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Abstract 

INTRODUCTION: The identification of COVID-19 pneumonia using chest radiography is challenging. 
OBJECTIVES: We investigate classification models to differentiate COVID-19-based and typical pneumonia in chest 
radiography. 
METHODS: We use 136 segmented chest X-rays to train and evaluate the performance of support vector machine (SVM), 
random forest (RF), AdaBoost (AB), and logistic regression (LR) classification methods. We use the PyRadiomics to extract 
statistical texture-based features in the right, left, and in six lung zones. We use a stratified k-folds (k=5) cross-validation 
within the training dataset, selecting the most relevant features with validation accuracy and relative feature importance. 
RESULTS: The AB model seems to be the best discriminant method, using six lung zones (AUC = 0.98). 
CONCLUSION: Our study shows a predominance of radiomic texture-based features related to COVID-19 pneumonia 
within the right lung, with a tendency within the upper lung zone. 
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1. Introduction

The outbreak of COVID-19 pneumonia, caused by the 
coronavirus strain SARS-Cov-2 (severe acute respiratory 
syndrome coronavirus 2), has caused global turmoil and was 
declared a pandemic by the World Health Organization on 
March 13, 2020. Until February 19, more than 109 million 
cases worldwide were confirmed. More than 9.9 million cases 
located in Brazil.  

The incubation period of COVID-19 is 5.2 days and can 
last up to 14 days [1]. Clinical features include respiratory 
symptoms, fever, cough, dyspnea, and viral pneumonia. 
COVID-19 shows to be more transmissible when people 
display the symptoms [2]. However, there are several cases in 
which subjects are asymptomatic. Radiological chest 
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examinations, as chest X-ray or computed tomography (CT) 
already play a fundamental role in monitoring COVID-19 [3]. 

Observation of radiological lung patterns can reveal 
different types of pulmonary diseases. These patterns can be 
described based on the disease and the affected tissue region. 
Knowledge of disease-related patterns is very important for 
differentiation and follow-up of pulmonary diseases. Studies 
have shown that COVID-19, for instance, induces abnormal 
pneumonia that leads to a bilateral, peripheral, ground-glass 
opaque pattern [4]. Apart from typical visual analysis, lung 
diseases patterns can be studied through feature analysis, 
using a technique called radiomics. 

Computer-based texture analysis is used to numerically 
quantify specific features of an image. The quantitative 
analysis of morphological, intensity, and texture features are 
helpful on diagnosis and prognosis. Texture analysis can be 
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further categorized into structural, model-based, 
transformational, and statistics-based [5]. 

Most recent COVID-19 radiological studies are focused on 
CT scans, which has better sensitivity than X-ray. However, 
CT is more expensive and scarcer when compared to 
conventional radiography, requiring a more complex process 
of decontamination after COVID-19 patient scanning. The 
American College of Radiology (ACR) recommends CT 
exams to be used sparingly and reserved for hospitalized 
COVID-19 symptomatic patients with specific clinical 
indications. Portable chest X-ray is suggested as a viable 
option to minimize the risk of cross-infection and avoid 
overload and disruption of radiological departments [6]. 

Several models of classification and prediction of COVID-
19-based pneumonia using binary or multilabel classification
techniques have been developed to aid the diagnosis using CT
and X-ray images [7]–[13]. Researchers have been trying to
identify patterns and features related to this new disease.

Our goal in this article is to investigate classification 
models to differentiate chest X-ray images of COVID-19-
based pneumonia and typical pneumonia, and to provide 
grounds for understanding the distinctive radiographic 
features of COVID-19. Our study analyzes texture-features in 
two different approaches of lung segmentation showing a 
predominance of radiomic feature selection in the right lung, 
with a tendency to the upper lung zone.  

2. Materials and Methods

2.1. Image Dataset 

Figure 1 shows a sample of the images we use in this study. 
A total of 136 anteroposterior (AP) and posteroanterior (PA) 
chest X-rays from two public databases are used to train and 
evaluate the classification methods we investigate in here. We 
use 68 COVID-19 images provided by the COVID-19 Image 
Data Collection [14], which comprises images and 
information of multiple centers, and some subjects with 
longitudinal studies. We choose to use only the images of the 
first time point of each subject. Images have various matrix 
sizes, ranging between 156 × 156 pixels and 3,520 × 4,280 
pixels, stored in JPEG and PNG.  

The CheXpert dataset [15] was used to get additional 68 
chest X-ray pneumonia images. This dataset is labeled as 
certain, uncertain, and no findings for pneumonia. Here we 
only use images labeled as certain for pneumonia, randomly 
selected from the data source. Image sizes vary from 
320 × 320 pixels to 320 × 394 pixels, all in JPEG.  

The entire dataset is split into training (80%, 𝑁𝑁 = 108, 
with 54 COVID-19 images) and test sets (20%, 𝑁𝑁 = 28, with 
14 COVID-19 images). The testing set is never seen by the 
model until the very last metric evaluation.  

Figure 1. Example of chest X-rays images of COVID-19 based pneumonia and typical pneumonia. 

2.2. Lung Segmentation 

The chest X-ray images were rescaled to 256×256 pixels 
due to computational constraints, and we apply a histogram 
equalization procedure over them. We segment lungs using 
an open source pre-trained U-Net-inspired segmentation 
model to generate lung masks. Two different lung 

segmentation methods are used: left and right lung (L-R); and 
further division of upper, middle, and bottom zones (see 
Figure 2). All lung segmentations were visually inspected.  

Lung masks are stretched back to 512×512 pixels. To 
remove background clusters and fill holes of the lung mask, 
we apply an opening morphological operator with a structural 
element and 8-connected neighborhood. We remove clusters 
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with less than 5 pixels. We make a division of connected areas 
and exclude areas with less than 75 pixels. 

The split between left and right lungs uses the centroid of 
two areas; if the centroid is located within the first half of the 
matrix size (from left to right), we considered it as part of the 
right lung (observe the radiological image in chest X-ray is 
mirrored). The height of each lung is divided into upper, 
middle, and bottom zones, determined by the difference in the 
extremity points, divided in thirds.  

Lung masks are applied in the respective chest X-ray and 
divided in left and right side (L-R), and then divided into 
superior, middle, and bottom zones (lung zones).  This 
separation into lungs zones is similar to the proposal in [16] 
regarding CT lung images.  Both lung approaches are used 
independently for all images in our experiments.  

The model we use for segmentation is trained in two 
different chest X-ray databases, JSTR and Montgomery 
County. The images of those dataset are from patients with 
tuberculosis, and hence they are not specific for COVID-19-
based or typical pneumonia lung segmentation.  

2.3. Radiomic Feature Extraction and 
Selection 

We make use of the PyRadiomics library for the extraction 
of statistical texture-based features of first and second order 
for each lung mask. The number of radiomic features is 
divided into five classes [17] and are described in Table 1. 

Figure 2. Lung segmentation scheme. 

Table 1. Description of texture-based features 
Type of features # of features Description 

First Order 18 Based on the first-order histogram and related to the pixel intensity 
distribution. 

Gray-level co-occurrence 
matrix or GLCM 24 

Gives information about the gray level spatial distribution, considering the 
relationship between pixel pairs and the frequency of each intensity within 
an 8-connected neighborhood. 

Gray-level Run Length Matrix 
or GLRLM 16 

Is like GLCM, it is defined as the number of contiguous pixels with the same 
gray level considering a 4-connected neighborhood, indicating the 
homogeneity of pixel intensity. 

Gray-level Size Zone Matrix or 
GLSZM 16 

Is used for texture characterization, it provides statistical representation by 
the estimation of a bivariate conditional probability density function of the 
image distribution values. It is invariant to image rotation. 

Gray-level Dependence Matrix 
or GLDM 14 

Quantifies the dependence of image gray level by calculating the 
connectivity at a certain distance when their difference on pixel intensity is 
< 1. 

For feature selection, we use the Random Forest (RF) 
method, which is a tree-based ensemble approach that has 
a high performance in multidimensional data due to the use 
of an internal feature-selection mechanism based on feature 
importance. It uses Gini-based values that allows one to 
rank the features during model training. In a nutshell, Gini 
is an impurity measure that indicates class heterogeneity in 
each node of the tree. For performing feature selection, we 
use a stratified K-folds (K=5) cross-validation procedure 
within the training set for generating validation data. Each 
feature was independently scaled between [0,1], and an RF 

model is trained in 4 of the folds and validated in the 5th 
fold. We measure validation accuracy and the relative 
feature importance. We calculate the mean of the relative 
feature importance based on the five validation folds. For 
providing statistical validity, we execute this procedure for 
100 times. Relative feature importance is then averaged, 
and we calculate the confidence intervals. The feature 
selection pipeline is shown in Figure 3. In this study, we 
use 136 images, and we choose to keep one feature for each 
10 images, therefore selecting the 13 most relevant. 
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Figure 3. Feature selection pipeline. 

2.4. Machine Learning Models 

We train four classification models over the selected 
radiomic features. The classification methods we use in this 
paper are Support Vector Machines (SVMs, more 
specifically its SVC version [18]), Random Forest (RF) 
[19], Adaptative Boosting or AdaBoost (AB) [20], and 
Logistic regression (LR) [21]. Each method is briefly 
presented next: 

• Logistic regression (LR) is a linear model for
classification based on the logistic (sigmoid) function
to predict binary or multiclass dependent variables
based on the maximum-likelihood ratio [22]. The LR
function traces a hyperplane where data is fitted, and
when interaction terms are included, the model
provides more flexible decision boundaries.
Regularization is applied to adjust the decision
boundaries to avoid overfitting [23], usually in the
form of  𝐿𝐿1 or 𝐿𝐿2 norms, where 𝐿𝐿1-norm results in
sparser solutions and 𝐿𝐿2-norm in more restricted
boundaries.

• Support Vector Machine (SVM) is a linear
classification algorithm that seeks for the best
discriminant vector that segregates the data classes. It
traces a vector that separates training data into two
classes and adjusts the vector in relation to the nearest
data point of each class, determining a margin. One of
the benefits of using this strategy is due to the
mathematical formulation of the method that works
with support vectors, allowing for better

generalization even for very high-dimensional and 
small datasets [24-25].  

• Random Forest (RF) is a tree-based ensemble learning
algorithm that induces a pre-specified number of
decision trees to solve a classification problem. Each
tree is built using a subsample of the training data, and
each node searches for the best feature in a subset of
the original features. The assumption here is that by
combining the results of several weak classifiers (each
individual tree) via majority voting, one can achieve a
strong classifier with enhanced generalization ability
[26].

• Adaptative Boosting or AdaBoost (AB) is also an
ensemble method for boosting a model, here also a
decision tree. It fits a classifier on the original dataset
and give weights for each sample. Copies of the
classifier are generated based on the weight of the
samples, and those samples that are more often
incorrectly classified are used in the subsequent
classifiers, making the method to focus on the difficult
cases. In the set of trained classifiers, the final
classification is given by majority voting  [27-28].

We tune the hyperparameter of all models via grid 
search with cross-validation, looking for the set of 
hyperparameters that provides best sensitivity. We tune the 
following hyperparameters: kernel, polynomial degree, and 
regularization term 𝐶𝐶 for SVC; number of estimators, 
criterion and maximum depth for RF; number of estimators 
and learning rate for AB; and penalty, regularization term 
𝐶𝐶 and maximum iteration for LR. All models are 
implemented using the scikit-learn library on Python 
version 3.6.5 [29].  

For model evaluation, we make use of the sensitivity 
(Eq. 1), accuracy (Eq. 2), and the area under the curve 
(AUC) of the receiver operating characteristic (ROC). The 
final model is selected based in the best sensitivity 
achieved in the validation dataset (test folds in this inner 
cross-validation procedure). Each metric was calculated as 
follow [30]: 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 =  𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹

   (1) 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑆𝑆 =  𝑇𝑇𝑇𝑇+𝑇𝑇𝐹𝐹
𝑇𝑇𝑇𝑇+𝑇𝑇𝐹𝐹+𝐹𝐹𝑇𝑇+ 𝐹𝐹𝐹𝐹

    (2) 

where: TP = true positive, TN = true negative, FP = false 
positive and FN = false negative. 

3. Results

3.1. Selected Features 

For each approach (lung zones and L-R), we extract 88 
features. The relative importance of each feature and each 
approach is measured with 100 runs of the RF model with 
stratified 𝐾𝐾-Folds (𝐾𝐾 = 5). 

EAI Endorsed Transactions on 
Bioengineering and Bioinformatics 

02 2021 - 03 2021 | Volume 1 | Issue 2 | e2



 Texture-based Feature Extraction for COVID-19 Pneumonia Classification using Chest Radiography 

5 

The relative importance of each radiomic feature in each 
approach is shown in Figure 4.  

The thirteen most relevant radiomic features for each 
approach are detailed in Appendix A. 

Figure 4. Feature importance for Lung Zones (top) 
and L-R (bottom). 

3.2. Classification 

After the selection of the best hyper-parameters, all models 
are trained in the entire training dataset and their 
performance is evaluated in the test dataset. Table 2 shows 
the values of AUC, sensitivity and accuracy for each 
model. Based on the sensitivity values, the best model was 
AdaBoost (AB). The parameters used in this model was the 
learning rate equal to 1 and 50 estimators.  

Table 2. Test-set results. 
Approach Model Sensitivity Accuracy AUC 

Lu
ng

 
Zo

ne
s LR 0.8947 0.6786 0.75 

SVC 0.8947 0.8571 0.92 
RF 0.8947 0.8571 0.95 
AB 0.9471 0.9286 0.98 

L-
R

LR 0.8421 0.8571 0.94 
SVC 0.8947 0.8571 0.91 
RF 0.8421 0.8571 0.91 
AB 0.8421 0.8214 0.92 

Figure 5 shows the receiver operating characteristic 
(ROC) graph for each classification model, using the lung 
zones, and the left-right (L-R) approaches. 

Figure 5. ROC curves for lung zones (top) and L-R 
(bottom) approaches. 

Figure 6 shows the time that was needed to run each step 
of the proposed pipeline to make a prediction of a new 
case/subject using the AB model.  

Figure 6. Time to run the pipeline with AdaBoost 
model for each image. 
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4. Discussion

A wide variety of computer-aided methods are being 
applied to aid the diagnosis and prognosis of COVID-19 
[7], [8], [32], [33]. Clinical evaluation of symptomatic 
COVID-19 patients exhibits pulmonary problems and 
atypical pneumonia. Deep learning (DL) “black box” 
techniques are the most common strategy nowadays. These 
techniques are not capable, originally, of explaining their 
predictions in a way that humans can understand [34]. In 
our approach, radiomics and machine learning models are 
used to differentiate pneumonia patterns in chest X ray 
images. Even though the models we use are not completely 
explainable, all features involved in the classification 
process have a definition and some can be associated with 
known radiological patterns. In this way, it is possible to 
know what aspects of the image in our models are relevant 
for the proposed classification.  

Our analysis aimed to find a group of meaningful 
radiomic features and the best classification model to 
differentiate between COVID-19-based pneumonia and 
typical pneumonia. Two lung segmentation approaches are 
performed to assess the influence in pneumonia types 
differentiation: left and right lung sides (L-R), and in zones 
in each lung (upper, lower, bottom). The segmentation and 
use of masks in specific regions avoid the features 
unrelated to the lung disease pattern, such as lung borders, 
presence of heart, muscles and bones, restricting the 
evaluation in the lung tissues.  

The use of the lung zones approach, separating the 
upper, middle, and bottom regions, achieves better 
performance than L-R. This might be associated with the 
use of smaller regions for the feature analysis step, making 
it more representative of small structures, suppressed in L-
R group due to the prevalence of bigger homogeneous 
regions. Our best result reached 94% of sensitivity in 
differentiating COVID-19-based pneumonia from typical 
pneumonia using the AdaBoost model with the separated 
lung zones.  

GLSZM class of radiomic features are selected in 5 out 
of 6 lung zones, comprising 11 out of 13 significant 
selected features. These features are based on a gray level 
zone, defined as the number of 8-connected pixels sharing 
the same gray level intensity. They are invariant to rotation, 
with the initial matrix calculated in all directions at once 
[35]. 

When the importance of each feature in the 
classification process (Fig.2) is correlated with the features 
(Table 3), it can be seen that two GLSZM features are 
between the most relevant in both segmentation 
approaches: the size zone non-uniformity normalized 
feature and the small area emphasis. The first quantifies the 
variability on the size zones, with a lower value 
representing a higher homogeneity among the size of the 
zones. The second feature, on the other hand, quantifies the 
distribution of small size zones in the image, having higher 
values when fine textures are present [17].  

In the GLDM class, which quantifies gray level 
dependency on an image, defined by the difference 
between neighboring pixels connected with the central 
pixel, the dependence non-uniformity feature is among the 
most relevant features. It quantifies the similarity between 
pixels, where small values represent a higher homogeneity 
[36].  

Four different machine learning models for 
classification (SVC, RF, AB and LR) between COVID-19-
based pneumonia and typical pneumonia were used with 
the previously 13 selected features. The highest sensitivity 
was obtained using the AB model with the lung zones 
approach. AdaBoost is referred, in other studies, as the best 
option to boost the performance of decision trees on binary 
classification problems. AdaBoost creates a collection of 
weak learners by maintaining a set of weights over training 
samples and adjusting these weights after each weak 
learning cycle adaptively: the weights of the samples which 
are misclassified by the current weak learner will be 
increased, while the weights of the samples which are 
correctly classified will be decreased [20]. 

When we use L-R lung segmentation, all models 
perform similarly. This might be due to the classification 
accuracy limit using the whole lung segmentation, where a 
vast area is used to the extraction of the radiomic attributes. 

In our study, we achieve 93% and 95% of accuracy and 
sensibility. Even though it is a binary classification 
problem, our study used lung segmentation, with features 
related only to the pulmonary tissue patterns.  

Other classification studies classifying COVID-19-
based pneumonia from other pulmonary diseases have 
emerged in the last few months. Accuracies varying 
between 90% and 98% in pneumonia classification have 
been achieved with DL models [9]–[12]. Apostolopoulos 
et al. [7] extracted biomarkers from chest X-ray images to 
differentiate seven classes: COVID-19-based pneumonia, 
edema, pleural effusion, emphysema, fibrosis, pneumonia 
and normal. DL was used for extraction of high order 
features and a MobileNet v2 for multilabel classification. 
Accuracy was 87.7%, with 99.18% and 97.36% of 
accuracy and sensitivity just for the COVID-19 pneumonia 
class.  

Asnaoui and Chawki [8] have used X-ray and CT 
images with DL models to classify between atypical 
COVID-19-based pneumonia, typical pneumonia, and 
normal subjects. DL models they use are: VGG16, VGG19, 
DenseNet201, Inception_ResNet_V2, Inception_V3, 
Resnet50 and MobileNet_V2. They obtained 82.8% of 
sensitivity in COVID-19 classification. However, it is 
important to note that typical pneumonia and normal 
subjects were taken from a pediatric database, while 
COVID-19 dataset has only images of adult subjects. 
Thereby, this model might be differentiating the relation of 
adult versus pediatric X-ray, and not the pulmonary 
diseases. 
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The population bias was avoided by the work published 
by Rahimzadeh and Attar [37], where they use the same 
database and groups for classification, but using only adult 
chest X-rays. In that study, the authors concatenated two 
DL networks (Xception and ResNet50V2) for high order 
feature extraction and classification. The average 
performance accuracy was 80.5%, with a sensitivity of 
99.5% for COVID-19 cases.  

Despite showing encouraging results of classification 
accuracy and sensitivity, the use of DL to aid diagnosis of 
diseases has shown some concerns about the model 
explainability. DL are “black boxes”, with fundamental 
issues in explaining the decision-making process for 
classification, and which aspects of the input data drive the 
decisions of the network. Furthermore, Maguolo and Nanni 
[38] showed that their datasets might influence many
proposed DL models for COVID-19 identification. Images
from the same dataset usually have similar characteristics,
since most come from similar equipment and medical
center. Because DL models use all available information
and characteristics on the image, the models might be
learning to discriminate the datasets instead of diseases,
leading to biased COVID-19 identification.

Several studies have shown that the radiological 
findings in CT images of COVID-19 patients are evenly 
distributed between the left and right lungs [39]–[41]. 
However, findings are more present in the lower right lobe, 
followed by the upper and lower left lobes [4], [42], [43]. 

It is interesting to note that, among the most important 
features selected by our method, we have two related to the 
bottom right lung. For the left lung side, we only have 
features related to the medial and upper lung zones. We 
hypothesize that for our method, the lack of selection of 
features in the lower part of the left lung might be due to 
the heart penumbra, which makes it harder to segment this 
lung region. In CT images, however, this tissue overlay 
does not occur. Thus, there may be a significant variation 
in features in this anatomical region, causing it not to be 
selected to perform the classification. 

It is important to emphasize that the computational cost 
of ML models should not be too high so they could be 
potentially applied in clinical use. The analysis of 
computational time to perform the classification using our 
best model, including all steps, took less than two seconds 
using 2.3 GHz Intel Xeon processor with a single core, 
making it suitable for clinical use. 

Some limitations of this study are related to the low 
spatial resolution of some images from the COVID-19 
dataset, and a small number of chest X-ray images of 
subjects with COVID-19-based pneumonia in public 
datasets. Another limitation of our method is the 
segmentation step that needs further work to improve its 
reliability. Currently, chest X-ray segmentation models are 
trained in images of subjects that have pulmonary diseases 
without severe lung obstruction or lesions, leading to a 
non-generalization for more aggressive pulmonary 
diseases.  

5. Conclusion

This paper presents the investigation of classification 
models to differentiate chest X-ray images between 
COVID-19-based pneumonia and typical pneumonia. Our 
analysis showed that AdaBoost is the best discriminant 
method between features related to COVID-19-based 
pneumonia when compared to typical pneumonia, using a 
model of lung segmentation in six distinct zones. Our study 
showed a predominance of features being selected in the 
right lung, with a tendency to the upper zone.  

Further studies are required to increase the number of 
chest X-ray images of COVID-19-based pneumonia to 
investigate features related to radiological findings. A more 
in-depth evaluation of the radiomic features related to 
COVID-19 in chest X-ray and CT images will be required 
to analyse whether there is a radiomic signature of COVID-
19.  
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Appendix A. Selected features for each classification model. 

Approach Abbreviation Side Zone 
Location Class Feature 

Lu
ng

 Z
on

es
 

A Left Middle GLSZM Size Zone Non-Uniformity Normalized 
B Left Middle GLSZM Small Area Emphasis 
C Left Upper GLSZM Size Zone Non-Uniformity Normalized 
D Left Upper GLSZM Small Area Emphasis 
E Right Bottom GLSZM Size Zone Non-Uniformity Normalized 
F Right Bottom GLSZM Small Area Emphasis 

G* Right Middle GLDM Dependence Non-Uniformity 
H Right Middle GLSZM Size Zone Non-Uniformity Normalized 
I Right Middle GLSZM Small Area Emphasis 
J Right Upper GLDM Dependence Non-Uniformity 

K* Right Upper GLSZM Size Zone Non-Uniformity Normalized 
L* Right Upper GLSZM Small Area Emphasis 
M Right Upper GLSZM Zone Entropy 

L-
R

N Left - First Order Minimum 
O Left - GLDM Dependence Non-Uniformity 
P Left - GLDM Large Dependence Low Gray Level Emphasis 
Q Left - GLRLM Long Run Low Gray Level Emphasis 
R Left - GLSZM Size Zone Non-Uniformity Normalized 
S* Left - GLSZM Small Area Emphasis 
T Left - GLSZM Zone Entropy 
U Right - GLDM Dependence Non-Uniformity 

V* Right - GLDM Gray Level Non-Uniformity 
W Right - GLRLM Long Run Low Gray Level Emphasis 
X Right - GLSZM Size Zone Non-Uniformity Normalized 

Y* Right - GLSZM Small Area Emphasis 
Z Right - GLSZM Zone Entropy 
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