve in this study.

2.1 Stream processing applications

A stream is characterized by data made available in a continuous flow [TA10],
usually generated by cameras, sensors, and other applications. These data streams must be
collected, processed by a sequence of operators, and stored [VRJ+20]. In most cases, the
business value of the streamed data can only be perceived with real-time processing and
analysis, which leads to strict performance requirements for the applications that process
these streams, called stream processing applications.

The stream processing applications are also the representatives of the computing
paradigm known as Data Stream Processing (DaSP) [DM16, DM17]. These applications con-
sume input data sources continuously and produce streams of output results [TAG+10]. This
kind of applications are becoming increasingly common as the world gets more connected
and more digital data are produced at an ever increasing pace [TAG+10]. There are exam-
ples of this kind of application in several domains, including data backup and compression,
processing of data coming from monitoring sensors and logs, financial market, healthcare,
and cryptography, among others. Many of these applications consume structured data, which
share a common structure or schema, such as relational database-style records [AGT14].
By contrast, the most common commercial stream processing applications are those that
processes unstructured data such as digital media in audio, image, and video formats, usually
performing tasks such as compression, filter application, reproduction, etc. Figure 2.1 present
some examples of stream processing applications. For example, the deep learning revolution
in the last few years stands out precisely in media processing. This only reinforces the
importance of tools for efficient programming of such applications.
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Figure 2.1: Stream processing applications, from [AGT14].

Differently from traditional applications, on which the volume of data to be processed
is known or can be calculated, stream processing usually does not have a known or predefined
end. In many cases this data flow comes from sensors measurements and there are strict
requirements over the latency and throughput of the data processing, making it unfeasible to
store the streamed data in a database and process them using traditional approaches [CJ09].
Moreover, the data input rate usually varies over the time, influenced by several different
factors [TAG+10, CJ09, SRG+20]. An example of such application is a deep learning algorithm
for object detection running over the images obtained by a camera attached to an autonomous
system, such as a robot.

Hirzel [HSS+14] defines stream processing systems as runtime systems that execute
stream graphs composed of operators (or stages) and FIFO (First In, First Out) commu-
nication queues. The stream input is an infinite sequence of data items or stream items,
while the queues contain a finite number of items waiting to be consumed by each stream
stage [SHGW15]. Each data items in the stream represents an atomic piece of data to be
processed [AGT14].

Stream application programmers may trade throughput for latency by using batching
in any of the stream operators. The batched operator does not start the computation until it
has received enough items (according to the defined batch size). When the batch of items
is full, the operator performs the computation of the entire batch at once. Thus, batching
increases latency because each stream item waits in the batch queue until the batch is
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filled up, and increases throughput by reducing warm-up, scheduling, and communication
costs [HSS+14].

Each stream operator can process a different data item from the previous operator,
therefore, the parallelism exploitation in stream processing is usually limited by the number
of operators. Nonetheless, any stateless operator can be replicated to process multiple
data items at the same time, further increasing the available parallelism degree. Figure 2.2
illustrates these two types of stream parallelism. The sequence of operators A, B, and C

in Figure 2.2a can process different data items simultaneously. Figure 2.2b replicates the
stateless operator B, thus increasing the throughput of this specific stage.

(a) Sequence of stream operators. (b) Stateless operator.

Figure 2.2: High-level representation of stream parallelism types. Adapted from [HSS+14].

2.2 Structured parallel programming

Programming parallel computers has been a challenging task since the dawn of
parallel computing. However, the ubiquity of this kind of computers in the last two decades
highlighted the importance of considering multiple computing cores while programming an
application. The idea of providing algorithmic structures to ease the parallel programming
burden is not new, but has been considered under different names [Gri16], such as algorithmic
skeletons [Col89, Col04] and parallel patterns [MRR12].

Defining patterns of common programming tasks is an idea that comes from the
design patterns largely used in software engineering. These patterns are mainly used
for the development of software based on object-oriented programming (OOP) [GHJV94].
Using patterns for parallel programming aims to bring the benefits of the design patterns
from the software engineering area to programmers targeting parallel computers. Some of
these benefits are [Col04]: (a) simplified programming; (b) increased portability and re-use;
(c) improved performance; and (d) more opportunities for automatic optimizations.

Figure 2.3 presents an overview with a visual representation of the main parallel
programming patterns. The Pipeline pattern resembles much of a classic fordist assembly
line, with well-defined tasks to be performed over data to produce transformed data, which are
then passed over to the next stage [MRR12]. This pattern applies a sequence of operations
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simultaneously to each data element [MSM04]. The parallelism exposed by this pattern is the
possibility of computing each operation on a different data element at each given point in time.
One example of Pipeline is applying a sequence of filters on the frames of a movie. Usually,
the Pipeline pattern is suitable when all the stages present balanced workloads. If one stage
becomes the bottleneck, the Farm pattern can be applied to increase the throughput of this
given stage if it is stateless.

Figure 2.3: Overview of parallel patterns. Adapted from [Gri16]

The Farm pattern (also known as Split-Join [TKA02] or Fork/Join [MSM04]) is similar
to a three-stage Pipeline, but it defines specialized stages such as: (a) the first stage
is the emitter, which sends data to multiple parallel workers and plays such as the item
scheduler; (b) the second stage defines the workers, which are replicated and process data
simultaneously in N instances; and (c) the third stage is the collector, which collects and
serializes the data from the parallel workers to provide extra features such as ordering and
post-processing. The collector stage is optional. The Pipeline and Farm patterns are naturally
suitable to stream processing [Gri16], since the data is streamed through the stages. These
patterns may be directly associated with the stream parallelism types presented in Figure 2.2.

The Map pattern (also known as Loop Parallelism [MSM04]) is defined by a single
task that can be performed in parallel over each data element on a set. It applies an operation
over each input data element to transform it into the output data elements. In sequential
programs, this kind of operation is usually performed by iterating over the data. Due to its
characteristic that allows parallel computation with the absence of a rigid central coordination,
this pattern is usually associated with the Single Instruction, Multiple Data (SIMD) or Single
Program, Multiple Data (SPMD) models [MRR12, MSM04]. The problems on which the Map
pattern can be applied are also known as embarrassingly parallel.
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Due to its simplicity and scalability, the Map pattern is widely employed and provides
the basis to other parallel patterns, such as the Stencil pattern. The Stencil pattern is
effectively a Map with a different data access pattern. Even though the Stencil representation
in Figure 2.3 may suggest a dependency among the computed data, the tasks executed
are essentially independent, as long as the original data are available. In this pattern, the
operation to be computed in parallel accesses a set of adjacent data. Applications may
leverage data locality and cache memories to improve performance of applications that
expose the Stencil pattern. There are many physics simulation algorithms (such as fluid flow
and cellular automata) and image filters (such as gaussian blur and Sobel filter) that expose
the Stencil pattern [MRR12].

Given that the Map pattern is obtained by parallelizing a loop with independent
iterations, the Recurrence pattern is obtained by parallelizing a loop on which the iterations
may depend of one another [MRR12]. However, these dependencies must follow a clear
ordering based on a predefined interval. Recurrence also resembles the Stencil pattern, but
unlike Stencil, where each operation only access the neighboring inputs, in the Recurrence
pattern there may be dependencies over neighboring inputs and outputs. The Recurrence is
used, for example, in algorithms for factoring matrices [GF11].

The Geometric Decomposition pattern is similar to Stencil in the sense that there is
a separation of tasks based on the input data structure. In this pattern a geometric region of
data is divided in subregions, facilitating the parallel computation of the function [GF11]. The
special case of when the decomposed regions does not overlap receives the special name of
Partition [MRR12]. This pattern, as well as Stencil, are specially suitable for algorithms such
as Divide and Conquer [MSM04].

The Reduce pattern applies a function to combine the input data elements into a
single output element [MRR12]. This pattern is only parallelizable if the combiner function is
associative. Some parallel implementations require the combiner function to be commutative
as well. A classic example of the Reduce algorithm is summing the elements of a vector, on
which the sum operator combines the vector elements to obtain the final result. The Reduce
pattern is commonly used in conjunction with Map, but it is also employed as a standalone
pattern [Har07].

The Scan pattern can be seen as a special case of the sequential pattern Fold
[MRR12]. The Fold pattern involves using a succession function to advance through stages,
and the difference of Scan is that this function is associative, thus parallelizable. It worth
noting that the parallel execution of Scan may require more work (executions of the succession
function) than the sequential execution, limiting the scalability of this pattern and thus making
it impossible to obtain the linear speedup. The visual representation of the Scan pattern
in Figure 2.3 clearly resembles the Reduce pattern. However, unlike Reduce, in the Scan
pattern each input produces an output. Moreover, in Scan there are dependencies of each
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output element to the previous iterations, which can only be computed in parallel due to the
associativity of the succession function.

The Pack pattern has the main objective of minimizing the algorithm memory
consumption by removing unnecessary elements from the original collection [GF11]. By itself,
Pack is not a good alternative to implement parallelism, but is particularly interesting when
used together with other patterns, such as Map, to remove the unnecessary outputs from
these patterns [MRR12].

Most applications cannot be expressed in terms of a single parallel pattern. Thus,
multiple patterns are usually combined to express the parallelism on a single application.
Applying a composition of patterns eases the programming effort and improves the parallelism
exploitation.

The pragmatic manifesto of algorithmic structures by Cole [Col04] defines four
distinct principles that should guide the design and development of tools based on structured
parallel programming:

1. Propagate the concept with minimal conceptual disruption. The core pattern con-
cepts must be kept unaltered, avoiding extra complexities in terms of conceptual bag-
gage. The simplicity of the patterns should be maintained when conveying additional
information related to the tool.

2. Integrate ad-hoc parallelism. The tool should permit interoperability with other tools
used to express parallelism, instead of assuming that the structured parallel program-
ming provides all the parallelism that is needed.

3. Accommodate diversity. The patterns should be implemented in a way that permits
diverse ways of organization and versatile forms. The trade-off between abstract
simplicity and pragmatic need for flexibility must be considered when developing tools
for structured parallel programming.

4. Show the pay-back. The advantage of using a new tool should be clear to the user
and must outweigh the overheads of such tool.

2.3 Multi-core CPU and many-core GPU

The inability to keep pace with the increase in speed of traditional processors not
only driven the emergence of CPUs with multiple parallel processing cores, but has also
given strength to the industry of “co-processors” or accelerators. The highly parallel nature of
GPUs automatically qualified them as interesting accelerators to tasks with high parallelism.
Figure 2.4 presents an overview of architectural differences between the CPUs and GPUs.
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The modern CPUs architecture can be summarized in cache units (commonly L1,
L2, and L3), control units, and ALUs (Arithmetic Logic Units). Beyond the oversimplification
of Figure 2.4, the architecture of modern NVIDIA GPUs include streaming processors (SPs)
or CUDA cores, analogous to ALUs, which contains an instruction cache and share control
units [KmWH16]. SPs are grouped in streaming multiprocessors (SMs), which are analogous
to the compute units (CUs) of AMD boards.

Figure 2.4: Architectural differences between CPU e GPU. Extracted from [KmWH16].

The operation of SMs uses the SIMT (Single-Instruction, Multiple-Thread) archi-
tecture, which can be described as SIMD (Single Instruction, Multiple Data) applied to the
multithread context, on which the threads contain their own execution flow. In the SIMD
architecture, threads that diverge in conditional ramifications are disabled (a technique known
as masking) and wait until the ramification finishes execution [NVI18]. This is an important
point to be considered to achieve a good performance, since the ideal performance is only
achieved minimizing the number of disabled threads.

The SMs create groups of 32 threads called warps, which are scheduled to execution
by the warp schedulers [NVI18]. Thread masking only occurs when the threads of the same
warp diverge. Thus, the 32 threads of the same warp must agree in the execution flow to
achieve a good performance. Contrary to CPUs, the GPUs does not make use of branch
prediction and speculative execution [NVI18].

The architectural differences between CPUs and GPUs, summarized in Figure 2.4,
inhibits the use of the GPU as exclusive processor and brings in programming for an het-
erogeneous system. In this environment, different software tasks are performed by different
architectures [LD09], contrasting to homogeneous systems, which are composed of identical
processors. Moreover, the parallelism exposed by CPUs, GPUs, and other accelerators
poses an additional challenge to programming.

2.4 Consolidated GPU parallel programming APIs

The GeForce 3 GPU series, released by NVIDIA in 2001, enabled the use of GPUs
through the OpenCL and DirectX APIs (Application Programming Interfaces), which were
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specifically suited for graphics processing1 [Har15]. The desire of developers back then to
use the GPU processing to execute general purpose tasks led to the use of these APIs
to copy numeric data into the GPU, and the hardware processes the calculation as if the
numbers represented pixels colors, returning the results [LM01, RS01, HCSL02]. This way of
exploiting the specialized hardware for general processing bring to life the concept of GPGPU
(General-Purpose computation on Graphics Processing Units), i.e. using the GPU to perform
tasks usually performed by the CPU [Har15].

Even though this approach of exploiting GPU worked initially, this trick required
the representation of numeric data as if they were pixels colors, and this hard work did
not seem attractive to many professionals. This landscape changed with the launch of the
first GPU with support to DirectX 10 and the CUDA architecture (initially, Compute Unified
Device Architecture, however this acronym was abandoned by NVIDIA in later versions) in
2007 [SK10], enabling GPU programming using a subset of the C language.

Efficiently programming heterogeneous parallel systems has proven to be a chal-
lenging task. Exploiting the GPU parallelism requires the use of yet another programming
tool, in addition to those focused in multi-core parallelism. Moreover, the distinct memory
architectures of CPU and GPU (as depicted in Figure 2.4) requires the programmer to ex-
plicitly copy data between the two platforms, which increases the program complexity. We
will discuss some of the tools for abstracting these differences and combining multi-core and
GPU parallelism in Chapter 3.

2.4.1 CUDA

With the introduction of the CUDA architecture in November 2006, exploiting the GPU
parallelism was not restricted to professionals with large knowledge of the GPU architecture
and the internals of their graphical APIs such as DirectX and OpenGL. Thus, it started to be
widely used by C/C++ and Fortran programmers. The set of tools for CUDA programming
involves a custom compiler (nvcc, profilers for performance analysis (NVIDIA Nsight Compute
and NVIDIA Nsight Systems), performance counters as well as a bunch of libraries with
different focuses. Because it is a proprietary technology of NVIDIA, only GPUs developed by
the company offer support to CUDA.

CUDA offers two APIs: the higher-level Runtime API, which requires the use of the
nvcc compiler and abstracts from the programmer tasks such as the driver initialzation, kernel
compilation (which are performed in compilation time), and context management; and the
lower-level Driver API, which is distributed as a static library that can be used in any modern
C/C++ compiler (-lcuda), and offers an API for kernel compilation during runtime (nvrtc).

1https://web.archive.org/web/20031030015158/http://www.nvidia.com/object/geforce3_faq.html
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The nvcc compiler distributed with the CUDA toolkit allows the developer to mark
functions suitable for GPU execution using the declaration __global__ (which are then called
kernels). The kernels calls are performed using a special syntax which involves specifying
the parallelism degree to be used in the execution, using the execution configuration syntax
<<<...>>> between the kernel name and its parameters. When this call is performed, the
threads are organized in thread blocks with up to three dimensions (for more details, see
Section 2.3). Identifiers for each of these dimensions can be accessed using the special
predefined variables threadIdx, blockIdx, and blockDim, inside the kernel [NVI18].

Listing 2.1 shows a sample vector sum application in CUDA using the Runtime API.
In CUDA programming it is necessary to declare explicitly the code portions that will execute
in the co-processor (by defining kernels). The vecAdd kernel is defined in line 2 of Listing 2.1.
It receives a pair of vectors with N elements to be summed in parallel into the output vector.
This simplified application assumes that N will be lower than the maximum size of each
block (maxThreadsPerBlock) when calling the kernel in line 23. Other tasks that need to be
explicitly done by the programmer are GPU memory allocation using the cudaMalloc function,
copying memory between the main (host) memory and the device (GPU) memory using the
cudaMemcpy function, and release the allocated memory using the cudaFree function.

1 #define N 10
2 __global__ void vecAdd(int *A, int *B, int *C) { // CUDA kernel definition
3 int tid = threadIdx.x; // handle the data at this index
4 if (tid < N)
5 C[tid] = A[tid] + B[tid];
6 }
7 int main() {
8 int host_a[N], host_b[N], host_c[N];
9 int *dev_a , *dev_b , *dev_c;

10 // fill the arrays 'a' and 'b' on the CPU
11 for (int i=0; i<N; i++) {
12 host_a[i] = -i;
13 host_b[i] = i * i;
14 }
15 // allocates memory on the GPU
16 cudaMalloc( (void **)&dev_a , N * sizeof(int) );
17 cudaMalloc( (void **)&dev_b , N * sizeof(int) );
18 cudaMalloc( (void **)&dev_c , N * sizeof(int) );
19 // copy the arrays 'a' and 'b' to the GPU
20 cudaMemcpy( dev_a , host_a , N * sizeof(int), cudaMemcpyHostToDevice );
21 cudaMemcpy( dev_b , host_b , N * sizeof(int), cudaMemcpyHostToDevice );
22 // calls the vecAdd kernel
23 vecAdd <<<1, N>>>( dev_a , dev_b , dev_c );
24 // copy the array 'c' back from the GPU to the CPU
25 cudaMemcpy( host_c , dev_c , N * sizeof(int), cudaMemcpyDeviceToHost );
26 for (int i=0; i<N; i++) // display the results
27 printf( "%d + %d = %d\n", host_a[i], host_b[i], host_c[i] );
28 cudaFree( dev_a ); // free the GPU memory
29 cudaFree( dev_b );
30 cudaFree( dev_c );
31 return 0;
32 }

Listing 2.1: Vector sum in CUDA Runtime API. Adapted from [SK10]
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2.4.2 OpenCL

OpenCL (Open Computing Language) is an open industry standard framework that
includes a language, API, libraries and a runtime system [Khr18, MGM+12]. It was initially
proposed in 2008 by Apple (which still owns the trademark) and after received support by
various companies, such as AMD (which oficcially recommends OpenCL as the way to
explore parallelism in its CPUs and GPUs), IBM, Intel, and NVIDIA, among others. Nowadays
the OpenCL specification is maintained by the Khronos Group.

The OpenCL objective is to provide code portability among different architectures
and hardware [Khr18]. Differently from libraries which focuses in GPU parallelism, the idea
behind OpenCL is that all available devices should be used to extract the maximum possible
performance. In order to do so, an OpenCL application may follow the following steps
[MGM+12]:

1. Discover the components of the heterogeneous systems and its characteristics.

2. Create instruction blocks (kernels) to run in each component.

3. Manage the data and components’ memory to allow the computation execution.

4. Execute the blocks in the correct order and in the correct components.

5. Collect the results.

OpenCL defined that the compatible devices contains work-items (analogous to the
threads of the CUDA architecture) organized in work-groups (analogous to the CUDA thread
blocks). Just like the CUDA architecture, the work-groups and work-items are organized in
a three-dimensional space, however, the unique identified of the thread can be obtained by
calling the get_global_id function.

Listing 2.2 shows the OpenCL code for the same vector sum algorithm previously
presented in CUDA language (Listing 2.1). The OpenCL code is considerably longer com-
pared to the CUDA version. Most of these differences are due to the fact that the CUDA
custom compiler (nvcc) allows the use of the Runtime API, which abstracts some boilerplate
tasks from the programmer [KMSZ15].

1 const char *kernelSource = // OpenCL kernel definition
2 "__kernel void vecAdd(__global int *A, \n" \
3 " __global int *B, __global int *C, \n" \
4 " const unsigned int n) { \n" \
5 " int tid = get_global_id (0); \n" \
6 " if (tid < n) \n" \
7 " C[tid] = A[tid] + B[tid]; \n" \
8 "}";
9 #include <CL/opencl.h>

10 int main() {
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11 unsigned int N = 2048;
12 int host_a[N], host_b[N], host_c[N];
13 cl_mem dev_a , dev_b , dev_c;
14 // fill the arrays 'a' and 'b' on the CPU
15 for (int i=0; i<N; i++) {
16 host_a[i] = -i;
17 host_b[i] = i * i;
18 }
19 cl_int status;
20 cl_platform_id platform; // First platform
21 status = clGetPlatformIDs (1, &platform , NULL) ;
22 cl_device_id device; // First device
23 status = clGetDeviceIDs(platform , CL_DEVICE_TYPE_GPU , 1, &device , NULL);
24 // Create a context on the device
25 cl_context context = clCreateContext(NULL , 1, &device , NULL , NULL , &status);
26 cl_command_queue queue = clCreateCommandQueueWithProperties(context , device ,

0, &status);
27 size_t datasize = sizeof(int) * N;
28 dev_a = clCreateBuffer(context , CL_MEM_READ_ONLY , datasize , NULL , &status);
29 dev_b = clCreateBuffer(context , CL_MEM_READ_ONLY , datasize , NULL , &status);
30 dev_c = clCreateBuffer(context , CL_MEM_WRITE_ONLY , datasize , NULL , &status);
31 // Write data from host to device
32 status = clEnqueueWriteBuffer(queue , dev_a , CL_FALSE , 0, datasize , host_a , 0,

NULL , NULL);
33 status = clEnqueueWriteBuffer(queue , dev_b , CL_FALSE , 0, datasize , host_b , 0,

NULL , NULL);
34 // Create a program with provided source code
35 cl_program program = clCreateProgramWithSource(context , 1, (const

char **)&kernelSource , NULL , &status);
36 status = clBuildProgram(program , 1, &device , NULL , NULL , NULL);
37 cl_kernel kernel = clCreateKernel(program , "vecAdd", &status);
38 status = clSetKernelArg(kernel , 0, sizeof(cl_mem), &dev_a);
39 status = clSetKernelArg(kernel , 1, sizeof(cl_mem), &dev_b);
40 status = clSetKernelArg(kernel , 2, sizeof(cl_mem), &dev_c);
41 status = clSetKernelArg(kernel , 3, sizeof(unsigned int), &N);
42 // Define an index space of work -items for execution
43 // A global size is not required , but can be used
44 size_t localSize [1], globalSize [1];
45 localSize [0] = 64; // Number of work -items in each local work group , must be

divisible by globalSize
46 globalSize [0] = N; //Total number of work -items
47 // Execute the kernel
48 status = clEnqueueNDRangeKernel(queue , kernel , 1, NULL , &globalSize ,

&localSize , 0, NULL , NULL);
49 // Read back the results
50 status = clEnqueueReadBuffer(queue , dev_c , CL_TRUE , 0, datasize , host_c , 0,

NULL , NULL);
51 // Releases GPU resources
52 clReleaseKernel(kernel);
53 clReleaseProgram(program);
54 clReleaseCommandQueue(queue);
55 clReleaseMemObject(dev_a);
56 clReleaseMemObject(dev_b);
57 clReleaseMemObject(dev_c);
58 clReleaseContext(context);
59 return 0;
60 }

Listing 2.2: Vector sum in OpenCL. Adapted from [KMSZ15]
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2.4.3 OpenACC

The OpenACC (from Open Accelerators), which was launched in 2011, is a pro-
gramming model based in compiler directives to exploit the parallelism in parallel accelerator
devices coupled to a main CPU host [Ope15a, Ope17]. It is considered a platform indepen-
dent model, with a high-level abstraction level.

The OpenACC approach to express the parallelism in applications is based in 4
steps [Ope15a]: (a) improve the application performance as a whole, in order to identify the
main regions which should be send to the accelerator device; (b) parallelize the identified
loops using the OpenACC directives; (c) optimize the data location in memory in order
to minimize unnecessary memory copies and try to guarantee that the data is available
to the processor when necessary; (d) optimize the loops for executing in the accelerator,
restructuring them to expose more parallelism or to reduce the data movements in memory.

The execution model of OpenACC is based in three levels of parallelism, which
are defined as: gang, with less granularity; worker, for more granularity; and vector, which
compute instructions in the SIMD model [Ope17]. Listing 2.3 shows an example of vector
sum in OpenACC, which is considerably shorter than CUDA and OpenCL examples of this
same application.

1 #define N 10
2 // OpenACC kernel definition
3 void vecAdd(int *A, int *B, int *C) {
4 #pragma acc kernels loop independent copyin(A[0:N],B[0:N]), copyout(C[0:N])
5 for (int i = 0; i < N; i++) {
6 C[i] = A[i] + B[i];
7 }
8 }
9 int main() {

10 int a[N], b[N], c[N];
11 // fill the arrays 'a' and 'b' on the CPU
12 for (int i=0; i<N; i++) {
13 a[i] = -i;
14 b[i] = i * i;
15 }
16

17 vecAdd( a, b, c );
18

19 // display the results
20 for (int i=0; i<N; i++) {
21 printf( "%d + %d = %d\n", a[i], b[i], c[i] );
22 }
23 return 0;
24 }

Listing 2.3: Vector sum in OpenACC

The OpenACC annotation in the C or C++ code are performed through the #pragma

acc directive, followed by the directive name and an optional list of clauses. The clauses used
in Listing 2.3 are: kernels, which activates the automatic identification of parallelism by the
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compiler; loop, which informs the compiler that the next instruction is a loop; independent,
which guarantees that the operations contained within the loop have no data dependency;
and copyin and copyout, which defined the data that should be copied from the main memory
to the accelerator memory and the data that should be copied back after the computation.

2.4.4 StarPU

StarPU is a runtime system that provides a unified execution model for heteroge-
neous hardware [ATNW11] developed by members of the National Institute for Research in
Digital Science and Technology (Inria), France. Its development started in the PhD thesis of
Cédric Augonnet [Aug11] using C language. The source code is open sourced under GNU
Lesser General Public License (LGPL).

StarPU leverages a task-based execution flow to exploit parallelism in heterogeneous
systems, with focus on task scheduling and memory management [ATAF14]. The scheduling
algorithms can also be plugged in the StarPU open scheduling platform to customize the
task scheduler [ATAF14]. It supports a large number of parallel architectures, such as
multicore CPUs, GPUs (NVIDIA and OpenCL-compatible devices), Intel Xeon Phi, and Cell
processors [ATAF14]. It runs on Linux, Mac OS, and Windows.

To make use of the GPU programming capabilities of StarPU, the kernel code for
CUDA or OpenCL must be provided by the developer. In addition, for the programmer to use
StarPU with CUDA, the code must be compiled with a CUDA compiler, such as nvcc [Sta20].
StarPU automatically handles memory transfers between the processing units (PUs) of the
host processor and accelerators and schedules the tasks for execution. Listing 2.4 shows
a sample matrix-vector multiplication adapted from the official repository of StarPU2, which
uses the OpenCL kernel depicted in Listing 2.5 to perform the computations.

1 #include <starpu.h>
2 #include <math.h>
3

4 struct starpu_opencl_program opencl_code;
5 void opencl_codelet(void *descr[], void *_args) {
6 (void)_args;
7 cl_kernel kernel;
8 cl_command_queue queue;
9 int id, devid , err , n;

10 cl_mem matrix = (cl_mem)STARPU_MATRIX_GET_DEV_HANDLE(descr [0]);
11 cl_mem vector = (cl_mem)STARPU_VECTOR_GET_DEV_HANDLE(descr [1]);
12 cl_mem mult = (cl_mem)STARPU_VECTOR_GET_DEV_HANDLE(descr [2]);
13 int nx = STARPU_MATRIX_GET_NX(descr [0]);
14 int ny = STARPU_MATRIX_GET_NY(descr [0]);
15 int ld = STARPU_MATRIX_GET_LD(descr [0]);
16

17 id = starpu_worker_get_id_check ();

2https://scm.gforge.inria.fr/anonscm/git/starpu/starpu.git
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18 devid = starpu_worker_get_devid(id);
19

20 err = starpu_opencl_load_kernel (&kernel , &queue , &opencl_code , "matVecMult",
devid);

21 if (err != CL_SUCCESS) STARPU_OPENCL_REPORT_ERROR(err);
22

23 n=0;
24 err = clSetKernelArg(kernel , n++, sizeof(matrix), &matrix);
25 err |= clSetKernelArg(kernel , n++, sizeof(vector), &vector);
26 err |= clSetKernelArg(kernel , n++, sizeof(nx), (void*)&nx);
27 err |= clSetKernelArg(kernel , n++, sizeof(ny), (void*)&ny);
28 err |= clSetKernelArg(kernel , n++, sizeof(mult), &mult);
29 err |= clSetKernelArg(kernel , n++, sizeof(ld), (void*)&ld);
30 if (err != CL_SUCCESS) STARPU_OPENCL_REPORT_ERROR(err);
31

32 size_t global=nx*ny;
33 err = clEnqueueNDRangeKernel(queue , kernel , 1, NULL , &global , NULL , 0, NULL ,

NULL);
34 if (err != CL_SUCCESS) STARPU_OPENCL_REPORT_ERROR(err);
35 starpu_opencl_release_kernel(kernel);
36 }
37

38 static struct starpu_perfmodel starpu_matvecmult_model = {
39 .type = STARPU_HISTORY_BASED ,
40 .symbol = "matvecmult"
41 };
42

43 static struct starpu_codelet cl = {
44 .opencl_funcs [0] = opencl_codelet ,
45 .opencl_flags = {STARPU_OPENCL_ASYNC},
46 .nbuffers = 3,
47 .modes [0] = STARPU_R ,
48 .modes [1] = STARPU_R ,
49 .modes [2] = STARPU_RW ,
50 .model = &starpu_matvecmult_model
51 };
52

53 int main(void) {
54 struct starpu_conf conf;
55 starpu_conf_init (&conf);
56 conf.ncpus = 0;
57 conf.ncuda = 0;
58 conf.nmic = 0;
59 conf.nopencl = 1;
60

61 int MX;
62 float *matrix , *vector , *result;
63 starpu_data_handle_t matrix_handle , vector_handle , result_handle;
64 int ret , submit;
65

66 MX = 20; // Matrix size (square)
67

68 ret = starpu_init (&conf);
69 if (STARPU_UNLIKELY(ret == -ENODEV)) {
70 fprintf(stderr , "This application requires an OpenCL worker .\n");
71 return 77; // Error code
72 }
73

74 matrix = (float *) malloc(MX * MX * sizeof(float));
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75 vector = (float *) malloc(MX * sizeof(float));
76 result = (float *) malloc(MX * sizeof(float));
77

78 // The code to fill the vector and matrix was supressed
79

80 starpu_matrix_data_register (& matrix_handle , STARPU_MAIN_RAM ,
(uintptr_t)matrix , MX, MX, MX, sizeof(float));

81 starpu_vector_data_register (& vector_handle , STARPU_MAIN_RAM ,
(uintptr_t)vector , MX, sizeof(float));

82 starpu_vector_data_register (& result_handle , STARPU_MAIN_RAM ,
(uintptr_t)result , MX, sizeof(float));

83

84 ret = starpu_opencl_load_opencl_from_file("matvecmult_kernel.cl",
&opencl_code , NULL);

85 STARPU_CHECK_RETURN_VALUE(ret , "starpu_opencl_load_opencl_from_file");
86

87 struct starpu_task *task = starpu_task_create ();
88 task ->cl = &cl;
89 task ->callback_func = NULL;
90 task ->handles [0] = matrix_handle;
91 task ->handles [1] = vector_handle;
92 task ->handles [2] = result_handle;
93

94 submit = starpu_task_submit(task);
95 if (STARPU_UNLIKELY(submit == -ENODEV)) {
96 fprintf(stderr , "No worker may execute this task. This application requires

an OpenCL worker .\n");
97 } else {
98 starpu_task_wait_for_all ();
99 }

100

101 starpu_data_unregister(matrix_handle);
102 starpu_data_unregister(vector_handle);
103 starpu_data_unregister(result_handle);
104

105 if (STARPU_LIKELY(submit != -ENODEV)) {
106 FPRINTF(stdout , "Test finished");
107 }
108

109 free(matrix);
110 free(vector);
111 free(result);
112 starpu_shutdown ();
113

114 return (submit == -ENODEV) ? 77 : 0;
115 }

Listing 2.4: Matrix vector multiplication using StarPU and OpenCL. Adapted from the official
repository.

1 __kernel void matVecMult(const __global float *A, const __global float *X, int
n, int m, __global float *Y, int ld) {

2 const int i = get_global_id (0);
3 if (i < m) {
4 float val = 0;
5 int j;
6 for (j = 0; j < n; j++)
7 val += A[i*ld+j] * X[j];
8 Y[i] = val;
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9 }
10 }

Listing 2.5: Matrix vector multiplication OpenCL kernel. Adapted from the StarPU repository.

The StarPU API provides some helper functions to common GPU programming tasks
which abstracts some boilerplate code, such as starpu_opencl_load_kernel, which compiles
the OpenCL kernel, creates a command queue, and loads the kernel object. Similarly, the
memory objects (cl_mem) are wrapped in StarPU’s data handles, which allows StarPU to
perform automatic data copies between the host and device memories. However, some tasks
involve direct calls to the OpenCL API, such as setting the kernel arguments and launching
the kernel on the GPU. Therefore, StarPU provides good abstractions to task parallelism and
scheduling but lacks high-level abstractions to the domain of GPU programming.

2.5 SPar: high-level programming abstraction for expressing stream parallelism

SPar [GDTF17] is a domain-specific language (DSL) focused on expressing stream
parallelism and was created by Dalvan Griebler in his PhD thesis [Gri16]. The main drivers
behind SPar are: (a) optimize programmer productivity by not requiring sequential code
rewriting to exploit parallelism; and (b) offer efficient programming abstractions to avoid the
need for the programmer to work on low-level or architecture dependent code.

In SPar, the parallelism is expressed by means of C++ attributes. The definition of
C++ attributes were added in C++11 standard, allowing programmers to provide additional
information on the source code. Attributes are inserted between double square brackets
and can be used to annotate types, classes, code blocks, and may be put almost anywhere
on the code [GDTF17]. An example of annotation which are part of C++ standard is the
[[deprecated]] attribute, which can be used to identify names and entities whose use are
discouraged [Int17]. Leveraging the C++11 attributes to identify parallel code blocks permits
the applications developer to be able to exploit the parallelism without learning a new syntax.

The SPar’s focus is on the parallel patterns Pipeline and Farm, given that these
patterns are better suited to the stream processing domain, as discussed in Section 2.1. The
SPar compiler generates parallel code to the FastFlow [ADKT17] framework and leverages
on its features such as task scheduling and stream ordering [GDTF17].

The sequential source code should be annotated with C++11 attributes to enable
the SPar compiler to make the transformations that enable the parallel execution. There
are 5 attributes in SPar syntax, named after the stream processing applications domain,
categorized in identifier (ID) and auxiliary (AUX) attributes. Each SPar annotation in the
source code contains exactly one ID attribute and zero or more AUX attributes.
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Figure 2.5 presents a sample sequential pseudo-code annotated with SPar attributes
and a high-level representation of the execution flow it represents. The communication
between threads happen through non-blocking FastFlow queues.

Figure 2.5: Sequential pseudo-code annotated with SPar. Adapted from [GHDF18].

The two identifier (ID) attributes are ToStream and Stage. ToStream identifies the
code region (a compound statement or a single iteration statement such as for or while)
on which stream parallelism should be employed. Inside this region the Stage attribute is
used to identify the pipeline stages or computing phases, analogous to a assembly line. Each
ToStream region should contain at least one Stage region.

There are three auxiliary (AUX) attributes: Input, Output, and Replicate. Input

specifies the variables that represent the input data of the stream region (when used together
with ToStream) or the stage region (when used together with Stage). Output specifies the
variables that represent the output generated by the stream or stage region, according to the
ID attribute in the same annotation. The Replicate attribute should only be used together
with the Stage attribute. It specifies that the stage has no internal state and can run in parallel.
Thus, increasing its degree of parallelism (i.e. the number of worker replicas). If the number
of replicas is not specified, SPar uses the environment variable SPAR_NUM_WORKERS. The work
of [Vog18] aims to provide adaptive parallelism during runtime instead of using the same
parallelism degree during the entire execution.

1 int prime_number (int n) {
2 int total = 0;
3 [[ spar::ToStream , spar::Input(total ,n), spar::Output(total)]]
4 for (int i = 2; i <= n; i++) {
5 int prime = 1;
6 [[ spar::Stage , spar::Input(i,prime), spar::Output(prime),

spar::Replicate ()]]
7 for (int j = 2; j < i; j++) {
8 if ( i % j == 0 ){
9 prime = 0;

10 break;
11 }
12 }
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13 [[ spar::Stage , spar::Input(prime), spar::Output(total)]]
14 { total = total + prime; }
15 }
16 return total;
17 }

Listing 2.6: Prime numbers annotated with SPar.

Listing 2.6 presents a sample application annotated with SPar which computes the
quantity of prime numbers up to a predefined limit. The ToStream attribute in line 3 delimits
the streaming region. Lines 4 and 5 are responsible for the stream management and for
providing workload for the next stages. They represent the first Pipeline stage. The first Stage
annotation (line 6) is followed by the Replicate auxiliary attribute, where the number specified
means the degree of parallelism of this stage. The second and last Stage attribute appears in
line 13 and collects the result of the previous stage on a reduction operation, outputting the
total quantity of prime numbers found. The Input and Output attributes are used throughout
the code to provide information on data items that flows from one stage to another, which is
the actual task.

2.5.1 Source-to-source transformation rules

In his PhD Thesis, Griebler [Gri16] designed the original structure of the SPar lan-
guage. The SPar attributes are combined in annotation schema, which trigger transformation
rules in the compiler. These transformation rules are based on previous definitions.

To express the SPar definitions and transformation rules, Griebler created a par-
ticular notation: ToStream and Stage attributes are represented by Tid and Sid , where id
represents a numeric identifier. Input, Output, and Replicate attributes are represented by Ii ,
Oi , and Rn, respectively. Ii and Oi may contain a list of typed variables ai , and n denotes the
integer number of replicas for Replicate argument. To denote a code block with one or more
statements it is used �id . The scope of the sentence is denoted by {...}. The annotations
that contain one identifier attribute and optionally a list of auxiliary attributes, are denoted
using [[...]] [Int17].

The current definitions and transformation rules of SPar are generating the stream
parallel patterns, Pipeline and Farm. These rules are implemented in the SPar compiler
for transforming the annotated code into C++ code with calls to the FastFlow library, which
provide classes and built-in functions for implementing these parallel patterns. Griebler
uses functional semantics to define the Farm and Pipeline patterns: farm(E , W , C) has
arguments E (Emitter, the stream item scheduler), W (Worker, that compute stream items),
and C (Collector, which gather results/stream items from the workers), where E , C, and W
receive a �id as argument; and pipe(S1, S2, ...) has two or more stages, which can be �id or
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farm instances. The current SPar transformation rules can generate a combination of these
patterns based on the annotation schema.

Currently, there are six auxiliary definitions for the transformation rules, presented in
Table 2.1.

Table 2.1: Definitions for transformation rules from [GDTF17].

D0 A generic code block ψ is generated for gathering results when the last � is annotated with S
containing in its attribute list Rn and Oi .

D1 A � can be the argument of a pipe pattern stage, or of a E or C in a farm, when its S annotation
list does not contain the Rn attribute.

D2 A � becomes an argument of W in a farm pattern when it is annotated with S containing an Rn
attribute.

D3 A T becomes a farm pattern when the first S annotation contains Rn in the attribute list of two
S at maximum.

D4 A T becomes a pipe pattern when the first S does not have Rn in the attribute list or when there
are more than two S annotations.

D5 A farm pattern becomes a stage for the pipe pattern when D3 does not apply and � is annotated
with S that contains Rn in the attribute list.

Applying D1, D2 and D3 from Table 2.1, we can introduce a basic transformation rule
from T to farm in Rule 2.1.

[[T0]]{�0, [[S0, Rn]]{�1}} ⇒ farm(E(�0), W (�1)) (2.1)

In Rule 2.1, �0 and �1 are transformed into the farm’s emitter and worker stages,
respectively. Similarly to demonstrate D0, we introduce Rule 2.2, which creates a generic
collector stage ψ since the Oi attribute is present in the last �.

[[T0]]{�0, [[S0,Oi , Rn]]{�1}}

⇓

farm(E(�0), W (�1), C(ψ))

(2.2)

The case where D0 can not be applied and the C stage of the farm is generated
from a �, it is demonstrated by Rule 2.3. This transformation rule applies on Listing 2.6.

[[T0]]{�0, [[S0, Rn]]{�1}, [[S1]]{�2}}

⇓

farm(E(�0), W (�1), C(�2))

(2.3)
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The Pipeline pattern is generated by applying D4, which is demonstrated by Rule 2.4.
The absence of Rn attribute in the stage annotation differs this case from the previous one,
turning T into a pipe instead of a farm.

[[T0]]{�0, [[S0]]{�1}} ⇒ pipe(�0, �1) (2.4)

Finally, D5 allows for pattern composition, where the farm is a stage of a pipe.
Rule 2.5 details how the � are mapped into the patterns.

[[T0]]{�0, [[S0]]{�1}, [[S1, Rn]]{�2}}

⇓

pipe(�0, farm(E(�1), W (�2)))

(2.5)

The definitions D0 and D1 may also apply in Rule 2.5 if there is Oi in S1 attribute list
or another S after �2. For the sake of simplicity, we will not provide further details, however,
other more sophisticated rules can be found in [GDTF17, Gri16].

2.5.2 SPar compiler

The SPar compiler was generated from CINCLE (Compiler Infrastructure for New
C/C++ Language Extensions) [Gri16]. The CINCLE provides tools for C++ source code
analysis, with support up to C++14 standard. It also offers an API for performing source-to-
source transformations in the resulting AST (Abstract Syntax Tree).

Figure 2.63 illustrates the compilation flow of the SPar compiler: (a) the compiler’s
input is a C++ source code, optionally annotated with the SPar attributes; (b) the GCC (GNU
Compiler Collection) compiler for C++ is leveraged to perform C++ semantics analysis of the
input source code; (c) the code is scanned and parsed into an AST; (d) the transformation
rules of SPar are applied in the AST and generate a transformed AST; (e) the transformed
AST is then assembled into C++ code and compiled using the GCC compiler; (f) the output of
the compiler is a binary executable file.

The SPar compiler supports three flags that allows the programmer to control
runtime behaviors in the stream processing. They work like switches passed in the compiler
call:

• spar_ordered: this flag defines that the ordering of the input items must be respected
in the output stream. The Pipeline pattern (with potentially stateful operators) naturally

3Icons made by Pixel perfect from www.flaticon.com

www.flaticon.com
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Figure 2.6: High-level representation of SPar compiler flow.

provides ordering guarantees, however, when using the Farm pattern with replicated
stateless operators, the output items may arrive in the collector at different orderings.
When this flag is used, SPar generates FastFlow’s ff_OFarm class to ensure the ordering
of the items at the end of the replicated stage.

• spar_ondemand: this flag sets the use of the FastFlow’s on-demand scheduler. Without
this flag, SPar uses the default dynamic round-robin scheduler of FastFlow [ADKT17],
on which the emitters schedules stream items to workers in a round-robin fashion,
skipping worker with full input queue (the default size is 512 items). The spar_ondemand

flag activates FastFlow’s on-demand (or “auto-scheduling”) policy, on which the workers
“ask” for a stream item to be computed rather than (passively) accepting items sent by
the emitter [Tor15]. In practice, the worker’s input queue size is reduced to 1 [ADKT17],
thus workers with higher throughput receive more tasks by the emitter.

• spar_blocking: By default, SPar uses the non-blocking behavior of FastFlow nodes.
This means that the nodes keep active in a busy waiting loop when there are no input
items, and allows for quick reaction when a data item arrives in the input queue. In
this mode, the number of nodes should not exceed the number of logical CPU cores.
The spar_blocking flag switches to the blocking mode, on which the nodes blocks on
the input queue until a new data item arrives. This saves energy by not keeping the
processor busy but may induce latency.
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3. RELATED WORK

Most developers of parallel applications currently exploit multi-core parallelism
using industry standard tools such as OpenMP. However, to exploit GPU parallelism most
developers use CUDA or OpenCL, which requires the programmer to learn a new lower-
level language and understand hardware details in order to achieve satisfied performance
using the specialized hardware. Moreover, the programmer must exploit multi-core and
many-core parallelism combined to achieve good performance results. The need for a
unified programming model between CPU and GPU architectures is further highlighted by
the burdens of GPGPU discussed in Section 2.4.

The AMD’s Heterogeneous System Architecture (HSA) standard [HSA18a] builds
upon the OpenCL idea of a unified programming model for heterogeneous systems. HSA
is a system architecture that defines low-level requirements for hardware and compilers to
support a unified programming model, which is represented by the Heterogeneous System
Architecture Intermediate Language (HSAIL) [HSA18b, HSA18c]. HSAIL is a virtual machine
and intermediate language that abstracts the native instruction set and allows the execution
of a single program in a larger range of HSA platforms [HSA18b]. However, there has been
little movement by compiler developers to support HSAIL.

Parallel programming models for heterogeneous many-core architectures may be
categorized according to the abstraction level they provide. [FHTW20] categorizes these
models in two broad families: (a) the low-level programming models, which are typically bound
to the hardware architecture details and expose most of these details to the programmer,
offering increased performance but lower programmability; and (b) the high-level programming
models, which hide most hardware architecture details by raising the abstraction level,
usually using some low-level model as backend, and trading performance for increased
programmability.

Since the level of the programming abstractions provided by the high-level program-
ming models varies greatly, this family of models is further classified by [FHTW20] in five
types, based on the technology used to provide the programming abstractions. Ordered from
lower to higher abstraction level, these five types are: (I) based on modern C++ features.
Examples are Khronos’ SYCL [Khr20c], Microsoft’s C++AMP [GM12], VexCL [DARG13],
and PACXX [HG14]; (II) based on structured parallel programming (skeletons or paral-
lel patterns). Tools like SkelCL [SKG11], SkePU [ELK18], and FastFlow [ADKT17] are
in this category; (III) based on the C++ Standard Template Library (STL) API, such
as Thrust [NVI19], Boost.Compute [Lut15, Szu16], Bolt [AMD14], and Kokkos [CTS14];
(IV) based on code annotations. The works in this category include efforts from indus-
try, such as OpenMP [Ope18] and OpenACC [Ope15a, Ope17], as well as efforts from
academia, such as hiCUDA [HA11], XscalableMP-ACC [LTO+12], AHP [PCR12], and HDAr-
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ray [CKM19]; (V) based on domain-specific concepts. Some examples are Halide [RKBA+13],
StreamIt [TKA02, UGT09, HSW+11], Single Assignment C (SAC) [GTS11], ArrayFire [MYM+12],
and Nebo [EMBS17].

These five types does not have rigid boundaries. For example, Thrust and
Boost.Compute provide STL-like APIs (III), however, they offer high-level patterns such as
Map (under the name of transform), Reduce, Scan, and Gather. Therefore, they can also
be classified as structured parallel programming APIs (II). Our work builds upon the SPar
language, which is a domain-specific language (V) that employs C++11 code annotations (IV)
to express parallelism in sequential source code. Therefore, this classification of high-level
programming models are a best effort rather than definitive labels.

The next two sections present works related to this study in two main aspects. First,
Section 3.1 present structured parallel programming APIs for GPU programming, which
are related to our novel library, (GSPARLIB). Second, Section 3.2 presents annotation-
based approaches, which are works related to our extension to the SPar language targeting
combined stream and data parallelism in heterogeneous computer architectures composed of
multi-core CPUs and many-core GPUs. Since SPar is a domain-specific language embedded
in C++ that employs C++11 attributes, it does not make sense to compare it to other DSLs
that require programmers to rewrite sequential code in order to exploit parallelism using
high-level abstractions. Therefore, we compare it with tools that use the same mechanism
(code annotations) to expose parallelism in the code.

3.1 Structured parallel programming APIs for GPU programming

In this section, we approach works related to our novel structured parallel program-
ming library for GPGPU (GSPARLIB). We selected studies that offer structured programming
APIs to exploit GPU parallelism. Therefore, these tools present an abstraction layer above
the tools presented in Section 2.4, which only provide procedural APIs.

SkelCL [SKG11] is a library focused in data parallelism algorithmic skeletons that
supports common data-parallel patterns: Map, Reduce, Zip (a special case of Gather [MRR12]),
Scan, Stencil, and the custom Allpairs and MapOverlap skeletons. It allows programmers to
exploit GPU parallelism using C++ by generating code for OpenCL kernels. The usage of
skeletons in SkelCL happens through the use of predefined classes, which receive the code
of customization functions as plain string parameters. These customization functions are
combined with boilerplate code, which are predefined inside the skeleton to generate the final
OpenCL code. We use a similar approach in GSPARLIB, which will be discussed in more
details in Chapter 4. The final OpenCL kernel code is then compiled at runtime and stored on
disk, avoiding recompilation when the kernel is reused. We could not find any information
about thread-safety of SkelCL in their papers or the library’s documentation. Moreover, the
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works on the library seems to have ceased some years ago (the last paper1 was published in
2014 and the last commit in the library’s Git repository2 is from 2016).

Thrust [NVI19] is a template library launched in 2009 by NVIDIA and open sourced
under Apache 2.0 license. It offers a structured programming alternative to exploit GPU
parallelism using CUDA. The memory transfers between the main (host) memory and device
memory occurs mainly by means of two classes from the thrust namespace: host_vector
and device_vector. Since Thrust is integrated with CUDA, kernels can be defined as plain
C++ functors annotated with CUDA’s __device__ keyword, which are converted to device
kernel code by NVIDIA’s compiler, nvcc. The kernel can be launched by passing it as argument
to one of the C++ STL-like functions provided by Thrust, such as thrust::transform (which
works just like the map pattern) and thrust::reduce. It also supports other parallel patterns,
such as stencil (thrust::partition combined with thrust::transform) and scan (thrust::
inclusive_scan and thrust::exclusive_scan). However, Thrust does not offer any support
for stream parallel patterns (e.g. Pipeline and Farm). We could not find any information about
thread-safety capabilities of Thrust library in their published documentation. Nonetheless, in
our tests the library worked well in a multi-threaded environment.

Boost.Compute [Lut15] is a header-only library that leverages OpenCL for GPGPU.
It was developed by Kyle Lutz [Lut15] and Jakub Szuppe [Szu16] and became part of the
Boost set of libraries in 2016. The library provides an API composed of two layers: a
low-level API that is a thin C++ wrapper over OpenCL; and a high-level API that offers
STL-like methods such as transform, gather, reduce, and sort [Szu16], which are all in the
namespace boost::compute. Custom kernels can be defined in special lambda expressions
(using special placeholders to access the arguments: _1, _2 ... _N) or by using the BOOST_

COMPUTE_FUNCTION and BOOST_COMPUTE_CLOSURE macros.

Boost.Compute offers an opt-in thread-safety feature3, which can be enabled by
defining the BOOST_COMPUTE_THREAD_SAFE macro. However, its thread-safe version lever-
ages the Boost.Thread library and thus requires linking it during the compilation phase.
Boost.Compute’s high-level API resembles the Thrust library, since both aims at STL-like
methods. Like Thrust, Boost.Compute does not offer any support for stream parallel patterns.

FastFlow [ADM+09, ADKT17] is a framework to stream parallelism based on algo-
rithmic skeletons. It was created in 2009 by members of the University of Pisa and University
of Torino, Italy. FastFlow offers a library of templates in C++ to express parallelism in stream
processing applications through the use of the Pipeline and Farm patterns. GPGPU support
was published in 2015, starting with the stencil-reduce pattern [APD+15], which was subse-
quently extended [ADD+18] under the name of loop-of-stencil-reduce. This extended pattern
is general enough to allow the implementation of Map, Reduce, Stencil and its combinations.

1https://skelcl.github.io/index.html#publications
2https://github.com/skelcl/skelcl
3https://www.boost.org/doc/libs/1_74_0/libs/compute/doc/html/boost_compute/faq.html#boost_compute.

faq.is_boost_compute_thread_safe_

https://skelcl.github.io/index.html#publications
https://github.com/skelcl/skelcl
https://www.boost.org/doc/libs/1_74_0/libs/compute/doc/html/boost_compute/faq.html#boost_compute.faq.is_boost_compute_thread_safe_
https://www.boost.org/doc/libs/1_74_0/libs/compute/doc/html/boost_compute/faq.html#boost_compute.faq.is_boost_compute_thread_safe_


47

Our approach is very similar to FastFlow’s. However, we provide a different abstrac-
tion level. To exploit the GPU parallelism in FastFlow using the loop-of-stencil-reduce, the
programmer needs to provide the CUDA or OpenCL kernel code. Even though FastFlow
offers some macros to ease the generation of the boilerplate code in the GPU kernel, they
are limited. For example, the macros FFMAPFUNC to FFMAPFUNC6 allow the user to generate
a simple CUDA kernel with one to six arguments. If the programmer needs any different
number of parameters in the kernel, they cannot use these auxiliary macros. Other limitation
is that these macros must be called in the global scope since they generate a C structure
containing the device function. The availability and functionality of these macros for generat-
ing kernel code varies between the CUDA and OpenCL backends, therefore, FastFlow does
not provide a true driver-agnostic API. As a library, FastFlow does not offer the transformation
of C++ code into CUDA nor OpenCL, but instead eases the management and execution
of programmer-defined kernels [ADD+18]. The current GSPARLIB version also does not
automatically transform C++ code into lower-level languages, but it abstracts most of the
common differences by providing helper functions (in the lower-level API) and automatically
generating boilerplate code (in the higher-level API). Moreover, when using the FastFlow’s
CUDA backend, the code must be compiled with the nvcc compiler. In GSPARLIB, the code
may be compiled with any C++ compiler since we use the lower-level CUDA Driver API.

Another effort in heterogeneous parallel programming using parallel patterns is
represented by SkePU [ELK18]. SkePU is a skeleton-based programming framework de-
veloped using C++ by members of the Linköping University, Sweden. It is composed of a
source-to-source compiler tool and a parallel runtime. It contains skeletons for the parallel
patterns Map, Reduce, Stencil (which is named MapOverlap in the SkePU context), Scan and
combinations of them, including MapReduce. It also provides a Call skeleton which does
not encode a computational pattern, but instead serves as a versatile skeleton because it
allows the implementation of arbitrary computational patterns [EK20]. Figure 3.1 presents an
overview of SkePU 2 compilation process.

Similar to SPar, the SkePU source program may be compiled with any C++11
compiler, which outputs a sequential executable. Alternatively, using the SkePU source-
to-source compiler on the SkePU source program, it is possible to obtain a parallel code,
which in turn can be compiled to generate a parallel executable. This compiler generates
OpenMP code for CPU parallelism, MPI, and StarPU code for cluster execution, and both
CUDA and OpenCL code for GPU parallelism, which can be compiled using nvcc and g++

compilers, respectively, to produce the parallel program. A preview of SkePU 3 was made
available during the development of our work, but there were no paper published addressing
this new version at the time of this writing. Although SkePU supports both multi-core CPU
and many-core GPU parallelism, the code generated by the SkePU compiler cannot be safely
integrated with other multi-threaded tools (i.e. it is not thread-safe). We confirmed that this
limitation also affects SkePU 3.
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Figure 3.1: SkePU 2 compiler chain. Extracted from [ELK18].

Table 3.1 presents a summary of the related works and an overview of our work with
respect to the state-of-the-art structured parallel programming APIs for GPGPU. We sort the
works in the order on which the GPGPU support was developed, i.e. the first work is the older.
FastFlow, for example, was created in 2009 [ADM+09] but GPGPU support was published in
2015 [APD+15]. The Runtime support columns (CUDA and OpenCL) indicate which API are
supported as the runtime backend. The Runtime abstraction column evaluates if the runtime
boilerplate code is abstracted from the programmer, i.e. if the programmer is relieved from
providing the entire kernel code in a lower level language. The Map and Reduce column
evaluates whether the software supports these patterns, which are commonly used to exploit
data parallelism. Although it is possible to build almost any parallel pattern in most of the
tools since they offer a lower-level API, we only check-marked the tools with high-level built-in
support for such patterns.

The Batch column indicates if the API provide any support for merging multiple
kernel calls into a single call, which is a useful feature for integration with stream processing
applications that aims at the batching optimization discussed in Section 2.1. The Thread-safe
column indicates whether the software can be safely executed in a multi-threaded environment
and take advantage of multiple CPU cores. Finally, the Native containers column indicates if
the tool supports performing GPGPU using the native data containers of C++ (pointers or
STL containers). A × mark in this column indicates tools that require the use of custom data
containers. On the one hand, providing custom data containers may ease the programmability
of the language, since they are usually used to provide automatic data copies between the
main memory and the GPU memory. On the other hand, if the tool requires the use of
such custom containers, the code refactoring of sequential applications that use the native
containers can be cumbersome.



49

Table 3.1: Related Work of structured parallel programming APIs for GPGPU.

Ref Name Objective Runtime support Runtime
abstraction

Map and
Reduce Batch Thread-safe Native

containersCUDA OpenCL
[NVI19] Thrust Flexible and high-level interface for GPU pro-

gramming to enhance developer productivity
X × X X × X ×

[SKG11] SkelCL Library with a high-level approach for GPU
programming

× X X X × ? ×

[Lut15] Boost.Compute GPU library for C++ based on OpenCL. × X X X × X ×
[APD+15] FastFlow Simplifying the implementation of data-

parallel programs on heterogeneous multi-
core platforms

X X × X × X X

[ELK18] SkePU 2 Skeleton programming framework for hetero-
geneous parallel systems

X X X X × × ×

Our work GSPARLIB Structured programming API for data par-
allelism in stream processing applica-
tions

X X X X X X X
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3.2 Annotation-based approaches

In this section we approach works related to our extension to the SPar language
targeting data parallelism in heterogeneous computer architectures composed of multi-
core CPUs and many-core GPUs. Therefore, we selected studies providing a high level
programming abstraction, aiming at automatic and semi-automatic parallelism for GPUs.

Given the burdens of GPU parallel programming, discussed in details in Section 2.3,
tools for automatically inserting code for GPU APIs into sequential C or C++ code without
programmer intervention is of significant interest. Both [BRS10] and [VJC+13] presents
automatic code translation systems which leverage polyhedral compiler transformation to
convert sequential C code into CUDA. However, they are limited to affine regions of code,
which are composed of expressions for accessing arrays in a sequential manner inside a
loop [Ben18]. DawnCC [MGA+17] is a tool aimed at automatically generating OpenACC and
OpenMP annotations by leveraging symbolic range analysis. This technique allows them to
handle nonaffine regions of code, however, polyhedral-based tools are able to perform more
aggressive transformation in loops, such as tiling and fission [MGA+17].

Fully automatic parallelization of sequential C and C++ code is the ultimate goal
of parallel programming abstractions. It has the potential to improve the productivity of the
application programmers by providing portability and abstracting the underlying hardware
architecture completely. However, current technologies for code analysis and transformation
are not able to make efficient parallelism choices [EAB+20]. They are usually specific in either
their ability to introduce parallelism, the code to which they can be applied, or both [BJB+20].
Some industry experts even believe that such a compiler for automatic parallelism will never
exist [Sco12]. For example, in our tests using the online version of the DawnCC compiler4, it
was not able to add annotations in the C version of any of the applications we used for our
performance tests in Sections 4.7 and 5.6.

Alternatively, annotation-based solutions for parallelism exploitation permit the users
to indicate parallel regions to the compiler without requiring significant changes to the
sequential source code. OpenMP [Ope18] offer pragma-based annotations to allow the
programmer to express parallelism in the code. It is the de facto industry standard for multi-
core CPU parallelism, used in 7 out of the 10 top supercomputers worldwide as reported
in November 2019 [FHTW20]. The OpenMP language committee started working towards
heterogeneous parallelism capabilities in the version 4.0 of the OpenMP specification and
improved their support for offloading in version 4.5 [Ope15b]. However, the programmer still
needs to know architecture details to achieve good performance [Lar18].

OpenACC [Ope15a, Ope17], which was already presented in Section 2.4.3, is
another annotation-based tool developed by the industry that uses pragmas for annotating

4http://cuda.dcc.ufmg.br/dawn/index.php

http://cuda.dcc.ufmg.br/dawn/index.php
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code suitable for GPU offloading. Although it leverages high-level annotations, the OpenACC
language is composed of lower-level concepts such as worker, vector, and gang. Therefore,
it also requires the programmer to know hardware details in order to properly exploit GPU
parallelism.

There are also pragma-based tools developed by the academia, such as hiCUDA
[HA09, HA11] and XscalableMP-ACC [LTO+12]. hiCUDA offer the hicuda pragma to specify
GPGPU in source code. It offers clauses to identify GPU kernels (kernel), define the GPU grid
size to the kernel invocation (tblock and thread), manage GPU memory (alloc and free),
copy data (copyin and copyout), and define optimizations (loop_partition, over_tblock, and
over_thread). XscalableMP (XMP) [Xca18] is a parallel PGAS (Partitioned Global Address
Space) programming language focused in distributed parallelism. It provides high-level pragma
annotations and shares many core ideas with the OpenMP standard. XscalableMP-ACC
(XMP-ACC) [LTO+12] is an extension to the XMP language that adds the acc clause to identify
regions suitable to GPU offloading, which are transformed into a CUDA kernel by the compiler.
Besides its similarity in naming, XMP-ACC does not have any relation with OpenACC. Both
hiCUDA and XMP-ACC requires the programmer to explicitly manage memory movements
and lack a high-level abstraction of the GPU architecture. Moreover, they are tied to NVIDIA
boards due to their CUDA backend.

More recently, Nakao et al. [NMS+14] published XcalableACC (XACC), another
extension to the XMP language based on the OpenACC model. This extension was imple-
mented in a custom compiler, which translate the extended set of directives into XMP runtime
functions and OpenACC directives, which are then fed into an OpenACC compiler. This
extension seems to have been officially introduced into the XMP ecosystem5, however, it
remains as a separate language and it is not signed by the XcalableMP Specification Working
Group [RIK17]. However, the language is still very much verbose and not intuitive from an
application programmer perspective. An example is that it requires programmers to indicate
memory allocations (xmp shadow and reflect) and data copies (xmp gmove), both into the
GPU (acc data copy) and out from the GPU (acc update host).

The Automatic Heterogeneous Pipelining (AHP) framework [PCR12] focuses on
identifying the pipeline stages, mapping them into the available processing units (PUs) of
the heterogeneous system, and scheduling their execution. Although the AHP language
resembles SPar, we focus on providing efficient and high-level abstractions decoupled from
the underlying hardware to offer the opportunity of application programmers to exploit the
parallelism of heterogeneous systems. On the other hand, AHP expects the programmer to
provide hand-written optimized code for the available PUs [PCR12], which actually increases
the programming effort since the user must provide optimized variants for all available PUs
that can possibly be used by AHP during runtime.

5https://xcalablemp.org/XACC.html

https://xcalablemp.org/XACC.html
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All the aforementioned solutions leverage pragma preprocessing directives to provide
annotations for heterogeneous parallelism. The C++ attributes introduced in the C++11
standard offer additional flexibility since they can be inserted almost anywhere in the code,
and does not require any preprocessing [GDTF17, DGS+16]. Moreover, they are part of the
C++ grammar [Int17], unlike the pragma mechanism.

Parallelism exploitation by means of C++11 attributes were promoted by REPARA
(Reengineering and Enabling Performance And poweR of Applications) [DGS+16]. REPARA
was an European project that ran between 2013 and 2016, trying to promote the use of
C++11 attributes to express stream and data parallelism by annotating parallel patterns in
sequential source code [DDMT18]. It included annotations for the parallel patterns Pipeline
(rpr::pipeline), Farm (rpr::farm), and Map (rpr:map). The programmer may annotate
parallel regions using the rpr::kernel attribute (which does not allow nesting), and specify
the input (rpr:in) and output (rpr:out) parameters. REPARA also offers the rpr:async

attribute to signal asynchronous kernel execution and rpr:sync to wait for an asynchronous
kernel. They also proposed the rpr:target attribute to indicate heterogeneous computer
architectures such as GPU and FPGA, but the support for heterogeneous parallelism is left as
future work [DDMT18]. Contrary to SPar, the REPARA project never assembled a language
interpreter and source-to-source compiler to implement the proposed transformation rules,
being a theoretical work.

Table 3.2 summarizes the differences between the aforementioned related works
and our current work. The GPU backend column specifies the underlying lower-level API
that is employed to exploit GPU parallelism. The REPARA project does not supports GPU
parallelism and therefore is left unfilled. The Annotation mechanism column specifies which
mechanism is employed to provide code annotation (pragma or C++11 attributes). The
Supported parallelism columns identify which parallelism is supported by the tools: Multi-core,
GPU, and Distributed (for distributed memory architectures). We only check-marked tools that
support these parallelism levels to be exploited simultaneously. For example, the PGI 15.10
compiler for OpenACC supports multi-core parallelism, however, it does not allow to combine
it with many-core GPU parallelism, therefore, it is marked with ×. Also, XMP recommends the
use of OpenMP for parallelism inside each node of the distributed system [Xca18]. Therefore,
it does not support CPU multi-core parallelism by itself. Finally, the Architecture abstraction
column identify the works which successfully abstract the underlying hardware architecture
from the programmer’s perspective.
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Table 3.2: Related Work of annotation-based APIs for heterogeneous parallelism.

Ref Name Objective GPU backend Annotation
mechanism

Supported parallelism Architecture
abstractionMulti-core GPU Distributed

[Ope18] OpenMP Provide a model for parallel programming that is
portable across architectures from different ven-
dors

Compiler-
dependenta

pragma X X × ×

[Ope17] OpenACC Provide a model for accelerator programming that
is portable across operating systems and various
types of host CPUs and accelerators

Compiler-
dependent

pragma × X × ×

[HA11] hiCUDA Provide a high-level directive-based language for
CUDA programming

CUDA pragma × X × ×

[LTO+12] XMP-ACC Provide a productive parallel programming model
for multi-node GPU clusters

CUDA pragma × × X ×

[RIK17] XACC Provide a parallel programming model for accel-
erated clusters which are distributed memory sys-
tems equipped with accelerators

OpenACC pragma × X X ×

[PCR12] AHP Provide an automatic framework for the creation
of heterogeneous pipelines from annotated non-
pipelined program specification

CUDA pragma X X × ×

[DGS+16] REPARA Promote the use of C++11 attributes to express
parallelism

– C++11 attributes × × × ×

Our work SPar Design efficient and high-level parallel pro-
gramming abstractions for expressing paral-
lelism on stream processing applications tar-
geting heterogeneous parallel architectures

GSPARLIB C++11 attributes Xb X Xc X

a GCC compiler supports compiling OpenMP annotations to NVIDIA PTX, AMD HSAIL, AMD GCN (Graphics Core Next), and Intel MIC [GCC20].
b SPar’s support for multi-core CPU was originally implemented in [GDTF17]. We implemented the batching optimization for exploiting GPU parallelism.
c SPar’s support for distributed memory architectures was implemented in [GF17, Pie20].
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4. GSPARLIB: UNIFIED GPU LIBRARY FOR STREAM
PARALLELISM

This chapter presents our novel structured parallel programming library for GPU,
GSPARLIB. It provides a unified interface and driver-agnostic runtime, wrapping both CUDA
and OpenCL languages in a fluent C++ skeleton-based API while enabling different GPU
vendors. Our interface is unified because the programmer can express parallelism in the same
way using generic patterns while using different low-level GPU programming models (CUDA
and OpenCL). Also, the library is driver-agnostic because enables executing on different
GPU driver vendors without requiring code refactoring. If the programmer eventually wants
to change the target GPU driver vendor, he only needs to recompile the program specifying
a compiler flag. Since it focuses in stream processing applications, some key features of
GSPARLIB are thread-safety and support for batching stream items. Moreover, it uses the
native C++ data containers to ease the process of porting existing (sequential) applications.

We discuss the motivation behind the decision to develop GSPARLIB with a com-
parison to other runtime alternatives in Section 4.1. Section 4.2 presents concise guidelines
on how to use GSPARLIB in a high-level of abstraction, explaining how to apply it to existing
applications. The main choices made during the library design related to the abstractions it
provides for the domain of GPU programming are discussed in Section 4.3. Then, we present
the two layers of GSPARLIB API: the lower-level Driver API (Section 4.4) and the higher-level
Pattern API (Section 4.5). In Section 4.6 we discuss the programmability of GSPARLIB

compared to other GPU programming alternatives. Finally, Section 4.7 presents a set of
experiments comparing GSPARLIB’s performance with the state-of-the-art tools discussed in
Section 4.1, and Section 4.8 present our final remarks and concludes this chapter.

4.1 Motivation

The de facto standard APIs for GPU programming are CUDA and OpenCL [FHTW20],
which offer only procedural programming without any support for structured programming.
Even StarPU, which is a runtime system built on top of CUDA and OpenCL (discussed
in Section 2.4.4) does not offer any structured programming API. It is a new task-based
programming model. We instead seek a structured programming API to exploit GPU par-
allelism in stream processing applications, abstracting CUDA and OpenCL programming
models and different GPU drivers vendors. We discussed GPU programming interfaces with
structured parallel programming support in Section 3.1, namely NVIDIA’s Thrust, SkelCL,
Boost.Compute, FastFlow, and SkePU.
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Both Boost.Compute [Lut15] and NVIDIA’s Thrust library [NVI19] are widely used
with an STL-like structured programming API. However, we observed a few drawbacks when
considering them as a SPar runtime. First, we seek a unified interface for GPU parallelism
abstracting CUDA and OpenCL programming model differences. A second downside is that
both Boost.Compute and Thrust requires that most of the interactions between the host and
device processors, such as memory transfers, must be done manually by the programmer. We
want to alleviate this work from the compiler. A third disadvantage is that the Boost.Compute
and Thrust requires issuing OpenCL or CUDA function calls to perform specific tasks such as
asynchronous memory copies.

SkelCL [SKG11] uses OpenCL for GPU parallelism exploitation and thus also lacks
CUDA support. Moreover, SkelCL is not actively developed anymore since the last paper was
published in 2014 and the last commit in its GitHub repository1 is from 2016. SkePU [ELK18]
supports CPU parallelism using OpenMP, however, the SkePU skeletons themselves are not
thread-safe, which undermines the integration with other parallel tools such as SPar with the
FastFlow runtime.

FastFlow [APD+15] is an interesting alternative since it is already used by SPar for
multi-core parallelism. It is also the only tool from Section 3.1 that supports GPU parallelism
using native C++ containers, which is a desirable feature to ease the process of porting
existing applications. However, the FastFlow’s CUDA backend requires the use of the
proprietary closed-source nvcc compiler and we want to avoid an extra compiler roundtrip in
the SPar compilation process. We also want to avoid having complex rules in the compiler
to generate the CUDA or OpenCL kernel code or to switch between those drivers, which is
only possible if the runtime provides a unified API. FastFlow’s GPU programming API is not
unified. The macros provided by FastFlow to aid in the GPU kernel generation have limited
applicability and would limit the applicability of SPar since it is not possible to automatically
transform the sequential source code annotated with SPar attributes to the macro inputs.
One of such limitations is the fact that all the macros for generating OpenCL code result in a
single data vector of output, however, some kernels generate multiple data vectors of output,
such as the sobel filter step of the lane detection application, which outputs the image data
and also a vector of the pixels’ directions (see more details in Section 5.6.3). Due to these
limitations, most of the examples in the FastFlow repository2 use hand-written kernel code.
Lastly, we found out that the GPU support is not working in FastFlow’s current version3 and
we are unsure about the priority of this feature for FastFlow’s developers.

Providing a unified API that abstracts CUDA and OpenCL programming models is an
important step towards code and performance portability. On the one hand, the CUDA driver
is important for exploiting GPU parallelism in the NVIDIA chips, which is the market leader
of this segment. Even though the NVIDIA chips supports the OpenCL driver, they present

1https://github.com/skelcl/skelcl
2https://github.com/fastflow/fastflow
3https://github.com/fastflow/fastflow/issues/38

https://github.com/skelcl/skelcl
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better performance using the CUDA driver (we will discuss these performance differences
in Section 5.6). Moreover, we find some issues using OpenCL on NVIDIA boards, such as
lack of support for newer versions, which will be discussed in more details in Section 4.8.
On the other hand, the OpenCL driver is the only way to exploit massive parallelism of
GPUs from other chipmaker and even from other hardware accelerators, such as FPGAs,
digital signal processors (DSPs), and embedded devices [KMSZ15, KmWH16]. Currently,
GSPARLIB focuses only in GPU devices. In the future, we may leverage it for different
hardware accelerators.

One big difference between writing GPU kernels in FastFlow and GSPARLIB is that
FastFlow’s macros are evaluated in compile-time, thus the kernel code is generated during
the compilation of the application and is hard to modify it during runtime. For the CUDA
approach, the nvcc compiler is used to compile the GPU kernel during compile-time, while the
OpenCL kernel is generated during the compilation of the application and compiled in runtime.
On the other hand, GSPARLIB generates and compiles the code of CUDA and OpenCL
during runtime. Generating the code in runtime allows us to perform optimizations based
on the heterogeneous computer architecture, which is not known at compile-time [AGDF20].
Moreover, macros have limited capabilities while our approach uses a more powerful tool to
perform code transformation and generation because it allows complex analysis in the GPU
kernel code. Therefore, we advocate that the FastFlow’s decision of using macros to aid the
programmer in the process of generating boilerplate kernel code is a poor design choice.

In our previous work [RSG+19], we identified the need for creating micro-batches
of stream items to properly exploit many-core accelerators like GPUs. It is also desirable to
be able to change the batch size during the stream execution, which allows for high-level
decision making over trade-offs between latency and throughput [SRG+20]. None of the tools
discussed in Section 3.1 offers support to the batching optimization in stream processing
applications. Due to the all previous discussed points, we decided to develop a unified and
high-level GPU library suitable for parallelism exploitation on stream processing applications.

4.2 Programming with GSPARLIB

In this section, we show how to use GSPARLIB’s structured programming API for
exploiting GPU’s data parallelism on C++ applications. We start by defining the GSPARLIB

parallel patterns. The steps of this process are illustrated in Figure 4.1. The Map pattern is
highlighted with blue color in Figure 4.1a, where programmers have to follow these three steps:
(1) identify where are the stateless data-parallel regions of the code to apply the Map pattern;
(2) check whether the operation computed in the data-parallel region is compatible with CUDA
C or OpenCL C, which is a requirement for GSPARLIB’s GPU kernel code; (3) define the
Map pattern object with the GPU kernel core, configure the desired properties such as batch
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size and device to be used when executing the pattern, and set the pattern’s parameters. In
Figure 4.1a we are using the GSPAR_STRINGIZE_SOURCE macro to pass the GPU kernel code
to the pattern, which is a code wrapper.

The Reduce pattern is highlighted with green color in Figure 4.1b and comprises two
steps: (1) check if there is a data container that is being reduced to a single value by a binary
associative and commutative operator; and (2) define the Reduce pattern object with the
output name, input name, and operator, configure the desired properties such as the device
to be used when executing the pattern, and set the pattern’s parameters. In Figure 4.1b we
are setting “total” as the output name, “vec” as the input name, and “+” as the operator. We
are also setting the pattern to use the first GPU (which is the default).

1

2
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float scalar = 123;
...
for (int x = 0; x < 10; x++) {
  res[x] = scalar*vecA[x]+vecB[x];
}
...

Where are the stateless data-parallel
regions of the code?

Is the operation compatible with
CUDA C or OpenCL C?

Define the Map pattern,
configure it, and set the parameters

Map

res[x] = scalar*vecA[x]+vecB[x];

GSPAR_STRINGIZE_SOURCE(
res[x] = scalar*vecA[x]+vecB[x];)

(a) Map pattern.

1

2

float total = 0;
for (int x = 0; x < 10; x++) {
  total += vec[x];
}
...

Is there a data container that is being
reduced to a single value by a binary

associative and commutative operator?

Define the Reduce pattern with the input
name, output name, and operator, configure
desired properties, and set the parameters

Reduce
"total", "vec", "+"

(b) Reduce pattern.

Figure 4.1: Methodology for defining GSPARLIB patterns.

After defining the parallel patterns, the user can combine multiple patterns in a
pattern composition. The pattern composition optimizes the combined patterns and executes
them sequentially (future versions may support different execution flows). The most common
pattern flow is a sequence of Maps followed by one or more Reduces. Nonetheless, currently
GSPARLIB allows any combination of patterns to be combined and does not enforces special
ordering.

These steps for defining the patterns and compositions can be performed during
the application’s warm-up phase, outside any loop of computation. Optionally, after these
steps, the programmer may include a call to compile the patterns before the computation.
Otherwise, the compilation of the pattern will occur automatically when the run method is
called for the first time.

Figure 4.2 illustrates how to apply these steps in a simple sequential vector sum
function. We highlighted in blue color the GSPARLIB code. The first step is to identify the
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stateless data-parallel regions of the code, which is the for loop that performs the vector
summation. In the second step we check if the operation (highlighted by a dashed orange
box) is compatible with CUDA or OpenCL GPU kernel code. This operation is compatible
with both backends. In the third step we define the pattern itself with the operation from the
second step. In this case, right after defining the pattern, we set the parameters and run it
using the size variable.

void	vector_sum(int	size,	float	*a,	float	*b,	float	*result)	{
 	try	{
 	 	Map	*map	=	new	Map(GSPAR_STRINGIZE_SOURCE(
 	 	 	result[x]	=	a[x]	+	b[x];
 	 	));
 	  map->setParameter("a",	sizeof(float)*size,	a)
 	 	 	 	.setParameter("b",	sizeof(float)*size,	b)
 	 	 	 	.setParameter("result",	sizeof(float)*size,	result,
 	 	 	 	 	GSPAR_PARAM_OUT)
 	 	 	 	.run<Instance>({size});
 	 	delete	map;
 	}	catch	(GSPar::GSParException	&ex)	{
 	 	std::cerr	<<	ex.what()	<<	":	"	<<	ex.getDetails()
 	 	 	<<	std::endl;
 	}
 	return	result;
}

void	vector_sum(int	size,	float	*a,	float	*b,
 	 	float	*result)	{
 	for	(int	x	=	0;	x	<	size;	x++)	{
 	 	result[x]	=	a[x]	+	b[x];
 	}
 	return	result;
}
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Figure 4.2: Applying GSPARLIB in a sequential code.

This simple example demonstrates the application of GSPARLIB in sequential
source code, which does not involve multi-core parallelism. Now, to demonstrate the use
of GSPARLIB in a stream processing application, we integrate it in a FastFlow application.
It is important to highlight that GSPARLIB can be integrated with any tool focused in multi-
core parallelism, such as TBB or OpenMP. We chose to integrate with FastFlow due to our
familiarity with its programming model. First, Figure 4.3 shows how to modify a sequential
source code using the FastFlow library to exploit stream parallelism in multi-core architectures.
This code example applies a SAXPY (Single precision A X Plus Y) operation in a stream of
vectors.

The right side of Figure 4.3 presents the sequential source code, on which we
delimited the Farm pattern components with dashed blue boxes. We also labeled the
components with filled blue boxes in the right side of the code: the E box marks the emitter,
the W box marks the workers, which apply a stateless operator and thus can be performed in
parallel, and the C box marks the collector with a stateful operator that cannot be replicated.
For the sake of simplicity, we defined the scalar variable in the global space.

The left side of Figure 4.3 presents the code with stream parallelism using the
FastFlow library. The changes with respect to the original sequential code were highlighted
in green color. The first part of the code defines the Task structure, which represent the
stream items that are sent from one stage to the next stage. Each of the Farm pattern
components is defined as a class which inherits the ff_node or ff_note_t class. They define
the svc method to perform the stage operations. The Emitter class obtains the input vector
using the get_next_input_vec() functions, allocates memory for the output, and sends these
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float	scalar	=	5;
int	main(int	argc,	char	*	argv[])	{
 	int	vecsize	=	20;

 	while	(true)	{
 	 	float	*vecA	=	get_next_input_vecA();
 	 	float	*vecB	=	get_next_input_vecB();
 	 	float	*res	=	new	float[vecsize];

 	 	for	(int	x	=	0;	x	<	vecsize;	x++)	{
 	 	 	 	res[x]	=	scalar*vecA[x]+vecB[x];
 	 	}

 	 	stateful_op(res);
 	}

}

struct	Task	{
 	 	Task(int	size,	float	*a,	float	*b,	float	*r):
 	 	 	size(size),a(a),b(b),r(r){};
 	  int	size;
 	 	float	*a;
 	 	float	*b;
 	 	float	*r;
};
struct	Emitter:	ff_node	{
 	int	vecsize;
 	void	*svc(void*)	{
 	 	while	(true)	{
 	 	 	float	*vecA	=	get_next_input_vecA();
 	 	 	float	*vecB	=	get_next_input_vecB();
 	 	 	float	*res	=	new	float[vecsize];
 	 	 	Task	*t	=	new	Task(vecsize,	vecA,	vecB,	res);
 	 	 	ff_send_out(t);
 	 	}
 	 	return	EOS;
 	}
};
struct	Worker:	ff_node_t<Task>	{
 	Task	*svc(Task	*in)	{
 	  for	(int	x	=	0;	x	<	in->size;	x++)	{
 	 	 	 	in->r[x]	=	scalar*in->a[x]+in->b[x];
 	 	}
 	 	return	in;
 	}
};
struct	Collector:	ff_node_t<Task>	{
 	Task	*svc(Task	*in)	{
 	 	stateful_op(in->res);
 	 	return	static_cast<Task*>(GO_ON);
 	}
};
float	scalar	=	5;
int	main(int	argc,	char	*	argv[])	{
 	int	vecsize	=	20;

  Emitter	emitter;
 	emitter.vecsize	=	vecsize;
 	Collector	collector;
 	std::vector<std::unique_ptr<ff_node>	>	workers;
 	for(size_t	i=0;	i<4;	++i) 
 	 	 	workers.push_back(make_unique<Worker>());
 	ff_Farm<>	farm(std::move(workers),	emitter,	collector);
 	farm.run_and_wait_end();
}

E

C

W

Figure 4.3: Using FastFlow library to exploit stream parallelism in sequential source code.

vectors to the workers. The Worker class perform the actual computation, using the vectors
from the Task item received from the Emitter, and sends the item to the next stage. The
Collector class calls the stateful_op function passing the result vector as argument. In the
main function, the code was replaced by the preparation and execution of the ff_Farm object,
which contains one instance of the Emitter, four replicated instances of the Worker, and one
instance of the Collector.

Now we introduce data parallelism for GPU in the code with stream parallelism for
multi-core architectures. Figure 4.4 demonstrates how to apply GSPARLIB together with the
FastFlow code. We apply the three steps described in Figure 4.1a to define the Map pattern:
(1) we identify the data-parallel stateless code section that represents the Farm’s worker;
(2) we restore the original (sequential) core operation, which is highlighted by a dashed
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orange box, as it is compatible with both CUDA and OpenCL GPU kernel code; and (3) we
define the Map pattern and set parameter placeholders since the actual values change for
each stream item, and compile the pattern. These steps are identified in Figure 4.4.

struct	Task	{
 	 	Task(int	size,	float	*a,	float	*b,	float	*r):
 	 	 	size(size),a(a),b(b),r(r){};
 	  int	size;
 	 	float	*a;
 	 	float	*b;
 	 	float	*r;
};
struct	Emitter:	ff_node	{
 	int	vecsize;
 	void	*svc(void*)	{
 	  while	(true)	{
 	 	 	float	*vecA	=	get_next_input_vecA();
 	 	 	float	*vecB	=	get_next_input_vecB();
 	 	 	float	*res	=	new	float[vecsize];
 	 	 	Task	*t	=	new	Task(vecsize,	vecA,	vecB,	res);
 	 	 	ff_send_out(t);
 	  }
 	 	return	EOS;
 	}
};
struct	Worker:	ff_node_t<Task>	{
 	Task	*svc(Task	*in)	{
 	  for	(int	x	=	0;	x	<	in->size;	x++)	{
 	 	 	  in->r[x]	=	scalar*in->a[x]+in->b[x];
 	 	}
 	 	return	in;
 	}
};
struct	Collector:	ff_node_t<Task>	{
 	Task	*svc(Task	*in)	{
 	  stateful_op(in->res);
 	 	return	static_cast<Task*>(GO_ON);
 	}
};
int	main(int	argc,	char	*	argv[])	{
 	float	scalar	=	5;
 	int	vecsize	=	20;

  Emitter	emitter;
 	emitter.vecsize	=	vecsize;
 	Collector	collector;
 	std::vector<std::unique_ptr<ff_node>	>	workers;
 	for(size_t	i=0;	i<4;	++i)	{
 	 	workers.push_back(make_unique<Worker>());
 	}
 	ff_Farm<>	farm(std::move(workers),	emitter,	collector);
 	farm.run_and_wait_end();
}

struct	Task	{
 	 	Task(int	size,	float	*a,	float	*b,	float	*r):
 	 	 	size(size),a(a),b(b),r(r){};
 	  int	size;
 	 	float	*a;
 	 	float	*b;
 	 	float	*r;
};
struct	Emitter:	ff_node	{
 	int	vecsize;
 	void	*svc(void*)	{
 	  while	(true)	{
 	 	 	float	*vecA	=	get_next_input_vecA();
 	 	 	float	*vecB	=	get_next_input_vecB();
 	 	 	float	*res	=	new	float[vecsize];
 	 	 	Task	*t	=	new	Task(vecsize,	vecA,	vecB,	res);
 	 	 	ff_send_out(t);
 	  }
 	 	return	EOS;
 	}
};
struct	Worker:	ff_node_t<Task>	{
 	Map	*map;
 	Task	*svc(Task	*in)	{
 	  map->setParameter("vecA",	sizeof(float)*vecsize,	vecA)
 	 	 	 	.setParameter("vecB",	sizeof(float)*vecsize,	vecB)
 	 	 	 	.setParameter("res",	sizeof(float)*vecsize,	res,	GSPAR_PARAM_OUT);
 	 	 	 	.run<Instance>();
 	 	return	in;
 	}
 	void	svc_end()	{	delete	map;	}
};
struct	Collector:	ff_node_t<Task>	{
 	Task	*svc(Task	*in)	{
 	  stateful_op(in->res);
 	 	return	static_cast<Task*>(GO_ON);
 	}
};
int	main(int	argc,	char	*	argv[])	{
 	float	scalar	=	5;
 	int	vecsize	=	20;
 	auto	map	=	new	Map("res[x]	=	scalar*vecA[x]+vecB[x];");
 	map->setParameter("scalar",	scalar)
 	 	 	.setParameterPlaceholder<float*>("vecA")
 	 	 	.setParameterPlaceholder<float*>("vecB")
 	 	 	.setParameterPlaceholder<float*>("res",
 	 	 	 	GSPAR_PARAM_POINTER,	GSPAR_PARAM_OUT)
 	 	 	.compile<Instance>({vecsize});
  Emitter	emitter;
 	emitter.vecsize	=	vecsize;
 	Collector	collector;
 	std::vector<std::unique_ptr<ff_node>	>	workers;
 	for(size_t	i=0;	i<4;	++i)	{
 	 	workers.push_back(make_unique<Worker>());
 	 	workers.back().get().map	=	map->clone<Instance>();
 	}
 	ff_Farm<>	farm(std::move(workers),	emitter,	collector);
 	farm.run_and_wait_end();
 	delete	map;
}
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Figure 4.4: Applying GSPARLIB in FastFlow code.

Since the worker stage is executed in parallel, we need to create a clone of the
pattern object for each parallel worker since it is not a thread-safe object. To this end, the
pattern offers a clone method, which shares the thread-safe compiled pattern for all object
clones and thus does not require recompilation when executing the pattern in parallel. This
step is performed during the preparation of the workers, right before launching the Farm
execution. Therefore, each parallel worker holds a clone of the Map pattern and can safely
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invoke the pattern in parallel. These clones are thin objects with a light memory footprint,
thus the application may create and hold many clones without any significant performance
hit. GSPARLIB automatically manage the internal state of these objects and releases the
underlying shared GPU kernel once all clones are destroyed.

Please note that none of the GSPARLIB code (highlighted in blue) in Figures 4.2 and
4.4 has any reference to CUDA nor OpenCL drivers. The underlying driver is defined based on
the namespace of the Instance class passed as template argument to the methods compile,
clone, and run. The Instance class is defined in two namespaces: GSPar::Driver::CUDA

and GSPar::Driver::OpenCL. Therefore, to switch between the two drivers the programmer
needs to change only the using clause to specify the namespace of the desired driver (this is
not shown in the aforementioned Figures for the sake of simplicity). We recommend putting
these using clauses inside a ifdef preprocessing directive to allow switching between the
drivers using a compiler flag as will be demonstrated in Listing 4.2.

4.3 API and Runtime Design Choices

In this section we discuss some of the choices made during the GSPARLIB design.
Firstly, we chose to separate the GSPARLIB API in two layers: a lower-level API, named
Driver API, which acts as a wrapper over CUDA and OpenCL drivers; and a higher-level
API, named Pattern API, focused in structured parallel programming. This layered design
provide access to two abstraction levels for the same API, supporting system and application
programmers according to their needs and expertise. The lower-level Driver API offers a
driver-agnostic Object Oriented Programming (OOP) wrapper which transparently translate
calls to CUDA and OpenCL drivers while the higher-level Pattern API offers support for Map
and Reduce patterns as well as any composition of such patterns. This layered design is
very similar with that of Boost.Compute, discussed in Section 3.1. Figure 4.5 shows the
relationship between both layers and the structured parallel patterns. Future works may add
support for more patterns using the same lower-level Driver API.

We also want to highlight our choice of exposing object oriented APIs. OOP is
arguably one of the most used programming paradigms for software development worldwide
since it is supported by most of the modern programming languages [TIO20]. Since the
addition of classes is the single biggest difference between C and C++ [Str94], it makes little
sense to develop a modern C++ library on any other programming paradigm. Unlike OpenCL,
which offers C++ bindings in its current releases, latest CUDA versions does not include any
C++ API for its Driver API. Thus, our library wrap these differences using the procedural APIs
from both vendors and offering a single and unified object oriented layer [Bal08] with a fluent
interface (with method chaining) [Fow10].
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Future work
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Figure 4.5: Overview of GSPARLIB APIs and parallel patterns.

We already discussed in Section 4.1 the decision of generating the GPU kernel
code during runtime. As previously mentioned, this design allows to generate code optimized
for the heterogeneous computer architecture which is running the application. Moreover, this
decision contributes towards a unified API and a driver-agnostic runtime, aiming to abstract
the differences of CUDA and OpenCL programming models. The CUDA Runtime API, which
uses the nvcc compiler, provides generation and compilation of the GPU kernel code during
compile-time. However, the OpenCL execution model always compiles the GPU kernel code
during runtime. Using the CUDA Driver API and the NVIDIA runtime compiler (nvrtc), we
can provide a unified approach for CUDA and OpenCL, which compiles the GPU kernel code
at runtime.

During the library design we had to made a choice concerning page-locked host
memory. The CUDA driver only allows for overlapping memory transfers and computations
if the host memory is pinned (non-pageable) [Har12b]. This feature is specially important
for stream processing applications since one pipeline stage may perform a memory copy
while other stage is launching a GPU kernel. Therefore, GSPARLIB’s MemoryObject offers a
pinHostMemory method to page-lock the host memory, which is always called by the patterns
from GSPARLIB’s Pattern API right after the GPU memory is allocated. In its current version,
GSPARLIB’s pinHostMemory uses cuMemHostRegister in CUDA driver and does nothing in
OpenCL driver, as the OpenCL specification does not require the use of page-locked memory
to overlap memory copies and GPU kernel execution [Khr18]. Defining the macro GSPAR_

PATTERN_DISABLE_PINNED_MEMORY disables this automatic memory pinning from the Pattern
API.

Another design choice is to allow interoperability of the GSPARLIB Driver API with
the lower-level CUDA and OpenCL procedural APIs by exposing methods to access the
underlying CUDA/OpenCL objects which are wrapped in the GSPARLIB classes. OOP advo-
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cates that these objects should be entirely abstracted and encapsulated by the class [Bal08].
However, in practice, many times the application programmer have to deal with challenges
unanticipated by the system programmer. We design the abstraction layer of GSPARLIB

to leak the abstraction [Spo02], allowing the application programmer to overcome these
challenges. Otherwise, the application programmer would be unable to proceed using the
library or would have to sacrifice performance to overcome it (e.g. we had to perform an extra
memory copy to use SkePU 3 data containers due to differences between the container which
was holding the data and the container the API was expecting. More on that in Section 4.7).
This versatility also allows the programmer to apply specific optimizations, while they are
not implemented in GSPARLIB yet, such as shared memory usage and coalesced memory
access.

Now we discuss how GSPARLIB follows the principles for tools based on structured
parallel programming discussed in Section 2.2 [Col04]:

1. Propagate the concept with minimal conceptual disruption. GSPARLIB is imple-
mented in the main programming paradigm (OOP) of a widely used language (C++).
The lower-level runtimes are the de facto standard CUDA and OpenCL. Each of the
pattern classes are clearly defined as one parallel pattern, both in terms of naming and
usability.

2. Integrate ad-hoc parallelism. GSPARLIB was built to be usable in multi-threaded
environments. All classes are either thread-safe or offer a way to be used in multiple
threads (such as cloning the object). Thus, GSPARLIB can be safely used together with
other tools focused in parallel programming.

3. Accommodate diversity. GSPARLIB offers a way to combine multiple Map and Re-
duce pattern instances. Moreover, the function to be applied for each data element in
the Map pattern is provided by the user, allowing arbitrary operations to be performed
over the input data.

4. Show the pay-back. GSPARLIB offers clear advantages in various aspects of GPU
programming, such as programmability (Section 4.6) and performance (Section 4.7).
We also provide access to two abstraction levels for the same API, supporting system
and application programmers according to their needs and expertise.

The main purpose of GSPARLIB library is to be integrated with another tool for
multi-core parallelism and used in stream processing applications. This was a major driver in
design choices such as: (a) define pattern and GPU kernel parameters as inputs, outputs, or
both, which are the definitions commonly seen in this class of applications; (b) offer asyn-
chronous operations whenever possible so that a pipeline stage can issue an asynchronous
operation and send the task to the next stage, thus the operation is executed during the
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communication between stages; (c) support thread-safety to permit the exploitation of hetero-
geneous parallelism, mainly to allow various pipeline stages replicated to execute patterns
simultaneously.

4.4 GSPARLIB: low-level Driver API

The main motivation behind the Driver API is to act as a single interface to the
different GPU drivers, currently CUDA and OpenCL. In addition to a unified interface, it is able
to abstract from the GPU programmer the complexities of lower-level language constructs
(such as C-like error handling) and provide a unified C++ programming API. This lower-level
API is intended to be used by system programmers seeking a unified C++ object oriented
API for GPU programming.

Table 4.1 links GPU programming concepts to the objects in the CUDA Driver API,
OpenCL API, and GSPARLIB Driver API. Some GPU programming concepts are abstracted
away entirely from the programmer in GSPARLIB (such as the compilation of the kernel
and GPU context management) while others are wrapped in helper classes to ease C++
programming (such as asynchronous processes and exception handling). Nonetheless, most
classes in GSPARLIB Driver API represent existing objects in CUDA or OpenCL APIs such
as Device, Kernel, and ExecutionFlow.

Table 4.1: GSPARLIB Driver API analogous concepts.

GPU concept CUDA (Driver API) OpenCL GSPARLIB (Driver API)

Kernel compilation nvrtcProgram
CUmodule

cl_program Implicit in Kernel

Initialization cuInit() None Instance::init()
Context CUcontext cl_context Automatically managed by

Device
Device CUdevice cl_device_id Device
Memory allocation CUdeviceptr cl_mem MemoryObject

ChunkedMemoryObject
GPU Kernel CUfunction cl_kernel Kernel
Commands channel CUstream cl_command_queue ExecutionFlow
Asynchronous flow CUstream cl_event AsyncExecutionSupport
Error handling CUresult

nvrtcResult
cl_int Exception

Launch dimensions unsigned int in
cuLaunchKernel

size_t[3] in
clEnqueueNDRangeKernel

Dimensions struct in
Kernel::runAsync

There are four main classes in the Driver API, where each one represents an
important entity of the domain of GPU programming. We present a summary of them below:

• Device: each object of this class represents a single GPU device. These objects are
thread-safe so that they can be safely used simultaneously by many parallel threads. We
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recommend that only a single Device object is used for each GPU in the heterogeneous
system, however, we do not enforce because it may be easier for the programmer to
create multiple Device objects to manage the same GPU;

• MemoryObject: each object of this class represents a block of memory allocated in a
single Device. It can be instantiated by calling Device::malloc or by invoking the class
constructor directly;

• Kernel: each object of this class represents a single GPU kernel. These objects can
be instantiated by calling Device::prepareKernel or by invoking the class constructor
directly. They are not thread-safe, but each parallel thread can make its own copy of the
Kernel object by using the Kernel::cloneInto method;

• Instance: this class acts as a thread-safe entry point of the API. It is implemented using
the Singleton design pattern [GHJV94], which means that the API enforces that only
one instance of this class exists. This class instance can be accessed by using the
Instance::getInstance method.

The Driver API class and methods have simple names, directly related to the domain
of GPU programming, which should be recognized by any GPU programmer. The Instance

class acts as a starting point for GPU programming using the API. GPU devices and kernels
are represented by the Device and Kernel classes while blocks of memory allocated in some
device are represented by the MemoryObject class. The Instance class offers methods for
initialization of the GPU driver (init), querying the number of devices (getGpuCount) and
getting Device objects (getGpu). Memory objects may be allocated by calling Device::malloc

or by directly constructing a new MemoryObject.

Figure 4.6 presents a Unified Modeling Language (UML) diagram of all the rela-
tionships between the Driver API classes. There are two classes for error handling defined
in the GSPar::Driver namespace: GSParException is used for general exceptions that are
generated without direct relation to the underlying driver (CUDA or OpenCL); and Exception

inherits the first and is thrown mostly due to errors reported by the underlying driver. This
scheme permits the application to catch any of GSPARLIB’s exceptions in a single catch

clause referring to the GSParException class.

The Dimensions structure is used to define the lower and upper bounds for each
dimension when executing the GPU kernel. It simply groups three references for the
SingleDimension structure, one for each dimension. Even though the current GSPARLIB

version only supports executing GPU kernels up to two dimensions, these structures were
designed aiming at the standard three-dimensional execution grid of CUDA and OpenCL.
The ExecutionFlow class acts as a wrapper for cl_command_queue and CUstream data types,
as detailed in Table 4.1. Each device has its own default ExecutionFlow instance, but any
number of flows may be created for each device. An operation enqueued in a ExecutionFlow
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Figure 4.6: UML class relationships of the Driver API.

is guaranteed to be processed only after all the previous operations on this flow have been fin-
ished. Thus, the programmer may create different flows to overlap different operations, such
as memory copies and GPU kernel execution. The AsyncExecutionSupport abstract class
provides common functionality for querying whether any asynchronous operation is running
and waiting this operation to finish execution. It is inherited by the Kernel and MemoryObject

classes, which are the classes that provide a sort of asynchronous execution: running the
GPU kernel and copying memory.

Programming an application using the Driver API follows the standard GPU pro-
gramming flow defined by tools like CUDA and OpenCL, which can be summarized in 4
steps: (1) initialize the API and identify the devices; (2) allocate device memory and copy
the necessary data; (3) prepare the Kernel object and invoke the GPU kernel; (4) copy
results back to the main (host) memory and release resources. These steps can be seen
in the sample vector sum application using the Driver API presented in Listing 4.1. This
application simply sums two vectors (variables a and b) of the same size (defined by the size

variable), and stores the sum in the variable result. Each vector element can be summed
independently from the other elements, thus this program can be safely offloaded to exploit
GPU parallelism.
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We chose CUDA or OpenCL drivers at compile-time defining the macros GSPARDRIVER_

CUDA or GSPARDRIVER_OPENCL by using the -D compiler flag. We define the underlying driver
using preprocessing directives, according to these macros in lines 1–24 of Listing 4.1. In the
lower-level Driver API, the GPU kernel source code must be provided as string (for which we
use the GSPAR_STRINGIZE_SOURCE macro in lines 4 and 16) for each of the drivers individually.
All Driver API classes are defined under the GSPar::Driver namespace, thus we employ the
using clause in lines 3 and 15 to avoid having to write the full namespace name when using
the API classes.

1 #ifdef GSPARDRIVER_CUDA
2 #include "GSPar_CUDA.hpp"
3 using namespace GSPar:: Driver ::CUDA;
4 const char* kernelSource = GSPAR_STRINGIZE_SOURCE(
5 extern "C" __global__
6 void kernelVectorSum(const int size , const int *a, const int *b, int

*result) {
7 size_t x = blockIdx.x * blockDim.x + threadIdx.x;
8 if (x <= size) {
9 result[x] = a[x] + b[x];

10 }
11 }
12 );
13 #else
14 #include "GSPar_OpenCL.hpp"
15 using namespace GSPar:: Driver :: OpenCL;
16 const char* kernelSource = GSPAR_STRINGIZE_SOURCE(
17 __kernel void kernelVectorSum(const int size , __global const int *a,

__global const int *b, __global int *result) {
18 size_t x = get_global_id (0);
19 if (x <= size) {
20 result[x] = a[x] + b[x];
21 }
22 }
23 );
24 #endif
25

26 void vector_sum(const int size , const int *a, const int *b, int *result) {
27 try {
28 Instance* driver = Instance :: getInstance ();
29 driver ->init();
30

31 auto gpu = driver ->getGpu (0); // Get the first GPU
32

33 MemoryObject* devA = gpu ->malloc(sizeof(int) * size , a);
34 MemoryObject* devB = gpu ->malloc(sizeof(int) * size , b);
35 devA ->copyInAsync ();
36 devB ->copyInAsync ();
37 AsyncExecutionSupport :: waitAllAsync ({ devA , devB });
38

39 MemoryObject* devResult = gpu ->malloc(sizeof(int) * size , result);
40

41 // Kernel* kernel = gpu ->prepareKernel(kernelSource , "kernelVectorSum ");
42 Kernel* kernel = new Kernel(gpu , kernelSource , "kernelVectorSum");
43

44 kernel ->setParameter(sizeof(size), &size);
45 kernel ->setParameter(devA);
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46 kernel ->setParameter(devB);
47 kernel ->setParameter(devResult);
48

49 kernel ->runAsync ({size , 0});
50 kernel ->waitAsync ();
51

52 devResult ->copyOut ();
53

54 delete kernel;
55 delete devA; // Releases device memory
56 delete devB;
57 delete devResult;
58 } catch (GSPar:: GSParException &ex) {
59 std::cerr << "Exception: " << ex.what() << " - " << ex.getDetails () <<

std::endl;
60 }
61 }

Listing 4.1: Vector sum using the Driver API.

The Instance singleton is used to access a specific GPU (in Listing 4.1 we access
the first GPU in line 31) or to list all the GPUs using the getGpuList method. To allocate
memory in the GPU we use the malloc method of the Device class, optionally binding a host
pointer to the allocated device memory. The malloc method returns a pointer to a single
MemoryObject instance, which can be used to copy data between the GPU and the host
memories. In lines 33, 34, and 39 of Listing 4.1 we allocate GPU memory for the vectors
a, b, and result as well as store the resulting MemoryObject pointers in the variables devA,
devB, and devResult, respectively. The synchronization between host and device memory is
done explicitly by calling the copy methods of the MemoryObject objects: by calling copyIn or
copyInAsync the memory is copied from the host to the device while copyOut or copyOutAsync
methods can be used to copy the memory from the device to the host. In lines 35 and 36 of
Listing 4.1 we use the copyInAsync method to asynchronously copy the input vectors a and b

from the host to the GPU memory. When an asynchronous operation is started, the waitAsync

method can be used on the object to wait for the operation to complete. This method is
defined in the AsyncExecutionSupport class, which is inherited by classes that allows for
asynchronous operations, such as Kernel and MemoryObject. Optionally, many asynchronous
operations can be waited together by using the static method AsyncExecutionSupport::

waitAllAsync, as demonstrated in line 37 of Listing 4.1.

The GPU kernel is prepared by calling Device::prepareKernel (line 41) or by using
the Kernel class constructor (line 42). Any of these calls set-ups the kernel compilation by
CUDA (using the NVIDIA runtime compilation, NVRTC) or OpenCL drivers, which may be a
time-consuming operation. Since the Kernel objects are not tread-safe, this class provides
the cloneInto method to make a clone of the Kernel object for each parallel thread of the
program. The cloning operation ensures that all cloned objects use the same compiled kernel
instead of compiling a different kernel for each thread.
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The argument value for each parameter declared in the GPU kernel (lines 6 and 17
for CUDA and OpenCL, respectively) must be passed to the Kernel object in the same order
as they were declared in the kernel source. These kernel arguments are set by calling the
setParameter method and passing as arguments the size and pointer to the value (line 44) or
the MemoryObject (lines 45–47).

After setting the parameters, the kernel is executed by calling Kernel::runAsync

method in line 49, passing as argument a Dimensions two-dimensional structure that rep-
resents the last (exclusive) value of the index variable (also called end index or maximum
value). The programmer may also define the first (inclusive) value of the variable (also called
start index or minimum value) in the Dimensions structure, which has a default value of 0. The
number of threads and blocks launched by GSPARLIB in the GPU is defined by the difference
(delta) of the maximum and minimum values in this Dimensions structure as well as the GPU
thread and block size limits. Deleting the memory objects (lines 55–57) frees the related
device memory.

The Driver API also offers support for setting shared memory allocation for the
kernel. This can be done by calling Kernel::setSharedMemoryAllocation(unsigned int),
where the argument is the size in bytes of the shared memory that should be allocated for
each thread block. Since this memory is shared block-wide, the programmer may need to
know the grid and block sizes (number of blocks and number of threads that will be launched)
for a specific Dimensions structure. Thus, this information can be obtained by calling the
Kernel::getNumBlocksAndThreadsFor(Dimensions) method.

The Driver API also provides a wrapper over CUDA and OpenCL error codes using
modern C++ exception handling. The GSParException class serve as a base class for specific
Exception classes of each driver (CUDA and OpenCL). They can all be caught in a single
catch block, as demonstrated in line 58 of Listing 4.1. Besides driver-specific exceptions,
the Driver API itself also throws exceptions related to unavailable GPUs and programming
mistakes (such as trying to set a memory object as read-only and write-only simultaneously).

In addition to the MemoryObject class, the Driver API also offers a specialized
class for linking multiple individual host pointers to a single block of device memory, the
ChunkedMemoryObject class. Objects of this specialized class can be created by calling the
mallocChunked method of the Device class or by the using the ChunkedMemoryObject class
constructor. In this class, the methods for copying (synchronizing) data between the host
and device memories (copyIn, copyInAsync, copyOut, and copyOutAsync) receive an extra
argument to specify if it should copy all chunks of memory or a specific chunk. This class
eases batching small memory transfers into a single transfer, which is a recommended
approach to improve performance in GPU programming [Har12a]. However, the programmer
is in charge of computing the indexes for accessing the memory object in the kernel, which
can be a cumbersome task. Nonetheless, the main use of this class is to support the batch
feature of the Pattern API (which will be discussed in Section 4.5).
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GSPARLIB supports interoperability with the lower-level CUDA and OpenCL APIs
by providing methods to access the underlying CUDA and OpenCL objects. The programmer
can access the CUstream or cl_command_queue object of an ExecutionFlow using the getBase

FlowObject method. Similarly, the CUstream or cl_event that represents an asynchronous
operation in MemoryObject (copying memory) or Kernel (executing the GPU kernel) can
be accessed using the getBaseAsyncObject method. Other lower-level objects exposed
through the Driver API are the objects that represent a device (CUdevice and cl_device_id),
which can be accessed using the Device::getBaseDeviceObject method, and the objects
that represents a memory allocation in the GPU (CUdeviceptr and cl_mem), which can be
accessed by using the getBaseMemoryObject method from the MemoryObject class.

The Driver API also offers auxiliary functions to abstract some of the differences
between CUDA and OpenCL kernel programming, which are meant to be called inside the
GPU kernel code:

• gspar_get_global_id(dim): returns the global ID of the current thread for the dimension
(0, 1, or 2, which represents x, y, and z dimensions, respectively). The OpenCL
implementation of this function calls get_global_id(dim) and the CUDA implementation
calculates the global ID using blockIdx.D * blockDim.D + threadIdx.D, where D

represents the dimension name (x, y, or z);

• gspar_get_thread_id(dim): returns the local ID of the current thread inside the block.
It is represented by OpenCL’s get_local_id(dim) and CUDA’s threadIdx.D;

• gspar_get_block_id(dim): returns the the current thread block’s ID, which is repre-
sented by the get_group_id function in OpenCL and the blockIdx structure in CUDA;

• gspar_get_block_size(dim): returns the the current thread block’s size, which is rep-
resented by the get_local_size function in OpenCL and the blockDim structure in
CUDA;

• gspar_synchronize_local_threads(): performs a synchronization barrier for the threads
of the same block or work group. This function calls __syncthreads() in CUDA and
barrier(CLK_LOCAL_MEM_FENCE) in OpenCL.

4.5 GSPARLIB: high-level Pattern API

The Pattern API provides a higher-level structured programming interface that makes
use of the Driver API capabilities to support CUDA and OpenCL alike. Currently, the Pattern
API supports the Map and Reduce parallel patterns by providing homonymous classes. These
patterns may also be bundled together in a pattern composition.
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Figure 4.7 presents a UML diagram of the Pattern API classes relation-
ships. All classes of this API are defined inside the GSPar::Pattern namespace. The
BaseParallelPattern is an abstract class that provides general functionality for all parallel
patterns. Thus, most of the API behavior is defined in this class, which is inherited by the Map

and Reduce classes. These pattern classes overload some of the methods of the main class to
implement pattern-specific behavior. The PatternComposition class represent a collection of
patterns that should be compiled and executed together. Currently, the PatternComposition

class always executes the patterns sequentially, but support for custom pattern dependencies
or different schedulers may be implemented by future works.

namespace	GSPar::Pattern

BaseParallelPattern

Map Reduce

BaseParameter

ValueParameter PointerParameter

ParameterValueType
<<enumeration>>

ParameterDirection
<<enumeration>>

PatternComposition

Extends Extends

0..*

0..*

Extends Extends

0..*

1..*

Figure 4.7: UML class relationship of the Pattern API.

In addition to those main classes, there are two enumerations: ParameterValueType
is used to differentiate parameters defined as built-in data types (value) and pointers; and
ParameterDirection is used to identify in which directions the parameter should be copied
with relation to the GPU memory, in, out, in-out, and none (the parameter is not copied).
Each of the pattern’s parameters is a specialized instance of the BaseParameter class, which
have only two specializations: ValueParameter for parameters of built-in data types and
PointerParameter for parameters defined as pointers.

4.5.1 Map Pattern

The Map pattern offers a simple interface that allows programmers to execute
multiple iterations of the same operation in parallel. Listing 4.2 demonstrates the same
vector sum program from Listing 4.1, now using the higher-level Pattern API instead of the
lower-level Driver API. As a matter of fact, Listing 4.2 presents the complete code of the same
program depicted in Figure 4.2. As a lightweight library, GSPARLIB could not inspect the
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source code to automatically generate the kernel based on lambda or user-defined functions
in the C++ source code, such as SkePU and PACXX. Therefore, the core operation of the
GPU kernel must still be passed as string, for which we use the GSPAR_STRINGIZE_SOURCE

macro in line 13. Nevertheless, differently from the Driver API kernel, which requires the user
to pass the full kernel code (Listing 4.1), the Map class automatically generates the boilerplate
platform-dependent code. The Map class also automatically defines standard variables called
x and y for the global thread index in the two dimensions of the GPU kernels, using the
gspar_get_global_id function. These names can be customized using the setStdVarNames

method.
1 #ifdef GSPARDRIVER_CUDA
2 #include "GSPar_CUDA.hpp"
3 using namespace GSPar:: Driver ::CUDA;
4 #else
5 #include "GSPar_OpenCL.hpp"
6 using namespace GSPar:: Driver :: OpenCL;
7 #endif
8 #include "GSPar_PatternMap.hpp"
9 using namespace GSPar:: Pattern;

10

11 void vector_sum(const int size , const int *a, const int *b, int *result) {
12 try {
13 auto pattern = new Map(GSPAR_STRINGIZE_SOURCE(
14 result[x] = a[x] + b[x];
15 ));
16 pattern ->setParameter("size", size)
17 .setParameter("a", sizeof(int) * size , a)
18 .setParameter("b", sizeof(int) * size , b)
19 .setParameter("result", sizeof(int) * size , result , GSPAR_PARAM_OUT)
20 .run <Instance >({size , 0});
21 delete pattern;
22 } catch (GSPar:: GSParException &ex) {
23 std::cerr << "Exception: " << ex.what() << " - " << ex.getDetails () <<

std::endl;
24 }
25 }

Listing 4.2: Vector sum using the Map pattern from the Pattern API.

After creating the pattern with the core kernel code in lines 13–15 of Listing 4.2, the
pattern parameters are defined using the setParameter method (lines 16–19). This method
has various overloads for different types of parameters and takes as arguments: a string
containing the parameter name inside the kernel; the size of the parameter (only if the third
argument is a pointer); the pointer to the values or the value if the parameter is a single value
of one of C++ basic data types (such as the size parameter in line 16); and a flag specifying
if the argument should be copied from the GPU memory to the host memory after computing
the Map pattern (by default the parameter is only copied into the GPU memory).

After setting the parameters, the pattern is synchronously launched by calling the run

method (line 20), which takes a reference to the Instance class of the Driver API as a template
argument. This reference defines what driver (CUDA or OpenCL) will be used to compile
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and run the pattern. The argument of the run method is the same as the Kernel::runAsync

method from the Driver API, which is the Dimensions structure that defines the number of
parallel threads that will be launched. By default, the first GPU is used to compile and run the
kernel, however, it is possible to set a specific device for the pattern by using the setGpuIndex

or setGpu methods.

The GPU kernel is automatically compiled whenever the run method is called.
Alternatively, the pattern’s GPU kernel can be compiled by calling the compile method with
the Dimensions structure before the run method is called. In this case, the Dimensions may
be omitted from the run call, as the pattern uses the configuration which was set during the
compilation. The compiled GPU kernel is stored and reused in subsequently calls to the
run method with the same Dimensions. The pattern objects are not thread-safe since they
reference a Kernel object from the Driver API. Thus, they provide the clone method to create
a copy of the pattern which also clones the compiled kernel and avoids the need to recompile
it for each parallel execution.

GSPARLIB also supports compiling the pattern without the actual argument values
if they are not available yet. The method setParameterPlaceholder is used to define place-
holders for the arguments (lines 17–19 in Listing 4.3), passing the type as template argument.
Besides this argument, this method also receives: the name of the parameter which is used
inside the kernel; the type (pointer or single value); a flag specifying in which direction the
argument should be copied between the GPU and host memories (possible values are IN,
OUT, or INOUT); and a boolean flag specifying if the parameter is a batched value.

Listing 4.3 presents a summation of multiple independent vectors that would usually
require a separate kernel launch for each operation. Instead, GSPARLIB receives a batch
of vectors and allows a single kernel launch to operate in separate vectors simultaneously.
The sum_vectors function receives as argument the number of vector pairs to be summed
(numVectors), how many vector sum operations should be performed in each kernel call
(batchSize), the size of each vector (vectorSize), and the pointers for the input and output
vectors (as, bs, and results). The Map pattern is declared in lines 13–15 with the kernel
core for the vector sum operation. Since the vector size is constant for all vectors, it is set
as a pattern argument in line 16 while the rest of the parameters are set as placeholders
(lines 17–19) because they are different for each batch that has to be computed. We define
the batch size as an integer value that is the number of GPU kernel launches that should be
combined, which is set in line 20. In Listing 4.3, the batch size represents the number of vector
summations that should occur in a single run call. After defining the batch size, we compile
the GPU kernel in line 21. This step is optional since the run method automatically compiles
the GPU kernel if it was not compiled yet. Each run call will execute a single batch, thus we
need to calculate the number of batches in line 22 that is the number of run calls to be issued.
Nonetheless, before running the GPU kernel we need to replace the placeholder parameters
by the actual argument values. In Listing 4.3, all placeholder parameters are replaced by
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batched parameters with calls to setBatchedParameter in lines 27–29. The arguments of
setBatchedParameter refer to a single element of the batch, thus it is very similar to the
setParameter method. However, setBatchedParameter always receive pointers (or pointers
of pointers) with batchSize elements.

1 #ifdef GSPARDRIVER_CUDA
2 #include "GSPar_CUDA.hpp"
3 using namespace GSPar:: Driver ::CUDA;
4 #else
5 #include "GSPar_OpenCL.hpp"
6 using namespace GSPar:: Driver :: OpenCL;
7 #endif
8 #include "GSPar_PatternMap.hpp"
9 using namespace GSPar:: Pattern;

10

11 void sum_vectors(int numVectors , int batchSize , int vectorSize , int **as, int
**bs, int ** results) {

12 try {
13 auto pattern = new Map(GSPAR_STRINGIZE_SOURCE(
14 result[x] = a[x] + b[x];
15 ));
16 pattern ->setParameter("size", vectorSize)
17 .setParameterPlaceholder <int*>("a", GSPAR_PARAM_POINTER , GSPAR_PARAM_IN ,

true)
18 .setParameterPlaceholder <int*>("b", GSPAR_PARAM_POINTER , GSPAR_PARAM_IN ,

true)
19 .setParameterPlaceholder <int*>("result", GSPAR_PARAM_POINTER ,

GSPAR_PARAM_OUT , true)
20 .setBatchSize(batchSize)
21 .compile <Instance >({ vectorSize , 0});
22 unsigned int batches = numVectors/batchSize;
23 for (unsigned int b = 0; b < batches; b++) {
24 int *vecA = &as[b*batchSize ];
25 int *vecB = &bs[b*batchSize ];
26 int *vecRes = &results[b*batchSize ];
27 pattern ->setBatchedParameter("a", sizeof(int)*vectorSize , vecA)
28 .setBatchedParameter("b", sizeof(int)*vectorSize , vecB)
29 .setBatchedParameter("result", sizeof(int)*vectorSize , vecRes ,

GSPAR_PARAM_OUT)
30 .run <Instance >();
31 }
32 delete pattern;
33 } catch (GSPar:: GSParException &ex) {
34 std::cerr << "Exception: " << ex.what() << " - " << ex.getDetails () <<

std::endl;
35 }
36 }

Listing 4.3: Batched vector sum using the Map pattern.

Figure 4.8 illustrates the differences between the default execution flow and the
batched flow for an operation to be applied on two independent vectors. The default (se-
quential) flow (Figure 4.8a) is presented in Listing 4.2. In this flow, when a single vector is
processed at a time: the host allocates memory for the vector in the GPU memory, copies
data into the GPU, launches the GPU kernel, and asks for the GPU to copy the data back
to host memory. Then it perform the same steps for the next vectors. The batched flow
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(Figure 4.8b illustrates a batch size of 2) is presented in Listing 4.3. A single block of memory
is allocated in the GPU to hold the data of the entire batch of vectors. Then the vectors are
copied to the GPU memory and the kernel is launched. GSPARLIB automatically calculates
the memory size to hold the data of the entire batch and the amount of threads needed to
perform both computations in parallel. After the computation, the batch of vectors is copied
back to host memory.

Host memory

Host GPU

Vector 1

GPU memoryMemory allocation

Vector 1

Kernel launch

Asks for memory copy

Memory copy

Memory copy

Vector 2

Memory allocation

Vector 2

Kernel launch

Asks for memory copy
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(a) Default flow.
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Asks for memory copy

Memory copy

(b) Batched flow.

Figure 4.8: Default vs batched flow of execution.

The batching optimization reduces the number of GPU kernel invocations by merging
multiple kernel invocations into a single one. The number of GPU kernel invocations to be
merged is defined by the batch size. This increases the amount of work performed by the
merged invocation and reduces the CPU-GPU communication. However, the result of any task
in the batch become available only after the computation of the entire batch of tasks. Thus, for
stream processing applications this optimization increases the latency of each task, but it also
increases the overall throughput and reduces the total execution time [RSG+19, SRG+20].
We will discuss the performance impacts of this batching feature in Section 5.6.

4.5.2 Reduce Pattern

The Reduce pattern apply a function to multiple input data elements to combine
them pairwise into a single output element. This specific computational pattern offers more
opportunities for optimizations and an improved abstraction layer. By definition, the reductions
can only be computed in parallel if the combiner function is associative, however, we chose to
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support only associative and commutative operators because this permits many optimizations
that provide interesting performance improvements, such as properly using data locality in
the shared memory of GPU devices. Therefore, the Reduce class constructor takes three
simple string arguments: the name of the parameter that will contain the vector of values to
be reduced; the binary associative and commutative operator; and the name of the parameter
that will contain the output of the Reduce operation. Listing 4.4 exemplifies these parameters
in line 14. After declaring the pattern, the input and output parameters (in_vector and total,
respectively) are defined in lines 15 and 16, using the same names used in the pattern
constructor. Finally, the pattern is synchronously executed in line 17 by calling the run

method.
1 #ifdef GSPARDRIVER_CUDA
2 #include "GSPar_CUDA.hpp"
3 using namespace GSPar:: Driver ::CUDA;
4 #else
5 #include "GSPar_OpenCL.hpp"
6 using namespace GSPar:: Driver :: OpenCL;
7 #endif
8 #include "GSPar_PatternReduce.hpp"
9 using namespace GSPar:: Pattern;

10

11 int reduce_sum(const int size , const int *vector) {
12 int total;
13 try {
14 auto pattern = new Reduce("in_vector", "+", "total");
15 pattern ->setParameter("in_vector", sizeof(int) * size , vector)
16 .setParameter("total", sizeof(int), &total , GSPAR_PARAM_OUT)
17 .run <Instance >({ size});
18 delete pattern;
19 } catch (GSPar:: GSParException &ex) {
20 std::cerr << "Exception: " << ex.what() << " - " << ex.getDetails () <<

std::endl;
21 }
22 return total;
23 }

Listing 4.4: Summing a vector of values using the Reduce pattern.

The Reduce class automatically generates the GPU kernel using shared memory to
perform the reductions, according to state-of-the-art optimizations [Har07]. Listing 4.5 present
the CUDA kernel generated for Listing 4.4. The GPU kernel’s first parameter (max_x) is the
max value passed as argument to the run method. The second parameter (in_vector) is the
input vector. The third parameter (partial_reductions) is a vector of partial reductions, which
is used by GSPARLIB to accumulate partial reductions until the last reduction is performed.
In OpenCL, there is a fourth parameter which is the shared memory. In CUDA the shared
memory is defined as gspar_shared in the first line of the GPU kernel function body. Here, we
use the GSPARLIB functions for common tasks to abstract programming differences between
CUDA and OpenCL (discussed in Section 4.4), such as getting current thread and block
IDs and sizes (lines 6–8 of Listing 4.5), as well as to synchronize threads in the same block
(lines 10, 15, and 19).
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1 extern "C" __global__
2 void gspar_reduce_kernel(const unsigned long max_x ,int const* in_vector ,int*

partial_reductions) {
3 extern __shared__ int gspar_shared [];
4 size_t x = gspar_get_global_id (0);
5 if (x < max_x) {
6 size_t gspar_tid_x = gspar_get_thread_id (0);
7 size_t gspar_bid_x = gspar_get_block_id (0);
8 size_t gspar_bsize_x = gspar_get_block_size (0);
9 gspar_shared[gspar_tid_x] = in_vector[x];

10 gspar_synchronize_local_threads ();
11 for (unsigned int s=gspar_bsize_x /2; s>0; s>>=1) {
12 if (gspar_tid_x < s && x+s < max_x) {
13 gspar_shared[gspar_tid_x] += gspar_shared[gspar_tid_x+s];
14 }
15 gspar_synchronize_local_threads ();
16 if (gspar_tid_x == 0 && s > 1 && s % 2 != 0) {
17 gspar_shared[gspar_tid_x] += gspar_shared[s-1];
18 }
19 gspar_synchronize_local_threads ();
20 }
21 if (gspar_tid_x == 0) {
22 if (gspar_bsize_x % 2 != 0) {
23 gspar_shared [0] += gspar_shared[max_x -1];
24 }
25 partial_reductions[gspar_bid_x] = gspar_shared [0];
26 }
27 }
28 }

Listing 4.5: Generated Reduce GPU kernel for CUDA.

After obtaining their own position in the execution grid, each thread copies an
element from the global memory to the shared memory (line 9 of Listing 4.5). Then, the
reduction of all the elements in the same thread block is performed using strided index and a
reversed loop (lines 11–20) to provide sequential memory addressing [Har07]. In line 22, the
first thread of each block checks if there is an odd number of elements and includes this last
element in the reduction. The resulting element of each thread block is then copied to the
global memory in line 25. The automatic parallelization of the reduction operation performed
by GSPARLIB poses additional challenges in the optimizations that can be applied. More
aggressive optimizations such as loop unrolling and performing reductions during shared
memory load, are very challenging to implement in a general-purpose library that must work
correctly on any problem size.

Since each GPU thread block has its own shared memory, it is necessary to
synchronize partial reductions across multiple thread blocks. However, there is no cross-block
(global) synchronization command in CUDA nor in OpenCL [CGM14]. Therefore, each GPU
kernel launched returns N results, where N is the number of thread blocks that were launched.
After computing the block-wise reductions, we launch the same GPU kernel again using the
partial reduction results as the input until the reduction is finished. The GPU kernel launch
serves as a global synchronization point [Har07].
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4.5.3 Pattern Composition

To combine the Map and Reduce patterns, GSPARLIB offers the PatternComposition

class. Currently, the only supported combination is the sequential execution of the patterns.
Listing 4.6 presents the combination of the Map and Reduce patterns presented in Listings 4.2
and 4.4, respectively, to sum all the elements of two vectors into a single element. After
defining the Map (lines 14–19) and Reduce (lines 21–23) patterns, they are bundled together
in a composition in line 25.

1 #ifdef GSPARDRIVER_CUDA
2 #include "GSPar_CUDA.hpp"
3 using namespace GSPar:: Driver ::CUDA;
4 #else
5 #include "GSPar_OpenCL.hpp"
6 using namespace GSPar:: Driver :: OpenCL;
7 #endif
8 #include "GSPar_PatternComposition.hpp"
9 using namespace GSPar:: Pattern;

10

11 int vector_sum(const int size , const int *a, const int *b, int *result) {
12 int total;
13 try {
14 auto map = new Map(GSPAR_STRINGIZE_SOURCE(
15 result[x] = a[x] + b[x];
16 ));
17 map ->setParameter("a", sizeof(int) * size , a)
18 .setParameter("b", sizeof(int) * size , b)
19 .setParameter("result", sizeof(int) * size , result , GSPAR_PARAM_OUT);
20

21 auto reduce = new Reduce("result", "+", "total");
22 reduce ->setParameter("result", sizeof(int) * size , result ,

GSPAR_PARAM_INOUT)
23 .setParameter("total", sizeof(int), &total , GSPAR_PARAM_OUT);
24

25 auto mapReduce = new PatternComposition(map , reduce);
26 mapReduce ->run <Instance >({size , 0});
27

28 delete mapReduce;
29 delete reduce;
30 delete map;
31 } catch (GSPar:: GSParException &ex) {
32 std::cerr << "Exception: " << ex.what() << " - " << ex.getDetails () <<

std::endl;
33 }
34 }

Listing 4.6: Vector sum using pattern composition of Map and Reduce.

The PatternComposition class offers the run method (line 26 of Listing 4.6), which
has the same signature as the homonymous method in the Map and Reduce classes. There is
also the compilePatterns method, analogous to the compile method of the patterns’ classes,
which combines the sources of all the patterns in the composition and compiles them all
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at once using the GPU driver. Patterns can be added in the composition using the class
constructor (line 25 of Listing 4.6) or by using the addPattern method.

4.6 Programmability Considerations

In this section we will compare the programmability of GSPARLIB with some of the
state-of-the-art tools. Firstly, we want to show an example of programming using Map and
Reduce patterns in lower-level procedural APIs. Listing 4.7 shows the vector sum application
in CUDA. We used the CUDA runtime API, which is less verbose and more commonly used
than the driver API. However, it requires the use of the nvcc compiler.

1 #define CudaSafeCall( err ) __cudaSafeCall( err , __FILE__ , __LINE__ )
2 inline void __cudaSafeCall( cudaError err , const char *file , const int line ) {
3 if ( cudaSuccess != err ) {
4 std::cerr << "CudaSafeCall () failed at " << file << ":" << line << " : " <<

err << "-" << cudaGetErrorString(err) << std::endl;
5 exit(-1);
6 }
7 }
8 __global__ void vector_sum_map(int size , const int *a, const int *b, int *res) {
9 int gid = blockIdx.x * blockDim.x + threadIdx.x;

10 if (gid < size) res[gid] = a[gid] + b[gid];
11 }
12 __global__ void vector_sum_reduce(int size , const int *res , int* total) {
13 extern __shared__ int shmem [];
14 int tid = threadIdx.x;
15 int bid = blockIdx.x;
16 int gid = bid * blockDim.x + tid;
17 if (gid < size) {
18 shmem[tid] = res[gid];
19 __syncthreads ();
20 for (int s=blockDim.x/2; s>0; s>>=1) {
21 if (tid < s && gid+s < size) shmem[tid] += shmem[tid+s];
22 __syncthreads ();
23 if (tid == 0 && s > 1 && s % 2 != 0) shmem[tid] += shmem[s-1];
24 __syncthreads ();
25 }
26 if (tid == 0) {
27 if (blockDim.x % 2 != 0) shmem [0] += shmem[size -1];
28 total[bid] = shmem [0];
29 }
30 }
31 }
32 int vector_sum(const int vectorSize , const int *a, const int *b, int *result) {
33 int totalDevices;
34 CudaSafeCall(cudaGetDeviceCount (& totalDevices));
35 if (totalDevices < 1) {
36 std::cerr << "No CUDA -enabled device found" << std::endl;
37 exit(-1);
38 }
39 cudaDeviceProp devProp;
40 cudaGetDeviceProperties (&devProp , 0); // 0 is the first device
41 // Prepares the map kernel
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42 cudaFuncAttributes mapKernelAttrs;
43 CudaSafeCall(cudaFuncGetAttributes (& mapKernelAttrs , vector_sum_map));
44 unsigned int mapMaxThreadsPerBlock =

sqrt ((( double)devProp.regsPerBlock)/mapKernelAttrs.numRegs);
45 mapMaxThreadsPerBlock = std::min(mapMaxThreadsPerBlock ,

devProp.maxThreadsPerBlock);
46 unsigned int mapGridDim = 1;
47 unsigned int mapBlockDim = vectorSize;
48 if (mapBlockDim > mapMaxThreadsPerBlock) {
49 mapGridDim = ceil(( double)mapBlockDim / mapMaxThreadsPerBlock);
50 mapBlockDim = mapMaxThreadsPerBlock;
51 }
52

53 // Prepares the reduce kernel
54 cudaFuncAttributes reduceKernelAttrs;
55 CudaSafeCall(cudaFuncGetAttributes (& reduceKernelAttrs , vector_sum_reduce));
56 unsigned int reduceMaxThreadsPerBlock =

((( double)devProp.regsPerBlock)/reduceKernelAttrs.numRegs);
57 reduceMaxThreadsPerBlock = std::min(reduceMaxThreadsPerBlock ,

devProp.maxThreadsPerBlock);
58 unsigned int reduceGridDim = 1;
59 unsigned int reduceBlockDim = vectorSize;
60 if (reduceBlockDim > reduceMaxThreadsPerBlock) {
61 reduceGridDim = ceil(( double)reduceBlockDim / reduceMaxThreadsPerBlock);
62 reduceBlockDim = reduceMaxThreadsPerBlock;
63 }
64

65 cudaStream_t stream1;
66 CudaSafeCall(cudaStreamCreate (& stream1));
67 cudaStream_t stream2;
68 CudaSafeCall(cudaStreamCreate (& stream2));
69

70 // To allow overlapping copies
71 CudaSafeCall(cudaHostRegister(a, vectorSize*sizeof(int),

cudaHostRegisterDefault));
72 CudaSafeCall(cudaHostRegister(b, vectorSize*sizeof(int),

cudaHostRegisterDefault));
73

74 int *aDev;
75 CudaSafeCall(cudaMalloc ((void **)&aDev , vectorSize*sizeof(int)));
76 int *bDev;
77 CudaSafeCall(cudaMalloc ((void **)&bDev , vectorSize*sizeof(int)));
78 int *resultDev;
79 CudaSafeCall(cudaMalloc ((void **)&resultDev , vectorSize*sizeof(int)));
80 int *partialReductions;
81 CudaSafeCall(cudaMalloc ((void **)&partialReductions , reduceGridDim *

sizeof(int)));
82 CudaSafeCall(cudaMemcpyAsync(aDev , a, vectorSize*sizeof(int),

cudaMemcpyHostToDevice , stream1));
83 CudaSafeCall(cudaMemcpyAsync(bDev , b, vectorSize*sizeof(int),

cudaMemcpyHostToDevice , stream2));
84 CudaSafeCall(cudaStreamSynchronize(stream1));
85 CudaSafeCall(cudaStreamSynchronize(stream2));
86

87 vector_sum_map <<<mapGridDim ,mapBlockDim ,0,stream1 >>>(vectorSize , aDev , bDev ,
resultDev);

88 CudaSafeCall(cudaStreamSynchronize(stream1)); // Waits the kernel to finish
89

90 // Launches the memory copy in the first stream
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91 CudaSafeCall(cudaMemcpyAsync(result , resultDev , vectorSize*sizeof(int),
cudaMemcpyDeviceToHost , stream1));

92

93 // For reduce we use the stream2 to overlap the memory copy above with the
reduce computation

94 int *reduceInput = resultDev;
95 int reduceVectorSize = vectorSize;
96 while (true) {
97 size_t sharedMemSize = (reduceVectorSize > reduceBlockDim) ? reduceBlockDim

: reduceVectorSize;
98 unsigned long sharedMemBytes = sizeof(int) * sharedMemSize;
99

100

vector_sum_reduce <<<reduceGridDim ,reduceBlockDim ,sharedMemBytes ,stream2 >>>(reduceVectorSize ,
reduceInput , partialReductions);

101

102 if (reduceGridDim == 1) break; // Last reduction
103 // Calculate the next kernel launch sizes
104 reduceVectorSize = reduceGridDim;
105 reduceBlockDim = reduceGridDim;
106 if (reduceBlockDim > reduceMaxThreadsPerBlock) {
107 reduceGridDim = ceil(( double)reduceBlockDim / reduceMaxThreadsPerBlock);
108 reduceBlockDim = reduceMaxThreadsPerBlock;
109 } else {
110 reduceGridDim = 1;
111 }
112 CudaSafeCall(cudaStreamSynchronize(stream2));
113 reduceInput = partialReductions;
114 }
115

116 int total;
117 CudaSafeCall(cudaMemcpy (&total , partialReductions , sizeof(int),

cudaMemcpyDeviceToHost));
118

119 CudaSafeCall(cudaStreamSynchronize(stream1)); // Waits the memory copy of the
map result to finish

120 // Release resources
121 CudaSafeCall(cudaFree(aDev));
122 CudaSafeCall(cudaFree(bDev));
123 CudaSafeCall(cudaFree(resultDev));
124 CudaSafeCall(cudaFree(partialReductions));
125

126 return total;
127 }

Listing 4.7: Vector sum using Map and Reduce patterns in CUDA runtime API.

We handle CUDA errors by using a macro and a function, respectively defined in the
lines 1 and 2 of Listing 4.7. The Map kernel (lines 8–11) simply checks for extra threads and
sums the two vectors. The Reduce kernel (lines 12–31) is very similar to those generated by
GSPARLIB and discussed in Listing 4.5.

The first part of the main vector_sum function (line 32) discovers the resources and
properties of the intended execution device (in this case, the first device) and calculates
the block and grid launch sizes considering the device’s maximum threads per block and
maximum registers per block (lines 46–51 and 58–63). Then, two streams are created to
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overlap multiple copy and kernel operations (lines 65–68). To allow overlapping memory
copies and kernel launches, the host memory pointers are registered as page-locked memory
(lines 70–72). After the memory is allocated and the data is copied into the GPU (lines 74–85),
the Map kernel is launched (line 87).

We start copying the vector resulting of the Map pattern execution in line 91, which
continues to copy while we start computing the Reduce pattern. The reduction kernel using
shared memory was already described in Section 4.5.2. On the host side, we start a loop
in line 96 which iterates until the reduction is finished. For each iteration, we calculate the
amount of shared memory per block needed to perform the reductions (line 97) and launch
the kernel (line 100). If there is more than one thread block, it means that we need to perform
further reductions, so we recalculate the block and grid sizes (lines 104–111) and set the
reduction result as the input for the next reduction iteration (line 113).

Once the reduce is finished, we copy the single output value to the host memory
(line 116) and release the GPU memory allocations (lines 121–124). For the sake of simplicity
we did not release the GPU memory in the case of a failure in any CUDA function call, since
we are interrupting the program with exit.

We would like to highlight some important drawbacks of the CUDA implementation
compared to the GSPARLIB’s version of this same application (Listing 4.6):

1. error handling is much more verbose and error-prone, as one could easily forget to wrap
a function call in CudaSafeCall macro. We commit this mistake on purpose in line 40 of
Listing 4.7 as an example;

2. launch sizes must be calculated considering device and kernel properties, which is a
verbose and toilsome task. Besides the block size and register per block limits, there is
also other limiting factors, such as the available amount of shared memory per block
(we did not perform this check in Listing 4.7);

3. streams must be explicitly created and synchronized, which is an error-prone task.
Programming applications using multiple streams requires the programmer to fully
understand the entire execution flow and the details of memory/computation latencies,
to properly choose which stream to use for each operation in order to truly overlap
memory copies and computation;

4. memory must be managed explicitly (which involves allocation, copies to and from the
device, and releasing). It also needs to be explicitly registered as page-locked memory
to allow overlapping operations;

5. resources must be explicitly released, even in the case of failures (Listing 4.7 does not
release resources when a failure occurs);
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6. if the program was to be executed in other device from a different vendor, it would need
to be totally rewritten in OpenCL.

GSPARLIB provides effective advantages in all these aspects: (1) error handling
is done using modern C++ exceptions, which are far easier to use and implement than
the status code returned by procedural APIs [Str94]; (2, 3, and 4) launch sizes, streams,
execution flows, and memory management are completely abstracted in GSPARLIB Pattern
API; (5) resources are automatically released using the class destructor when the object
pointer is deleted or when the object goes out of scope; (6) GSPARLIB support CUDA and
OpenCL alike and abstracts the differences between the two APIs.

Now, we turn our attention over higher-level APIs. Listing 4.8 presents a simple
matrix multiplication example using Boost.Compute, which is based on OpenCL. Since two-
dimensional kernels are not supported in the Boost.Compute higher-level API, we use the
lower-level API of Boost.Compute for this example, which requires passing the entire OpenCL
kernel source as string (lines 3–14).

1 #include <boost/compute.hpp >
2

3 const char* kernelSource =
4 "__kernel void matrix_multi(unsigned long size , __global const float *a,

__global const float *b, __global float *result) { \n"
5 " size_t i = get_global_id (0); \n"
6 " size_t j = get_global_id (1); \n"
7 " if (i < size && j < size) { \n"
8 " float sum = 0; \n"
9 " for (unsigned long k = 0; k < size; k++) { \n"

10 " sum += a[k * size + i] * b[j * size + k]; \n"
11 " } \n"
12 " result[j * size + i] = sum; \n"
13 " } \n"
14 "} \n";
15

16 void multiply(const unsigned long size , const float *matrixA , const float
*matrixB , float *result) {

17 boost:: compute :: device gpu = boost:: compute :: system :: default_device ();
18 boost:: compute :: context ctx(gpu);
19 boost:: compute :: command_queue queue(ctx , gpu);
20

21 boost:: compute :: program program =
boost:: compute :: program :: create_with_source(kernelSource , ctx);

22 program.build();
23 boost:: compute :: kernel kernel = program.create_kernel("matrix_multi");
24

25 size_t workGroupSize = gpu.get_info <size_t >( CL_DEVICE_MAX_WORK_GROUP_SIZE);
26 unsigned int maxThreadsPerBlock2D = sqrt(workGroupSize);
27 size_t numBlocks = 1;
28 size_t numThreads = (size_t)size;
29 if (numThreads > maxThreadsPerBlock2D) {
30 numBlocks = ceil(( double)numThreads / maxThreadsPerBlock2D);
31 numThreads = maxThreadsPerBlock2D;
32 }
33 size_t localSize [2] = { numThreads , numThreads };
34 size_t globalSize [2] = { numThreads*numBlocks , numThreads*numBlocks };
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35

36 boost:: compute ::vector <float > a_dev(size * size , ctx);
37 boost:: compute ::vector <float > b_dev(size * size , ctx);
38 boost:: compute ::vector <float > result_dev(size * size , ctx);
39 boost:: compute ::copy(matrixA , matrixA +(size*size), a_dev.begin(), queue);
40 boost:: compute ::copy(matrixB , matrixB +(size*size), b_dev.begin(), queue);
41

42 kernel.set_args(size , a_dev.get_buffer (), b_dev.get_buffer (),
result_dev.get_buffer ());

43 queue.enqueue_nd_range_kernel(kernel , 2, 0, globalSize , localSize);
44 boost:: compute ::copy(result_dev.begin(), result_dev.end(), result , queue);
45 queue.finish ();
46 }

Listing 4.8: Matrix multiplication using Boost.Compute.

Although Boost.Compute provides an object oriented API, most lower-level tasks,
such as compiling the GPU kernel (lines 21–23) and calculating the launch sizes (lines 25–
34) are still in charge of the application programmer. Even using the higher-level STL-like
Boost.Compute API, memory management tasks, including allocation and copying data, must
still be explicitly programmed. Instead, by using GSPARLIB high-level pattern API, these
tasks are completely abstracted from the application programmer.

Thrust API offers a structured programming approach built over the CUDA API.
Similar to Boost.Compute higher-level API, Thrust abstracts many of the GPU programming
burden of procedural APIs, but still requires the programmer to explicitly manage host and
device memory interactions and compute indexes for parallel execution.

In Listing 4.9 the core Mandelbrot computation is defined as a functor (lines 6–35)
annotated with __host__ and __device__ CUDA keywords (line 15). Since Thrust does not
support two-dimensional kernels, we must use a counting_iterator (line 40) and calculate
the row-major two-dimensional indexes (lines 17–18). This application does not involve any
data vector as input, so the only memory copy is the result vector. Copying the data from
the device vector (which resides in the GPU) to the host vector is explicitly done in line 43.
GSPARLIB abstract this data copy and does not require the kernel to be defined in a special
structure such as the functor in Listing 4.9.

1 #include <thrust/host_vector.h>
2 #include <thrust/device_vector.h>
3 #include <thrust/copy.h>
4 #include <thrust/for_each.h>
5

6 struct mandel_functor {
7 double init_a;
8 double init_b;
9 double step;

10 unsigned long dim;
11 unsigned long niter;
12 unsigned char *M;
13 mandel_functor(double _init_a , double _init_b , double _step , unsigned long

_dim , unsigned long _niter , unsigned char *_M):
14 init_a(_init_a), init_b(_init_b), step(_step), dim(_dim), niter(_niter),

M(_M) {};
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15 __host__ __device__
16 void operator ()(const signed int xy) {
17 const long i = xy / dim; // truncates result
18 const long j = xy - (i*dim);
19 if (i < dim && j < dim) {
20 double im=init_b +(step*i);
21 double cr;
22 double a=cr=init_a+step*j;
23 double b=im;
24 unsigned long k = 0;
25 for (k = 0; k < niter; k++) {
26 double a2=a*a;
27 double b2=b*b;
28 if ((a2+b2) >4.0) break;
29 b=2*a*b+im;
30 a=a2-b2+cr;
31 }
32 M[xy]= (unsigned char) 255-((k*255/ niter));
33 }
34 }
35 };
36

37 void mandelbrot(const double init_a , const double init_b , const double range ,
const unsigned long dim , const unsigned long niter , unsigned char *M) {

38 double step = range /(( double) dim);
39 thrust :: device_vector <unsigned char > M_dev(dim * dim);
40 thrust :: counting_iterator <int > iter (0);
41 thrust :: for_each_n(iter , dim*dim ,
42 mandel_functor(init_a , init_b , step , dim , niter ,

thrust :: raw_pointer_cast(M_dev.data())));
43 thrust ::copy(M_dev.begin(), M_dev.end(), M);
44 }

Listing 4.9: Mandelbrot set calculation using Thrust.

One of the biggest differences between GSPARLIB and the aforementioned state-
of-the-art tools is the code portability. By offering CUDA and OpenCL support, as well as
abstractions over lower-level kernel functions, GSPARLIB is able to permit the same source
code to use both backends. Even in a worst case scenario, on which a complex application
require specific kernels to be written specifically for CUDA and OpenCL, GSPARLIB offers
portability of host code and permits the programmer to focus on business rules instead of
hardware architecture details or lower-level procedural APIs. This is not possible by using
Boost.Compute or Thrust.

SkePU 3 offers support for multi-core CPU (using OpenMP) and many-core GPU
(using CUDA and OpenCL) backends. Its programming API is based on algorithmic skeletons
and uses modern C++ features such as variadic templates, template metaprogramming, and
lambdas [EK19]. Data copies between the main and device memories are (mostly) automatic
by using the Vector and Matrix smart containers. However, the drawback of not being
thread-safe disqualifies it from our stream processing applications perspective. Listing 4.10
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shows a simple matrix multiplication example using SkePU 3. It is based in an example from
the official repository4.

1 #include <skepu >
2

3 void multiply(const unsigned long size , float *matrixA , float *matrixB , float
*result) {

4 auto kernel = skepu::Map <0 >([]( skepu:: Index2D idx , const skepu::Mat <float > a,
const skepu::Mat <float > b) {

5 float sum = 0;
6 for (unsigned long k = 0; k < a.rows; k++) {
7 sum += a.data[k * a.cols + idx.row] * b.data[idx.col * b.cols + k];
8 }
9 return sum;

10 });
11 skepu:: BackendSpec skepuBackend;
12 skepuBackend.setDevices (1);
13 kernel.setBackend(skepuBackend);
14

15 // Since Matrix constructor expects a vector , we need to copy this values
16 std::vector <float > a_vec(matrixA , matrixA +(size*size));
17 std::vector <float > b_vec(matrixB , matrixB +(size*size));
18 std::vector <float > result_vec(result , result +(size*size));
19

20 skepu::Matrix <float > a_dev(size , size , a_vec);
21 skepu::Matrix <float > b_dev(size , size , b_vec);
22 skepu::Matrix <float > result_dev(size , size , result_vec);
23

24 kernel(result_dev , a_dev , b_dev);
25

26 result_dev.updateHost ();
27 memcpy(result , result_dev.getAddress (), sizeof(float)*size*size);
28

29 result_dev.releaseDeviceAllocations ();
30 }

Listing 4.10: Matrix multiplication using SkePU 3.

The GPU kernel is defined by using a C++ lambda in lines 4–10. Its parameters are
the thread index (idx) and the two matrices to multiply (a and b). Inside the GPU kernel, the
smart container Matrix is called Mat. The data in the smart container can be accessed inside
the GPU kernel by using the data property. We define a backend specification in line 11
and set it to use a single GPU in line 12. The GPU kernel object is set to use the backend
specification in line 13.

The SkePU’s Matrix smart container only accepts a std::vector as a host reference
and the application in Listing 4.10 work with raw pointers. Thus, we copy the data into a
std::vector container in lines 16–18 before passing them to the Matrix smart container in
lines 20–22. Then, we invoke the GPU kernel in line 24 and manually update the host data
container after finishing the computation in line 26. The updateHost call copies the data from
the device memory to the host memory, then we copy it back to the memory pointer address in
line 27. Finally, we release the GPU memory resources by calling releaseDeviceAllocations

4https://github.com/skepu/skepu/blob/master/examples/mmmult.cpp
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in line 29. Note that the programming interface is, in our opinion, more user-friendly than
GSPARLIB as can been seen also in Table 4.2. However, it offers less flexibility to implement
optimizations for the algorithm or architecture. Our conceptual layered approach allows
the user to create new parallel patterns and implement new code optimizations. Therefore,
SkePU 3 has limitations when used as a runtime library for other tools or systems.

We briefly analyze the physical Source Lines of Code (SLOC) added to the sequen-
tial version of the applications discussed above as a rough measure of the programmer’s
productivity using the aforementioned GPU programming APIs and GSPARLIB. Table 4.2
present a summary of the physical SLOC of the applications presented in the previous List-
ings. The percentages represent the increase in SLOC required to exploit GPU parallelism
compared to the sequential version. The metrics were generated using David A. Wheeler’s
‘SLOCCount’ [Whe16]. The next section will discuss the performance of these applications.

Table 4.2: Physical SLOC comparison between GPU programming APIs.

Application Sequential CUDA
(Runtime API)

OpenCL Boost.
Compute Thrust SkePU 3 GSPARLIB

Vector sum 74 169 216 107 97 90 97
– +128% +192% +45% +31% +22% +31%

Matrix multiplication 78 134 159 118 104 91 98
– +72% +104% +51% +33% +17% +26%

Mandelbrot set 81 108 150 118 105 87 101
– +33% +85% +46% +30% +7% +25%

The OpenCL and CUDA version presents the highest number of SLOC overall. On
average, they require respectively 127% and 78% more SLOC with respect to the sequential
versions. SkePU 3 and GSPARLIB require, on average, 15% and 27% more SLOC with
respect to the sequential versions, respectively. They represent the lowest increase in SLOC.

The CUDA and OpenCL versions are lower-level APIs and thus require more lines
of code. Tasks such as memory allocation, querying device properties, and calculating the
grid size (number of threads and blocks to launch) must be done explicitly by the programmer.
Boost.Compute and Thrust abstracts the task of querying device properties and calculating
the grid size, however, the programmer must still allocate device memory. Boost.Compute
also requires the programmer to create the GPU context and communication queues, which
explains the extra lines of code required to implement the applications using this API. SkePU 3
leverage modern C++ features such as variadic templates and lambdas, which allow the
programmer to define the GPU kernel using less lines of code. The programmer is also able
to invoke the GPU kernel using the same syntax of calling a normal C++ function. SkePU 3
offers a complete toolchain, which includes a source-to-source compiler to parse the user
code and provide a higher-level API. Thrust, Boost.Compute, and GSPARLIB offer a similar
abstraction level because they are libraries and can not afford user-defined GPU kernels as
C++ code.
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4.7 Performance Considerations

This section presents a performance comparison between GSPARLIB’s Pattern API
and some of the state-of-the-art tools discussed in Section 4.1. We compare our library
with tools providing a similar level of abstraction, i.e. with a structured parallel programming
API to exploit GPU parallelism. Therefore, we did not include lower-level solutions, such as
OpenACC and StarPU. Nevertheless, we included CUDA and OpenCL to act as baseline
benchmarks since they are the de facto standards for GPU programming.

Although GSPARLIB’s objective is to provide high-level abstractions to GPU pro-
gramming, we seek to offer similar performance to applications programmed in lower-level
APIs (such as CUDA and OpenCL). This means that these abstractions should not hinder
the application’s performance. Given that the main purpose of our library is to be integrated
with another tool for multi-core parallelism and used in stream processing applications, we
measured separately the three phases of the GPU algorithms: (a) initialization, which in-
cludes compiling the GPU kernel, creating of GPU context, querying device properties, and
creating execution flows (CUDA streams or OpenCL command queues); (b) computation,
which comprises allocating GPU memory and copying data between the host and device
memories, as well as launching the GPU kernel; and (c) finishing, on which the GPU memory
allocations are released and any resources acquired during initialization are freed. On a
stream processing application, the initialization step would usually be performed only once
while the other steps are repeated for every stream element.

Since none of the GPU programming APIs discussed in the previous sections are
focused on stream processing applications, we perform the performance comparison using
only data-parallel applications. In addition, we did not use the batching capabilities of our
library as the other APIs do not have any similar feature. We will address the performance of
the combination of stream and data parallelism in Section 5.6.

All the experiments were carried out on a single machine with a CPU Intel® Core™
I9-7900X @ 3.3 GHz (10 cores and 20 threads), 48 GB of RAM memory (3×16 GB DDR4
@ 2400 MT/s) and a Titan Xp GPU with compute capability 6.1 and 12 GB GDDR5X @
2400 MHz of memory. The NVIDIA driver installed was the 450.51.05. The system was
running on Ubuntu OS release 20.04 LTS (kernel 5.4.0-40-generic). All programs have been
compiled using g++ 9.3 and the -O3 compiler flag, except the Thrust and SkePU 3 (CUDA)
versions, which must be compiled with nvcc. We used nvcc version 11.0.194 for these. The
implementation used the CUDA driver API with runtime compilation (NVRTC) from the CUDA
Toolkit v11.0, NVIDIA’s OpenCL 1.2, SkePU 35, and Boost.Compute 1.72.0. We focused
in traditional HPC metrics such as execution time and speedup to observe the application
scalability and performance. The stacked bars in Figures 4.9, 4.10, and 4.11 represent the

5https://github.com/skepu/skepu/commit/5a673cf89a131afc6c31cb6e65dbe7061c98d966
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execution times in seconds of the three phases of the GPU applications and are related
to the left Y axis. The Computation, Initialization, and Finishing phases are represented,
respectively, by the blue, orange, and green bars. The total execution time is composed by the
sum of the execution times of these three phases. The speedup with respect to the sequential
version is presented as a red dotted line chart bound to the right Y axis. We ran each test
10 times and graph the average execution time. Standard error bars are shown in black
color at the top of the columns and are related to the total execution time. The parallelism
strategy used for implementing all the tested programs was the same across all APIs, thus
the performance differences reported in the following tests are related to the abstractions
and optimizations implemented on each API. It is important to highlight that API creators
usually implement and test these optimizations based on the architectures they have access.
Consequently, these optimizations may not make sense or are not so good when executing
on different or newer GPU architectures. Differently, we have not implemented GPU kernel
optimizations in GSPARLIB.

Our first tests are from a simple vector sum algorithm, which sums two vectors of
32 bits values. We tested two workloads: using 100 million elements (400 MB of data for each
vector) and 200 million elements (800 MB of data for each vector). It employs the Map pattern
to sum the two vectors and the Reduce pattern to sum the result vector into a single 32 bit
value. The function signature used in all implementations is unsigned long vecsum(const

unsigned long vecsize, const unsigned long *a, const unsigned long *b, unsigned

long *res). The expected output is that the res vector contains a summation of vectors a and
b and that the function returns the summation of the values contained by the res vector. We
overlapped the memory copy of the res vector from the GPU to host and the Reduce GPU
kernel calls whenever possible. Figure 4.9 presents the performance results we obtained with
this application. This pseudo-application presents a very low computing to global memory
access (CGMA) ratio [KmWH16] and thus performs poorly in the GPU. In fact, all the GPU
versions presented results worse than the sequential CPU version.

In CUDA (Listing 4.7) and OpenCL, we implemented the Map pattern as a single
1-dimensional GPU kernel call while the Reduce pattern is implemented using a tree-based
approach [Har07], following the same structure described in Section 4.5.2. In Thrust, we
defined the Map as a template functor, following the recommendations from the official
documentation6. The functor is then called using Thrust’s for_each and make_zip_iterator

(combined with make_tuple) functions, while the Reduce is performed by calling thrust::

reduce. We did not explicitly overlap memory copies and GPU kernel computation in Thrust
due to the lack of methods to perform asynchronous copies in its API. In Boost.Compute
we use the transform function to perform the Map and the reduce to perform the reduction.
In SkePU we did not use the MapReduce skeleton for this task because it only returns the
reduction result and we expect the summed vector to be returned as well. Therefore, we used

6https://docs.nvidia.com/cuda/thrust/#algorithms
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Figure 4.9: Performance results of the vector sum algorithm using Map and Reduce.

two skeletons, Map and Reduce, to implement this pseudo-application. Finally, the GSPARLIB

version was implemented using the PatternComposition class to combine Map and Reduce

patterns, as described in Listing 4.6.

The speedups of Figures 4.9a and 4.9b are lower than 1, which highlights the
memory bottleneck of this application. In fact, the NVIDIA Nsight Compute profiler reports an
average of 85% of memory bandwidth occupation (the maximum ratio of achieved throughput
with respect to the theoretical maximum throughput of any section of the GPU’s memory
system for compute, i.e. gpu__compute_memory_sol_pct metric) among all CUDA-based
versions for the first GPU kernel (Map pattern), with Thrust achieving 90% of memory
bandwidth occupation. In addition, the execution times of the GPU versions are mostly
dominated by initialization tasks (except for Thrust, which does not have any initialization
steps). The low time spent in the finishing step for the OpenCL versions may be related to the
fact that the NVIDIA’s OpenCL driver does not release resources when the release functions
are called, as will be discussed in Section 4.8. Thrust present the best performance among
the GPU versions in both workloads, however the OpenCL and SkePU versions presented
very similar performance.

Our second pseudo-application is a naive matrix multiplication algorithm, which
multiplies two square matrices of 32 bits elements manually linearized as a single vector.
We tested three workloads, with matrices of 3,000x3,000 elements (each matrix accounts
for 36 MB of data), 5,000x5,000 elements (100 MB for each matrix), and 10,000x10,000
elements (400 MB for each matrix). For each workload, we evaluate two ways to linearize the
matrices: row-major layout and column-major layout [KmWH16]. The function signature used
in all implementations is void matmul(const unsigned long size, const float *a, const

float *b, float *res). The execution time and speedups for these tests are presented
in Figure 4.10. Since we aim at comparing the performance of the GPU programming
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APIs, we did not employ any manual optimizations for the matrix multiplication algorithm. In
fact, the core GPU kernel for all implementations is roughly the same for all versions, e.g.:
for(unsigned long k=0; k<size; k++) sum+=a[i*size+k] * b[k*size+j]; res[i*size+j]

= sum; for row-major layout. Therefore, our speedups are much lower that state-of-the-art
results or specialized Single precision floating General Matrix Multiply (SGEMM) tools such as
those implemented in Basic Linear Algebra Subprograms (BLAS) routines [FSH04, KDW10].

In CUDA and OpenCL, we implemented the matrix multiplication algorithm as a
single 2-dimensional GPU kernel. In Thrust we defined a matrix multiplication functor which
receives the matrices as parameters. As Thrust does not support bi-dimensional GPU kernels,
we used a single counting_iterator from 0 to 5000*5000 (for the medium workload) and
calculated the i (as count/dim) and j (as count-i*dim) variables inside the GPU kernel. In
Boost.Compute we reused the same GPU kernel code from the OpenCL version and used
the lower-level API to launch a 2-dimensional GPU kernel. The SkePU version was adapted
from the examples provided by the authors7. One drawback of SkePU is that its standard
Matrix container only accepts a std::vector as a host reference and our pseudo-application
work with raw pointers. Therefore, we used a intermediate std::vector to pass the data
between our raw pointer and the Matrix container. Nonetheless, this extra memory copies
are performed in ∼150ms for the big workload and represents less than 1% of the total
execution time, thus it does not significantly impact the results. The GSPARLIB version was
implemented as a single Map object with three input parameters (the matrices size and the
a and b matrices) and a single output parameter (the result matrix). The GPU kernel core
passed as argument in the Map constructor was the same for CUDA and OpenCL versions.

The most noticeable difference between the row- and column-major layouts are
Thrust and SkePU performance results. They are clearly optimized to work with arrays ordered
in row-major layout, which is the default for C, C++, and CUDA. This contrasts with CUDA,
OpenCL, Boost.Compute, and GSPARLIB versions, which perform far better in column-major
ordering because this simple matrix multiplication algorithm achieves coalesced memory
access using this layout. In addition, for all workloads GSPARLIB present speedups on-par
with the state-of-the-art tools. Moreover, GSPARLIB (OpenCL) version presented better
performance results than pure OpenCL implementation for all workloads in row-major layout
and for the big workload in column-major layout. More tests are needed to understand what
optimizations explain these performance boost of GSPARLIB with respect to the lower-level
library.

We used the NVIDIA Nsight Compute profiler to evaluate the CUDA-based versions
of matrix multiplication with column-major layout in the medium workload (Figure 4.10d).
We analyzed the device occupancy as the percentage of active warps to maximum warps
per SM per active cycle (the sm__warps_active.avg.pct_of_peak_sustained_active metric)
and the memory bandwidth occupation as the maximum ratio of achieved throughput with

7https://github.com/skepu/skepu/blob/master/examples/mmmult.cpp
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(b) Small workload in column-major.
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(c) Medium workload in row-major.
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(d) Medium workload in column-major.
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(e) Big workload in row-major.
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Figure 4.10: Performance results of the matrix multiplication algorithm using Map.

respect to the theoretical maximum throughput of any section of the GPU’s memory system
for compute (the gpu__compute_memory_sol_pct metric) [Bav19]. The profiler shows that
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the CUDA version achieves 87% occupancy and 78% of memory bandwidth occupation,
while GSPARLIB achieved 84% occupancy and 67% of memory bandwidth occupation. For
comparison, Thrust achieves 74% and 89% of occupancy and memory bandwidth occupation,
respectively, and SkePU 3 achieved 71% occupancy (the profiler was unable to calculate
memory bandwidth occupation for the SkePU version). The profiler also demonstrated that
Thrust and SkePU 3 launched the GPU kernels with 256 threads per block, while CUDA and
GSPARLIB versions used 1,024 threads (the maximum threads per block of the Titan Xp
GPU, according to CU_DEVICE_ATTRIBUTE_MAX_THREADS_PER_BLOCK).

The third pseudo-application we tested was the Mandelbrot set calculation, which
calculates the set of all points c in the complex plane that do not tend to infinity when the
function z ← z2 + c it iterated up to a predefined limit [MRR12]. This workload is commonly
used to evaluate how well each architecture performs floating point operations [BH10]. It is
also useful to check load balancing algorithms because numbers outside the Mandelbrot
set are calculated much faster since they quickly reach a predefined threshold that delimits
numbers outside the set. In this cases, the algorithm does not need to perform all the
iterations to decide that the number is outside the set and breaks the iteration loop sooner.
However, for numbers inside the set the algorithm need to go through all the iterations to be
sure that the number does not tend to infinity.

Our implementation of the Mandelbrot set (Listing 4.9 shows how we implemented
this application using Thrust) generates a square fractal image where each pixel of the
image represents a number between -2.125+-1.5 and 0.875+1.5. We tested three workloads:
(a) 1,000x1,000 image with 50,000 iterations per number; (b) 3,000x3,000 image with 100,000
iterations per number; and (c) 5,000x5,000 image with 100,000 iterations per number. These
workloads represent 1 million, 9 million, and 25 million numbers, respectively. The function
signature is void mandelbrot(const double a, const double b, const double range,

const unsigned long dim, const unsigned long niter, unsigned char *M), where a is
-2.125, b is -1.5, and range is 3. The dim parameter represents the image dimension (1,000,
3,000, or 5,0000) and niter is the number of iterations per number (50,000 or 100,000). The
M pointer contains dim*dim bytes of memory in row-major order to hold the entire fractal image
result and should be filled with a color representing whether the number is inside or outside
the set. All computations use double precision floating point arithmetic.

Since the M vector is only for output, there is no memory copies into the GPU and
the only global memory access of the GPU kernel is to write the result after performing all the
calculations. Therefore, the data required to perform the computation is stored in registers.
There is no overlap of memory copy and computation in this pseudo-application and the
resulting data is synchronously copied to the host memory. All versions are implemented
very similarly to the matrix multiplication implementation: CUDA and OpenCL uses a single 2-
dimensional GPU kernel, Thrust uses a counting_iterator from 0 to dim*dim and calculates
the i and j variables inside the GPU kernel, Boost.Compute uses the the lower-level API and
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Figure 4.11: Performance results of the Mandelbrot set using Map.

the same GPU kernel code from the OpenCL version, SkePU uses as a single Map object
with a lambda function, and the GSPARLIB version uses a single Map instance.

The performance results of this application are presented in Figure 4.11 and are sim-
ilar among all the GPU programming APIs. In the small workload (Figure 4.11a), Thrust pre-
sented the best speedup of 57×, OpenCL presented 55× and CUDA presented 46× speedup.
GSPARLIB versions presented 45× and 46× speedup for the CUDA and OpenCL versions,
respectively. In the medium workload (Figure 4.11b) all versions presented speedups be-
tween 76× and 78×. The best speedup for this workload was presented by the Thrust and
GSPARLIB (OpenCL) versions. In the big workload (Figure 4.11c) all versions presented
speedups between 79× and 81×.

In summary, we conclude that GSPARLIB presented similar performance compared
to state-of-the-art and lower-level APIs while offering a unified structured programming API
and a driver-agnostic runtime. The results also revealed opportunities for implementing code
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optimizations that leverage performance and maintain a similar abstraction level. Moreover,
none of the state-of-the-art APIs offer features for stream processing applications, such as
batching that makes GSPARLIB specially appealing for this kind of applications. This will be
deeper demonstrated and investigated in Chapter 5, where it has been used as a runtime
library for SPar’s code generation. GSPARLIB can be seen also as a runtime library for
exploiting GPU parallelism on APIs that aim higher-level abstractions.

4.8 Final Remarks

In this chapter we described GSPARLIB, a new library with a structured parallel
programming API for GPU programming focused in stream processing applications. GSPAR-
LIB offers a layered API that may suffice both experienced and novice programmers, with
high-level yet powerful abstractions for exploiting GPU parallelism in multithreaded programs.
We presented a comprehensive comparison of this new library with state-of-the art tools in
terms of objectives, programmability, and performance aspects.

The single major contribution of GSPARLIB is to offer a unified structured program-
ming interface and a driver-agnostic runtime that allow programmers to switch between the
de facto standards CUDA and OpenCL backends simply by using a compiler flag. Moreover,
it does not require the use of a custom compiler, providing the full functionality as a single
dynamic library.

The importance of supporting both CUDA and OpenCL backends is highlighted
by the low priority that NVIDIA seems to dedicate to its OpenCL driver, mainly considering
that the company is the single biggest market player in the GPU segment. The third version
of the OpenCL specification was released by Khronos in 2020 [Khr20b], while NVIDIA’s
OpenCL driver is still stuck in the eight years old OpenCL v1.2 [Khr20a]. Apart from the
lack of updates, the current NVIDIA’s OpenCL driver presents some unexpected behavior,
such as not releasing the device memory when the clReleaseMemObject function is called
if there is still any other unreleased OpenCL objects8. We faced this issue during the
development of the library, which was specially challenging to overcome since we reuse
the same cl_program for multiple GPU kernels and the driver does not release the device
memory until this object is released with the clReleaseProgram function. Moreover, we also
found some unexplained freezing when using the clWaitForEvents function from NVIDIA’s
OpenCL driver for multithreaded applications with many GPU kernels. The same application
had no issues with the CUDA driver.

In this first version of GSPARLIB, we focused in the API design, trying to provide a
good trade-off in programming freedom and abstraction level. We applied some optimizations
(such as the parallel reduce discussed in Section 4.5.2), but further optimizations are left as

8https://bloerg.net/2013/01/15/opencl-resource-management.html
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future work. Our performance tests are limited to a single NVIDIA GPU, therefore, more tests
using multi-GPU and different accelerator makers such as AMD are also left as future work.
Future works may also extend the GSPARLIB API to offer support for other parallel patterns.
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5. HIGH-LEVEL STREAM AND DATA PARALLELISM FOR GPU
WITH SPAR

In this chapter, we describe our extension of SPar language to express data paral-
lelism along with stream parallelism. In Section 5.1 we introduce novel SPar attributes and
their semantics. Their syntax is formally described in Section 5.2. Our extension did not
change substantially the original syntax and semantics. In fact, the original stream capabilities
of SPar were not modified since we only add novel attributes related to data parallelism. We
also present a discussion on how to use these new attributes in Section 5.3.

The novel definitions and parallel pattern-based transformation rules targeting
stream and data parallel patterns are presented in Section 5.4. We outline the differences
with respect to the original definitions and rules defined by Griebler’s work [Gri16]. The imple-
mentation of these new rules, focused in Map and Reduce parallel patterns are described in
Section 5.5. Section 5.6 presents a discussion of the performance impacts of our implementa-
tion in three applications: Mandelbrot Streaming (5.6.1), lane detection (5.6.3), and ray tracing
(5.6.2). In Section 5.7 we discuss the performance difference between our implementation
in the SPar compiler for automatic stream and data parallelism compared to handwritten
code of the same applications discussed in the previous section. Section 5.8 discusses the
programmability of the SPar language using the new attributes. Finally, Section 5.9 present
our final remarks about our extension of SPar language and compiler implementation.

5.1 Extending SPar Language

The current SPar attributes, presented in Section 2.5, are closely related to the
stream parallelism domain. Also, they do not express any semantics of the data parallelism
properties. In this work we focus in the widely used Map and Reduce patterns. However, in
order to safely generate the Map pattern, the programmer must be sure that the operation
being applied to the data elements can be executed in parallel, i.e. it is a pure function:
“whose output depends only on its input and does not modify any other system state” [MRR12].
Functional programming semantics defines a pure function as “a function that, given the
same input, will always return the same output and does not have any observable side
effect” [LB20]. Since there is no standard way of automatically detecting this property in a
given C++ code block [GP92, PCR12, BJB+20], the application programmer must provide
this information.

None of the current SPar attributes provide information about the pureness of the
code, thus we created a novel attribute called Pure to identify operations that can be safely
executed in parallel [RGDF19]. The Pure attribute indicates that the annotated code block
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is a pure function. This attribute may be used along with the Stage attribute list to mark the
entire Stage as pure, or as an identifier attribute inside code regions annotated with Stage

to mark specific portions of the Stage region as pure operations. The input and output data
of the pure region are defined by the Input and Output attributes. In SPar, a Stage or code
block is considered a pure function when it satisfies the following statements to guarantee
correct use and correct code generation:

1. The Pure region can not have any side effects (i.e., mutation on non-local variables).

2. Pure loop iterations can not have execution order dependency (i.e., depending on the
values modified by previous iterations).

3. The Pure region can not access any global variable that are not listed in the Input

attribute.

From the programmer perspective, the Pure attribute is another attribute allowing
to identify data parallelism inside the Stage. On the other hand, the compiler transformation
rule identifies that this region/function can be computed in parallel over multiple data. It is up
to the compiler decide which parallel architecture (GPU or multi-core) generate the stream
parallelism with data parallelism code. Section 5.4 will describe the design of the compiler
transformation rules to target data parallelism for GPUs.

Moreover, many potentially pure regions perform the accumulation of the computed
values, which is an operation that combines the elements of a collection into a single element
using a combiner operator. In the structured parallel programming jargon, this process is
defined as the Reduce pattern [MRR12]. The combination of the input values is parallelizable
as long as the operator is associative. In sequential applications, the accumulation is usually
performed into a single output memory space, which is an atomic operation and cannot be
directly parallelized. To allow the use of the Pure attribute in such code regions, the user
must be able to indicate where this kind of operation is performed so that the compiler can
introduce a parallel Reduce pattern when transforming the annotated source code.

For the current SPar attribute set, there was no way to express reduce operations.
Therefore, we created the Reduce attribute to identify reduction operations. This new attribute
increases the language expressiveness and allows Pure to be used in loops with atomic
reduction operations, which would otherwise invalidate the pureness of the code. For the
current version of SPar, we only allow Reduce to be used inside a Pure region, annotating
a single statement which performs the reduction of a vector using a binary associative and
commutative operator.

In our previous work, we evaluated different parallel programming models when
implementing stream and data parallelism combined [RSG+19]. One lesson learned is
that fine-grained stream processing may not generate enough workload to properly exploit
massively parallel architectures such as GPUs. Thus, some stream processing applications
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may not provide the expected performance scalability when using GPUs. For these cases,
we are providing the possibility to express stream batches in SPar through the new auxiliary
attribute for the Stage, named Batch, which activates the batching optimization for this specific
Stage [HSS+14]. The programmer can specify as argument the size of the batch with literal
or integer variable. In principle, this is the amount of stream items to be computed at once by
the annotated stage, which must be a Pure stage. In short, Batch will now allow programmers
to define the stream item granularity.

Observe that none of these attributes are related to the underlying parallel architec-
ture. They were intentionally designed to express data parallelism properties such as data
granularity (Batch), single instruction for multiple data (Pure), and data reduction (Reduce). If
we compare to existing data parallel programming models such as OpenMP [DM98], Batch
has a similar meaning to OpenMP chunk, Pure has a similar meaning to OpenMP parallel for
where every computation inside the region can be performed in parallel and independently,
and Reduce has the same meaning of OpenMP reduction.

For this work, data parallelism will be purposely exploited in GPUs. However, these
new attributes are also open for further investigations and research on multi-core and cluster
parallel architectures. The central point is that the programmer is no longer obliged to reason
about the parallel architecture details when developing its application such as required by
CUDA or OpenCL. SPar’s compiler and transformation rules have to handle this complexities
in place of programmers through its high-level annotation-based language.

Griebler and Fernandes [GF17] already proposed a modified syntax to express
vector and array sizes in the SPar Input and Output attributes when studying distributed
parallel support in SPar language. It was furthermore implemented in [Pie20]. This modified
syntax allows the programmer to provide extra information to the compiler, which can apply
optimizations based on the amount of data being transferred. Therefore, we implemented the
modification proposed in [GF17], on which the user must inform the amount of elements of
the array or vector in the Input or Output attributes with this syntax:

int size=10;

float statdata[10];

int *dyndata = new int[size];

[[spar::Pure, spar::Input(statdata[10]), spar::Output(dyndata[size])]]

Where statdata and dyndata are the variable names for two arrays with static and
dynamic allocation, respectively. The static data has a fixed size of 10 elements while size

represents the amount of memory allocated for the dynamic allocation. By using this syntax,
the SPar compiler will be aware of how much memory is needed to be allocated and moved
for each array or vector. This special syntax is not required when declaring variables of
primitive types in Input and Output. Differently from [GF17], we do not enforce specific data
types, however, the declaration of custom types must be accessible by the compiler.
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It worth noting that this special syntax is not related to the hardware architecture
and does not convey lower-level hardware details. We follow the standard C++ syntax and do
not require the programmer to reason about lower-level concepts such as byte alignment and
the amount of memory used by the variable. Instead of this, only the number of elements
in the container. For now, the programmer is not required to inform the number of elements
in the containers for Input or Output attributes, i.e. the new syntax is optional. We maintain
backwards compatibility. However, future SPar versions may require this information in order
to ensure the generation of optimized parallel code.

5.2 Syntax of the New SPar Attributes

In this section, we present the syntax of the novel SPar attributes introduced in
the previous section: Pure, Batch, and Reduce. We extend the syntax used by [Gri16] to
introduce the original SPar attributes, which is based on the International Standard [Int17].
To distinguish the contribution of each work, the grammar defined by the C++ standard are
presented in black colour while the grammar defined by [Gri16] are highlighted using the blue
color, and the grammar introduced by this work are highlighted using the green color.

Griebler [Gri16] defines aux_attr_list as the list of auxiliary attributes that may be
used together with the Stage. Since our novel Pure and Batch attributes may also be used
as auxiliary together with Stage, we must redefine this term as follows:

aux_attr_list:
aux_attr_specifier aux_attr_listopt

aux_attr_specifier:
, input_specifier
, output_specifier
, replicate_specifier
, pure_and_batch_specifier

NOTE: Semantically, every auxiliary attribute may appear at most once in each list
of auxiliary attributes following an identifier attribute.

We do not enforce any special ordering to the auxiliary attributes. However, because
the Batch must only be used together with Pure, we define a pure_and_batch_specifier as
follows:

pure_and_batch_specifier:
, pure_specifier_aux
, pure_specifier_aux aux_attr_listopt , batch_specifier
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, batch_specifier aux_attr_listopt , pure_specifier_aux

To use Pure as an auxiliary attribute together with Stage, we define a pure_
specifier_aux. When Pure is used as an auxiliary attribute, it marks the entire Stage code
section as a pure function.

pure_specifier_aux:
pure_attr_aux

pure_attr_aux:
pure_token

pure_token:
pure_scoped_token

pure_scoped_token:
attribute_namespace :: Pure

attribute_namespace:
spar

NOTE: by definition, Pure attribute may have arguments, which is not currently
supported.

For many complex applications, the pure data-parallel region is nested within the
Stage code region. Thus, we permit the use of the Pure as an ID attribute inside the Stage
code region. The Pure as ID accepts the Input and Output attributes as auxiliary attributes.
To this end, we define a pure_specifier_id as follows:

pure_specifier_id:
pure_annotated_iteration_statement

pure_annotated_iteration_statement:
pure_attr_id pure_iteration_statement

pure_iteration_statement:
for ( simple_declaration relational_expression ; assignment-expression ) statement

pure_attr_id:
[[ pure_token pure_aux_attr_listopt ]]

pure_aux_attr_list:
, input_specifier
, output_specifier
, input_specifier , output_specifier
, output_specifier , input_specifier

The Batch attribute must be used exclusively as auxiliarly together with Stage and
Pure. Similarly to the Replicate attribute, the Batch attribute also takes a single integer
argument, which represents the batch size. However, unlike the Replicate argument, which
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is optional, the Batch argument is required. A batch_specifier is used to define the Batch
attribute:

batch_specifier:
batch_attr attribute_argument_clause

batch_attr:
batch_token

batch_token:
batch_scoped_token

batch_scoped_token:
attribute_namespace :: Batch

attribute_namespace:
spar

NOTE: Semantically, exactly one argument is accepted to represent the batch size
in a given stage. This argument can be an integer literal or an integer variable.

Finally, the syntax of Reduce is defined to ensure a proper assignment expression
and the use of an associative and commutative operator:

reduce_specifier:
reduce_attr

reduce_attr:
[[ reduce_token ]] reduce_compound_statement

reduce_compound_statement:
{ reduce_assignment_expression }

reduce_assignment_expression:
identifier reduce_assoc_comm_assignment_operator reduce_postfix_access_expr
identifier = identifier reduce_assoc_comm_operator reduce_postfix_access_expr

reduce_assoc_comm_assignment_operator: one of
∗= += &= ∧= |=

reduce_assoc_comm_operator: one of
∗ + & ∧ |

reduce_postfix_access_expr:
identifier [ identifier ]

reduce_token:
reduce_scoped_token

reduce_scoped_token:
attribute_namespace :: Reduce

attribute_namespace:
spar
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NOTE: Semantically, the current version of SPar only accepts reduce_specifier to
be used nested in a pure_iteration_statement.

5.3 How to Annotate Sequential Codes with SPar

This section presents a programmer guide on how to use both the current and the
new SPar attributes together for annotating stream and data parallelism in C++ sequential
source code. The original SPar attributes were discussed in Section 2.5. The ToStream

attribute is used to delimit the streaming region while the Stage attribute delimits a workstation
in the assembly line. The Input and Output attributes define the data items sent between
the stages. Finally, the Replicate attribute marks the Stage as stateless and indicates the
degree of parallelism for this stage.

In the previous sections, we introduced three novel attributes for the SPar language:
Pure, Reduce, and Batch. The Pure attribute is used as auxiliary with the Stage or as identifier
inside the Stage region to identify pure functions. The Reduce attribute is used to mark atomic
operations of data accumulation inside Pure regions. Finally, the Batch attribute is used as
auxiliary together with Stage and Pure to enable the batching optimization for the stream
processing application.When used together with the Pure attribute, the Input and Output

attributes express the data dependencies of the pure function. For instance, if you have a
Pure inside a Stage, you have to pay attention to which data is going to be consumed and
produced inside this pure function. Since the Reduce attribute is used in a statement inside a
pure function, you do not need to specify Input and Output dependencies for it.

Listing 5.1 exemplifies the use of the new Pure and Batch attributes together with the
original SPar annotations. This example is computing the Mandelbrot Streaming application.
ToStream (line 2) marks where the stream parallelism region starts and also refers to the
stream generator stage. Inside the stream computation there are two Stage annotations
identifying the stream operators. The data stream dependencies are specified through the
Input and Output attributes. Replicate in line 5 indicates the degree of parallelism for that
specific stage, running the amount of replicas given as argument in the attribute. The last
Stage simply shows line by line the Mandelbrot image. It cannot be replicated because
ShowLine is a stateful operator.

This Mandelbrot Streaming application was already presented in [Gri16], and
Griebler took it from FastFlow examples repository in SourceForge. We are just adding
the Pure attribute in the Stage annotation in line 5 of Listing 5.1 because the for loop in
line 6 is a pure function. Moreover, we inserted the Batch attribute in line 5, allowing the
control of the stream granularity for this specific Stage. It is worth point out that the application
latency and throughput are directly impacted by the use of this attribute [HSS+14]. However,
the programmer may test and choose the best configuration (size of the batch) that fits
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the performance requirements. Section 5.6 will discuss the performance impacts of these
attributes.

1 void mandel(int dim ,int niter ,double init_a ,double init_b ,double step) {
2 [[ spar::ToStream , spar::Input(dim , niter , init_a , init_b , step)]]
3 for (int i=0; i<dim; i++) {
4 unsigned char *img = new unsigned char[dim];
5 [[ spar::Stage , spar::Pure , spar::Batch(size), spar::Input(dim , niter ,

init_a , init_b , step , i, img[dim]), spar::Output(img[dim]),
spar::Replicate(workers)]]

6 for (int j=0; j<dim; j++) {
7 double im = init_b + (step * i);
8 double cr;
9 double a = cr = init_a + step * j;

10 double b = im;
11 int k = 0;
12 for (k=0; k<niter; k++) {
13 double a2 = a * a;
14 double b2 = b * b;
15 if ((a2+b2) > 4.0) break;
16 b = 2 * a * b + im;
17 a = a2 - b2 + cr;
18 }
19 img[j] = (unsigned char) 255-((k*255/ niter));
20 }
21 [[ spar::Stage , spar::Input(img , dim , i)]] {
22 ShowLine(img , dim , i);
23 delete img;
24 }
25 }
26 }

Listing 5.1: Mandelbrot Streaming annotated with SPar using the new attributes.

To exemplify the use of the Reduce attribute, we present an application summing and
multiplying the elements of multiple vectors in Listing 5.2. The vectors are streamed through
the pipeline defined by the ToStream attribute in line 2. For each pair of vectors, the sum of
the vectors is computed in line 12. After, the sum (line 13) and the product (line 14) of the
elements in the resulting vector is computed using the addition and multiplication operators.
This application just prints the result of the two reductions in the standard output. In this case,
Pure is used as an identifier attribute, inside the Stage code region.

1 void vector_sum(int num_vectors , float vecsize , float **as, float **bs, float
** results) {

2 [[ spar::ToStream , spar::Input(num_vectors , vecsize , as, bs, results),
spar::Output(results)]]

3 for (int v = 0; v < num_vectors; v++) {
4 float *a = as[v];
5 float *b = bs[v];
6 float *result = results[v];
7 [[ spar::Stage , spar::Input(v, vecsize , a[vecsize], b[vecsize],

result[vecsize ])]] {
8 float sum = 0;
9 float product = 1;

10 [[spar::Pure , spar::Input(a[vecsize], b[vecsize], sum , product),
spar::Output(result[vecsize], sum , product)]]

11 for (unsigned int i = 0; i < vecsize; i++) {
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12 result[i] = a[i] + b[i];
13 [[ spar::Reduce ]] { sum += result[i]; }
14 [[ spar::Reduce ]] { product *= result[i]; }
15 }
16 std::cout << "Vector "<< v <<": sum is "<< sum <<" and product is "<<

product << std::endl;
17 }
18 }
19 }

Listing 5.2: Vectors sums annotated with SPar using the Pure and Reduce attributes.

The special syntax for describing vector and array sizes is exemplified in line 5
of Listing 5.1, in which the image vector is specified as img[dim]. The vectors’ sizes in
Listing 5.2 are also specified in this special syntax in line 10. For the purposes of this work,
these sizes define the amount of memory to be allocated and copied in the GPU memory.

5.4 New Compiler Transformation Rules for SPar

Currently, SPar supports the stream parallel patterns Pipeline and Farm. We aim to
add support for the data parallel patterns Map and Reduce. Our focus in the Map pattern
because it is the simplest widely used data-parallel pattern [MRR12]. Moreover, complex
data-parallel patterns such as Gather, Stencil, and Scan, are just variants of the Map pattern.
Operations that aggregate a set of data are also common in data-parallel applications,
usually represented by critical sections inside the data-parallel region. These operations are
represented by the Reduce pattern, which is commonly used together with Map.

Using functional semantics, we created our own definition for the data-parallel
patterns Map and Reduce in order to identify which pattern will contain each code block from
the annotated application. We defined the Map pattern as: map(�P

id ), where �P
id is the pure

function or code wrapper that computes over multiple data independently. The input and
output data can be a list, vector, or an array of data. Similarly, we defined the Reduce pattern
as: reduce(�R

i ), where �R
i is a special code block containing a single statement which is

a reduce_compound_statement defined in Section 5.2. The associative and commutative
operator of the reduce_compound_statement is used to aggregate all the elements of a data
set into a single element, which is produced by reduce. Furthermore, these two patterns
can be combined to create a new pattern: map-reduce(�P

i ,�R
i , ...,�R

n ). In this case, one or
more reduction operations are applied in the data elements produced by the Map pattern to
aggregate them into a single output value.

We extend the original definition of the arguments of the Pipeline and Farm parallel
patterns from [GDTF17] to support the combination of stream and data parallelism. The three
farm components, namely emitter (E), worker (W), and collector (C), accepts as argument a
single �id or an instance of a data-parallel pattern (map, reduce, or map-reduce). We also
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change the possible pipe arguments: each stage may be a �id , a farm, a map, a reduce, or a
map-reduce.

We present updated SPar definitions and novel transformation rules for the Map and
Reduce parallel patterns. Before introducing our novel definitions and transformation rules,
we extend the previous SPar notation (Section 2.5.1): Pi denotes a Pure attribute and Rdci

denotes a Reduce attribute. We use ∀id{�id} to denote a pure_iteration_statement, defined in
Section 5.2, with the code block that is repeated for each iteration. The Batch attribute is not
discussed in this section since it only changes the data management and does not interfere
in the pattern generation. We present the details on how the Batch attribute interferes in the
code generation in Section 5.5.

The original transformation rules for generating Pipeline and Farm parallel patterns
from SPar annotations are based on six definitions, which are presented in Table 2.1. We
extended these original definitions to support the transformation rules with the Map and
Map-Reduce parallel patterns. Currently we only support the Reduce pattern when used
together with Map, being therefore a Map-Reduce. The support for the standalone use of the
Reduce pattern may be added in future works. Table 5.1 presents the new set of definitions
with support to stream and data parallel patterns. The changes with respect to the definitions
in [GDTF17] are highlighted using the green color.

From the original SPar transformation rules presented in Section 2.5.1, we take
Rule 2.4 as an example to demonstrate the combination of stream and data parallelism. In
this case, we are defining that the first stage is P where the code block is a ∀{�} for Rule 2.4.
Therefore, we apply D1, D12, and D13 to obtain Rule 5.1. In this case, we combine the Map
and Pipeline patterns. Each stream item produced by the first pipe stage will be the input of
the next stage that is instantiating the map pattern to exploit data parallelism.

[[T0]]{�0, [[S0, P0]]{∀0{�P
1 }}} ⇒ pipe(�0, map(�P

1 )) (5.1)

Similarly, if we take Rule 2.3 from Section 2.5.1, add P and consider a ∀{�} as the
code block of the first S. Consequently, we can apply D1, D5, and D11 to obtain Rule 5.2. In
this case, a new parallel pattern is generated, combining Farm with the workers instantiating
the Map pattern.

[[T0]]{�0, [[S0, Oi , Rn, P0]]{∀0{�P
1 }}, [[S1]]{�2}}

⇓

farm(E(�0), W (map(�P
1 )), C(�2))

(5.2)

Adding P in the Rule 2.5, with ∀{�} as the code block, results in Rule 5.3. This Rule
combines three parallel patterns: Pipeline, Farm, and Map, which are generated based on
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Table 5.1: Definitions for transformation rules adapted from [GDTF17]. The definitions are
applied in the order in which they are defined.

D0 A generic code block ψ is generated for gathering results when the last � is annotated with S
containing in its attribute list Rn and Oi .

D1 A � becomes an argument of map pattern when it does not contain a Rdci and the first statement
is a ∀ annotated with a S containing P in its attribute list.

D2 A � becomes an argument of map-reduce pattern when the first statement is a ∀ annotated with a
S containing P in its attribute list and the � contains a �R which is annotated with Rdci .

D3 A � can be the argument of a pipe pattern stage, or of a E or C in a farm, when its S annotation list
does not contain the Rn attribute and D1 and D2 do not apply.

D4 A � becomes an argument of W in a farm pattern when it is annotated with S containing an Rn
attribute and D1 and D2 do not apply.

D5 A map pattern becomes an argument of the W in a farm pattern when D1 applies on a � and this �
is annotated with S containing an Rn attribute.

D6 A map-reduce pattern becomes an argument of the W in a farm pattern when D2 applies on a �
and this � is annotated with S containing an Rn attribute.

D7 A ∀{�P} which is annotated with only P inside a S annotation and does not contain a Rdci becomes
a map pattern that will be nested into a stage of the pipe pattern or W in the farm pattern.

D8 A ∀{�P} which is annotated with only P inside a S annotation and contains a �R annotated with
Rdci becomes a map-reduce pattern that will be nested into a stage of the pipe pattern or W in the
farm pattern.

D9 A T becomes the map pattern when a �P has ∀0 as the first statement annotated with T and right
after this ∀0 there is only a single �P which is a ∀1 that does not contain a Rdci and is annotated
with S containing P in its attribute list.

D10 A T becomes the map-reduce pattern when a �P has ∀0 as the first statement annotated with T
and right after this ∀0 there is only a single �P which is a ∀1 that contains a �R annotated with Rdci
and is annotated with S containing P in its attribute list.

D11 A T becomes a farm pattern when D9 and D10 does not apply and the first S annotation contains
Rn in the attribute list of two S at maximum.

D12 A T becomes a pipe pattern when D9 and D10 does not apply and the first S does not have Rn in
the attribute list or when there are more than two S annotations.

D13 A map pattern becomes an argument of a stage for the pipe pattern when D1 applies on a �, the S
which annotates this � does not contain an Rn attribute, and D12 applies on the T that contains this
S.

D14 A map-reduce pattern becomes an argument of a stage for the pipe pattern when D2 applies on a
�, the S which annotates this � does not contain an Rn attribute, and D12 applies on the T that
contains this S.

D15 A farm pattern becomes a stage for the pipe pattern when D9, D10, and D11 does not apply and �
is annotated with S that contains Rn in the attribute list.

the following definitions: (a) D1 to generate the map pattern and D5 to it become an argument
of the farm’s worker stage (W ); (b) D12 to generate the pipe pattern from the T annotation;
(c) D15 to generate the farm pattern as a pipe stage; and

[[T0]]{�0, [[S0]]{�1}, [[S1, Rn, P0]]{∀{�P
2 }}}

⇓

pipe(�0, farm(E(�1), W (map(�P
2 ))))

(5.3)



108

We allow P to be employed as ID attribute, which provides more flexibility to SPar
applications. If only part of the last Stage from Rule 5.3 is a pure function, P could be applied
in this specific code block, as demonstrated by Rule 5.4. In this case, D7 is applied to generate
the map pattern nested in the farm pattern. In Rule 5.4, we defined a generic code block �x

to group a sequence of code blocks and patterns. This transformation phase allows us to
apply D4, where �x is the argument of the W component in the farm pattern.

[[T0]]{�0, [[S0]]{�1}, [[S1, Oi , Rn]]{�2, [[P0]]{∀{�P
3 }},�4}, [[S2]]{�5}}

⇓

�x = { �2, map(�P
3 ),�4 }

pipe(�0, farm(E(�1), W (�x ), C(�5)))

(5.4)

In Rule 5.5, we apply D9 to generate a single map pattern from a T annotation
schema due to the Pure attribute in this specific code structure.

[[T0]]{∀0{[[S0, P0]]{∀1{�P
0 }}}} ⇒ map(�P

0 ) (5.5)

Rule 5.6 builds upon Rule 5.1 and applies D2 to generate map-reduce based on the
combination of the P and Rdc attributes. In this Rule, we defined the generic code block �x

to group the �P
1 and the �R

2 which are inside the ∀0 code region. We can safely compute the
reduction operation in parallel since: (a) the P attribute enforces that the region does not
have any side effects nor depends on the execution order; and (b) the Rdc attribute enforces
the use of a associative and commutative operator.

�x = { �P
1 , [[Rdc0]]{�R

2 } }

[[T0]]{�0, [[S0, P0]]{∀0{�x}}}

⇓

pipe(�0, map-reduce(�P
1 ,�R

2 ))

(5.6)

If we add the Rn attribute in the annotation schema from Rule 5.6, we obtain Rule 5.7.
This Rule is also very similar to Rule 5.2, but now generating the map-reduce pattern instead
of map (applying D2 instead of D1) and applying the D0 to generate the generic collector. The
generic code block �x remains the same as in Rule 5.6.
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�x = { �P
1 , [[Rdc0]]{�R

2 } }

[[T0]]{�0, [[S0, P0, Oi , Rn]]{∀0{�x}}}

⇓

farm(E(�0), W (map-reduce(�P
1 ,�R

2 )), C(ψ))

(5.7)

The map-reduce pattern can also be generated when Rdc is inside a P used as ID
attribute, as defined by D8 and demonstrated by Rule 5.8. In this Rule, the generic code block
�x remains the same as in Rules 5.6 and 5.7. In this case, the map-reduce pattern are in
the same pipe stage as the code blocks before and after the P attribute (�1 and �4). Thus,
we define a generic code block �y to group them in Rule 5.8. Multiple map and map-reduce
patterns can be nested inside pipe and farm using this same logic.

�x = { �P
2 , [[Rdc0]]{�R

3 } }

[[T0]]{�0, [[S0]]{�1, [[P0]]{∀{�x}},�4}}

⇓

�y = { �1, map-reduce(�P
2 ,�R

3 ),�4 }

pipe(�0,�y )

(5.8)

The Rdc attribute may also be nested inside the code block of the Rule 5.5, in which
case the D10 is applied and Rule 5.9 is triggered. We demonstrate here the application of
multiple Rdc attributes inside the scope of a single P annotation. Similarly to Rules 5.6, 5.7,
and 5.8 we defined the generic code block �x to group the sequential code blocks which are
inside the ∀ code region.

�x = { �P
0 , [[Rdc0]]{�R

1 }, [[Rdc1]]{�R
2 } }

[[T0]]{∀0{[[S0, P0]]{∀1{�x}}}}

⇓

map-reduce(�P
0 ,�R

1 ,�R
2 )

(5.9)

These transformation rules represent in high-level how the annotated sequential
code can be safely transformed into a parallel programming model specific code (PPMSC).
The PPMSC is a source code with parallel constructs automatically generated by the compiler
that is functionally equivalent to the sequential code [DDMT18]. The compiler generates the
platform-specific PPMSC for the programming model chosen by the programmer by means
of annotations or compiler flags.
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As long as the programmer follows the syntax and semantic presented in Sec-
tions 5.1, 5.2, and 5.3, these rules also ensure the sequential equivalence of the generated
code. Sequentially equivalent programs produce equivalent results (except for round-off
errors) irrespective of the number of threads (one or many) used in its execution [MSM04].

5.5 Code Generation

We programmed the parallel pattern-based transformation rules (Section 5.4) in
the SPar compiler generating the parallel patterns implemented by GSPARLIB Pattern API.
These rules are applied before the original multi-core rules that uses FastFlow [GDTF17]
or TBB [HGDF20] as runtime. However, to support GPU parallelism we enforce another
requirement for the Pure attribute: the Pure region (as well as the functions and structures
referenced by it) should be valid CUDA C or OpenCL C99, according to the underlying
driver. We also limit the structure and types of loop statements that can be annotated with
the Pure attribute according to the syntax presented in Section 5.2. Any of these limitations
can be lifted by future works.

We added two compiler flags to the SPar compiler to control the behavior of the new
GPU backend:

• -spar_gpu: this flag enables the new rules for generating the data-parallel patterns of
GSPARLIB for the GPU backend;

• -spar_opencl: this flag enables the GSPARLIB OpenCL driver in the SPar compiler
(it uses the GSPARLIB CUDA driver by default). Since the GSPARLIB Pattern API is
driver-agnostic (as discussed in Chapter 4), when this flag is set the SPar compiler
just changes the included file (GSPar_OpenCL.hpp instead of GSPar_CUDA.hpp) and the
namespace used (GSPar::Driver::OpenCL instead of GSPar::Driver::CUDA) for refer-
encing the Instance class in the generated code. This is a way for the programmer to
choose when using OpenCL or CUDA on NVIDIA boards.

The first step performed by the SPar compiler after scanning and parsing the code
(for a high-level representation of the full compiler flow, please refer to Figure 2.6) is matching
the Transformation Rules in the AST to check which rules should be applied. Figure 5.1
illustrates an overview of the order on which the novel Transformation Rules presented in
Section 5.4 are applied by the SPar compiler. For each ToStream annotation, we first check if
the Transformation Rules 5.5 or 5.9 (which are based in the definitions D9 and D10) applies.
This step is represented by the first decision (“Is pure data parallelism?”) in the flow of
Figure 5.1. In this case, if there is any Reduce attribute inside the code block, the Rule 5.9 is
applied to generate the map-reduce pattern. Otherwise, the Rule 5.5 is applied to generate
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the map pattern. When any of these two Rules are applied, we do not check for other rules
on this ToStream since the entire region is replaced by a single Map (or Map-Reduce) pattern.

Then, we iterate over the Stage attributes inside the ToStream region. For each
Stage, we first check if they have the Pure attribute as AUX. This step is represented by the
second decision (“Is Stage Pure?”) in the flow of Figure 5.1. In this case, if there is any
Reduce attribute inside the pure code block we apply Rules 5.6 or 5.7. Otherwise we apply
one of the Rules 5.1, 5.2, or 5.3, according to the annotation schema.

Finally, if the Stage auxiliary attribute list does not contain the Pure attribute, we
check if the Pure attribute was used as ID inside the Stage region. This step is represented
by the last decision (“Is there any Pure region inside Stage?”) in the flow of Figure 5.1. In
this case, we apply the Transformation Rules 5.4 (to generate the map pattern) or 5.8 (to
generate the map-reduce pattern).

Figure 5.1: Flow of the new transformation rules presented in Section 5.4.

Once the Transformation Rules are identified and the compiler knows which parallel
patterns should be generated, it starts the actual code generation targeting GSPARLIB data-
parallel patterns. Firstly, if there is a Reduce attribute in the Pure block, the components of the
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statement annotated with Reduce are parsed into the GSPARLIB’s Reduce class constructor
parameters: the input vector, the binary associative and commutative operator, and the output
result. Then, this statement is removed from the body of the Pure region since the Reduce is
computed after the Map.

The for statement annotated with Pure is parsed to identify the iterator variable
name as well as the starting and ending expressions of the Map, which are used as the
min and max values of the GSPARLIB’s Dimensions structure. The iterator variable name is
set into the Map class using the setStdVarNames method. If there is another for statement
directly nested with the first for, i.e. if there is not any other statements between the two
for statements, then we try to parse it as the second dimension for the Map class. After, the
code block inside the for body is turned into a string and set as the Map class constructor
parameter (the kernel core). We navigate this code block that represents the core of the GPU
kernel to check if there are any struct or function called from the kernel. These definitions
are then also marked for inclusion within the kernel code (using the addExtraKernelCode

method from GSPARLIB API). The parameters for the Map class are parsed from the variables
inside Input and Output annotations used together with Pure.

Additionally, if the Pure is used as AUX attribute together with Stage, we check if
the Batch attribute is also present to set the batch size for the patterns accordingly. We only
support Batch to be used together with Stage and Pure as AUX because the stage must
prepare the batches of streamed data for the Map input, which is not currently possible if the
Pure is used as ID attribute.

If the Rules 5.5 or 5.9 applies, we replace the entire ToStream region with a code
block that perform all these steps, in the following order: creates the patterns instances, sets
any extra definitions needed, sets the standard variable names, sets the parameters, run the
patterns, and deletes the pattern instances. Since the entire ToStream is replaced by the Map
or Map-Reduce pattern, the multi-core transformation is essentially disabled for this specific
ToStream. In this case, the Batch attribute is ignored since there is no streaming to batch
values for the data parallelism.

For the Transformation Rules that combine stream and data parallelism, we first
include the GSPARLIB’s data parallel patterns (Map and Map-Reduce) in the code and then
let the multi-core transformation rules apply the Pipeline and Farm patterns. To this end,
we insert a sequence of statements before the ToStream annotation in the original source
code which: (a) prepare the Dimensions variable for the pattern; (b) create an instance of the
identified patterns (using the new C++ keyword); (c) set the extra definitions for structs and
functions used inside the kernel code; (d) set the standard variable names (iterator variable);
(e) set the batch size (if the pattern is batched); (f) set the parameters as placeholders;
(g) compile the pattern using the dimension declared in the first step. If there is a Reduce
component, we also construct the PatternComposition (discussed in Section 4.5.3) instance
to create the Map-Reduce pattern. This initialization steps are performed before the streaming
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region so that they are performed only once for the entire execution. Since the pattern is
already compiled with the dimensions, it stores this information and we do not need to pass it
again when running the pattern, as described in Section 4.5.

After generating this code block, we add the Map or PatternComposition instance in
the ToStream Input attribute arguments. Then, we insert a statement cloning the pattern right
after the ToStream annotation, which represents the first Pipeline stage or the Farm’s emitter.
This cloned pattern is added as argument of the Input attribute of the Stage annotated with
Pure. Since these rules are applied before the multi-core rules that generates the Pipeline and
Farm patterns, adding the Map and Reduce objects in the Input automatically includes them
in the structure that defines the stream items. Making a clone of the pre-compiled pattern
for each stream item in the first stage also permits their use in a multi-threaded environment
since the pattern objects are lightweight but are not thread-safe (as discussed in Section 4.5).

The next step during the code generation phase is to replace the original Pure region
with a code block with sentences for: (a) setting the actual parameters; (b) calling the run

method; (c) deleting the patterns objects. Finally, we generate statements to delete the
original patterns after the ToStream scope. These steps are essentially the same whether the
Pure attribute is used as AUX together with Stage or as ID inside the Stage scope.

After this transformations aiming data parallelism patterns using the GSPARLIB

runtime, the multi-core transformation rules implemented by [Gri16] are applied. The only
substantial change we made in the multi-core transformation rules are to support batched
parallel patterns because the batching must be done in the streaming region. If the Batch

attribute is present in a Stage, we add a vector of stream items in the stage structure to store
all the incoming stream items. When the vector reaches the size defined as argument of the
Batch attribute or if the stream comes to an end, the entire batch of items is processed at
once using the batch support of GSPARLIB, presented in Section 4.5.1, and the items are
sent to the next stage. This process increases the latency but improves throughput in cases
where each stream item does expose enough parallelism to worth offloading the computation
to the GPU. The application developer should consider this trade-off between throughput and
latency to decide whether to use the Batch attribute and the batch size that best suits their
needs. We will present details of this trade-off in Section 5.6.

5.6 SPar Performance Considerations

In this section we perform tests to evaluate the performance of the code generated
by the SPar compiler targeting stream and data parallel patterns combined. There is a lack of
standard benchmarks for combined stream and data parallelism in the academia. Thus, we
used stream processing applications that also expose data parallelism, which allows us to
combine the original SPar annotations (focused in stream parallelism) with our novel attributes
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that are focused in data parallelism. This section shares many similarities with Section 4.7,
such as: (a) we use the same environment of tests and the same test methodology; (b) in
addition to the total execution time, we discuss streaming related metrics such as latency and
throughput; and (c) initialization and finishing tasks are included in the total execution time,
unlike the tests in Section 4.7 on which were measured separately. We used the original
FastFlow runtime and the novel GSPARLIB runtime in the following tests. We calculate the
standard error of mean (SEM) for each test using the formula σ/

√
n, where σ is the sample

standard deviation and n is the number of measurements [BB12].

5.6.1 Mandelbrot Streaming

The standard Mandelbrot set calculation algorithm was already discussed as a
data parallel application in Section 4.7. Here we test the modified version of the Mandelbrot
algorithm that exposes stream parallelism presented in Listing 5.1. We test the same
workloads used in Section 4.7, however, in this test each row of the image is a single stream
item, which means that we are sending 1, 3, and 5 thousand stream items, respectively, for
the three workloads. This application uses a library to show the fractal image in the screen
(which was disabled for the performance tests). We checked that the images shown by the
sequential and parallel versions were the same.

The charts in Figures 5.2, 5.3, and 5.4 present the total execution time and through-
put, using base 10 logarithmic scale, for the three workloads. The Tables 5.2, 5.3, and
5.4 present the standard errors for each of these Figures. We calculate the throughput of
the Mandelbrot Streaming application as the number of lines processed per second (i.e.
throughput = image dimension/execution time in seconds) since they represent the data
items that move through the stream. The number of parallel workers (1 to 10) is related to the
X axis of the graphs while the different versions (sequential, multi-core SPar, and SPar using
CUDA and OpenCL drivers of GSPARLIB as backend) are presented alongside the Y axis. It
worth noting that the number of parallel workers in the X axis does not necessarily represent
the number of active threads in the system. Rather than this, it represents the number of
parallel workers in the replicated stage of the Farm pattern. There are other threads dedicated
for the sequential stream stages (such as the emitter and the collector of the Farm pattern
and any stateful stage of the Pipeline pattern). The values (not log-scaled) are shown at the
top of each bar. For this first set of tests, we did not include the Batch attribute.

Figure 5.2 presents the execution time and throughput for the first (small) workload.
The SPar version (green) present consistent performance improvements as the number
of parallel workers increase. The performance of the SPar version with GSPARLIB using
one and two parallel workers is very similar when using CUDA and OpenCL backends.
However, the OpenCL version’s performance degrades sharply when using three workloads
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and improves gradually as the number of workers increase, reaching its peak performance
using ten workers with a total execution time of 6.23 seconds, 4.2× speedup with respect
to the sequential version, and throughput of 161 lines per second. The CUDA version’s
performance improves up to five workers, with a total execution time of 3.58 seconds, 7.2×
speedup with respect to the sequential version, and throughput of 280 lines per second.
Further increasing the number of parallel workers degrades the CUDA version’s performance.
We present the SEM in seconds in Table 5.2, which are all under 0.4 seconds.
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(b) Throughput of small workload.

Figure 5.2: Performance results of Mandelbrot Streaming for the small workload.

Table 5.2: SEM in seconds for tests of Figure 5.2a.

Name Workers
1 2 3 4 5 6 7 8 9 10

SPar (CUDA) 0.047 0.020 0.122 0.033 0.071 0.157 0.133 0.314 0.125 0.140
SPar (OpenCL) 0.054 0.028 0.075 0.058 0.087 0.114 0.140 0.089 0.064 0.080
SPar 0.002 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001
Sequential 0.001

Further increasing the number of workers did not reflect on performance improve-
ment as GPU is becoming the bottleneck of the application. There are multiple threads to
offload the computations for a single GPU. Thus, with more workers, the high number of
kernel invocations become the bottleneck of the application. For this workload, the multi-core
surpasses the best GPU performance with nine and ten workers.

Figure 5.3 presents the execution time and throughput for the second (medium)
workload. The results are very similar to those presented by the small workload and the peak
performance is also achieved by SPar (CUDA) version at five workers (total execution time
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of 29 seconds, 15.9× speedup regarding to the sequential version, and throughput of 103
lines per second). Although CUDA and OpenCL versions presented the same performance
when using one and two worker threads, in its throughput performance peak, the CUDA
version presents almost twice the throughput of the best OpenCL version: 103 lines/s (CUDA
with 5 workers) compared to 56 lines/s (OpenCL with 10 workers). Actually, the OpenCL
version present slight increasing performance as the number of parallel workers increase
beyond two. Nonetheless, even using 10 parallel workers, the multi-core version presents
worse execution time and throughput than the CUDA version for this workload. Since this
workload presents a heavier load for each stream item, the massive parallelism of the GPU
cover the costs of copying data to the GPU memory and invoking the kernel. The sequential
and multi-core versions as well as the GPU versions with a single worker thread, presented
standard errors under 0.1 s (shown in Table 5.3). The GPU versions with a higher number of
threads presented higher SEM, topping at 1.12 s for the CUDA version with 7 workers.
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(a) Execution time of medium workload.
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(b) Throughput of medium workload.

Figure 5.3: Performance results of Mandelbrot Streaming for the medium workload.

Table 5.3: SEM in seconds of tests for Figure 5.3a.

Name Workers
1 2 3 4 5 6 7 8 9 10

SPar (CUDA) 0.006 0.087 0.089 0.162 0.377 1.077 1.119 1.074 0.754 0.532
SPar (OpenCL) 0.012 0.073 0.302 0.264 0.439 0.535 0.539 0.288 0.548 0.261
SPar 0.009 0.003 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001
Sequential 0.012

Figure 5.4 presents the execution time and throughput for the third (large) workload.
The overall behavior is still the same: the CUDA version achieves the peak performance
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with five workers (total execution time of 62.5 seconds, 20.7× speedup with respect to
the sequential version, and throughput of 80 lines per second). The OpenCL and CUDA
performance are very similar using one and two workers, however, the OpenCL version
struggles to utilize more parallel workers to boost the performance. Since each row now
represents a bigger load (5,000 pixels), each stream item launches a bigger GPU kernel,
which worth the extra overload involved in offloading the computations to the GPU. The
standard errors of this test, presented in Table 5.4, also shown a similar behavior of the
medium workload. The CPU versions and GPU versions using a single thread present
standard errors well under 0.1 s, while the GPU versions using more threads present an
increased standard error. The biggest standard errors, of 2.33 s and 2.28 s, are presented by
CUDA with 7 and 8 workers, respectively.
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(a) Execution time of large workload.
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(b) Throughput of large workload.

Figure 5.4: Performance results of Mandelbrot Streaming for the large workload.

Table 5.4: SEM in seconds of tests for Figure 5.4a.

Name Workers
1 2 3 4 5 6 7 8 9 10

SPar (CUDA) 0.003 0.148 0.092 0.228 0.708 1.354 2.329 2.283 1.286 1.052
SPar (OpenCL) 0.002 0.139 0.577 0.716 0.635 0.580 1.325 0.791 1.030 0.624
SPar 0.017 0.012 0.002 0.002 0.002 0.003 0.002 0.001 0.002 0.002
Sequential 0.022

Nonetheless, for most stream processing applications, instant measurements such
as instant latency are more meaningful than overall throughput. Thus, we measure the
latency adding a timestamp to each stream item in the first stage and checking the time it
spent in the last stage. Since the first stage is much faster than the other stages, we used the



118

on-demand scheduler of SPar to avoid measuring the time data that the item spend waiting
in the worker’s queue. We chose to discuss only the SPar multi-core version and the SPar
CUDA version with the medium workload for the sake of space. Our tests suggest that the
same conclusions hold true to the OpenCL version and to the other workloads as well.

Figure 5.5 presents a profiling to evaluate the impact of different numbers of parallel
workers in the replicated stage in the latency of the medium workload for the SPar using the
multi-core runtime (without GPU offloading). We present the profile of 1, 2, and 10 parallel
workers for this application. There is no batching of data items in Figure 5.5, since the new
Batch attribute is only supported with the GSPARLIB runtime and it must be used together
with Pure attribute. Figure 5.6 presents a profiling for different numbers of workers and batch
sizes in the latency of the medium workload for the SPar (CUDA) version. We present the
profile using 1, 2, and 10 parallel workers in the replicated stage (each row of graphs in
Figure 5.6 represent a different number of workers) as well as no batching and batch sizes of
2, 10, and 30 items (represented by each column of graphs).
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Figure 5.5: Latency profiling of SPar Mandelbrot Streaming with the medium workload.

Each stream item is a single line of the Mandelbrot image, therefore, we have 3,000
items for the medium workload. The first and last lines of each test present near-zero latency
numbers, which is a characteristic of this application: numbers outside the Mandelbrot set are
calculated much faster since they quickly reach the threshold that delimits numbers outside
the set (line 15 in Listing 5.1). In this cases, the algorithm does not need to perform all the
100,000 iterations to decide that the number is outside the set and breaks the loop sooner.
This explains the overall behavior of low latencies of the first and last lines, and the high
latencies in the middle lines, where the algorithm goes through all the iterations to be sure
that the number is on the Mandelbrot set.

We can see the influence of the number of workers on the latency of each item in the
Figure 5.5 and in the first column of graphs of Figure 5.6 (no batching). The peak latencies
of the SPar multi-core version without GPU offloading (Figure 5.5) are 1.92 seconds for 1
worker, 1.66 seconds for 2 workers, and 1.43 seconds for 10 workers. Nonetheless, the first
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Figure 5.6: Latency profiling of different batch sizes in SPar (CUDA) Mandelbrot Streaming
with the medium workload.

column of graphs in Figure 5.6 show that latencies of the CUDA-based version are an order
of magnitude lower than the multi-core versions. In fact, all latencies are under 0.4 s for any
number of workers: the highest latencies of these graphs are 326 ms for 1 worker, 327 ms for
2 workers, and 332 ms for 10 workers. Therefore, the use of the GPU highly improves the
latencies for this application.

By definition, increasing the batch size increases the latency since the items wait
in the worker of the replicated stage until it receives enough items to compute the batch.
Nonetheless, the first and second graphs of the second column of Figure 5.6 (2 batch size)
present lower latencies than the first column: the highest latencies are 219 ms for 1 worker
and 218 ms for 2 workers. The reason is that the bottleneck is the GPU communication.
Thus, the workers of the replicated stage must wait for the GPU response and the first stage
waits for it to deliver the next item. This item is spending time waiting in the worker’s queue.
A batch size of 2 improves the latencies because the items are generated by the first stage
faster than the replicated stages can process, so the worker of the replicated stage does not
have to wait to receive the next item to compute the batch. In this case, the waiting time of the
first item of each batch in the worker’s batch vector is lower than the waiting time of the item
in the worker’s queue. This trend continues up to a batch size of 10 for 1 worker and up to a
batch size of 5 for 2 workers, on which higher batch sizes start to degrade the latency times.
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The last graph of the second column shows that the batch size of 2 degraded the
performance when running with 10 workers, which is the highest latency of this test is 984 ms.
This shows that the bottleneck of the application starts to shift towards the first stage as the
number of parallel workers or batch sizes increases. The first stage is no longer capable of
keep all 10 workers fed with items, thus some items wait longer in the batch vector of the
replicated stage’s worker until it receives the second item to compute the batch.

The last column of graphs in Figure 5.6, representing a batch size of 30 items,
present a clear pattern of low and high latencies in short periods of time, among all number of
workers. This can be seen more clearly in the second graph (2 workers with a batch size of 30)
in the form of large plateaus of very stable latencies across a large number of lines. With such
a high batch size, the first items that a worker receives remains a considerable amount of time
in the batch vector until the vector is filled up and the batch is processed. These first items
received by the stage represent the high latencies seen in the chart. Nonetheless, the last
items of each batch are processed right after they are received by the worker. These items
represents the lower latencies seen in the chart. Since the FastFlow scheduler (used by SPar)
works in a round-robin fashion, increasing the number of workers also increases the amount
of time necessary to fill the batch vector of each one. This is because the stage that invokes
the GPU kernel is also responsible of building the batch of stream items. As an alternative,
we could hand over to the first stage, the responsibility of building the batch and send this
batch ready to be processed by the workers. However, this approach involves modifying
the application flow and it may not be supported by all applications. Therefore, support for
batching across the entire stream even without the GPU offloading (i.e.: decoupling the Batch

and Pure attributes) is left as future work.

Many stream processing applications have strict requirements over latency, defined
as service level objectives (SLO) thresholds [GVS+19]. Therefore, it is desirable to maximize
the throughput while keeping the latency within acceptable levels [SRG+20]. Figure 5.7
presents the impact of different numbers of workers and batch sizes in the throughput (5.7a)
and the maximum observed latency (5.7b) for the medium workload in the SPar (CUDA)
version. We tested the application without batching (which is presented in Figure 5.7 as batch
size of 1) and using batch sizes of 2 to 10, and also 20 and 30.

As previously discussed, for this workload, a batch size of 2 actually improves the
latency. Therefore, the lowest maximum latency is 218 ms (0.22 s in Figure 5.7b), using 2
workers and a batch size of 2. Besides improving the latency, using a batch size of 2 offers a
86% of increase in the throughput: 97.9 lines/s using 2 workers and a batch size of 2 with
respect to 52.5 lines/s using the same 2 workers but without batching. For this workload, the
configuration of 5 workers with a batch size of 2 is also particularly interesting: it presents
a throughput of 224 lines/s (84% more than the same configuration without batching, 122
lines/s) and the highest latency is only 220 ms (0.22 s in Figure 5.7b). Increasing the number
of workers or the batch size impacts the latency more significantly because the items are
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(a) Throughput of medium workload.
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Figure 5.7: Effects of batching in SPar (CUDA) Mandelbrot Streaming for the medium
workload.

waiting longer in the worker’s batch vector. The best batch size depends on the workload
characteristics, but also in the latency and throughput requirements of the application. Future
works may offer automatic detection and adaptive batch sizes [SRG+20] based on higher-level
SLO requirements [GVS+19].

5.6.2 Ray Tracing

Ray tracing is a technique for synthesizing illumination in 3-dimensional rendered
scenes. It is based on a process called ray casting, which aims to find the closest object
along the path of a ray. The basic idea of ray tracing is that, given a camera position (also
referred as the eye) and a fixed screen size (or image plane), the computer can use the ray
casting process to cast a ray for each pixel of the screen and calculates a color for this pixel
that best represents the image in the scene behind it [Gla89]. Overall, this technique vaguely
resembles the functioning of a classic pinhole camera.

For each pixel, a ray (also known as view ray) is traced from the source camera to
the direction of this specific pixel. Whenever the ray encounters an object, the object’s surface
properties such as surface color, emission of light (if the ray hit a light source), reflectivity,
and transparency are taken into account to define the pixel color or to cast more rays. For
example, if the ray encounters a mirror-like object (with high reflectivity), a reflection ray
is cast from the point of intersection between the original ray and the object, towards the
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reflection direction. Refraction rays works the same way as reflection rays, but with different
directions. These refraction rays also weights differently for the final pixel colouring. Shadow
rays are cast from the point where the ray hit the object towards each light source to check if
there is any other object casting a shadow in this point or if it is directly illuminated by the
light source [HAM19].

To further improve the photorealism of the generated image, a technique known
as stochastic (or distributed) ray tracing casts a bunch of rays for each hit between the view
ray and an object to check for light dispersion and diffusion. This technique widely improves
the depiction of soft shadows and glossy surfaces [HAM19]. The ray tracing technique is
largely used in the movies industry and more recently in the game industry to create realistic
computer-generated (CGI) scenes.

Real-time ray tracing is considered the holy grail of computer graphics [Bel20]. Even
though classic ray tracing algorithm is embarrassingly parallel [HAM19] and the technique is
largely known [App68], it was only the recent GPU hardware improvements that opened up
the possibility that ray tracing could be joining the set of real-time applications. Figure 5.8
depicts two examples of images from ray tracing applications: the left one (5.8a) is a scene
commonly used as benchmark in ray tracing applications, while the right one (5.8b) is a single
frame from the output of the ray tracing application demonstrated in Listing 5.3.

(a) Amazon Lumberyard Bistro scene commonly used
as benchmark for ray tracing applications [Ama17].

(b) An example of output frame from our ray tracing
application.

Figure 5.8: Sample images of ray tracing applications.

Our ray tracing application generates a video as a stream of frames depicting a
CGI scene purely composed of a pre-defined number of animated spheres. An output frame
example composed of 16 spheres is presented in Figure 5.8b (the gray floor and the white sky
are also just very big spheres). Listing 5.3 present the streaming region of this application. It
exemplifies the application of the Transformation Rule 5.2 (however, here the Pure attribute is
used as ID) which generates the Map pattern nested inside the replicated stage of the Farm
pattern.
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1 struct tVec3f { float x; float y; float z; };
2 typedef struct tVec3f Vec3f;
3 struct tSphere {
4 Vec3f center;
5 float radius;
6 Vec3f surfaceColor , emissionColor;
7 float transparency , reflection;
8 int animation_frame;
9 Vec3f animation_position;

10 };
11 typedef struct tSphere Sphere;
12 void raytrace(int totalFrames , int width , int height , std::vector <Sphere >

initialSpheres) {
13 float invWidth = 1 / float(width);
14 float invHeight = 1 / float(height);
15 float fov = 30;
16 float aspectRatio = width / float(height);
17 float angle = tan(M_PI * 0.5 * fov / 180.);
18 int imgsize = width * height;
19 [[ spar::ToStream , spar::Input(totalFrames , width , height , imgsize ,

initialSpheres , invWidth , invHeight , aspectRatio , angle)]]
20 for (int frame = 1; frame <= totalFrames; frame ++) {
21 int spheres_size = initialSpheres.size();
22 Sphere* spheres = new Sphere[spheres_size ];
23 memcpy(spheres , initialSpheres.data(), sizeof(Sphere) * spheres_size);
24 for(unsigned long i = 0; i != spheres_size; i++) {
25 computeSpheresPosition(spheres , spheres_size);
26 }
27 Vec3f *img;
28 [[ spar::Stage , spar::Input(frame , width , height , imgsize , spheres ,

spheres_size , invWidth , invHeight , aspectRatio , angle , img),
spar::Output(img), spar::Replicate ()]] {

29 img = new Vec3f[imgsize ];
30 [[spar::Pure , spar::Input(frame , width , height , spheres[spheres_size],

spheres_size , invWidth , invHeight , aspectRatio , angle),
spar::Output(img[imgsize ])]]

31 for (unsigned y = 0; y < height; ++y) {
32 for (unsigned x = 0; x < width; ++x) {
33 float xx = (2 * ((x + 0.5) * invWidth) - 1) * angle * aspectRatio;
34 float yy = (1 - 2 * ((y + 0.5) * invHeight)) * angle;
35 Vec3f raydir;
36 raydir.x = xx;
37 raydir.y = yy;
38 raydir.z = -1;
39 normalize (& raydir);
40 Vec3f rayorig;
41 rayorig.x = 0;
42 rayorig.y = 0;
43 rayorig.z = 0;
44 img[y*width+x] = trace(&rayorig , &raydir , spheres , spheres_size , 0);
45 }
46 }
47 }
48 [[ spar::Stage , spar::Input(img)]] {
49 show(img);
50 }
51 }
52 }

Listing 5.3: Ray tracing annotated with SPar using the new Pure attribute.
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A structure containing three floating-point numbers is defined in line 1. We use this
structure to represent three-dimensional points in space and also to represent RGB colors.
For example, each pixel of the image is represented by an instance of this structure as well
as the surface and emission colors of the spheres. Each sphere in the scene is represented
by the structure defined in line 3. It contains: the initial position of the sphere’s center in the
three-dimensional scene, the radius, the surface color, the emission color (if the sphere is a
light source), the degrees of transparency and reflection, and the definition of the animation
that should be applied to the sphere in each frame.

The main raytrace function is defined in line 12. It receives as arguments the
number of frames that will be generated, the width and height of the frames, as well as the
initial configuration for the spheres. After preparing some auxiliary variables, the streaming
region is delimited by the ToStream annotation in line 19. The first part of the stream
processing loop copies the spheres’ initial information (line 23) and updates the position
of them based on the current frame number (line 25). The replicated Stage in line 28 is
responsible for casting a ray for each pixel of the scene to calculate the pixel color based
on the spheres and their properties. Since the calculation for each pixel is independent, we
can annotate this part of the code with the Pure attribute in line 30. For the sake of simplicity,
we did not include the declaration of the recursive trace function called in line 44, which
is responsible for tracing the rays needed to determine the pixel color. All the computation
occurs in the computer memory and the last Stage (line 48) is responsible for showing the
image (line 49 in Listing 5.3) or saving the image in the persistent storage. We removed this
step during the time measurement to avoid incurring I/O times in the performance tests.

We tested three workloads for the ray tracing application, with frames of 640x360,
1280x720, and 1920x1080 pixels of resolution. We used the same scene (depicted in
Figure 5.8b) for all workloads, which are composed of 16 spheres, and the same number of
frames: 1,200. The graphs in Figures 5.9, 5.10, and 5.11 presents the performance results for
the three workloads, respectively. The throughput of this ray tracing application is defined as
the number of frames processed per second (FPS), since each stream item is a single frame
of the output video. Given that Batch can only be used together with Stage and Pure, and the
Pure is used as an ID attribute in this application, we did not include the Batch attribute in this
tests. Moreover, each stream item already presents enough workload for the GPU kernel,
thus it is not necessary to change the stream granularity.

For this application we were not able to test the OpenCL backend. The trace

function is recursive and receives the spheres parameter, which is a pointer of memory in
global address space. In this situation, the code generated by the SPar compiler is not
compatible with OpenCL 1.2 because it requires the function arguments to be annotated with
__global in order to receive pointers to global memory addresses, which is not valid C++.
To overcome this limitation, OpenCL 2 introduces the generic address space [Khr18, LI15],
which provides automatic detection of memory address spaces. Unfortunately, as discussed
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in Section 4.8, the NVIDIA OpenCL driver only offers support for OpenCL version 1.2 [Khr20a].
Since we only have access to devices of this manufacturer, we were not able to evaluate this
application using the OpenCL backend.

Figure 5.9 presents the execution time (5.9a) and throughput (5.9b) for the small
workload. The multi-core version presents an increasing performance up to nine parallel
workers of the replicated stage, with a top performance of 9.6 seconds (8.6× speedup with
respect to the sequential version) or 125 FPS. Nonetheless, the GPU version presents
a substantial performance improvement compared to both the multi-core and sequential
versions, even when using a single worker, which takes 3.7 seconds (22.1× speedup with
respect to the sequential version) to run and present a frame rate of 322 FPS. This difference
is expected since the application is specially suited for GPU parallelism. The top performance
is presented by the GPU version using four parallel workers, with an execution time of
2.98 seconds and a frame rate of 403 FPS. Table 5.5 shows that the only test that presented
a SEM above 100 ms was the sequential version, with an standard error of 118 ms.
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Figure 5.9: Performance results of the ray tracing application for the small workload.

Table 5.5: SEM in seconds of tests for Figure 5.9a.

Name Workers
1 2 3 4 5 6 7 8 9 10

SPar (CUDA) 0.011 0.017 0.012 0.010 0.009 0.017 0.015 0.014 0.009 0.011
SPar 0.022 0.016 0.005 0.006 0.004 0.092 0.084 0.023 0.003 0.004
Sequential 0.118

Figure 5.10 presents the execution time (5.10a) and throughput (5.10b) for the
medium workload. The behavior of the application in this workload is very similar to the small
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workload, with the multi-core version obtaining its highest performance using nine parallel
workers (execution time of 37 seconds, 8.6× speedup with respect to the sequential version,
and 32.8 FPS). The highest performance was achieved by the GPU version using three
parallel workers (execution time of 7.13 seconds, 44× speedup with respect to the sequential
version, and 168 FPS). The difference of the GPU version compared to the CPU versions is
bigger than the small workload, which is explained by the fact that the stream item presents
a heavier load and therefore is more suitable to GPU parallelism. The SEM of these tests
are presented in Table 5.6. Just like the small workload, the multi-core and GPU versions
presented SEM below 100 ms for all configurations of parallel workers and the sequential
version presented an standard error of 164 ms.
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Figure 5.10: Performance results of the ray tracing application for the medium workload.

Table 5.6: SEM in seconds of tests for Figure 5.10a.

Name Workers
1 2 3 4 5 6 7 8 9 10

SPar (CUDA) 0.009 0.008 0.020 0.014 0.012 0.018 0.012 0.012 0.009 0.013
SPar 0.065 0.036 0.022 0.013 0.016 0.055 0.016 0.011 0.026 0.008
Sequential 0.164

Figure 5.11 presents the execution time (5.11a) and throughput (5.11b) for the large
workload. Similar to the previous workloads, the highest performance for the multi-core
version was presented with nine workers (execution time of 80.3 seconds, 8.6× speedup with
respect to the sequential version, and 14.9 FPS) while the highest performance for the GPU
version was presented with three workers (execution time of 15.4 seconds, 44.8× speedup
with respect to the sequential version, and 77.9 FPS). It worth noting that the speedup of
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the GPU version with respect to the sequential version increased together with the increase
of the workload of each stream item while the CPU version presented a speedup of 8.6×
for all workloads. This highlights that offloading the computations to the GPU in stream
processing applications is specially interesting when the stream item requires a reasonable
amount of work. If the stream item does not present enough computation intensity to worth
offloading to the GPU, the Batch attribute can be used to increase the amount of work of
each stream item. The SEM of these tests are presented in Table 5.6. Just like the small and
medium workloads, the multi-core and GPU versions presented SEM below 100 ms for all
configurations of parallel workers while the sequential version presented an standard error of
146 ms.
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Figure 5.11: Performance results of the ray tracing application for the large workload.

Table 5.7: SEM in seconds of tests for Figure 5.11a.

Name Workers
1 2 3 4 5 6 7 8 9 10

SPar (CUDA) 0.038 0.023 0.030 0.022 0.029 0.028 0.022 0.025 0.030 0.017
SPar 0.078 0.254 0.032 0.027 0.025 0.018 0.008 0.019 0.013 0.015
Sequential 0.146

Note that the multi-core version is unable to present real-time frame rate on the
large workload (which generates images in Full HD resolution), peaking at 15 FPS, even
when considering the lowest acceptable real-time frame rate threshold of 25 FPS. On the
other hand, the GPU version is able to sustain real-time frame rate on this workloads, running
at 77.9 FPS, which is higher than the industry standard of real-time frame rate threshold of
60 FPS [HAM19].
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In summary, we observed that the ray tracing application exposes massive data
parallelism and obtain higher throughput numbers using the GPU to process the images.
We did not use the Batch attribute in this application because the stream item granularity is
already suitable for massive parallelism exploitation. In fact, even in the small workload the
image that represents the stream item is big enough to worth offloading the computation to
the accelerator device. We also observed that increasing the number of parallel multi-core
workers did not result in increased performance when using the GPU to process the images
because the GPU becomes the bottleneck of the application. All tests presented low SEM,
which indicates our results are reliable. We show that by using the novel Pure attribute
the programmer is able to exploit the computational power of the GPU by adding a single
annotation while obtaining speedups of 5.2× with respect to the best performance exploiting
multi-core CPU parallelism. The ray tracing application also demonstrates that SPar is able
to automatically generate GPU kernels from C++ sequential code. Also, it challenges SPar to
deal with a complex code structure where there are nested custom structures (such as the
Vec3f and Sphere structures) and recursive function calls (such as the trace function).

5.6.3 Lane Detection

Market analysts have been predicting a boom of self-driving vehicles in following
years [ABI18, Gar19]. This is a hot area of research and development with major investments
both from industry and academia [End17]. However, detecting the road lanes is one of the
first major challenges for developing a Driving Automation System (DAS) [HLLR14, SAE18].
While Light Detection and Ranging (LiDAR) sensors are used to detect other cars and objects
surrounding the DAS [KP08], detecting the lanes of the road depends on camera images and
sophisticated algorithms for edge detection. One of such algorithms is the combination of the
Canny edge detector [Can86] and the Hough transform [Bal81].

Listing 5.4 presents our version of the lane detection application using this combina-
tion [WTS04]. We adapted an OpenCV1 based implementation2 to express stream parallelism.
The streaming region is delimited by the ToStream annotation in line 2. The first stage that is
defined in lines 4–7. It reads the next image frame (which could come from a camera, but
in our application it comes from static images previously loaded from the persistent storage
to the computer memory), prepares the vertices of the region of interest (ROI) and sends
them to the next stage. The replicated Stage in line 8 represents the workers, which performs
the detection of the lane in the input image and sends the detected lines to the next Stage.
The final Stage applies the detected lanes as red lines in the image using OpenCV’s line

function and shows the output image on screen using OpenCV’s imshow function.

1https://opencv.org/
2https://github.com/Sujay-k/lane-detection-using-cpp
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1 bool lanedetection () {
2 [[ spar::ToStream ]]
3 while (true) {
4 cv::Mat imgContent = getNextImage ();
5 if (! imgContent) break;
6 std::vector <cv::Point*> vertices = getRoiVertices ();
7 std::vector <cv::Vec4i > lines;
8 [[ spar::Stage , spar::Input(imgContent , vertices , lines),

spar::Output(lines), spar::Replicate ()]] {
9 int rows = imgContent.rows;

10 int cols = imgContent.cols;
11 int imgsize = rows * cols;
12 unsigned char *imgData = imgContent.data;
13 // Gauss filter
14 int gaussFilterSize = 5*5;
15 double *gaussFilter = getGaussFilter(gaussFilterSize); // Builds the

normalized 5x5 matrix
16 unsigned char *blurredImg = new unsigned char[imgsize ];
17 // Fill the borders where we can't apply the filter
18 for (int i = 0; i < 2; i++) {
19 for (int j = 0; j < cols; j++) {
20 if (j < 2 || j >= cols -2) {
21 for (int ii = 0; ii < rows; ii++) { // Avoids an extra loop
22 blurredImg[ii*cols + j] = imgData[ii*cols + j];
23 }
24 }
25 blurredImg[i*cols + j] = imgData[i*cols + j];
26 blurredImg [(rows -1-i) * cols + j] = imgData [(rows -1-i)*cols + j];
27 }
28 }
29 [[spar::Pure , spar::Input(rows , cols , gaussFilter[gaussFilterSize],

imgData[imgsize], blurredImg[imgsize ]), spar::Output(blurredImg[imgsize ])]]
30 for (int i = 2; i < rows - 2; i++) {
31 for (int j = 2; j < cols - 2; j++) {
32 double sum = 0;
33 for (int x = 0; x < 5; x++) {
34 for (int y = 0; y < 5; y++) {
35 sum += gaussFilter[x*5+y] * (double)(imgData [(i + x - 2)*cols +

(j + y - 2)]);
36 }
37 }
38 blurredImg[i*cols+j] = sum;
39 }
40 }
41 // Sobel filter
42 unsigned char *sobelImg;
43 int sobelFilterSize = 3*3;
44 double *xFilterSobel = getSobelFilter(sobelFilterSize , 'x');
45 double *yFilterSobel = getSobelFilter(sobelFilterSize , 'y');
46 float *anglesMap = new float[imgsize ];
47 // Fill the borders where we can't apply the filter
48 for (int i = 0; i < 1; i++) {
49 for (int j = 0; j < cols; j++) {
50 if (j < 1 || j >= cols -1) {
51 for (int ii = 0; ii < rows; ii++) { // Avoids an extra loop
52 sobelImg[ii*cols + j] = 0;
53 }
54 }
55 sobelImg[i*cols + j] = 0;
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56 sobelImg [(rows -1-i)*cols + j] = 0;
57 anglesMap[i*cols + j] = 0;
58 anglesMap [(rows -1-i)*cols + j] = 0;
59 }
60 }
61 [[spar::Pure , spar::Input(rows , cols , xFilterSobel[sobelFilterSize],

yFilterSobel[sobelFilterSize], blurredImg[imgsize], anglesMap[imgsize],
sobelImg[imgsize ]), spar::Output(anglesMap[imgsize], sobelImg[imgsize ])]]

62 for (int i = 1; i < rows - 1; i++) {
63 for (int j = 1; j < cols - 1; j++) {
64 double sumx = 0;
65 double sumy = 0;
66 for (int x = 0; x < 3; x++) {
67 for (int y = 0; y < 3; y++) {
68 sumx += xFilterSobel[x*3 + y] * (double)(blurredImg [(i + x -

1)*cols + j + y - 1]);
69 sumy += yFilterSobel[x*3 + y] * (double)(blurredImg [(i + x -

1)*cols + j + y - 1]);
70 }
71 }
72 double sumxsq = sumx*sumx;
73 double sumysq = sumy*sumy;
74 double sq2 = sqrt(sumxsq + sumysq);
75 if(sq2 > 255) { // Unsigned Char Fix
76 sq2 =255;
77 }
78 sobelImg[i*cols+j] = sq2;
79 if(sumx == 0) { // Arctan Fix
80 anglesMap[i*cols + j] = 90;
81 } else {
82 anglesMap[i*cols + j] = atan(sumy/sumx);
83 }
84 }
85 }
86 // Non -maximum suppression
87 unsigned char *edgesImg = new unsigned char[imgsize ];
88 // Fill the borders where we can't apply the filter
89 for (int i = 0; i < 1; i++) {
90 for (int j = 0; j < cols; j++) {
91 if (j < 1 || j >= cols -1) {
92 for (int ii = 0; ii < rows; ii++) { // Avoids an extra loop
93 edgesImg[ii*cols + j] = 0;
94 }
95 }
96 edgesImg[i*cols + j] = 0;
97 edgesImg [(rows -1-i)*cols + j] = 0;
98 }
99 }

100 [[spar::Pure , spar::Input(rows , cols , anglesMap[imgsize],
sobelImg[imgsize], edgesImg[imgsize ]), spar::Output(edgesImg[imgsize ])]]

101 for (int i = 1; i < rows -1; i++) {
102 for (int j = 1; j < cols -1; j++) {
103 float Tangent = anglesMap[i*cols+j];
104 edgesImg[i*cols+j] = sobelImg[i*cols+j];
105 // Horizontal edge
106 if (( -22.5 < Tangent && Tangent <= 22.5) || (157.5 < Tangent &&

Tangent <= -157.5)) {
107 if (sobelImg[i*cols+j] < sobelImg[i*cols + j+1] ||

sobelImg[i*cols+j] < sobelImg[i*cols + j-1]) edgesImg[i*cols+j] = 0;



131

108 }
109 // Vertical edge
110 if (( -112.5 < Tangent && Tangent <= -67.5) || (67.5 < Tangent &&

Tangent <= 112.5)) {
111 if (sobelImg[i*cols+j] < sobelImg [(i+1)*cols + j] ||

sobelImg[i*cols+j] < sobelImg [(i-1)*cols + j]) edgesImg[i*cols+j] = 0;
112 }
113 // -45 Degree edge
114 if (( -67.5 < Tangent && Tangent <= -22.5) || (112.5 < Tangent &&

Tangent <= 157.5)) {
115 if (sobelImg[i*cols+j] < sobelImg [(i-1)*cols + j+1] ||

sobelImg[i*cols+j] < sobelImg [(i+1)*cols + j-1]) edgesImg[i*cols+j] = 0;
116 }
117 //45 Degree edge
118 if (( -157.5 < Tangent && Tangent <= -112.5) || (22.5 < Tangent &&

Tangent <= 67.5)) {
119 if (sobelImg[i*cols+j] < sobelImg [(i+1)*cols + j+1] ||

sobelImg[i*cols+j] < sobelImg [(i-1)*cols + j-1]) edgesImg[i*cols+j] = 0;
120 }
121 }
122 }
123 // Thresholds
124 for (int i = 1; i < rows -1; i++) {
125 for (int j = 1; j < cols -1; j++) {
126 if (edgesImg[i*cols + j] > 150) {
127 edgesImg[i*cols + j] = 255;
128 } else if(edgesImg[i*cols + j] < 50) {
129 edgesImg[i*cols + j] = 0;
130 } else {
131 bool anyHigh = false;
132 bool anyBetween = false;
133 for (int x = i-1; !anyHigh && x < i+2; x++) {
134 for (int y = j-1; !anyHigh && y < j+2; y++) {
135 if (x >= 0 && y >= 0 && x < imgrows && y < imgcols) {
136 if (edgesImgData[x*imgcols + y] > 150) {
137 edgesImgData[i*imgcols + j] = 255;
138 anyHigh = true;
139 } else if(edgesImgData[x*imgcols + y] >= 50) {
140 anyBetween = true;
141 }
142 }
143 }
144 }
145 if (! anyHigh && anyBetween) {
146 for (int x = i-2; !anyHigh && x < i+3; x++) {
147 for (int y = j-1; !anyHigh && y<j+3; y++) {
148 if (x >= 0 && y >= 0 && x < imgrows && y < imgcols) {
149 if (edgesImgData[x*imgcols + y] > 150) {
150 edgesImgData[i*imgcols + j] = 255;
151 anyHigh = true;
152 }
153 }
154 }
155 }
156 }
157 if(! anyHigh) edgesImg[i*cols + j] = 0;
158 }
159 }
160 }
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161 Mat edges = Mat(rows , cols , CV_8UC1 , edgesImg);
162 Mat roi = Mat::zeros(imgContent.size(),imgContent.type());
163 int numberOfpoints = vertices.size()
164 cv::fillPoly(roi , vertices.data(), &numberOfpoints , 1, Scalar (255), 8);
165 bitwise_and(edges , roi , roi);
166 cv::HoughLines(roi , lines , 1, CV_PI /360, 40, 120, 280);
167 cvtColor(imgContent , imgContent , COLOR_GRAY2BGR);
168 delete [] gaussFilter;
169 delete [] blurredImg;
170 delete [] sobelImg;
171 delete [] xFilterSobel;
172 delete [] yFilterSobel;
173 delete [] anglesMap;
174 delete [] edgesImg;
175 }
176 [[ spar::Stage , spar::Input(imgContent , lines)]] {
177 for (auto l=0; l<lines.size(); l++) {
178 Vec4i ln = lines[l];
179 cv::line(imgContent , Point(ln[0],ln[1]), Point(ln[2],ln[3]),

Scalar (0,0,255), 1, LINE_AA);
180 }
181 cv::imshow("Detected lanes", imgContent);
182 }
183 }
184 }

Listing 5.4: Lane detection annotated with SPar using the new Pure attribute.

In order to exploit the GPU parallelism with SPar we broke down the Canny algorithm
in its components3,4. Thus, instead of using the cv::Canny function we apply a set of filters to
the input image: (a) noise reduction, through the application of a Gaussian filter (lines 13–40);
(b) find the intensity gradient using the Sobel filter as edge detection operator (lines 41–
85). Based on this edge detection we also check the direction of each pixel (line 79);
(c) non-maximum suppression to thin the detected edges based on four discrete directions
(lines 105–120); and (d) double hysteresis thresholds to remove the weak edges and keep
only the strong edges (lines 123–160). In Listing 5.4, the lower and upper thresholds are fixed
as 50 and 150. With the exception of the last one (thresholds), which carries a dependency
over previous iterations, each of these steps is annotated with Pure in Listing 5.4. After
applying these filters, any edges outside the predefined ROI are discarded (lines 162–165)
and the Hough transform algorithm is applied to the detected edges (line 166) using the
OpenCV’s HoughLines function.

Figure 5.12 presents an output example of each step of this application. The first
image is the original input, which is read in grayscale using the cv::imread function with the
IMREAD_GRAYSCALE flag. The second image presents the blurredImg variable contents after
the application of the Gaussian blur to the black and white image (line 40 of Listing 5.4). The
third image presents the sobelImg variable contents after the application of the Sobel filter
(line 85). The fourth image presents the edgesImg variable contents in line 160, after the

3https://docs.opencv.org/trunk/da/d22/tutorial_py_canny.html
4https://github.com/hasanakg/Canny-Edge-Detector
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application of the non-maximum suppression and the thresholds. The fifth image presents
the roi variable in line 165, which contains only the edges inside the ROI. The sixth and last
image presents the output image (imgContent in line 181) after applying the Hough transform
algorithm [Bal81] and drawing red lines to delimit the detected lanes.

Figure 5.12: Lane detection steps output examples for frame 3 of KITTI 027 dataset.

In Listing 5.4 we chose to keep all four steps of Canny algorithm in the same Stage

and annotate the loops with Pure. However, if one of such steps is a bottleneck, the application
programmer could easily define a separate Stage for each step and use a different parallelism
degree for each one. This design would also allow for the Batch attribute to be used, since
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the Pure would be used as AUX attribute together with Stage. Therefore, the Batch could
be used in the stage before the heavier one to balance the workload of each Stage and
provide performance improvements. The high-level of abstraction provided by SPar allows the
programmer to quickly prototype version candidates by changing the attributes and testing
which version better fits their needs. It is up to the programmer to decide which loops should
be offloaded to GPU and how to parallelize the application’s execution flow.

There are plenty of datasets focused in tuning lane detection algorithms which aims
in the comparison of the accuracy of different lane detection solutions [SU19]. Since our
focus is solely in improving the algorithm performance through the exploitation of stream
and data parallelism, we did not calculate the application’s accuracy for the detected lanes.
However, we did use two of these datasets for testing our lane detection application: (a) the
four sequences (or clips) that compose the Caltech Lanes dataset [Aly08], namely cordova1,
cordova2, washington1, and washington2. This set contains 1,225 frames with 640x480
resolution, which amounts to 535 MiB of data in PNG format; (b) eight sequences of the KITTI
dataset [GLSU13] categorized in the “Road” category which were captured in September
26th 2011, numbered as: 015, 027, 028, 029, 032, 052, 070, and 101. This subset contains
3,169 frames with 1242x375 resolution, which amounts to 809 MiB of data in PNG format.

Figure 5.13 presents the execution time (5.13a) and throughput (5.13b) for the
Caltech dataset. SPar’s multi-core version presented the best performance numbers with
nine workers, processing the 1,225 frames in 3.19 seconds (7.9× speedup with respect to the
sequential version and 384 FPS). The SPar version with GSPARLIB’s CUDA backend did not
present any significant differences with more than five workers with execution times ranging
from 2.68 seconds (with six workers) to 2.82 seconds (with eight workers) and frame rates
between 457 and 436 FPS. With respect to the sequential version, these times represent
9.4× and 8.9× speedup, respectively. The SPar version with GSPARLIB’s OpenCL backend
presented stable performance using any number of workers between five and ten with an
average execution time of 2.69 seconds (±95 milliseconds), which represents 9.4× speedup
with respect to the sequential version and a frame rate of 458 FPS. The SEM of all tests are
shown in Table 5.8 and are below 100 ms.

Table 5.8: SEM in seconds of tests for Figure 5.13a.

Name Workers
1 2 3 4 5 6 7 8 9 10

SPar (CUDA) 0.014 0.047 0.029 0.042 0.023 0.011 0.071 0.043 0.124 0.015
SPar (OpenCL) 0.019 0.041 0.004 0.051 0.021 0.029 0.072 0.064 0.082 0.051
SPar 0.035 0.059 0.055 0.037 0.026 0.028 0.207 0.003 0.002 0.078
Sequential 0.002

Figure 5.14 presents the execution time (5.14a) and throughput (5.14b) for the KITTI
dataset. SPar’s multi-core version presented performance improvements up to nine parallel
workers, which processed the 3,169 frames in 12.4 seconds (7.9× speedup with respect to
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Figure 5.13: Performance results of lane detection for the Caltech dataset.

the sequential version and 255 FPS). The SPar version with GSPARLIB’s CUDA backend
presented the best performance using six workers, with an execution time of 9.12 seconds
(10.7× speedup with respect to the sequential version and 348 FPS). The SPar version with
GSPARLIB’s OpenCL backend presented the best performance using six workers, with an
execution time of 8.48 seconds (11.5× speedup with respect to the sequential version and
374 FPS). Interestingly, in this application the OpenCL version surpassed the CUDA version’s
performance. Table 5.9 presents the standard errors for these tests. All the GPU versions
as well as the sequential version and the multi-core versions with more than one worker
presented SEM below 100 ms. However, the multi-core version presented a standard error of
435 ms using a single worker thread.

Table 5.9: SEM in seconds of tests for Figure 5.14a.

Name Workers
1 2 3 4 5 6 7 8 9 10

SPar (CUDA) 0.085 0.122 0.178 0.119 0.089 0.081 0.077 0.082 0.086 0.054
SPar (OpenCL) 0.082 0.089 0.034 0.011 0.060 0.050 0.054 0.049 0.033 0.081
SPar 0.435 0.015 0.030 0.072 0.046 0.005 0.052 0.005 0.004 0.021
Sequential 0.011

The three pure regions of the lane detection application represent the image filters
applied in the input image. These regions are simpler than the pure region of the ray tracing
application, which was challenging for automatic GPU offloading because it uses complex
code inside the GPU kernel, as discussed in Section 5.6.2. However, the pure loops of the
lane detection application are interleaved with sequential blocks, which requires complex data
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Figure 5.14: Performance results of lane detection for the KITTI dataset.

management and separate GPU kernel invocations. Thus, it presents a different challenge to
the SPar compiler. By using our novel transformation rules presented in Section 5.4, SPar
compiler is able to correctly generate GPU parallel code and achieve sequential equivalence.

We were able to use both CUDA and OpenCL backends to exploit the GPU par-
allelism in this application. Overall, the performance of the OpenCL version was better
than the CUDA counterpart. This result surprised us, since it is the opposite of what we
found out when testing the Mandelbrot Streaming application in the same environment, as
discussed in Section 5.6.1. Nonetheless, we observed that both GPU versions presented
better performance than the multi-core version. Similarly to the ray tracing application, we also
observed that increasing the number of parallel multi-core workers did not result in increased
performance when using the GPU to process the images because the GPU becomes the
bottleneck of the application. Thanks to the SPar high-level API, the programmer is able to
exploit the GPU parallelism by adding a single annotation in each of the pure regions of the
code.

5.7 Performance Difference of Code Generation and Manual Implementation

In this section we discuss the performance difference between the code generated
by our implementation in the SPar compiler and handwritten code using FastFlow and
GSPARLIB for combined stream and data parallelism. The underlying tools and runtimes
as well as the approach for parallelizing the applications are the same. Therefore, we are
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measuring only the impact of handwritten parallel code versus the automatic parallel code
generation, using the total execution time of the applications as the performance metric.

5.7.1 Mandelbrot Streaming

Figure 5.15 presents a performance comparison between automatic code generation
(SPar) and handwritten code (FastFlow + GSPARLIB) of the Mandelbrot Streaming application
for the three workloads presented in Section 5.6.1, using CUDA (left column) and OpenCL
(right column) backends. The lines in the graphs of Figure 5.15 represent the execution time
(the lower, the better) of the handwritten code (as a blue dashed line with square markers)
and automatic code generation (as an orange dot-dashed line with round markers), both
related to the left Y axis with different number of parallel workers (X axis). As we mentioned
in Section 5.6, the number of parallel workers in the X axis does not necessarily represent
the number of active threads in the system. Rather than this, it represents the number of
parallel workers in the replicated stage, and there are usually other threads dedicated for
the sequential stream stages. Black error-bars are drawn in each marker. The gray bars in
Figure 5.15 are related to the right Y axis and present the percentage difference in execution
time of the SPar version compared to the handwritten code.

The performance of the SPar version is the same data presented in Section 5.6.1.
Overall, the SPar (automatic generated) version presented lower execution times than the
FastFlow+GSPARLIB (handwritten code). In fact, for the first row of graphs, representing
the small workload, the biggest performance difference is 16.7% lower execution time for
SPar version with six parallel workers for the CUDA backend (Figure 5.15a) and 18.2%
lower execution time for the SPar version with four parallel workers for the OpenCL backend
(Figure 5.15b). For the second row of graphs, which represents the medium workload, SPar
also presented lower execution times in the biggest difference: 8.5% lower execution time
with five parallel workers for the CUDA backend (Figure 5.15c) and 18.2% lower execution
time with two parallel workers for the OpenCL backend (Figure 5.15d). Finally, in the large
workload SPar presented 10.8% lower execution time with five parallel workers for the CUDA
backend (Figure 5.15e), as well as 21.2% lower execution time with two parallel workers for
the OpenCL backend (Figure 5.15f).

In the handwritten implementations, we followed the good programming practices
that advise the reusing of allocated objects. These objects represent the GSPARLIB Map

object parameters that are not changing for each stream item (such as the fractal size and
number of iterations). The parameters are set only once before cloning an instance of the
Map pattern object and are shared among all these cloned Map objects. Currently, we do not
implemented so that the SPar knows what Map object parameters are changed between the
different stream items. Thus all Map object parameters are set exclusively for each stream
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(a) Small workload with CUDA backend.

-25%

-20%

-15%

-10%

-5%

FF+GSParLib

5%

10%

15%

20%

25%

Di
ffe

re
nc

e 
(%

)

Mandelbrot with 1,000x1,000 fractal and 50k iterations (OpenCL)

1 2 3 4 5 6 7 8 9 10
Workers

0

2

4

6

8

10

12

14

Ex
ec

ut
io

n 
tim

e 
(s

)

FastFlow+GSParLib
SPar

(b) Small workload with OpenCL backend.
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(c) Medium workload with CUDA backend.
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(d) Medium workload with OpenCL backend.
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(e) Large workload with CUDA backend.
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(f) Large workload with OpenCL backend.

Figure 5.15: Performance difference of code generation in Mandelbrot Streaming.

item and released in the replicated stage after running the pattern. Reusing the allocated Map

parameter objects requires less programming effort, however, it is harder to implement in the
compiler for generating the code. Therefore, our generated codes are not reusing the Map

parameter objects. Unexpectedly, we found out that the best performance is achieved by not
reusing the parameters, which explains why the SPar version presents better performance
than the handwritten code. This is easily perceived in the OpenCL versions, on which
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the NVIDIA OpenCL driver only releases the GPU resources after all OpenCL objects are
released (as discussed in Section 4.8).

5.7.2 Ray Tracing

Figure 5.16 presents a performance comparison between automatic code generation
(SPar) and handwritten code (FastFlow + GSPARLIB) of the ray tracing application for the
three workloads presented in Section 5.6.2 using the GSPARLIB’s CUDA backend. We did
not implement this application in the OpenCL backend, as discussed in Section 5.6.2. The
performance of the SPar version is the same data presented in Section 5.6.1.
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(c) Large workload.

Figure 5.16: Performance difference of code generation of the ray tracing application with the
CUDA backend.

In this application, the automatic code generation (SPar) presented higher execution
times than the handwritten code for all workloads, with the only exception of the medium
workload with five parallel workers. The biggest differences for the small (Figure 5.16a),



140

medium (Figure 5.16b), and large (Figure 5.16c) workloads are respectively 4.5%, 2.4%, and
2.5% higher execution times of the SPar versions with respect to the handwritten code.

5.7.3 Lane Detection

Figure 5.17 presents a performance comparison between automatic code generation
(SPar) and handwritten code (FastFlow + GSPARLIB) of the lane detection application for the
two datasets (Caltech and KITTI) presented in Section 5.6.3, using the GSPARLIB’s CUDA
and OpenCL backends. The performance of the SPar version is the same data presented in
Section 5.6.3.
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(a) Caltech dataset with CUDA backend.
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(b) Caltech dataset with OpenCL backend.

-25%

-20%

-15%

-10%

-5%

FF+GSParLib

5%

10%

15%

20%

25%

Di
ffe

re
nc

e 
(%

)

KITTI dataset (3,169 frames of 1242x375) (CUDA)

1 2 3 4 5 6 7 8 9 10
Workers

8

10

12

14

16

18

20

22

24

Ex
ec

ut
io

n 
tim

e 
(s

)

FastFlow+GSParLib
SPar

(c) KITTI dataset with CUDA backend.
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(d) KITTI dataset with OpenCL backend.

Figure 5.17: Performance difference of code generation in lane detection.

For the Caltech dataset (first row of graphs in Figure 5.17) the biggest differences
between the automatic code generation and handwritten code are using two parallel workers:
18.5% higher execution time for the CUDA backend and 20.3% higher execution time for the
OpenCL backend. For the KITTI dataset (second row of graphs in Figure 5.17), the biggest
differences between the automatic code generation and handwritten code are 17.6% higher
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execution time for the CUDA backend with three parallel workers and 13.8% higher execution
time for the OpenCL backend with two parallel workers.

We noticed some performance differences between the automatic code generation
and handwritten code for the lane detection application, mainly using a lower number of
workers. However, it requires more investigations to understand these differences.

5.8 SPar Programmability Considerations

In this section we briefly discuss the programmability benefits of using SPar. Fig-
ure 5.18 shows how the vector sums sample application discussed in Section 4.2 can be
annotated using the SPar language. Using our novel attributes and transformation rules, the
SPar compiler is now able to automatically perform the transformations shown in Figure 4.3
(using the stream parallelism transformation rules) as well as the transformations shown in
Figure 4.4 (using the data parallelism transformation rules). The programmer adding only
three annotations in the sequential code can in the most cases take advantage of stream
(multi-core CPU) and data parallelism (many-core GPU) on stream processing applications.

float	scalar	=	5;
int	main(int	argc,	char	*	argv[])	{
 	int	vecsize	=	20;

 	while	(true)	{
 	 	float	*vecA	=	get_next_input_vecA();
 	 	float	*vecB	=	get_next_input_vecB();
 	 	float	*res	=	new	float[vecsize];

 	 	for	(int	x	=	0;	x	<	vecsize;	x++)	{
 	 	 	 	res[x]	=	scalar*vecA[x]+vecB[x];
 	 	}

 	 	stateful_op(res);
 	}

}

float	scalar	=	5;
int	main(int	argc,	char	*	argv[])	{
 	int	vecsize	=	20;

  [[spar::ToStream	,	spar::Input(vecsize,	scalar)]]
 	while	(true)	{
 	 	float	*vecA	=	get_next_input_vecA();
 	 	float	*vecB	=	get_next_input_vecB();
 	 	float	*res	=	new	float[vecsize];

 	 	[[spar::Stage,	spar::Pure,	spar::Replicate(N),
 	 	 	 	spar::Input(vecsize,	scalar, vecA[vecsize],
 	 	 	  vecB[vecsize]),	spar::Output(res[vecsize])]]
 	 	for	(int	x	=	0;	x	<	vecsize;	x++)	{
 	 	 	 	res[x]	=	scalar*vecA[x]+vecB[x];
 	 	}
 	 	[[spar::Stage,	spar::Input(res[vecsize])]]	{
 	 	 	stateful_op(res);
 	 	}
 	}
}

E

C

W

Figure 5.18: Applying SPar in sequential code.

We briefly analyze the physical Source Lines of Code (SLOC) added to the sequen-
tial version of some applications as a rough measure of the programmer’s productivity using
SPar compared to handwritten code of the same applications using FastFlow and GSPARLIB.
We already discussed the programmability aspects of GSPARLIB in Section 4.6. Thus, the
SLOC would be bigger if we were to use another GPU programming API instead of GSPAR-
LIB together with FastFlow. Table 5.10 present a summary of the physical SLOC of some
applications. The metric was extracted using David A. Wheeler’s ‘SLOCCount’ [Whe16].
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Table 5.10: Physical SLOC comparison.

Application Sequential FastFlow+GSPARLIB SPar
Vectors sumsa 13 59 (+354%) 17 (+31%)
Mandelbrot Streaming 48 131 (+173%) 56 (+17%)
Ray tracing 455 626 (+38%) 463 (+2%)
Lane detection 300 452 (+51%) 312 (+4%)
a This is the sample application shown in Figures 4.3, 4.4, and 5.18.

The sequential and SPar versions of the Vectors sums application is shown in the
Figure 5.18. For this application, the SPar version adds only four extra lines: one ToStream

annotation, two Stage annotations, and one closing curly bracket to delimit the code region of
the last Stage (which represents the Farm’s Collector). The FastFlow+GSPARLIB version is
shown in the right side of Figure 4.4, which presents 3.5× more SLOC than the sequential
version.

The Mandelbrot Streaming application was discussed in Section 5.6.1. The stream-
ing region of the SPar version of this application is presented in Listing 5.1. It is only eight
lines longer than the sequential version, which are for adding the SPar annotations and
managing the workers variable. The FastFlow+GSPARLIB version includes the definition
of the three Farm stages (Emitter, Worker, and Collector) and the definition of GSPARLIB

Map pattern. It requires significant code refactoring to allow the exploitation of parallelism in
multi-core CPU and many-core GPU architectures.

The ray tracing application was discussed in Section 5.6.2. The streaming region of
the SPar version of this application is presented in Listing 5.3. With respect to the sequential
version, it only adds four annotations and a few lines of code to manage the number of
parallel workers. The FastFlow+GSPARLIB version requires 38% more SLOC with respect
to the sequential version, however, most of the code had to be refactored since it is called
inside the GPU kernel (referenced by the trace function). Therefore, it must be passed to the
GSPARLIB pattern object using the addExtraKernelCode method.

The lane detection application was discussed in Section 5.6.3. The streaming region
of the SPar version for this application is presented in Listing 5.4. Only 12 lines of code were
added to exploit multi-core CPU and many-core GPU parallelism with SPar, using annotations
to delimit the stream region, the two stages, and the three pure loops of computation. The
FastFlow+GSPARLIB version of this application requires 51% more SLOC to exploit this
heterogeneous parallelism, since it is necessary to create and call three separate instances
of the GSPARLIB Map pattern.
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5.9 Final Remarks

In this chapter we presented our extension of the SPar language to express data
parallelism in stream processing applications. We extended the language expressiveness with
novel high-level attributes and presented novel transformation rules targeting the combination
of stream and data parallel patterns. These rules were implemented in the SPar compiler to
automatic generate parallel code with FastFlow and GSPARLIB runtimes. In our tests, were
able to achieve good performance improvements compared to the SPar multi-core backend,
concerning throughput and latency. We also demonstrated that the automatic code generation
did not incur in performance penalty with respect to the handwritten implementation using the
same underlying libraries in three applications, namely Mandelbrot Streaming, ray tracing,
and lane detection. The experiments were executed in a single machine equipped with a
multi-core GPU and many-core GPU. It is a common computer architecture for dedicated
servers and workstations.

We were able to successfully exploit stream and data parallelism by simply adding
a few lines of code annotations delimiting the stream and pure code regions. In this sense,
SPar is unique in the literature by allowing efficient parallelism exploitation without requiring
the programmer to know architecture details. Our tests show that the programmer is able
to efficiently exploit heterogeneous parallelism composed of multi-core CPU and many-
core GPU using the high-level SPar abstractions. For the GPU support, SPar leverages
GSPARLIB presented in Chapter 4, which offers a unified and pattern-based interface as well
as a drive-agnostic runtime capable of using both CUDA and OpenCL.

Moreover, Figure 5.195 illustrates the current SPar runtimes and supported patterns.
SPar generates the Pipeline and Farm stream parallel patterns using FastFlow and TBB
in multi-core environments and DSParLib [Pie20] in cluster architectures. Our work adds
support to Map and Reduce data parallel patterns to the SPar ecosystem using the GSPARLIB

runtime. GSPARLIB focuses in heterogeneous environments composed of a multi-core CPU
and one or more GPUs as co-processors. It is worth noting that we implemented data
parallelism support on top of the current stream parallelism implementation.

In addition to the future works highlighted in Figure 5.19, that is implement sup-
port for other parallel patterns, the results obtained in this work offer many other research
opportunities. For example, future works may improve the Batch attribute by batching the
stream items before sending them to the batched stage for improving latency times. Another
future work is the support for batching stream items in the multi-core (FastFlow/TBB) and
cluster (DSParLib) runtimes to support the use of the Batch attribute with and without the
Pure attribute. SPar compiler does not generate code for multi-GPU in a single computer,
although the GSPARLIB runtime supports it. Therefore, it can be implemented a scheduler

5Icons made by phatplus from www.flaticon.com

www.flaticon.com
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Figure 5.19: Overview of SPar runtimes and supported parallel patterns.

capable of automatically distributing the stream items to multiple GPUs. We also left as
future work the support of GPU parallelism in cluster architectures, i.e. generating code using
DSParLib [Pie20] and GSPARLIB runtimes together.

In the current SPar version, the releasing of GPU resources is performed by the
worker thread right after finishing the kernel call and the memory copies. Nonetheless, in
one of our tests in the Mandelbrot Streaming application, we changed the code generation to
release the GPU resources in the last Stage, which was the Farm’s Collector, and found out
that there was a significant (∼50%) performance penalty in the throughput when using a low
number of workers (up to seven), but also an increase in the throughput when using more
than eight workers. This suggests an interesting alternative to better balance the workload
between workers and collector threads and may be explored by future works.
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6. CONCLUSION

In this work we addressed the problem of exploiting parallelism on heterogeneous
computer architectures composed of multi-core CPUs and many-core GPUs when program-
ming stream processing applications. The rise of heterogeneous computer architectures
posed challenges to application developers. The current de facto standard APIs (CUDA and
OpenCL) are still too low-level, requiring to learn hardware architecture details in order to
efficiently exploit GPU parallelism. The lack of high-level abstractions for these computer
architectures regarding stream processing applications highlight the importance of this work,
specially given that both architecture and application are increasingly pervasive in the current
technology landscape. As the domain-specific language extensions proposed and imple-
mented in SPar provided high-level abstractions for exploiting multi-core CPU and many-core
GPU parallelism in the stream processing applications, including the developing of GSPARLIB

used as the runtime library for the generated code, we were able to answer the question that
drove this research work.

Based on the literature, we conclude that GSPARLIB is a novel structured parallel
programming API for GPU programming, distinguished by its unified API and driver-agnostic
runtime that allows programmers to transparently switch between the de facto standards
CUDA and OpenCL drivers. GSPARLIB provides its layered API without requiring a custom
compiler, and offers essential features for GPU parallelism when parallel programming stream
processing applications like thread-safety and batching. We initially provide Map and Reduce
parallel patterns in its high-level API. However, it also allows the programmer customize
computational patterns by using the lower-level API, which serves as a thin and unified C++
object-oriented abstraction layer over CUDA and OpenCL drivers. Our experiments shows
that the abstractions provided by GSPARLIB does not present high performance penalties
when compared to related APIs from industry and academia, including state-of-the-art tools
and lower-level APIs.

Moreover, important and novel scientific contributions for high-level parallel program-
ming abstractions were possible due to the: 1) extension of the SPar language expressiveness,
adding three novel C++11 attributes, namely Pure, Reduce, and Batch; 2) creation of new
definitions and parallel pattern-based transformation rules, combining stream and data paral-
lel patterns; 3) implementation of these transformation rules in the SPar source-to-source
compiler, generating parallel code that combines FastFlow and GSPARLIB runtimes; and
4) performance and programmability evaluation with real-world stream processing applica-
tions, highlighting that the abstractions are lightweight compared to handwritten codes while
it leverages simple programming, few code refactoring, and high-level application domain
concepts. To the best of our knowledge, thanks to these efforts, SPar is now unique in the
literature by entirely abstracting architecture details for exploiting parallelism on multi-core,
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cluster, and heterogeneous computer architectures when programming stream processing
applications.

The results obtained in this work may be improved in different ways. We describe
the main research opportunities in the following items:

• Other heterogeneous computer architectures in GSPARLIB and SPar. GSPAR-
LIB’s Driver API currently supports only GPU architectures using CUDA and OpenCL
drivers. Nonetheless, this API may be extended to support different accelerator archi-
tectures, such as FPGA and Intel Many Integrated Core (MIC) architectures. Since the
OpenCL code for GPU cannot be used to exploit FPGA architectures, it involves imple-
menting OpenCL for FPGA. The SPar language and compiler may also be extended to
provide support for different heterogeneous computer architectures.

• Optimizations in GSPARLIB. We focused in developing GSPARLIB’s layered unified
API and driver-agnostic runtime, thus little effort was dedicated into developing code
optimizations. Future works may implement optimizations regarding data locality con-
sidering the GPU memory architecture, support for unified memory, and reduce branch
divergence.

• Other parallel patterns in GSPARLIB. The GSPARLIB’s Pattern API may be extended
to support other parallel patterns focused in data parallelism, such as Stencil, Scan,
Gather, and Scatter. When implementing these patterns, it is also important support
streaming-related features such as thread-safety and batching.

• Definitions and transformation rules for other parallel patterns. Currently SPar
generates the Pipeline and Farm parallel patterns for stream parallelism as well as
Map and Reduce parallel patterns for data parallelism. With the creation of new
definitions and transformation rules, it may be possible to generate other parallel
patterns without changing SPar’s syntax. However, it may be necessary to extend the
SPar expressiveness if the current attributes does not convey enough information for
the code generation.

• Service Level Objectives (SLO) in heterogeneous computer architectures. Our
work provide tools for extending the work of autonomic computing and high-level SLO
in SPar [VGS+18, GSV+18, GVS+19]. Future works may implement adaptive strategies
using the batch size [SRG+20] or configuring the size of the GPU kernel thread grid.

• Hybrid parallelism support in SPar. In its current form, the SPar compiler always
offload pure code regions to the GPU accelerator. Future works may explore algorithms
to automatically chose the best parallel device for each code region by analyzing code
characteristics and querying the device properties. The first step towards this goal
of hybrid parallelism is to implement the support for multi-GPU using an algorithm for
automatic scheduling of GPU kernels among the available devices.
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6.1 List of published papers

• Latency-aware adaptive micro-batching techniques for streamed data compres-
sion on graphics processing units. Concurrency and Computation: Practice and
Experience (CCPE), 2020 [SRG+20].
In this paper we tackle the problem of adaptive micro-batching for GPU parallelism
in stream processing applications with focus in high-level latency objectives [VGS+18,
GSV+18]. However, the code generation of adaptive micro-batching size for the Batch

attribute is left as future work due to its complexity.

• Stream Processing on Multi-cores with GPUs: Parallel Programming Models’
Challenges. IEEE International Parallel and Distributed Processing Symposium Work-
shops (IPDPSW), Workshop on Parallel Programming Models (MPP), 2019 [RSG+19].
In this work we showed the importance of using multiple CPU threads for each GPU
device and present an overview of common programming challenges faced by het-
erogeneous parallel programmers to combine multi-core CPU and many-core GPU
parallelism. Many lessons-learn were take into account for the design choices in this
master thesis.

• High-Level Stream Parallelism Abstractions with SPar Targeting GPUs. Interna-
tional Conference on Parallel Computing (ParCo), 2019 [RGDF19].
This paper continues our previous work of extending the SPar language. Here we define
the requirements of the Pure attribute and present a subset of the novel definitions and
pattern-based transformation rules targeting the Map parallel pattern.

• Proposta de Suporte ao Paralelismo de GPU na SPar. 19th Escola Regional de Alto
Desempenho da Região Sul (ERAD/RS), 2019 [RGF19].
This work present our ongoing work during the design phase of the novel Pure and
Batch attributes for the SPar language. It is focused in the language expressiveness
and does not present any implementation or performance tests.

• Paralelização do Dedup para Sistemas Multi-core com GPUs. 19th Escola Re-
gional de Alto Desempenho da Região Sul (ERAD/RS), 2019 [SRG19].
In this work we implemented the Dedup application with the LZSS compression algo-
rithm to exploit an heterogeneous computer architecture comprised of multi-core CPUs
and many-core GPUs using SPar, CUDA, and OpenCL. We were not able to properly
exploit the GPU parallelism because the LZSS segmentation algorithm generates very
small blocks, which provides us indications for the need of the Batch attribute.

• Mandelbrot Streaming para Sistemas Multi-core com GPUs. 19th Escola Regional
de Alto Desempenho da Região Sul (ERAD/RS), 2019 [SSB+19].
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In this work we implemented the Mandelbrot Streaming application using SPar, FastFlow,
and TBB for multi-core parallelism, and CUDA for GPU parallelism. This and the
[SRG19] work were important for us to understand the challenges of combining multi-
core and GPU parallelism.
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