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“When I look at any of my achievements, I find
that it is there because of certain opportuni-
ties I had, as well as because of my personal
effort. I cannot claim to have created or com-
manded the opportunities; they were given to
me. I happened to find myself in the right cir-
cumstances, so I could grow and learn what I
needed to learn. I met with the right person; I
happened to read the right book; I enjoyed the
right company; someone came forward with
the right guidance at the right time. There
are so many factors behind an achievement. I
cannot really say I created any of them. When
I look at the facts, I must see that any achieve-
ment that I claim as mine is not due to my will
or skill alone but is due to certain things that
were provided to me and certain opportuni-
ties I had. And for whatever abilities I seem to
have, I should be grateful.”
(The Value of Values by Swami Dayananda)
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APLICANDO APRENDIZADO DE MÁQUINA À PRONTUÁRIOS
ELETRÔNICOS DO PACIENTE: UM ESTUDO EM DOIS EVENTOS

ADVERSOS

RESUMO

No ambiente hospitalar, a incidência de eventos adversos (EA) (incidentes impre-
vistos que causam danos aos pacientes) é a principal preocupação das equipes de geren-
ciamento de risco. Esta tese desenvolve experimentos para avaliar abordagens de aprendi-
zado de máquina para identificar dois grandes eventos adversos em prontruários eletrônicos
do paciente (PEP). O primeiro algoritmo foi criado para identificar eventos de queda em evo-
luções clínicas usando modelos de linguagem e redes neurais. Anotamos 1.402 sentenças
em evoluções clínicas com eventos de queda para treinar um Classificador de Token (TkC)
para detectar palavras dentro do contexto de quedas. O TkC foi capaz de identificar cor-
retamente 85% das sentenças com eventos de queda. Para a avaliação de prescrições,
construímos um algoritmo não-supervisionado com base em estrutura de grafos para clas-
sificar as prescrições fora-do-padrão. Em nossos experimentos, o algoritmo proposto, o
DDC-Outlier, classificou corretamente 68% (Medida-F) dos medicamentos prescritos como
subdoses e overdoses. Finalmente, para entender melhor o desempenho de nossa abor-
dagem em um cenário do mundo real, implantamos um sistema de suporte à decisão para
farmácia clínica em um hospital de 1.200 leitos. Todos os experimentos, códigos-fonte e
conjuntos de dados anônimos estão disponíveis publicamente na página GitHub de nosso
grupo de pesquisa.

Palavras-Chave: prontuário elettrônico do paciente, eventos adversos, aprendizado de má-
quina, aprendizado supervisionado, aprendizado não-supervisionado.



APPLYING MACHINE LEARNING TO ELECTRONIC HEALTH RECORDS:
A STUDY ON TWO ADVERSE EVENTS

ABSTRACT

In the hospital environment, the incidence of adverse events (AE) (unforeseen in-
cidents that cause harm to patients) is the primary concern of risk management teams.
The use of machine learning techniques could help healthcare professional to identify and
mitigate adverse events.This thesis develops experiments to evaluate machine learning ap-
proaches to identify two major adverse events in electronic health records (EHR). The first
algorithm was created to identify fall events in clinical notes using language models and
neural networks. We annotated 1,402 clinical sentences with fall events to train a Token
Classifier (TkC) to detect words within the context of falls. The TkC was able to correctly
identify 85% of the sentences with fall events. For medication review, we built an unsuper-
vised algorithm based on graph structure to rank outlier prescriptions. In our experiments,
the proposed algorithm, the DDC-Outlier, correctly classified 68% (F-measure) of prescribed
medications as underdoses and overdoses. Finally, to better understand the performance
of our approach in a real-world scenario, we deployed a decision support system for clini-
cal pharmacy in a 1,200-bed hospital. All experiments, source-codes, and the anonymized
datasets are publicly available on the GitHub page of our research group.

Keywords: electronic health records, adverse events, machine learning, supervised learn-
ing, unsupervised learning.
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1. INTRODUCTION

In 2020, humanity faced one of the most significant health crises in history. Besides
a dangerous virus, people were isolated in their homes for months. Health sciences offered
people hope that a vaccine would be found, and technology made it possible for people to
connect with one another through the Internet.

Health Information Technology continues producing positive effects on medical out-
comes, which certainly supports efforts that prepare them to be used meaningfully (Kruse
and Beane, 2018). Aside from deploying health information systems, artificial intelligence
techniques have produced valuable healthcare improvements in recent years. Algorithms
can predict disease, cluster likely outcomes, and detect cancer cells (Wang and Preininger,
2019). Moreover, computer science can bring benefits to other fields of healthcare.

The primary research subareas applying machine learning to health informatics are
imaging (39%), diagnosis (37%), and public health (26%), followed by sensing (16%) and
bioinformatics (14%). Besides being an important topic related to patient safety, adverse
events (3%) are not a frequent subject: there have been few published papers in recent
years1.

Aside from being essential subfields, imaging and diagnosis are tasks related to
physicians’ activities that are critical (Char et al., 2018). According to (Mateen et al., 2020), in
general, while theoretical and technical contributions using clinical data to illustrate applica-
bility are fundamental to the progress of the field, they are by nature different from attempts
to create a prediction model for clinical practice (Mateen et al., 2020). Computer science
could be useful in other healthcare administrative departments, such as risk management
and risk assessment. Adverse events are a hospital issue related to the non-critical task of
risk management, thus favoring the use of machine learning techniques as a clinical deci-
sion support system. Adverse events should be understood as opportunities to improve the
quality of care and may serve as a basis for the development of patient safety management
strategies.

Adverse events could be identified in electronic health records (EHRs) by using ma-
chine learning algorithms. The most common adverse events relate to surgical procedures,
medical procedures, diagnosis, obstetrics, medications, and fractures (Da Saúde (BR),
2014, Mendes et al., 2013). It may be possible to find these events by using unsupervised
learning (finding patterns in the input data) or supervised learning (learning how to map the

1The distribution of published papers that use machine learning in subareas of health informatics has been
obtained from Google Scholar (similar to (Ravì et al., 2016)); the search phrase is defined as the subfield name
("imaging," "diagnosis," "public health," "sensing," "bioinformatics") with the exact phrase “machine learning”
and at least one of the following terms: “medical” or “health,” e.g., “imaging” “machine learning” medical OR
health. The total number is the phrase: “machine learning” medical OR health
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input to correct values provided by a supervisor). Each adverse event detection task may
use a specific machine learning solution.

The main objective of this thesis is to evaluate the use of machine learning tech-
niques on electronic health records (EHRs) for decision support systems for clinical risks.
Thus, this thesis seeks to use electronic health records as the source of information for
such systems. Clinical features such as prescriptions and clinical notes could be used to
identify and mitigate adverse events. To evaluate the use of machine learning in healthcare
problems, we selected two non-critical, but important, tasks in the hospital environment: fall
detection for risk management and prescription prioritization for clinical pharmacy.

We first approached the risk management problem by using supervised learning.
We used a Bidirectional Long Short-Term Memory (BiLSTM) neural network to identify fall
events in clinical notes. A fall event is classified as the event in which “the person inadver-
tently falls to the ground or lower levels." In the past ten years, other studies used machine
learning to detect falls in clinical notes (Tremblay et al., 2009, McCart et al., 2013, Luther
et al., 2015, Bates et al., 2016, Shiner et al., 2016, Topaz et al., 2019). Nevertheless, none
of them used neural networks and language models. They also could not be used in Por-
tuguese. Our experiments show that the BiLSTM, together with the Conditional Random
Field (CRF), improved the results in this task (using distinct datasets). The latest stud-
ies (Luther et al., 2015, Topaz et al., 2019) reached up to 90% of F-measure using machine
learning on clinical notes. We annotated 1,402 clinical sentences with fall events to train
a Token Classifier (TkC) to detect words within the context of falls. The TkC was able to
correctly identify 85% of the sentences with fall events and achieve an F-measure of 96% in
Cross-Validation.

The next problem we tackled was medication errors. We built an unsupervised al-
gorithm based on graph structure to rank outlier prescriptions, speeding up the medication
review process performed by clinical pharmacists. A medication error with clinical signif-
icance is defined as an unintentional decision error that can reduce the likelihood of the
treatment being effective or increase the risk of injury to the patient. Previous works, such
as (Park et al., 2017) and (Nangle et al., 2017), developed machine learning models on pre-
scription data to extract information or show divergent patterns in prescriptions for the same
diseases, but they had no application to clinical pharmacy. Another study tried to detect
medication errors using machine learning (Schiff et al., 2017), but it only used the patients’
dosage history to alert physicians about dosage errors. In our experiments, we used histori-
cal hospital data to detect outlier prescriptions. The outlier can be used to assist pharmacists
in the medication review process. The proposed unsupervised algorithm, the DDC-Outlier,
is best used to detect medication overdosing and underdosing. The DDC-Outlier correctly
classified 68% (F-measure) of the medications prescribed in our experiments. Both ma-
chine learning techniques can help develop a decision support system and each learning
approach (supervised or unsupervised) fits the proper task.



13

Moreover, this thesis goes beyond a mere evaluation of the outlier algorithm using
historical data. As pointed out by Mateen et al. (2020), it is quite challenging to translate lab-
oratory results into realistic settings. The knowledge of machine learning researchers needs
to be integrated with the knowledge of healthcare experts. This type of endeavor takes time
as there is a need to build trust between all parties (Mateen et al., 2020). In an effort to bet-
ter understand the performance of the DDC-Outlier, we developed a real-world case study
in partnership with one hospital. The selected hospital has 1,200 beds and diverse patient
profiles, which are important features to evaluate the algorithm’s generalization capability.
We deployed the proposed algorithm embedded in a decision support system for clinical
pharmacy, also developed as part of this Ph.D. candidature. We gathered data from 24,702
prescriptions reviewed by the hospital’s pharmacists during six months, showing promising
results. The DCC-Outlier correctly classified the dose and frequency (posology) of several
medications in the real-scenario application, improving the work of the hospital’s pharma-
cists.

1.1 Thesis Organization

The rest of this thesis is organized as described in Figure 1.1: in the next Chapter,
we state the concepts around inpatient risk, medication review, machine learning, and its
uses in the healthcare industry. Chapter 3 describes the experiments that use a neural
network to detect fall events in a supervised task. In Chapter 4, we report the experiments
that use unsupervised learning in the task of prescription prioritization.

This thesis presents the proposed algorithms and experiments in two separate
chapters, as described above. For that reason, each of these two chapters (3 and 4) have
their own related-work section, presenting previous work about each subject. In Chapter 5,
we detail the results of the case study using the DDC-Outlier embedded in a decision sup-
port system for the task of prescription prioritization in clinical pharmacy. Finally, in Chapter
6, we summarize our conclusions, present further research directions, and enumerate the
publications related to this thesis.

Besides the main aforementioned topics, during this Ph.D. study, we developed
other experiments using data from electronic health records. These studies cover areas
such as information extraction, de-identification of clinical notes, patient complexity detec-
tion, quality evaluation of word embeddings, and a systematic review of fall prediction. We
list the papers that describe these other related studies in Appendix A.
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Figure 1.1 – Schema - Thesis Organization

1.2 Ethical Aspects

All data used in the experiments conducted for this thesis came from a project
developed with Hospital Nossa Senhora da Conceição (HNSC) and Hospital Santa Casa
(HSC). Ethical approval to use the hospital datasets in this research was granted by the Re-
search Ethics Committee of the Hospital Group under the number 71571717.7.0000.5530.



15

2. BACKGROUND

This chapter introduces the relevant concepts necessary to understand this work.
Therefore, the chapter establishes the foundation from which the techniques and research
propositions are derived.

2.1 Hospital Adverse Events

Adverse Events (AEs) are defined as unwanted complications resulting from the
care provided to patients. These complications are not attributed to the natural evolution of
the underlying disease. AEs are currently one of the biggest challenges to improve quality
in healthcare: their presence reflects the marked distance between ideal care and real care.
It should be noted that 50% to 60% of AEs are preventable (Gallotti, 2004).

Adverse events should be understood as opportunities to improve the quality of
care and may serve as a basis for the development of patient safety management strate-
gies. Being aware of these problems is essential to plan improvement actions and guide the
development of policies with a focus on safety and quality care.

In Brazil, in order to improve the quality of health products and of the manage-
ment and monitoring of adverse events in hospitals, the Brazilian Health Regulatory Agency
(ANVISA) created the Brazilian Sentinel Hospital Network in 2002. This network enforces
that hospitals must notify any severe adverse events to ANVISA (De Oliveira et al., 2016).
Besides, the Institute for Healthcare Improvements has developed the IHI Global Trigger
Tool for the detection of adverse events. The tool uses "triggers," or clues, to identify ad-
verse events (AEs), which is an effective method to measure the overall level of harm in a
healthcare organization (Griffin and Resar, 2009).

These initiatives aim to improve patient safety in healthcare and monitor adverse
events. The following section focuses on two services that are responsible for two adverse
events related to patient safety.

2.1.1 Fall Detection for Risk Management

In the hospital environment, the risk management team develops actions within
three scopes: pharmacovigilance, which is responsible for the control and surveillance of
drugs; hemovigilance, which receives reports on side effects, blood transfusions, and blood
products; and technovigilance, which controls the quality of hospital inputs and equipment
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and oversees patient care, being responsible for the reporting of adverse events related to
nursing care (De Oliveira et al., 2016).

One of the largest categories of adverse event reports is "falls." The World Health
Organization (WHO) defines a fall as the event in which “the person inadvertently falls to
the ground or lower levels” (Ageing and Unit, 2008). Regarding patient care, falls comprise
the largest category of adverse event reports within hospitals and nursing homes. Approx-
imately 30% of in-patient falls result in injury and 4% to 6% result in serious injury (Hitcho
et al., 2004). There are two distinct tasks related to falls in risk management departments:
fall detection and fall risk assessment. First, fall detection refers to identifying the falls that
occurred in the hospital and mapping the risk factors associated with each event. Second, it
aims to promote educational interventions, determine barriers, and perform fall risk assess-
ment during patient admission (Fortinsky et al., 2004).

Besides risk management (which relates to patient care), the hospital environment
requires other risk assessments, such as evaluations regarding finances, innovation, legal
protection, elderly patients, professional staff, and information protection (Etges et al., 2018).
Furthermore, medication errors are also considered a crucial risk factor for patients. This
leads to a more specific hospital service that handles medication risks: the clinical pharmacy,
explained in the following section.

2.1.2 Prescription Prioritization for Clinical Pharmacy

In a hospital facility, the clinical pharmacy performs a key activity to improve the
appropriateness, effectiveness, safety, adherence, and affordability of drug therapies. Clini-
cal pharmacists provide care to patients as members of multidisciplinary patient care teams,
assuming responsibility and ensuring accountability for optimizing medication-related out-
comes. Pharmacists provide fundamental services that are the core components of the
pharmacy practice (e.g., drug order fulfillment, patient education, information on drugs, pub-
lic health-related services) (Saseen et al., 2017).

One of the responsibilities of clinical pharmacists is medication review. Medication
review is a structured evaluation of a patient’s medication to optimize medication use and
improve health outcomes. The medication review entails detecting drug-related problems
and recommending interventions (changes in the patients’ prescription) (Griese-Mammen
et al., 2018). Besides improving patient outcomes (Graabæk and Kjeldsen, 2013), this eval-
uation contributes to the economic efficiency of hospitals (Touchette et al., 2014) and has
an impact on the decrease of mortality rates (Bond and Raehl, 2007).

To improve the medication review process, pharmacists create tools to measure
patient acuity and prioritize pharmaceutical care (Alshakrah et al., 2019). These tools may
be computer-based systems or manual protocols that they follow step-by-step. Most tools
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are designed to identify patients at a greater risk of adverse drug reactions, adverse drug
events, or medication errors, guiding appropriate pharmaceutical care. The prioritization
task uses several risk factors for the early detection and prompt management of high-risk
patients in clinical settings. Risk factors include the drug-related and patient-related risks
presented in Table 2.1 (Alshakrah et al., 2019).

Drug Related Patient Related
•high-risk medication,
•drugs requiring monitoring,
•polypharmacy,
•use of total parenteral
nutrition/nasogastric tube,
•high-cost medication,
•number of intravenous medications,
•and number of unlicensed medication

•age,
•renal impairment,
•comorbidity,
•hepatic impairment,
•reason/time/type of admission,
•readmission,
•allergies,
•and length of stay

Table 2.1 – Risk Factors for Prescription Prioritization (Alshakrah et al., 2019)

Several aspects may be improved in both hospital services — risk management and
clinical pharmacy. The advent of electronic health records enables risk assessment to be
automated by using a computer-based system together with artificial intelligence (AI) (Gold-
stein et al., 2017). We detail the existing data in electronic health records in the following
section.

2.2 Electronic Health Records

Electronic health records (EHRs) have produced valuable improvements in hospital
practices by integrating patient information. In fact, the understanding of this data can miti-
gate mistakes that may put patients’ lives at risk. EHRs contain unstructured data (e.g., text
and images) and structured data (e.g., prescriptions, laboratory results, and patient profiles).
Figure 2.1 shows the variety of data that compose EHRs and its possible uses.

According to Jensen et al. (2012), EHRs can be seen as a repository of informa-
tion regarding patients’ health status in a computer-readable format. An encounter with the
healthcare system generates several types of patient-linked data. In the example shown in
Figure 2.1, medication, laboratory, imaging, and narrative data are acquired. Each data type
is ideally captured according to standards or classifications, such as RxNorm (Fung et al.,
2008) for prescription data, Logical Observation Identifiers Names and Codes (LOINC) for
laboratory data, and Digital Imaging and Communication in Medicine (DICOM) for imaging
files. Clinical narratives are inherently free text, but often feature clinical terms that are coded
according to the International Classification of Disease-9 (ICD-9), the ICD-10, or the System-
atized Nomenclature of Medicine — Clinical Terms (SNOMED CT) (De Silva et al., 2011).
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Figure 2.1 – Electronic health records and its potential uses (Jensen et al., 2012).

Integrated auto-coding systems may in some cases render free text into clinical terms. Pa-
tient data is stored in a database and can be viewed in formats that match the needs and
authorities of specific user groups.

For example, a clinician might request EHR data for a particular patient, a sta-
tistical summary of all laboratory procedures, and a specific cohort extraction for drug re-
search (Jensen et al., 2012). In the next section, we cover a subarea of A.I. that could
improve patient safety using EHR data as a source of information: machine learning.

2.3 Machine Learning

Machine Learning (ML) has received a lot of attention from computer science re-
searchers and other research fields in recent years (Jordan and Mitchell, 2015). The growth
of processing power and the amount of data now available enabled the rising of ML in several
applications in several domains.

According to Apaydin (2020), machine learning consists of programming computers
to optimize a performance criterion using example data or past experiences. The model
is defined by some parameters, and the learning comprises the execution of a computer
program to optimize the parameters of the model using the training data. The model may be
predictive (to make predictions in the future), descriptive (to gain knowledge from data), or
both (Alpaydin, 2020).

The data-related approaches of ML can be divided into supervised and unsuper-
vised learning (other techniques, such as reinforcement learning, are not related to real data
but simulations). Both learning strategies attempt to understand patterns from real data.
Learning a rule from data also allows knowledge extraction and pattern recognition. The
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rule is the extraction of a simple model that explains the data; by looking at this model, an
explanation of the process underlying the data is proposed. For each approach, there are
several algorithms and applications for different domains, each working better depending on
the characteristics of the data and the size of the dataset (Han et al., 2011).

In the subsequent sections, we discuss in more detail the tasks of ML used in this
work: text classification and outlier detection.

2.3.1 Text Classification and Named Entity Recognition

In supervised learning (also known as predictive learning), the aim is to learn a
mapping from the input to an output whose correct values are provided by a supervisor. The
approach in machine learning is that we assume a model defined by a set of parameters
learned by using data labeled by an expert. The algorithms can learn patterns for binary or
multiple classes (targets/labels) as classification problems and can learn continuous outputs
as regression problems (Alpaydin, 2020).

Sequence(or text) classification is where an entire text or document is assigned
to a category, using supervised learning (Jurafsky and Martin, 2014). One common text
categorization task is sentiment analysis, that is, the extraction of sentiments — the positive
or negative orientation that a writer expresses toward an object. Traditional algorithms for
text classification, such as Naive Bayes and Logistic Regression, have been outperformed
by neural networks.

Named entity recognition (NER) is the task to find spans of text that constitute
proper names and tag the type of the entity. The most common entity tags: PER (person),
LOC (location), ORG (organization), or GPE (geopolitical entity). However, the term “named
entity” commonly also refers to things that are not entities per se, including dates, times, and
other kinds of temporal expressions and even numerical expressions, such as prices. Here
is an example of the output of a NER tagger (Jurafsky and Martin, 2014). NER could also be
used for text classification when an entire text has a tag or not. Algorithms commonly used
for NER, such as Hidden Markov Model (HMM) and Conditional Random Fields (CRF), have
also been outperformed in this task by neural networks.

In the last decade, after the implementation of neural networks in graphics pro-
cessing units (GPU) (Oh and Jung, 2004) and the rise of open-source frameworks (Tensor-
Flow (Abadi et al., 2016) by Google, PyTorch (Paszke et al., 2019) by Facebook), neural
network algorithms resurfaced prominently. An artificial neural network structure is a non-
parametric estimator that can be used for classification, regression, and other tasks. Two
network topologies have been especially useful: Recurrent Neural Networks (RNNs) for nat-
ural processing language and Convolutional Neural Networks (CNNs) for computer vision.
RNNs, such as Long Short-Term Memory (LSTM) or Bidirectional-LSTM, have memory ca-
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pabilities that are able to extract stream features from text processing to voice recognition
and achieve better results in classification tasks than classic machine learning methods such
as Naive Bayes and CRF. Besides, CNNs can extract image patterns from pictures to movies
and are better for object recognition (Goodfellow et al., 2016).

Recurrent neural networks have proven to be an effective approach to language
modeling, both in sequence labeling tasks such as part-of-speech tagging, as well as in
sequence classification tasks such as sentiment analysis and topic classification (Jurafsky
and Martin, 2014). Many studies have been using neural networks as self-supervised learn-
ing to train language models. Models that assign probabilities to sequences of words are
called language models (LMs) (Jurafsky and Martin, 2014). More sophisticated language
models than probabilistic LMs use recurrent neural networks to generate the models (word
embeddings). RNN-based language models are designed to process sequences in seg-
ments, attempting to predict the next word in a sequence by using the current word and the
previous hidden state as inputs (Mikolov et al., 2013).

One of the first models to use such a strategy was word2vec (Mikolov et al., 2013),
which was built with a feed-forward neural network. Subsequently, other studies improved
these neural networks by developing complex topologies for robust language models. Some
examples are Glove (Pennington et al., 2014), FastText (Bojanowski et al., 2017), ElMo (Pe-
ters et al., 2018a), Flair (Akbik et al., 2018), and Transformers-based language models
(contextual embeddings), such as BERT (Devlin et al., 2018)1, OpenAi GPT (Radford et al.,
2019), and XLNet (Yang et al., 2019).

2.3.2 Outlier Detection and Graphs

In unsupervised learning (also known as descriptive learning), there is no super-
visor; there is only input data and no known output. Unsupervised learning studies how
systems can learn to represent particular input patterns in a way that reflects the statistical
structure of the overall collection of input patterns (Barlow, 1989). There is a structure to
the input space such that certain patterns occur more often than others, and we want to see
what generally happens and what does not (Alpaydin, 2020).

Outlier detection (also known as anomaly detection) is the process of finding data
objects with behaviors that are very different from expectation, using, in most cases, unsu-
pervised learning (Han et al., 2011). Outlier detection and clustering analysis are two highly
related tasks. Clustering finds the majority patterns in a data set and organizes the data

1Originally, BERT is not a traditional language model. It is a model trained on a masked language model
loss, and it cannot be used to compute the probability of a sentence like a regular LM. A regular LM takes an
autoregressive factorization of the probability of the sentence
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accordingly, whereas outlier detection tries to capture those exceptional cases that deviate
substantially from the majority patterns (Han et al., 2011).

According to the assumptions made, we can categorize outlier detection methods
into three types: statistical methods, proximity-based methods, and clustering-based meth-
ods. Proximity-based methods assume that an object is an outlier if the nearest neighbors
of the object are far away in feature space, that is, the proximity of the object to its neighbors
significantly deviates from the proximity of most of the other objects to their neighbors in the
same dataset (Han et al., 2011).

There are two types of proximity-based outlier detection methods: distance-based
and density-based methods. A distance-based outlier detection method consults the neigh-
borhood of an object, which is defined by a given radius. An object is then considered an
outlier if its neighborhood does not have enough other points. A density-based outlier de-
tection method investigates the density of an object and that of its neighbors (Han et al.,
2011).

Outlier detection usually is used in vector-space data, but graphs could be used
for this type of task. For instance, (Muller et al., 2013) employed centrality algorithms to
rank nodes based on their centrality index to distinguish them between inliers and outliers.
The same idea was successfully employed, for example, to rank textual information of doc-
uments and automatically create textual summaries that contain the most common words
based on their centrality on graph (Woloszyn et al., 2017a, Woloszyn et al., 2017b). An-
other approach in the graph centrality field used a random walk on a graph to perform outlier
detection (Moonesinghe and Tan, 2008). It relied on computing the node similarity and the
number of shared neighbors between nodes. Afterward, they used a Markov chain model to
compute the score for each node of the graph. Nodes with lower scores were considered
outliers.

2.4 Machine Learning for In-Hospital Adverse Events

According to Goldstein et al. (2017), several in-hospital adverse events (AE) could
take advantage of machine learning algorithms. Hospital-acquired infections, virological fail-
ures, acute lung injuries, fractures, readmissions, pressure ulcers, and sepsis are some
examples of AE problems that researchers have been trying to solve by using prediction al-
gorithms (Goldstein et al., 2017). These predictive models typically used techniques such as
generalized linear models, bayesian methods, random forests, and regularized regression.
Most studies that use regression have incorporated some form of variable selection, most
often via stepwise approaches (Goldstein et al., 2017).

The following studies have used neural networks to predict adverse events in text
information concerning health. Some studies regarding adverse drug events (ADE) used re-
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current neural network architecture to detect events in electronic health records (EHRs) (Ja-
gannatha and Yu, 2016, Wunnava et al., 2018) and attention neural networks to highlight
important words related to these events (Huynh et al., 2016), to identify harm events in pa-
tient care (Cohan et al., 2017), and to indicate the possible occurrence of adverse cardiac
events (Chu et al., 2018).

This thesis focuses on two tasks: token classification in clinical notes and outlier
detection in medication data. We use a Recurrent Neural Network with Conditional Ran-
dom Fields to classify tokens related to fall events for the first task. In the second task,
outlier prescription detection, we develop new unsupervised algorithms that consider the
distance, density, and centrality of prescribed medications to evaluate their outlierness. The
next chapters present two different machine learning approaches used to identify two dif-
ferent adverse events: detection of fall events using supervised learning and prescription
prioritization using unsupervised learning.
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3. FALL DETECTION USING SUPERVISED LEARNING

Falls are critical adverse events that occur in the hospital environment. Within
hospitals and nursing homes, falls constitute the largest category of adverse event reports.
Approximately 30% of inpatient falls result in injury, with 4% to 6% resulting in serious in-
jury (Hitcho et al., 2004). Therefore, a starting point for fall prevention programs should
always be a critical review of evidence (Oliver, 2007). An automated system to detect falls
could assist in the smart screening of adverse events.

Traditional fall risk protocols (Morse et al., 1989) and fall detection protocols (Re-
sar et al., 2006) were developed for hospital environments without EHR systems. These
protocols are useful but time-consuming and do not consider cultural changes for various
hospitals and countries (De Souza Urbanetto et al., 2013). The adoption of electronic health
records in hospital environments brings many benefits for patients (Buntin et al., 2011). For
example, the data extracted from EHRs is commonly used in clinical decision support sys-
tems to improve patient safety and healthcare quality.

This chapter proposes a new approach in terms of fall detection in clinical notes.
We built an annotated dataset and used a state-of-the-art natural language processing neu-
ral network to detect fall events from text information present in EHRs (clinical notes). In the
following section, we present a systematic review of fall detection using machine learning
techniques.

3.1 Related Work

In this section, we detail a systematic literature review performed to understand
previous work related to fall detection. Walsh et al. (2016) also proposed a systematic review
of the detection of fall events, but focused on non-automated models, listing articles about fall
risk prediction models, predicting falls among inpatients and recording falls in the community
setting (Walsh et al., 2016). Another fall-related review focused on sensor information using
machine learning algorithms in wearable, ambiance, and vision-based devices (Mubashir
et al., 2013), not electronic health records.

Thus, we focused on understanding how EHR data has been used to develop and
validate automatically-built models to identify in-hospital fall events. We focused on EHR
data because a large amount of useful information is generated during patients’ stay.
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We selected five relevant digital libraries in Computing Science and Health: ACM
Digital Library1, ScienceDirect2, IEEExplore3, Scopus4, and Pubmed5. Scopus is a general
database that indexes several other databases, covering approximately 19,500 titles from
more than 5,000 international publishers, including coverage of 16,500 peer-reviewed jour-
nals in the scientific, technical, medical, and social sciences. Afterward, keywords related
to the research topic were identified, such as “fall”, “electronic health records”, and “artifi-
cial intelligence techniques”. These terms were combined to create the search expressions.
The search expressions were adapted according to the mechanism of each digital library,
so as not to alter their logical sense. The searches were performed in the abstract, title, and
keywords fields.

For the “fall” concept, we used the search expressions (fall detection OR falls de-
tection) AND; for “electronic health records”, we used (electronic health records OR EHR OR
electronic medical records OR EMR OR narratives OR free-text records OR clinical notes)
AND; for “artificial intelligence techniques”, we used (machine learning OR data mining OR
text mining OR neural networks OR natural language processing OR information extraction
OR decision trees OR prediction).

Table 3.1 presents the studies selected for this systematic review. In the following
sections, we summarize the studies considering research design, data types, outcomes, and
evaluation to list what is relevant and useful about these models.

Table 3.1 – Characteristics of Studies regarding Fall Incident Detection
Author Data Points Source Algorithms Eval Ss F1
(Tremblay et al., 2009) 2,157 notes K-Means, LR T/T 0.83
(Toyabe, 2012) 4,821 notes Syntactic Rules DV 0.87 0.84
(McCart et al., 2013) 26,010 notes LR, SVM T/T 0.93 0.85
(Rochefort et al., 2015) NR inc-rep NR NR 0.83
(Luther et al., 2015) 26,010 notes SVM T/T 0.94 0.90
(Bates et al., 2016) 8,288 rad-rep SVM CV 0.94 0.93
(Shiner et al., 2016) 2,730 notes MaxEnt, CRF T/T 0.97
(Topaz et al., 2019) 750 notes Random Forest T/T 0.90 0.89

NR = Not Reported; notes = Clinical Notes; inc-rep = Incident Reports; rad-rep = Radiology
Reports; LR = Logistic Regression; Eval = Evaluation Method; T/T = Dataset split into

training and test sets once; DV = Direct Validation; CV = Cross Validation; Ss = Sensitivity;
F1 = F-Measure;

1https://dl.acm.org/
2https://www.sciencedirect.com/
3https://ieeexplore.ieee.org/Xplore/home.jsp
4https://www.scopus.com/
5https://www.ncbi.nlm.nih.gov/pubmed/
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3.1.1 Design of Studies on Fall Detection in EHRs

All fall detection studies analyzed employed textual information extracted from EHRs
as input for their proposed models. Fall events reported in EHRs are usually presented
as unstructured data (text). Clinical notes were the most commonly used sources (n = 6)
(Tremblay et al., 2009, Toyabe, 2012, McCart et al., 2013, Luther et al., 2015, Shiner et al.,
2016, Topaz et al., 2019). Other sources used include radiology reports (n = 1) (Bates et al.,
2016) and incident reports (n = 2) (Toyabe, 2012, Rochefort et al., 2015).

Regarding the strategy to build fall detection models, most papers used machine
learning algorithms (n = 6) (Tremblay et al., 2009, McCart et al., 2013, Luther et al., 2015,
Bates et al., 2016, Shiner et al., 2016, Topaz et al., 2019). Three of them selected Sup-
port Vector Machines as the most commonly used algorithm (n = 3). Only one study used
syntactic rules (Toyabe, 2012) to develop fall detection models.

(Tremblay et al., 2009) developed a logistic regression model using unsupervised
term importance weighting. In another study, (Toyabe, 2012) made syntactic category deci-
sion rules to detect inpatient falls from texts. (McCart et al., 2013) trained a support vector
machine and logistic regression model with several parameter searches on records of the
Veterans Health Administration (VHA). (Luther et al., 2015) improved McCart’s experiments
with VHA data using linear SVM and normalizing terms using the lexical tool of the National
Library of Medicine. (Bates et al., 2016) also used SVM on texts but extracted features us-
ing the Apache Clinical Text Analysis and Knowledge Extraction System (cTAKES) (Savova
et al., 2010).

(Shiner et al., 2016) selected admission charts of Veterans Affairs (VA) hospitals
and trained the model using Automated Retrieval Console (ARC) (D’Avolio et al., 2010) to
detect fall incidents. ARC is able to map text for various part-of-speech tags (e.g., nouns,
verbs, noun phrases, etc.) and find unique medical concepts in the UMLS (Unified Medical
Language System of the National Library of Medicine). Lastly, (Topaz et al., 2019) developed
NimbleMiner, an NLP tool that combines several machine learning approaches to extract
terms and train a random forest model. (Rochefort et al., 2015) did not explain the methods
they used in their research.

3.1.2 Limitations

Besides the contribution of the aforementioned papers, we also analyzed what
some authors listed as the limitations of their studies. The most-reported limitations were the
data selection (n = 4) (Tremblay et al., 2009, McCart et al., 2013, Shiner et al., 2016, Topaz
et al., 2019), where the author has to select the input data before training the model. The
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next most common issue was the generalization problem of the models (n = 2) (Shiner et al.,
2016, Topaz et al., 2019).

(Tremblay et al., 2009) showed examples where the trained model misclassified fall-
related adverse events. The examples featured words such as hip, pain, and knee, which are
commonly found in fall incidents; however, that is not always the case. (McCart et al., 2013)
discussed the problems in the gathered dataset. An inadequacy in the reported incidents
added bias to the trained model.

(Shiner et al., 2016) warned about their small and random sample to identify falls.
Their study design reduced possible variations in the way falls are described. They stated
that further work should test multiple methods for fall identification, including incident reports,
manual record reviews, and patient self-reports.

Other than the vast use of deep learning in several areas of medicine (Topol, 2019),
no studies used neural networks to predict fall incidents. To the best of our knowledge, there
are no previous studies addressing fall event detection from text using word embeddings
or deep learning. In the next section, we cover the dataset, the neural network, and the
language models (word embeddings) used in the experiments described in this thesis.

3.2 Fall Event Detection in Clinical Notes

This section details the experiments performed in this study to evaluate the fall
detection models in EHRs. First, we cover the dataset used and the annotation process.
Then we explain the language models and neural network topologies used to build a fall
detection model.

3.2.1 Materials and Methods

A retrospective cohort study was developed in a dataset from a large public tertiary
hospital in the city of Porto Alegre, in Southern Brazil. The dataset contains 2,698 clinical
notes from 1,694 patients who had a fall between the years 2012 and 2017; during this
period, nurses voluntarily reported 1,971 fall incidents in patients’ charts. Although all of
these patients suffered a fall, as included in the incident reports, 342 (32.97%) of the patients’
records did not contain the clinical notes of the incident.

An incident report is a form attached to the patients’ records describing the fall event
in detail. In the hospital under study, these reports are not directly related to each clinical
note; they were associated based on the date of the incident reported and the patients’
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identification. These voluntary reports were used to flag each clinical note as positive or
negative regarding fall incidents.

Because of limited time and resources, we only used a sample of this dataset. The
sample considered a percentage of 22% of fall incident reports, given the sampling error of
2.5% and the statistical significance of 5%. Therefore, 1,078 clinical notes, 367 patients, and
441 incident reports with records of possible fall incidents were included in this study. Each
incident report had on average 2.4 clinical notes referring to the same patient and date.

The following steps were performed to prepare the dataset to train the machine
learning models:

• Selection: identifying all inpatients with at least one reported fall incident and their
clinical notes;

• De-identification: de-identifying the data to ensure patient anonymity;

• Annotation: creating a "gold standard" with the charts reviewed by nursing students.

Table 3.2 – Example of a Corpus Used for the Clinical Note Classification

Original Note Translated Note

Evolução: Transtornos mentais
devidos ao uso de álcool síndrome,

estado de abstinência.
Plantão de intercorrências:

queda da cama com TCE frontal fechado,
sem alteração de consciência, sem cervicalgia.

Clinical note: Mental disorders due to
the use of alcohol syndrome, withdrawal status.

Complications on call:
falling out of bed with closed frontal TBI,

no alteration of consciousness,
no neck pain.

Evolução: T08 Fratura da coluna.
Restrição a atividades físicas rigorosas:

capaz de realizar trabalhos leves
e de natureza sedentária.

Dor abdominal e pélvica. R53 Mal estar fadiga.
Paciente bem ativo no leito sem queixas.

Tosse seca não aceitou sentar.

Clinical note: T08 spinal fracture.
Restriction to vigorous physical activities:
able to perform light and sedentary work.

Abdominal and pelvic pain.
R53 Illness fatigue. PHYSICAL THERAPY:

Patient very active in bed with no complaints.
Dry cough refused to sit.

Examples of annotated clinical notes are shown in Table 3.2.

3.2.2 Falls Annotation Process

The data collection of the incident reports and data annotation of clinical notes used
the WebAnno system (Yimam et al., 2013) and lasted four months, consisting of careful
reading by three different nursing students, with double checks. In cases of incongruities
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or doubts, notes were taken in a spreadsheet and later discussed during meetings of the
research group.

Each word or phrase was annotated with several definitions related to the fall, ac-
cording to the WHO Technical Report about Patient Safety (Organization, 2009). Some of
the annotated concepts are: procedure after fall; medical assessment; damage level (none,
low, medium, high, death); damage type (physical, psychological, social).

The annotated dataset totaled 1,078 clinical notes, 723 (68%) of which did not have
any fall incidents, while 355 (32%) notes have fall-related incidents annotated by the nursing
students. In our experiments, we designed the task as a classification problem and used the
notes with and without fall-related incidents. Table 3.3 shows the distribution of in-hospital
fall incidents among the patients.

Table 3.3 – Fall per Patient in the Annotated Dataset

# of Patients % of Total # of Falls
316 87.0% 1fall
36 10.1% 2 falls
11 3.0% 3 falls
1 0.3% 4 falls
2 0.5% 5 falls
1 0.3% 6 falls

3.2.3 Language Models

Word vector representations (word embeddings) bring a new perspective for Nat-
ural Language Processing. This approach outperforms traditional rule-based or machine
learning methods (Li and Yang, 2017). To evaluate word embeddings, we developed three
language models using three data sources. This approach focuses on evaluating biomedical-
domain and general-domain language models in the task of fall detection in health records.

Both Word2Vec and FastText are context-free representations of the words. The
following list presents the data sources used to build each language model:

• WIKI: A simple language model built with Portuguese articles from the May 2019 dump
of Wikipedia-PT. This corpus has a total of 250 million tokens. The model was trained
with 300 dimensions per word and a minimum word count of 10 (ten).

• NILC: They are pre-computed language models that feature vectors generated from a
large corpus of Brazilian Portuguese and European Portuguese, from varied sources
and genres. Seventeen different corpora were used, totaling 1.3 billion tokens (Hart-
mann et al., 2017).
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• EHRs: We used 24 million sentences with 603 million tokens from the hospital clinical
notes extracted from electronic health records. The generated model has 300 dimen-
sions per word and contains words with a minimum of 100 occurrences. This model
resulted in 79,000 biomedical word vectors used as a semantic model in the neural
network below.

3.2.4 Neural Networks

In this section, we present the neural networks used for the two supervised-learning
tasks that utilize a pre-trained model (downstream tasks) evaluated in this study. In both
neural networks, we used the FLAIR framework (Akbik et al., 2019), developed in PyTorch6;
it has all the features of parameter tuning for model regulation. All our experiments were
performed on Google Colab7. Deep learning algorithms are extensively used in biomedical
language processing tasks (Jiang et al., 2015).

Both neural networks in our experiments use Recurrent neural network (RNN)
topologies for the classification task. RNNs are demonstrably an effective approach to lan-
guage modeling, both in sequence labeling tasks such as part-of-speech tagging, as well as
in sequence classification tasks such as sentiment analysis and topic classification. More-
over, bidirectional RNNs have also proven to be quite effective for sequence classification.
In a simple recurrent network, the hidden state at a given time t represents everything the
network knows about the sequence up to that point in the sequence (Jurafsky and Martin,
2014).

A Bi-RNN consists of two independent RNNs, one where the input is processed
from the beginning to the end, and the other from the end to the beginning. We then com-
bined the outputs of the two networks into a single representation that captures both the left
and right contexts of an input at each point in time. Bidirectional RNNs have also proven to
be quite effective for sequence classification. As a result, during the backward pass of train-
ing, the hidden layers are subject to repeated multiplications, as determined by the length of
the sequence (Jurafsky and Martin, 2014).

To address these issues, more complex network architectures have been designed
to explicitly manage the task of maintaining relevant contexts over time. Long short-term
memory (LSTM) networks (Hochreiter and Schmidhuber, 1997) divide the context manage-
ment problem into two sub-problems: removing information no longer needed from the con-
text and adding information likely to be needed for later decision-making. When receiving a
sentence, this network topology concatenates information in both directions of the sentence.
This makes the network have a larger context window, providing greater disambiguation

6https://pytorch.org
7https://colab.research.google.com
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of meanings and more accurate automatic feature extraction engineering (Hochreiter and
Schmidhuber, 1997).

Clinical Note Classification (CnC): Neural network algorithms are often associ-
ated with word vector representation. In our experiments, we used a deep learning algorithm
to classify the notes: word embedding representations with a recurrent neural network (RNN)
called LSTM (Long Short-Term Memory Network). RNNs are modifications of feed-forward
neural networks with recurrent connections. In our experiments, we used the FLAIR imple-
mentation: an open-source framework for state-of-the-art NLP (Akbik et al., 2019). The CnC
is trained to classify the entire clinical note with non-fall or fall events.

Token Classification (TkC): As (Akbik et al., 2018), we used a traditional se-
quence labeling to learn how to detect falls at the token level. Our sequence labeling is the
product of training a BiLSTM neural network with a final CRF layer for token labeling. Bidirec-
tional Long Short-Term Memory (BiLSTM) networks have achieved state-of-the-art results
in NLP downstream tasks, mainly for sequential classifications (Jiang et al., 2019, Straková
et al., 2019, Peters et al., 2018b). The TkC is trained to classify each word (token) with
non-fall or fall events.

3.2.5 Experiment Datasets

We divided our data into two parts: Development-Dataset and Evaluation-Dataset.
The Development-Dataset is the dataset that we used to train the two neural networks (CnC
and TkC). Once these models were trained, we evaluated them a second time with the
Evaluation-Dataset. The Evaluation-Dataset was used to investigate whether the resulting
models are capable of making quality classifications in texts that were not part of the model
training process.

Development-Dataset: First, a corpus to identify fall events was manually anno-
tated. The corpus is formed by 1,078 clinical notes with 1,402 sentences, where 441 fall
events were identified. The data came from a large public tertiary hospital in Southern
Brazil.

We adapted the structure of the dataset to train the two approaches proposed in
this study: TkC and CnC. We first converted the original corpus to the CoNLL format (Sang
and Erik, 2002), where each token receives a tag (see Table 3.4). The tag B-FALL indicates
the first token of the fall event. I-FALL indicates tokens subsequent to the indicated event.
The letters B and I are part of the BIO notation, common in name entity recognition corpora.
They indicate the (B)eginning of the entity, the tokens that are (I)nside the entity, and those
that are (O)utside the entity.
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Then, we had to adapt the data in the CoNLL format to the Note-Label format in
order to train the CnC. The Note-Label format is structured with one sentence per line and
its respective binary label. Thus, we have the same pieces of data in two formats: CoNLL
for the TkC and Note-Label for the CnC.

We split the corpus into Train, Development, and Test, as is usually done, corre-
sponding to a proportion of 80%, 5%, and 15%. This resulted in 1,122 training sentences,
70 for development and 210 for testing.

patient

B−FALL︷︸︸︷
fall from bed︸ ︷︷ ︸

I−FALL

, patient found lying down

↓
patient fall from bed, patient found lying down 1

Figure 3.1 – BIO Annotation and Format of the Note Classification

Table 3.4 – Example of a Corpus Used to Train the Token Classification

Original Token Token Translation Labels

Paciente Patient O
refere reports O
tosse cough O

. . O
Relata (he/she)Reports O

ter having O
escorregado slipped B-FALL

em on I-FALL
a the I-FALL

escadinha stairs I-FALL
e and I-FALL

caiu fell I-FALL
. . O

Evaluation-Dataset: this is an additional dataset, annotated by nursing students,
to evaluate the predictive models resulting from training the neural networks. That is, the
data did not participate in the model training process and was annotated regarding the whole
clinical note, not the fall event tokens. The evaluation process consists of classifying the
clinical notes using the model trained with the Development-Dataset and comparing them
with the annotations. This dataset contains 2,390 clinical notes with a binary annotation: if
the note features a fall event, it receives the label 1, if not, it receives 0.
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Table 3.5 – Dataset Statistics

Development-Dataset
number of sentences

Train 1,122
Development 70

Test 210

Total 1,402

Evaluation-Dataset
number of clinical notes

Class 0 1,913
Class 1 477

Total 2,390

3.2.6 Data Sharing

The Development-Dataset with 1,078 clinical notes and the algorithms are provided
for replicability purposes on the GitHub Page8 of the project. This dataset contains 1,402
sentences from Hospital Nossa Senhora da Conceição.

3.2.7 Evaluation of the Classification Task

Figure 3.2 illustrates the flow of the experiments. The upper rectangle features the
Token Classification (TkC), with the training corpus in the CoNLL format as the input for the
BiLSTM-CRF neural network. At the end of the training, a predictive model is generated. In
the lower rectangle, we present the flow of the Clinical Note Classification (CnC), starting
with the input of the corpus to the LSTM network, followed by the generation of the predictive
model (blue box). After that, we move on to our evaluation algorithm, which receives two
predictive models (TkC and CnC) to predict whether or not there is a fall event in the clinical
notes of our evaluation corpus.

Our goal with the assessment was to identify which is the best fall classifier. We
evaluated the models as binary classifiers — if a model predicts 1, the notes contain a
fall event; otherwise, it returns 0. The Clinical Note Classification model (CnC) is a binary
classifier. However, the sequence labeling model Token Classification is not, since it treats
notes as a classification of tokens using the BIO notation. Thus, our algorithm identifies if
there are any labels (B-FALL or I-FALL) in the notes (predicted by the TkC model) indicating
a fall, labeling them 1 if the note contains a fall event or 0 if it does not.

At the end of the classification task, we have three labels for each clinical note:
one containing the classification label (predicted by the CnC model); another with the token
classifier label (TkC labels) converted to the binary classification; and the correct label (gold

8https://github.com/nlp-pucrs/fall-token-classifier
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Figure 3.2 – Evaluation pipeline

standard). We used the Sklearn (Pedregosa et al., 2011) package to extract the Precision,
Recall, and F1-Measure metrics.

3.3 Results

Altogether, we performed six experiments identified in the ‘Models’ column in Table
3.6. All models were trained with the Development-Dataset. The results regarding this cor-
pus refer to 210 separate notes for testing. Once these models were trained, we evaluated
them a second time with the Evaluation-Dataset.

Regarding the results of the TkC and CnC tasks using the EHR language model for
the target Class 1, we noticed that in both corpora the TkC obtained better results, indicating
its predictive capacity. Moreover, the CnC is unable to generalize its learning to other pieces
of data that did not participate in the training using EHRs. The small difference between
results with the Development-Dataset and the Evaluation-Dataset, using the EHR language
model, shows that the TkC did not suffer from overfitting and underfitting.

When analyzing the results using the NILC and WIKI language models, both clas-
sifiers performed similarly (considering F-measure). The CnC only performs better for the
target Class 1 in the Evaluation-Dataset using the WIKI language model.

To further analyze the results, we calculated the frequency of notes in a token
range. That is, given a note s of size m and a list of intervals L, we found l ∈ L, such that
l := [lstart , lend ). Moreover, we counted how many times the model made a correct prediction.
Tables 3.7 and 3.8 show the intervals (L), the number of notes in the class, and the number
of correct predictions for the CnC and TkC models in their respective binary classes. For
example, in Table 3.8, class l = [492, 587) has 23 notes that have a minimum of 492 tokens
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Table 3.6 – Experiment Results

Models Classes Development-Dataset Evaluation-Dataset

Prec. Rec. F-Measure Prec. Rec. F-Measure

CnC-EHR Class 0 0.75 0.85 0.80 0.92 0.67 0.78
Class 1 0.59 0.42 0.49 0.37 0.76 0.49

CnC-NILC Class 0 0.93 0.88 0.90 0.93 0.93 0.93
Class 1 0.78 0.86 0.81 0.72 0.73 0.73

CnC-WIKI Class 0 0.96 0.91 0.93 0.95 0.95 0.95
Class 1 0.83 0.91 0.87 0.78 0.79 0.79

TkC-EHR Class 0 0.97 0.98 0.98 0.96 0.96 0.96
Class 1 0.96 0.94 0.95 0.85 0.84 0.85

TkC-NILC Class 0 0.90 0.99 0.95 0.91 0.98 0.94
Class 1 0.98 0.78 0.87 0.89 0.61 0.73

TkC-WIKI Class 0 0.93 0.99 0.96 0.91 0.97 0.94
Class 1 0.97 0.86 0.91 0.84 0.61 0.71

Table 3.7 – Frequency of Clinical Notes by Token Range (Development-Dataset)

Classes (L)
Number of

CNs

Correctly Predicted
Labels

TkC CnC

0 1 0 1 0 1

[27− 112) 55 38 55 31 41 24
[112− 197) 41 22 41 16 30 13
[197− 282) 20 5 19 4 16 2
[282− 367) 9 1 8 1 8 0
[367− 452) 4 2 4 2 3 1
[452− 537) 6 0 6 0 6 0
[537− 622) 3 0 3 0 3 0
[622− 707) 1 1 1 1 1 0
[707− 792] 2 0 2 0 2 0

and a maximum of 586 tokens. It is important to note that min(l) = lstart and max(l) = lend −1,
denoted here by the symbol ‘`’. In contrast, in the final class l = [1157, 1252], there is only
one note that has a minimum of 1,157 tokens and a maximum of 1,252 tokens, because, in
this case, max(l) = lend , denoted by the symbol ‘`’̀.

Based on Tables 3.7 and 3.8, we noticed that the CnC loses the ability to predict
falls as the size of clinical notes increases in the case of the Development-Dataset. But in
the case of the Evaluation-Dataset, the model rated almost every note as 0, resulting in the
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Table 3.8 – Frequency of Clinical Notes by Token Range (Evaluation-Dataset)

Classes (L)
Number of

CNs

Correctly Predicted
Labels

TkC CnC

0 1 0 1 0 1

[17− 112) 930 283 912 190 921 1
[112− 207) 591 128 573 87 583 0
[207− 302) 281 41 264 29 280 0
[302− 397) 56 11 54 8 56 0
[397− 492) 22 6 21 3 22 0
[492− 587) 19 4 18 1 19 0
[587− 682) 8 3 8 3 8 0
[682− 777) 4 1 4 1 4 0
[777− 872) 1 0 1 0 1 0

[872− 1157) 0 0 - - - -
[1157− 1252] 1 0 1 0 1 0

identification of only one fall event. The data in Tables 3.7 and 3.8 also shows that the TkC
maintains its ability to identify falls as the clinical notes grow in size.

In addition to the resulting metrics, we also analyzed some of the classifications
made by the TkC and CnC. We selected some fragments of clinical notes, as can be seen
in Table 3.9. The first column presents the original fragments in Portuguese and the second
column features the fragments translated into English. In both columns, the bold text means
which tokens the TkC has classified as a fall event. The CnC has no token classification.
Underlined texts are tokens annotated manually by nursing students.

In the sequence, the columns ‘TkC’, ‘CnC’, and ‘Class’ represent, respectively, the
predictions made by the TkC and CnC and the correct label. In the first example, the TkC
model can identify exactly the tokens that represent a fall event, but the CnC, in this case,
says there is no fall event. The same is true in the second example. In both examples,
there is no direct mention of the word Queda (in English, Fall). This makes it more difficult
to correctly classify the event; nonetheless, the TkC model was able to identify the fall. The
third example shows a clinical note that was not correctly identified by the TkC. Although
there was an explicit word — Queda (in English, Fall) — in the note, the CnC was able to
correctly identify and classify it. In the last example, both models were wrong about the
predictions.
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Table 3.9 – Fragments of Clinical Notes and Predictions Made by the TkC and CnC Models

Original Notes in Portuguese Translation into English TkC CnC Class

[...] Paciente informa que
escorregou no chão do banheiro
e acabou batendo a região lateral

esquerda da cabeça [...]

Patient reports that he
slipped on the bathroom
floor and ended up hitting

the left side of his head

1 0 1

[...] Paciente relata que quando
estava no banheiro as muletas

escorregaram caindo
sentado no piso [...]

Patient reports that when he was
in the bathroom, his crutches
slipped and he fell sitting

on the floor

1 0 1

[...] Refere dor no pé direito.
Teve queda com trauma [...]

He reports pain in his right foot.
He had a fall with trauma. 0 1 1

[...] Teve queda no banheiro,
encontramos paciente no chão.

Refere ter batido a
cabeça na parede. [...]

There was a fall in the bathroom,
we found the patient on the floor.

He said he hit his
head against the wall.

0 0 1

3.4 Chapter Conclusion

Results of this study point to the validity and feasibility of the classification method
to detect fall events in clinical notes. We were able to discern fall incidents with minimal error
using natural language processing (NLP) features, without the need for specialized software
to process the texts in this dataset.

Biomedical-domain word embeddings (EHR-Notes) prove to be the best language
model for fall detection. Despite this result, general-domain NILC could also be a proper
alternative in datasets with a lower density of clinical notes (not enough text to train word
vectors).

In the next chapter, we evaluate the potential of unsupervised learning in hospital
environments. The algorithm uses historical data to assist pharmacists in the prioritization
of medication reviews. This approach enables machine learning to find outlier prescriptions.
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4. PRESCRIPTION PRIORITIZATION USING UNSUPERVISED
LEARNING

Hospital pharmacy tasks vary from medication dispensing, administrative work, dis-
cussion of clinical cases, and clinical pharmacy, among others (Doloresco and Vermeulen,
2009). An important activity performed by the clinical pharmacy department is medication
review, which aims to improve patient outcomes and reduce adverse events. One way of
achieving these goals during this process is reducing the prescription errors, commonly
present in the hospital environment (Bond and Raehl, 2007).

Due to the large number of prescribed medications in a hospital, clinical pharma-
cists must prioritize prescription reviews for patients with potentially more prescription errors
or critical conditions. The prioritization task uses several risk factors for the early detection
and prompt management of high-risk patients in clinical settings. Risk factors include drug-
related risks (e.g., drug-to-drug interactions) and patient-related risks (e.g., acute kidney
injury) (Alshakrah et al., 2019).

A study performed by Ashcroft (Ashcroft et al., 2015) revealed that errors in pre-
scribing are a common issue in the healthcare process, affecting around 9% of all medi-
cation orders. Although not all of these errors put patients’ lives at risk, a harmless error
could lead to undesirable side effects and affect patients’ confidence in their medical treat-
ment. Along these lines, a global campaign to prevent medication errors was launched by
the World Health Organization to highlight the importance of this subject for the quality of
healthcare (Sheikh et al., 2017). This particular campaign aims to significantly reduce the
indices of severe and harmful medication errors in the next five years.

In this study, we aim to reduce medication errors by ranking the prescriptions based
on their rareness. We used past data from electronic records to map the most common way
physicians prescribe each medication. We propose an unsupervised algorithm based on
graph models to automatically learn the threshold between normal and abnormal doses for
each medication in electronic medication orders, highlighting potential misuses. The node
centrality score is one of the features used to solve this task (Akoglu et al., 2014). This
context-aware characteristic is crucial since there are many different prescribing practices
in the world (Baldwin et al., 2012). To the best of our knowledge, there is no previous
study addressing the automatic detection of wrong dosages and frequencies (posology) for
medications in electronic prescriptions.
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4.1 Related Work

Electronic and manual prescriptions have been compared by researchers, and it
has been found that electronic records alone may not reduce prescription errors. More
advanced systems with posology checks are needed to mitigate potentially harmful er-
rors (Gandhi et al., 2005). However, to the best of our knowledge, electronic prescriptions
have not been exploited to detect medication errors concerning dose and daily frequency.
Studies mostly focus on mitigating prescription errors by creating better systems that, for ex-
ample, calculate the right unit for the medication (Okanda and Kanyaru, 2014) or that reduce
medication errors by using patient histories (Agrawal, 2009, Kopp et al., 2006).

(Park et al., 2017) created a probabilistic graphical model to extract patterns from
large prescription data and then showed divergent patterns in prescriptions for the same
diseases. (Nangle et al., 2017) employed electronic prescription messages to extract the
quantities, units, and frequencies of drug doses from freely-typed texts, with the aid of nat-
ural language processing techniques. Alternatively, drug information from several sources
is used to avoid drug side effects in prescriptions. Reps et al. developed a system that
combines different methods and sources to provide side effect alerts when prescribing med-
ications (Reps et al., 2014).

In terms of detecting prescription errors, three previous studies mitigated this is-
sue. (Hauskrecht et al., 2013) used historical EHR data (e.g., laboratory tests, medication
orders, and procedures) to develop a system that is able to detect outlier actions for a given
patient. One of the actions the alert system identified is a possible mistake regarding the
medication order. Besides, (Rash-Foanio et al., 2017) used the patients’ historical medical
orders and diagnostic claims as data to detect look-alike/sound-alike medication errors. Both
studies focus on possible medication mistakes considering only the name of the medication
itself, not taking dosage and frequency errors into account.

The only work addressing dosage outliers used a commercial piece of software
that tackles the problem to detect prescription errors (Schiff et al., 2017). This approach
evaluated medication dosage outliers using a machine-learned dosage distribution of the
medication in the population and/or the patient’s history. The paper, however, does not detail
the techniques. In our work, we propose an unsupervised method that uses graph centrality
to detect potential prescription errors regarding posology (prescribed dose and frequency)
based on data on prescription history.

Graph models have been employed for outlier detection in other domains. For in-
stance, (Muller et al., 2013) employed centrality algorithms to rank nodes based on their
centrality index to distinguish them between inliers and outliers. The same idea was suc-
cessfully adopted, for instance, to rank textual information of documents and automatically
create textual summaries that contain the most common words based on their centrality on
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a graph (Woloszyn et al., 2017a, Woloszyn et al., 2017b). Another approach in the graph
centrality field used a random walk on a graph to perform outlier detection (Moonesinghe
and Tan, 2008). It relied on computing the node similarity and the number of shared neigh-
bors between nodes. Afterward, they used a Markov chain model to compute the score for
each node of the graph. Nodes with lower scores were considered outliers.

The DDC-Outlier is an unsupervised method to detect potential prescription errors
regarding posology based on data on prescription history. Our approach is context-aware as
it uses hospital historical data to perform outlier prediction. In the next section, we introduce
the Density-Distance-Centrality (DDC) outlier algorithm.

4.2 Outlier Detection in Prescriptions

This section details the experiments performed in this work to evaluate the outlier
detection in prescriptions. First, we describe the proposed algorithm and the intuition behind
it. Then we describe the dataset used in the experiments and the pre-processing of the data.

4.2.1 Materials and Methods

The intuition behind the Density-Distance-Centrality (DDC) is that the detection of
medication outliers can be regarded as the problem of finding groups of low-density and
low-similarity prescriptions among other prescriptions. Low density, in this sense, is an
uncommon prescription, rarely prescribed historically; and low similarity is a prescription
like any other regarding posology (prescribed dose and frequency). To solve this problem,
our approach relies on the concept of graph centrality to rank prescriptions according to their
centrality index. Overdoses or underdoses are probably prescriptions whose centrality score
lies below a mean centrality index for each medication.

The main step to compute prescription outliers is how to represent each prescrip-
tion in the vector space. Here we fit each prescribed medication into a bi-dimensional vector
with the daily posology. Since each medication/presentation is used in its own way, regard-
ing dosage and frequency, the graph is built considering each medication/presentation (e.g.,
Omeprazole 20 mg and Omeprazole 40 mg dispersible tablet belong to different graphs).

We represent the relationship between prescriptions as a graph, in which the ver-
tices are the prescriptions (e.g., Omeprazole 20 mg: 40 mg twice a day) and the edges are
defined in terms of the similarity between a pair of prescriptions. We define the similarity
function as the pairwise similarity between the bi-dimensional vectors (dose and frequency).
The pairwise similarity accepts any pairwise metric, discussed in Section 4.2.3. We hypoth-
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esize that a normal prescription has a high centrality index since it is similar to many other
prescriptions.

Let P be a set of prescriptions for a specific medication and p ∈ P a tuple 〈d , f 〉,
where p.d represents the dose of the medication and p.f the daily frequency that the physi-
cian prescribed for their patient. First, the DDC builds a distribution list for this medication
D counting the frequency of the tuple 〈d , f 〉. Then, the DDC builds a graph representation
G = (V , E), where V is the unique posology (dose and frequency) and E is the set of edges
that connects pairs 〈u, v〉 where v , u ∈ V . In the next step, it uses Weighted PageRank to
calculate the centrality scores for each vertex. Finally, considering the mean centrality score
as the outlier threshold, the DCC generates the outlier list, where each prescription above
or equal to the threshold is assigned as an inlier and all those below are considered outlier
prescriptions.

Algorithm 4.1 - DDC-Outlier Algorithm (P, α): O
- Input: a set of prescribed medications P, the frontier threshold α.
- Output: list O containing the computed outlier value for each prescription ∈ P, 1 for inlier
and -1 for outlier prescriptions.

1: D ← 0
2: for each p ∈ P do
3: D[p.d , p.f ]← +1
4: end for
5: for each u, v ∈ D do
6: W [u, v ]← similarity(u, v )
7: end for
8: C ←WeightedPageRank(W , D)
9: E ← mean(C)

10: for each p ∈ P do
11: if C[p.d , p.f ] ≥ E ∗ α then
12: O[p]← 1
13: else
14: O[p]← −1
15: end if
16: end for
17: Return O

The pseudo-code of the DDC is displayed in Algorithm 4.1, where G is represented
by an adjacency matrix W . In the remainder of this section, we detail the process to obtain
the centrality index for each posology.
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4.2.2 Weighted PageRank Centrality

To compute the centrality of each prescription, the DDC relies on PageRank (Page
et al., 1999), which considers each edge as a vote to determine the overall centrality score
of each node in a graph. However, as in many types of networks, not all relationships are
considered of equal importance. The premise underlying PageRank is that the importance
of a node is measured in terms of both the number and the importance of the vertices it
relates to.

In one extension of PageRank, the algorithm takes into account the importance
of both the inlinks and the outlinks of the nodes (Xing and Ghorbani, 2004). In another
extension, the authors of PageRank adopted a more realistic and less democratic stance
by using a better (and more flexible) perturbation matrix, where the "personalization" vector
vT > 0 is a probability vector that allows non-uniform probabilities of teleporting to particular
pages (Langville and Meyer, 2005).

Our approach uses both extensions — weighted links and weighted nodes — to
compute the centrality score of prescriptions. The Weighted PageRank function is given by:

WPR(u) =
∑
v∈Bu

W (v , u)
WPR(v )

Nv
(4.1)

where Bu is the set containing all neighborhoods of u and Nv represents the number of
neighborhoods of v . Besides, W (v , u) is the weight of the outlink from v to u.

The intuition behind using PageRank in the DCC is that the more a prescribed
medication is connected to prescriptions that are highly similar to other prescriptions, the
more representative it is in the distribution of prescriptions.

4.2.3 Pairwise Metric

The DDC-Outlier algorithm could be used with any pairwise metric. The intuitive
metric to gather similar prescribed medications is the cosine similarity. In our experiments,
we also analyzed other metrics to evaluate our algorithm to detect prescription outliers.

• DDC: cosine similarity between instances;

• DDC-C, Cosine: cosine distance between instances;

• DDC-J, Jaccard: a statistic used to compare the similarity and diversity of sample sets;
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4.2.4 Source of Prescription Data

The dataset was obtained from Hospital Nossa Senhora da Conceição (HNSC).
The database contains 240,000 Computerized Physician Order Entries (CPOE) entered be-
tween January and September 2017. All records concern prescriptions, with 2 million medi-
cations prescribed to 16,000 patients. Most patients were born between the 1950s and the
1990s and were treated through the Brazilian public healthcare system.

HNSC belongs to the public healthcare system in Brazil, and, as a standard proce-
dure, the hospitals in the public hospital environment always use generic names for medi-
cations (regardless of the brand acquired, the name registered in the system is the name of
the active principle).

Each prescription record has the following information: the patient’s register num-
ber, date of prescription, name and presentation of the medication, dose, route, frequency,
and a free-text comment field. In our experiments, we only used the posology (dose and fre-
quency) of each medication/presentation. In the next section, we detail the pre-processing
tasks performed over this data.

4.2.5 Pre-Processing of Prescriptions

We noticed that there was noise in the raw data provided by the CPOE, requiring
data cleansing to ensure good data quality in the experiments. Therefore, we performed the
four pre-processing tasks described below.

Unit Table

Some prescribed medications are presented in milligrams and others, in grams. To
avoid errors in the quantity, we set a standard unit for all medications. Then we listed all dose
units used by the physicians in the CPOE and defined a factor to multiply the non-standard
units.

Frequency Table

In the CPOE, each physician describes the frequency in different ways. We stan-
dardized it to a daily frequency: 3 times a day (3), once a day (1), 6 times a day (6). This
included terms such as “twice a day" (2), “6h/6h" (4), and “3x/day with a meal" (3).
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Dosage Table

For validation purposes, we included the daily maximum and minimum doses for
345 prescribed drugs in the dataset, following two evidence-based references: Micromedex® (So-
lutions, 2017) and UpToDate® (LLC, 2017). Medications with no daily maximum and mini-
mum doses were not included in the experiments.

Medication Pruning

Following the methodology proposed by (Emmott et al., 2013), medications with
less than 1,000 records were discarded. Besides, when the number of candidate anomalous
data points was small, we excluded the medication. We chose to discard medications with
less than ten outlier observations due to insufficient support.

4.2.6 Prescriptions Stats

After performing all the described pre-processing tasks, 51 medications remained
in our dataset, with a total of 563,000 records. Each medication has a particular distribution
of prescriptions: some of them are used only for disease treatments; others, only to reduce
symptoms; while others are intended for prophylactic use. These characteristics allow a
wide evaluation of the proposed algorithm regarding a variety of prescription scenarios. In
Table 4.1, we show the overall statistics concerning the prescriptions issued at HNSC.

Table 4.1 – Prescription Dataset

Total Prescribed Medications 563,171
Overdosed Prescribed Medications 6,666
Underdosed Prescribed Medications 4,868

The large number of prescriptions (1,000 per day) hinders the screening process
performed by the department of pharmacy services. Despite their efforts, there were more
than 6,000 overdosed and almost 5,000 underdosed prescriptions in 2017. This scenario
shows the importance of an automated system that is able to identify prescription outliers.

Figure 4.1 shows an example of the resulting data on the drug Acyclovir tablet. This
reveals a typical distribution, featuring some of the most common uses of this medication in
the hospital, such as 200 mg three times a day and 400 mg three times a day. Besides,
there are unusual prescriptions, such as 400 mg Acyclovir six times a day. The only points
that are considered outliers for Acyclovir are the red ones, with prescriptions for 800 mg six
times a day as an overdose and 200mg once a day as an underdose.
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Figure 4.1 – Prescription of Acyclovir 200 mg tablet, where diameter size means how many
times this pair (dose, frequency) is prescribed. Blue points mean normal prescriptions and
red points indicate outliers.

All infrequent dosages of the prescribed medication, represented by small circles,
could be potential medication mistakes and could be highlighted by the department of phar-
macy services for additional verification.

4.2.7 Data Sharing

All the content of the work (algorithm, sample dataset, and experiments) is avail-
able on the GitHub Page1 of the project in order to be easily replicated. The sample dataset
has no patient data; it contains only a subset of the medication dataset (150,000 real pre-
scriptions), with information on the dose, frequency, overdose, and underdose.

In the next section, we detail the experiments using the information on the maxi-
mum and minimum doses concerning the medications.

4.2.8 Experiments

In order to evaluate the performance of our proposed approach, we designed a task
for each medication in the prescription dataset. The task consisted of identifying overdoses,
that is, medications prescribed above the maximum daily dose specified in the literature,
and underdoses, when the dose is below the lowest daily dose in the literature (regardless
of indication).

1https://github.com/nlp-pucrs/prescription-outliers
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Our experiments followed the methodology proposed by (Emmott et al., 2013):

• Top-3 rankings: it shows the number of medications in which each algorithm appeared
in the top-3 algorithms when ranked by F-measure;

• Parameter search: all analyzed algorithms require a threshold parameter. We em-
ployed parameter search to find the best parameters to maximize the hits (as described
below, in Section 4.2.11). In all cases, we made a good faith effort to maximize the per-
formance of all methods.

4.2.9 Baseline

To evaluate our approach, we selected several state-of-the-art unsupervised meth-
ods as the baselines used to detect outliers (Han et al., 2011), as explained below:

• One-Class SVM: it was introduced by Schölkopf et al. It requires the election of an
SVM kernel and a scalar parameter to define the frontier of outlier instances. Here we
chose the RBF kernel, which better fits our experiments (Schölkopf et al., 2001).

• Local Outlier Factor: it computes a score reflecting the degree of anomalous in-
stances. It measures the local density deviation of a given data point with respect to
its neighbors. The idea is to detect the samples that have substantially lower densities
than their neighbors (Breunig et al., 2000).

• Gaussian Mixture: it is a probabilistic model that assumes all the data points are
generated from a mixture of a finite number of Gaussian distributions with unknown
parameters (Agarwal, 2006).

• Robust Covariance: assuming that the inlier data is Gaussian distributed, it will esti-
mate the inlier location and covariance in a robust way (i.e., without being influenced
by outliers). The Mahalanobis distances obtained from this estimate are used to derive
a measure of outlyingness (Rousseeuw and Driessen, 1999).

• Isolation Forest: it isolates the observations by randomly selecting a feature and then
randomly selecting a split value between the maximum and minimum values of the se-
lected feature. Random partitioning produces noticeably shorter paths for anomalies.
Hence, when a forest of random trees collectively produces shorter path lengths for
particular samples, they are highly likely to be anomalies (Liu et al., 2008).
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4.2.10 Performance Metrics

The task of detecting outliers is a classification with a class imbalance problem,
where the main class of interest is rare. That is, the dataset distribution reflects a significant
majority of the negative class (non-outlier prescriptions) and a minority of the positive class
(overdosed and underdosed prescriptions). Therefore, choosing the right performance met-
ric is essential to correctly evaluate all methods concerning this problem. In this regard, we
briefly describe the most common metrics to evaluate binary classifiers (Han et al., 2011):

• Accuracy: the percentage of instances labeled as the correct class (positive or nega-
tive);

• Recall: a measure of completeness (i.e., what percentage of positive instances is
labeled as such);

• Precision: it can be thought of as a measure of exactness (i.e., what percentage of
instances labeled as positive is actually positive);

• F-Measure: it corresponds to the harmonic mean between precision and recall.

• Top-3 Rankings: whenever the algorithm ranked among the top 3 regarding F-measure.

An algorithm that predicts that most instances belong to the negative class (not
medication errors) in an imbalance problem could have a high accuracy score, but it is
useless to predict the aimed positive class (medication errors). Conversely, an algorithm
that predicts that all instances relate to the positive class will have a high recall, but it is
unable to distinguish between positive and negative instances. For this reason, we selected
F-measure as the main metric to evaluate the performance of outlier algorithms. The F-
measure gives equal weight to precision and recall, both important to evaluate the task of
detecting overdosed and underdosed prescriptions.

4.2.11 Parameter Tuning

All outlier algorithms analyzed were sensitive to the parameter that defines the
frontier between normal and abnormal observations (Xie, 2006). Besides, each type of
medication has its own distribution, making the frontier particular for each drug. To ensure
the best F-measure, we performed a simple parameter search, varying it for each algorithm
and each medication. In all cases, we made a good faith effort to maximize the performance
of all methods.



47

All algorithms allow only a specific range for the frontier parameter (some call it a
contamination parameter). Below we list the interval searched for each set of algorithms:

• For Local Outlier Factor, Isolation Forest, and Robust Covariance, the search ranges
from 0.01 to 0.5;

• For One-Class SVM, Gaussian Mixture, and DDC, the search ranges from 0.01 to 1.0.

• For every algorithm, we applied a 0.01 step between intervals.

4.3 Results

In this section, we discuss the evaluation of the DDC with regards to the adopted
baselines in terms of detecting overdoses and underdoses for all 51 medications. We also
address the results of the stability of the algorithm regarding its parameter search and its
run-time performance.

In Table 4.2, we show the overall results of all algorithm-detecting overdosed and
underdosed outliers for the 51 medications. The DDC-J, density-distance-centrality using
the Jaccard similarity, achieved the best mean F-measure and ranked among the top 3. The
Isolation Forest and the DDC using the cosine similarity also achieved good results, both
remaining in the top-3 ranking for more than 20 medications.

Table 4.2 – Mean Performance of Outlier Detection.

Algorithm Recall Precision F-Measure Top 3 ↑
DDC-J 0.90 0.61 0.68 31
Iso. Forest 0.91 0.52 0.61 26
DDC 0.86 0.50 0.58 21
SVM 0.94 0.39 0.48 20
DDC-C 0.72 0.54 0.51 19
Covariance 0.60 0.37 0.39 16
Gau 0.95 0.29 0.37 13
LOF 0.87 0.38 0.44 12

When counting the best methods, the top-3 ranking discarded the F-measure when
it stood at less than 0.4. Besides, all methods are counted in the top 3 when there is a tie in
the third position.

Covariance, Gaussian Mixture, and Local Outlier Factor had the worst performance
regarding F-measure. Furthermore, these three algorithms achieved lower results in the
top-3 ranking. Since each medication has its own outlier distribution, some algorithms work
better for some medications, but the DDC-J had the best overall result.
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Figure 4.2 – Distribution of F-measures obtained in the top-3 algorithms for all 51 medica-
tions. Solid lines are the medians and dash lines are the means.

In Figure 4.2, we show the distribution of the F-measures for all medications in each
of the top-3 algorithms in Table 4.2. The DDC-J also had lower variation in comparison with
the Isolation Forest. In the following section, we cover some insights about the run-time of
the algorithms.

4.3.1 Evaluation of the Run-Time

Some anomaly detection algorithms are very time-consuming when the dataset is
greater than 10,000 instances. We developed an experiment to evaluate the time perfor-
mance of the algorithms. We selected 2 (two) medications with 30,000 instances, ran every
algorithm from 3,000 to 30,000 instances with 3,000 steps, and computed the time spent on
these medications.

For the task of detecting outliers in a large historical dataset, the DDC algorithm
has an important scalability property to perform this analysis. Figure 4.3 shows that the time
consumption of the One-class SVM and Local Outlier Factor is exponential when the data
size grows. The time in seconds is represented in a log scale on the y-axis. This experiment
shows that these algorithms are not fit for big data analysis.
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Figure 4.3 – Run-time comparison between the DDC and baselines for two medications with
30,000 instances.

4.3.2 Stability of the Algorithm

The frontier is a sensible parameter that needs to be set in outlier algorithms. With
this aspect in mind, we performed an experiment to evaluate the stability of the frontier
parameter for each algorithm.
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Figure 4.4 – Influence of the threshold parameter on the F-measure results for the top-3
algorithms
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In Figure 4.4, we show the mean F-measure considering all parameters for each
top-3 algorithm in Table 4.2. Regarding the DDC-J, it presents the lowest variation using all
possible values for the α parameter. Nevertheless, when α > 0.1, it achieves the best results
in comparison to the baselines. In regard to the DDC, it achieves better results when α >

0.9.

4.3.3 Parameter Regression Estimation

All outlier algorithms are very sensitive to their parameters for each kind of dataset.
To tackle this problem, we performed a regression analysis considering several statistical
information on the medication distribution to estimate the best parameter.

The following statistics were used in the regression analysis: mean, standard devi-
ation, median, and percentile at 20, 50, and 75. All statistics were computed across dose,
frequency, and both (dose and frequency). The best parameter found for each algorithm
was used as the regression target.

Despite all regression algorithms evaluated and the efforts to combine specific sets
of medications, the parameter obtained in the regression drastically decreased all algorithm
performances regarding the F-measure in overdose/underdose experiments.

4.3.4 Quality Evaluation

Qualitative assessments were performed by a pharmacist, and the different rea-
sons why a prescription might be outside the pattern were investigated. The F-measure
considered only overdoses/underdoses as true positives. Therefore, a more thorough anal-
ysis was required to assess the other cases of outliers. The algorithms could detect other
prescriptions to be improved by the department of pharmacy services. In the list below, we
included a few examples of prescriptions detected by the algorithms; they were not over-
doses/underdoses, but their singularity indicates other problems that should also be avoided
and could be reviewed by double-checking.

• Prescriptions with more suitable presentations for the prescribed dose. It was not nec-
essary to split tablets or even dispose of medications unnecessarily (e.g., Amlodipine
10 mg, 5 mg prescribed — Amlodipine 5 mg was available at the hospital);

• Prescriptions whose right dose is difficult to administer (e.g., Levothyroxine 100mcg, a
dose of 88 mcg was prescribed);

• Prescriptions with an unusual frequency (e.g., Meropenem 2g once a day)
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• Unusual frequencies, making compliance difficult (e.g., Hydralazine 50 mg 6x/day);

• Unusual doses (e.g., Allopurinol 600 mg once a day);

• Half-dose prescriptions of medications that should not be split (e.g., Hydralazine 50
mg, with a 25 mg dose prescribed).

The performance of the algorithms, in general, regarding the outlier detection of
drug prescriptions with a homogeneous distribution of prescriptions (e.g., Doxazosin tablet,
Enalapril 20 mg tablet — Figure 4.5), was better than for drugs with a more sparse distri-
bution of prescriptions — dose x frequency (e.g., Potassium chloride oral solution, Carba-
mazepine oral suspension — Figure 4.6).
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Figure 4.5 – Prescription of Enalapril 20mg cp, where blue points mean normal prescriptions
and red points indicate outliers.
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Figure 4.6 – Prescription of Carbamazepine 20mg/mL oral suspension, where blue points
mean normal prescriptions and red points indicate outliers.

In addition to being better in the outlier detection of prescriptions by assessing the
F-measure (with overdoses/underdoses as true positives), the DDC-J algorithm was also
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able to detect more cases like those described above. Therefore, the algorithm proved to be
suitable to generate warnings for double-checking, improving prescriptions, and providing
greater safety for patients. The DDC-J obtained a good recall but poor precision (for cases
of overdoses/underdoses); however, this characteristic allows it to select more prescriptions
that are potentially incorrect or likely to be improved.

4.3.5 Limitations

Our experiments focused on the ability of the proposed algorithms to detect outlier
instances among hospital prescriptions. However, any approach that seeks medication er-
rors isolating the drug from the prescription, as we do, inherently has some limitations. For
example, drug-to-drug interactions and duplicated/redundant therapy problems must use all
prescription data to handle this task. Therefore, our method should be construed as part of
possible mistakes in prescriptions.

Some medications are usually prescribed taking into account patient weight. In that
case, the outlier algorithm should use patient information to detect relative overdoses/underdoses
considering each patient’s characteristics. Nonetheless, because of the simplicity of the pre-
processing pipeline and the lack of information on patients’ weights in the HNSC dataset,
we discarded any medicines that depend on body weight.

Another limitation of our study is the outlier assumption in our experiments. All eval-
uation analyses set overdoses/underdoses as the only type of outlier problem in medication
errors. Nevertheless, in a future experiment, an annotated dataset could be used to evaluate
other kinds of outliers, such as potential errors.

Finally, the outlier detection is not intended to assess prescribing associated with
diseases or clinical conditions of patients, but only to alert pharmacists of critical prescrip-
tions that may contain an error. Non-standard prescriptions are reassessed by pharmacists,
who may consider whether there is an error or only an unusual dose that is acceptable for
the specific condition of that patient. It is a tool to help and to set priorities so that clinical
pharmacists can focus on their activities.

4.3.6 Chapter Conclusion

A novel algorithm was developed to identify prescription outliers in electronic med-
ical records. This algorithm can rapidly create a distribution pattern in a graph structure to
detect anomalous prescriptions. A comparative experiment was conducted with five state-
of-the-art algorithms to detect overdosed/underdosed prescriptions. Moreover, a qualitative
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analysis indicated the proposed method with Jaccard similarity as the best approach to han-
dle potential prescription errors.

There is a great advantage for the algorithm to learn the distribution of the insti-
tution’s prescriptions. These characteristics allow the use of this method anywhere in the
world with drug-specific standardization, self-adapting to the specifics of each hospital and
being able to be automatically updated.

In the next chapter, we cover a real-scenario use of the DDC-Outlier. This experi-
ment was performed in a 1,200-bed hospital with diverse patient comorbidities and profiles.
Such an environment could evaluate the ability of the algorithm to improve medication review
by pharmacists.
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5. PRESCRIPTION PRIORITIZATION APPLICATION AND
EVALUATION IN A REAL SCENARIO

In this chapter, we show how using the DDC-Outlier algorithm can help pharma-
cists prioritize prescriptions in a hospital environment. These findings are useful to better
understand the performance of the DDC-Outlier in a real-world scenario. The pharmacists
reviewed the classification of the algorithm for each posology (dose x frequency) of sev-
eral medications. The primary goal of this evaluation is to measure the usefulness of the
algorithm in clinical practice.

5.1 Materials and Methods

This section describes the hospital prescription dataset used in this evaluation, the
changes in the algorithm’s output to suit the pharmacists’ needs, and the design of the
experiment to evaluate the DDC-Outlier.

5.1.1 Hospital Santa Casa

We developed an evaluation in partnership with Hospital Santa Casa, from the city
of Porto Alegre. Santa Casa is a hospital complex consisting of 7 hospitals, 33 departments,
and 75 medical specialties, totaling 1,200 beds. The evaluation was developed in all hospital
units, comprising adult, neonatal, and pediatric patients.

The data relates to the period from August to December 2020 and considered
24,702 prescriptions reviewed by the hospital’s pharmacists. During this period, five phar-
macists and two pharmacy students conducted medication reviews at the hospital.

Table 5.1 – Summary of the Dataset

Profile Prescriptions ↑ Medications Patients
Adult 21,810 629 1,805
Pediatric 2,139 260 137
Neonatal 756 80 108

Table 5.1 summarizes the data analyzed by the pharmacists in each patient profile.
Regarding the profiles, neonatal patients vary from 0 to 2 years old; pediatric patients are
aged between 2 and 17 years; adult patients are over 18 years old.
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5.1.2 DDC-Outlier Score

In the previous chapter, the algorithm DDC-Outlier used only two classes as out-
put. To present these outputs to the pharmacist, instead of considering only a binary output,
we developed an outlier score scale that better classifies the prescribed medications. The
score ranges from 0 to 3, where 0 (zero) is a common prescription and 3 (three) is the most
abnormal prescription. This score is provided to the pharmacists when they review the med-
ication chart, enabling them to rely on more options to review the prescribed medications.
The distance metric used in these experiments was the Jaccard similarity, as it achieved
better results in the outlier detection task in Chapter 4. The DDC-Outlier Score is defined by
the following Equation 5.1:

s′ = abs(round(
(x −min(x))(3)

max(x)−min(x)
− 3)) (5.1)

For each medication, the Pagerank output is split in half using the mean measure
of the PageRank index. All samples above the mean are considered inliers (most common
prescription), with a score of 0. Then, Equation 5.1 is used to define the score of the outliers
from 1 to 3.

The source code of the DDC-Outlier API was made available on the GitHub page
1 of the project. The code is an API Service that could be deployed and used by hospital
health information systems to classify prescribed medications.

We developed a system to assist the pharmacists in the daily work of the clinical
pharmacy. The following section describes the decision support system for clinical pharmacy
deployed in Hospital Santa Casa.

5.1.3 Decision Support System for Clinical Pharmacy

The DDC-Outlier API can identify prescription errors, but pharmacists would not be
able to use an API. To fill this gap, we developed a Decision Support System for Clinical
Pharmacy that wraps the DDC-Outlier in a web user interface. We designed the system in
collaboration with a clinical pharmacist and a physician. One year of medication prescription
history was used to compute medication outliers.

The pharmacists can change the outlier score in the system if they think the score
is not appropriate. They adjust the score to a value aligned with the best clinical practices
and literature on medications. These actions were performed during the pharmacists’ daily
work routine. We tracked the changes to evaluate the accuracy of the DDC-Outlier Score.

1https://github.com/nlp-pucrs/ddc-api
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In this hospital, pharmacists developed a protocol to classify the prescribed medica-
tions related to the outlier score. The protocol below was a reference to guide the evaluation
of the score by the pharmacists:

• Score 0: Common prescription, according to the hospital’s standard;

• Score 1: Depending on the patient’s clinical condition and posology, similar to the
hospital’s standard;

• Score 2: Depending on the patient’s clinical condition and posology, likely to be a
prescription error;

• Score 3: Possible prescription error or dose above the maximum allowed by the litera-
ture;

We named the decision support system NoHarm.ai in a reference to a patient
safety challenge developed by the World Health Organization called Medication Without
Harm (Sheikh et al., 2017). The system integrates with hospital electronic health records
(EHRs), allowing pharmacists to access the EHR data in real time. NoHarm.ai is an open-
source software available on GitHub2. In the next section, we detail the pre-processing step
performed in some specific medications.

5.1.4 Range- and Weight-Based Dosing

Regarding the posology, the DDC-Outlier works better when the number of possible
posologies of a given medication is low and the density is high in very few of them. However,
the number of possible posologies (dose and frequency) for some medications, such as
liquid and weight-based drugs, is high and the density of most of them is low, thus worsening
the performance of the algorithm. For instance, Dipyrone pills can be prescribed in doses
of 500 mg, 1000 mg, 1500 mg, and 2000 mg and with a daily frequency that ranges from
1 to 6. Alternatively, there are several possible dosages for the morphine sulfate solution
for injections: the doses range from 0.1 ml to 500 ml (with steps of 0.1 ml) and the daily
frequency varies from 1 to 24.

Moreover, some medications are prescribed based on the patient’s weight. In this
case, the DDC-Outlier should also group the doses of weight-based medications. For in-
stance, the weight-based protocol for Heparin suggests the prescription of 15 U/kg per hour.

With that in mind, we grouped the doses in ranges of values to reduce the number
of cases and increase their density. The system enables pharmacists to choose whenever
the medication should be grouped in dose intervals to reduce dose distribution or whether
the medication is weight-based.

2https://github.com/noharm-ai
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Table 5.2 – Medications with Range- and Weight-Based Dosing

Profile Regular Medication Range-Based (Weight-Based) Total ↑
Adult 496 133 (127) 629
Pediatric 126 134 (128) 260
Neonatal 31 49 (48) 80

In Table 5.2, we show the distribution of medications with range-based dosing and
weight-dependencies for each profile of patients in the hospital’s dataset. In the pediatric
and neonatal profiles, almost half of the medications had to be converted into smaller dose
distributions. All medications with weight-based dosing are also considered range-based
regarding their dose distributions. The weight-based dosing criterion of a given medication
is found in the pharmaceutical literature, and ]pharmacists use this information to configure
this setting in the system. Conversely, the dose range is chosen by the pharmacists by
analyzing the dose distribution of each medication. We evaluated the correlation between
the dose range and several statistical information on doses, but no correlation was found so
far.

5.1.5 Design of the Experiment

As explained above, pharmacists can change the score assigned to the posology of
each medication in the system if they do not agree with the score assigned by the algorithm.
To evaluate the performance of the DDC-Outlier Score, we used the data generated when
the pharmacists changed each score. The score is assigned to the posology (dose and
frequency) of each medication. When pharmacists change the score suggested by the
algorithm and assign a manual score, we consider that the score of the posology is a false
positive. In other words, the algorithm was not able to properly assign the score. In Figure
5.1, we show how pharmacists change the score in the system interface.

To evaluate the performance of the algorithm, we only considered medication scores
that had at least one prescription reviewed by a pharmacist or that had been manually
changed. This selection avoids evaluating scores that were not reviewed by the pharma-
cists. Besides, pharmacists can whitelist some medications — such as glucose and sodium
chloride. As such, they are not reviewed because no dose is harmful to patients.
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Figure 5.1 – The figure shows the medication screen where pharmacists can change the
scores for each posology. The column "Score" shows the value assigned by the DDC-
Outlier algorithm. In column "Manual Score," the pharmacists can perform the change. The
columns "Dose" and "Daily Frequency" show the posology of the medication. The column
"Count" indicates the number of times the posology was prescribed in that hospital.

5.2 Results

This section discusses the evaluation of the DDC-Outlier Score. We used the man-
ual score, assigned by the pharmacists, as a gold standard to evaluate the outlier algorithm.
The scores (0, 1, 2, 3) are the classes used to determine if the algorithm matched the phar-
macists’ assessment. If the pharmacists did not change the score defined by the algorithm,
we considered that the algorithm correctly classified the posology outlier score. In contrast,
if the pharmacists changed the score, we considered that the algorithm incorrectly classified
the posology.

The dataset contained a total of 3,472 posologies that were reviewed by pharma-
cists with an average change to the scores of 11.3%. Table 5.3 presents the number of
posologies grouped according to the profiles. Additionally, the table shows the results for
the F-measure and mean absolute error (MAE) metrics. The F-measure is a metric that
corresponds to the harmonic mean between precision (number of instances labeled as pos-
itive that are actually positive) and recall (number of positive instances that are labeled as
positive). This provides us with a metric on how well the algorithm can achieve a balance
between making fewer mistakes while correctly classifying each target class. The mean ab-
solute error is a numeric value related to the error size: the smaller the result, the smaller
the distance between the true value and the predicted value. The ’Count’ column shows the
number of posologies evaluated for each profile. The ’Changes’ column shows the percent-
age of scores changed by the pharmacists.
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Table 5.3 – Results for Each Profile

Profile Medications ↑ Count Changes F-Measure MAE
Adult 629 2,630 12.6% 0.85 0.18
Pediatric 260 725 3.5% 0.94 0.07
Neonatal 80 117 17.9% 0.75 0.34

The overall F-measure of the DDC-Outlier in a real-world scenario surpasses 70%
in all profiles. From 3,472 scores generated by the algorithm, only 386 were changed. The
average mean absolute error for all profiles is 0.20, proving the stability of the algorithm
among several units and medication profiles.

It is important to state that the pediatric profile had a lower number of changes than
the other two profiles. This could demonstrate less attention from pharmacists to this profile.
In comparison with the adult and neonatal categories, the result of pediatrics seems to be
trustless. Even with more scores generated than in the neonatal category, the percentage
of changes was still smaller in the pediatric profile. A percentage of changes close to 15%
is expected in each profile, and pediatrics reached 3.5%. The adult profile covers more
hospital units than the other profiles and totals 21,810 reviewed prescriptions. This large
number of prescriptions is likely to produce more accurate results when compared to the
other profiles.

Table 5.4 – Detailed Performance for Each Profile and Score

Profile Scores Count Changes Precision Recall F-Measure MAE

Adult

Score 0 1,184 6.5% 0.96 0.90 0.92 0.05
Score 1 207 14.9% 0.88 0.73 0.79 0.12
Score 2 325 16.9% 0.86 0.81 0.83 0.22
Score 3 914 18.5% 0.83 0.98 0.89 0.36

Pediatric

Score 0 350 0.2% 1.00 0.95 0.97 0.00
Score 1 58 5.1% 0.94 0.88 0.90 0.05
Score 2 109 5.5% 0.94 0.97 0.95 0.09
Score 3 208 7.6% 0.92 1.00 0.95 0.17

Neonatal

Score 0 68 4.4% 0.98 0.85 0.91 0.01
Score 1 8 25.0% 0.75 0.60 0.66 0.25
Score 2 10 10.0% 0.90 0.69 0.78 0.01
Score 3 31 48.3% 0.51 1.00 0.67 1.12

Table 5.4 details the results for each score and each profile. For all scores and
profiles, the algorithms achieve an F-measure of over 65% and a mean absolute error of
less than 0.40 (except for the neonatal profile, with a score of 3).
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In the “Count” column in Table 5.4, we can see that the DDC splits data in half: 50%
inliers (Score 0) and 50% outliers (Scores 1, 2, and 3). This approach relates to Equation
5.1, which uses the mean measure of the Pagerank index as a parameter to split data into
inliers and outliers.

In addition to the performance results achieved by the DDC-Outlier Score, other
analyses could be made to better understand the algorithm. Figure 5.2 shows the confusion
matrix of the DDC for the scores of overall profiles.

Figure 5.2 – Confusion Matrix of the Scores of Overall Profiles

The confusion matrix clearly indicates that the DDC tends to penalize posology
outliers to a score of 3. Pharmacists commonly need to change a score of 3 to less critical
scores such as 2, 1, and 0. Particularly in healthcare, this behavior is important as it rarely
misclassifies high-scored prescriptions. For high scores, the DDC favors recall over preci-
sion, as shown in Table 5.4. In other words, the DDC-Outlier Score attempts to ensure the
correct classification of the posologies with high scores even if this leads to an overestima-
tion of posologies with lower scores.

The number of training samples is an important parameter that impacts the perfor-
mance of machine learning algorithms (Beleites et al., 2013). Figure 5.3 shows the relation
between the sample count, in log scale, and the F-measure of the DDC Score. After 10,000
samples (log (10K) = 4), the algorithm achieves its best result.

In the next section, we cover the journey of this real scenario experiment. We
use self-reflection and writing to explore our personal experience, following a method called
autoethnography (Mills et al., 2009).
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Figure 5.3 – Relation between Sample Count (log scale) and F-measure

5.3 Discussion

Our journey from research on health informatics to real-scenario applications started
with the conception of the project. It was crucial to collaborate with healthcare professionals
that deal with daily issues in a hospital environment. This proximity to real problems allowed
us to set the objectives of the project aiming at solutions that could impact the healthcare
system.

After the ethical committee approved the project, the hospital IT department promptly
released a 5-year dataset with clinical notes, laboratory exams, patient demographics, and
prescriptions. Then we focused our efforts on using the data to develop algorithms that solve
the chosen problems.

With the good results of the project (published articles and computer science awards),
we created a research group focused on solving healthcare problems using artificial intelli-
gence. The research group was the gateway for other hospitals to join the project and for us
to strengthen our relationships with other healthcare professionals.

The exchange of information with hospitals led us to understand the need to build
a system, not only an algorithm, to quickly deploy the solution. Hospital Santa Casa was a
great supporter of the deployment task. The pharmacy team and IT department provided a
reliable environment to validate the system.

Before the Decision Support System for Clinical Pharmacy was deployed in Hospi-
tal Santa Casa, the Clinical Pharmacy department was able to validate an average of 3,200
prescriptions per month and make 140 interventions that improved patient treatment. Since
the system was deployed (in April 2020), the pharmacists have been able to validate around
80,500 prescriptions and make 9,000 interventions.
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The improvements in pharmacists’ routines were reported in an online meeting held
by the Brazilian Hospital Pharmacy Society (Guglielmi et al., 2020), in August 2020, with the
staff of Hospital Santa Casa. Some testimonies given by the pharmacists are listed below:

• "The main barrier found to carry out the work of the clinical pharmacy was the time
necessary to validate the prescriptions. The system we used did not provide easy
access to patient information." Raquel Sinderman (39:50)

• "NoHarm presents the risks related to the prescription, summing up the score of each
medication. It is able to organize the validation of the clinical pharmacy." Tatiana Hoff-
mann (43:08)

• "We had this difficulty: we used a lot of screens, impacting the validation time. NoHarm
allows us to view a series of patient information on the same screen." Karoline Flach
(45:46)

• "We have already noticed a lot of improvement in our process using NoHarm." Karoline
Flach (47:57)

• "We can already see that the use of the tool is a very consistent strategy so that we
can achieve the goal of validating 100% of the prescriptions in the hospital. We have
already carried out some analyzes and found that we doubled our productivity in the
four months since the tool was implemented with the same number of pharmacists.
We had a great improvement in the number of prescriptions validated and also in the
quality of the validation. We noticed a big increase in the acceptance of interventions:
a jump from 16% to 75% of acceptance." Karoline Flach (19:12)

To the best of our knowledge, the evaluation of decision support algorithms in med-
ication review in real scenarios is rarely found in the literature. The results presented in this
experiment show a proper evaluation of how the DCC-Score performs in a hospital environ-
ment.

This chapter shows how to apply the machine learning algorithm developed in this
thesis to a real-world scenario. In the next chapter, we finalize the thesis with our conclu-
sions.
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6. CONCLUSION

In past decades, machine learning has been an essential computer science tech-
nique to predict and describe real-world instances. The amount of data and processing
power available enables the use of ML to solve problems in several areas. In this thesis,
taking advantage of the field of research and of the relationship between our group and sev-
eral hospitals, we tackled the problem of detecting adverse events in hospital environments.
This thesis works along these lines: developing ML applications and algorithms to mitigate
hospital adverse events.

We developed algorithms that could assist healthcare professionals in improving
patient safety. First, we used language models and deep learning to identify sentences with
fall events and highlight words that suggest fall events. We annotated thousands of clinical
sentences with fall events to train a Token Classifier (TkC) to detect words within the context
of falls. The model was able to correctly identify 85% of the sentences with fall events. This
result shows improvements from previous work (Luther et al., 2015, Topaz et al., 2019) in
number and quality: besides achieving a better F-measure (from 90% to 96%), our model is
able to explain the falls it detected. Our work advances in the task by using neural networks
and language models and exploring the Portuguese language. Nowadays, nurses need to
manually search for events in electronic health records. Our approach could be proactive:
it can alert nurses and could be extended to other adverse events. The challenge here
is to annotate several sentences of each adverse event to train the deep learning model.
The writing style of each hospital’s crew could lead to varied results and possibly require a
specific training corpus.

Second, we built an unsupervised algorithm that speeds up the medication review
process for clinical pharmacy departments. The algorithm we presented can rank outlier pre-
scriptions and help pharmacists in the screening task. Our approach uses graph structure
to measure the distance, density, and centrality of the posology of prescribed medications.
The DDC-Outlier, using Jaccard distance, correctly classifies 68% of prescribed medica-
tions. Our results benefit the field of medication errors by creating an approach that adapts
to the history of the medications in each hospital. Even though we only evaluated patient
data and the name of medications, the algorithm proved to be suitable for real application
(Chapter 5).

Finally, this thesis goes beyond an evaluation of the algorithm using historical data.
We integrated our knowledge of machine learning and with the expertise of healthcare ex-
perts. This type of endeavor takes time as there is a need to establish trust between all
parties (Mateen et al., 2020). Therefore, in collaboration with Hospital Santa Casa, we de-
ployed a clinical pharmacy system to improve pharmacists’ work. Pharmacists manually
review several prescriptions, compare literature on medications, and evaluate the clinical
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condition of patients. The promising results show that the DCC-Outlier was able to correctly
rank a variety of patient profiles. We developed the experiments in a 1,200-bed hospital with
a diverse patient profile.

During this Ph.D. thesis, we could observe that most researchers focus their ef-
forts on applying machine learning to patient treatment and diagnosis, which are consid-
ered critical activities. However, as we discussed herein, we believe that machine learning
algorithms may also provide significant benefits for other fields of healthcare, such as risk
management, a non-critical activity. It is easier for the machine to learn non-critical activities,
to deploy them in real scenarios, where they face less resistance. This allows professionals
to dedicate more time to other activities, where human knowledge is essential.

Additionally, to ensure better results in the application of machine learning in health-
care, professionals must be in the loop of the learning process (Wiens et al., 2019). With
humans as the gatekeepers of the decisions taken by algorithms, greater safety and im-
provements in patient outcomes are ensured.

6.1 Contributions

The contributions of this thesis cover both experiments: supervised and unsuper-
vised learning models were able to show improvements compared to state-of-the-art ap-
proaches. Besides advances in the field of computer science, this work also contributes to
the healthcare industry, enhancing nurses’ and pharmacists’ ability to identify patients’ risk
factors.

The main contributions of this work are the following:

• Overview of possibilities for non-critical decision support systems in healthcare in
Chapter 2;

• Use of explainable neural network algorithms to detect fall events in Chapter 3;

• Development of a new outlier detection algorithm to detect prescription errors applied
and evaluated in a real scenario in Chapter 4;

• Deployment and report of the use of an A.I. system in a real scenario: a hospital with
1,200 beds in Chapter 5;

• Publicly available A.I. system for Clinical Pharmacy on the GitHub page of the project
1.

1https://github.com/noharm-ai
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• Publicly available algorithms and datasets for reproducibility purposes on the GitHub
page of the research group 2;

6.2 Published papers, resources and awards

During this Ph.D. research, we wrote several papers related to healthcare and com-
puter science. The studies that cover the use of artificial intelligence in electronic health
records are listed below:

• dos Santos, H. D., Ulbrich, A. H. D., Woloszyn, V., & Vieira, R. (2018). DDC-outlier:
preventing medication errors using unsupervised learning. IEEE Journal of Biomedical
and Health Informatics;

• dos Santos, H. D. P., Ulbrich, A. H. D., Woloszyn, V., & Vieira, R. (2018, June). An initial
investigation of the Charlson comorbidity index regression based on clinical notes. In
2018 IEEE 31st International Symposium on Computer-Based Medical Systems;

• Nunes, R. O., Soares, J. E., dos Santos, H. D., & Vieira, R. (2018, July). MeSHx-Notes:
Web-System for Clinical Notes. In International Workshop on Artificial Intelligence in
Health;

• Quaini, T. E., dos Santos, H. D., de Abreu, S. C., Consoli, B. S. & Vieira, R. (2019,
October). A study on deidentification of clinical developments. In VI Scientific Initiation
Workshop on Information Technology and Human Language;

• dos Santos, H. D. P., Silva, A. P., Maciel, M. C. O., Burin, H. M. V., Urbanetto, J.
S., & Vieira, R. (2019, October). Fall detection in EHR using word embeddings and
deep learning. In 2019 IEEE 19th International Conference on Bioinformatics and
Bioengineering;

• Franceschini, P. M., dos Santos, H. D., & Vieira, R. (2020, July). Intrinsic and Extrinsic
Evaluation of the Quality of Biomedical Embeddings in Different Languages. In 2020
IEEE 33rd International Symposium on Computer-Based Medical Systems;

• Santos, J., dos Santos, H. D., & Vieira, R. (2020, July). Fall Detection in Clinical
Notes using Language Models and Token Classifier. In 2020 IEEE 33rd International
Symposium on Computer-Based Medical Systems.

• Damasio, J. O., dos Santos, H. D., Ulbrich, A. H. D. P. S. & Vieira, R. (2021, April).
Opportunities and Challenges in Fall Risk Management using EHRs and Artificial In-
telligence: a Systematic Review. In 2021 23rd International Conference on Enterprise
Information Systems (ICEIS).

2http://github.com/nlp-pucrs
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All experiments above were developed using the dataset from Hospital Nossa Sen-
hora da Conceição. Other papers written during this Ph.D. project can be found in Appendix
A. The resources developed in this thesis related to healthcare are listed below:

• A real set of data containing 21 different medications with a total of 150,113 prescrip-
tions3.

• A biomedical language model trained with 21 million clinical sentences4.

• An annotated dataset with 1,078 progress notes, with the presence of fall events and
their structured description for replication purposes5.

• A Decision Support System for Clinical Pharmacy6.

This thesis has been awarded some prizes, as a project that makes an impact in
the healthcare industry and makes contributions to computer science. We won the following
awards:

• Health Entrepreneurship Award Highlight in 2018, granted by the Everis Foundation
and Hospital Sírio-Libanês 7;

• Google Latin America Research Awards 20188;

• Google Latin America Research Awards 20199 and

• Google Latin America Research Awards 202010.

In the next section, we cover the limitations of this work. Despite the advancements
provided by our algorithms, some aspects could be improved.

6.3 Limitations

The machine learning models we presented here have the potential to improve
several daily tasks in healthcare but still face some limitations. As described in Section

3https://github.com/nlp-pucrs/prescription-outliers
4https://github.com/nlp-pucrs/cci-regression
5https://github.com/nlp-pucrs/fall-detection
6https://github.com/noharm-ai
7https://www.everis.com/brazil/pt-br/news/newsroom/fundacao-everis-e-sirio-libanes-anunciam-os-

finalistas-da-quarta-edicao-do-premio
8https://brasil.googleblog.com/2018/10/LARA-2018-latin-america-research-awards.html
9https://brasil.googleblog.com/2019/11/os-vencedores-da-setima-edicao-do-lara-programa-de-bolsa-de-

pesquisa-para-america-latina.html
10http://googlediscovery.com/2020/12/03/vencedores-da-lara-o-programa-de-bolsas-do-google-para-a-

america-latina/
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3.1.2, the main issues of ML models are the generalization problem, data sample, and data
selection.

First, one of the main limitations is the generalization problem of the fall detection
model. The Token Classifier (TkC) was trained and evaluated using sentences from the
same hospital. There are various ways to write clinical notes, and writing protocols change
depending on each hospital. To better evaluate the TkC, it is essential to train and evaluate
the model in diverse contexts.

Second, the DDC-Outlier has a severe limitation in data selection. We used only the
dose and frequency of a drug to classify the prescribed medications as inliers and outliers
in our experiments. Medications are also prescribed in a specific route, time, and, in some
cases, with a physician’s note. All this information could be used to identify whether the
medication is correct or not.

Finally, the outlier medication experiment considered only a single drug in the pre-
scription to evaluate the appropriateness of the drug therapy. The prescription not only has
other medications but is also prescribed for a specific patient. Assessing all medications
in a prescription is vital to alert pharmacists about drug-to-drug interactions and drug du-
plicity. Evaluating the drug considering the patients’ comorbidities is crucial to assess the
appropriateness, effectiveness, safety, and adherence of the drug therapy.

6.4 Future Work

The novelty of this research and the rapid development of technology enables sev-
eral possible directions for future work. In the field of natural language processing, several
other outcomes could benefit from Token Classification using BiLSTM-CRF. Clinical notes
feature a wealth of information about patient history (e.g., comorbidities, symptoms, allergy,
vital signs) that could be detected and alert healthcare professionals. Besides, the BiLSTM-
CRF topology could be used to remove names from text records in order to provide rich
content for research, without identifying patients

New approaches in language model generation, such as One-shot, Few-shot, and
Zero-shot Learners (Brown et al., 2020), may reduce training data and facilitate adjustments
to other adverse events. Another improvement could be achieved by adding other sources
of information, such as radiology images and laboratory exams, to the detection of adverse
events (Rozenblum et al., 2020).

For clinical pharmacy, much could be done to improve the medication review pro-
cess performed by pharmacists. A machine learning system could suggest possible new in-
terventions in similar drug-patient cases using interventions made by previous pharmacists
in prescriptions. Considering all pieces of data gathered from electronic health records, such
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as laboratory exams, patient comorbidities, and other prescribed drugs, the ML models can
better understand drug therapies.

Besides, the use of patients’ historical medical orders and diagnostic claims as
data to detect look-alike/sound-alike medication errors could improve medication error de-
tection (Lambert et al., 2019). Medication errors could also be found in clinical notes using
concept extraction and relation classification (Yang et al., 2020), upgrading risk assessment.



69

REFERENCES

Abadi, M. Agarwal, A. Barham, P. Brevdo, E. Chen, Z. Citro, C. Corrado, G. S. Davis, A.
Dean, J. Devin, M. et al. (Mar, 2016). TensorFlow: Large-Scale Machine Learning on
Heterogeneous Distributed Systems. arXiv Preprint, vol. 1603.04467, pp. 19.

Agarwal, D. (Oct, 2006). Detecting Anomalies in Cross-Classified Streams: A Bayesian
Approach. Knowledge and Information Systems, vol. 11, pp. 29–44.

Ageing, W. H. O. and Unit, L. C. (2008). WHO Global Report on Falls Prevention in Older
Age. World Health Organization, Geneva, Switzerland.

Agrawal, A. (Jun, 2009). Medication Errors: Prevention using Information Technology
Systems. British Journal of Clinical Pharmacology, vol. 67, pp. 681–686.

Akbik, A. Bergmann, T. Blythe, D. Rasul, K. Schweter, S. and Vollgraf, R. (2019). FLAIR:
An Easy-To-Use Framework for State-of-the-Art - NLP. In: Proceedings of the Conference
of the North American Chapter of the Association for Computational Linguistics, pp. 54–59,
Minneapolis, Minnesota. ACL Web.

Akbik, A. Blythe, D. and Vollgraf, R. (2018). Contextual String Embeddings for Sequence
Labeling. In: Proceedings of the 27th International Conference on Computational
Linguistics, pp. 1638–1649, New Mexico, United States. ACL Web.

Akoglu, L. Tong, H. and Koutra, D. (Jul, 2014). Graph Based Anomaly Detection and
Description: A Survey. Data Mining and Knowledge Discovery, vol. 29, pp. 626–688.

Alpaydin, E. (2020). Introduction to Machine Learning. MIT Press, California, United States.

Alshakrah, M. A. Steinke, D. T. and Lewis, P. J. (Jun, 2019). Patient Prioritization for
Pharmaceutical Care in Hospital: A Systematic Review of Assessment Tools. Research
in Social and Administrative Pharmacy, vol. 15, pp. 767–779.

Ashcroft, D. M. Lewis, P. J. Tully, M. P. Farragher, T. M. Taylor, D. Wass, V. Williams, S. D.
and Dornan, T. (Sep, 2015). Prevalence, Nature, Severity and Risk Factors for Prescribing
Errors in Hospital Inpatients: Prospective Study in 20 UK Hospitals. Drug Safety, vol. 38,
pp. 833–843.

Baldwin, D. S. Allgulander, C. Bandelow, B. Ferre, F. and Pallanti, S. (Oct, 2012). An
International Survey of Reported Prescribing Practice in the Treatment of Patients with
Generalised Anxiety Disorder. The World Journal of Biological Psychiatry, vol. 13, pp.
510–516.



70

Barlow, H. (Sep-Nov, 1989). Unsupervised Learning. Neural Computation, vol. 1, pp. 295–
311.

Bates, J. Fodeh, S. Brandt, C. and Womack, J. (Apr, 2016). Classification of Radiology
Reports for Falls in an HIV Study Cohort. Journal of the American Medical Informatics
Association, vol. 23, pp. e113–e117.

Beleites, C. Neugebauer, U. Bocklitz, T. Krafft, C. and Popp, J. (Jan, 2013). Sample Size
Planning for Classification Models. Analytica Chimica Acta, vol. 760, pp. 25–33.

Bojanowski, P. Grave, E. Joulin, A. and Mikolov, T. (Jun, 2017). Enriching Word Vectors
with Subword Information. Transactions of the Association for Computational Linguistics,
vol. 5, pp. 135–146.

Bond, C. and Raehl, C. L. (Apr, 2007). Clinical Pharmacy Services, Pharmacy Staffing,
and Hospital Mortality Rates. Pharmacotherapy: The Journal of Human Pharmacology
and Drug Therapy, vol. 27, pp. 481–493.

Breunig, M. M. Kriegel, H.-P. Ng, R. T. and Sander, J. (2000). LOF: Identifying Density-
Based Local Outliers. In: Proceedings of the ACM Special Interest Group on Management
of Data, vol. 29, pp. 93–104, Texas, United States. ACM.

Brown, T. B. Mann, B. Ryder, N. Subbiah, M. Kaplan, J. Dhariwal, P. Neelakantan, A.
Shyam, P. Sastry, G. Askell, A. et al. (May, 2020). Language Models are Few-Shot
Learners. arXiv Preprint, vol. 2005.14165, pp. 75.

Buntin, M. B. Burke, M. F. Hoaglin, M. C. and Blumenthal, D. (Mar, 2011). The Benefits of
Health Information Technology: A Review of the Recent Literature Shows Predominantly
Positive Results. Health Affairs, vol. 30, pp. 464–471.

Char, D. S. Shah, N. H. and Magnus, D. (Mar, 2018). Implementing Machine Learning in
Health Care—Addressing Ethical Challenges. The New England Journal of Medicine, vol.
378, pp. 981.

Chu, J. Dong, W. He, K. Duan, H. and Huang, Z. (Nov, 2018). Using Neural Attention
Networks to Detect Adverse Medical Events from Electronic Health Records. Journal of
Biomedical Informatics, vol. 87, pp. 118–130.

Cohan, A. Fong, A. Ratwani, R. M. and Goharian, N. (2017). Identifying Harm Events in
Clinical Care Through Medical Narratives. In: Proceedings of the 8th ACM International
Conference on Bioinformatics, Computational Biology, and Health Informatics, pp. 52–59,
Massachusetts, United States. ACM.

Da Saúde (BR), M. (2014). Documento de Referência para o Programa Nacional de
Segurança do Paciente. Source: http://bvsms.saude.gov.br/bvs/publicacoes/documento_
referencia_programa_nacional_seguranca.pdf. January 2021.



71

D’Avolio, L. W. Nguyen, T. M. Farwell, W. R. Chen, Y. Fitzmeyer, F. Harris, O. M. and
Fiore, L. D. (Jul-Aug, 2010). Evaluation of a Generalizable Approach to Clinical Information
Retrieval using the Automated Retrieval Console (ARC). Journal of the American Medical
Informatics Association, vol. 17, pp. 375–382.

De Oliveira, A. P. B. da Silva Oliveira, E. C. and de Oliveira, R. C. (Oct-Dec, 2016). Risk
Management Reporting and its Contribution to Patient Safety. Cogitare Enferm, vol. 21, pp.
01–08.

De Silva, T. S. MacDonald, D. Paterson, G. Sikdar, K. C. and Cochrane, B. (Mar, 2011).
Systematized Nomenclature of Medicine Clinical Terms (SNOMED CT) to Represent
Computed Tomography Procedures. Computer Methods and Programs in Biomedicine,
vol. 101, pp. 324–329.

De Souza Urbanetto, J. Creutzberg, M. Franz, F. Ojeda, B. da Silva Gustavo, A. Bittencourt,
H. Steinmetz, Q. and Farina, V. (Jun, 2013). Morse Fall Scale: Translation and Transcultural
Adaptation for the Portuguese Language. Revista da Escola de Enfermagem, vol. 47, pp.
569–575.

Devlin, J. Chang, M.-W. Lee, K. and Toutanova, K. (Oct, 2018). BERT: Pre-Training of Deep
Bidirectional Transformers for Language Understanding. arXiv Preprint, vol. 1810.04805,
pp. 16.

Doloresco, F. and Vermeulen, L. C. (Mar, 2009). Global Survey of Hospital Pharmacy
Practice. American Journal of Health-System Pharmacy, vol. 66, pp. s13–s19.

Emmott, A. F. Das, S. Dietterich, T. Fern, A. and Wong, W.-K. (2013). Systematic
Construction of Anomaly Detection Benchmarks from Real DataSwarm Intelligent Tuning
of One-Class v-SVM Parameters. In: Proceedings of the Workshop on Outlier Detection
and Description, pp. 16–21, New York, United States. ACM.

Etges, A. P. B. d. S. de Souza, J. S. Kliemann Neto, F. J. and Felix, E. A. (Jan, 2018). A
Proposed Enterprise Risk Management Model for Health Organizations. Journal of Risk
Research, vol. 22, pp. 513–531.

Fortinsky, R. H. Iannuzzi-Sucich, M. Baker, D. I. Gottschalk, M. King, M. B. Brown, C. J.
and Tinetti, M. E. (Sep, 2004). Fall-Risk Assessment and Management in Clinical Practice:
Views from Healthcare Providers. Journal of the American Geriatrics Society, vol. 52, pp.
1522–1526.

Fung, K. W. Mcdonald, C. and Bray, B. E. (2008). RxTerms - A Drug Interface Terminology
Derived from RxNorm. In: Proceedings of the Annual Symposium American Medical
Informatics Association, pp. 227, Washington, United States. AMIA.



72

Gallotti, R. M. D. (Jan-Apr, 2004). Eventos Adversos: O que são? Revista da Associação
Médica Brasileira, vol. 50, pp. 114–114.

Gandhi, T. K. Weingart, S. N. Seger, A. C. Borus, J. Burdick, E. Poon, E. G. Leape, L. L. and
Bates, D. W. (Sep, 2005). Outpatient Prescribing Errors and the Impact of Computerized
Prescribing. Journal of General Internal Medicine, vol. 20, pp. 837–841.

Goldstein, B. Navar, A. Pencina, M. and Ioannidis, J. (May, 2017). Opportunities and
Challenges in Developing Risk Prediction Models with Electronic Health Records Data:
A Systematic Review. Journal of the American Medical Informatics Association, vol. 24,
pp. 198–208.

Goodfellow, I. Bengio, Y. and Courville, A. (2016). Deep Learning. MIT Press, California,
United States.

Graabæk, T. and Kjeldsen, L. J. (Apr, 2013). Medication Reviews by Clinical Pharmacists
at Hospitals Lead to Improved Patient Outcomes: A Systematic Review. Basic & Clinical
Pharmacology & Toxicology, vol. 112, pp. 359–373.

Griese-Mammen, N. Hersberger, K. E. Messerli, M. Leikola, S. Horvat, N. van Mil, J. F.
and Kos, M. (Aug, 2018). PCNE Definition of Medication Review: Reaching Agreement.
International Journal of Clinical Pharmacy, vol. 40, pp. 1199–1208.

Griffin, F. A. and Resar, R. K. (2009). IHI Global Trigger Tool for Measuring Adverse Events.
Source: http://www.ihi.org/resources/Pages/Tools/IHIGlobalTriggerToolforMeasuringAEs.
aspx. January 2021.

Guglielmi, G. P. Ulbrich, A. H. Flach, K. Dimmer, L. Sinderman, R. and Hoffmann, T.
(2020). Inteligência Artificial como Suporte na Validação Técnica das Prescrições. Source:
https://www.youtube.com/watch?v=mQg9NOh1FfA. March 2021.

Han, J. Pei, J. and Kamber, M. (2011). Data Mining: Concepts and Techniques. Elsevier,
Massachusetts, United States.

Hartmann, N. Fonseca, E. Shulby, C. Treviso, M. Silva, J. and Aluísio, S. (2017). Portuguese
Word Embeddings: Evaluating on Word Analogies and Natural Language Tasks. In:
Proceedings of the 11th Brazilian Symposium in Information and Human Language
Technology, pp. 122–131, Minas Gerais, Brazil. ACL Web.

Hauskrecht, M. Batal, I. Valko, M. Visweswaran, S. Cooper, G. F. and Clermont, G.
(Feb, 2013). Outlier Detection for Patient Monitoring and Alerting. Journal of Biomedical
Informatics, vol. 46, pp. 47–55.

Hitcho, E. B. Krauss, M. J. Birge, S. Claiborne Dunagan, W. Fischer, I. Johnson, S. Nast,
P. A. Costantinou, E. and Fraser, V. J. (Jul, 2004). Characteristics and Circumstances of



73

Falls in a Hospital Setting: A Prospective Analysis. Journal of General Internal Medicine,
vol. 19, pp. 732–739.

Hochreiter, S. and Schmidhuber, J. (Aug, 1997). Long Short-Term Memory. Neural
Computation, vol. 9, pp. 1735–1780.

Huynh, T. He, Y. Willis, A. and Rueger, S. (2016). Adverse Drug Reaction Classification with
Deep Neural Networks. In: Proceedings of 26th International Conference on Computational
Linguistics: Technical Papers, pp. 877–887, Osaka, Japan. ACL Web.

Jagannatha, A. N. and Yu, H. (2016). Bidirectional RNN for Medical Event Detection
in Electronic Health Records. In: Proceedings of the Conference Association for
Computational Linguistics North American, vol. 2016, pp. 473, California, United States.
NIH Public Access.

Jensen, P. B. Jensen, L. J. and Brunak, S. (May, 2012). Mining Electronic Health Records:
Towards Better Research Applications and Clinical Care. Nature Reviews Genetics, vol. 13,
pp. 395.

Jiang, Y. Hu, C. Xiao, T. Zhang, C. and Zhu, J. (2019). Improved Differentiable Architecture
Search for Language Modeling and Named Entity Recognition. In: Proceedings of the
Conference on Empirical Methods in Natural Language Processing, pp. 3585–3590, Hong
Kong, China. ACL Web.

Jiang, Z. Li, L. Huang, D. and Jin, L. (Nov, 2015). Training Word Embeddings for Deep
Learning in Biomedical Text Mining Tasks. In: Proceedings of the IEEE International
Conference on Bioinformatics and Biomedicine, pp. 625–628, Washington, United States.
IEEE.

Jordan, M. I. and Mitchell, T. M. (Jul, 2015). Machine Learning: Trends, Perspectives, and
Prospects. Science, vol. 349, pp. 255–260.

Jurafsky, D. and Martin, J. H. (2014). Speech and Language Processing, vol. 3. Pearson,
London, United Kingdom.

Kopp, B. J. Erstad, B. L. Allen, M. E. Theodorou, A. A. and Priestley, G. (Feb, 2006).
Medication Errors and Adverse Drug Events in an Intensive Care Unit: Direct Observation
Approach for Detection. Critical Care Medicine, vol. 34, pp. 415–425.

Kruse, C. S. and Beane, A. (Feb, 2018). Health Information Technology Continues to Show
Positive Effect on Medical Outcomes: Systematic Review. Journal of Medical Internet
Research, vol. 20, pp. e41.

Lambert, B. L. Galanter, W. Liu, K. L. Falck, S. Schiff, G. Rash-Foanio, C. Schmidt, K.
Shrestha, N. Vaida, A. J. and Gaunt, M. J. (Nov, 2019). Automated Detection of Wrong-
Drug Prescribing Errors. BMJ Quality & Safety, vol. 28, pp. 908–915.



74

Langville, A. N. and Meyer, C. D. (Jan, 2005). A Survey of Eigenvector Methods for Web
Information Retrieval. Society for Industrial and Applied Mathematics Review, vol. 47, pp.
135–161.

Li, Y. and Yang, T. (2017). Word Embedding for Understanding Natural Language: A
Survey. In: Guide to Big Data Applications, vol. 26, pp. 83–104. Springer, 1 ed..

Liu, F. T. Ting, K. M. and Zhou, Z.-H. (2008). Isolation Forest. In: Proceedings of the Eighth
IEEE International Conference on Data Mining, pp. 413–422, Pisa, Italy. IEEE.

LLC, W. K. (2017). UpToDate: Evidence-Based Clinical Decision Support. Source:
https://www.uptodate.com. January 2021.

Luther, S. McCart, J. Berndt, D. Hahm, B. Finch, D. Jarman, J. Foulis, P. Lapcevic,
W. Campbell, R. Shorr, R. Valencia, K. and Powell-Cope, G. (Apr, 2015). Improving
Identification of Fall-Related Injuries in Ambulatory Care using Statistical Text Mining.
American Journal of Public Health, vol. 105, pp. 1168–1173.

Mateen, B. A. Liley, J. Denniston, A. K. Holmes, C. C. and Vollmer, S. J. (2020). Improving
the quality of machine learning in health applications and clinical research. Nature Machine
Intelligence, vol. 2, pp. 554–556.

McCart, J. Berndt, D. Jarman, J. Finch, D. and Luther, S. (Sep, 2013). Finding Falls in
Ambulatory Care Clinical Documents Using Statistical Text Mining. Journal of the American
Medical Informatics Association, vol. 20, pp. 906–914.

Mendes, W. Pavão, A. L. B. Martins, M. de Oliveira Moura, M. d. L. and Travassos, C. (Sep,
2013). Características de Eventos Adversos Evitáveis em Hospitais do Rio De Janeiro.
Revista da Associação Médica Brasileira, vol. 59, pp. 421–428.

Mikolov, T. Sutskever, I. Chen, K. Corrado, G. S. and Dean, J. (2013). Distributed
Representations of Words and Phrases and their Compositionality. In: Proceedings of the
Advances in Neural Information Processing Systems, pp. 3111–3119, New York, United
States. ACM.

Mills, A. J. Durepos, G. and Wiebe, E. (2009). Encyclopedia of Case Study Research.
Sage Publications, California, United States.

Moonesinghe, H. and Tan, P.-N. (Jan, 2008). OutRank: A Graph-Based Outlier Detection
Framework using Random Walk. International Journal on Artificial Intelligence Tools,
vol. 17, pp. 19–36.

Morse, J. Morse, R. and Tylko, S. (Dec-Mar, 1989). Development af a Scale to Identify the
Fall-Prone Patient. Canadian Journal on Aging / La Revue Canadienne du Vieillissement,
vol. 8, pp. 366–377.



75

Mubashir, M. Shao, L. and Seed, L. (Jan, 2013). A Survey on Fall Detection: Principles
and Approaches. Neurocomputing, vol. 100, pp. 144 – 152.

Muller, E. Sánchez, P. I. Mulle, Y. and Bohm, K. (2013). Ranking Outlier Nodes in
Subspaces of Attributed Graphs. In: Proceedings of the 29th International Conference
on Data Engineering Workshops, pp. 216–222, Queensland, Australia. IEEE.

Nangle, C. McTaggart, S. MacLeod, M. Caldwell, J. and Bennie, M. (Apr, 2017). Application
of Natural Language Processing Methods to Extract Coded Data from Administrative Data
Held in the Scottish Prescribing Information System. International Journal for Population
Data Science, vol. 1:243, pp. 1.

Oh, K.-S. and Jung, K. (Jun, 2004). GPU Implementation of Neural Networks. Pattern
Recognition, vol. 37, pp. 1311–1314.

Okanda, P. and Kanyaru, J. (2014). Smartprescription: A Principled Approach Towards
Eliminating Prescription Errors in Healthcare. In: Proceedings of the Conference IST-Africa,
pp. 1–8, Le Meridien Ile Maurice, Mauritius. IEEE.

Oliver, D. (Jul, 2007). Preventing Falls and Fall Injuries in Hospital: A Major Risk
Management Challenge. Clinical Risk, vol. 13, pp. 173–178.

Organization, W. H. (2009). The Conceptual Framework for the International Classification
for Patient Safety. Technical Report, World Health Organization.

Page, L. Brin, S. Motwani, R. and Winograd, T. (1999). The PageRank Citation Ranking:
Bringing Order to the Web. Technical Report, Stanford InfoLab.

Park, S. Choi, D. Kim, M. Cha, W. Kim, C. and Moon, I.-C. (Nov, 2017). Identifying
Prescription Patterns with a Topic Model of Diseases and Medications. Journal of
Biomedical Informatics, vol. 75, pp. 35–47.

Paszke, A. Gross, S. Massa, F. Lerer, A. Bradbury, J. Chanan, G. Killeen, T. Lin, Z.
Gimelshein, N. Antiga, L. et al. (2019). PyTorch: An Imperative Style, High-Performance
Deep Learning Library. In: Proceedings of the Advances in Neural Information Processing
Systems, pp. 8024–8035, Vancouver, Canada. NeurIPS.

Pedregosa, F. Varoquaux, G. Gramfort, A. Michel, V. Thirion, B. Grisel, O. Blondel, M.
Prettenhofer, P. Weiss, R. Dubourg, V. Vanderplas, J. Passos, A. Cournapeau, D. Brucher,
M. Perrot, M. and Édouard Duchesnay (Oct, 2011). Scikit-Learn: Machine Learning in
Python. Journal of Machine Learning Research, vol. 12, pp. 2825–2830.

Pennington, J. Socher, R. and Manning, C. D. (2014). Glove: Global Vectors for Word
Representation. In: Proceedings of the Conference on Empirical Methods in Natural
Language Processing, pp. 1532–1543, Doha, Qatar. ACL Web.



76

Peters, M. E. Neumann, M. Iyyer, M. Gardner, M. Clark, C. Lee, K. and Zettlemoyer, L.
(2018b). Deep Contextualized Word Representations. In: Proceedings of the Conference
of the North American Chapter of the Association for Computational Linguistics: Human
Language Technologies, pp. 2227–2237, New Orleans, Louisiana. ACL Web.

Peters, M. E. Neumann, M. Iyyer, M. Gardner, M. Clark, C. Lee, K. and Zettlemoyer, L.
(Feb, 2018a). Deep Contextualized Word Representations. arXiv Preprint, vol. 1802.05365,
pp. 15.

Radford, A. Wu, J. Child, R. Luan, D. Amodei, D. and Sutskever, I. (Feb, 2019). Language
Models are Unsupervised Multitask Learners. OpenAI Blog, vol. 1, pp. 9.

Rash-Foanio, C. Galanter, W. Bryson, M. Falck, S. Liu, K. L. Schiff, G. D. Vaida, A. and
Lambert, B. L. (Apr, 2017). Automated Detection of Look-Alike/Sound-Alike Medication
Errors. American Journal of Health-System Pharmacy, vol. 74, pp. 521–527.

Ravì, D. Wong, C. Deligianni, F. Berthelot, M. Andreu-Perez, J. Lo, B. and Yang, G.-Z.
(Dec, 2016). Deep Learning for Health Informatics. IEEE Journal of Biomedical and Health
Informatics, vol. 21, pp. 4–21.

Reps, J. M. Garibaldi, J. M. Aickelin, U. Soria, D. Gibson, J. E. and Hubbard, R. B. (Mar,
2014). A Novel Semisupervised Algorithm for Rare Prescription Side Effect Discovery.
IEEE Journal of Biomedical and Health Informatics, vol. 18, pp. 537–547.

Resar, R. Rozich, J. Simmonds, T. and Haraden, C. (Oct, 2006). A Trigger Tool to Identify
Adverse Events in the Intensive Care Unit. Joint Commission Journal on Quality and Patient
Safety, vol. 32, pp. 585–590.

Rochefort, C. Buckeridge, D. and Abrahamowicz, M. (Jun, 2015). Improving Patient Safety
by Optimizing the use of Nursing Human Resources. Implementation Science, vol. 10,
pp. 11.

Rousseeuw, P. J. and Driessen, K. V. (Aug, 1999). A Fast Algorithm for the Minimum
Covariance Determinant Estimator. Technometrics, vol. 41, pp. 212–223.

Rozenblum, R. Rodriguez-Monguio, R. Volk, L. A. Forsythe, K. J. Myers, S. McGurrin, M.
Williams, D. H. Bates, D. W. Schiff, G. and Seoane-Vazquez, E. (Jan, 2020). Using a
Machine Learning System to Identify and Prevent Medication Prescribing Errors: A Clinical
and Cost Analysis Evaluation. The Joint Commission Journal on Quality and Patient Safety,
vol. 46, pp. 3–10.

Sang, T. K. and Erik, F. (2002). Introduction to the CONLL-2002 Shared Task: Language-
Independent Named Entity Recognition. In: Proceedings of the 6th Conference on Natural
Language Learning, pp. 155–158, Pennsylvania, United States. ACM.



77

Saseen, J. J. Ripley, T. L. Bondi, D. Burke, J. M. Cohen, L. J. McBane, S. McConnell,
K. J. Sackey, B. Sanoski, C. Simonyan, A. et al. (May, 2017). ACCP Clinical Pharmacist
Competencies. Pharmacotherapy: The Journal of Human Pharmacology and Drug
Therapy, vol. 37, pp. 630–636.

Savova, G. K. Masanz, J. J. Ogren, P. V. Zheng, J. Sohn, S. Kipper-Schuler, K. C. and
Chute, C. G. (Sep-Oct, 2010). Mayo Clinical Text Analysis and Knowledge Extraction
System (cTAKES): Architecture, Component Evaluation and Applications. Journal of the
American Medical Informatics Association, vol. 17, pp. 507–513.

Schiff, G. D. Volk, L. A. Volodarskaya, M. Williams, D. H. Walsh, L. Myers, S. G. Bates,
D. W. and Rozenblum, R. (Mar, 2017). Screening for Medication Errors using an Outlier
Detection System. Journal of the American Medical Informatics Association, vol. 24, pp.
281–287.

Schölkopf, B. Platt, J. C. Shawe-Taylor, J. Smola, A. J. and Williamson, R. C. (Jul, 2001).
Estimating the Support of a High-Dimensional Distribution. Neural Computation, vol. 13,
pp. 1443–1471.

Sheikh, A. Dhingra-Kumar, N. Kelley, E. Kieny, M. P. and Donaldson, L. J. (Aug, 2017). The
Third Global Patient Safety Challenge: Tackling Medication-Related Harm. Bulletin of the
World Health Organization, vol. 95, pp. 546.

Shiner, B. Neily, J. Mills, P. and Watts, B. (Sep, 2016). Identification of Inpatient Falls using
Automated Review of Text-Based Medical Records. Journal of Patient Safety, vol. 3, pp.
e174–e178.

Solutions, M. (2017). Medication, Disease and Toxicology Management. Source: https:
//www.micromedexsolutions.com. January 2021.

Straková, J. Straka, M. and Hajic, J. (2019). Neural Architectures for Nested NER
Through Linearization. In: Proceedings of the 57th Annual Meeting of the Association
for Computational Linguistics, pp. 5326–5331, Florence, Italy. ACL Web.

Topaz, M. Murga, L. Gaddis, K. McDonald, M. Bar-Bachar, O. Goldberg, Y. and Bowles, K.
(Jan, 2019). Mining Fall-Related Information in Clinical Notes: Comparison of Rule-Based
and Novel Word Embedding-Based Machine Learning Approaches. Journal of Biomedical
Informatics, vol. 90, pp. 8.

Topol, E. (2019). Deep Medicine: How Artificial Intelligence Can Make Healthcare Human
Again. Basic Books, Inc., New York, United States.

Touchette, D. R. Doloresco, F. Suda, K. J. Perez, A. Turner, S. Jalundhwala, Y. Tangonan,
M. C. and Hoffman, J. M. (Aug, 2014). Economic Evaluations of Clinical Pharmacy



78

Services: 2006–2010. Pharmacotherapy: The Journal of Human Pharmacology and Drug
Therapy, vol. 34, pp. 771–793.

Toyabe, S.-I. (Dec, 2012). Detecting Inpatient Falls by Using Natural Language Processing
of Electronic Medical Records. BMC Health Services Research, vol. 12, pp. 8.

Tremblay, M. Berndt, D. Luther, S. Foulis, P. and French, D. (Nov, 2009). Identifying Fall-
Related Injuries: Text Mining the Electronic Medical Record. Information Technology and
Management, vol. 10, pp. 253–265.

Walsh, M. Frances Horgan, N. Walsh, C. and Galvin, R. (May, 2016). Systematic Review
of Risk Prediction Models for Falls after Stroke. Journal of Epidemiology and Community
Health, vol. 70, pp. 513–519.

Wang, F. and Preininger, A. (Aug, 2019). AI in Health: State of the Art, Challenges, and
Future Directions. Yearbook of Medical Informatics, vol. 28, pp. 16.

Wiens, J. Saria, S. Sendak, M. Ghassemi, M. Liu, V. X. Doshi-Velez, F. Jung, K. Heller, K.
Kale, D. Saeed, M. et al. (2019). Do no harm: A roadmap for responsible machine learning
for health care. Nature Medicine, vol. 25, pp. 1337–1340.

Woloszyn, V. dos Santos, H. D. P. Wives, L. K. and Becker, K. (2017a). MRR:
An Unsupervised Algorithm to Rank Reviews by Relevance. In: Proceedings of the
International Conference on Web Intelligence, pp. 877–883, Leipzig, Germany. ACM.

Woloszyn, V. Machado, G. M. de Oliveira, J. P. M. Wives, L. and Saggion, H. (2017b).
Beatnik: An Algorithm to Automatic Generation of Educational Description of Movies. In:
Proceedings of the Brazilian Symposium on Computers in Education, pp. 10, Pernambuco,
Brazil. BR-IE.

Wunnava, S. Qin, X. Kakar, T. Rundensteiner, E. A. and Kong, X. (2018). Bidirectional
LSTM-CRF for Adverse Drug Event Tagging in Electronic Health Records. In: Proceedings
of the International Workshop on Medication and Adverse Drug Event Detection, pp. 48–56,
Massachusetts, United States. PMLR.

Xie, L. (2006). Swarm Intelligent Tuning of One-Class v-SVM Parameters. In: Proceedings
of the International Conference on Rough Sets and Knowledge Technology, pp. 552–559,
Chongquing, China. Springer.

Xing, W. and Ghorbani, A. (2004). Weighted PageRank Algorithm. In: Proceedings Second
Annual Conference on Communication Networks and Services Research, pp. 305–314,
Nova Brunswick, Canada. IEEE.

Yang, X. Bian, J. Fang, R. Bjarnadottir, R. I. Hogan, W. R. and Wu, Y. (Jan, 2020). Identifying
Relations of Medications with Adverse Drug Events using Recurrent Convolutional Neural



79

Networks and Gradient Boosting. Journal of the American Medical Informatics Association,
vol. 27, pp. 65–72.

Yang, Z. Dai, Z. Yang, Y. Carbonell, J. Salakhutdinov, R. R. and Le, Q. V. (2019). XLNet:
Generalized Autoregressive Pretraining For Language Understanding. In: Proceedings
of the Advances in Neural Information Processing Systems, pp. 5754–5764, Vancouver,
Canada. NeurIPS.

Yimam, S. M. Gurevych, I. de Castilho, R. E. and Biemann, C. (2013). Webanno: A Flexible,
Web-Based and Visually Supported System for Distributed Annotations. In: Proceedings
of the 51st Annual Meeting of the Association for Computational Linguistics: System
Demonstrations, pp. 1–6, Sofia, Bulgaria. ACL Web.



80

APPENDIX A – OTHER RELATED PUBLICATIONS

The following section enumerates other related works published by the author of
this thesis in collaboration with several students and advisors, during the course of this
Ph.D. These studies consolidate knowledge and machine learning and natural language
processing techniques.

During this Ph.D. candidature, we established other partnerships with research
groups and published other papers. Some studies relate to NLP, Core-NLP, ML, electronic
health records, and other areas of healthcare, as listed below in chronological order:

A.1 Portuguese Personal Story Detection and Analysis in Blogs

Diary-like content expressing authors’ personal experiences and sentiments relat-
ing to various topics is generated every day and made available on the Internet. This rich
content can be used for psychological analysis and knowledge discovery regarding human-
related issues in several ways. This paper presented a Brazilian Portuguese corpus, using
blog posts, to analyze and detect personal stories. We presented an analysis of psycholin-
guistic categories across personal-story and non-story posts, discussing their similarities
and differences. We also studied the use of these psycholinguistic categories as classifying
features. Then we described the evaluation of several machine learning approaches and
the process of applying them to identify personal stories based on our dataset. Finally, we
investigated the central topic-related polarity of individual narrative posts.

Published in the Proceedings of the International Conference on Web Intelligence,
August 2017, in collaboration with student Vinicius Woloszyn, advised by Prof. Renata
Vieira.

A.2 PLN-PUCRS at EmoInt-2017: Psycholinguistic Features for Emotion

Linguistic Inquiry and Word Count (LIWC) is a rich dictionary that maps words into
several psychological categories, such as Affective, Social, Cognitive, Perceptual, and Bio-
logical processes. In this work, we used LIWC psycholinguistic categories to train regression
models and predict emotion intensity in tweets for the EmoInt-2017 task. Results showed
that LIWC features may boost emotion intensity prediction based on a standard dimension
set.
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Published in the Proceedings of the 8th Workshop on Computational Approaches
to Subjectivity, Sentiment and Social Media Analysis, September 2017, advised by Prof.
Renata Vieira.

A.3 Wheel of Life, an Initial Investigation

User-generated content is a rich source of information regarding human behavior
in social media. Sentiment analysis is a powerful tool to understand human psychological
meanings in the text. Visualizing these sentiments and knowledge about users is crucial to
figure out the trends in data and use it to make decisions. This work presented an initial
investigation about a visualization chart considering topic-related polarities in Brazilian blog-
gers’ personal stories. Visualizing these sentiments allows specialists to rapidly understand
user-affected areas of life.

Published in the Proceedings of the 11th Brazilian Symposium on Information and
Human Language Technology, October 2017, in collaboration with students Greice P. D.
Molin and Jackson Pinheiro, advised by Prof. Renata Vieira.

A.4 Blogset-BR: A Brazilian Portuguese Blog Corpus

The rich user-generated content found on blogs has always attracted the interest of
the scientific community for many different reasons, such as opinion and sentiment mining,
information extraction, and topic discovery. Nonetheless, an extensive corpus is essential
to perform most of the natural language processing involved in these tasks. This paper pre-
sented BlogSet-BR, an extensive Brazilian Portuguese corpus containing 2.1 billion words
extracted from 7.4 million posts from 808,000 different Brazilian blogs. Additionally, a survey
was conducted with authors to draw a profile of Brazilian bloggers.

Published in the Proceedings of the Eleventh International Conference on Lan-
guage Resources and Evaluation, May 2018, in collaboration with student Vinicius Woloszyn,
advised by Prof. Renata Vieira.

A.5 Cross-Framework Evaluation for Portuguese POS Taggers

This work compared POS and parsing systems for the Portuguese language. We
analyzed available features and tagsets and compared the results of POS tagging and syn-
tactic structure identification using both intrinsic and extrinsic evaluation methods. To do so,
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we used well-known metrics for parser evaluation, such as bracket cross, besides leaf an-
cestor for intrinsic evaluation. We also applied these parsers to the extrinsic evaluation task
of noun phrase identification. The comparison proposed in this paper considers the different
linguistic theories and frameworks each parser subscribes to, but it is not dependent on any
particular one.

Published in the 19th International Conference on Computational Linguistics and
Intelligent Text Processing, May 2018, in collaboration with students Sandra Collovini, Thi-
ago Lima, Evandro Fonseca, Bolivar Pereira, and Marlo Souza, advised by Prof. Silvia
Moraes and Prof. Renata Vieira

A.6 Annotating Relations between Named Entities Crowdsourcing

This paper described how the CrowdFlower platform was used to build an anno-
tated corpus for relation extraction. The obtained data provides information on the relations
between named entities in texts in Portuguese.

Published in the International Conference on Applications of Natural Language to
Information Systems, May 2018, in collaboration with students Sandra Collovini and Bolivar
Pereira, advised by Prof. Renata Vieira.

A.7 An Initial Investigation of the Charlson Index Regression

The Charlson comorbidity index (CCI) is widely used to predict mortality for pa-
tients with many comorbid conditions. The index is also used as an indicator of the patients’
complexity inside a hospital. This paper evaluated a variety of feature extraction and re-
gression methods to predict the CCI from clinical notes. We used a tertiary hospital dataset
with 48,000 hospitalizations featuring the CCI annotated by physicians. In our experiments,
Dense Neural Networks with Word Embeddings proved to be the best regression method,
with a mean absolute error of 0.51.

Published in the IEEE 31st International Symposium on Computer-Based Medical
Systems, July 2018, in collaboration with students Ana Helena D. P. S. Ulbrich and Vinícius
Woloszyn, advised by Prof. Renata Vieira.
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A.8 MeSHx-Notes: Web System for Clinical Notes Information

We introduced MeSHx-Notes, MeSH eXtended for clinical notes, a multi-language
web system based on the Django framework to present selected terms in clinical notes.
MeSHx-Notes extended Medical Subject Headings (MeSH) terms with Word Embeddings
with similar words. Since MeSH is available in 15 languages, MeSHx-Notes is easily ex-
tendable by replacing the MeSH thesaurus with the target language (plus the generation
of the corresponding WE for the new language). Our version deals with Portuguese and
English.

Published in the First International Workshop of Artificial Intelligence in Health, July
2018, in collaboration with students Rafael O. Nunes and João E. Soares, advised by Prof.
Renata Vieira.

A.9 A Study on Deidentification of Clinical Developments

Medical records of patients are essential in the field of medical research. However,
to obtain the identity of a patient, the Health Insurance Portability and Accountability Act
(HIPAA) is required. It must be removed before the study. The manual de-identification
of large amounts of medical record data is expensive, time-consuming, and error-prone,
requiring large-scale automated de-identification methods. This paper presented an analysis
of the problem in Brazilian Portuguese for a task of disidentification of electronic medical
records. We compared the main types of business rule identification with an approach based
on a list of names specially built for the task. The list of names was developed from the
database, by using the embedded words to specialize the names through the semantic
similarity between words.

Published in the VI Workshop of Scientific Initiation in Information Technology and
Human Language, October 2019, in collaboration with students Thaila Elisa Quaini, Sandra
C. de Abreu, and Bernardo S. Consoli, advised by Prof. Renata Vieira.

A.10 Fall Detection in EHR using Word Embeddings and Deep Learning

Electronic health records (EHR) are an essential source of information to detect
adverse events in patients. In-hospital fall incidents represent the largest category of adverse
event reports. The detection of such incidents leads to a better understanding of the event
and improves patient healthcare quality. This work evaluated several language models with
state-of-the-art recurrent neural networks (RNN) to detect fall incidents in progress notes.
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Our experiments showed that the deep-learning approach outperforms previous works in the
task of detecting fall events. The vector representation of words in the biomedical domain
was able to detect falls with an F-measure of 90%. Additionally, we made available an
annotated dataset with 1,078 de-identified progress notes for replication purposes.

Published in the IEEE 19th International Conference on Bioinformatics and Bio-
engineering, October 2019, in collaboration with students Amanda P. Silva, Maria Carolina
O. Maciel, and Haline Maria V. Burin, advised by Prof. Janete S. Urbanetto and Prof. Renata
Vieira.

A.11 Cross-Media Sentiment Analysis in Brazilian Blogs

The use of social media is becoming highly present in our lives. Through images,
texts, and videos, human beings try to communicate in social networks and express their
opinions in the face of everyday events. Due to the increased volume of data transmitted
over the Internet, doing a human analysis of this content becomes difficult. For this reason, it
is necessary to automate the task of classifying feelings. Although the area of classification
of feelings in images and texts is well developed and applied in the social network context,
the classification of feelings from images together with texts is still under development. A
challenge is to build algorithms and methods that can infer feelings just like humans perceive
them. Firstly, we presented a cross-media corpus of Brazilian blogs, the dataset we built
based on BlogSet-BR, whose goal was to have a data ground truth (based on subjects’
opinions) concerning feelings perceived in texts and images when analyzed separately as
well as when presented together. Therefore, we tested some available technologies to detect
sentiment polarities in texts and images and compared them with the ground truth. Besides,
we conducted research specifically on contradictory posts, i.e., when, in the same blog post,
the image is positive and the text is negative. The results indicated that subjectivity affects
emotional judgments because there are variances between cultures.

Published in the 14th International Symposium on Visual Computing, October 2029,
in collaboration with student Greice P. Dal Molin, advised by Prof. Isabel H. Manssour, Prof.
Renata Vieira, and Prof. Soraia R. Musse.

A.12 Multivariable Prediction Model to Predict Subjective Refraction

The study aimed to test machine learning models to predict subjective ocular refrac-
tion from patients’ demographics and ophthalmological data and compare the performance
of the model with an automatic refractometer. The dataset consisted of ophthalmic exam-
ination data of 17,039 eyes from TeleOftalmo, a teleophthalmology project in the Brazilian
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public health system. We collected the following variables to be tested as attributes in the
predictive model: age, gender, race, symptoms, uncorrected visual acuity, best-corrected
visual acuity, pinhole visual acuity, intraocular pressure (Visuplan, Zeiss, Germany), dioptric
power of current spectacles, keratometry measurements, and automatic refraction (Visuref,
Zeiss, Germany). Same-day subjective refraction performed by an ophthalmologist was de-
fined as the target attribute. Subjective refraction was converted into power vectors (M, J0,
and J45). We used the Orange Data Mining Toolbox in Python to run the tests. The perfor-
mances of Random Forest, Linear Regression, and Neural Network (Multi-Layer Perceptron)
algorithms in predicting subjective refraction were assessed in terms of mean absolute error
(MAE) and root mean square error (RMSE). We determined the automatic refraction error
for comparison purposes, defined as the difference of the component M between automatic
refraction and subjective refraction without a predictive model.

Published in the Annual Meeting of the Association for Research in Vision and
Ophthalmology, June 2020, in collaboration with Aline Lutz de Araujo, Daniel Sganzerla,
Roberto Nunes Umpierre, and Paulo Schor.

A.13 Machine Learning Early Warning System Evaluation

Early recognition of clinical deterioration is one of the main steps to reduce inpa-
tient morbidity and mortality. The challenging task of identification of clinical deterioration in
hospitals lies in the intense daily routines of healthcare practitioners, in the unconnected pa-
tient data stored in electronic health records (EHRs), and in the use of low accuracy scores.
Since hospital wards are given less attention than the Intensive Care Unit (ICU), we hypoth-
esized that when a platform is connected to a stream of EHRs, there would be a drastic im-
provement in the awareness of dangerous situations, which could thus assist the healthcare
team. With the application of machine learning, the system can consider all patients’ histo-
ries, and an intelligent early warning system is enabled through the use of high-performing
predictive models. In this study, we used 121,089 medical encounters from 6 (six) different
hospitals and 7,540,389 data points. We compared popular ward protocols with six different
scalable machine learning methods (three are classic machine learning models, logistic and
probabilistic-based models, and three are gradient boosted models). The results showed
an advantage in AUC (Area Under the Receiver Operating Characteristic Curve) of 25 per-
centage points in the result of the best machine learning model compared to the current
state-of-the-art protocols. The generalization of the algorithm demonstrates this result with
leave-one-group-out (AUC of 0.949) and the robustness through cross-validation (AUC of
0.961). We also performed experiments to compare several window sizes to justify the use
of five patient timestamps. A sample dataset, experiments, and code are available for repli-
cability purposes.
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Published in the IEEE 33rd International Symposium on Computer-Based Medical
Systems, July 2020, in collaboration with students Jhonatan Kobylarz Ribeiro, Felipe Bar-
letta, and Mateus Cichelero da Silva, advised by Prof. Renata Vieira, Prof. Hugo M. P.
Morales, and Prof. Cristian da Costa Rocha.

A.14 Intrinsic and Extrinsic Evaluation of Biomedical Embeddings

Lately, language models have been applied to several tasks in biomedical natural
language processing. Some language models are available online, each built with different
corpora. This paper evaluated different public word embedding models trained with both
general and biomedical corpora for English and Portuguese. We presented intrinsic evalua-
tions based on semantic analogies that use word pairs extracted from the MeSH biomedical
thesaurus and benchmarks available for general-domain evaluation. For extrinsic evalua-
tions, we relied on a classification task over electronic health records. Our experiments
showed that biomedical embeddings can better capture semantics for biomedical analogies
in both languages. Conversely, based on classification tasks using the language models,
larger general textual corpora were equally or more effective for extrinsic evaluations.

Published in the IEEE 33rd International Symposium on Computer-Based Medical
Systems, July 2020, in collaboration with student Paula M. Franceschini, advised by Prof.
Renata Vieira.

A.15 Implementations of Fuzzy Logic for Knee Rehabilitation

Since its beginning, artificial intelligence (AI) followed a strategy to mimic human
cognition. In the physical rehabilitation area, studies include AI to process, estimate, and
classify physical activity levels. In order to improve the professional-patient relationship, this
study aimed to develop and compare the implementations of Fuzzy Logic (FL) of Sugeno
(SFL) and Mamdani (MFL) types to assist the physical therapist in deciding, with more data,
whether patients can safely return to their activities. The implemented systems consist of
a sequence of fuzzy rules (if – then) and four inputs taking into account range of motion,
extension and flexion; pain; and muscle strength to generate an output on the capability of
the knee. The qualitative requirements of the systems are taken into account, along with
the processing time, the precision, and the reliability of the responses. When comparing
MFL and SFL, the Sugeno method obtained more reliable responses regarding the level of
pertinence; however, both systems showed agreement between the values reported in six
hypothetical clinical cases and the resulting concepts of capability.
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Published in the XXVII Congress Brazilian Biomedical Engineering, October 2020,
in collaboration with student Thiago Susin, advised by Prof. Rafael Baptista and Prof. Fabian
Vargas.

A.16 Analysis of the Agreement between Electronic Medical Records and Notifica-
tions in the Record of Falls: a Cohort Study

We analyzed the agreement between the daily clinical notes in the electronic med-
ical records of the patients and the notifications in the Computerized Notification System in
the record of falls. This retrospective cohort study was carried out in a public hospital in the
city of Porto Alegre, in the state of Rio Grande do Sul, Brazil. The study comprised 367
patients, 441 voluntary notifications, and 441 evolutions. Data collection took place in the
online annotation tool WebAnno, from September to December 2018. An instrument for the
collection was developed. Data analysis was performed using descriptive statistics. Among
the patients, 316 had one fall and 51 had two or more falls. The study included 441 reports
of falls. Of these, 43.9% were not recorded in the electronic medical record on the day of its
occurrence. Regarding the assessment of the risk of falls, only 3 (three) (0.7%) evolutions
contained the record. When analyzing the records in the notifications and electronic medical
records, more complete reports were identified in the notifications. The local variables of
the fall stand out, registered in all notifications and in 13.8% of the evolutions; the degree
of damage was recorded in all notifications and in only 1.6% of evolutions. We identified a
gap in the records of falls in the medical records. The results point to an aspect of extreme
relevance in the issue of communication via the patient’s medical records, which may directly
impact the planning and implementation of effective care.

Published in the journal Research, Society and Development, December 2020, in
collaboration with students Amanda P. Silva, Maria Carolina O. Maciel, and Haline Maria V.
Burin, advised by Prof. Janete S. Urbanetto and Prof. Renata Vieira.

A.17 Fall Risk Prediction and Fall Detection: a Systematic Review

We searched for articles that reported using EHRs and artificial intelligence tech-
niques to identify in-hospital falls in several digital libraries. Three authors of this work se-
lected articles. We compiled information on study design, use of EHR data types, and meth-
ods. We identified 19 articles — 11 about fall risk prediction and 8 covering fall detection.
Studies varied according to sample size (from 750 to 57,678) and used diverse sources
of information (text, administrative data, patient history, and medication data). All studies
used validation methods to evaluate the performance of the model, and most showed their
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performance (n = 17 of 19). However, studies limited their use of EHR data, picking some
items of data as predictors instead of all available data. All studies that developed fall event
detection used textual information; however, studies focusing on fall risk prediction generally
used structured data (n = 9 of 11). A small portion made a multicenter study evaluation (n
= 4), while the rest of the studies were validated through self-assessment. EHR data shows
opportunities and challenges for fall risk prediction and in-hospital fall detection. There is
room for improvement in developing such studies.

Published in the International Conference on Enterprise Information Systems (ICEIS),
April 2021, in collaboration with student Juliana D. Oliveira and Ana Helena D. P. S. Ulbrich,
advised by Prof. Renata Vieira.

A.18 Nephrotoxicity and Formula for Vancomycin in a Tertiary Hospital

A retrospective cohort study was conducted in a public tertiary Brazilian hospital.
We analyzed 930 courses of vancomycin therapy in 2016. We developed formulas using
the relationship between the daily dose of vancomycin (mg) and the product of the patient’s
calculated endogenous creatinine clearance (ECC) (ml/min/1.73 m²) and weight (kg): F-
MDRD, F-CKD-EPI, and F-CG, when MDRD, CKD-EPI, and Cockroft-Gault were used as the
ECC calculation equations, respectively. The accuracy of the formulas and the vancomycin
serum level (SL) were evaluated and compared to predict the following outcomes: AKI and
AKI requiring hemodialysis (AKI-HD).

Not published yet, in collaboration with Ana Helena D. P. S. Ulbrich, Clarissa B.
Pinto, Cláudia R. Ames, Fernando P. Junior, Jaqueline Pandolfo, Marina B. Oliveira, and
Graziella G. Baiocco, advised by Prof. Paulo R. M. Rosa.




