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Problem: Chronological aging in later life is associated with brain degeneration

processes and increased risk for disease such as stroke and dementia. With a worldwide

tendency of aging populations and increased longevity, mental health, and psychiatric

research have paid increasing attention to understanding brain-related changes of aging.

Recent findings suggest there is a brain age gap (a difference between chronological age

and brain age predicted by brain imaging indices); the magnitude of the gap may indicate

early onset of brain aging processes and disease. Artificial intelligence has allowed for

a narrowing of the gap in chronological and predicted brain age. However, the factors

that drive model predictions of brain age are still unknown, and there is not much about

these factors that can be gleaned from the black-box nature of machine learning models.

The goal of the present study was to test a brain age regression approach that is more

amenable to interpretation by researchers and clinicians.

Methods: Using convolutional neural networks we trained multiple regressor models to

predict brain age based on single slices of magnetic resonance imaging, which included

gray matter- or white matter-segmented inputs. We evaluated the trained models in

all brain image slices to generate a final prediction of brain age. Unlike whole-brain

approaches to classification, the slice-level predictions allows for the identification

of which brain slices and associated regions have the largest difference between

chronological and neuroimaging-derived brain age. We also evaluated how model

predictions were influenced by slice index and plane, participant age and sex, and MRI

data collection site.

Results: The results show, first, that the specific slice used for prediction affects

prediction error (i.e., difference between chronological age and neuroimaging-derived

brain age); second, the MRI site-stratified separation of training and test sets removed

site effects and also minimized sex effects; third, the choice of MRI slice plane influences

the overall error of the model.
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Conclusion: Compared to whole brain-based predictive models of

neuroimaging-derived brain age, slice-based approach improves the interpretability and

therefore the reliability of the prediction of brain age using MRI data.

Keywords: brain age, deep learning, neuroimaging, convolutional neural networks, model interpretability

1. INTRODUCTION

Brain age prediction involves estimating chronological age
based on information typically gleaned from neuroimaging
data. The prediction may be referred to as the biological or
neuroanatomical age of the brain. Although brain age can be
computed from other approaches, such as the epigenetic clock
from brain tissue (1), in this paper we use brain age as a synonym
for neuroimaging-derived brain age. The difference between the
predicted age and the actual chronological age is called brain
age gap, which has been associated with a number of lifestyle
factors (2) [e.g., tobacco and alcohol consumption (3), obesity (4),
diabetes, schooling, physical activity (5), higher mortality
risk (6), lower fluid intelligence, psychiatric disorders (7), and
neurological diseases (8)].

Recent advances in machine learning, specifically on deep
convolutional neural networks, have gradually improved brain
age prediction by lowering prediction error (9). However, brain
age prediction methods still receive criticism due to the lack
of interpretability (10). The criticism stems from the limited
information about what the model uses to predict brain age,
and which regions might bias findings. Hidden biases and
poor generalization are a recurrent theme in machine learning
and deep learning research (11), including its medical imaging
applications (12). Thus to fulfill the promise of translational
research, AI needs to establish reliable and reproducible
prediction methods, and to generate models that are more
amenable to clinical interpretation (10). Identification of clinical
neural markers and association with clinical and behavioral
data may render AI applications more meaningful (10, 13,
14).

In this article, we report on a model developed for the PAC-
2019 brain age prediction competition. Our goal was to generate
competitive predictions using meaningful neuroanatomical
information. We developed a deep learning framework whose
predictions draw on features from every single slice of brain
imaging combined with average or linear regression models. The
resulting model associates each slice with an independent age
prediction for the same patient, allowing researchers to scrutinize
the areas of the brain responsible for the overall brain-age gap.
Our hypothesis was that our approach would help understand the
behavior of brain age prediction at each part of the brain. We also
believe that this method, alongside other approaches that try to
move away from single predictions of brain age (16), may help us
get a comprehensive picture of the parts and characteristics of the
aging brain that inform prediction. Such picture should allow for
identification of diverse, slice-level, and eventually voxel-level,
neuroanatomical traits of age-related diseases.

2. BACKGROUND

The known patterns of brain development associated with
aging, such as a decline in gray matter volume (17), are
readily identifiable by magnetic resonance imaging (MRI).
These images are extensively used for diagnostic and
research of disorders associated with brain tissue loss, such
as Alzheimer’s disease, Parkinsonian dementias, and Fronto-
temporal lobe degeneration (18). More recently, machine
learning techniques have been used to draw on the rich MR
images to predict the brain age of healthy people (19), and
the aging processes of neurodegenerative disorders (20). The
mismatch in chronological and brain age has been investigated
in schizophrenia (8), bipolar disorder (21), and in association
with factors associated with mortality risk, physical and mental
fitness, and biological health (6).

Recent advances in deep learning models, specifically
Convolutional Neural Networks (CNNs) achieve state-of-the-
art performance in computer vision tasks (22), while requiring
little to no prior hand-engineering of data. CNN architectures
using 3D convolutions have been used to predict brain age with
segmented GM and white matter (WM), and raw T1-weighted
MRI scans (10, 23). The use of 3D convolutions allows the model
to take in whole-volume information for convolutional filtering
operations, which, given enough data, learn feature detection and
extraction. CNN models provide highly accurate predictions for
regression and classification tasks on multiple medical imaging
datasets (22, 24).

CNN models have remarkable predictive power, but the
results are typically difficult to interpret. Whereas manual feature
selection in classic machine learning simplifies interpretation
of the model’s results, CNNs require further processing
steps to interpret the model’s decision processes due to the
use of less processed data (15). Examples of interpretation-
seeking mechanisms include saliency maps (25) and activation
mappings (26), which aim to identify the regions in an image
that are responsible for assistingmodel predictions, thus allowing
for some visualization of key input features. These maps trace
network outputs back to the input image voxels through the
computation of their partial derivatives. For example, regression
activationmapping applied to age predictionmodels on newborn
structural MRI generated brain maps of rapid growth during
early development (27). Saliency maps have three key limitations.
First, they depend on human validation, a time consuming task
that also entails the potential for confirmation bias. a Second,
these methods can produce results that are independent of
model and data, and thus inadequate for model debugging and
inspection (28). Finally, additional techniques must be used for
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FIGURE 1 | Depiction of the brain age prediction framework. Each view has an independent CNN model and an independently-trained linear regression model. S is

the number of slices and N and M are the dimensions of the slice (e.g., if evaluating the axial slice, the N and M are the dimensions for the sagittal and coronal views).

combining individual subject saliency maps of into population-
level visualizations (29).

3. METHOD

We tested several models and found that the ones with a
RESNET18 architecture had a good trade-off between size and
prediction error (30). In order to use it in our context with
the dimensions of our input, we modified it in three simple
ways: (1) the input size had one or two channels, depending
on the experiment, (2) the kernel size from the average pool
was changed from 7 to 4, (3) the final fully connected layer was
changed from 512 to 1,024. The code to build this architecture
as well as the steps to reproduce all experiments are available
on GitHub (see data availability statement). The input was one
brain slice with segmented GM in the first channel and white
matter in the second channel. The segmentation was provided
by PHOTON-AI 1 and we made no adjustments to it apart from
scaling. The output of each model was a brain age estimation for
a single segmented slice (GM, WM, or both) from the structural
MRI. We illustrate our framework in Figure 1. The framework
relies on three different, simultaneously-run models that are
combined by three linear regression models and a final average.
Each model is trained independently to predict brain age from
a single MRI slice and draws on different MRI slice orientation
(coronal, sagittal, or axial) as input. Each of these models used
the validation set to generate error estimates for each slice and
each volume. We then used the error estimates to determine
the importance of each slice for the model. All three views were

1https://photon-ai.com/

combined to locate specific regions in the brain responsible for
a particular classification based on the contribution of each slice
for the brain age prediction, which provides an additional source
of interpretation.

The final age prediction for a single individual was calculated
as follows:

ax = Mx(s
i) i ∈ [0, Sx] (1)

age =

1
ea
∗ La(aa)+

1
es
∗ Ls(as)+

1
ec
∗ Lc(ac)

1
ea
+

1
es
+

1
ec

(2)

where x ∈ a, s, c represents the axial, sagittal, and coronal views,
ax is the age vector for each slice for the subject, Mx is one
of the CNN models, Lx is the linear regression model, ex is
the error of model Mx in the validation set, and Sx is the total
number of slices for an orientation x. Our rationale was that each
model’s contribution was inversely proportional to the error in
the validation set with a weighted average. The influence of each
slice for the final prediction is weighted by the linear regression
model. This slice-level rationale can also be applied to understand
the independent contributions of gray and white matter to the
brain age estimate. While using gray or white matter alone causes
the model to lose predictive power, it improves interpretability by
estimating the independent gray and white matter contributions
to the age prediction.

All segmented MRI scans for the dataset provided by the
competition were shaped (121, 145, 121). To reduce the amount
of empty space on the corners of the input, we removed 20% of
the image corners, resulting in a (72, 88, 72) image. The input
for the model is thus shaped (batch, c, 72, 88) where c = 1
when using either gray or white matter alone or c = 2 when
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using both types of brain tissue. For the coronal view, we zero-
pad the image so that the (72, 72) slice also becomes (72, 88) to
keep the consistency across all models. The participants from
the PHOTON-AI dataset included healthy individuals from a
wide age range, males and females, and from 17 different centers.
We included basic demographic information about the sample in
Table 1.

We trained the CNN models using an Adam Optimizer set
with the learning rate at 6e − 4 and weight decay of 6e − 4.
The training also used a sigmoid learning rate rampup for 20
epochs followed by a cosine rampdown until a total of 100
epochs. The batch size was set to 64. We conducted a data
augmentation with Elastic Transform (31) with an α range
between [28, 30], σ with a range of [3.5, 4.0], and p = 0.3,

TABLE 1 | Participants information.

Center Age mean (std) Sex (F-M)

0 34.24 (12.67) 197-133

1 26.76 (9.23) 79-55

2 35.51 (12.18) 331-244

3 25.76 (6.62) 18-129

4 21.24 (2.01) 85-58

5 31.25 (7.46) 21-18

6 62.70 (6.75) 3-7

7 43.44 (11.27) 15-10

8 24.82 (5.16) 121-137

9 49.13 (16.62) 255-194

10 33.19 (11.34) 23-51

11 69.92 (7.97) 9-9

12 28.77 (7.77) 16-15

13 41.00 (17.80) 52-76

14 44.41 (22.81) 142-88

15 23.27 (1.27) 16-3

16 22.76 (2.80) 20-9

Total 35.88 (16.21) 1,403–1,236

FIGURE 2 | Examples of the augmentation procedure. First row are gray

matter segmented images before augmentation; the second row are their

augmented counterparts.

representing the scaling factors, the Gaussian spatial smoothing
of the deformation field, and the probability of the augmentation
being applied.; Random Affine transformations with 4.6 degrees,
[0.98, 1.02] scale, and translation of 0.03; finally, we used a
Random Tensor Channel Shift with the range of [−0.1, 0.1].
Some examples of the augmentation procedure can be seen in
Figure 2. All data augmentation procedures were implemented
in the medicaltorch framework2.

4. RESULTS

For the competition, we achieved a mean absolute error of 4.44
years on the test set, with a Spearman correlation of −0.25
between the age estimates and chronological age. The model that
won the competition achieved 2.90. Due to time restrictions, we
employed axial slice predictions only, combining gray and white
matter. In what follows, we present the results for the combined
gray and white matter models for each separate orientation, the
combined predictions; we also present how predictions improve
interpretability and decrease model errors. The results of this
article are based on predictions made on the competition’s
validation set. We did not have access to the test set’s ground
truth at any point during our experiments, prior to nor after
the competition.

Instead of using the validation set to train the linear
regression, we applied the regression to the training set, in
order to avoid circular analysis. However, we believe this can
limit the accuracy that otherwise would be achievable with the
linear regression model. We leave the comparison of using the
validation dataset and reusing the training set to train the linear
regression model for future work with more data available, as we
restricted ourselves to use data exclusively from the challenge for
this study.

4.1. Combined Gray and White Matter
Our approach used slices for both gray and white matter in
individual channels. The use of the two tissues simultaneously
may have sacrificed obtaining more fine-grained information
about brain aging from the each independent tissue, but it was
done in favor of feeding additional data to the model. Gray and
white matter were concatenated on the first channel, resulting
in an input of (2, 72, 88). We then trained and evaluated the
model, and then assessed the effects of age, sex, and site on its
predictions. In the sections, we explain the key findings from our
experimental analysis.

4.1.1. Models for Different Views of the Brain Have

Different Errors
We trained three independent models, taking the input from
either axial, coronal, or sagittal views (Note: for the competition,
in the interest of time, we used only the axial orientation
information). After training, we estimated the error for each slice.
The estimate is used to gauge how much each slice contributes to
the prediction of brain age.

2https://github.com/perone/medicaltorch
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FIGURE 3 | Change in Mean Absolute Error (MAE) with respect to changing the slice that is evaluated by the network. Each slice index value are an average of either

all training set or all validation set. The shade represents the 0.95 confidence interval for those points. The slices in the image are examples of the index that best or

worst predicts brain age.

We identified a pattern, most present in axial and coronal
models, but to some extent also visible in the sagittal. With more
distal slices, the average prediction error seems to be higher. This
could arguably be attributed to several reasons: (1) differences of
brain matter across regions of the brain, (2) more age-related
changes in some regions than others, and (3) the tendency of
noise from the scanner to be concentrated on the extremities of
the image (and this tendency is fairly visible in Figure 3).

The three models afforded different final prediction errors
(Table 2, which we will further discuss in section 4.1.2. The
models also resulted in different estimates for the contribution
of slices for predicting brain age. Figure 3 shows the error
variation for slices for the axial, coronal and sagittal slice
models. We hypothesize that the differences in mean error may
stem from: intrinsic and extrinsic factors that contributed to a

TABLE 2 | Final validation results for all views.

View Average slice error Average error Regression error R2

Axial 6.28 4.88 5.09 0.82

Coronal 6.38 4.91 5.04 0.83

Sagittal 5.71 4.45 4.52 0.86

Combined 4.62 0.86

The Average Slice Error column evaluates the final error of our model by doing a simple

average across all slices of the volume. The Average Error column uses the same

information for the slice column, but instead of calculating the average error for each

slice, calculates the mean prediction of all slices, and compare with the actual age. The

Regression Error column is the error of using linear regression instead of an average to

classify the whole volume. All values are mean absolute errors.
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FIGURE 4 | Regression curves for the validation set. Every point represents a person (each person is presented three times, one for each view). Dashed red

orthogonal to the x-axis is the age average of the dataset, while the horizontal dashed line is aligned to 0 error as a reference.

poorer segmentation (and therefore an input of lesser quality);
the randomness of the modeling process; and from sample
heterogeneity for each of the regions with respect to age.

4.1.2. Final Predictions
Using Equations (1) and (2), we generated the predictions
for the final dataset. After pre-training each of three models
(one for each view), we evaluated every slice in the dataset
and generated a dataset of predictions with a row for each
individual and a column for model predictions of every slice.
We trained the linear regression for the generated dataset using
scikit-learn 3 library.

Table 2 shows the results for the three models. The sagittal
slice prediction showed the lowest error, and it outperformed
the outputs combined using Equation (2). We argue that this
discrepancy in the error is due to the lack of another validation
set for proper out-of-sample error estimation. Additionally, the

3https://scikit-learn.org/

differences present in a model trained with this dataset may
not accurately translate to other data sources. To ensure that
the sagittal slice prediction is actually superior to the axial and
coronal slice predictions, the model needs to be further validated
and trained using yet another dataset.

4.1.3. Age Effects
Brain age prediction methods usually perform better around
the mean chronological age of the dataset. Research shows that
models tend to overestimate brain age for participants younger
than the mean, and underestimate it for participants older than
the mean (32, 33).

The behavior of our model’s prediction error changed with
respect to age, as shown in Figure 4. Not surprisingly, we found
the same pattern of over and underestimation of age reported
in the literature. One major implication of this type of error
is the possibility of inserting biases when trained models are
applied to external test sets that have a different age distribution
than the training set. Thus, brain age prediction models should
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TABLE 3 | Site effects for each orientation and each site. p < 0.03 in bold.

Site View t-Statistic p-value

0

Axial −2.825 0.006

Coronal −1.581 0.119

Sagittal −1.985 0.051

1

Axial 0.829 0.415

Coronal 1.904 0.068

Sagittal 1.788 0.085

2

Axial 3.248 0.002

Coronal 3.248 0.002

Sagittal 3.097 0.002

3

Axial −3.006 0.005

Coronal −2.335 0.027

Sagittal −2.845 0.008

4

Axial −5.293 0.000

Coronal −6.040 0.000

Sagittal −5.188 0.000

5

Axial −1.945 0.093

Coronal −1.111 0.303

Sagittal −1.323 0.227

6

Axial 5.178 0.121

Coronal 2.203 0.271

Sagittal 22.157 0.029

7

Axial −0.010 0.992

Coronal 1.080 0.341

Sagittal 0.529 0.625

8

Axial −1.436 0.157

Coronal −1.921 0.060

Sagittal −0.957 0.343

9

Axial 0.698 0.487

Coronal 1.845 0.068

Sagittal 0.914 0.363

10

Axial 0.801 0.437

Coronal 0.961 0.353

Sagittal 1.675 0.116

11

Axial 3.146 0.051

Coronal 3.574 0.037

Sagittal 1.575 0.213

12

Axial 0.873 0.416

Coronal 1.203 0.274

Sagittal 1.387 0.215

13

Axial −1.973 0.060

Coronal −1.293 0.208

Sagittal −1.296 0.207

(Continued)

TABLE 3 | Continued

Site View t-Statistic p-value

14

Axial 4.478 0.000

Coronal 3.960 0.000

Sagittal 4.114 0.000

15

Axial −2.058 0.132

Coronal −0.393 0.721

Sagittal −0.336 0.759

16

Axial −0.527 0.621

Coronal −0.858 0.430

Sagittal −0.418 0.693

consider or aim for age-matched test sets (if possible), even if
the model has been validated in external datasets. That way, if
any underestimation or overestimation of age is happening with
the target set, it can be identified and properly dealt with before
any conclusions are drawn. Other means of mitigating the effect
of testing models on datasets with different age ranges has been
addressed elsewhere (33, 34).

4.1.4. Site Effects
The dataset included contributions from 17 different sites. To
investigate any biases associated with the different sites, we
extracted the age and predicted age for each of our models
and each of the 17 sites. We ran a two-tailed dependent t-
test to compare age and predicted age among sites and found
statistically significant differences for just 6 out of the 17 centers.
The data are presented in Table 3 and Figure 5. In four out of
the six significantly different centers, all views had significant
differences simultaneously, thus suggesting that the models tend
to operate in similar manner, and that an actual superiority of the
sagittal slice model needs to be further investigated.

4.1.5. Sex Effects
Previous papers suggest that sex can play a role in biasing brain
age prediction models. For that reason, we assessed how sex
influenced our predictions. We executed a two-tailed paired t-
test for age and model predictions for both males and females
independently and found no significant differences (p < 0.03).
We ran a two-tailed unpaired t-test for males and females
to see whether predictions or age was significantly different
between groups, also with negative findings (p < 0.03). Table 4
summarizes our tests. we applied a two-tailed dependent t-test to
compare group means, the test showed no significant differences.

4.1.6. Voxel-WiseLevel Brain Age Predictions
We investigated whether a voxel-level model could benefit from
the three slice predictions. For each axial slice, information was
gathered from each intersecting coronal and sagittal slice, and
the combined with the axial prediction to generate an average for
each voxel.We show an example of its use in Figure 6. We believe
there is a multitude of applications and benefits that come with
this sort of approach, such as: (1) the exploration of distinct brain
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FIGURE 5 | Site effects for axial, coronal, and sagittal views. For each orientation, the chronological age and predicted age are shown side-by-side by site.

TABLE 4 | Sex effects for each combination of age and prediction and males and

females.

Group 1 Group 2 Variable 1 Variable 2 Test

type

t p-value

Sex M Sex F Age Age I t(531) = −1.957 0.051

Sex M Sex F Pred Pred I t(531) = −2.088 0.037

Sex M Sex M Age Pred D t(237) = 0.558 0.578

Sex F Sex F Age Pred D t(293) = 1.423 0.156

All tests are two-tailed. Results presented here are for the axial orientation model in

the validation set. Values in parentheses are the degrees of freedom for each test. I,

independent (or unpaired); D, dependent (or paired); Pred, prediction.

aging patterns in different regions of the brain; these patterns
do not need to be bounded by anatomically or functionally
defined regions, (2) the investigation of region-specific brain
aging in neuropsychiatric disorders that present a brain age gap,
and (3) the identification of voxel- or region-specific prediction
biases (e.g., regions that consistently present higher error). But
this approach led to unstable predictions, possibly because the
model was not being trained using voxel-level information. There
were high frequency changes in predictions for neighboring
slices; it is expected that neighboring slices be the opposite. This
problem has been documented in deep learning patch-based
prediction methods (35). A possible simple but sub-optimal
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FIGURE 6 | Lightbox view of axial slices age predictions following the voxel-level approach. The value for σ indicates the amount of gaussian spatial smoothing

applied to the predictions. Images on a range from 20 (red) to 60 (yellow).

FIGURE 7 | Change in Mean Absolute Error (MAE) with respect to changing the slice that is evaluated by the network. Two independent models are evaluated, one for

gray matter (solid lines) and another one for white matter (dashed lines). Each slice index value is an average of the entire training set or the entire validation set. The

shade represents the 0.95 confidence interval for those points.
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solution is to use gaussian spatial smoothing to remove the high-
frequency changes, as we demonstrate in Figure 6. We contend
that future approaches may aim to develop means to mitigate
the artifacts that come “stitching” slice-level predictions into
voxel-level ones. Such a successful approach could improve the
current model.

4.2. Independent Gray and White Matter
To estimate the contribution of gray and white matter tissue to
the prediction, we created another model (for axial slices) to test
age predictions using gray matter and white matter separately.
Based on the results in Figure 7, the regions that are best
predictors of brain age are similar between gray and white matter.
The model using solely white matter presented higher errors in
most slices. Previous studies have shown that gray matter is a
better predictor of brain age than white matter (9).

5. DISCUSSION AND CONCLUSION

Identifying the most predictive regions of the brain for
brain age models may help interpreting results, but may also
introduce model biases that are unrelated to a neurological
condition. Our study presents a model that attempted to
balance accuracy and interpretability of the results. Our model
provides a level of scrutability for the decision-making process,
and can thus help researchers and clinicians understand
its limitations.

Given the number of perspectives on interpretability for
machine learning (36, 37), we must clarify exactly what we mean
by interpretability. Although the interpretability or explainability
are commonly used to refer to strategies that explain model
predictions, we use it more broadly to define that the final
predicted brain age can be attributed to specific slices or regions
of the brain. In case additional explanation is needed for a single
slice, the usual strategies, carrying the limitations we discussed
in section 2, should be applied. We believe that for research
purposes, knowing the influence of each part of the brain in the
final prediction is imperative to guide and interpret findings of
research using the brain age gap.

As a whole, neuropsychiatric research on the brain age
gap has mostly focused on associating the difference between
the chronological and predicted age to clinical populations.
Moreover, most of this research was conducted on the
assumption that the brain age gap actually encompasses a
larger brain-wide phenomenon responsible for accelerated
brain aging.

The body of work on the prediction of brain age at specific
regions is growing, two contributions of which are of note in
comparison to our contribution. First, a preprint paper (37)
uses a similar approach to ours, but instead of using slices, they
rely on 3d patches that are later combined with averages or
linear regression. Second, a recently published approach (38) uses
slice-level predictions, but instead of combining it with linear
regression, uses a recurrent neural network for the job.

Attention-based, especially Transformers, models, originally
purposed for text-based modeling (39), have recently shown
to offer substantial improvement on classification accuracy for

image-based problems (40). However, at the time we developed
our approach, attention models were more popular for text-
based than image-based tasks. More importantly, we were not
aware of any work with neuroimaging data that had shown
substantial improvements using those approaches. Indeed, future
work should focus on comparing the explanations we provide
in terms of slides to the attention maps generated by attention-
based models.

Our experiments corroborate some findings from the field.
First, we showed that age effects are significant and should
need to be accounted for in predictive models of brain age.
Second, our results suggest that proper training and test splits
that keep site data proportional may mitigate site effects. Third,
gray matter seems to be more predictive of age than white matter.
Interestingly, our model had similar performance in both male
and female sex, although sex is not explicitly used by the model
and no separate models were trained.

Since the competition dataset was preprocessed by segmenting
gray and white matter, future work should look at less processed
data to try to replicate these results. Differences between the
unprocessed and segmented inputs might help us understand
the extent that possible segmentation errors may influence the
behavior of models of brain age.

6. LIMITATIONS

The convolutional neural network fails to combine information
from different regions of the brain due to its 2D nature.
Although aggregated at later stages of our framework, 3D
CNNs might be able to capture patterns that our proposed
method misses.

We also found that the aggregated information from each
slice prediction to form a voxel-level age prediction to be
noisy enough to be unusable. Adjacent voxels had usually the
same error but occasionally, while changing the slice index, the
prediction had a drastic change. This behavior can probably be
attributable to several issues, such as lack of regularization for
more stable predictions or possible unidentified problems with
the segmentation maps.

DATA AVAILABILITY STATEMENT

The code to reproduce our experiments is available at GitHub
(https://github.com/lsa-pucrs/pac-2019). Data was provided by
PHOTON-AI (https://www.photon-ai.com/explorer) during the
PAC-2019 challenge.

ETHICS STATEMENT

Ethical review and approval was not required for the study
on human participants in accordance with the local legislation
and institutional requirements. Written informed consent for
participation was not required for this study in accordance with
the national legislation and the institutional requirements.

Frontiers in Psychiatry | www.frontiersin.org 10 February 2021 | Volume 12 | Article 598518

https://github.com/lsa-pucrs/pac-2019
https://www.photon-ai.com/explorer
https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org
https://www.frontiersin.org/journals/psychiatry#articles


Ballester et al. Interpretable Brain Age Prediction

AUTHOR CONTRIBUTIONS

PB, LT, MM, and NE designed the study. PB implemented the
framework and ran experiments. FM and AB supervised the
implementation and engineering of the work. AB and BF helped
interpreting the findings and provided neuroimaging-related
insights. All authors contributed to writing the manuscript.

FUNDING

NE was financed in part by the Coordenação de
Aperfeiçoamento de Pessoal de Nível Superior—
Brasil (CAPES)—Finance Code 001. MM was
financed in part by the Conselho Nacional de
Pesquisa—Brasil (CNPq).

REFERENCES

1. Voisey J, Lawford BR, Morris CP, Wockner LF, Noble EP, Young

RM, et al. Epigenetic analysis confirms no accelerated brain aging

in schizophrenia. NPJ Schizophr. (2017) 3:1–3. doi: 10.1038/s41537-017-

0026-4

2. Cole JH.Multi-modality neuroimaging brain-age in UK Biobank: relationship

to biomedical, lifestyle and cognitive factors. Neurobiol Aging. (2020) 92:34–

42. doi: 10.1101/812982

3. Ning K, Zhao L, Matloff W, Sun F, Toga AW. Association of relative brain age

with tobacco smoking, alcohol consumption, and genetic variants. Sci Rep.

(2020) 10:1–10. doi: 10.1038/s41598-019-56089-4

4. Kolenic M, Franke K, Hlinka J, Matejka M, Capkova J, Pausova Z, et al.

Obesity, dyslipidemia and brain age in first-episode psychosis. J Psychiatr Res.

(2018) 99:151–8. doi: 10.1016/j.jpsychires.2018.02.012

5. Steffener J, Habeck C, O’Shea D, Razlighi Q, Bherer L, Stern Y.

Differences between chronological and brain age are related to education

and self-reported physical activity. Neurobiol Aging. (2016) 40:138–44.

doi: 10.1016/j.neurobiolaging.2016.01.014

6. Cole JH, Ritchie SJ, Bastin ME, Hernández MCV, Maniega SM, Royle

N, et al. Brain age predicts mortality. Mol Psychiatry. (2018) 23:1385–92.

doi: 10.1038/mp.2017.62

7. Kaufmann T, van der Meer D, Doan NT, Schwarz E, Lund MJ,

Agartz I, et al. Common brain disorders are associated with heritable

patterns of apparent aging of the brain. Nat Neurosci. (2019) 22:1617–23.

doi: 10.1038/s41593-019-0471-7

8. Schnack HG, Van Haren NE, Nieuwenhuis M, Hulshoff Pol HE, Cahn

W, Kahn RS. Accelerated brain aging in schizophrenia: a longitudinal

pattern recognition study. Am J Psychiatry. (2016) 173:607–16.

doi: 10.1176/appi.ajp.2015.15070922

9. Cole JH, Poudel RP, Tsagkrasoulis D, Caan MW, Steves C, Spector TD,

et al. Predicting brain age with deep learning from raw imaging data

results in a reliable and heritable biomarker. NeuroImage. (2017) 163:115–24.

doi: 10.1016/j.neuroimage.2017.07.059

10. Cole JH, Franke K. Predicting age using neuroimaging: innovative

brain ageing biomarkers. Trends Neurosci. (2017) 40:681–90.

doi: 10.1016/j.tins.2017.10.001

11. Geirhos R, Rubisch P, Michaelis C, Bethge M, Wichmann FA, Brendel W.

ImageNet-trained CNNs are biased towards texture; increasing shape bias

improves accuracy and robustness. In: International Conference on Learning

Representations. New Orleans, LA (2019). p. 22. Available online at: https://

openreview.net/forum?id=Bygh9j09KX

12. Zech JR, Badgeley MA, Liu M, Costa AB, Titano JJ, Oermann EK. Variable

generalization performance of a deep learning model to detect pneumonia

in chest radiographs: a cross-sectional study. PLoS Med. (2018) 15:e1002683.

doi: 10.1371/journal.pmed.1002683

13. Just MA, Pan L, Cherkassky VL, McMakin DL, Cha C, Nock MK, et al.

Machine learning of neural representations of suicide and emotion

concepts identifies suicidal youth. Nat Hum Behav. (2017) 1:911.

doi: 10.1038/s41562-017-0234-y

14. Heinsfeld, A., Sólon F, Alexandre R, Craddock RC, Buchweitz A,

and Meneguzzi F, Identification of autism spectrum disorder using

deep learning and the ABIDE dataset. NeuroImage. (2018) 17:16–23.

doi: 10.1016/j.nicl.2017.08.017

15. Da Silva LT, Esper NB, Ruiz DD, Meneguzzi F, Buchweitz A. Visual

explanation for identification of the brain bases for dyslexia on fMRI data.

CoRR. (2020).

16. Popescu SG, Cole JH, Sharp DJ, Glocker B. Deep learning methods for

estimating" brain age" from structural MRI scans (2018).

17. Good CD, Johnsrude IS, Ashburner J, Henson RNA, Friston KJ, Frackowiak

RSJ. A voxel-based morphometric study of ageing in 465 normal adult human

brains. NeuroImage. (2001) 14:21–36. doi: 10.1006/nimg.2001.0786

18. Wattjes MP. Structural MRI. Int Psychogeriatr. (2011) 23:S13–24.

doi: 10.1017/S1041610211000913

19. Franke K, Ziegler G, Klöppel S, Gaser C. Estimating the age of healthy subjects

from T1-weighted MRI scans using kernel methods: exploring the influence

of various parameters. NeuroImage. (2010) 50:883–92. Available online at:

doi: 10.1016/j.neuroimage.2010.01.005

20. Franke K, Gaser C, Initiative f. Longitudinal changes in individual BrainAGE

in healthy aging, mild cognitive impairment, and Alzheimer’s disease.

GeroPsych. (2012) 25:235–45. doi: 10.1024/1662-9647/a000074

21. Hajek T, Franke K, Kolenic M, Capkova J, Matejka M, Propper L, et al. Brain

age in early stages of bipolar disorders or schizophrenia. Schizophr Bull. (2019)

45:190–8. doi: 10.1093/schbul/sbx172

22. Krizhevsky A, Sutskever I, Hinton GE. ImageNet classification with deep

convolutional neural networks. In: Proceedings of the 25th International

Conference onNeural Information Processing Systems -Volume 1, NIPS’12. Red

Hook, NY: Curran Associates Inc. (2012). p. 1097–105.

23. Jónsson BA, Bjornsdottir G, Thorgeirsson T, Ellingsen LM, Walters

GB, Gudbjartsson D, et al. Brain age prediction using deep learning

uncovers associated sequence variants. Nat Commun. (2019) 10:1–10.

doi: 10.1038/s41467-019-13163-9

24. Litjens G, Kooi T, Bejnordi BE, Setio AAA, Ciompi F, Ghafoorian M, et al. A

survey on deep learning in medical image analysis. Med Image Anal. (2017)

42:60–88. doi: 10.1016/j.media.2017.07.005

25. Zeiler D, Rob F. (2013). Visualizing and understanding convolutional

networks. arXiv:1311.2901. (2013).

26. Arslan S, Ktena SI, Glocker B, Rueckert D. Graph saliency maps through

spectral convolutional networks: application to sex classification with brain

connectivity. In: International Workshop on Integrating Medical Imaging

and Non-Imaging Modalities for Healthcare Challenges. Granada (2018).

doi: 10.1007/978-3-030-00689-1_1

27. Duffy BA, Liu M, Flynn T, Toga AW, Barkovich AJ, Xu D, et al. Regression

activation mapping on the cortical surface using graph convolutional

networks. In: International Conference on Medical Imaging with Deep

Learning-Extended Abstract Track. London (2019). p. 4.

28. Adebayo J, Gilmer J, Muelly M, Goodfellow I, Hardt M, Kim B. Sanity checks

for saliency maps. In: Advances in Neural Information Processing Systems.

Montreal, QC (2018). p. 9505–15.

29. Levakov G, Rosenthal G, Shelef I, Raviv TR, Avidan G. From a deep learning

model back to the brain-identifying regional predictors and their relation to

aging. Hum Brain Mapp. (2020) 41:3235–52. doi: 10.1101/803742

30. He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition.

In: Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition. Las Vegas, NV (2016). p. 770–8. doi: 10.1109/CVPR.2016.90

31. Simard PY, Steinkraus D, Platt JC, et al. Best practices for convolutional neural

networks applied to visual document analysis. In: ICDAR. Vol. 3. Edinburgh

(2003). p. 6.

Frontiers in Psychiatry | www.frontiersin.org 11 February 2021 | Volume 12 | Article 598518

https://doi.org/10.1038/s41537-017-0026-4
https://doi.org/10.1101/812982
https://doi.org/10.1038/s41598-019-56089-4
https://doi.org/10.1016/j.jpsychires.2018.02.012
https://doi.org/10.1016/j.neurobiolaging.2016.01.014
https://doi.org/10.1038/mp.2017.62
https://doi.org/10.1038/s41593-019-0471-7
https://doi.org/10.1176/appi.ajp.2015.15070922
https://doi.org/10.1016/j.neuroimage.2017.07.059
https://doi.org/10.1016/j.tins.2017.10.001
https://openreview.net/forum?id=Bygh9j09KX
https://openreview.net/forum?id=Bygh9j09KX
https://doi.org/10.1371/journal.pmed.1002683
https://doi.org/10.1038/s41562-017-0234-y
https://doi.org/10.1016/j.nicl.2017.08.017
https://doi.org/10.1006/nimg.2001.0786
https://doi.org/10.1017/S1041610211000913
https://doi.org/10.1016/j.neuroimage.2010.01.005
https://doi.org/10.1024/1662-9647/a000074
https://doi.org/10.1093/schbul/sbx172
https://doi.org/10.1038/s41467-019-13163-9
https://doi.org/10.1016/j.media.2017.07.005
https://doi.org/10.1007/978-3-030-00689-1_1
https://doi.org/10.1101/803742
https://doi.org/10.1109/CVPR.2016.90
https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org
https://www.frontiersin.org/journals/psychiatry#articles


Ballester et al. Interpretable Brain Age Prediction

32. Aycheh HM, Seong JK, Shin JH, Na DL, Kang B, Seo SW, et al.

Biological brain age prediction using cortical thickness data: a large scale

cohort study. Front Aging Neurosci. (2018) 10:252. doi: 10.3389/fnagi.2018.

00252

33. Liang H, Zhang F, Niu X. Investigating systematic bias in brain age estimation

with application to post-traumatic stress disorders. Hum Brain Mapp. (2019)

40:3143–52. doi: 10.1002/hbm.24588

34. Le TT, Kuplicki RT, McKinney BA, Yeh HW, Thompson WK, Paulus

MP, et al. A nonlinear simulation framework supports adjusting for

age when analyzing BrainAGE. Front Aging Neurosci. (2018) 10:317.

doi: 10.3389/fnagi.2018.00317

35. Pielawski N, Wählby C. Introducing Hann windows for

reducing edge-effects in patch-based image segmentation.

PLoS ONE. (2020) 15:e0229839. doi: 10.1371/journal.pone.

0229839

36. Lundberg SM, Lee SI. A unified approach to interpreting model predictions.

In: Advances in Neural Information Processing Systems. Long Beach, CA

(2017). p. 4765–74.

37. Bintsi KM, Baltatzis V, Kolbeinsson A, Hammers A, Rueckert D. Patch-

based brain age estimation from MR images. arXiv preprint arXiv:200812965.

(2020). doi: 10.1007/978-3-030-66843-3_10

38. Lam PK, Santhalingam V, Suresh P, Baboota R, Zhu AH, Thomopoulos SI,

et al. Accurate brain age prediction using recurrent slice-based networks.

In: 16th International Symposium on Medical Information Processing and

Analysis, Vol. 11583. Lima: International Society for Optics and Photonics

(2020). p. 1158303. doi: 10.1117/12.2579630

39. Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez AN,

et al. Attention is all you need. Adv Neural Inform Process Syst. (2017)

30:5998–6008.

40. Parmar N, Vaswani A, Uszkoreit J, Kaiser L, Shazeer N, Ku A, et al.

Image Transformer. In: Dy J, Krause A, editors. Proceedings of the 35th

International Conference on Machine Learning. vol. 80 of Proceedings of

Machine Learning Research. Stockholm (2018). p. 4055–64. Available online

at: http://proceedings.mlr.press/v80/parmar18a.html

Conflict of Interest: BF had a research grant from Pfizer outside of this study.

The remaining authors declare that the research was conducted in the absence of

any commercial or financial relationships that could be construed as a potential

conflict of interest.

Copyright © 2021 Ballester, da Silva,Marcon, Esper, Frey, Buchweitz andMeneguzzi.

This is an open-access article distributed under the terms of the Creative Commons

Attribution License (CC BY). The use, distribution or reproduction in other forums

is permitted, provided the original author(s) and the copyright owner(s) are credited

and that the original publication in this journal is cited, in accordance with accepted

academic practice. No use, distribution or reproduction is permitted which does not

comply with these terms.

Frontiers in Psychiatry | www.frontiersin.org 12 February 2021 | Volume 12 | Article 598518

https://doi.org/10.3389/fnagi.2018.00252
https://doi.org/10.1002/hbm.24588
https://doi.org/10.3389/fnagi.2018.00317
https://doi.org/10.1371/journal.pone.0229839
https://doi.org/10.1007/978-3-030-66843-3_10
https://doi.org/10.1117/12.2579630
http://proceedings.mlr.press/v80/parmar18a.html
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org
https://www.frontiersin.org/journals/psychiatry#articles

	Predicting Brain Age at Slice Level: Convolutional Neural Networks and Consequences for Interpretability
	1. Introduction
	2. Background
	3. Method
	4. Results
	4.1. Combined Gray and White Matter
	4.1.1. Models for Different Views of the Brain Have Different Errors
	4.1.2. Final Predictions
	4.1.3. Age Effects
	4.1.4. Site Effects
	4.1.5. Sex Effects
	4.1.6. Voxel-WiseLevel Brain Age Predictions

	4.2. Independent Gray and White Matter

	5. Discussion and Conclusion
	6. Limitations
	Data Availability Statement
	Ethics Statement
	Author Contributions
	Funding
	References


