

ESCOLA POLITÉCNICA PROGRAMA DE PÓS-GRADUAÇÃO EM CIÊNCIA DA COMPUTAÇÃO MESTRADO EM CIÊNCIA DA COMPUTAÇÃO

BERNARDO SCAPINI CONSOLI

ENRICHING PORTUGUESE WORD EMBEDDINGS WITH VISUAL INFORMATION

Porto Alegre 2021

PÓS-GRADUAÇÃO - STRICTO SENSU

Pontifícia Universidade Católica do Rio Grande do Sul

ENRICHING PORTUGUESE WORD EMBEDDINGS WITH VISUAL INFORMATION

BERNARDO SCAPINI CONSOLI

Master Thesis submitted to the Pontifical Catholic University of Rio Grande do Sul in partial fulfillment of the requirements for the degree of Master in Computer Science.

Advisor: Prof. Dra. Renata Vieira

Elaborada pelo Sistema de Geração Automática de Ficha Catalográfica da PUCRS com os dados fornecidos pelo(a) autor(a). Bibliotecária responsável: Clarissa Jesinska Selbach CRB-10/2051

BERNARDO SCAPINI CONSOLI

ENRICHING PORTUGUESE WORD EMBEDDINGS WITH VISUAL INFORMATION

This Master Thesis has been submitted in partial fulfillment of the requirements for the degree of Master in Computer Science, of the Computer Science Graduate Program, School of Technology of the Pontifical Catholic University of Rio Grande do Sul

Sanctioned on March 19, 2021.

COMMITTEE MEMBERS:

Prof. Dr. Rafael Heitor Bordini (PPGCC/PUCRS)

Prof^a. Dr^a. Aline Marin Paes Carvalho (IC/UFF)

Prof. Dra. Renata Vieira (PPGCC/PUCRS - Advisor)

I dedicate this work to my family, friends and mentors who helped me on my way to achieving my dreams.

"The limits of my language means the limits of my world." (Ludwig Wittgenstein)

ENRIQUECENDO WORD EMBEDDINGS DA LÍNGUA PORTUGUESA COM INFORMAÇÕES VISUAIS

RESUMO

Essa dissertação foca no enriquecimento de word embeddings pré-treinados na língua Portuguesa com o uso de informações visuais. Essas informações foram extraídas de imagens retratando certos termos do vocabulário e embeddings visuais "imaginadas" para termos sem dados de imagem. Essas embeddings enriquecidas foram testadas contra seus modelos textuais originais em tarefas comuns de PLN, sendo elas: relação entre palavras, predição de analogias, reconhecimento de entidades nomeadas e similaridade de sentenças. Essas tarefas foram utilizadas para descobrir se o enriquecimento tem impacto sobre a performance dos embeddings nas tarefas em questão. Os resultados demonstram um aumento de desempenho para algumas tarefas, o que indica que o enriquecimento com dados visuais é útil para tarefas de PLN baseadas em word embeddings.

Palavras-Chave: word embeddings, multimodal, português, geociências, reconhecimento de entidades nomeadas, similaridade de sentenças, relacionamento de palavras.

ENRICHING PORTUGUESE WORD EMBEDDINGS WITH VISUAL INFORMATION

ABSTRACT

This dissertation focuses on the enrichment of existing Portuguese word embeddings with visual information in the form of visual embeddings. This information was extracted from images portraying given vocabulary terms and imagined visual embeddings learned for terms with not image data. These enriched embeddings were tested against their text-only counterparts in common NLP tasks, namely: word relatedness, analogy prediction, named entity recognition, and sentence similarity. These tasks were used to ascertain whether the enrichment has an impact on the embedding's performance the above mentioned tasks. The results show an increase in performance for several tasks, which indicates that visual information fusion for word embeddings can be useful for word embedding based NLP tasks.

Keywords: word embeddings, multimodal, portuguese, geosciences, named entity recognition, sentence similarity, word relatedness.

LIST OF FIGURES

Figure 2.1 – Papers Related to Multimodal Semantic Embeddings by Year	25
Figure 3.1 – Example of the architecture used by Collell et al. (2017). The imag-	
ined representations are the outputs of a text-to-vision mapping, f. Image	
created by Collell et al. (2017) [11]	33
Figure 3.2 – Simplified concatenation fusion architecture.	35
Figure 3.3 – Simplified auto-encoding fusion architecture.	36
Figure 4.1 – Example of sentence pairs from the ASSIN corpus	41
Figure 4.2 - A snippet of a sentence from the First HAREM, to exemplify its an-	
notation.	42
Figure 4.3 – A snippet of a sentence from GeoCorpus 3.0, to exemplify its anno-	
tation.	42

LIST OF TABLES

Table 2.1 – Search Strings used for database searches.	21
Table 2.2 – Details on some of the more relevant papers found during the review.	27
Table 2.3 – Details on some of the more relevant papers found during the review,	
continued.	28
Table 3.1 – Corpora and token totals for each of the text corpora used for training	
text embedding models.	31
Table 3.2 – Imagined Embedding neural network parameters	33
Table 3.3 – Auto-encoding Embedding neural network parameters.	35
Table 3.4 – Each text embedding model was used to train 14 multimodal models. To reiterate, the textual models are: the BBP model, three NILC models, and the two PetroVec models. This makes for a total of 84 multimodal models trained in total.	37
Table 4.1 – Four examples of word pairs from the translated MEN corpus.	39
Table 4.2 – Four examples of word pairs from the translated GeoSim corpus.	40
Table 4.3 – Four examples, two semantic and two syntactic, of word pairs from	
the Analogy Prediction corpus, translated to English.	40
Table 5.1 – The best Spearman Correlation results for each multimodal model	
and the results for their text-only counterparts for the MEN test set.	45
Table 5.2 – The " <i>No. of best results</i> " column represents the number of times each architecture and scaling algorithm had the best results in a model. The Overall subtable presents a conglomeration of all results, while the Normal-ized and Standardized subtables present separated results for their respective scaling algorithms.	46
Table 5.3 – The best results for each multimodal model and the results for their	
text-only counterparts for the GeoSim test set.	47
Table 5.4 – The "No. of best results" column represents the number of times each architecture and scaling algorithm had the best results in a model. The Overall subtable presents a conglomeration of all results, while the Normal- ized and Standardized subtables present separated results for their respec-	
tive scaling algorithms.	48
Table 5.5 – The " <i>No. of best results</i> " column represents the number of times each architecture and scaling algorithm had the best results in a model	48

Table 5.6 - The best accuracy results for each multimodal model and the resultsfor their text-only counterparts for the Brazilian Portuguese Analogy Predic-	
tion test set	49 50
Table 5.8 – The best accuracy results for each multimodal model and the results for their text-only counterparts for the European Portuguese Analogy Pre-	50
Table 5.9 – The " <i>No. of best results</i> " column represents the number of times each architecture and scaling algorithm had the best results in a model. The Overall subtable presents a conglomeration of all results, while the Normal- ized and Standardized subtables present separated results for their respective scaling algorithms	50
Table 5.10 – The " <i>No. of best results</i> " column represents the number of times each	00
architecture and scaling algorithm had the best results in a model	51
Table 5.11 – The best results for the Brazilian Portuguese track of the ASSIN task.	52
Table 5.12 – The " <i>No. of best results</i> " column represents the number of times each architecture and scaling algorithm had the best results in a model. The Overall subtable presents a conglomeration of all results, while the Normal-ized and Standardized subtables present separated results for their respec-	
	52
 Table 5.13 – The best results for the European Portuguese track of the ASSIN task. Table 5.14 – The "<i>No. of best results</i>" column represents the number of times each architecture and scaling algorithm had the best results in a model. The Overall subtable presents a conglomeration of all results, while the Normalized and Standardized subtables present separated results for their respec- 	53
tive scaling algorithms	53
Table 5.15 – The "No. of best results" column represents the number of times eacharchitecture and scaling algorithm had the best results in a model.	54
Table 5.16 – The best results for the Selective track of the HAREM task	55
Table 5.17 – The " <i>No. of best results</i> " column represents the number of times each architecture and scaling algorithm had the best results in a model. The Overall subtable presents a conglomeration of all results, while the Normal- ized and Standardized subtables present separated results for their respective scaling algorithms.	55

Table 5.18 – The best results for the Total track of the HAREM task.	56
Table 5.19 – The " <i>No. of best results</i> " column represents the number of times each architecture and scaling algorithm had the best results in a model. The Overall subtable presents a conglomeration of all results, while the Normalized and Standardized subtables present separated results for their respective acaling algorithms.	50
	56
Table 5.20 – The "No. of best results" column represents the number of times each	57
Table 5.21 The best results for the GooCorpus test set	57
Table 5.22 – The "No. of best results" column represents the number of times each architecture and scaling algorithm had the best results in a model. The Overall subtable presents a conglomeration of all results, while the Normal-ized and Standardized subtables present separated results for their respec-	51
tive scaling algorithms	58
Table 5.23 – The "No. of best results" column represents the number of times each architecture and scaling algorithm had the best results in a model.	59
Table B.1 – Comparison GeoCorpus: Original version x GeoCorpus: Revised ver-	
sion	74
Table B.2 - Unique Entities by class, organized into superclasses - Revised Version	75
Table D.1 – Complete results for the MEN dataset.	77
Table E.1 – Full results table for the GeoSim testset.	78
Table F.1 – Results for Concatenated models in the Analogies dataset.	79
Table F.2 – Results for Auto-encoded models in the Analogies dataset	80
Table G.1 – The complete results for the Brazilian Portuguese ASSIN track	81
Table G.2 – The complete results for the European Portuguese ASSIN track	82
Table H.1 – The results of the BBP300 and NILCFT100 concatenated models of the Selective HAREM Track	83
Table H.2 – The results of the NILCW2V100 and NILCFT300 concatenated mod- els of the Selective HAREM Track.	84
Table H.3 – The results of the BBP300 and NILCFT100 auto-encoded models of the Selective HAREM Track.	85
Table H.4 – The results of the NILCW2V100 and NILCFT300 auto-encoded mod-els of the Selective HAREM Track.	86
Table H.5 – The results of the BBP300 concatenated model for the Total HAREM Track.	87
Table H.6 – The results of the NILCFT100 concatenated model for the Total HAREM	
Track.	88

Table H.7 – The results of the NILCW2V100 concatenated model for the TotalHAREM Track.	89
Table H.8 – The results of the NILCFT300 concatenated model for the Total HAREM Track.	90
Table H.9 – The results of the BBP300 auto-encoded model for the Total HAREM Track. Track.	91
Table H.10 – The results of the NILCFT100 auto-encoded model for the Total HAREM Track.	92
Table H.11 – The results of the NILCW2V100 auto-encoded model for the Total HAREM Track.	93
Table H.12 – The results of the NILCFT300 auto-encoded model for the Total HAREM Track.	94
Table H.13 – The results of the PetroVecFT concatenated model for the GeoCorpus task.	95
Table H.14 – The results of the PetroVecHybridFT concatenated model for the Geo- Corpus task.	96
Table H.15 – The results of the PetroVecW2V concatenated model for the GeoCorpus task. pus task.	97
Table H.16 – The results of the PetroVecHybridW2V concatenated model for the GeoCorpus task	98
Table H.17 – The results of the PetroVecFT auto-encoded model for the GeoCorpus task.	99
Table H.18 – The results of the PetroVecHybridFT auto-encoded model for the Geo- Corpus task.	100
Table H.19 – The results of the PetroVecW2V auto-encoded model for the GeoCor-	101
Table H.20 – The results of the PetroVecHybridW2V auto-encoded model for the GeoCorpus task.	102

LIST OF ACRONYMS

- NLP Natural Language Processing
- PLN Processamento de Linguagem Natural
- NER Named Entity Recognition
- NILC Núcleo Interinstitucional de Linguística Computacional
- USP Universidade de São Paulo
- UFRGS Universidade Federal do Rio Grande do Sul
- PUCRS Pontifícia Universidade Católica do Rio Grande do Sul
- MSE Mean Standard Error
- NN Neural Network
- WE Word Embedding
- BR Brazilian Portuguese
- PT European Portuguese
- BBPFT300 BBP fastText model, 300-dimension vector space
- NILCFT300 NILC fastText model, 300-dimension vector space
- NILCFT100 NILC fastText model, 100-dimension vector space
- NILCW2V100 NILC Word2Vec model, 100-dimension vector space
- PETROVECFT PetroVec fastText model
- PETROVECHYBRIDFT PetroVec fastText model, Hybrid version
- PETROVECW2V PetroVec Word2Vec model
- PETROVECHYBRIDW2V PetroVec Word2Vec model, Hybrid version

CONTENTS

1		16
2	SYSTEMATIC REVIEW OF MULTIMODAL EMBEDDINGS	19
2.1	THE OBJECTIVE AND RESEARCH QUESTIONS	19
2.2	THE SEARCH PLAN	20
2.3	ANSWERING THE RESEARCH QUESTIONS	22
2.4	INFLUENCE OF THE RESEARCH QUESTIONS ON THE DIRECTION OF	
	THE DISSERTATION	25
3	DEVELOPING THE MULTIMODAL EMBEDDINGS	29
3.1	UNIMODAL EMBEDDINGS	29
3.1.1	TEXTUAL EMBEDDINGS	29
3.1.2	VISUAL EMBEDDINGS	30
3.1.3	DEALING WITH THE INFORMATION GAP	32
3.2	MULTIMODAL FUSION TECHNIQUES	33
3.2.1	CONCATENATION FUSION	34
3.2.2	AUTO-ENCODING FUSION	34
3.3	MULTIMODAL EMBEDDINGS	36
4	QUALITY EVALUATION STRATEGY FOR THE MULTIMODAL EMBEDDINGS	38
4.1	INTRINSIC TESTS	38
4.1.1	WORD RELATEDNESS	38
4.1.2	ANALOGY PREDICTION	40
4.2	EXTRINSIC TESTS	41
4.2.1	SEMANTIC SIMILARITY IN SHORT SENTENCES	41
4.2.2	NAMED ENTITY RECOGNITION	42
4.3	ON THE CONSTRUCTION OF TEST SETS	43
5	RESULTS	44
5.1	WORD RELATEDNESS	45
5.1.1	MEN	45
5.1.2	GEOSIM	46
5.1.3	WORD RELATEDNESS TASK OVERVIEW	47

5.2	ANALOGY PREDICTION	48
5.2.1	BRAZILIAN PORTUGUESE TEST SET	49
5.2.2	EUROPEAN PORTUGUESE TEST SET	49
5.2.3	ANALOGY PREDICTION TASK OVERVIEW	51
5.3	SEMANTIC SIMILARITY OF SENTENCES	51
5.3.1	BRAZILIAN PORTUGUESE TEST SET	52
5.3.2	EUROPEAN PORTUGUESE TEST SET	53
5.3.3	SEMANTIC SIMILARITY TASK OVERVIEW	54
5.4	NAMED ENTITY RECOGNITION	54
5.4.1	HAREM	54
5.4.2	GEOCORPUS	57
5.4.3	NAMED ENTITY RECOGNITION TASK OVERVIEW	58
6	DISCUSSION AND CONCLUSIONS	60
	REFERENCES	63
	APPENDIX A – GEOSIM	68
A.1	RELATED WORK	68
A.2	DEVELOPMENT METHODOLOGY	68
	APPENDIX B – GEOCORPUS 3.0	70
B.1	MODIFICATIONS	70
B.1.1	REMOVING EMPTY CATEGORIES	70
B.1.2	REMOVAL OF NESTED CATEGORIES	70
B.1.3	CORRECTION OF CATEGORY ANNOTATION	71
B.1.4	REMOVING DUPLICATE LINES	71
B.1.5	CORRECTION OF IMPROPERLY BROKEN LINES	71
B.1.6	OTHER CATEGORY REMOVAL	72
B.1.7	STANDARDIZATION OF CATEGORIES	72
B.1.8	ENTITIES WITHOUT ANNOTATION	72
B.2	ANALYSIS OF GEOCORPUS	73
	APPENDIX C – READING THE FULL RESULTS	76

APPENDIX E – GEOSIM FULL RESULTS	78
APPENDIX F – ANALOGY PREDICTION FULL RESULTS	79
APPENDIX G – ASSIN FULL RESULTS	81
APPENDIX H – NER FULL RESULTS	83

1. INTRODUCTION

Language modelling technologies have been dominated by semantic embedding models ever since Mikolov et al. (2013b) and Mikolov et al.'s (2013a) [30, 31] popularization of Word Embeddings, a concept which revolutionized the field of Natural Language Processing (NLP). The architecture presented by the authors, Word2Vec, has been used as basis for many works across the spectrum of NLP tasks, as attested by nearly 45,000 citations when accounting both of the aforementioned papers (as recorded by Google Scholar), mainly because of the fact that training this architecture only requires raw text, and no human-made annotation (the main obstacle in training machine learning models).

Many architectures based on the original intuition behind Word2Vec have become popular since 2013. The most prevalent, besides the original Word2Vec, are fastText [18] and GloVe [36]. An evolution upon the concept, taking into account the current context of a word, not just an amalgamation of all contexts with which it was trained, was introduced by Peters et al. (2018) [37], with their ELMO architecture, and popularized by Devlin et al.'s (2019) [14] BERT architecture. These Contextual Embeddings, as they are sometimes referred to, have taken off and are currently the bleeding edge technology in the field of semantic embeddings with the immense GPT-3 model, from OpenAl¹, achieving state-ofthe-art results in multiple NLP tasks [5].

All of the mentioned embedding architectures have at least one model trained on Portuguese language corpora. The *Núcleo Interinstitucional de Linguística Computacional* (NILC), from the *Universidade de São Paulo* (USP), for example, has several Word2Vec, fastText and GloVe models for the Portuguese language available within their Word Embedding repository². The Allen Institute for AI maintains an ELMO model repository which includes a Portuguese language model³. BERTimbau[44], a Portuguese language BERT model, was recently developed and added to the Hugging Face⁴ library. These models, and others, have been used to advance the state-of-the-art in several Portuguese language NLP tasks [40, 26, 16].

Beyond these efforts to further enhance the usage of text in the training of word embedding models, be it Portuguese language text or otherwise, an effort to enrich these embeddings with other modes of information also arose. The most studied modes of information used to enhance Word Embeddings are the visual mode (composed of images and video), and the audio mode (composed of sounds, spoken language, music, etc.). These efforts spurred the creation of multimodal embedding fusion architectures, used to join embeddings of disparate modes into a single embedding representing all fused knowledge. An

¹https://openai.com/

²http://www.nilc.icmc.usp.br/embeddings

³https://allennlp.org/elmo

⁴https://huggingface.co/

example of this is the concatenation based architecture of Bruni et al. (2014) [6], which arrived at promising results after proposing that multiple embeddings of different modes could be concatenated, resulting in a higher-dimensional space, for them to be enhanced for better use in NLP tasks.

It is also important to note that this dissertation is inserted within the context of the "Geologia Digital: Busca digital de dados geocientíficos heterogêneos" (Digital Geology: Digital search of heterogeneous geoscientific data) project. This project, a result of Petrobras' partnership with the Universidade Federal do Rio Grande do Sul (UFRGS) and the Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), has as a central objective the research and development of Information Retrieval technology for internal usage within Petrobras' large and heterogeneous databases. This is where Word Embeddings come in, as several studies posit that they are more fit for use in industry than more computationally intensive Contextual Embeddings [38, 4], and they can be used to expand search terms through semantic similarity and relatedness. This approach to the problem also inspired the study into the possibility of the enrichment of Word Embeddings with visual data previously mentioned, which might enable the development of tools that take advantage of the images being processed by the Visual Data sub-teams within the Geologia Digital project for use with textual data.

The goal of this work is to study the possibility of usage of visual data to enrich textual data within word embeddings for use within NLP tasks in the Portuguese language. The main hypothesis presented herein is that fusing textual information with visual information will enhance results for traditionally text-only tasks. To test it, experiments in four NLP tasks were performed. Of these four tasks, two had test corpora for both a generic news domain and a specific geosciences domain, while the other two only had test corpora for a generic news domain. This is because of the nascent nature of data digitalization and organization within Petrobras, which is just beginning their efforts into creating proper test corpora for their domains of interest.

This dissertation contributes to the literature and Petrobras' aims by developing an intrinsic NLP test corpus for the geociensces domain and enhancing an already existing extrinsic NLP test corpus for the same domain. It further tests several generic news domain and specific geosciences domain word embedding models on appropriate domain test corpora, both with and without visual information enrichment, thus confirming that visual enrichment of word embeddings is a viable strategy even for text-only tasks.

The remaining chapters of this dissertation are arranged in the following manner: Chapter 2 presents a systematic review into multimodality within semantic embeddings; Chapter 3 presents the tools, resources and methods used to develop the multimodal embeddings studied in this work; Chapter 4 presents the testing methodology for the embedding models; Chapter 5 presents the results achieved for the tests; and Chapter 6 presents the conclusions reached with this study, discusses the results, and deliberates on the possibilities for future work.

2. SYSTEMATIC REVIEW OF MULTIMODAL EMBEDDINGS

A systematic review was performed in order to appropriately ground this research in the state-of-the-art for multimodal semantic embeddings, and take full advantage of already developed tools and methodologies. This review focused on the creation of multimodal embeddings with a bias toward the textual and visual modalities.

This chapter is structured around the literature review, and presents its aspects in the following manner: the objective, which guided the construction of the review; the search plan, which guided the search for existing studies, and its results; and the review questions, the major focuses of the review, and their answers.

2.1 The Objective and Research Questions

The objective of this literature revision is to systematically review and analyse the current state of the use of multimodality in the creation of semantically significant embeddings such as Word2Vec [31], Flair Embeddings [2], ELMO Embeddings [37] and BERT [14]. Given that the planned application of the multimodality for this work will be in textual-visual fusion, other modalities are understood to be less important to the review process.

This objective is meant to explicit a focus on the textual modality, as the preliminary objective of this work is the creation of semantic embeddings. It is to be noted that the review has a bias toward the visual modality, but does not completely discard other possible modalities, such as user data and audio, that may prove to increase semantic significance.

With the above objective as a guiding directive, five research questions were asked:

- 1. To what tasks are these embeddings mainly applied?
- 2. How were the embeddings constructed?
- 3. How were they evaluated?
- 4. What resources were used in the creation of the embeddings?
- 5. To what extent has multimodality been implemented in the creation of semantic embeddings? Has any implementation been successful?

These questions then guided the creation of the Search Plan, described in Section 2.2. Additionally, the answers to the research questions are presented in Section 2.3.

2.2 The Search Plan

The search plan includes the delineation of the search terms, of the databases that will be searched, and of the eligibility criteria. Additionally, the search terms must be translated into search strings compatible with each database's advanced search function.

Firstly, the search terms were created. These sprang from two main search terms: *multimodal* and *embeddings*. From these, synonyms and certain suitably related terms were added to the search terms, as presented below. Note that both the original terms and the new terms were used during the searches.

- Terms related to "Multimodal":
 - Modality;
- Terms related to "Embeddings":
 - Distributional Semantics;
 - Language Model;
 - Word Space;
 - Semantic Vector Space;

Secondly, the databases to be searched were defined, and their respective search strings were developed. The chosen databases were ACM Digital Library ¹, IEEE Digital Library ², and SCOPUS ³. These were chosen as they are the biggest Computer Science related repositories available through PUCRS's bought licenses, and have the most robust search functions. Table 2.1 presents the search strings used for each database.

Lastly, the eligibility criteria were developed. These are composed of two subclasses of criteria: the *Inclusion Criteria*, which must be met in order for a work to be included in the review; and the *Exclusion Criteria*, none of which can be met if a work is to be included in the review. The criteria are presented below.

Database Search String				
	recordAbstract: (+(multimodal modality)			
ACM Digital Library	+("distributional semantics" embedding "language model"			
	"word space" "semantic vector space"))			
	ABS((multimodal OR modality)			
	AND (distributional AND semantics			
SCOBIS	OR embedding			
300003	OR language AND model			
	OR word AND space			
	OR semantic AND vector AND space))			
	(("Abstract":"multimodal" OR "Abstract":"modality")			
	AND ("Abstract":"'distributional semantics'"			
IEEE Digital Library	OR "Abstract":"embedding"			
IEEE Digital Library	OR "Abstract":"'language model'"			
	OR "Abstract":"'word space'"			
	OR "Abstract":"'semantic vector space'"))			

Table 2.1 – Search Strings used for database searches.

- Inclusion Criteria:
 - Publication was an academic, peer-reviewed study;
 - Publication was a study pertaining to the field of Natural Language Processing;
 - Publication was a study making use of multimodal semantically significant embeddings;
- Exclusion Criteria:
 - Publication in a language other than English or Portuguese;
 - Publication's full text neither made freely available by the author nor accessible via the licenses at PUCRS's disposal;
 - Publication published before 2015;

These criteria were chosen to ensure that the works reviewed are recent, on topic and present reliable information, and ensure that the works are accessible to the reviewer. This final step of the search plan ended with the manual screening of the abstract of each of the works collected during the database search according to these criteria, and resulted in the review corpus.

The search plan resulted in the recovery of 250 works through the automated database search, and reduced to 111 works after the manual screening. These were then fully read and analyzed by the author of this dissertation.

2.3 Answering the Research Questions

This section presents the answers to the research questions as found by reading the review corpus collected during the systematic review. It is believed that the corpus is complete enough to provide an adequate picture of the current state-of-the-art in this research field, as well as provide a foundation from which this work will achieve its final goal.

To what tasks are these embeddings mainly applied?

Multimodal semantic embeddings see extensive use in video related tasks, such as video captioning [21], video understanding and video event recognition [19, 22], video hyperlinking [25], and video recommendation [19]. This is not unexpected, as video is an inherently multimodal medium, usually combining the visual and audio modalities. It is also common to consider the textual modality in video, through either video descriptions or speech transcription. It is thus common to see works proposing ways to better embed these data modalities and attempt to make their interaction and fusion more effective.

The use of multimodal embeddings for recommendation extended beyond video. Works used it for fashion recommendation [24, 23], product recommendation [32], and music recommendation [34].

These embeddings have also been used to provide information to machine learning models performing prediction tasks. The use of multimodal embeddings for such tasks, which are usually treated unimodally, has resulted in better results for certain domains. Some of these are social media popularity prediction [9, 46], and data classification prediction [29].

Semantic embeddings have also seen recent use in network embeddings. This task consists of the learning of low-dimensional vector representations for network nodes while preserving their structural information, and is mainly implemented so that off-the-shelf machine learning models become easily able to use this network information in downstream tasks [27]. A few approaches have begun to use the content information of content-rich network nodes to inform the embedding process, alongside a node networks' structural information. Structural and content information form the two main information modalities of these works [27, 47].

Finally, multimodal embeddings are also used in multimedia information retrieval. Several works focus on cross-modal retrieval [20, 17, 45]. Information retrieval is considered one of the more important multimodal tasks, given the glut of multimedia data available on the internet from which specific data must be retrieved.

How were the embeddings constructed?

The literature reveals two main ways in which multimodal embeddings are constructed: individually and simultaneously. That is, either learning is performed individually (an embedding is learned for each modality, and then these are fused) [11], or simultaneously (all modalities are learned at the same time in the same space). Henceforth, the former method will be referred to as *Post-Learning Fusion*, while the latter method will be referred to as *Simultaneous Learning*.

Post-learning fusion is divided into two further methods: early fusion and late fusion. Early fusion is performed at the representation level, and three methods of early fusion were found in the literature: feature concatenation, auto-encoder fusion, and cross-modal mapping. Feature concatenation is performed through the concatenation of all single modality fusion embedding vector pairs (that is, a textual feature vector representing a concept will be concatenated with a visual feature vector representing that same context) into a single, longer, multimodal feature vector [22, 19]. Auto-encoder fusion is performed through the use of auto-encoders fed with pre-trained single modality embeddings, thus generating a single feature vector which can then be extracted from the auto-encoder's last hidden layer [43]. Cross-modal mapping is performed through the learning of a certain amount of pre-mapped multimodal inputs and predicting those that do not have examples in both modalities [11]. Late fusion is performed at the level of prediction scores, and it is performed through an averaging of single modality predictions [22].

Lazaridous et al. (2015) [28] introduced the first instance found during the review of simultaneous learning semantic embedding model, based on Mikolov et al.'s (2013) [31] skip-gram architecture. They extended Mikolov et al.'s (2013) models to present relevant visual feature vectors alongside textual data during training for a subset of target words. This model has been shown to further propagate visual information to representations of words which were not trained with visual features.

How were they evaluated?

Most of the literature consisted of using multimodality to improve the performance of downstream tasks, such as those presented in answering the first research question, *To what tasks are these embeddings mainly applied?*. As such, the evaluation of the embeddings was extrinsic. That is, the evaluation metric was whether or not its addition to the systems performing the downstream task affected their performance.

Lazaridou et al. (2015) [28] were the only ones to perform intrinsic tests, using general semantic benchmarks such as concept relatedness (also known as semantic relatedness) [6] or semantic similarity. These are usually used to evaluate word embeddings, but

multimodal embeddings were shown by Lazaridou et al. (2015) to outperform word embeddings on these tasks.

What resources were used in the creation of the embeddings?

Traditional textual feature vector building architectures, such as Word2Vec [31] and FastText [18], were often used when extracting textual features from text corpora [45, 19, 9]. Though these features were usually created with direct use of the aforementioned word embedding architectures, some authors chose to develop their own word embedding architectures, based on the traditional ones.

Visual features were extracted differently depending on whether the visual knowledge was presented in the form of images or video. Papers working with images used a variety of neural networks which learn features from annotated images, such as Convolutional Neural Networks [17, 33] and auto-encoders [45]. Papers working with videos often cut the video into parts, and used specialized neural networks to better capture action flow [8, 22], which may not be taken into consideration when dealing with images. Videos themselves are also inherently multimodal, and the audio modality was usually added as input information to the neural network being used for learning in each work.

Also, when working with social networks, user data was often used as additional information when creating the embedding. User history was often used to cluster items that possess similar user bases [19, 46].

To what extent has multimodality been implemented in the creation of semantic embeddings? Has any been successful?

The use of multimodal semantic embeddings has become more widespread in the last few years. This can be clearly seen in Figure 2.1, which shows a graph of all works found using the same search strings as the systematic review in the ACM Digital Library, the IEEE Digital Library and SCOPUS by year, from 2000 until 2019.

Several of the reviewed papers achieved state-of-the-art results for their respective tasks using multimodal embeddings [21, 22, 20]. Several of these even claimed to be the first to employ multimodality in their respective tasks [24].

This increase in interest is often attributed to the recent, rapid advancement of neural network technologies [21], and the rapid growth of multimedia data available through the internet [20, 17].

Figure 2.1 – Papers Related to Multimodal Semantic Embeddings by Year

2.4 Influence of the Research Questions on the Direction of the Dissertation

The three research questions that most influenced the direction of the dissertation were the following: "*How were the embeddings constructed?*"; "*How were the they evalu-ated?*"; and "*What resources were used in the creation of the embeddings?*". The other two questions served another purpose, having helped to establish the rising importance and the many uses of multimodal embedding technology, which helped to establish the reasoning behind the pursuit of this topic in this dissertation.

"How were the embeddings constructed?" was the question that helped inform the possible fusion architectures that would be used for the dissertation. Specifically, two post-learning architectures were chosen: Concatenation and Auto-encoding, examples of which were used in the work of Guo et al. (2019) [19] and Silberer et al. (2014) [43], respectively. For the dissertation, both of these architectures were reinforced with Collel et al.'s (2017) Imagined Embedding cross-modal mapping neural network [11] in order to broaden the limited visual embedding vocabulary at hand.

How were the they evaluated?" was the question that eventually led to the idea of using the multimodal embeddings for common NLP tasks, in order to see if it was possible to improve the effectiveness of Word Embeddings without having to rely on more computation intensive architectures, such as Contextual Embeddings. The answer to this question drew mostly from the work of Lazaridou et al. (2015) [28], who evaluated multimodal embeddings on the word relatedness and sentence similarity tasks.

"What resources were used in the creation of the embeddings?" was the question that enabled the beginning of the resource gathering process that led to the creation of new resources or finding of already developed resources for the Portuguese language that would enable the successful training and testing of the proposed architectures. It also informed what could and could not be done within the time-frame of the dissertation and the *Geologia Digital* project.

The last two questions establish that multimodality has been a rising interest over the past few decades, as the internet matures, and additionally expound on the kinds of tasks these architectures might be used for, beyond the common NLP tasks explored within this dissertation. This sets a clear path forward for future work on this area.

These and other papers representative of the literature found during the systematic review are presented in a Tables 2.2 and 2.3. These briefly answer the research questions for each listed paper.

Reference	Application	Methodology Evaluation		Resources	
		Word Embeddings are fused	Extrinsic, using BLUE,	Built their	
Guo et al. (2016) [21]	Vidoo Cantioning		METEOR, and CIDEr on	own, except	
	video odpilorning	from CNN using LSTM	Youtube2Text video description	for evaluation	
			corpus	corpora	
		DeepWalk user data, Word Embeddings for user	Extrinsic, using the ICME 2019	Word2Vec,	
Guo et al. (2019) [19]	Video	click history and text, CNNs for	Short video Understanding and	Fast lext,	
	Recommendation	Video and Audio features fused	Reccomendation Challenge	ResNet,	
		in a Batch Norm layer	dataset	DeepWalk	
		Word Embeddings and CNN	Extrinsic, Cross-modal IR with	Word2\/ec	
Wang et al. (2019) [45]	Cross-modal IR	visual features fused using	Flickr8k, Flickr30k, and		
		Batch-based Triplet Loss	Microsoft-COCO	nesnet	
		Word Embeddings and visual	Intrinsic, semantic relatedness		
		features extracted from CNNs	with the MEN and Wordsim353,	ImagoNiot	
Collell et al. (2017) [11]	Multimodal	learned, mapped where both	semantic similarity through	GloVo	
	embedding generation	exist for same concept,	Sem-Sim, Simlex999,		
		predicted from available	Wordsim353 and SimVerb-3500,	MatConvinet	
		data otherwise	visual similarity through VisSim		
		Vieual factures are introduced	Intrinsic, semantic relatedness	Built their	
Lazaridau at al. (2015) [29]	Multimodal	during training of aking grom	with the MEN, semantic similarity	own, except	
Lazanuou et al. (2013) [26]	embedding generation	word ambadding model	through Sem-Sim, Simlex999, and	for evaluation	
		word embedding model.	visual similarity through VisSim	corpora	

Table 2.2 – Details on some of the more relevant papers found during the review.

Reference Application		Methodology	Evaluation	Resources
Zhang et al. (2018) [46]	Popularity Prediction	Attention mechanisms are used to learn attended embeddings for both visual and textual modalities, then another attention mechanism is used to judge the importance of each for individual users	ns are used mbeddings id textual another sm is used irtance of al users	
Habibian et al. (2017) [22]	Event Recognition	Features for audio, visual, motion and textual information are separately trained and are then fused using their Video2vec fusion technique	Extrinsic, using zero-shot or few-shot event recognition in the TRECVID Multimedia Event Detection corpus, and the Columbia Consumer Video collection	VideoStory46k, Google Inception, ImageNet
Han et al. (2017) [24]	Fashion Recommendation	Textual and visual features are associated in a joint representation space	Extrinsic, using several fill-in-the-blank and prediction datasets	Built their own
Oramas et al. (2017) [34] Music Recommendation		Text and audio features were extracted, then combined via late fusion	Extrinsic, using recommendation tests based on the Echo Next Taste Profile Subset and the Million Song Dataset	Word2Vec, librosa

Table 2.3 – Details on some of the more relevant papers found during the review, continued.

3. DEVELOPING THE MULTIMODAL EMBEDDINGS

Two kinds of resources are needed to create post-learning fusion multimodal embedding models: unimodal embeddings in the desired modalities and a fusion architecture. In this work, the unimodal embeddings will encompass the textual and visual modes, both of which will then be fused using different architectures to form several multimodal embedding models. This work will develop models using generic corpora (corpora extracted from news sources, fiction literature, and various websites across the internet), and geosciences corpora (geosciences related theses, journals and bulletins). These extra, domain specific models based on geosciences corpora were created during the course of the *Geologia Digital* project, and will be used to test the efficacy of the presented multimodal embedding architectures on domain-specific corpora, as opposed to generic domain corpora.

The greatest challenge to be overcome, regardless of corpora domain, is the disparity between available textual and visual information. The abundance of text knowledge often overshadows visual knowledge. Some of the works presented in Chapter 2 postulate solutions to this problem, and these architectures will be used, for the first time, to create multimodal embeddings for the Portuguese language.

This chapter will explore both the process of acquiring and developing unimodal embeddings (textual and visual) in the generic and geosciences domains, and the architectures used to fuse the unimodal embeddings into multimodal embedding models.

3.1 Unimodal Embeddings

The planned experiments will require textual and visual embeddings in both the generic and the geosciences domains. For textual embeddings, four corpora were acquired: two generic and two focused on the geosciences domain. For visual embeddings, two corpora were acquired: one generic and one in the geosciences domain, though unfortunately the geociences corpus proved to not be robust enough for use in the creation of multimodal embeddings.

3.1.1 Textual Embeddings

All textual embeddings used in this work are word embeddings based on either the Word2Vec [31] or fastText [18] architectures. The reason for this choice was the need for multimodal solutions for these specific architectures in the *Geologia Digital* project, as they would be best suited for deployment within existing architecture in Petrobras' systems. Their choice of architecture was rooted in the fact that contextualized models, such as BERT or ELMO, significantly increase computational requirements for both training and inference when compared to non-contextual models, such as Word2Vec and fastText [38, 4]. This makes contextual embeddings less appealing in industrial scenarios, since, as per Polgnano et al (2020) [38], it is yet unclear whether the accuracy increase delivered by contextual embedding is worth the performance issues associated with them.

The generic embeddings used for this work are NILC's word embeddings¹ [26] and BBP corpus word embeddings² [40]. Three versions of NILC's embeddings were used: the 100 feature word2vec version and the 100 and 300 feature fastText versions. These three were deemed to be adequate for studying the effect of different parameters when adding multimodality to textual models. Only the 300 feature fastText version of BBP was used, as it was the only one readily available for download. This final BBP model was chosen as a means to study how different text embedding training corpora within the same domain affected multimodal fusion.

Two new geosciences domain embeddings were developed during the course of this study as part of a collaboration with experts from Petrobras' CENPES research nucleus through the *Geologia Digital* project: PetroVec and PetroVec-Hybrid³. These models were thoroughly tested using both intrinsic and extrinsic tasks, and the results were compiled into an article published in the Computers in Industry journal⁴ [16]. These are the current state-of-the-art models for the Portuguese language in the Geosciences domain.

Table 3.1 has details for each of the generic and geosciences embeddings presented in this section.

3.1.2 Visual Embeddings

The visual embeddings were somewhat harder to acquire. No pre-trained Portuguese term paired visual embeddings were found, nor were there any image-term pair datasets like ImageNet [13] available. This meant that either translation or development of a new dataset would be required for the acquisition of visual embeddings, both generic and geociences domain specific.

The generic visual embedding, henceforth referred to as ImageNet embedding, is derived from Collell et al.'s (2017) [11] work, as they made their original visual embeddings created using ImageNet freely available⁵. The individual embeddings were paired with English language terms from the English language WordNet, however, and so needed to be

¹http://www.nilc.icmc.usp.br/embeddings

²https://github.com/jneto04/ner-pt

³https://github.com/Petroles/Petrovec

⁴https://www.sciencedirect.com/science/article/abs/pii/S0166361520305819

⁵https://liir.cs.kuleuven.be/software_pages/imagined_representation_aaai.php

Table 3.1 – Corpora and token totals for each of the text corpora used for training text embedding models.

Corpus	Sources	Vocabulary	Token Number	
NILC	LX-Corpus, Wikipedia, GoogleNews, SuIMDB-PT, G1, PLN-Br, Public domain literature Lacio-web, e-books, Mundo Estranho, CHC, FAPESP, Digitalized Textbooks, Folhinha, NILC subcorpus, Para Seu Filho Ler, SARESP	929,605	1,395,926,282	
BBP	BlogSet-BR, brWaC, Portuguese Wikipedia	553,637	4,900,352,063	
Petrovec	Petrobras' Bulletin of Geosciences and Petroleum Production, ANP bulletins, ANP technical reports, Theses and dissertations on the Oil and Gas domain, Proceedings of the Rio Oil and Gas Conference	161,842	85,725,834	
Petrovec-Hybrid	All Petrovec corpora, All publicly available NILC texts (Roughly a quarter of the collection)	440,692	451,021,003	

translated before use with Portuguese language textual embeddings. In order to translate the English terms, OpenWordNet-PT [35], an open Brazilian WordNet available online⁶, was used. Since the codes used to refer to each term in both WordNets were the same, and Collell et al. (2017) also shared the WordNet code for each term, about 5000 of the term-visual embedding pairs were successfully translated into Brazilian Portuguese unigrams. This resulted in what we believe to be the first visual embedding dataset paired with Brazilian Portuguese terms, made available in this project's GitHub page ⁷.

Domain specific embeddings for the geoscience domain had to be developed from the ground up. Firstly, all unigram terms from the Petroleum Abstracts thesaurus were extracted and used in a mass image scraping effort through Google Images. These terms include names for rocks, tools and physical structures, both natural and man-made. The next step of this effort involved finding suitable image search links. In Google Images, every search link is unique, and so can be reused to find the same images as the first time it was

⁶http://wn.mybluemix.net/

⁷https://github.com/bsconsoli/Enriching-Portuguese-Word-Embeddings-with-Visual-Information

found through the usual methods of online search. A manual search was thus performed to find the most representative image collections within search links, with two to four links being selected per term. The first hundred images of each link were then scraped automatically, using respectful scraping etiquette. Google Images sorts by relevance, and those too far removed from the beginning of the list tend to off-topic subjects. Repeat images, obviously off-topic images and non-photographic images (eg. drawings or 3D computer generated images) were then removed during a manual sweep.

This corpus had little oversight from domain experts, despite association with the *Geologia Digital* project. The breadth of expertise necessary to evaluate every term was simply too manpower intensive, and only some classes of image, such as those pertaining to some rocks and small tools, were able to be checked by experts, for a total of not even 100 of the over 1000 terms in the corpus.

Possibly because of this lackluster curation, or perhaps because the around 100 images found for each term were simply too few in number, this corpus was ultimately unable to be used in training a good image classification neural network. The attempted training resulted in poorly differentiated features unable to accurately portray the terms in such a way that they might be useful in multimodal fusion. This, alongside preliminary word relatedness results showing that fusions using the ImageNet embedding presented above improved both generic and geosciences textual embeddings to a similar degree, led to a decision that the use of this corpus for multimodal fusion was best left for future work, once the corpus had been properly curated and extended by a discussed follow-up to the *Geologia Digital* project.

3.1.3 Dealing with the Information Gap

The great imbalance between visual embeddings and text embeddings becomes clear when comparing the roughly 5000 terms of the ImageNet embedding to the textual embedding vocabularies shown in Table 3.1. In order to ameliorate this problem, the "imagined embeddings" architecture described in Collell et al. (2017) [11] was used. As exemplified in Figure 3.1, textual embedding-visual embedding pairs are created for the terms present in the visual embedding vocabulary, *w*, and used to train a feed-forward neural network. It does this by inputting the textual embedding \vec{l}_x into the NN, and expecting the visual embedding \vec{v}_x as an output, where the w_x is the term being learned. Once this textual-visual translation, *f*, is learned by the network, it can be extrapolated into terms without visual counterparts, creating "Imagined" visual embeddings for the entire vocabulary represented by the textual embeddings for the entire vocabulary represented by the textual embeddings for the entire vocabulary represented by the textual embeddings for the entire vocabulary represented by the textual embeddings for the entire vocabulary represented by the textual embeddings for the entire vocabulary represented by the textual embedding that was translated.

In Collel et al.'s work, they developed three imagined models were trained for each available word embedding, each trained to a different epoch (25, 50, 100). All other parameters were kept the same between all training instances, as Collell et al. (2017) revealed that

Figure 3.1 - Example of the architecture used by Collell et al. (2017). The imagined representations are the outputs of a text-to-vision mapping, *f*. Image created by Collell et al. (2017) [11]

they did not significantly affect the final prediction. All parameters are presented in Table 3.2.

Parameter	Value
Dropout	0.25
Learning Rate	0.1
Optimizer	SGD
Loss	MSE
Hidden Layers	1, 200 nodes
Activation Function	TanH

Table 3.2 – Imagined Embedding neural network parameters

Notably, the work discusses that while these imagined embeddings are valuable aggregates to common embeddings, substituting the textual embeddings completely with these "imagined embeddings" yields worse results. Additionally, in a follow-up paper, Collell et al. (2018) [10] highlighted several problems with this architecture, such as the fact that they do not fully mimic the behaviour of proper visual embeddings to the desired degree. It remains, however, that when combined with the original textual embeddings, these "imagined embeddings" do positively affect results in intrinsic tasks such as Word Relatedness.

3.2 Multimodal Fusion Techniques

Of the many fusion techniques presented in Chapter 2, the ones chosen for this project were two examples of the early fusion architecture. Early fusion techniques seek to create new embeddings to represent all fused modes in a single vector before beginning the

process of using them in any downstream task. This kind of fusion was chosen because it is the most flexible, with models developed using it able to be simply plugged into many already existing solutions for downstream tasks without requiring modifications to the architecture. It was deemed that this would facilitate a wider array of testing while not having been shown to be definitively superior or inferior to other fusion strategies in the literature.

In order to perform this kind of fusion, it is helpful to ensure that all fused embeddings are in the same scale, so that none can overly influence the result simple because it is presented in a larger scale than another. To do this, a mathematical process called Standardization was performed on the embeddings, making it so all features were scaled according to a standard deviation of 1 and had a mean of 0. Another version of these embeddings was created where, after standardization, they were also normalized, so that all values fit between -1 and 1. This second version was created mostly to test the machine learning and whether it would learn better with unbounded or bounded feature values.

The two early fusion techniques used in this work are concatenation and autoencoding, explained in detail below.

3.2.1 Concatenation Fusion

Concatenation fusion is a rather simple process: you concatenate one mode's embeddings to the end of another mode's embeddings. Though simple, it effectively packages all necessary data into a single vector space by expanding the dimensionality of said space.

This fusion technique's greatest weakness, the fact that should one embedding in a certain mode not have a pair in another (as often happens with text-image multimodality, eg. you have textual embeddings but not visual) you cannot create the multimodal embeddings, is completely solved by the imagined embeddings explained in Section 3.1.

As such, the development of this embedding required the prediction of a imagined visual embedding for each word in the vocabulary, which was then concatenated with its originating word embedding. This resulted in multimodal embeddings with larger feature pools with which to draw from. Figure 3.2 presents the architecture of the concatenated fusion used for every word embedding in this work.

3.2.2 Auto-encoding Fusion

Auto-encoding fusion is performed by a Neural Network trained to predict an output by using the output itself as an input. Once this is done, one of the hidden layers of this network with less features than the original input is extracted to serve as an embedded

Figure 3.2 – Simplified concatenation fusion architecture.

version of the input. This serves to both shorten the final embedding, and to fuse several embeddings together. This fusion will, in theory, keep the most important features and fuse less important features together to hopefully make them more impactful.

This architecture has been used to lessen the impact of the gap between textual and visual information in the literature [43]. In this instance, whenever there was no visual pair for the textual embedding, a zeroed vector was appended to the textual embedding for the purposes of auto-encoding. The architecture presented below is a bit different, as it offers a new possibility: using imagined embeddings to fill the knowledge gap and offer complete feature vectors for auto-encoding.

As such, imagined visual embeddings were predicted from each embedding in the each model's vocabulary, and paired with its originating embedding. These embeddings were then passed through an auto-encoding neural network, and the resulting Auto-encoded vectors were used as the final multimodal embeddings. Figure 3.3 presents the architecture of the Auto-encoded fusion used for every multimodal word embedding in this work, while Table 3.3 presents the parameters for the auto-encoding neural network.

5	5
Parameter	Value
Learning Rate	0.001
Optimizer	Adam
Loss	MSE
Hidden Layers	4, explained in text
Activation Function	ReLU in between layers TanH as output

Table 3.3 – Auto-encoding Embedding neural network parameters.

The hidden layers are divided into two encoding layers and two decoding layers. The first encoding layer has the initial input node size of the concatenated textual-visual feature vector and an output node size of the feature vector of the textual model plus half the

Figure 3.3 – Simplified auto-encoding fusion architecture.

feature vector of the visual model. The second layer has the input node size of the previous output, and an output the size of the feature vector of the textual embedding. The output of this second layer is extracted and used as the Auto-encoded textual-visual embedding. The decoder is used only during training, and its two hidden layers are the same as the encoder's, but in reverse order.

3.3 Multimodal Embeddings

Several different textual-visual multimodal embeddings were created using the unimodal embeddings and multimodal fusion techniques explained above. The model combinations are presented in Table 3.4.

Note that the act of training to different epochs was simply due to a lack of time and computational resources that would be required to train the best model for each individual task. As such, the best performing model out of each group can be taken to best represent the capabilities of the multimodal embedding fusion in question.

Table 3.4 – Each text embedding model was used to train 14 multimodal models. To reiterate, the textual models are: the BBP model, three NILC models, and the two PetroVec models. This makes for a total of 84 multimodal models trained in total.

Model	Fusion Architecture	Scaling Algorithm	Epochs Trained
A 11			25
		Normalized	50
			100
	Concatenation		25
		Standardized	50
		Stanuaruizeu	100
			150
All	Auto-encoding		25
		Normalized	50
			100
			25
		Standardized	50
		Stanuaruizeu	100
			150

4. QUALITY EVALUATION STRATEGY FOR THE MULTIMODAL EMBEDDINGS

Each multimodal embedding underwent a number of intrinsic and extrinsic tests in order to ascertain their reliability when used in NLP tasks in the generic domain and, where possible, the geosciences domain. This Chapter will present the tests and their set-up, while the results will be discussed in the following chapter.

4.1 Intrinsic Tests

Intrinsic tests for semantic embeddings measure how closely the embeddings are able to predict human use of language. This does not mean that embeddings with the best scores in intrinsic tests will also achieve the best scores in downstream extrinsic tests, however.

4.1.1 Word Relatedness

Word Relatedness is the intrinsic task of giving a score to how closely related two terms are. These tasks are usually scored via Spearman correlation, which assigns a Real number score between -1 and 1. The closer the score to -1 if the predictions are the exact opposite of the annotation, the closer to 0 if the predictions are completely unrelated to the annotation and the closer to 1 if the predictions line up perfectly with the annotation. The more representative of human understanding of the terms an embedding is, the closer the Spearman score comes to 1.

These tests should be tailored to the domain of the models being tested, as certain words can have different meanings depending on context. Since the focus of this project is not whether certain models do better in certain domains, the models were only tested on their respective domains in order to ascertain whether the impact of adding visual embeddings would be similar in these distinct circumstances.

This task, alongside other kinds of relatedness tests, is particularly important in the context of the *Geologia Digital* project, as these embeddings will be used for search term expansion within Information Retrieval systems, and good Word Relatedness scores are essential for models that are intended to be used in such a manner.

A custom code was written for this task, and is shared across domains. It uses the Gensim python library to extract the Cosine distance between each word pair as a relatedness measurement, and compares them to their respective annotated relatedness scores using the Spearman Correlation method. The code can be accessed in the GitHub page for this project¹.

Generic Domain

The test corpus used for generic domain word relatedness testing, MEN [6], was translated from the English language to the Portuguese language with the help of DeepL Translate². The machine translations were checked individually to ensure some degree of uniformity, but the corpora should be considered Silver standard nonetheless.

MEN is a set of English word pairs, 3000 in total, each assigned a relatedness judgement (which ranged from 0, not at all related, to 50, incredibly related. These judgements were collected via crowdsourcing using Amazon's Mechanical Turk platform. The words were randomly selected from a subset created by separating all those that appeared at least 700 times in a combined ukWaC/Wackypedia corpus, and at least 50 times in the open-sourced subset of the ESP game dataset. Before the final selection, word pair semantic relatedness scores were predicted by a pre-trained embedding model to ensure that a balanced range of relatedness levels was represented in the dataset. Table 4.1 presents a few examples of word pairs present in the translated MEN corpus.

Word 1	Word 2	Relatedness
rio (river)	água (water)	49.0
répteis (reptiles)	serpente (serpent)	45.0
banda (band)	metal (metal)	27.0
recém-nascido (newborn)	construção (construction)	6.0

|--|

Geosciences Domain

The test corpus for the geosciences domain, henceforth called GeoSim, was developed as part of the *Geologia Digital* project, and was used to test the PetroVec word embeddings [16]. It was developed in collaboration with several industry experts, Geology students and a PhD in Geology. Its main focus is Oil and Gas, a sub-domain of the geosciences domain, and can be considered a Gold standard corpus.

GeoSim is composed of 1500 word pairs annotated in a Likert scale from 1 to 7, which were later normalized to a number between 0 and 1 for ease of use. All words were chosen from those present in the Portuguese version of the Petroleum Abstracts Exploration and Production Thesaurus³, provided by the Petrobras team from the *Geologia Digital*

¹https://github.com/bsconsoli/Enriching-Portuguese-Word-Embeddings-with-Visual-Information

²https://www.deepl.com/translator

³https://www.pa.utulsa.edu/products/tulsadatabase/thesaurus

project. These word pairs were picked randomly from pools of pre-made word pairs which were themselves separated using the relationships between words present in the Petroleum Abstracts Thesaurus. This was done to ensure a good distribution between very related, somewhat related and dissimilar word pairs, similarly to how the MEN corpus was developed. Table 4.2 presents a few examples of word pairs present in the GeoSim corpus.

Word 1	Word 2	Relatedness
zoologia (zoology)	insetos (insects)	0.810
controle (control)	regulamentacao (regulation)	0.714
procedimento (procedure)	programa (program)	0.524
contabilidade (accounting)	inferior (inferior)	0.190

Table 4.2 – Four examples of word pairs from the translated GeoSim corpus.

4.1.2 Analogy Prediction

Hartmann et al. (2017) [26] published an analogy prediction test set, divided into Brazilian Portuguese and European Portuguese halves, alongside their initial publication of their NILC word embeddings. The test gives a related word pair and a single word from which it must predict a pair analogous to the first.

The code used to run these tests was made available alongside the test set itself. It can be found in the associated paper's GitHub page⁴. It measures accuracy by counting how many correct predictions were achieved by the model against the total number of predictions.

Used to intrinsically test the NILC embedding models, the test set is composed of several categories of analogies, both semantic and syntactic. The first two examples in Table 4.3 are of semantic analogies, while the latter two are of syntactic analogies.

Table 4.3 – Four examples, two semantic and two syntactic, of word pairs from the Analogy Prediction corpus, translated to English.

Analogy	Example	Prediction
capital city/nation	Berlin/Germany	Rome/?
national currency/nation	Euro/Germany	Real/?
singular/plural	apple/apples	car/?
present continuous/past simple	dancing/danced	falling/?

In general, Word Embedding models have more difficulty achieving high scores for semantic analogies, and generally do much better with syntactic analogies.

⁴https://github.com/nathanshartmann/portuguese_word_embeddings

4.2 Extrinsic Tests

Extrinsic tests measure the reliability of embeddings in helping achieve greater results in downstream tasks. A number of such tasks were chosen for this purpose, and though the list is not exhaustive, it should serve to ascertain how multimodality can be expected to affect the performance of these models.

4.2.1 Semantic Similarity in Short Sentences

Semantic similarity requires that a model give a numerical value to how semantically similar two sentences are, with the lower similarity extreme being that the sentences are completely different, and the higher similarity extreme being that the sentences are paraphrases. The ASSIN [15] sentence similarity corpus was used for this task in this work.

The code used for the tests is the same as was used by Hartmann et al. (2017) [26], available in the publication's GitHub page⁵. The architecture uses a linear regression algorithm trained on two features: the cosine similarity of the TF-IDF of each sentence and the cosine similarity between the sum of each sentence's word embeddings.

ASSIN is a Portuguese language corpus annotated for both textual inference and semantic similarity. It is composed of sentence pairs annotated with whether or not one implies the other (textual inference) and how similar they are (annotated from 1, completely different, to 5, paraphrases). Figure 4.1 presents two example pairs extracted from the ASSIN corpus.

Figure 4.1 – Example of sentence pairs from the ASSIN corpus.

The similarity scores were used for testing the multimodal models. As previously discussed, semantic similarity is particularly important for the *Geologia Digital* project.

⁵https://github.com/nathanshartmann/portuguese_word_embeddings

4.2.2 Named Entity Recognition

Named Entity Recognition (NER) requires that, given a set of classes for named entities, a model recognize and classify said entities within raw text, usually by use of tags. Word embeddings can be used to parse the text input into the model, using the feature vectors in its tagging predictions. Two annotated corpora were used to evaluate the multi-modal embeddings: HAREM [39] for generic domain embeddings; and GeoCorpus 3.0 [16] for geosciences domain embeddings.

The code used for the NER tests was developed by Santos et al. (2019) [40], available in the paper's GitHub page⁶. It uses an LSTM-CRF neural network architecture to train a sequence tagger using the Flair Toolkit to perform a NER task based on the supplied training and test corpora.

The HAREM corpora are a set of corpora produced during the HAREM workshops, and include First HAREM, MiniHAREM and Second HAREM. This work used First HAREM, as the training dataset, and MiniHAREM, as the testing dataset. All HAREM corpora are annotated in the same way, and have two annotation scenarios: the selective scenario, annotated with only the three classic NER classes (Person, Location and Organization); and the complete scenario, annotated with a total of ten different classes of named entity, including those which comprise the selective scenario. Figure 4.2 demonstrates an example of the HAREM corpus.

<EM ID="556" CATEG="PESSOA" TIPO="INDIVIDUAL">Leonardo nasceu a <EM ID="557" CATEG="TEMPO" TIPO="DATA">15 de Abril de 1452 , na pequena cidade de <EM ID="558" CATEG="LOCAL" TIPO="HUMANO">Vinci (...)

Figure 4.2 – A snippet of a sentence from the First HAREM, to exemplify its annotation.

GeoCorpus 3.0 is a NER corpus in the Oil and Gas domain, a sub-domain of the geosciences. More specifically, its texts are about Brazilian sedimentary basins, and it is annotated with thirty classes of named entity, though only ten were judged to have enough instances for use with machine learning architectures. As GeoCorpus does not have an established baseline within the literature, as is the case with HAREM, it was tested using 10-fold cross-validation. Figure 4.3 demonstrates an example of GeoCorpus 3.0.

Os dois andares do <EM CATEG="epoca">Lopingiano devem o seu nome a localidades chinesas nas quais os fósseis e <EM CATEG="unidadeEstratigrafica">estratos (...)

Figure 4.3 – A snippet of a sentence from GeoCorpus 3.0, to exemplify its annotation.

4.3 On the Construction of test sets

Two of the presented test sets, GeoSim and GeoCorpus 3.0, were a result of the *Geologia Digital* project. The author of this dissertation, Bernardo Consoli, led both the effort for the construction of GeoSim and the effort for the revision of GeoCorpus 3.0.

As previously mentioned, GeoSim was developed specifically to test the PetroVec set of Word Embeddings, both against each other and against generic Word Embedding models trained on News text corpora. GeoCorpus 3.0 was revised to make the corpus overall more consistent in its annotation.

A more detailed overview of the work that was performed on these two corpora are present in Appendixes A and B.

Additionally, machine-assisted translations were performed for the MEN corpus which was, as mentioned above, originally constructed for the English language. It is worthy of note that the English-Portuguese translation ran into a few unavoidable issues. The first is the fact that some English words translate into the same term in Portuguese, but have slightly different connotations in English. An example can be found with the words **football** and **soccer**, both of which translate to the Portuguese word **futebol**, and lose meaning distinctly apparent in American English. Another issue is in words with multiple meanings, and which have different translations depending on context. This is the case of the word **crane**, which can either be a bird (translated to **grou** in Portuguese) or a piece of construction machinery (translated to **guindaste** in Portuguese), which makes the translator have to choose one of the possible translations without appropriate context, thus losing the meaning of the original English word. In the case of different possible translations, the words chosen by DeepL Translate were not changed by human translators. This means that these tests will not be perfect and will be affected by the language and culture in which they were annotated.

All of these mentioned corpora are either linked to or available for download on this dissertation's GitHub page⁷.

5. RESULTS

The results for the tests presented in Chapter 4 are discussed in this chapter. Each task will be discussed separately, and the analysis for each will be presented in the same three basic table structures.

The first table structure, the model comparison table, will present the name of the test corpus, the scaling algorithms used for each test set (Normalized or Standardized), and the specifics for each task. All tasks share a *Model* column, which gives an abbreviated name for each Word Embedding model and an *Architecture* column, which gives the type of the architecture used in the particular test, with each model being tested with three different architectures. Any other information given pertains to the scoring of the specific test, such as Spearman Correlation score, accuracy score or F-value.

The second table structure is the Architectures and Algorithms table. These are paired with their respective model comparison tables and present the number of times a particular architecture or scaling algorithm performed best for a given model. These tables are each composed of three subtables: Overall, which contains a sum of the Architecture scores found in the other two subtables as well as the score for each scaling algorithm; and the Normalized and Standardized subtables present the individual Architecture scores for each Scaling Algorithm.

Finally, the Overall table presents the sum for best performing architectures and scaling algorithms for the task in question, providing an overview for closing analysis. It is shaped like the Overall subtable of the Architecture and Algorithm tables. Both Architecture and Algorithm and Overall tables are presented because the large amount of tests for each task obfuscates important information by dent of sheer volume of data. These two tables condense relevant information into a more readable format which is easier to both analyse and reference.

The rest of the chapter is divided into the following sections: first, there is an analysis of the results for the Word Relatedness tests, which includes both a generic news test corpus and a specific geosciences test corpus; then, we have the Analogy Prediction task, which includes only a generic news test corpus, though it is divided into European Portuguese and Brazilian Portuguese; after that are the analyses of the Semantic Similarity of Sentences task, which again is composed of only the generic news corpus divided into European and Brazilian Portuguese tracks; the last task to be presented is the Named Entity Recognition task, which is composed of a generic news corpus, divided into two tracks with different categories, and a geosciences domain corpus.

5.1 Word Relatedness

Two word relatedness tests were performed using the multimodal models: MEN, for the generic news domain; and GeoSim, for the specific geosciences domain. The BBP and NILC models were tested using the MEN test set, while all PetroVec and PetroVec-Hybrid models were tested using the GeoSim test set.

5.1.1 MEN

The MEN test set was used to test BBP and NILC models, given that it is a generic domain dataset. The test set is presented in Section 4.1.1, but to reiterate, it is a collection of 3000 word pairs annotated with a relatedness score from 50 (most related) to 0 (least related). The objective of the semantic models is to score each word pair in order to rank them from most related to least related. The closer to the original ranking the model gets, the higher its Spearman Correlation, the chosen method for scoring these kinds of tests. As explained in Section 3.3, only the best results for each model will be considered during this analysis. The complete results for this test set are available in Appendix D.

MEN								
	Normalized			Standardized				
Model	Architecture	Correlation	Model	Architecture	Correlation			
	Text-Only	0.607		Text-Only	0.610			
BBPFT300	Concatenated	0.622	BBPFT300	Concatenated	0.648			
	Auto-encoded	0.624		Auto-encoded	0.649			
	Text-Only 0.588		Text-Only	0.615				
NILCFT100	Concatenated	0.626	NILCFT100	Concatenated	0.648			
	Auto-encoded	0.623		Auto-encoded	0.649			
	Text-Only	0.489		Text-Only	0.493			
NILCW2V100	Concatenated	0.530	NILCW2V100	Concatenated	0.518			
	Auto-encoded	0.528		Auto-encoded	0.528			
	Text-Only	0.567		Text-Only	0.570			
NILCFT300	Concatenated	0.595	NILCFT300	Concatenated	0.586			
	Auto-encoded	0.601		Auto-encoded	0.597			

Table 5.1 – The best Spearman Correlation results for each multimodal model and the results for their text-only counterparts for the MEN test set.

As can be seen in Table 5.1, the best results were achieved by both Concatenated and Auto-encoded versions of the Standardized BBP and NILC 100-dimensional fastText architectures, all of which have a Spearman Correlation of about 65 percentage points. This is a 3.5 percentage point increase from the best text-only model, the NILC 100-dimensional fastText model.

Furthermore, Table 5.2 presents the architectures and algorithms in terms of how many times each had the best performance when used in the tested models. This table shows that the best overall architecture is the Auto-encoded architecture, which only performs worse than the Concatenated architecture twice. It should be said, however, that the better performance is measured in fractions of percentage points, and only once (in the NILCW2V100 architecture) does the Auto-encoded architecture perform better by 1 or more percentage points. The two times that the Concatenated architecture performed better, it was similarly by fractions of a percentage point. This means that both architectures can be expected to perform similarly, with a slight advantage to the Auto-encoded architecture, within the realm of term relatedness.

Table 5.2 also shows that Standardization is the better scaling algorithm when it comes to this test. On average, Standardized models perform 1 percentage point better than Normalized models, with the largest performance improvement being 2.6 percentage points in favor of the Standardized model. Notably, while this is not presented in these tables, Normalization was also shown to negatively impacts the performance of Text-Only models, when compared to their non-scaled counterparts, while Standardization did not noticeably impact performance in Text-Only models.

Table 5.2 – The "*No. of best results*" column represents the number of times each architecture and scaling algorithm had the best results in a model. The Overall subtable presents a conglomeration of all results, while the Normalized and Standardized subtables present separated results for their respective scaling algorithms.

MEN - Overall								
Architecture	No. of Best Results	Scaling Algorithm	No. of Best Results					
Text-Only	0	Normalized	3					
Concatenated	2	Standardized	9					
Auto-encoded	6	-	-					
MEN -	Normalized	MEN - Sta	andardized					
MEN - Architecture	Normalized No. of Best Results	MEN - Sta Scaling Algorithm	andardized No. of Best Results					
MEN - Architecture Text-Only	Normalized No. of Best Results 0	MEN - Sta Scaling Algorithm Text-Only	andardized No. of Best Results 0					
MEN - Architecture Text-Only Concatenated	Normalized No. of Best Results 0 2	MEN - Sta Scaling Algorithm Text-Only Concatenated	andardized No. of Best Results 0 0					

5.1.2 GeoSim

The GeoSim test set was used to test PetroVec and PetroVec-Hybrid models, given that it was created specifically for the geosciences domain. The test set is presented in Section 4.1.1, but to reiterate, it is composed of 1500 word pairs annotated from 7 (most related) to 1 (least related). The objective of the test is the same as the previous two: for the model to rank the word pairs in the rankings as the human annotation. The closer to the

original ranking the model gets, the higher its Spearman Correlation, the chosen method for scoring these kinds of tests. As explained in Section 3.3, only the best results for each model will be considered during this analysis. The complete results for this test set are available in Appendix E.

GeoSim									
N	ormalized		Standardized						
Model	Architecture	Correlation	Model	Architecture	Correlation				
	Text-Only	0.607		Text-Only	0.609				
PetroVecFT	Concatenated	0.611	PetroVecFT	Concatenated	0.615				
	Auto-encoded	0.621		Auto-encoded	0.642				
PetroVecHybridFT	Text-Only	0.607		Text-Only	0.619				
	Concatenated	0.629	PetroVecHybridFT	Concatenated	0.633				
	Auto-encoded	0.657		Auto-encoded	0.667				
	Text-Only	0.608		Text-Only	0.611				
PetroVecW2V	Concatenated	0.613	PetroVecW2V	Concatenated	0.613				
	Auto-encoded	0.621		Auto-encoded	0.629				
	Text-Only	0.643		Text-Only	0.648				
PetroVecHybridW2V	Concatenated	0.660	PetroVecHybridW2V	Concatenated	0.655				
	Auto-encoded	0.667		Auto-encoded	0.664				

Table 5.3 – T	he best	results	for e	each	multimodal	model	and	the	results	for	their	text-only
counterparts	for the G	eoSim t	est	set.								

As can be seen in Table 5.3, the best results were achieved by the Auto-encoded architectures of the PetroVecHybridW2V and PetroVecHybridFT models, achieving results 1.9 percentage points higher than the best Text-Only architecture. Both scaling algorithms achieved the same highest result, though the Auto-encoded algorithm achieved it with two models while the Normalized algorithm only achieved it with one.

Table 5.4 shows that the Auto-encoded architecture performed better with every model. They achieved, on average, results 1.7 percentage points higher than Concatenated architectures. The Standardization scaling algorithm likewise performed better than the Normalization algorithm with every model, achieving results 0.5 percentage points higher than its counterpart.

The largest difference between a multimodal model's score when compared to their text-only counterpart's was nearly 5 percentage points, in the Auto-encoded Standardized fastText version of the PetroVec-Hybrid model. Finally, multimodal Hybrid models showed more improvement when compared to their textual counterparts than non-hybrid models, with Auto-encoded models improving fastText models more so than Concatenated models, and vice-versa for Word2Vec models.

5.1.3 Word Relatedness Task Overview

Table 5.5 makes it clear that the best performing architecture for this task was the Auto-encoded architecture, and the best performing scaling algorithm was the Standardiza-

Table 5.4 – The "*No. of best results*" column represents the number of times each architecture and scaling algorithm had the best results in a model. The Overall subtable presents a conglomeration of all results, while the Normalized and Standardized subtables present separated results for their respective scaling algorithms.

GeoSim - Overall								
Architecture	No. of Best Results	Scaling Algorithm	No. of Best Results					
Text-Only	0	Normalized	2					
Concatenated	0	Standardized	10					
Auto-encoded	8	-	-					
GeoSin	n - Normalized	GeoSim - Standardized						
Architecture	No. of Best Results	Architecture	No. of Best Results					
Text-Only	0	Text-Only	0					
Concatenated	0	Concatenated	0					
Auto-encoded	4	Auto-encoded	4					

tion algorithm. This is consistent across both geosciences domain and generic domain tests. Most importantly, regardless of domain, the fusion of Imagined Visual Embeddings based on the translated ImageNet corpus with the Word Embedding models described above results in an average increase in Correlation of 2.4 percentage points, proving that multimodality can improve tasks which use word semantic relatedness as a basis.

Table 5.5 – The "*No. of best results*" column represents the number of times each architecture and scaling algorithm had the best results in a model.

Overall								
Architecture	No. of Best Results	Scaling Algorithm	No. of Best Results					
Text-Only	0	Normalized	5					
Concatenated	2	Standardized	19					
Auto-encoded	14	-	-					

5.2 Analogy Prediction

As presented in Section 4.1.2, the Analogy Prediction dataset used for this test focused on two kinds of analogies: Semantic and Syntactic. These are each divided into a Brazilian Portuguese set and an European Portuguese set. To reiterate, the objective of this task is to accurately predict the second word of a pair, when given an example pair and the first word of the prediction pair (eg. Example: Berlin/Germany, Prediction: Paris/?). The accuracy of the model is then measured in a percentage, from 0 (completely inaccurate) to 100 (completely accurate). As explained in Section 3.3, only the best results for each model will be considered during this analysis. The complete results for this test set are available in Appendix F.

5.2.1 Brazilian Portuguese Test Set

As can be seen in Table 5.6, the best multimodal results were present an accuracy that is either very similar or somewhat worse than that achieved by their Text-Only counterparts. Once again, Normalized Text-Only models had a tendency to severely under perform, whereas Standardized models achieved similar results to the original, non-scaled versions of the Text-Only models. There also is no disparity between results of the separate syntactic and semantic tests, that is to day, when the multimodal fusion either enhances both, diminishes both or doesn't affect either. None of the models enhanced one result while diminishing the other.

Table 5.6 – The best accuracy results for each multimodal model and the results for their text-only counterparts for the Brazilian Portuguese Analogy Prediction test set.

,	I	ANALOG	Y PREDICTI	ON TEŠ	T - BRAZILIAN	PORTUGUESE					
	NORM	ALIZED			STANDARDIZED						
Model	Architecture	Syntactic	Semantic	Total	Model	Architecture	Syntactic	Semantic	Total		
	Textual	0.445	0.064	0.256		Textual	0.447	0.064	0.257		
BBPFT300	Concatenated	0.444	0.065	0.256	BBPFT300	Concatenated	0.441	0.063	0.254		
	Auto-encoded	0.395	0.053	0.225	1	Auto-encoded	0.382	0.047	0.216		
NILCFT100	Textual	0.487	0.282	0.384		Textual	0.510	0.302	0.406		
	Concatenated	0.481	0.280	0.380	NILCFT100	Concatenated	0.505	0.292	0.398		
	Auto-encoded	0.495	0.301	0.398		Auto-encoded	0.511	0.311	0.411		
	Textual	0.247	0.077	0.162		Textual	0.255	0.080	0.167		
NILCW2V100	Concatenated	0.247	0.075	0.161	NILCW2V100	Concatenated	0.254	0.081	0.167		
	Auto-encoded	0.239	0.072	0.155		Auto-encoded	0.235	0.080	0.157		
	Textual	0.330	0.154	0.242		Textual	0.332	0.158	0.245		
NILCFT300	Concatenated	0.335	0.155	0.245	NILCFT300	Concatenated	0.331	0.157	0.244		
	Auto-encoded	0.285	0.142	0.214		Auto-encoded	0.299	0.143	0.221		

Table 5.7, meanwhile reflects the results from the first table. It once again shows that both the Auto-encoded and Concatenated architectures are not helpful for this task, with neither achieving results that could be considered decisively better than their text-only counterpart. It also further reinforces the fact that the Standardization algorithm is the most appropriate for use with multimodal fusion.

5.2.2 European Portuguese Test Set

Table 5.8 presents a very similar picture to that of Table 5.6. The best multimodal results once again are not much higher than the best Text-Only results, while most others show a comparably large drop in accuracy. Once again Normalization tends to decrease Text-Only results when compared to Standardization, and whether Concatenation or Auto-encoding is less disruptive depends on the base text model.

Table 5.9 shows an interesting piece of information: together, the multimodal models have slightly more best results per model than the Text-Only architecture. These increases were by fractions of percentage points, however, and while statistical significance Table 5.7 – The "*No. of best results*" column represents the number of times each architecture and scaling algorithm had the best results in a model. The Overall subtable presents a conglomeration of all results, while the Normalized and Standardized subtables present separated results for their respective scaling algorithms.

BR - Overall									
Architecture	No. of Best Results	Scaling Algorithm	No. of Best Results						
Text-Only	5	Normalized	3						
Concatenated	1	Standardized	9						
Auto-encoded	2	-	-						
BR -	Normalized	BR - Standardized							
Architecture	No. of Best Results	Scaling Algorithm	No. of Best Results						
Text-Only	2	Text-Only	3						
Concatenated	1	Concatenated	0						

Table 5.8 – The best accuracy results for each multimodal model and the results for their text-only counterparts for the European Portuguese Analogy Prediction test set.

			LONG		SINCAGEGE				
NORMALIZED				STANDARDIZED					
Model	Modality	Syntactic	Semantic	Total	Model	Modality	Syntactic	Semantic	Total
	Textual	0.448	0.057	0.254		Textual	0.451	0.058	0.255
BBPFT300	Concatenated	0.448	0.058	0.254	BBPFT300	Concatenated	0.444	0.057	0.251
	Auto-encoded	0.399	0.049	0.225		Auto-encoded	0.387	0.042	0.216
	Textual	0.485	0.274	0.379		Textual	0.509	0.293	0.401
NILCFT100	Concatenated	0.481	0.273	0.377	NILCFT100	Concatenated	0.505	0.284	0.394
	Auto-encoded	0.493	0.291	0.392		Auto-encoded	0.509	0.298	0.403
	Textual	0.243	0.072	0.158		Textual	0.252	0.074	0.163
NILCW2V100	Concatenated	0.243	0.070	0.156	NILCW2V100	Concatenated	0.250	0.075	0.163
	Auto-encoded	0.235	0.067	0.151		Auto-encoded	0.231	0.074	0.152
	Textual	0.322	0.140	0.231		Textual	0.324	0.143	0.233
NILCFT300	Concatenated	0.327	0.139	0.233	NILCFT300	Concatenated	0.322	0.144	0.233
	Auto-encoded	0.282	0.128	0.205		Auto-encoded	0.292	0.123	0.208

Table 5.9 – The "*No. of best results*" column represents the number of times each architecture and scaling algorithm had the best results in a model. The Overall subtable presents a conglomeration of all results, while the Normalized and Standardized subtables present separated results for their respective scaling algorithms.

PT - Overall									
Architecture	No. of Best Results	Scaling Algorithm	No. of Best Results						
Text-Only	3	Normalized	3						
Concatenated	2	Standardized	9						
Auto-encoded	2	-	-						
		PT - Standardized							
PT -	Normalized	PT - Sta	ndardized						
PT - Architecture	Normalized No. of Best Results	PT - Sta Scaling Algorithm	ndardized No. of Best Results						
PT - Architecture Text-Only	Normalized No. of Best Results 1	PT - Sta Scaling Algorithm Text-Only	ndardized No. of Best Results 2						
PT - Architecture Text-Only Concatenated	Normalized No. of Best Results 1 1	PT - Sta Scaling Algorithm Text-Only Concatenated	ndardized No. of Best Results 2 1						

tests couldn't be adequately performed for this task because of the limited size of the set, it is safe to say that such a meager increase is not considered relevant within the scope of this

dissertation. Furthermore, the table helps cement the fact that the Standardization algorithm should be expected to outperform the Normalization algorithm.

5.2.3 Analogy Prediction Task Overview

In general, the results between the two language-specific test sets were corroborative. The multimodal fusion failed to improve upon Text-Only results more than a few fractions of a percentage point, and the Normalization scaling algorithm caused a generalized drop in accuracy, even for Text-Only models. An interesting observation to be made is that, in both test sets, the best overall model, for both multimodal and Text-Only models, was NILCFT100, the 100-dimensional fastText model trained on the NILC text corpus. It outperformed the second-best model by around 15 percentage points for both languages.

That said, the poor results presented in an overview in Table 5.10 were somewhat expected as the image data used for the visual embeddings focused mostly on objects, while the Analogy Prediction tests focused on abstracts such as parentage, countries and currency for the Semantic half, and word forms for the Syntactic half. It is promising, however, that the previously mentioned best overall model, NILCFT100, achieved the best multimodality results when compared to their Text-Only counterpart. Perhaps with further testing, it might be ascertained that the better the original text-embedding, the more effective the imagined visual embedding fusion is.

Analogy Prediction - Overall								
Architecture No. of Best Results Scaling Algorithm No. of Best Resul								
Text-Only	8	Normalized	6					
Concatenated	3	Standardized	18					
Auto-encoded	4	-	-					

Table 5.10 – The "*No. of best results*" column represents the number of times each architecture and scaling algorithm had the best results in a model.

5.3 Semantic Similarity of Sentences

The ASSIN Semantic Similarity dataset is, as mentioned in Section 4.2.1, divided into two tracks, European Portuguese and Brazilian Portuguese. The objective of the task is to predict a number between 1 (unrelated sentences) and 5 (paraphrasing sentences) to represent the similarity between two short sentences. The task was evaluated using Pearson's Correlation and Mean Standard Error (MSE), as it was during the original ASSIN task. As explained in Section 3.3, only the best results for each model will be considered during this analysis. The complete results for this test set are available in Appendix G.

As presented in Table 5.11, this task's results only have two decimal points of precision. This is because the tests were performed with the same script used for the original ASSIN task, and it output results as they are seen in the below tables. Of interest in this first table is the fact that the best performing model for this test set (Auto-encoded BBPFT300) used the Normalization scaling algorithm.

Brazilian Portuguese										
NORMALIZED				STANDARDIZED						
Model	Architecture	Pearson	MSE	Model	Architecture	Pearson	MSE			
	Text-Only	0.56	0.52		Text-Only	0.56	0.52			
BBPFT300	Concatenated	0.56	0.52	BBPFT300	Concatenated	0.57	0.51			
	Auto-encoded	0.59	0.50		Auto-encoded	0.58	0.50			
	Text-Only	0.53	0.55		Text-Only	0.53	0.54			
NILCFT100	Concatenated	0.54	0.54	NILCFT100	Concatenated	0.54	0.54			
	Auto-encoded	0.51	0.56		Auto-encoded	0.54	0.54			
	Text-Only	0.45	0.60		Text-Only	0.45	0.61			
NILCW2V100	Concatenated	0.47	0.60	NILCW2V100	Concatenated	0.46	0.60			
	Auto-encoded	0.46	0.60		Auto-encoded	0.47	0.60			
	Text-Only	0.49	0.58		Text-Only	0.49	0.58			
NILCFT300	Concatenated	0.50	0.57	NILCFT300	Concatenated	0.50	0.57			
	Auto-encoded	0.50	0.57	1	Auto-encoded	0.52	0.55			

Table 5.11 – The best results for the Brazilian Portuguese track of the ASSIN task.

Table 5.12 presents results similar to those in the Word Relatedness tasks, with the Auto-encoding architecture performing in general better than the others, and the Standardization algorithm achieving better results on average.

Table 5.12 – The "*No. of best results*" column represents the number of times each architecture and scaling algorithm had the best results in a model. The Overall subtable presents a conglomeration of all results, while the Normalized and Standardized subtables present separated results for their respective scaling algorithms.

BR - Overall								
Architecture	No. of Best Results	Scaling Algorithm	No. of Best Results					
Text-Only	0	Normalized	2					
Concatenated	2	Standardized	4					
Auto-encoded	4	-	-					
		BR - Standardized						
BR -	Normalized	BR - Sta	ndardized					
BR - Architecture	Normalized No. of Best Results	BR - Sta Architecture	ndardized No. of Best Results					
BR - Architecture Text-Only	Normalized No. of Best Results 0	BR - Sta Architecture Text-Only	ndardized No. of Best Results 0					
BR - Architecture Text-Only Concatenated	Normalized No. of Best Results 0 2	BR - Sta Architecture Text-Only Concatenated	ndardized No. of Best Results 0 0					

5.3.2 European Portuguese Test Set

As presented in Table 5.13, the same model as before (Auto-encoded BBPFT300) yielded the best results, though this time with the Standardization scaling algorithm rather than the Normalization algorithm.

European Portuguese										
NORMALIZED				STANDARDIZED						
Model	Architecture	Pearson	MSE	Model	Architecture	Pearson	MSE			
BBPFT300	Text-Only	0.59	0.79		Text-Only	0.59	0.79			
	Concatenated	0.59	0.79	BBPFT300	Concatenated	0.60	0.78			
	Auto-encoded	0.58	0.79		Auto-encoded	0.60	0.76			
	Text-Only	0.52	0.88		Text-Only	0.53	0.86			
NILCFT100	Concatenated	0.52	0.88	NILCFT100	Concatenated	0.54	0.85			
	Auto-encoded	0.52	0.88		Auto-encoded	0.55	0.85			
	Text-Only	0.47	0.93		Text-Only	0.47	0.93			
NILCW2V100	Concatenated	0.47	0.93	NILCW2V100	Concatenated	0.48	0.92			
	Auto-encoded	0.48	0.92		Auto-encoded	0.49	0.91			
	Text-Only	0.50	0.90		Text-Only	0.50	0.90			
NILCFT300	Concatenated	0.51	0.90	NILCFT300	Concatenated	0.51	0.90			
	Auto-encoded	0.50	0.90		Auto-encoded	0.52	0.88			

Table 5.13 – The best results for the European Portuguese track of the ASSIN task.

Table 5.14 shows that positive results are skewed toward the Auto-encoded architecture and the Standardization scaling algorithm. This is corroborative with what we have already learned.

Table 5.14 – The "*No. of best results*" column represents the number of times each architecture and scaling algorithm had the best results in a model. The Overall subtable presents a conglomeration of all results, while the Normalized and Standardized subtables present separated results for their respective scaling algorithms.

PT - Overall									
Architecture	No. of Best Results	Scaling Algorithm	No. of Best Results						
Text-Only	0	Normalized	0						
Concatenated	1	Standardized	8						
Auto-encoded	4	-	-						
		PT - Standardized							
PT -	Normalized	PT - Sta	ndardized						
PT - Architecture	Normalized No. of Best Results	PT - Sta Architecture	ndardized No. of Best Results						
PT - Architecture Text-Only	Normalized No. of Best Results 0	PT - Sta Architecture Text-Only	ndardized No. of Best Results 0						
PT - Architecture Text-Only Concatenated	Normalized No. of Best Results 0 1	PT - Sta Architecture Text-Only Concatenated	ndardized No. of Best Results 0 0						

5.3.3 Semantic Similarity Task Overview

The results found with these Semantic Similarity tests echo those found with the Word Relatedness tests of Section 5.1. This is expected, as these tasks are similar, though in a different scale. The tests found essentially the same results: the Auto-encoding architecture is superior; the Standardization algorithm is better suited to multimodality; and multimodal models outperform Text-Only models. This can all be ascertained through the compiled information in Table 5.15

One of the more interesting findings is that Concatenated and Auto-encoded models trained on the same textual-visual corpus had similar results in these tests, though results show that the Concatenation architecture worked better with Normalization algorithm than the Standardization algorithm, and the opposite is true for the Auto-encoded architecture.

Table 5.15 – The "*No. of best results*" column represents the number of times each architecture and scaling algorithm had the best results in a model.

Overall									
Architecture	No. of Best Results	Scaling Algorithm	No. of Best Results						
Text-Only	0	Normalized	2						
Concatenated	3	Standardized	12						
Auto-encoded	8	-	-						

5.4 Named Entity Recognition

The Named Entity Recognition task requires that, as mentioned in Section 4.2.2, a model recognize and tag a given set of classes within raw textual input. The two test sets used for this task in this work are HAREM, a corpus built from news domain texts that will serve as the generic test set, and GeoCorpus, a corpus built from geosciences domain texts that will serve as the geosciences test set. As explained in Section 3.3, only the best results for each model will be considered during this analysis. The complete results for this test set are available in Appendix H.

5.4.1 HAREM

The HAREM test set is composed of two tracks, which will be analysed separately at first and then as part of an overview. It was used to test the models trained on the NILC and BBP text corpora.

Selective Track

The Selective track is the smaller of the two, including only the five most populated named entity categories within the test set. Table 5.16 shows that while multimodality did not manage to improve the best F-score achieved by the best Text-Only model, Standardized NILCFT300, it did raise another model, Standardized NILCW2V100, to tie with this score. Otherwise, whatever increases in F-score as a result of the multimodal fusion that can be observed are minimal at best for this task.

HAREM SELECTIVE											
NORMALIZED					STANDARDIZED						
Model	Architecture	Precision	Recall	F1	Model	Architecture	Precision	Recall	F1		
	Text-Only	0.733	0.679	0.705		Text-Only	0.734	0.680	0.706		
BBPFT300	Concatenated	0.741	0.677	0.708	BBPFT300	Concatenated	0.738	0.668	0.701		
	Auto-encoded	0.745	0.650	0.694		Auto-encoded	0.728	0.653	0.688		
	Text-Only	0.737	0.671	0.702		Text-Only	0.716	0.691	0.703		
NILCFT100	Concatenated	0.733	0.655	0.692	NILCFT100	Concatenated	0.735	0.679	0.706		
	Auto-encoded	0.739	0.656	0.695		Auto-encoded	0.731	0.691	0.710		
	Text-Only	0.736	0.659	0.696		Text-Only	0.727	0.690	0.708		
NILCW2V100	Concatenated	0.740	0.653	0.694	NILCW2V100	Concatenated	0.746	0.686	0.715		
	Auto-encoded	0.755	0.650	0.699		Auto-encoded	0.733	0.697	0.714		
	Text-Only	0.739	0.678	0.707		Text-Only	0.740	0.690	0.714		
NILCFT300	Concatenated	0.740	0.673	0.705	NILCFT300	Concatenated	0.741	0.691	0.715		
	Auto-encoded	0.769	0.635	0.696		Auto-encoded	0.737	0.665	0.699		

Table 5.16 – The best results for the Selective track of the HAREM task.

Table 5.17 shows that the Standardization algorithm is superior to the Normalization algorithm, which once again has a tendency to worsen Text-Only results. As for the individual architectures, the Text-Only architecture was usually matched or slightly outperformed by the multimodal architectures, though the Concatenation architecture seems to be slightly superior in this regard. Few of the improvements upon the base Text-Only models was recorded to have been of over 0.5 percentage point increase, however, so it cannot be definitely concluded that the proposed multimodal architectures helped in this task.

Table 5.17 – The "*No. of best results*" column represents the number of times each architecture and scaling algorithm had the best results in a model. The Overall subtable presents a conglomeration of all results, while the Normalized and Standardized subtables present separated results for their respective scaling algorithms.

Selective - Overall								
Architecture	No. of Best Results	Scaling Algorithm	No. of Best Results					
Text-Only	3	Normalized	2					
Concatenated	3	Standardized	10					
Auto-encoded	2	-	-					
		Selective - Standardized						
Selectiv	e - Normalized	Selective -	Standardized					
Selectiv Architecture	e - Normalized No. of Best Results	Selective - Select	Standardized No. of Best Results					
Selectiv Architecture Text-Only	e - Normalized No. of Best Results 2	Selective - Select	Standardized No. of Best Results 1					
Selectiv Architecture Text-Only Concatenated	e - Normalized No. of Best Results 2 1	Selective - Select	Standardized No. of Best Results 1 2					

Total Track

The Total track is the larger of the two, including all ten named entity categories present in the First HAREM test set. Table 5.18 shows that quite a few models tied for best score, and F-score of about 64 percentage points. This score was a tie among Text-Only and multimodal architectures. The Total track's results are similar to the Selective track's in shape: the multimodal models did not dramatically improve F-scores when compared to their Text-Only counterparts; many models were only worsened by multimodal fusion; and most Standardized models performed better than Normalized models.

	HAREMIOIAL									
NORMALIZED					STANDARDIZED					
Model	Architecture	Precision	Recall	F1	Model	Architecture	Precision	Recall	F1	
	Text-Only	0.679	0.585	0.628		Text-Only	0.685	0.602	0.641	
BBPFT300	Concatenated	0.694	0.597	0.642	BBPFT300	Concatenated	0.675	0.586	0.627	
	Auto-encoded	0.689	0.573	0.626		Auto-encoded	0.678	0.571	0.619	
	Text-Only	0.688	0.566	0.621		Text-Only	0.682	0.602	0.640	
NILCFT100	Concatenated	0.691	0.580	0.631	NILCFT100	Concatenated	0.686	0.594	0.637	
	Auto-encoded	0.710	0.573	0.634]	Auto-encoded	0.693	0.594	0.639	
	Text-Only	0.687	0.579	0.628		Text-Only	0.675	0.595	0.633	
NILCW2V100	Concatenated	0.674	0.569	0.617	NILCW2V100	Concatenated	0.686	0.592	0.635	
	Auto-encoded	0.677	0.585	0.628]	Auto-encoded	0.676	0.597	0.634	
	Text-Only	0.684	0.600	0.639		Text-Only	0.667	0.599	0.631	
NILCFT300	Concatenated	0.686	0.592	0.636	NILCFT300	Concatenated	0.680	0.606	0.641	
	Auto-encoded	0.712	0.577	0.637	1	Auto-encoded	0.690	0.591	0.637	

Table 5.18 – The best results for the Total track of the HAREM task.

Table 5.19 shows these traits more clearly. Roughly half the time multimodality strictly worsens the final result for this track, and Standardized models perform better on average. Finally, the Concatenation architecture tends to perform better than Auto-encoding architecture overall for this track.

Table 5.19 – The "*No. of best results*" column represents the number of times each architecture and scaling algorithm had the best results in a model. The Overall subtable presents a conglomeration of all results, while the Normalized and Standardized subtables present separated results for their respective scaling algorithms.

Total - Overall					
Architecture	No. of Best Results	Scaling Algorithm	No. of Best Results		
Text-Only	4	Normalized	4		
Concatenated	3	Standardized	8		
Auto-encoded	1				
Total -	Normalized	Total - Sta	andardized		
Total - Architecture	Normalized No. of Best Results	Total - Sta Architecture	andardized No. of Best Results		
Total - Architecture Text-Only	Normalized No. of Best Results 2	Total - Sta Architecture Text-Only	andardized No. of Best Results 2		
Total - Architecture Text-Only Concatenated	Normalized No. of Best Results 2 1	Total - Sta Architecture Text-Only Concatenated	andardized No. of Best Results 2 2		

In general, there was little to no improvement seen across both HAREM tracks when using multimodal fusion to augment embeddings. As seen in Table 5.20, when combined, the multimodal architectures achieved slightly better results than Text-Only models for roughly half of the models, while Text-Only outperformed multimodal by larger margins for the other half of all models. The table also reinforces the superiority of the Standardization algorithm over the Normalization algorithm.

Table 5.20 – The "*No. of best results*" column represents the number of times each architecture and scaling algorithm had the best results in a model.

HAREM Overall					
Architecture	No. of Best Results	Scaling Algorithm	No. of Best Results		
Text-Only	7	Normalized	6		
Concatenated	6	Standardized	18		
Auto-encoded	3	-	-		

5.4.2 GeoCorpus

GeoCorpus is a geosciences domain NER test set with 10 named entity categories. It was used to test models trained on the PetroVec text corpora. Table 5.21 tells a different story than the HAREM tables. Not only do the multimodal architectures generally outperform the Text-Only models, they outperform them by upwards of 3.2 percentage points. The highest results are generally achieved using the Concatenation architecture, the opposite of what happened in previous tasks where multimodal architectures outperformed the Text-Only models. This task was also the only instance where a Text-Only model that did not perform the best out of all Text-Only models yielded a multimodal model that performed best overall.

GEOCORPUS									
NORMALIZED				STANDARDIZED					
Model	Architecture	Precision	Recall	F1	Model Architecture Precision Rec			Recall	F1
PetroVecFT	Text-Only	0.792	0.763	0.777		Text-Only	0.827	0.811	0.818
	Concatenated	0.822	0.758	0.789	PetroVecFT	Concatenated	0.860	0.841	0.850
	Auto-encoded	0.808	0.780	0.794		Auto-encoded	0.820	0.830	0.825
PetroVecHybridFT	Text-Only	0.783	0.735	0.758	PetroVecHybridFT	Text-Only	0.827	0.826	0.827
	Concatenated	0.836	0.795	0.815		Concatenated	0.858	0.827	0.842
	Auto-encoded	0.792	0.791	0.792		Auto-encoded	0.822	0.836	0.829
PetroVecW2V	Text-Only	0.803	0.766	0.784		Text-Only	0.817	0.810	0.813
	Concatenated	0.831	0.796	0.813	PetroVecW2V	Concatenated	0.841	0.799	0.819
	Auto-encoded	0.800	0.760	0.780		Auto-encoded	0.825	0.817	0.821
	Text-Only	0.795	0.753	0.773	PetroVecHybridW2V	Text-Only	0.814	0.808	0.811
PetroVecHybridW2V	Concatenated	0.837	0.796	0.815		Concatenated	0.851	0.827	0.838
	Auto-encoded	0.780	0.772	0.776		Auto-encoded	0.818	0.829	0.823

Table 5.21 – The best results for the GeoCorpus test set.

Table 5.22 once again reinforces the notion that the Standardization algorithm is better than the Normalization algorithm. It also confirms that the Concatenation architecture is on average better than the Auto-encoding architecture on average, and that multimodal models generally achieved better results for this task.

Table 5.22 – The "*No. of best results*" column represents the number of times each architecture and scaling algorithm had the best results in a model. The Overall subtable presents a conglomeration of all results, while the Normalized and Standardized subtables present separated results for their respective scaling algorithms.

GeoCorpus - Overall					
Architecture	No. of Best Results	Scaling Algorithm	No. of Best Results		
Text-Only	0	Normalized	0		
Concatenated	6	Standardized	12		
Auto-encoded	2				
GeoCorp	us - Normalized	GeoCorpus ·	Standardized		
GeoCorp Architecture	us - Normalized No. of Best Results	GeoCorpus - Architecture	- Standardized No. of Best Results		
GeoCorp Architecture Text-Only	us - Normalized No. of Best Results 0	GeoCorpus - Architecture Text-Only	Standardized No. of Best Results		
GeoCorp Architecture Text-Only Concatenated	us - Normalized No. of Best Results 0 3	GeoCorpus - Architecture Text-Only Concatenated	- Standardized No. of Best Results 0 3		

5.4.3 Named Entity Recognition Task Overview

The HAREM and GeoCorpus tests produced different results. Whereas models for both HAREM tracks showed very little improvement as a result of multimodality, the GeoCorpus models' performance was substantially enhanced. Some similarities between the two is that the Concatenation architecture achieved better results on average, and that the best scaling algorithm was Standardization.

A possible explanation for this is that the Imagined Visual Embeddings do not have much of an impact in larger vocabulary such as those of the NILC and BBP text corpora trained models, whereas using the smaller PetroVec corpora trained models results in better embeddings overall. This is somewhat mirrored in the Word Relatedness test, the only other test where both domains were represented. Though both generic and geosciences test corpora saw an increase in correlation as a result of the multimodal fusion, the increases in the geosciences test were more pronounced, with the largest text-only to multimodal increase within the same model being almost twice the same for the generic test set.

Though more work must go into discovering the reason of the disparity between the HAREM and GeoCorpus results, the results presented in Table 5.23 represent the overall findings of this study: multimodality can improve upon Text-Only results for the NER task; the Concatenation architecture is better suited for NER; and the Standardization scaling algorithm continues to result in superior scores for this task.

Overall					
Architecture	No. of Best Results	Scaling Algorithm	No. of Best Results		
Text-Only	7	Normalized	6		
Concatenated	12	Standardized	30		
Auto-encoded	5				

Table 5.23 – The "*No. of best results*" column represents the number of times each architecture and scaling algorithm had the best results in a model.

6. DISCUSSION AND CONCLUSIONS

This dissertation presented the results of a study into the usefulness of visual data when used in conjunction with textual data for NLP tasks in a general news domain and a specific geosciences domain. It involved the development of corpora and word embedding architectures which were then put through a test battery for multimodal Word Embedding models which included the following tasks: Word Relatedness, Sentence Similarity, Analogy Prediction and Named Entity Recognition. These results revealed some aspects of textual-visual multimodal fusion for Word Embeddings within NLP tasks for the Portuguese language, a field in which it is most common to study purely textual Word Embedding models.

The dissertation takes inspiration from the works of Bruni et al. (2014) [6], and their concatenation based multimodal fusion architecture; Silberer et al. (2014) [43], and their auto-encoding multimodal fusion architecture; and Collell et al. (2017) [11], and their Imagined Embeddings cross-modal mapping neural network, for visual vocabulary expansion. It takes a different tack from previous work by exploring the possibility of use of this technology beyond the English language, using resources for the Portuguese language, and also by exploring its use in specific knowledge domains, such as the geosciences domain presented within this work.

The testing performed in this dissertation further adds to the literature by empirically showing that multimodal fusion can improve Portuguese Language Word Embeddings in the tasks presented above, with the exception of Analogy Prediction for which the results were in favor of Text-Only models in the experimental settings presented herein. The Word Related-ness and Sentence Similarity tasks corroborate each other's results in expected ways, given that the tasks are essentially connected. The Named Entity recognition task, on the other hand, presented some contradictory results between its test sets, and its overall results do not entirely match the findings of the other tasks.

The Word Relatedness and Sentence Similarity tasks in particular were the largest focus for the *Geologia Digital* project. The project was interested in word embedding-based term expansion for information retrieval architectures, and this study shows that the addition of Imagined Visual Embeddings in the form of a multimodal fusion with Word Embeddings results in semantic distances that more closely correlate to human intuition, which can be helpful to a information search engine. Furthermore, tests showed that even though the images used as a base for the Imagined Embeddings did not belong to the geosciences domain, they still provided a substantial enhancement to the PetroVec embeddings.

The Analogy Prediction test was another test of interest to the project, though there was no geosciences domain corpus with which to test the PetroVec embeddings. As mentioned before, the poor results obtained for this task were expected, though it is hard to say whether or not usage with PetroVec's more focused vocabulary would not elicit better results in this area, as may have been the case for the Named Entity Recognition tests.

The NER tests themselves provided some interestingly mixed results. While the multimodality did not seem to offer much value to models working on the HAREM test corpora, the fused models did quite well on the GeoCorpus test set. In both tasks with both generic and geosciences test corpora available, the PetroVec models seemed to enhance results more, comparatively, on their respective tests. This points to a specific quality in the corpus which allows it to better integrate with the Imagined Visual Embeddings, such as the possibility that a more focused corpus results in better imagined embeddings. Regardless, the matter warrants further research in future work.

Another notable characteristic to be discussed in the results is the fact that the Auto-encoding architecture showed itself to be superior to the Concatenation architecture in both the Word Relatedness and the Sentence Similarity tasks, but inferior in the NER task. Further study is required to explain this, though it surely pertains to the details of how each neural network learns their respective tasks, and which of the input embedding's characteristics they value most.

Some limitations encountered during the research and development for this dissertation was a lack of training and testing resources for the Portuguese language in both the general news and geosciences domains. This meant that several resources had to be translated from English, collected and annotated from the ground up, and revised for use in the project. This also resulted in less testing within the geosciences domain than might otherwise be desirable, as two tasks only had appropriate Portuguese language tests for the general news domain. Another limitation of this work was the difficulty in providing statistical significance testing. While the difference between some results is great enough that it could safely be assumed that they are significant, confirmation for these and the closer results would help ground the study. This aspect was not added to this documentation since the complexity of the task demanded time that was not available, and we plan to tackle this issue in a future continuation of this research.

Additionally, it must be added that the use of traditional static word embedding models rather than contextualized models was deliberate. The reason was the need for multimodal solutions for these specific architectures in the *Geologia Digital* project. The choice of architecture was rooted in the fact that contextualized models, such as BERT or ELMO, significantly increase computational requirements for both training and inference when compared to non-contextual models, such as Word2Vec and fastText [38, 4]. This makes contextual embeddings less appealing in industrial scenarios, since, as per Polignano et al. (2020) [38], it is yet unclear whether the accuracy increase delivered by contextual embedding is worth the performance issues associated with them.

As for future work, an interesting avenue would be to branch off to Contextual Embeddings such as BERT. The *Geologia Digital* project has, in the past month, begun to experiment with such Contextual Embeddings for the geosciences domain, and a complete comparative evaluation against Word Embeddings will be possible as soon as these new embeddings are completed. Other techniques will have to be used as far as multimodal fusion is concerned, such as the contextual fusion proposed in EViLBERT [7], which takes complex images and full sentence descriptions as input, rather than simple image/word pairs. These paths of research are interesting possibilities for future work in the geosciences domain and for the Portuguese Language itself. Such research would also be able to tackle the question of which kind of embedding, Contextual or Static, excels in this context.

Another future work would involve an analysis of tasks which attempt to use text to aid in visual tasks, such as object detection/recognition. This would require that the images in question came with an accompanying text which might be analyzed. There could also be tests in inherently multimodal tasks, such as text-image pairing or text-image retrieval.

It must be noted that the work performed for this dissertation and summarised above would not have been possible without first building a knowledge base about multimodal semantic models and their use in different domains so that the author could realistically complete the proposed study. As part of this knowledge base building effort, the author was involved in the research for several academic papers on the field of semantic embeddings. In chronological order, they were: Multidomain Contextual Embeddings for Named Entity Recognition, published in the Proceedings of the IberLEF 2019 workshop by Santos et al. (2019) [42], which studied the use of contextual embeddings in the NER task for several non-standard domains such as the Legal and Medical domains; Word Embedding Evaluation in Downstream Tasks and Semantic Analogies, published in the Proceedings of the LREC 2020 conference by Santos et al. (2020) [41], which studied the use of different training corpora in word embedding models and made a new training corpus freely available; Embeddings for Named Entity Recognition in Geoscience Portuguese Literature, published in the Proceedings of the LREC 2020 conference by Consoli et al. (2020) [12], which was focused on the development of appropriate test corpora for a number of NLP tasks in the geosciences domain; Portuguese Word Embeddings for the Oil and Gas Industry: development and evaluation, published in the Computers in Industry journal by Gomes et al. (2021) [16] which explored the use of domain-specific embeddings against general domain embeddings when it comes to the oil and gas sub-domain of the geosciences domain.

REFERENCES

- [1] Agirre, E.; Alfonseca, E.; Hall, K. B.; Kravalova, J.; Pasca, M.; Soroa, A. "A study on similarity and relatedness using distributional and wordnet-based approaches". In: Proceedings of the 7th Conference of the North American Chapter of the Association of Computational Linguistics on Human Language Technologies, 2009, pp. 19–27.
- [2] Akbik, A.; Blythe, D.; Vollgraf, R. "Contextual string embeddings for sequence labeling".
 In: Proceedings of the 27th International Conference on Computational Linguistics, 2018, pp. 1638–1649.
- [3] Amaral, D. O. F. "Reconhecimento de entidades nomeadas na área da geologia: Bacias sedimentares brasileiras", Doctoral thesis, Programa de Pós-Graduação em Ciência da Computação, PUCRS, 2017, 109p.
- [4] Arora, S.; May, A.; Zhang, J.; Ré, C. "Contextual embeddings: When are they worth it?" In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, 2020, pp. 2650–2663.
- [5] Brown, T. B.; Mann, B.; Ryder, N.; Subbiah, M.; Kaplan, J.; Dhariwal, P.; Neelakantan, A.; Shyam, P.; Sastry, G.; Askell, A.; Agarwal, S.; Herbert-Voss, A.; Krueger, G.; Henighan, T.; Child, R.; Ramesh, A.; Ziegler, D. M.; Wu, J.; Winter, C.; Hesse, C.; Chen, M.; Sigler, E.; Litwin, M.; Gray, S.; Chess, B.; Clark, J.; Berner, C.; McCandlish, S.; Radford, A.; Sutskever, I.; Amodei, D. "Language models are few-shot learners". In: Proceedings of the 33rd Conference on Advances in Neural Information Processing Systems, 2020, pp. 25.
- [6] Bruni, E.; Tran, N.; Baroni, M. "Multimodal distributional semantics", *Journal of Artificial Intelligence Research*, vol. 49, Jan 2014, pp. 1–47.
- [7] Calabrese, A.; Bevilacqua, M.; Navigli, R. "Evilbert: Learning task-agnostic multimodal sense embeddings". In: Proceedings of the 29th International Joint Conference on Artificial Intelligence, 2020, pp. 481–487.
- [8] Cao, D.; Yu, Z.; Zhang, H.; Fang, J.; Nie, L.; Tian, Q. "Video-based cross-modal recipe retrieval". In: Proceedings of the 27th ACM International Conference on Multimedia, 2019, pp. 1685–1693.
- [9] Chen, J.; Liang, D.; Zhu, Z.; Zhou, X.; Ye, Z.; Mo, X. "Social media popularity prediction based on visual-textual features with xgboost". In: Proceedings of the 27th ACM International Conference on Multimedia, 2019, pp. 2692–2696.

- [10] Collell, G.; Moens, M. "Do neural network cross-modal mappings really bridge modalities?" In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics, 2018, pp. 462–468.
- [11] Collell, G.; Zhang, T.; Moens, M. "Imagined visual representations as multimodal embeddings". In: Proceedings of the 31st AAAI Conference on Artificial Intelligence, 2017, pp. 4378–4384.
- [12] Consoli, B. S.; Santos, J.; Gomes, D.; Cordeiro, F.; Vieira, R.; Moreira, V. "Embeddings for named entity recognition in geoscience portuguese literature". In: Proceedings of the 12th Language Resources and Evaluation Conference, 2020, pp. 4625–4630.
- [13] Deng, J.; Dong, W.; Socher, R.; Li, L.; Li, K.; Li, F. "Imagenet: A large-scale hierarchical image database". In: Proceedings of the 23rd IEEE Conference on Computer Vision and Pattern Recognition, 2009, pp. 248–255.
- [14] Devlin, J.; Chang, M.; Lee, K.; Toutanova, K. "BERT: pre-training of deep bidirectional transformers for language understanding". In: Proceedings of the 17th Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technologies, 2019, pp. 4171–4186.
- [15] Fonseca, E. R.; Santos, L. B.; Criscuolo, M.; Aluísio, S. M. "Visão geral da avaliação de similaridade semântica e inferência textual", *Linguamática*, vol. 8, Dec 2016, pp. 3–13.
- [16] Gomes, D. S. M. and Cordeiro, F. C. and Consoli, B. S. and Santos, N. L. and Moreira, V. P. and Vieira, R. and Moraes, S. and Evsukoff, A. G. "Portuguese word embeddings for the oil and gas industry: Development and evaluation", *Computers in Industry*, vol. 124, Jan 2021, pp. 1–44.
- [17] Gong, X.; Huang, L.; Wang, F. "Deep semantic correlation learning based hashing for multimedia cross-modal retrieval". In: Proceedings of the 18th IEEE International Conference on Data Mining, 2018, pp. 117–126.
- [18] Grave, E.; Mikolov, T.; Joulin, A.; Bojanowski, P. "Bag of tricks for efficient text classification". In: Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics, 2017, pp. 427–431.
- [19] Guo, D.; Hong, J.; Luo, B.; Yan, Q.; Niu, Z. "Multi-modal representation learning for short video understanding and recommendation". In: Proceedings of the 20th IEEE International Conference on Multimedia & Expo, 2019, pp. 687–690.
- [20] Guo, W.; Huang, H.; Kong, X.; He, R. "Learning disentangled representation for crossmodal retrieval with deep mutual information estimation". In: Proceedings of the 27th ACM International Conference on Multimedia, 2019, pp. 1712–1720.

- [21] Guo, Z.; Gao, L.; Song, J.; Xu, X.; Shao, J.; Shen, H. T. "Attention-based LSTM with semantic consistency for videos captioning". In: Proceedings of the 26th ACM Conference on Multimedia Conference, 2016, pp. 357–361.
- [22] Habibian, A.; Mensink, T.; M., S. C. G. "Video2vec embeddings recognize events when examples are scarce", *IEEE Transactions on Pattern Analysis and Machine Intelligence*, vol. 39, Jul 2017, pp. 2089–2103.
- [23] Han, X.; Wu, Z.; Huang, P. X.; Zhang, X.; Zhu, M.; Li, Y.; Zhao, Y.; Davis, L. S.
 "Automatic spatially-aware fashion concept discovery". In: Proceedings of the 16th IEEE International Conference on Computer Vision, 2017, pp. 1472–1480.
- [24] Han, X.; Wu, Z.; Jiang, Y.; Davis, L. S. "Learning fashion compatibility with bidirectional lstms". In: Proceedings of the 25th ACM on Multimedia Conference, 2017, pp. 1078– 1086.
- [25] Hao, Y.; Ngo, C.; Huet, B. "Neighbourhood structure preserving cross-modal embedding for video hyperlinking", *IEEE Transactions on Multimedia*, vol. 22, Jan 2020, pp. 188–200.
- [26] Hartmann, N.; Fonseca, E. R.; Shulby, C.; Treviso, M. V.; Rodrigues, J. S.; Aluísio, S. M. "Portuguese word embeddings: Evaluating on word analogies and natural language tasks". In: Proceedings of the 11th Brazilian Symposium in Information and Human Language Technology, 2017, pp. 122–131.
- [27] He, Z.; Liu, J.; Li, N.; Huang, Y. "Learning network-to-network model for contentrich network embedding". In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, 2019, pp. 1037–1045.
- [28] Lazaridou, A.; Pham, N. T.; Baroni, M. "Combining language and vision with a multimodal skip-gram model". In: Proceedings of the 13th Conference of the North American Chapter of the Association of Computational Linguistics on Human Language Technologies, 2015, pp. 153–163.
- [29] Li, D.; Huang, M.; Li, X.; Ruan, Y.; Yao, L. "Mfecnn: Mixture feature embedding convolutional neural network for data mapping", *IEEE Transactions on Nanobioscience*, vol. 17, Jul 2018, pp. 165–171.
- [30] Mikolov, T.; Chen, K.; Corrado, G.; Dean, J. "Efficient estimation of word representations in vector space". In: Proceedings of the 1st International Conference on Learning Representations, 2013, pp. 12.
- [31] Mikolov, T.; Sutskever, I.; Chen, K.; Corrado, G. S.; Dean, J. "Distributed representations of words and phrases and their compositionality". In: Proceedings of the 27th Annual Conference on Neural Information Processing Systems, 2013, pp. 3111–3119.

- [32] Nedelec, T.; Smirnova, E.; Vasile, F. "Specializing joint representations for the task of product recommendation". In: Proceedings of the 2nd Workshop on Deep Learning for Recommender Systems, 2017, pp. 10–18.
- [33] Niu, Z.; Zhou, M.; Wang, L.; Gao, X.; Hua, G. "Hierarchical multimodal LSTM for dense visual-semantic embedding". In: Proceedings of the 16th IEEE International Conference on Computer Vision, 2017, pp. 1899–1907.
- [34] Oramas, S.; Nieto, O.; Sordo, M.; Serra, X. "A deep multimodal approach for cold-start music recommendation". In: Proceedings of the 2nd Workshop on Deep Learning for Recommender Systems, 2017, pp. 32–37.
- [35] Paiva, V.; Rademaker, A.; Melo, G. "Openwordnet-pt: An open brazilian wordnet for reasoning". In: Proceedings of the 24th International Conference on Computational Linguistics, 2012, pp. 353–360.
- [36] Pennington, J.; Socher, R.; Manning, C. D. "Glove: Global vectors for word representation". In: Proceedings of the 19th Conference on Empirical Methods in Natural Language Processing, 2014, pp. 1532–1543.
- [37] Peters, M. E.; Neumann, M.; Iyyer, M.; Gardner, M.; Clark, C.; Lee, K.; Zettlemoyer, L. "Deep contextualized word representations". In: Proceedings of the 16th Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technologies, 2018, pp. 2227–2237.
- [38] Polignano, M.; Gemmis, M.; Semeraro, G. "Contextualized BERT sentence embeddings for author profiling: The cost of performances". In: Proceedings of the 20th International Conference on Computational Science and its Applications, 2020, pp. 135–149.
- [39] Santos, D.; Cardoso, N. "A golden resource for named entity recognition in portuguese".
 In: Proceeding of the 7th International Conference on the Computational Processing of Portuguese, 2007, pp. 69–79.
- [40] Santos, J.; Consoli, B. S.; Santos, C. N.; Terra, J.; Collovini, S.; Vieira, R. "Assessing the impact of contextual embeddings for portuguese named entity recognition". In: Proceedings of the 8th Brazilian Conference on Intelligent Systems, 2019, pp. 437– 442.
- [41] Santos, J.; Consoli, B. S.; Vieira, R. "Word embedding evaluation in downstream tasks and semantic analogies". In: Proceedings of the 12th Language Resources and Evaluation Conference, 2020, pp. 4828–4834.
- [42] Santos, J.; Terra, J.; Consoli, B. S.; Vieira, R. "Multidomain contextual embeddings for named entity recognition". In: Proceedings of the Iberian Languages Evaluation

Forum co-located with 35th Conference of the Spanish Society for Natural Language Processing, 2019, pp. 434–441.

- [43] Silberer, C.; Lapata, M. "Learning grounded meaning representations with autoencoders". In: Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics, 2014, pp. 721–732.
- [44] Souza, F.; Nogueira, R.; Lotufo, R. "Bertimbau: Pretrained BERT models for brazilian portuguese". In: Proceedings of the 9th Brazilian Conference on Intelligent Systems, 2020, pp. 403–417.
- [45] Wang, S.; Guo, D.; Xu, X.; Zhuo, L.; Wang, M. "Cross-modality retrieval by joint correlation learning", ACM Transactions on Multimedia Computing, Communications, and Applications, vol. 15, Jul 2019, pp. 1–16.
- [46] Zhang, W.; Wang, W.; Wang, J.; Zha, H. "User-guided hierarchical attention network for multi-modal social image popularity prediction". In: Proceedings of the 27th World Wide Web Conference, 2018, pp. 1277–1286.
- [47] Zheng, C.; Pan, L.; Wu, P. "Multimodal deep network embedding with integrated structure and attribute information", *IEEE Transactions on Neural Networks and Learning Systems*, vol. 31, May 2020, pp. 1437–1449.

APPENDIX A – GEOSIM

Intrinsic testing is an important method of evaluation for Word Embedding based semantic models. These kinds of tests best serve their purpose if they were created with the model's use domain in mind, which means that already-existing tests for the generic news domain are not appropriate for evaluating models which focus on the geosciences, such as the PetroVec models of the *Geologia Digital* project. This prompted the development of a new Word Relatedness intrinsic test specifically build with the likely use scenario of the PetroVec models in mind.

A.1 Related Work

The development methodology for this test corpus was inspired by the work of Aguirre et al. (2009) [1] and Bruni et al. (2014) [6]. Aguirre et al. (2009) used the annotations of a handful of experts in the form of a 1 (least similar) to 7 (most similar) Likert scale to compose their corpus, which had a about 500 total annotated pairs. These pairs were divided into two tracks, as half of the pairs were annotated for similarity and the other half for relatedness.

Bruni et al. (2014), on the other hand, chose to eschew the similarity test altogether, citing that the relatedness test was more relevant to the testing of Word Embeddings, given the inherent nature of semantic vector spaces. To annotate their corpus, they used the Amazon's crowdsourcing tool, Mechanical Turk¹, to gather the results of 50 pair to pair comparisons for each pair, with the pair whose words are most related to each other gaining one point per comparison (eg. if the pair "Cat - Tiger" were compared to "car - lake", the first would receive one point and the latter no points, and the both would each be compared to 49 independent pairs to round out the 50 total comparisons). The most similar pairs had scores closest to 50, while the least similar pairs had scores closes to 0.

A.2 Development Methodology

The word pairs for GeoSim were generated from the words within Petroleum Abstract's Exploration and Production Controlled Vocabulary Thesaurus². The relations between words recorded in the thesaurus were used to balance pairs into three categories: strong relationships (categorized as hypernym or hyponym); weak relationships (catego-

¹https://www.mturk.com/

²https://www.pa.utulsa.edu/products/tulsadatabase/thesaurus

rized as other); and not related (no relationship between the words). These categories were created to ensure that the chosen corpus would have a plethora of strong and weak relationships to use as part of model testing, rather than the almost certainly purely weak relationships that would be present in a a truly random pair corpus.

Each pair was then annotated with the aid of a 1 (least similar) to 7 (most similar) Likert scale, the same as was used for Aguirre et al. (2009), by three experts in the Geosciences field affiliated with the *Geologia Digital* project. This resulted in a list of 1500 word pairs, each annotated with three scores. The scores were then averaged, achieving the final score of the corpus for each word pair.

APPENDIX B – GEOCORPUS 3.0

GeoCorpus is an evaluation corpus for the Portuguese language that collects several scientific works in the field of Geology. This corpus, originally developed by Daniela Amaral [3], contains works whose theme is geological entities (GE) related to the Brazilian Sedimentary Basin subdomain. The collected texts are essentially theses, dissertations, articles and bulletins from Petrobras' geosciences publications. They were recovered and selected from the geological terms of the Chronostratigraphic table, which contains names of sedimentary rocks, names of Brazilian sedimentary basins, the terms related to Tectonics, Sedimentation and Magmatism and stratigraphic units.

In this report, the changes that were made to this corpus in order to improve it will be presented and discussed.

B.1 Modifications

The corpus contained several problems that had a negative impact on machine learning experiments carried out with it. Below are the modifications made.

B.1.1 Removing empty categories

Description: There were some categories in GeoCorpus with an empty identifier.

Example: <EM CATEG=" ">quartzo

Solution: The empty categories were removed from the corpus in order to standardize them. It is important to note that this change does not impact the annotation.

B.1.2 Removal of nested categories

Description: Some annotated terms contained nested categories.

Example: <EM CATEG="EstruturaSedimentar"><EM CATEG="baciaSedimentar">Bacia do Paraná

Solution: In these cases, only the more specialized category was removed, leaving only the more generic of the two.

B.1.3 Correction of category annotation

Description: Some entities have been categorized into more than one class.

Example: <EM CATEG="ERA">Neoarqueano ... <EM CATEG="PERIODO">Neoarqueano

Solution: In these cases the annotation was redone. We sent the identified cases to an expert, who assigned the correct class to the entity.

B.1.4 Removing duplicate lines

Description: There were some repeated lines in GeoCorpus.

Example: Lines 766 and 776 were the same, containing the same sentence: "Grãos de silicato de zircônio incrustados em rochas metamórficas do grupo Warrawoona na Austrália ocidental foram datados em até 4, 4 bilhões de anos, indicando que por essa época uma crosta estava se consolidando."

Solution: Identical lines have been removed from GeoCorpus, since repetitions tend to hinder machine learning. Altogether, 73 lines were removed, containing a total of 51 entities.

B.1.5 Correction of improperly broken lines

Description: There was an improper line break pattern in GeoCorpus. In some sentences with a comma or opening parentheses, there was a new line segmenting the sentence into two parts.

Solution: As not all lines with parentheses or commas had the incorrect line break, the phrases that presented this break were corrected manually.
B.1.6 Other category removal

Description: There was a category called 'others' in GeoCorpus, with 737 entities.

Solution: All entities in this category were passed on to an expert, and recategorized into more specific categories, for entities that did not fit into the existing categories, new categories were created indicated by the expert. This was deemed necessary because the class 'others' was very wide only hindered automatic classification.

B.1.7 Standardization of categories

Description: There was no pattern in the name of the corpus categories, some were all capitalized, others in lowercase, and those with compound words alternated.

Solution: All categories are named with the Camel Case standard.

B.1.8 Entities without annotation

Description: 2913 entities in GeoCorpus that should be annotated and were not were identified. These entities were annotated one or more times in the corpus, but in certain instances were not annotated.

Example:

Sentence 1: ... de <EM CATEG="sedimentaresSiliciclasticas">quartzo. Sentence 2: ... em adição a outros minerais detríticos como o quartzo. In this example, the 'quartzo' entity appears categorized in the first sentence, but in the second, it is not.

Solution: All entities that should be categorized were categorized using a script. It was possible to use a script because the words that were not categorized had no problem of context or double meaning, which would make them appear at one time categorized and at another time not.

B.2 Analysis of GeoCorpus

After modifying the corpus in an attempt to obtain a better result, an analysis was performed on the entities of the modified corpus, together with an analysis on the entities of the unmodified corpus, for comparison purposes. With that, we want to compare and contrast the two versions of GeoCorpus.

In the original Geocorpus we had a sum of 6126 registered entities, divided into 20 classes, with the necessary modifications made, the impact we had on the number of categories and classes is observed. In the modified Geocorpus, we have a total of 8954 registered entities, an increase of 2828 entities, divided into 30 classes, an increase of 10 classes. These numbers are presented in Table B.1.

The number of unique entities of the new GeoCorpus was also analyzed. With this table, we can see that within the 8954 total entities noted, there are a total of 1229 distinct entities, a number well below the total number of entities, which demonstrates that there are many repetitions of the same entities, something that we have to take into account. These numbers are presented in Table B.2.

Class	#Instances(Original)	#Instances(Revised)							
Time									
age	796	799							
eon	288	256							
era	326	414							
epoch	650	687							
period	637	714							
	Rocks								
metamorphics	197	378							
magmatics	222	582							
siliciclasticSedimentary	741	1102							
carbonateSedimentary	240	355							
chemicalSedimentary	5	12							
organicSedimentary	22	22							
Constituer	ts and Properties of R	ocks							
sedimentaryRockConstituent	0	112							
mineral	0	212							
fossils	0	132							
sedimentaryStructure	0	86							
geologicalStructure	0	78							
	Site								
basinsGeologicalContext	262	663							
sedimentationEnvironment	0	146							
bentonic	13	27							
planktonic	44	112							
oilField	0	6							
Elen	nents of Stratigraphy	I							
sedimentaryBasin	243	552							
stratigraphicUnit	578	764							
geotectonicUnit	0	28							
stratigraphy	0	247							
formation	18	0							
	Others	I							
petroleumSystem	0	93							
basinStructure	40	0							
geomorphology	0	54							
granulometry	67	129							
chemicalElement	0	26							
methodologicalProcedure	0	166							
other	737	0							
Sum	6126	8954							

Table B.1 – Comparison GeoCorpus: Original version x GeoCorpus: Revised version

Class	#Unique Instances
Time	
age	84
epoch	74
period	62
era	47
eon	20
Rocks	
metamorphics	59
magmatics	58
siliciclasticSedimentary	160
carbonateSedimentary	77
chemicalSedimentary	4
organicSedimentary	1
Constituents and Prop	erties of Rocks
sedimentaryRockConstituent	24
mineral	6
fossils	29
sedimentaryStructure	28
sedimentaryBasin	83
geologicalStructure	19
Site	
sedimentationEnvironment	32
basinsGeologicalContext	121
bentonic	4
planktonic	9
oilField	2
Elements of Stra	tigraphy
stratigraphicUnit	153
geotectonicUnit	8
stratigraphy	29
Others	
geomorphology	6
chemicalElement	3
granulometry	13
methodologicalProcedure	4
petroleumSystem	10
Sum	1229

Table B.2 – Unique Entities by class, organized into superclasses - Revised Version

APPENDIX C – READING THE FULL RESULTS

The results presented in the following appendices are organized by fusion architecture, scaling algorithm and model. Multimodal models are compared with text-only models used to build their imagined visual embeddings, as was the case in the main body of this dissertation.

Additionally, each result will be highlight using the following colors: dark yellow representing text-only result; green representing multimodal result that is at least 1 percentage point higher than the paired text-only result; light yellow representing a multimodal result that is less than 1 percentage point lower or higher than the paired text-only result; and red representing a multimodal result that is at least 1 percentage point lower than the text-only paired result.

APPENDIX D – MEN FULL RESULTS

Concatenated Models								
Normalized		Standardized						
Model	Spearman	Model	Spearman					
BBPFT300-NORM	0.607	BBPFT300-STDZ	0.610					
BBPFT-NORM_25	0.620	BBPFT-STDZ_25	0.640					
BBPFT-NORM_50	0.621	BBPFT-STDZ_50	0.648					
BBPFT-NORM_100	0.622	BBPFT-STDZ_100	0.643					
		BBPFT-STDZ_150	0.642					
NILCFT100-NORM	0.588	NILCFT100-STDZ	0.615					
NILCFT100-NORM_25	0.611	NILCFT100-STDZ_25	0.646					
NILCFT100-NORM_50	0.620	NILCFT100-STDZ_50	0.648					
NILCFT100-NORM_100	0.626	NILCFT100-STDZ_100	0.643					
		NILCFT100-STDZ_150	0.642					
NILCW2V100-NORM	0.489	NILCW2V100-STDZ	0.493					
NILCW2V100-NORM_25	0.502	NILCW2V100-STDZ_25	0.513					
NILCW2V100-NORM_50	0.516	NILCW2V100-STDZ_50	0.518					
NILCW2V100-NORM_100	0.530	NILCW2V100-STDZ_100	0.514					
		NILCW2V100-STDZ_150	0.517					
NILCFT300-NORM	0.567	NILCFT300-STDZ	0.570					
NILCFT300-NORM_25	0.580	NILCFT300-STDZ_25	0.583					
NILCFT300-NORM_50	0.588	NILCFT300-STDZ_50	0.588					
NILCFT300-NORM_100	0.595	NILCFT300-STDZ_100	0.583					
		NILCFT300-STDZ_150	0.586					
	· -							
	Auto-encod	led Models						
Normalized	Auto-encod	ed Models Standardized						
Normalized Model	Auto-encod	ed Models Standardized Model	Spearman					
Normalized Model BBPFT300-NORM	Auto-encod Spearman 0.607	ed Models Standardized Model BBPFT300-STDZ	Spearman 0.610					
Normalized Model BBPFT300-NORM BBPFT-NORM_25_AE	Auto-encod Spearman 0.607 0.604	ed Models Standardized Model BBPFT300-STDZ BBPFT-STDZ_25_AE	Spearman 0.610 0.636					
Normalized Model BBPFT300-NORM BBPFT-NORM_25_AE BBPFT-NORM_50_AE	Auto-encod Spearman 0.607 0.604 0.580	ed Models Standardized Model BBPFT300-STDZ BBPFT-STDZ_25_AE BBPFT-STDZ_50_AE	Spearman 0.610 0.636 0.649					
Normalized Model BBPFT300-NORM BBPFT-NORM_25_AE BBPFT-NORM_50_AE BBPFT-NORM_100_AE	Auto-encod Spearman 0.607 0.604 0.580 0.624	ed Models Standardized Model BBPFT300-STDZ BBPFT-STDZ_25_AE BBPFT-STDZ_50_AE BBPFT-STDZ_100_AE	Spearman 0.610 0.636 0.649 0.641					
Normalized Model BBPFT300-NORM BBPFT-NORM_25_AE BBPFT-NORM_50_AE BBPFT-NORM_100_AE	Auto-encod Spearman 0.607 0.604 0.580 0.624	ed Models Standardized Model BBPFT300-STDZ BBPFT-STDZ_25_AE BBPFT-STDZ_50_AE BBPFT-STDZ_100_AE BBPFT-STDZ_150_AE	Spearman 0.610 0.636 0.649 0.641 0.642					
Normalized Model BBPFT300-NORM BBPFT-NORM_25_AE BBPFT-NORM_50_AE BBPFT-NORM_100_AE NILCFT100-NORM	Auto-encod Spearman 0.607 0.604 0.580 0.624 0.588	ed Models Standardized Model BBPFT300-STDZ BBPFT-STDZ_25_AE BBPFT-STDZ_50_AE BBPFT-STDZ_100_AE BBPFT-STDZ_150_AE NILCFT100-STDZ	Spearman 0.610 0.636 0.649 0.641 0.642 0.615					
Normalized Model BBPFT300-NORM BBPFT-NORM_25_AE BBPFT-NORM_50_AE BBPFT-NORM_100_AE NILCFT100-NORM NILCFT100-NORM_25_AE	Auto-encod Spearman 0.607 0.604 0.580 0.624 0.588 0.621	ed Models Standardized Model BBPFT300-STDZ BBPFT-STDZ_25_AE BBPFT-STDZ_50_AE BBPFT-STDZ_100_AE BBPFT-STDZ_150_AE NILCFT100-STDZ NILCFT100-STDZ_25_AE	Spearman 0.610 0.636 0.649 0.641 0.642 0.615 0.644					
Normalized Model BBPFT300-NORM BBPFT-NORM_25_AE BBPFT-NORM_50_AE BBPFT-NORM_100_AE NILCFT100-NORM NILCFT100-NORM_25_AE NILCFT100-NORM_50_AE	Auto-encod Spearman 0.607 0.604 0.580 0.624 0.588 0.621 0.620	ed Models Standardized Model BBPFT300-STDZ BBPFT-STDZ_25_AE BBPFT-STDZ_50_AE BBPFT-STDZ_100_AE BBPFT-STDZ_150_AE NILCFT100-STDZ_25_AE NILCFT100-STDZ_50_AE	Spearman 0.610 0.636 0.649 0.641 0.642 0.615 0.644 0.649					
Normalized Model BBPFT300-NORM BBPFT-NORM_25_AE BBPFT-NORM_50_AE BBPFT-NORM_100_AE NILCFT100-NORM_25_AE NILCFT100-NORM_50_AE NILCFT100-NORM_100_AE	Auto-encod Spearman 0.607 0.604 0.580 0.624 0.588 0.621 0.620 0.623	ed Models Standardized Model BBPFT300-STDZ BBPFT-STDZ_25_AE BBPFT-STDZ_50_AE BBPFT-STDZ_100_AE BBPFT-STDZ_150_AE NILCFT100-STDZ_25_AE NILCFT100-STDZ_50_AE NILCFT100-STDZ_100_AE	Spearman 0.610 0.636 0.649 0.641 0.642 0.615 0.644 0.649 0.649					
Normalized Model BBPFT300-NORM BBPFT-NORM_25_AE BBPFT-NORM_50_AE BBPFT-NORM_100_AE NILCFT100-NORM NILCFT100-NORM_25_AE NILCFT100-NORM_50_AE NILCFT100-NORM_100_AE	Auto-encod Spearman 0.607 0.604 0.580 0.624 0.588 0.621 0.620 0.623	ed Models Standardized Model BBPFT300-STDZ BBPFT-STDZ_25_AE BBPFT-STDZ_50_AE BBPFT-STDZ_100_AE BBPFT-STDZ_150_AE NILCFT100-STDZ_25_AE NILCFT100-STDZ_50_AE NILCFT100-STDZ_100_AE NILCFT100-STDZ_150_AE	Spearman 0.610 0.636 0.649 0.641 0.642 0.615 0.644 0.649 0.649 0.640 0.638					
Normalized Model BBPFT300-NORM BBPFT-NORM_25_AE BBPFT-NORM_50_AE BBPFT-NORM_100_AE NILCFT100-NORM NILCFT100-NORM_25_AE NILCFT100-NORM_50_AE NILCFT100-NORM_100_AE NILCFT100-NORM_100_AE	Auto-encod Spearman 0.607 0.604 0.580 0.624 0.624 0.621 0.620 0.623 0.623	ed Models Standardized Model BBPFT300-STDZ BBPFT-STDZ_25_AE BBPFT-STDZ_50_AE BBPFT-STDZ_100_AE BBPFT-STDZ_150_AE NILCFT100-STDZ_25_AE NILCFT100-STDZ_50_AE NILCFT100-STDZ_100_AE NILCFT100-STDZ_150_AE NILCFT100-STDZ_150_AE NILCFT100-STDZ_150_AE	Spearman 0.610 0.636 0.649 0.641 0.642 0.615 0.644 0.649 0.649 0.640 0.638 0.493					
Normalized Model BBPFT300-NORM BBPFT-NORM_25_AE BBPFT-NORM_50_AE BBPFT-NORM_100_AE NILCFT100-NORM_100_AE NILCFT100-NORM_50_AE NILCFT100-NORM_100_AE NILCW2V100-NORM_100_AE	Auto-encod Spearman 0.607 0.604 0.580 0.624 0.624 0.621 0.620 0.623 0.623 0.623	ed Models Standardized Model BBPFT300-STDZ BBPFT-STDZ_25_AE BBPFT-STDZ_50_AE BBPFT-STDZ_100_AE BBPFT-STDZ_150_AE NILCFT100-STDZ_25_AE NILCFT100-STDZ_50_AE NILCFT100-STDZ_100_AE NILCFT100-STDZ_150_AE NILCFT100-STDZ_150_AE NILCFT100-STDZ_150_AE	Spearman 0.610 0.636 0.649 0.641 0.642 0.615 0.644 0.649 0.649 0.640 0.638 0.493 0.527					
Normalized Model BBPFT300-NORM BBPFT-NORM_25_AE BBPFT-NORM_50_AE BBPFT-NORM_100_AE NILCFT100-NORM_25_AE NILCFT100-NORM_50_AE NILCFT100-NORM_100_AE NILCW2V100-NORM_25_AE NILCW2V100-NORM_25_AE NILCW2V100-NORM_50_AE	Auto-encod Spearman 0.607 0.604 0.580 0.624 0.624 0.621 0.620 0.623 0.623 0.623 0.623	ed Models Standardized Model BBPFT300-STDZ BBPFT-STDZ_25_AE BBPFT-STDZ_50_AE BBPFT-STDZ_100_AE BBPFT-STDZ_150_AE NILCFT100-STDZ_25_AE NILCFT100-STDZ_50_AE NILCFT100-STDZ_150_AE NILCFT100-STDZ_150_AE NILCW2V100-STDZ_25_AE NILCW2V100-STDZ_25_AE	Spearman 0.610 0.636 0.649 0.641 0.642 0.642 0.645 0.644 0.649 0.640 0.638 0.493 0.527 0.528					
Normalized Model BBPFT300-NORM BBPFT-NORM_25_AE BBPFT-NORM_50_AE BBPFT-NORM_100_AE NILCFT100-NORM_25_AE NILCFT100-NORM_25_AE NILCFT100-NORM_100_AE NILCW2V100-NORM_25_AE NILCW2V100-NORM_50_AE NILCW2V100-NORM_50_AE NILCW2V100-NORM_100_AE	Auto-encod Spearman 0.607 0.604 0.580 0.624 0.624 0.621 0.620 0.623 0.623 0.623 0.623 0.623	ed Models Standardized Model BBPFT300-STDZ BBPFT-STDZ_25_AE BBPFT-STDZ_50_AE BBPFT-STDZ_100_AE BBPFT-STDZ_150_AE NILCFT100-STDZ_25_AE NILCFT100-STDZ_50_AE NILCFT100-STDZ_100_AE NILCFT100-STDZ_150_AE NILCFT100-STDZ_150_AE NILCW2V100-STDZ_25_AE NILCW2V100-STDZ_50_AE NILCW2V100-STDZ_50_AE NILCW2V100-STDZ_50_AE	Spearman 0.610 0.636 0.649 0.641 0.642 0.642 0.644 0.649 0.649 0.638 0.638 0.493 0.527 0.528 0.518					
Normalized Model BBPFT300-NORM BBPFT-NORM_25_AE BBPFT-NORM_50_AE BBPFT-NORM_100_AE NILCFT100-NORM_100_AE NILCFT100-NORM_50_AE NILCFT100-NORM_100_AE NILCW2V100-NORM_25_AE NILCW2V100-NORM_25_AE NILCW2V100-NORM_50_AE NILCW2V100-NORM_100_AE	Auto-encod Spearman 0.607 0.604 0.580 0.624 0.588 0.621 0.620 0.623 0.623 0.623 0.623 0.528 0.528	ed Models Standardized Model BBPFT300-STDZ BBPFT-STDZ_25_AE BBPFT-STDZ_50_AE BBPFT-STDZ_100_AE BBPFT-STDZ_150_AE NILCFT100-STDZ_25_AE NILCFT100-STDZ_50_AE NILCFT100-STDZ_100_AE NILCFT100-STDZ_150_AE NILCFT100-STDZ_150_AE NILCW2V100-STDZ_25_AE NILCW2V100-STDZ_50_AE NILCW2V100-STDZ_50_AE NILCW2V100-STDZ_100_AE NILCW2V100-STDZ_100_AE NILCW2V100-STDZ_100_AE	Spearman 0.610 0.636 0.649 0.641 0.642 0.642 0.644 0.649 0.649 0.640 0.638 0.493 0.527 0.528 0.518 0.521					
Normalized Model BBPFT300-NORM BBPFT-NORM_25_AE BBPFT-NORM_50_AE BBPFT-NORM_100_AE NILCFT100-NORM_100_AE NILCFT100-NORM_25_AE NILCFT100-NORM_100_AE NILCW2V100-NORM_25_AE NILCW2V100-NORM_50_AE NILCW2V100-NORM_100_AE NILCW2V100-NORM_100_AE	Auto-encod Spearman 0.607 0.604 0.580 0.624 0.624 0.621 0.620 0.623 0.623 0.623 0.623 0.623 0.526 0.528	ed Models Standardized Model BBPFT300-STDZ BBPFT-STDZ_25_AE BBPFT-STDZ_50_AE BBPFT-STDZ_100_AE BBPFT-STDZ_150_AE NILCFT100-STDZ_25_AE NILCFT100-STDZ_50_AE NILCFT100-STDZ_150_AE NILCFT100-STDZ_150_AE NILCFT100-STDZ_150_AE NILCW2V100-STDZ_25_AE NILCW2V100-STDZ_50_AE NILCW2V100-STDZ_50_AE NILCW2V100-STDZ_100_AE NILCW2V100-STDZ_150_AE NILCW2V100-STDZ_150_AE NILCW2V100-STDZ_150_AE NILCW2V100-STDZ_150_AE	Spearman 0.610 0.636 0.649 0.641 0.642 0.645 0.642 0.645 0.642 0.645 0.642 0.642 0.643 0.644 0.649 0.649 0.640 0.638 0.493 0.527 0.528 0.518 0.521 0.570					
Normalized Model BBPFT300-NORM BBPFT-NORM_25_AE BBPFT-NORM_50_AE BBPFT-NORM_100_AE NILCFT100-NORM_100_AE NILCFT100-NORM_25_AE NILCFT100-NORM_100_AE NILCW2V100-NORM_100_AE NILCW2V100-NORM_25_AE NILCW2V100-NORM_25_AE NILCW2V100-NORM_25_AE	Auto-encod Spearman 0.607 0.604 0.580 0.624 0.624 0.621 0.620 0.623 0.623 0.623 0.623 0.528 0.526 0.527 0.567 0.584	ed Models Standardized Model BBPFT300-STDZ BBPFT-STDZ_25_AE BBPFT-STDZ_50_AE BBPFT-STDZ_100_AE BBPFT-STDZ_150_AE NILCFT100-STDZ_25_AE NILCFT100-STDZ_50_AE NILCFT100-STDZ_100_AE NILCFT100-STDZ_100_AE NILCFT100-STDZ_150_AE NILCW2V100-STDZ_25_AE NILCW2V100-STDZ_50_AE NILCW2V100-STDZ_100_AE NILCW2V100-STDZ_100_AE NILCW2V100-STDZ_150_AE NILCW2V100-STDZ_150_AE NILCW2V100-STDZ_150_AE NILCW2V100-STDZ_150_AE NILCW2V100-STDZ_150_AE NILCW2V100-STDZ_150_AE NILCW2V100-STDZ_150_AE	Spearman 0.610 0.636 0.649 0.641 0.642 0.642 0.644 0.649 0.649 0.640 0.638 0.493 0.527 0.528 0.518 0.521 0.521 0.570 0.597					
Normalized Model BBPFT300-NORM BBPFT-NORM_25_AE BBPFT-NORM_50_AE BBPFT-NORM_100_AE NILCFT100-NORM_25_AE NILCFT100-NORM_25_AE NILCFT100-NORM_100_AE NILCW2V100-NORM_100_AE NILCW2V100-NORM_50_AE NILCW2V100-NORM_50_AE NILCW2V100-NORM_50_AE NILCFT300-NORM_25_AE NILCFT300-NORM_25_AE	Auto-encod Spearman 0.607 0.604 0.580 0.624 0.624 0.621 0.620 0.623 0.623 0.623 0.623 0.528 0.526 0.528 0.527 0.584 0.584 0.571	ed Models Standardized Model BBPFT300-STDZ BBPFT-STDZ_25_AE BBPFT-STDZ_50_AE BBPFT-STDZ_100_AE BBPFT-STDZ_150_AE NILCFT100-STDZ_25_AE NILCFT100-STDZ_50_AE NILCFT100-STDZ_150_AE NILCFT100-STDZ_150_AE NILCFT100-STDZ_25_AE NILCW2V100-STDZ_25_AE NILCW2V100-STDZ_50_AE NILCW2V100-STDZ_150_AE NILCW2V100-STDZ_150_AE NILCW2V100-STDZ_150_AE NILCFT300-STDZ_25_AE NILCFT300-STDZ_25_AE NILCFT300-STDZ_50_AE	Spearman 0.610 0.636 0.649 0.641 0.642 0.645 0.642 0.645 0.642 0.645 0.642 0.642 0.643 0.644 0.649 0.640 0.643 0.527 0.528 0.518 0.521 0.570 0.597 0.576					
Normalized Model BBPFT300-NORM BBPFT-NORM_25_AE BBPFT-NORM_50_AE BBPFT-NORM_100_AE NILCFT100-NORM_100_AE NILCFT100-NORM_50_AE NILCFT100-NORM_100_AE NILCFT100-NORM_100_AE NILCW2V100-NORM_25_AE NILCW2V100-NORM_50_AE NILCW2V100-NORM_100_AE NILCFT300-NORM_25_AE NILCFT300-NORM_25_AE NILCFT300-NORM_25_AE NILCFT300-NORM_25_AE NILCFT300-NORM_100_AE	Auto-encod Spearman 0.607 0.604 0.580 0.624 0.624 0.621 0.620 0.623 0.623 0.623 0.623 0.623 0.528 0.526 0.528 0.527 0.567 0.584 0.571 0.601	Standardized Model BBPFT300-STDZ BBPFT-STDZ_25_AE BBPFT-STDZ_50_AE BBPFT-STDZ_100_AE BBPFT-STDZ_150_AE BBPFT-STDZ_150_AE NILCFT100-STDZ_25_AE NILCFT100-STDZ_100_AE NILCFT100-STDZ_100_AE NILCFT100-STDZ_150_AE NILCFT100-STDZ_150_AE NILCFT100-STDZ_150_AE NILCV2V100-STDZ_150_AE NILCW2V100-STDZ_100_AE NILCW2V100-STDZ_150_AE NILCW2V100-STDZ_150_AE NILCFT300-STDZ_25_AE NILCFT300-STDZ_50_AE NILCFT300-STDZ_50_AE NILCFT300-STDZ_100_AE	Spearman 0.610 0.636 0.649 0.641 0.642 0.645 0.642 0.645 0.642 0.645 0.642 0.642 0.643 0.644 0.643 0.643 0.643 0.527 0.528 0.518 0.521 0.570 0.597 0.576 0.585					

Table D.1 – Complete results for the MEN dataset.

APPENDIX E – GEOSIM FULL RESULTS

Table E.1 – Full results table for the GeoSim testset.							
Normalized	Concatena	Standardized					
Model	Spearman	Model	Spearman				
PetroVecET	0.607	PetroVecET	0 609				
PetroVecET-25	0.606	PetroVecET-25	0.613				
PetroVecET-50	0.607	PetroVecET-50	0.613				
PetroVecFT-100	0.611	PetroVecFT-100	0.615				
		PetroVecFT-150	0.605				
PetroVecHybridFT	0.607	PetroVecHybridFT	0.619				
PetroVecHybridFT-25	0.605	PetroVecHybridFT-25	0.633				
PetroVecHybridFT-50	0.621	PetroVecHybridFT-50	0.632				
PetroVecHybridFT-100	0.629	PetroVecHybridFT-100	0.627				
		PetroVecHybridFT-150	0.626				
PetroVecW2V	0.608	PetroVecW2V	0.611				
PetroVecW2V-25	0.611	PetroVecW2V-25	0.613				
PetroVecW2V-50	0.610	PetroVecW2V-50	0.613				
PetroVecW2V-100	0.613	PetroVecW2V-100	0.612				
		PetroVecW2V-150	0.610				
PetroVecHybridW2V	0.643	PetroVecHybridW2V	0.648				
PetroVecHybridW2V-25	0.652	PetroVecHybridW2V-25	0.651				
PetroVecHybridW2V-50	0.658	PetroVecHybridW2V-50	0.652				
PetroVecHybridW2V-100	0.660	PetroVecHybridW2V-100	0.652				
		PetroVecHybridW2V-150	0.655				
N	Auto-enco	ded Models					
Normalized	Chaorina	Standardized	Creative				
Normalized Model	Spearman	Standardized Model	Spearman				
Model PetroVecFT PotroVecFT 25	Spearman 0.607	Standardized Model PetroVecFT	Spearman 0.609				
Normalized Model PetroVecFT PetroVecFT-25 PetroVecFT-50	Spearman 0.607 0.621	Standardized Model PetroVecFT PetroVecFT-25 PetroVecFT-50	Spearman 0.609 0.642 0.636				
Normalized Model PetroVecFT PetroVecFT-25 PetroVecFT-50 PetroVecFT-100	Spearman 0.607 0.621 0.619	Standardized Model PetroVecFT PetroVecFT-25 PetroVecFT-50 PetroVecFT-100	Spearman 0.609 0.642 0.636 0.637				
NormalizedModelPetroVecFTPetroVecFT-25PetroVecFT-50PetroVecFT-100	Spearman 0.607 0.621 0.619 0.582	Standardized Model PetroVecFT PetroVecFT-25 PetroVecFT-50 PetroVecFT-100 PetroVecFT-150	Spearman 0.609 0.642 0.636 0.637 0.629				
Normalized Model PetroVecFT PetroVecFT-25 PetroVecFT-50 PetroVecFT-100 PetroVecHybridET	Spearman 0.607 0.621 0.619 0.582	Standardized Model PetroVecFT PetroVecFT-25 PetroVecFT-50 PetroVecFT-100 PetroVecFT-150 PetroVecFT-150	Spearman 0.609 0.642 0.636 0.637 0.629 0.619				
Normalized Model PetroVecFT PetroVecFT-25 PetroVecFT-50 PetroVecFT-100 PetroVecHybridFT PetroVecHybridFT25	Spearman 0.607 0.621 0.619 0.582 0.607 0.643	StandardizedModelPetroVecFTPetroVecFT-25PetroVecFT-50PetroVecFT-100PetroVecFT-150PetroVecHybridFTPetroVecHybridFTPetroVecHybridFT-25	Spearman 0.609 0.642 0.636 0.637 0.629 0.619 0.667				
NormalizedModelPetroVecFTPetroVecFT-25PetroVecFT-50PetroVecFT-100PetroVecHybridFTPetroVecHybridFT50	Spearman 0.607 0.621 0.619 0.582 0.607 0.643 0.657	StandardizedModelPetroVecFTPetroVecFT-25PetroVecFT-50PetroVecFT-100PetroVecFT-150PetroVecHybridFTPetroVecHybridFT-25PetroVecHybridFT-50	Spearman 0.609 0.642 0.636 0.637 0.629 0.619 0.667 0.655				
NormalizedModelPetroVecFTPetroVecFT-25PetroVecFT-50PetroVecFT-100PetroVecHybridFTPetroVecHybridFT-25PetroVecHybridFT-50PetroVecHybridFT-100	Spearman 0.607 0.621 0.619 0.582 0.607 0.643 0.657 0.652	StandardizedModelPetroVecFTPetroVecFT-25PetroVecFT-50PetroVecFT-100PetroVecFT-150PetroVecHybridFTPetroVecHybridFT-25PetroVecHybridFT-50PetroVecHybridFT-100	Spearman 0.609 0.642 0.636 0.637 0.629 0.619 0.667 0.655 0.646				
NormalizedModelPetroVecFTPetroVecFT-25PetroVecFT-50PetroVecFT-100PetroVecHybridFTPetroVecHybridFT-25PetroVecHybridFT-50PetroVecHybridFT-100	Spearman 0.607 0.621 0.619 0.582 0.607 0.643 0.657 0.652	StandardizedModelPetroVecFTPetroVecFT-25PetroVecFT-50PetroVecFT-100PetroVecFT-150PetroVecHybridFTPetroVecHybridFT-25PetroVecHybridFT-50PetroVecHybridFT-100PetroVecHybridFT-150	Spearman 0.609 0.642 0.636 0.637 0.629 0.619 0.655 0.646 0.646				
Normalized Model PetroVecFT PetroVecFT-25 PetroVecFT-50 PetroVecFT-100 PetroVecHybridFT PetroVecHybridFT-25 PetroVecHybridFT-50 PetroVecHybridFT-100 PetroVecW2V	Spearman 0.607 0.621 0.619 0.582 0.607 0.643 0.657 0.652 0.652	StandardizedModelPetroVecFTPetroVecFT-25PetroVecFT-50PetroVecFT-100PetroVecFT-150PetroVecHybridFTPetroVecHybridFTPetroVecHybridFT-25PetroVecHybridFT-50PetroVecHybridFT-100PetroVecHybridFT-150PetroVecHybridFT-150PetroVecHybridFT-150PetroVecHybridFT-150PetroVecHybridFT-150	Spearman 0.609 0.642 0.636 0.637 0.629 0.619 0.655 0.646 0.652 0.611				
NormalizedModelPetroVecFTPetroVecFT-25PetroVecFT-50PetroVecFT-100PetroVecHybridFTPetroVecHybridFT-25PetroVecHybridFT-50PetroVecHybridFT-100PetroVecW2VPetroVecW2VPetroVecW2V-25	Spearman 0.607 0.621 0.619 0.582 0.607 0.643 0.657 0.652 0.652	StandardizedModelPetroVecFTPetroVecFT-25PetroVecFT-50PetroVecFT-100PetroVecFT-150PetroVecHybridFTPetroVecHybridFTPetroVecHybridFT-25PetroVecHybridFT-50PetroVecHybridFT-100PetroVecHybridFT-150PetroVecW2VPetroVecW2V-25	Spearman 0.609 0.642 0.636 0.637 0.629 0.619 0.655 0.646 0.652 0.611 0.629				
NormalizedModelPetroVecFTPetroVecFT-25PetroVecFT-50PetroVecFT-100PetroVecHybridFTPetroVecHybridFT-25PetroVecHybridFT-50PetroVecHybridFT-100PetroVecW2VPetroVecW2VPetroVecW2V-25PetroVecW2V-50	Spearman 0.607 0.621 0.619 0.582 0.657 0.643 0.657 0.652 0.652 0.608 0.617 0.621	StandardizedModelPetroVecFTPetroVecFT-25PetroVecFT-50PetroVecFT-100PetroVecFT-150PetroVecHybridFTPetroVecHybridFT-25PetroVecHybridFT-50PetroVecHybridFT-100PetroVecHybridFT-150PetroVecW2VPetroVecW2V-25PetroVecW2V-50	Spearman 0.609 0.642 0.636 0.637 0.629 0.619 0.655 0.646 0.652 0.611 0.629 0.626				
NormalizedModelPetroVecFTPetroVecFT-25PetroVecFT-50PetroVecFT-100PetroVecHybridFTPetroVecHybridFT-25PetroVecHybridFT-50PetroVecHybridFT-100PetroVecW2VPetroVecW2VPetroVecW2V-25PetroVecW2V-50PetroVecW2V-100	Spearman 0.607 0.621 0.619 0.582 0.607 0.643 0.657 0.652 0.652 0.608 0.617 0.621 0.619	StandardizedModelPetroVecFTPetroVecFT-25PetroVecFT-50PetroVecFT-100PetroVecFT-150PetroVecHybridFTPetroVecHybridFT-25PetroVecHybridFT-50PetroVecHybridFT-100PetroVecHybridFT-100PetroVecW2VPetroVecW2V-25PetroVecW2V-50PetroVecW2V-100	Spearman 0.609 0.642 0.636 0.637 0.629 0.619 0.655 0.646 0.652 0.611 0.629 0.629 0.629				
NormalizedModelPetroVecFTPetroVecFT-25PetroVecFT-50PetroVecFT-100PetroVecHybridFTPetroVecHybridFT-25PetroVecHybridFT-50PetroVecHybridFT-100PetroVecW2VPetroVecW2VPetroVecW2V-25PetroVecW2V-50PetroVecW2V-100	Spearman 0.607 0.621 0.619 0.582 0.607 0.643 0.657 0.652 0.652 0.608 0.617 0.621 0.619	Standardized Model PetroVecFT PetroVecFT-25 PetroVecFT-50 PetroVecFT-100 PetroVecFT-150 PetroVecFT-150 PetroVecFT-150 PetroVecHybridFT PetroVecHybridFT-25 PetroVecHybridFT-100 PetroVecHybridFT-100 PetroVecW2V PetroVecW2V-25 PetroVecW2V-50 PetroVecW2V-100 PetroVecW2V-150	Spearman 0.609 0.642 0.636 0.637 0.629 0.619 0.655 0.646 0.652 0.646 0.652 0.629 0.629 0.628				
NormalizedModelPetroVecFTPetroVecFT-25PetroVecFT-50PetroVecFT-100PetroVecHybridFTPetroVecHybridFT-25PetroVecHybridFT-50PetroVecHybridFT-100PetroVecW2VPetroVecW2VPetroVecW2V-25PetroVecW2V-50PetroVecW2V-100PetroVecHybridW2V	Spearman 0.607 0.621 0.619 0.582 0.607 0.643 0.657 0.652 0.652 0.652 0.652 0.652 0.652 0.617 0.621 0.619 0.643	Standardized Model PetroVecFT PetroVecFT-25 PetroVecFT-50 PetroVecFT-100 PetroVecFT-150 PetroVecFT-50 PetroVecFT-150 PetroVecHybridFT PetroVecHybridFT-25 PetroVecHybridFT-50 PetroVecHybridFT-100 PetroVecW2V PetroVecW2V-25 PetroVecW2V-50 PetroVecW2V-100 PetroVecW2V-150 PetroVecW2V-150	Spearman 0.609 0.642 0.636 0.637 0.629 0.619 0.655 0.646 0.655 0.646 0.652 0.611 0.629 0.628 0.628 0.628				
NormalizedModelPetroVecFTPetroVecFT-25PetroVecFT-50PetroVecFT-100PetroVecHybridFTPetroVecHybridFT-25PetroVecHybridFT-50PetroVecHybridFT-100PetroVecW2VPetroVecW2VPetroVecW2V-25PetroVecW2V-50PetroVecW2V-100PetroVecHybridW2VPetroVecHybridW2V-25	Spearman 0.607 0.621 0.619 0.582 0.607 0.643 0.657 0.652 0.652 0.608 0.617 0.621 0.619 0.643 0.643 0.664	Standardized Model PetroVecFT PetroVecFT-25 PetroVecFT-50 PetroVecFT-100 PetroVecFT-150 PetroVecFT-150 PetroVecHybridFT PetroVecHybridFT-25 PetroVecHybridFT-50 PetroVecHybridFT-100 PetroVecW2V PetroVecW2V-25 PetroVecW2V-50 PetroVecW2V-100 PetroVecW2V-150 PetroVecW2V-150 PetroVecW2V-150 PetroVecW2V-150	Spearman 0.609 0.642 0.637 0.629 0.619 0.655 0.646 0.655 0.646 0.652 0.611 0.629 0.629 0.628 0.628 0.648 0.648				
NormalizedModelPetroVecFTPetroVecFT-25PetroVecFT-50PetroVecFT-100PetroVecHybridFTPetroVecHybridFT-25PetroVecHybridFT-50PetroVecHybridFT-100PetroVecW2VPetroVecW2VPetroVecW2V-25PetroVecW2V-50PetroVecHybridW2V-25PetroVecHybridW2V-25PetroVecHybridW2V-25PetroVecHybridW2V-25	Spearman 0.607 0.621 0.619 0.582 0.607 0.643 0.657 0.652 0.652 0.608 0.617 0.621 0.619 0.643 0.643 0.643 0.664	Standardized Model PetroVecFT PetroVecFT-25 PetroVecFT-50 PetroVecFT-100 PetroVecFT-150 PetroVecFT-150 PetroVecFT-150 PetroVecHybridFT PetroVecHybridFT-25 PetroVecHybridFT-100 PetroVecHybridFT-100 PetroVecW2V PetroVecW2V-25 PetroVecW2V-100 PetroVecHybridW2V-250 PetroVecHybridW2V-250 PetroVecHybridW2V-250 PetroVecHybridW2V-250 PetroVecHybridW2V-250 PetroVecHybridW2V-250	Spearman 0.609 0.642 0.636 0.637 0.629 0.619 0.655 0.646 0.652 0.646 0.652 0.629 0.628 0.628 0.628 0.628 0.628 0.648				
NormalizedModelPetroVecFTPetroVecFT-25PetroVecFT-50PetroVecFT-100PetroVecHybridFTPetroVecHybridFT-25PetroVecHybridFT-50PetroVecHybridFT-100PetroVecW2VPetroVecW2VPetroVecW2V-25PetroVecW2V-50PetroVecHybridW2V-50PetroVecHybridW2VPetroVecHybridW2V-50PetroVecHybridW2V-50PetroVecHybridW2V-50PetroVecHybridW2V-50PetroVecHybridW2V-50PetroVecHybridW2V-50PetroVecHybridW2V-50PetroVecHybridW2V-50	Spearman 0.607 0.621 0.619 0.582 0.607 0.643 0.657 0.652 0.652 0.652 0.652 0.652 0.652 0.653 0.643 0.643 0.643 0.664 0.664	Standardized Model PetroVecFT PetroVecFT-25 PetroVecFT-50 PetroVecFT-100 PetroVecFT-150 PetroVecFT-150 PetroVecHybridFT PetroVecHybridFT-25 PetroVecHybridFT-50 PetroVecHybridFT-100 PetroVecHybridFT-100 PetroVecW2V PetroVecW2V-25 PetroVecW2V-50 PetroVecW2V-100 PetroVecHybridW2V-50 PetroVecHybridW2V-50 PetroVecHybridW2V-150 PetroVecHybridW2V-25 PetroVecHybridW2V-250	Spearman 0.609 0.642 0.636 0.637 0.629 0.619 0.655 0.646 0.652 0.646 0.652 0.629 0.628 0.628 0.628 0.648 0.648 0.656				

APPENDIX F – ANALOGY PREDICTION FULL RESULTS

Model	Syntactic	Semantic	Total	Model	Syntactic	Semantic	Total			
REPET	0.445		0.256	REDET	0.447		0.257			
BBPET 25	0.443	0.004	0.255	BBPET 25	0.447	0.004	0.257			
BRDET 50	0.443	0.004	0.255	BBDET 50	0.441	0.005	0.254			
BBPET 100	0.444	0.005	0.250	BBDET 100	0.430	0.005	0.231			
	0.443	0.005	0.233	BRDET 150	0.410	0.057	0.230			
	0.497	0.292	0.201		0.391	0.000	0.230			
NILOFTIO0 25	0.407	0.202	0.304		0.510	0.302	0.400			
NILOFT100_23	0.401	0.200	0.300	NILCF1100_25	0.505	0.292	0.390			
NILCET100_50	0.479	0.275	0.377	NILCET100_50	0.505	0.270	0.391			
	0.477	0.272	0.374	NILCF1100_100	0.447	0.236	0.351			
	0.047	0.077	0.400	NILCF1100_150	0.415	0.221	0.318			
NILGW2V100	0.247	0.077	0.162	NILCW2V100	0.255	0.080	0.167			
NILCW2V100_25	0.247	0.075	0.161	NILCW2V100_25	0.254	0.081	0.167			
NILCW2V100_50	0.239	0.072	0.156	NILCW2V100_50	0.245	0.077	0.161			
NILCW2V100_100	0.234	0.072	0.153	NILCW2V100_100	0.227	0.073	0.150			
				NILCW2V100_150	0.206	0.074	0.140			
NILCFT300	0.330	0.154	0.242	NILCFT300	0.332	0.158	0.245			
NILCFT300_25	0.335	0.155	0.245	NILCFT300_25	0.331	0.157	0.244			
NILCFT300_50	0.330	0.153	0.241	NILCFT300_50	0.330	0.159	0.244			
NILCFT300_100	0.330	0.156	0.243	NILCFT300_100	0.324	0.157	0.240			
				NILCFT300_150	0.323	0.161	0.242			
				ODTHOUFOF						
		EURU	ORIUGUESE							
N	ORMALIZEI	D	PEAN P	ST	ANDARDIZE	D				
Model	ORMALIZEI Syntactic	D D Semantic	Total	Model	ANDARDIZE Syntactic	D Semantic	Total			
Model BBPFT	ORMALIZEI Syntactic 0.448	D Semantic 0.057	Total	ST Model BBPFT	ANDARDIZE Syntactic 0.451	D Semantic 0.058	Total 0.255			
Model BBPFT BBPFT_25	ORMALIZEI Syntactic 0.448 0.447	2000 2005 2005 2005 2005 2005 2005 2005	Total 0.254 0.253	ST Model BBPFT BBPFT_25	ANDARDIZE Syntactic 0.451 0.444	D Semantic 0.058 0.057	Total 0.255 0.251			
Model BBPFT BBPFT_25 BBPFT_50	ORMALIZEI Syntactic 0.448 0.447 0.448	2 Semantic 0.057 0.058 0.058	Total 0.254 0.253 0.254	ST Model BBPFT_ BBPFT_25 BBPFT_50	ANDARDIZE Syntactic 0.451 0.444 0.439	D Semantic 0.058 0.057 0.059	Total 0.255 0.251 0.250			
N Model BBPFT_25 BBPFT_50 BBPFT_100	ORMALIZEI Syntactic 0.448 0.447 0.448 0.447	2 Semantic 0.057 0.058 0.058 0.058	Total 0.254 0.253 0.254 0.253	ST Model BBPFT_25 BBPFT_50 BBPFT_100	ANDARDIZE Syntactic 0.451 0.444 0.439 0.412	Semantic 0.058 0.057 0.059 0.051	Total 0.255 0.251 0.250 0.250 0.232			
N Model BBPFT BBPFT_25 BBPFT_50 BBPFT_100	ORMALIZEI Syntactic 0.448 0.447 0.448 0.447	Semantic 0.057 0.058 0.058 0.058	Total 0.254 0.253 0.254 0.253	ST Model BBPFT_25 BBPFT_50 BBPFT_100 BBPFT_150	ANDARDIZE Syntactic 0.451 0.444 0.439 0.412 0.393	D Semantic 0.058 0.057 0.059 0.051 0.057	Total 0.255 0.251 0.250 0.232 0.226			
N Model BBPFT BBPFT_25 BBPFT_50 BBPFT_100 NILCFT100	ORMALIZEI Syntactic 0.448 0.447 0.448 0.447 0.445	2 Semantic 0.057 0.058 0.058 0.058 0.274	Total 0.254 0.253 0.254 0.253 0.253	ST Model BBPFT_25 BBPFT_50 BBPFT_100 BBPFT_150 NILCFT100	ANDARDIZE Syntactic 0.451 0.444 0.439 0.412 0.393 0.509	D Semantic 0.058 0.057 0.059 0.051 0.057 0.293	Total 0.255 0.251 0.250 0.232 0.226 0.401			
N Model BBPFT BBPFT_25 BBPFT_50 BBPFT_100 NILCFT100 NILCFT100 25	ORMALIZEI Syntactic 0.448 0.447 0.448 0.447 0.485 0.485	2 Semantic 0.057 0.058 0.058 0.058 0.274 0.273	Total 0.254 0.253 0.254 0.253 0.253 0.379 0.377	ST Model BBPFT_25 BBPFT_50 BBPFT_100 BBPFT_150 NILCFT100 25	ANDARDIZE Syntactic 0.451 0.444 0.439 0.412 0.393 0.509 0.505	D Semantic 0.058 0.057 0.059 0.051 0.057 0.293 0.284	Total 0.255 0.251 0.250 0.232 0.232 0.2401 0.394			
N Model BBPFT_25 BBPFT_50 BBPFT_100 NILCFT100 NILCFT100_25 NILCFT100_50	ORMALIZEI Syntactic 0.448 0.447 0.448 0.447 0.485 0.481 0.479	2 Semantic 0.057 0.058 0.058 0.058 0.274 0.273 0.267	Total 0.254 0.253 0.254 0.253 0.253 0.379 0.377 0.372	Model BBPFT BBPFT_25 BBPFT_50 BBPFT_100 BBPFT_150 NILCFT100_25 NILCFT100_50	ANDARDIZE Syntactic 0.451 0.444 0.439 0.412 0.393 0.509 0.505 0.504	D Semantic 0.058 0.057 0.059 0.051 0.057 0.293 0.284 0.270	Total 0.255 0.251 0.250 0.232 0.226 0.401 0.394 0.387			
Model BBPFT BBPFT_25 BBPFT_50 BBPFT_100 NILCFT100 NILCFT100_25 NILCFT100_50 NILCFT100	ORMALIZEI Syntactic 0.448 0.447 0.448 0.447 0.485 0.485 0.481 0.479 0.476	Semantic 0.057 0.058 0.058 0.058 0.274 0.273 0.267 0.263	Total 0.254 0.253 0.254 0.253 0.254 0.253 0.379 0.377 0.372 0.369	Model BBPFT BBPFT_25 BBPFT_50 BBPFT_100 BBPFT_150 NILCFT100 NILCFT100_50 NILCFT100 NILCFT100	ANDARDIZE Syntactic 0.451 0.444 0.439 0.412 0.393 0.509 0.505 0.504 0.446	D Semantic 0.058 0.057 0.059 0.051 0.057 0.293 0.284 0.270 0.242	Total 0.255 0.251 0.250 0.232 0.226 0.401 0.394 0.387 0.343			
Model BBPFT BBPFT_25 BBPFT_50 BBPFT_100 NILCFT100 NILCFT100_25 NILCFT100_50 NILCFT100_100	ORMALIZEI Syntactic 0.448 0.447 0.448 0.447 0.485 0.481 0.479 0.476	ECRO Semantic 0.057 0.058 0.058 0.058 0.274 0.273 0.267 0.263	Total 0.254 0.253 0.254 0.253 0.254 0.253 0.379 0.377 0.372 0.369	Model BBPFT BBPFT_25 BBPFT_50 BBPFT_100 BBPFT_150 NILCFT100 NILCFT100_50 NILCFT100_100 NILCFT100_100	ANDARDIZE Syntactic 0.451 0.444 0.439 0.412 0.393 0.509 0.505 0.504 0.446 0.415	ED Semantic 0.058 0.057 0.059 0.051 0.057 0.293 0.284 0.270 0.242 0.213	Total 0.255 0.251 0.250 0.232 0.226 0.401 0.394 0.387 0.343 0.314			
Model BBPFT BBPFT_25 BBPFT_50 BBPFT_100 NILCFT100 NILCFT100_25 NILCFT100_100 NILCFT100_100	ORMALIZEI Syntactic 0.448 0.447 0.448 0.447 0.485 0.485 0.481 0.479 0.476	EURO Semantic 0.057 0.058 0.058 0.058 0.274 0.273 0.267 0.263	Total 0.254 0.253 0.254 0.253 0.379 0.377 0.372 0.369	Model BBPFT BBPFT_25 BBPFT_50 BBPFT_100 BBPFT_150 NILCFT100_25 NILCFT100_50 NILCFT100_150 NILCFT100_150 NILCFT100_150	ANDARDIZE Syntactic 0.451 0.444 0.439 0.412 0.393 0.509 0.505 0.504 0.446 0.415 0.252	ED Semantic 0.058 0.057 0.059 0.051 0.057 0.293 0.284 0.270 0.242 0.213 0.074	Total 0.255 0.251 0.250 0.232 0.232 0.2401 0.387 0.343 0.314 0.163			
Model BBPFT BBPFT_25 BBPFT_50 BBPFT_100 NILCFT100_25 NILCFT100_50 NILCFT100_100 NILCFT100_25 NILCFT100_25 NILCFT100_25 NILCFT100_25 NILCFT100_25	ORMALIZEI Syntactic 0.448 0.447 0.448 0.447 0.485 0.481 0.479 0.476 0.243 0.243	ECRO Semantic 0.057 0.058 0.058 0.058 0.274 0.273 0.267 0.263 0.263	Total 0.254 0.253 0.254 0.253 0.253 0.253 0.379 0.377 0.372 0.369 0.158 0.156	Model BBPFT BBPFT_25 BBPFT_50 BBPFT_100 BBPFT_150 NILCFT100_25 NILCFT100_100 NILCFT100_150 NILCFT100_150 NILCFT100_25 NILCFT100_25 NILCFT100_25 NILCFT100_25 NILCFT100_25	ANDARDIZE Syntactic 0.451 0.444 0.439 0.412 0.393 0.509 0.505 0.504 0.446 0.415 0.252 0.250	Semantic 0.058 0.057 0.059 0.051 0.057 0.293 0.284 0.270 0.242 0.213 0.074	Total 0.255 0.251 0.250 0.232 0.232 0.2401 0.394 0.343 0.314 0.163			
Model BBPFT BBPFT_25 BBPFT_50 BBPFT_100 NILCFT100 NILCFT100_25 NILCFT100_100 NILCFT100_25 NILCFT100_25 NILCFT100_50 NILCFT100_50 NILCFT100_50 NILCFT100_50	ORMALIZEI Syntactic 0.448 0.447 0.448 0.447 0.485 0.481 0.479 0.476 0.243 0.243 0.243	2 Semantic 0.057 0.058 0.058 0.058 0.274 0.273 0.267 0.263 0.263 0.072 0.070	Total 0.254 0.253 0.254 0.253 0.254 0.253 0.379 0.379 0.377 0.372 0.369 0.158 0.156 0.152	Model BBPFT BBPFT_25 BBPFT_50 BBPFT_100 BBPFT_150 NILCFT100_25 NILCFT100_100 NILCFT100_150 NILCFT100_150 NILCFT100_25 NILCFT100_50 NILCFT100_50 NILCFT100_50 NILCFT100_50 NILCFT100_50 NILCFT100_50	ANDARDIZE Syntactic 0.451 0.444 0.439 0.412 0.393 0.509 0.505 0.504 0.446 0.415 0.252 0.250 0.241	D Semantic 0.058 0.057 0.059 0.051 0.057 0.293 0.284 0.270 0.242 0.213 0.074 0.075	Total 0.255 0.251 0.220 0.226 0.401 0.394 0.387 0.343 0.314 0.163 0.163			
Model BBPFT BBPFT_25 BBPFT_50 BBPFT_100 NILCFT100_25 NILCFT100_50 NILCFT100_100 NILCFT100_50 NILCFT100_50 NILCFT100_50 NILCFT100_50 NILCV2V100_50 NILCW2V100_50 NILCW2V100_100	ORMALIZEI Syntactic 0.448 0.447 0.448 0.447 0.485 0.481 0.479 0.476 0.243 0.243 0.243 0.234	ECRO Semantic 0.057 0.058 0.058 0.058 0.274 0.273 0.267 0.263 0.263 0.072 0.070 0.069 0.067	Total 0.254 0.253 0.254 0.253 0.253 0.379 0.377 0.372 0.369 0.158 0.152 0.149	Model BBPFT BBPFT_25 BBPFT_50 BBPFT_100 BBPFT_150 NILCFT100_25 NILCFT100_100 NILCFT100_150 NILCFT100_25 NILCFT100_50 NILCFT100_50 NILCFT100_50 NILCFT100_50 NILCFT100_50 NILCFT100_50 NILCFT100_150 NILCW2V100_50 NILCW2V100_50 NILCW2V100_100	ANDARDIZE Syntactic 0.451 0.444 0.439 0.412 0.393 0.509 0.505 0.504 0.415 0.252 0.250 0.241 0.224	ED Semantic 0.058 0.057 0.059 0.051 0.057 0.293 0.293 0.284 0.270 0.242 0.213 0.074 0.075 0.073	Total 0.255 0.251 0.220 0.226 0.401 0.394 0.387 0.343 0.314 0.163 0.163 0.157 0.146			
Model BBPFT BBPFT_25 BBPFT_50 BBPFT_100 NILCFT100_25 NILCFT100_50 NILCFT100_100 NILCFT100_50 NILCFT100_50 NILCFT100_50 NILCV2V100_50 NILCW2V100_50 NILCW2V100_100	ORMALIZEI Syntactic 0.448 0.447 0.448 0.447 0.485 0.481 0.479 0.476 0.243 0.243 0.243 0.231	ECRO Semantic 0.057 0.058 0.058 0.058 0.274 0.273 0.267 0.263 0.263 0.072 0.070 0.072	Total 0.254 0.253 0.254 0.253 0.379 0.377 0.372 0.369 0.158 0.152 0.149	Model BBPFT BBPFT_25 BBPFT_50 BBPFT_100 BBPFT_150 NILCFT100_25 NILCFT100_100 NILCFT100_150 NILCFT100_25 NILCFT100_50 NILCFT100_50 NILCFT100_50 NILCFT100_50 NILCFT100_150 NILCW2V100_50 NILCW2V100_50 NILCW2V100_100 NILCW2V100_150	ANDARDIZE Syntactic 0.451 0.444 0.439 0.412 0.393 0.509 0.505 0.504 0.446 0.415 0.252 0.250 0.241 0.224 0.203	ED Semantic 0.058 0.057 0.059 0.051 0.057 0.293 0.284 0.270 0.242 0.213 0.213 0.074 0.075 0.073 0.069 0.066	Total 0.255 0.251 0.250 0.232 0.232 0.2401 0.394 0.387 0.343 0.314 0.163 0.157 0.146 0.134			
Model BBPFT BBPFT_25 BBPFT_50 BBPFT_100 NILCFT100_25 NILCFT100_50 NILCFT100_100 NILCFT100_50 NILCFT100_50 NILCFT100_50 NILCFT100_100 NILCW2V100_25 NILCW2V100_50 NILCW2V100_100	ORMALIZEI Syntactic 0.448 0.447 0.448 0.447 0.485 0.481 0.479 0.476 0.243 0.243 0.243 0.231	EURO Semantic 0.057 0.058 0.058 0.058 0.274 0.273 0.267 0.263 0.072 0.070 0.070 0.069 0.067	Total 0.254 0.253 0.254 0.253 0.379 0.377 0.372 0.369 0.158 0.152 0.149	Model BBPFT BBPFT_25 BBPFT_50 BBPFT_100 BBPFT_150 NILCFT100_25 NILCFT100_100 NILCFT100_150 NILCFT100_25 NILCFT100_50 NILCFT100_50 NILCFT100_50 NILCFT100_150 NILCW2V100_25 NILCW2V100_50 NILCW2V100_150 NILCW2V100_150 NILCW2V100_150	ANDARDIZE Syntactic 0.451 0.444 0.439 0.412 0.393 0.509 0.505 0.504 0.446 0.415 0.252 0.250 0.250 0.241 0.224 0.203 0.324	ED Semantic 0.058 0.057 0.059 0.051 0.057 0.293 0.284 0.270 0.242 0.213 0.074 0.075 0.073 0.069 0.066	Total 0.255 0.251 0.220 0.226 0.401 0.394 0.387 0.343 0.314 0.163 0.163 0.163 0.157 0.146 0.134			
Model BBPFT BBPFT_25 BBPFT_50 BBPFT_100 NILCFT100_25 NILCFT100_50 NILCFT100_100 NILCFT100_25 NILCFT100_50 NILCW2V100_50 NILCW2V100_50 NILCW2V100_100 NILCFT300 NILCFT300_25	ORMALIZEI Syntactic 0.448 0.447 0.448 0.447 0.485 0.481 0.479 0.476 0.243 0.243 0.243 0.231 0.231	EURO Semantic 0.057 0.058 0.058 0.058 0.274 0.273 0.267 0.263 0.267 0.263 0.070 0.070 0.069 0.067 0.040	Total 0.254 0.253 0.254 0.253 0.379 0.377 0.372 0.369 0.158 0.152 0.149 0.231 0.231	Model BBPFT BBPFT_25 BBPFT_50 BBPFT_100 BBPFT_150 NILCFT100_25 NILCFT100_100 NILCFT100_150 NILCFT100_25 NILCFT100_50 NILCFT100_150 NILCFU00_150 NILCW2V100_50 NILCW2V100_150 NILCW2V100_150 NILCW2V100_150 NILCW2V100_25	ANDARDIZE Syntactic 0.451 0.444 0.439 0.412 0.393 0.509 0.505 0.504 0.446 0.415 0.252 0.250 0.250 0.241 0.224 0.203 0.324 0.324	ED Semantic 0.058 0.057 0.059 0.051 0.057 0.293 0.284 0.270 0.242 0.213 0.074 0.075 0.073 0.073 0.069 0.066 0.143	Total 0.255 0.251 0.250 0.232 0.232 0.240 0.394 0.387 0.343 0.314 0.163 0.163 0.157 0.146 0.233 0.234			
Model BBPFT BBPFT_25 BBPFT_50 BBPFT_100 NILCFT100_25 NILCFT100_50 NILCFT100_100 NILCFT100_25 NILCFT100_50 NILCFT100_100 NILCW2V100_25 NILCW2V100_50 NILCW2V100_25 NILCW2V100_25 NILCFT300_25 NILCFT300_25 NILCFT300_50	ORMALIZEI Syntactic 0.448 0.447 0.448 0.447 0.485 0.485 0.481 0.479 0.476 0.243 0.243 0.231 0.231 0.322 0.327 0.322	EURO Semantic 0.057 0.058 0.058 0.058 0.058 0.274 0.273 0.267 0.263 0.267 0.263 0.070 0.069 0.069 0.067 0.069 0.067	Total 0.254 0.253 0.254 0.253 0.254 0.253 0.379 0.372 0.369 0.158 0.156 0.152 0.149 0.231 0.233	Model BBPFT BBPFT_25 BBPFT_50 BBPFT_100 BBPFT_150 NILCFT100_25 NILCFT100_100 NILCFT100_150 NILCFT100_25 NILCFT100_50 NILCFT100_150 NILCFT100_150 NILCW2V100_25 NILCW2V100_50 NILCW2V100_100 NILCFT300 NILCFT300_25	ANDARDIZE Syntactic 0.451 0.444 0.439 0.412 0.393 0.509 0.505 0.504 0.446 0.415 0.252 0.250 0.241 0.224 0.203 0.324 0.323 0.323	ED Semantic 0.058 0.057 0.059 0.051 0.057 0.293 0.284 0.270 0.242 0.213 0.074 0.075 0.075 0.073 0.069 0.066 0.143 0.144	Total 0.255 0.251 0.250 0.232 0.232 0.232 0.343 0.343 0.314 0.163 0.163 0.146 0.134 0.233 0.245			
Model BBPFT BBPFT_25 BBPFT_50 BBPFT_100 NILCFT100_25 NILCFT100_50 NILCFT100_100 NILCFT100_50 NILCFT100_50 NILCFT100_100 NILCFT100_100 NILCW2V100_25 NILCW2V100_50 NILCW2V100_50 NILCFT300_50 NILCFT300_50 NILCFT300_50	ORMALIZEI Syntactic 0.448 0.447 0.448 0.447 0.485 0.485 0.481 0.479 0.476 0.243 0.243 0.231 0.231 0.322 0.327 0.323	EURO Semantic 0.057 0.058 0.058 0.058 0.274 0.273 0.267 0.263 0.267 0.263 0.072 0.070 0.069 0.067 0.067 0.140 0.139 0.137 0.141	Total 0.254 0.253 0.254 0.253 0.254 0.253 0.379 0.372 0.372 0.369 0.158 0.152 0.152 0.152 0.152 0.231 0.233 0.231	Model BBPFT BBPFT_25 BBPFT_50 BBPFT_100 BBPFT_150 NILCFT100_25 NILCFT100_100 NILCFT100_150 NILCFT100_25 NILCFT100_50 NILCFT100_150 NILCFT100_150 NILCFT100_150 NILCW2V100_25 NILCW2V100_100 NILCW2V100_50 NILCW2V100_100 NILCFT300_150 NILCFT300_50	ANDARDIZE Syntactic 0.451 0.444 0.439 0.412 0.393 0.509 0.505 0.504 0.416 0.415 0.252 0.250 0.241 0.224 0.203 0.324 0.323 0.322 0.217	Semantic 0.058 0.057 0.059 0.051 0.057 0.293 0.284 0.270 0.242 0.213 0.242 0.213 0.074 0.075 0.073 0.069 0.066 0.143 0.144	Total 0.255 0.251 0.250 0.232 0.232 0.232 0.232 0.343 0.343 0.343 0.314 0.163 0.163 0.157 0.146 0.134 0.233 0.233 0.233			
Model BBPFT BBPFT_25 BBPFT_50 BBPFT_100 NILCFT100_ NILCFT100_50 NILCFT100_100 NILCFT100_50 NILCFT100_50 NILCFT100_100 NILCFT100_50 NILCFT100_100 NILCFT300_25 NILCFT300_25 NILCFT300_50 NILCFT300_100	ORMALIZEI Syntactic 0.448 0.447 0.448 0.447 0.485 0.481 0.479 0.479 0.476 0.243 0.243 0.231 0.231 0.322 0.327 0.323 0.322	EURO Semantic 0.057 0.058 0.058 0.058 0.274 0.273 0.267 0.263 0.267 0.263 0.072 0.070 0.069 0.069 0.069 0.067	Total 0.254 0.253 0.254 0.253 0.254 0.253 0.379 0.377 0.372 0.369 0.158 0.152 0.152 0.149 0.231 0.231	Model BBPFT BBPFT_25 BBPFT_50 BBPFT_100 BBPFT_150 NILCFT100_25 NILCFT100_100 NILCFT100_150 NILCFT100_150 NILCFT100_150 NILCFT100_150 NILCFT100_150 NILCFT100_150 NILCFT100_150 NILCFT300_25 NILCW2V100_150 NILCFT300_25 NILCFT300_50 NILCFT300_100	ANDARDIZE Syntactic 0.451 0.444 0.439 0.412 0.393 0.509 0.505 0.504 0.415 0.252 0.250 0.241 0.224 0.203 0.324 0.323 0.322 0.317	ED Semantic 0.058 0.057 0.059 0.051 0.057 0.293 0.293 0.284 0.270 0.242 0.213 0.074 0.075 0.073 0.075 0.073 0.069 0.066 0.143 0.143 0.144	Total 0.255 0.251 0.250 0.232 0.232 0.232 0.232 0.2343 0.343 0.343 0.343 0.314 0.163 0.163 0.157 0.146 0.134 0.233 0.233 0.233 0.233 0.233 0.229			

Table F.1 – Results for Concatenated models in the Analogies dataset. BRAZILIAN PORTUGUESE

Г

NORMALIZED STANDARDIZED									
Model	Svntactic	Semantic	Total	Model	Svntactic	Semantic	Total		
BBPFT	0.445	0.064	0.256	BBPFT	0.447	0.064	0.257		
BBPFT 25	0.391	0.054	0.224	BBPFT 25	0.382	0.047	0.216		
BBPFT 50	0.395	0.053	0.225	BBPFT 50	0.377	0.048	0.214		
BBPFT 100	0.392	0.058	0.226	BBPFT 100	0.359	0.049	0.205		
				BBPFT 150	0.351	0.052	0.203		
NILCFT100	0.487	0.282	0.384	NILCFT100	0.510	0.302	0.406		
NILCFT100 25	0.495	0.301	0.398	NILCFT100 25	0.511	0.311	0.411		
NILCFT100 50	0.491	0.290	0.390	NILCFT100 50	0.504	0.301	0.402		
NILCFT100 100	0.486	0.288	0.387	NILCFT100 100	0.434	0.279	0.356		
				NILCFT100_150	0.405	0.241	0.323		
NILCW2V100	0.247	0.077	0.162	NILCW2V100	0.255	0.080	0.167		
NILCW2V100_25	0.239	0.072	0.155	NILCW2V100_25	0.235	0.080	0.157		
NILCW2V100_50	0.229	0.071	0.150	NILCW2V100_50	0.216	0.070	0.143		
NILCW2V100_100	0.235	0.072	0.153	NILCW2V100_100	0.188	0.069	0.129		
				NILCW2V100_150	0.171	0.065	0.118		
NILCFT300	0.330	0.154	0.242	NILCFT300	0.332	0.158	0.245		
NILCFT300_25	0.285	0.142	0.214	NILCFT300_25	0.299	0.143	0.221		
NILCFT300 50	0.283	0.138	0.210	NILCFT300 50	0.293	0.144	0.219		
NILCFT300_100	0.283	0.141	0.212	NILCFT300_100	0.294	0.132	0.213		
				NILCFT300_150	0.282	0.139	0.210		
		POR	TUGUÊ	S EUROPEU					
N	ORMALIZEI	D		ST	ANDARDIZE	Ð			
N Model	ORMALIZEI Syntactic	D Semantic	Total	ST Model	ANDARDIZE Syntactic	D Semantic	Total		
Model BBPFT	ORMALIZEI Syntactic 0.448	D Semantic 0.057	Total 0.254	ST Model BBPFT	ANDARDIZE Syntactic 0.451	D Semantic 0.058	Total 0.255		
Model BBPFT BBPFT_25	ORMALIZEI Syntactic 0.448 0.394	D Semantic 0.057 0.049	Total 0.254 0.223	ST Model BBPFT_25	ANDARDIZE Syntactic 0.451 0.387	D Semantic 0.058 0.042	Total 0.255 0.216		
Model BBPFT BBPFT_25 BBPFT_50	ORMALIZEI Syntactic 0.448 0.394 0.399	Semantic 0.057 0.049 0.049	Total 0.254 0.223 0.225	ST Model BBPFT_25 BBPFT_50	ANDARDIZE Syntactic 0.451 0.387 0.382	D Semantic 0.058 0.042 0.045	Total 0.255 0.216 0.214		
ModelBBPFTBBPFT_25BBPFT_50BBPFT_100	ORMALIZEI Syntactic 0.448 0.394 0.399 0.395	Semantic 0.057 0.049 0.050	Total 0.254 0.223 0.225 0.224	ST Model BBPFT_25 BBPFT_50 BBPFT_100	ANDARDIZE Syntactic 0.451 0.387 0.382 0.363	D Semantic 0.058 0.042 0.045 0.044	Total 0.255 0.216 0.214 0.204		
ModelBBPFTBBPFT_25BBPFT_50BBPFT_100	ORMALIZEI Syntactic 0.448 0.394 0.399 0.395	Semantic 0.057 0.049 0.049 0.050	Total 0.254 0.223 0.225 0.224	Model BBPFT BBPFT_25 BBPFT_50 BBPFT_100 BBPFT_150	ANDARDIZE Syntactic 0.451 0.387 0.382 0.363 0.363	Semantic 0.058 0.042 0.045 0.044 0.048	Total 0.255 0.216 0.214 0.204 0.202		
N Model BBPFT BBPFT_25 BBPFT_50 BBPFT_100 NILCFT100	ORMALIZEI Syntactic 0.448 0.394 0.399 0.395 0.395	Semantic 0.057 0.049 0.049 0.050 0.274	Total 0.254 0.223 0.225 0.224 0.379	Model BBPFT BBPFT_25 BBPFT_50 BBPFT_100 BBPFT_150 NILCFT100	ANDARDIZE Syntactic 0.451 0.387 0.382 0.382 0.363 0.355 0.509	D Semantic 0.058 0.042 0.045 0.044 0.048 0.048 0.293	Total 0.255 0.216 0.214 0.204 0.202 0.401		
ModelBBPFTBBPFT_25BBPFT_50BBPFT_100NILCFT100NILCFT100_25	ORMALIZEI Syntactic 0.448 0.394 0.399 0.395 0.485 0.485 0.493	Semantic 0.057 0.049 0.049 0.050 0.274 0.291	Total 0.254 0.223 0.225 0.224 0.379 0.392	ST Model BBPFT BBPFT_25 BBPFT_50 BBPFT_100 BBPFT_150 NILCFT100 NILCFT100_25	ANDARDIZE Syntactic 0.451 0.387 0.382 0.363 0.355 0.509 0.509	Semantic 0.058 0.042 0.045 0.044 0.048 0.293 0.298	Total 0.255 0.216 0.214 0.204 0.202 0.401 0.403		
ModelBBPFTBBPFT_25BBPFT_50BBPFT_100NILCFT100NILCFT100_25NILCFT100_50	ORMALIZEI Syntactic 0.448 0.394 0.399 0.395 0.395 0.485 0.493 0.490	Semantic 0.057 0.049 0.049 0.050 0.274 0.291 0.279	Total 0.254 0.223 0.225 0.224 0.379 0.392 0.384	Model BBPFT BBPFT_25 BBPFT_50 BBPFT_100 BBPFT_150 NILCFT100_25 NILCFT100_50	ANDARDIZE Syntactic 0.451 0.387 0.382 0.363 0.355 0.509 0.509 0.502	Semantic 0.058 0.042 0.045 0.044 0.048 0.293 0.291	Total 0.255 0.216 0.214 0.204 0.202 0.401 0.403 0.396		
ModelBBPFTBBPFT_25BBPFT_50BBPFT_100NILCFT100NILCFT100_25NILCFT100_50NILCFT100_100	ORMALIZEI Syntactic 0.448 0.394 0.399 0.395 0.395 0.485 0.493 0.490 0.485	Semantic 0.057 0.049 0.049 0.050 0.274 0.291 0.279 0.277	Total 0.254 0.223 0.225 0.224 0.379 0.392 0.384 0.381	Model BBPFT BBPFT_25 BBPFT_50 BBPFT_100 BBPFT_150 NILCFT100_25 NILCFT100_50 NILCFT100_100	ANDARDIZE Syntactic 0.451 0.387 0.382 0.363 0.355 0.509 0.502 0.432	Semantic 0.058 0.042 0.045 0.044 0.045 0.044 0.048 0.293 0.291 0.259	Total 0.255 0.216 0.214 0.204 0.202 0.401 0.403 0.396 0.346		
Model BBPFT BBPFT_25 BBPFT_50 BBPFT_100 NILCFT100_25 NILCFT100_50 NILCFT100_100	ORMALIZEI Syntactic 0.448 0.394 0.399 0.395 0.485 0.493 0.490 0.485	Semantic 0.057 0.049 0.049 0.050 0.274 0.291 0.279 0.277	Total 0.254 0.223 0.225 0.224 0.379 0.392 0.384 0.381	Model BBPFT BBPFT_25 BBPFT_50 BBPFT_100 BBPFT_150 NILCFT100_25 NILCFT100_50 NILCFT100_100 NILCFT100_150	ANDARDIZE Syntactic 0.451 0.387 0.382 0.363 0.355 0.509 0.509 0.502 0.432 0.404	D Semantic 0.058 0.042 0.045 0.044 0.048 0.293 0.293 0.291 0.259 0.226	Total 0.255 0.216 0.214 0.204 0.202 0.401 0.403 0.396 0.346 0.315		
ModelBBPFTBBPFT_25BBPFT_50BBPFT_100NILCFT100NILCFT100_25NILCFT100_50NILCFT100_100NILCFT100_100	ORMALIZEI Syntactic 0.448 0.394 0.399 0.395 0.485 0.493 0.490 0.485 0.485	Semantic 0.057 0.049 0.049 0.050 0.274 0.291 0.279 0.277	Total 0.254 0.223 0.225 0.224 0.379 0.392 0.384 0.381	Model BBPFT BBPFT_25 BBPFT_50 BBPFT_100 BBPFT_150 NILCFT100_25 NILCFT100_50 NILCFT100_100 NILCFT100_150 NILCFT100_150	ANDARDIZE Syntactic 0.451 0.387 0.382 0.363 0.355 0.509 0.509 0.502 0.432 0.404 0.252	Semantic 0.058 0.042 0.045 0.044 0.045 0.044 0.293 0.293 0.291 0.259 0.226 0.074	Total 0.255 0.216 0.214 0.204 0.202 0.401 0.403 0.396 0.315 0.163		
ModelBBPFTBBPFT_25BBPFT_50BBPFT_100NILCFT100_25NILCFT100_25NILCFT100_100NILCFT100_100NILCW2V100NILCW2V100_25	ORMALIZEI Syntactic 0.448 0.394 0.399 0.395 0.493 0.493 0.490 0.485 0.243 0.235	Semantic 0.057 0.049 0.049 0.050 0.274 0.291 0.279 0.277 0.277 0.277	Total 0.254 0.223 0.225 0.224 0.379 0.392 0.384 0.381 0.158 0.151	Model BBPFT BBPFT_25 BBPFT_50 BBPFT_100 BBPFT_150 NILCFT100_25 NILCFT100_50 NILCFT100_100 NILCFT100_150 NILCFT100_25 NILCFT100_25 NILCFT100_25 NILCFT100_25 NILCFT100_150 NILCFV2V100 NILCW2V100_25	ANDARDIZE Syntactic 0.451 0.387 0.382 0.363 0.355 0.509 0.509 0.502 0.402 0.404 0.252 0.231	Semantic 0.058 0.042 0.045 0.044 0.045 0.044 0.045 0.045 0.045 0.045 0.045 0.045 0.045 0.045 0.045 0.046 0.293 0.291 0.259 0.226 0.074 0.074	Total 0.255 0.216 0.214 0.202 0.401 0.403 0.396 0.315 0.163 0.152		
Model BBPFT BBPFT_25 BBPFT_50 BBPFT_100 NILCFT100_25 NILCFT100_50 NILCFT100_100 NILCFT100_25 NILCFT100_50 NILCFT100_50 NILCFT100_50 NILCFT100_50 NILCW2V100_50	ORMALIZEI Syntactic 0.448 0.394 0.399 0.395 0.485 0.493 0.490 0.485 0.490 0.485 0.235 0.225	Semantic 0.057 0.049 0.049 0.050 0.274 0.291 0.279 0.277 0.277 0.067	Total 0.254 0.223 0.225 0.224 0.379 0.392 0.384 0.381 0.158 0.151 0.146	Model BBPFT BBPFT_25 BBPFT_50 BBPFT_100 BBPFT_150 NILCFT100_25 NILCFT100_50 NILCFT100_100 NILCFT100_150 NILCFT100_25 NILCFT100_50 NILCFT100_50 NILCFT100_50 NILCFT100_50 NILCFT100_50	ANDARDIZE Syntactic 0.451 0.387 0.382 0.363 0.355 0.509 0.509 0.502 0.432 0.432 0.404 0.252 0.231 0.211	Semantic 0.058 0.042 0.045 0.044 0.045 0.044 0.048 0.293 0.291 0.259 0.226 0.074 0.074 0.064	Total 0.255 0.216 0.214 0.204 0.202 0.401 0.403 0.396 0.346 0.315 0.163 0.152 0.137		
Model BBPFT BBPFT_25 BBPFT_50 BBPFT_100 NILCFT100_25 NILCFT100_50 NILCFT100_100 NILCFT100_25 NILCFT100_50 NILCFT100_50 NILCFT100_100 NILCW2V100_25 NILCW2V100_50 NILCW2V100_100	ORMALIZEI Syntactic 0.448 0.394 0.399 0.395 0.485 0.493 0.490 0.485 0.243 0.235 0.225 0.230	Semantic 0.057 0.049 0.049 0.050 0.274 0.291 0.279 0.277 0.072 0.067 0.067	Total 0.254 0.223 0.225 0.224 0.379 0.392 0.384 0.381 0.158 0.151 0.146 0.148	Model BBPFT BBPFT_25 BBPFT_50 BBPFT_100 BBPFT_150 NILCFT100_25 NILCFT100_50 NILCFT100_100 NILCFT100_150 NILCFT100_25 NILCFT100_50 NILCFT100_50 NILCFT100_150 NILCW2V100_50 NILCW2V100_50 NILCW2V100_100	ANDARDIZE Syntactic 0.451 0.387 0.382 0.363 0.355 0.509 0.509 0.502 0.432 0.432 0.404 0.252 0.231 0.211 0.185	Semantic 0.058 0.042 0.045 0.044 0.045 0.293 0.291 0.259 0.226 0.074 0.074 0.064	Total 0.255 0.216 0.204 0.202 0.401 0.403 0.396 0.396 0.346 0.315 0.163 0.152 0.137 0.125		
Model BBPFT BBPFT_25 BBPFT_50 BBPFT_100 NILCFT100_25 NILCFT100_50 NILCFT100_100 NILCFT100_25 NILCFT100_50 NILCFT100_50 NILCFT100_100 NILCW2V100_25 NILCW2V100_50 NILCW2V100_100	ORMALIZEI Syntactic 0.448 0.394 0.399 0.395 0.485 0.493 0.490 0.485 0.243 0.235 0.225 0.230	Semantic 0.057 0.049 0.049 0.050 0.274 0.291 0.279 0.277 0.072 0.067 0.067	Total 0.254 0.223 0.225 0.224 0.379 0.392 0.384 0.381 0.158 0.151 0.146	Model BBPFT BBPFT_25 BBPFT_50 BBPFT_100 BBPFT_150 NILCFT100_25 NILCFT100_100 NILCFT100_150 NILCFT100_25 NILCFT100_50 NILCFT100_50 NILCFT100_150 NILCW2V100_25 NILCW2V100_50 NILCW2V100_100 NILCW2V100_150	ANDARDIZE Syntactic 0.451 0.387 0.382 0.363 0.355 0.509 0.509 0.502 0.404 0.252 0.231 0.211 0.185 0.168	Semantic 0.058 0.042 0.044 0.045 0.044 0.045 0.045 0.046 0.293 0.293 0.293 0.293 0.293 0.293 0.293 0.293 0.293 0.293 0.293 0.293 0.293 0.294 0.295 0.074 0.064 0.064 0.059	Total 0.255 0.216 0.214 0.202 0.401 0.403 0.396 0.346 0.315 0.163 0.152 0.137 0.125 0.113		
Model BBPFT BBPFT_25 BBPFT_50 BBPFT_100 NILCFT100_25 NILCFT100_50 NILCFT100_100 NILCFT100_25 NILCFT100_50 NILCV2V100_50 NILCW2V100_50 NILCW2V100_100 NILCW2V100_50 NILCW2V100_50 NILCW2V100_50	ORMALIZEI Syntactic 0.448 0.394 0.399 0.395 0.485 0.493 0.490 0.485 0.243 0.235 0.225 0.230	Semantic 0.057 0.049 0.049 0.050 0.274 0.291 0.279 0.277 0.067 0.067 0.067 0.067 0.067	Total 0.254 0.223 0.225 0.224 0.379 0.392 0.384 0.381 0.158 0.151 0.146 0.148 0.231	Model BBPFT BBPFT_50 BBPFT_50 BBPFT_50 BBPFT_50 BBPFT_50 NILCFT100 NILCFT100_25 NILCFT100_100 NILCFT100_150 NILCFT100_50 NILCFT100_50 NILCFT100_150 NILCV2V100_150 NILCW2V100_50 NILCW2V100_150 NILCW2V100_150 NILCW2V100_150 NILCFT300	ANDARDIZE Syntactic 0.451 0.387 0.382 0.363 0.355 0.509 0.509 0.502 0.432 0.404 0.252 0.231 0.211 0.185 0.168 0.324	Semantic 0.058 0.042 0.045 0.044 0.045 0.044 0.045 0.045 0.045 0.045 0.045 0.044 0.045 0.045 0.045 0.044 0.0293 0.293 0.293 0.259 0.259 0.259 0.259 0.259 0.226 0.074 0.074 0.064 0.064 0.059 0.143	Total 0.255 0.216 0.214 0.204 0.202 0.401 0.403 0.396 0.346 0.315 0.163 0.152 0.137 0.125 0.113		
Model BBPFT BBPFT_25 BBPFT_50 BBPFT_100 NILCFT100_25 NILCFT100_50 NILCFT100_100 NILCFT100_25 NILCFT100_50 NILCFT100_100 NILCW2V100_25 NILCW2V100_50 NILCW2V100_100 NILCFT300 NILCFT300_25	ORMALIZEI Syntactic 0.448 0.394 0.399 0.395 0.485 0.493 0.490 0.485 0.490 0.485 0.235 0.225 0.230 0.225 0.230	Semantic 0.057 0.049 0.049 0.050 0.274 0.291 0.279 0.277 0.067 0.067 0.067 0.067 0.067 0.067	Total 0.254 0.223 0.225 0.224 0.379 0.392 0.384 0.381 0.158 0.151 0.146 0.148 0.231 0.205	Model BBPFT BBPFT_25 BBPFT_50 BBPFT_100 BBPFT_150 NILCFT100_25 NILCFT100_100 NILCFT100_150 NILCFT100_25 NILCFT100_50 NILCFT100_150 NILCFU00_150 NILCW2V100_50 NILCW2V100_150 NILCW2V100_150 NILCW2V100_150 NILCFT300 NILCFT300_25	ANDARDIZE Syntactic 0.451 0.387 0.382 0.363 0.355 0.509 0.509 0.502 0.432 0.432 0.404 0.252 0.231 0.211 0.185 0.168 0.324 0.292	Semantic 0.058 0.042 0.045 0.044 0.045 0.044 0.045 0.045 0.045 0.045 0.045 0.045 0.045 0.045 0.044 0.0293 0.293 0.293 0.259 0.259 0.259 0.226 0.074 0.074 0.064 0.064 0.059 0.143 0.123	Total 0.255 0.214 0.204 0.202 0.401 0.403 0.396 0.346 0.315 0.163 0.152 0.125 0.125 0.123 0.233 0.208		
Model BBPFT BBPFT_25 BBPFT_50 BBPFT_100 NILCFT100_25 NILCFT100_50 NILCFT100_100 NILCFT100_25 NILCFT100_50 NILCFT100_100 NILCW2V100_25 NILCW2V100_50 NILCW2V100_100 NILCFT300 NILCFT300_50	ORMALIZEI Syntactic 0.448 0.394 0.399 0.395 0.485 0.493 0.490 0.485 0.243 0.235 0.225 0.230 0.225 0.230	Semantic 0.057 0.049 0.049 0.050 0.274 0.291 0.279 0.277 0.277 0.067 0.067 0.067 0.067 0.067 0.067 0.140 0.128 0.126	Total 0.254 0.223 0.225 0.224 0.379 0.392 0.384 0.381 0.381 0.151 0.146 0.148 0.231 0.205 0.201	Model BBPFT BBPFT_25 BBPFT_50 BBPFT_100 BBPFT_150 NILCFT100_25 NILCFT100_50 NILCFT100_100 NILCFT100_150 NILCFT100_50 NILCFT100_150 NILCV2V100_25 NILCW2V100_50 NILCW2V100_150 NILCFT300_25 NILCFT300_50	ANDARDIZE Syntactic 0.451 0.387 0.382 0.363 0.355 0.509 0.502 0.432 0.432 0.404 0.252 0.231 0.211 0.185 0.168 0.324 0.292 0.287	Semantic 0.058 0.042 0.045 0.044 0.045 0.044 0.045 0.293 0.293 0.293 0.293 0.293 0.294 0.295 0.226 0.074 0.064 0.064 0.059 0.143 0.123	Total 0.255 0.216 0.214 0.204 0.202 0.401 0.403 0.396 0.346 0.315 0.163 0.152 0.137 0.125 0.113 0.233 0.208 0.208		
Model BBPFT BBPFT_25 BBPFT_50 BBPFT_100 NILCFT100_25 NILCFT100_50 NILCFT100_100 NILCFT100_50 NILCFT100_50 NILCFT100_50 NILCFT100_100 NILCFT100_25 NILCFT100_50 NILCFT100_50 NILCFT300_25 NILCFT300_50 NILCFT300_100	ORMALIZEI Syntactic 0.448 0.394 0.399 0.395 0.485 0.493 0.490 0.485 0.243 0.243 0.225 0.230 0.225 0.230 0.225 0.230	Semantic 0.057 0.049 0.049 0.050 0.274 0.291 0.279 0.277 0.277 0.067 0.067 0.067 0.067 0.067 0.140 0.128 0.126	Total 0.254 0.223 0.225 0.224 0.379 0.392 0.384 0.381 0.381 0.158 0.151 0.146 0.148 0.148 0.231 0.205 0.201 0.201	Model BBPFT BBPFT_25 BBPFT_50 BBPFT_100 BBPFT_150 NILCFT100_25 NILCFT100_50 NILCFT100_100 NILCFT100_50 NILCFT100_50 NILCFT100_50 NILCFT100_150 NILCW2V100_50 NILCW2V100_50 NILCW2V100_50 NILCW2V100_50 NILCW2V100_50 NILCFT300_50 NILCFT300_50 NILCFT300_50 NILCFT300_100	ANDARDIZE Syntactic 0.451 0.387 0.382 0.363 0.355 0.509 0.509 0.502 0.432 0.432 0.404 0.252 0.231 0.211 0.185 0.168 0.324 0.292 0.287 0.289	Semantic 0.058 0.042 0.045 0.044 0.045 0.293 0.293 0.291 0.259 0.226 0.074 0.074 0.064 0.064 0.059 0.143 0.125 0.119	Total 0.255 0.216 0.204 0.202 0.401 0.403 0.396 0.396 0.346 0.315 0.163 0.152 0.137 0.125 0.137 0.125 0.113 0.208 0.208 0.206		

Table F.2 – Results for Auto-encoded models in the Analogies dataset. PORTUGUÊS BRASILEIRO

٦

APPENDIX G – ASSIN FULL RESULTS

Concatenated Models								
NORMA	LIZED		STANDAF	RDIZED				
Model	Pearson	MSE	Model	Pearson	MSE			
BBPFT	0.56	0.52	BBPFT	0.56	0.52			
BBPFT_25	0.56	0.52	BBPFT_25	0.57	0.52			
BBPFT 50	0.56	0.52	BBPFT 50	0.56	0.52			
BBPFT 100	0.56	0.52	BBPFT 100	0.57	0.51			
			BBPFT 150	0.57	0.52			
NILCFT100	0.53	0.55	NILCFT100	0.53	0.54			
NILCFT100 25	0.54	0.54	NILCFT100 25	0.54	0.54			
NILCFT100 50	0.54	0.54	NILCFT100 50	0.54	0.54			
NILCFT100 100	0.53	0.54	NILCFT100 100	0.54	0.54			
			NILCET100_150	0.53	0.55			
NILCW2V100	0.45	0.60	NILCW2V100	0.45	0.61			
NILCW2V100_25	0.47	0.60	NILCW2V100_25	0.45	0.60			
NILCW2V100_50	0.46	0.60	NILCW2V100 50	0.45	0.60			
NILCW2V100_100	0.46	0.60	NILCW2V100_100	0.46	0.60			
		0.00	NIL CW2V100_150	0.46	0.60			
NILCET300	0.49	0.58	NILCET300	0.49	0.58			
NILCET300_25	0.50	0.57	NILCET300_25	0.50	0.57			
NIL CET300_50	0.50	0.57	NIL CET300_50	0.49	0.57			
NIL CET300_100	0.50	0.57	NIL CET300_100	0.50	0.57			
	0.00	0.07	NIL CET300_150	0.00	0.57			
	_			0.10	0.07			
Auto-encoded Models								
NORMA	Auto	o-enco	ded Models STANDAF	RDIZED				
NORMA Model	Auto LIZED Pearson	o-encoo	ded Models STANDAF Model	RDIZED Pearson	MSE			
NORMA Model BBPFT	Auto LIZED Pearson 0.56	MSE	ded Models STANDAF Model BBPFT	RDIZED Pearson 0.56	MSE 0.52			
NORMA Model BBPFT BBPFT 25	Auto LIZED Pearson 0.56 0.58	MSE 0.52 0.50	ded Models STANDAF Model BBPFT BBPFT 25	RDIZED Pearson 0.56 0.58	MSE 0.52 0.50			
NORMA Model BBPFT BBPFT_25 BBPFT_50	Auto LIZED Pearson 0.56 0.58 0.57	MSE 0.52 0.50 0.51	ded Models STANDAF Model BBPFT BBPFT_25 BBPFT_50	Pearson 0.56 0.58 0.57	MSE 0.52 0.50 0.51			
NORMA Model BBPFT BBPFT_25 BBPFT_50 BBPFT_100	Auto LIZED Pearson 0.56 0.58 0.57 0.59	MSE 0.52 0.50 0.51 0.50	ded Models STANDAF Model BBPFT BBPFT_25 BBPFT_50 BBPFT_100	Pearson 0.56 0.58 0.57 0.58	MSE 0.52 0.50 0.51 0.50			
NORMA Model BBPFT BBPFT_25 BBPFT_50 BBPFT_100	Auto LIZED Pearson 0.56 0.58 0.57 0.59	MSE 0.52 0.50 0.51 0.50	ded Models STANDAF Model BBPFT_25 BBPFT_50 BBPFT_100 BBPFT_150	Pearson 0.56 0.58 0.57 0.58 0.58	MSE 0.52 0.50 0.51 0.50 0.50			
NORMA Model BBPFT BBPFT_25 BBPFT_50 BBPFT_100	Auto LIZED Pearson 0.56 0.58 0.57 0.59 0.53	MSE 0.52 0.50 0.51 0.50 0.55	ded Models STANDAF Model BBPFT_25 BBPFT_50 BBPFT_100 BBPFT_150 NILCFT100	Pearson 0.56 0.58 0.57 0.58 0.58 0.58 0.58 0.58 0.58 0.53	MSE 0.52 0.50 0.51 0.50 0.50 0.50			
NORMA Model BBPFT BBPFT_25 BBPFT_50 BBPFT_100 NILCFT100 NILCFT100 25	Auto LIZED Pearson 0.56 0.58 0.57 0.59 0.53 0.51	MSE 0.52 0.50 0.51 0.50 0.51 0.50 0.51 0.50	ded Models STANDAF Model BBPFT_25 BBPFT_25 BBPFT_50 BBPFT_100 BBPFT_150 NILCFT100 NILCFT100 25	Pearson 0.56 0.58 0.57 0.58 0.53 0.53 0.54	MSE 0.52 0.50 0.51 0.50 0.50 0.54 0.54			
NORMA Model BBPFT BBPFT_25 BBPFT_50 BBPFT_100 NILCFT100 NILCFT100_25 NILCFT100_50	Auto LIZED Pearson 0.56 0.58 0.57 0.59 0.53 0.51 0.51	MSE 0.52 0.50 0.51 0.50 0.51 0.50 0.55 0.55 0.56	ded Models STANDAF Model BBPFT_25 BBPFT_25 BBPFT_50 BBPFT_100 BBPFT_150 NILCFT100 NILCFT100_25 NILCFT100_50	Pearson 0.56 0.58 0.57 0.58 0.57 0.58 0.58 0.58 0.58 0.58 0.58 0.58 0.58 0.58 0.58 0.53 0.54 0.52	MSE 0.52 0.50 0.51 0.50 0.50 0.54 0.54 0.55			
NORMA Model BBPFT BBPFT_25 BBPFT_50 BBPFT_100 NILCFT100 NILCFT100_25 NILCFT100_50 NILCFT100_100	Auto LIZED Pearson 0.56 0.58 0.57 0.59 0.53 0.51 0.51 0.51	MSE 0.52 0.50 0.51 0.50 0.51 0.50 0.51 0.50 0.55 0.56 0.56 0.56	ded Models STANDAF Model BBPFT BBPFT_25 BBPFT_50 BBPFT_100 BBPFT_150 NILCFT100 NILCFT100_25 NILCFT100_50 NILCFT100_100	Pearson 0.56 0.58 0.57 0.58 0.53 0.53 0.54 0.52 0.53	MSE 0.52 0.50 0.51 0.50 0.50 0.54 0.54 0.55 0.55			
NORMA Model BBPFT BBPFT_25 BBPFT_50 BBPFT_100 NILCFT100_25 NILCFT100_50 NILCFT100_100	Auto LIZED Pearson 0.56 0.58 0.57 0.59 0.53 0.51 0.51 0.51	MSE 0.52 0.50 0.51 0.50 0.51 0.50 0.55 0.56 0.56	ded Models STANDAF Model BBPFT BBPFT_25 BBPFT_50 BBPFT_100 BBPFT_150 NILCFT100 NILCFT100_25 NILCFT100_50 NILCFT100_100 NILCFT100_150	Pearson 0.56 0.58 0.57 0.58 0.53 0.54 0.52 0.53 0.53	MSE 0.52 0.50 0.51 0.50 0.50 0.54 0.55 0.55 0.55			
NORMA Model BBPFT BBPFT_25 BBPFT_50 BBPFT_100 NILCFT100_25 NILCFT100_25 NILCFT100_100	Auto LIZED Pearson 0.56 0.58 0.57 0.59 0.53 0.51 0.51 0.51 0.51 0.51 0.51	MSE 0.52 0.50 0.51 0.50 0.51 0.50 0.55 0.56 0.56 0.56 0.56	ded Models STANDAF Model BBPFT BBPFT_25 BBPFT_50 BBPFT_100 BBPFT_150 NILCFT100 NILCFT100_25 NILCFT100_50 NILCFT100_150 NILCFT100_150 NILCFT100_150 NILCFT100_150	Pearson 0.56 0.58 0.57 0.58 0.53 0.53 0.52 0.53 0.53 0.53 0.53 0.53 0.53 0.54	MSE 0.52 0.50 0.51 0.50 0.50 0.54 0.55 0.55 0.55 0.61			
NORMA Model BBPFT BBPFT_25 BBPFT_50 BBPFT_100 NILCFT100 NILCFT100_25 NILCFT100_100 NILCFT100_25 NILCFT100_25 NILCFT100_25 NILCFT100_25 NILCFT100_25	Auto LIZED Pearson 0.56 0.58 0.57 0.59 0.53 0.51 0.51 0.51 0.51 0.51 0.51 0.45 0.46	MSE 0.52 0.50 0.51 0.50 0.51 0.55 0.56 0.56 0.56 0.56 0.56 0.60 0.60	ded Models STANDAF Model BBPFT BBPFT_25 BBPFT_50 BBPFT_100 BBPFT_150 NILCFT100_25 NILCFT100_50 NILCFT100_100 NILCFT100_150 NILCFT100_150 NILCFT100_150 NILCFT100_25	Pearson 0.56 0.58 0.57 0.58 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.45	MSE 0.52 0.50 0.51 0.50 0.54 0.54 0.55 0.55 0.55 0.61 0.60			
NORMA Model BBPFT BBPFT_25 BBPFT_50 BBPFT_100 NILCFT100 NILCFT100_25 NILCFT100_100 NILCFT100_25 NILCFT100_25 NILCFT100_50 NILCFT100_50 NILCFT100_50 NILCFT100_50	Auto Pearson 0.56 0.58 0.57 0.59 0.53 0.51 0.51 0.51 0.51 0.45 0.46 0.46	MSE 0.52 0.50 0.51 0.50 0.51 0.50 0.55 0.56 0.56 0.56 0.60 0.60 0.60	Standar Model BBPFT BBPFT_25 BBPFT_50 BBPFT_100 BBPFT_150 NILCFT100_25 NILCFT100_50 NILCFT100_100 NILCFT100_150 NILCFT100_25 NILCFT100_25 NILCFT100_50 NILCFT100_50 NILCFT100_50 NILCFT100_50 NILCFT100_50 NILCFT100_50 NILCFT100_50	Pearson 0.56 0.58 0.57 0.58 0.53 0.54 0.52 0.53 0.45 0.46	MSE 0.52 0.50 0.51 0.50 0.50 0.50 0.50 0.54 0.55 0.55 0.55 0.55 0.61 0.60 0.60			
NORMA Model BBPFT BBPFT_25 BBPFT_50 BBPFT_100 NILCFT100 NILCFT100_25 NILCFT100_50 NILCFT100_25 NILCFT100_50 NILCFT100_50 NILCFT100_50 NILCFT100_50 NILCFT100_100	Auto Pearson 0.56 0.58 0.57 0.59 0.53 0.51 0.51 0.51 0.51 0.45 0.46 0.46 0.46 0.46	MSE 0.52 0.50 0.51 0.50 0.55 0.56 0.56 0.56 0.60 0.60 0.60	Standar Model BBPFT BBPFT_25 BBPFT_50 BBPFT_100 BBPFT_150 NILCFT100_25 NILCFT100_50 NILCFT100_100 NILCFT100_150 NILCFT100_25 NILCFT100_50 NILCFT100_50 NILCFT100_50 NILCFT100_50 NILCFT100_50 NILCW2V100_50 NILCW2V100_50 NILCW2V100_100	Pearson 0.56 0.58 0.57 0.58 0.53 0.54 0.52 0.53 0.53 0.45 0.46 0.46	MSE 0.52 0.50 0.51 0.50 0.54 0.55 0.55 0.55 0.61 0.60 0.60			
NORMA Model BBPFT BBPFT_25 BBPFT_50 BBPFT_100 NILCFT100_100 NILCFT100_25 NILCFT100_100 NILCFT100_25 NILCFT100_50 NILCFT100_50 NILCV2V100_50 NILCW2V100_25 NILCW2V100_100	Auto Pearson 0.56 0.58 0.57 0.59 0.53 0.51 0.51 0.51 0.51 0.51 0.45 0.46 0.46 0.46	MSE 0.52 0.50 0.51 0.50 0.55 0.56 0.56 0.56 0.60 0.60 0.60	Standar Model BBPFT BBPFT_25 BBPFT_50 BBPFT_100 BBPFT_150 NILCFT100_25 NILCFT100_50 NILCFT100_150 NILCFT100_150 NILCFT100_50 NILCFT100_50 NILCFT100_150 NILCFT100_150 NILCW2V100_50 NILCW2V100_50 NILCW2V100_100 NILCW2V100_150	Pearson 0.56 0.58 0.57 0.58 0.53 0.53 0.53 0.53 0.45 0.46 0.46 0.47	MSE 0.52 0.50 0.51 0.50 0.54 0.54 0.55 0.55 0.55 0.60 0.60 0.60 0.60			
NORMA Model BBPFT BBPFT_25 BBPFT_50 BBPFT_100 NILCFT100_100 NILCFT100_25 NILCFT100_100 NILCFT100_25 NILCFT100_50 NILCFT100_100 NILCW2V100_25 NILCW2V100_50 NILCW2V100_100	Auto Pearson 0.56 0.58 0.57 0.59 0.53 0.51 0.51 0.51 0.51 0.45 0.46 0.46 0.46 0.46 0.46	MSE 0.52 0.50 0.51 0.55 0.56 0.56 0.56 0.56 0.60 0.60 0.60 0.60 0.60	STANDAF Model BBPFT BBPFT_25 BBPFT_50 BBPFT_100 BBPFT_150 NILCFT100_25 NILCFT100_50 NILCFT100_150 NILCFT100_150 NILCFT100_25 NILCFT100_50 NILCFT100_150 NILCW2V100_25 NILCW2V100_50 NILCW2V100_100 NILCW2V100_150 NILCW2V100_150 NILCW2V100_150	Pearson 0.56 0.58 0.57 0.58 0.53 0.54 0.52 0.53 0.45 0.46 0.46 0.47 0.49	MSE 0.52 0.50 0.51 0.50 0.50 0.50 0.50 0.54 0.55 0.55 0.55 0.61 0.60 0.60 0.60 0.60			
NORMA Model BBPFT BBPFT_25 BBPFT_50 BBPFT_100 NILCFT100 NILCFT100_25 NILCFT100_50 NILCFT100_100 NILCFT100_50 NILCFT100_50 NILCFT100_100 NILCW2V100_25 NILCW2V100_50 NILCW2V100_100 NILCFT300 NILCFT300	Auto Pearson 0.56 0.58 0.57 0.59 0.53 0.51 0.51 0.51 0.51 0.45 0.46 0.46 0.46 0.46 0.46 0.46 0.46 0.46 0.46 0.50	MSE 0.52 0.50 0.51 0.50 0.55 0.56 0.56 0.56 0.60 0.60 0.60 0.60 0.58 0.57	STANDAF Model BBPFT BBPFT_25 BBPFT_50 BBPFT_100 BBPFT_150 NILCFT100_25 NILCFT100_50 NILCFT100_100 NILCFT100_150 NILCFT100_50 NILCFT100_50 NILCFT100_150 NILCV2V100_50 NILCW2V100_50 NILCW2V100_150 NILCW2V100_150 NILCFT300 NILCFT300	Pearson 0.56 0.58 0.57 0.58 0.53 0.53 0.52 0.53 0.45 0.46 0.46 0.47 0.49 0.52	MSE 0.52 0.50 0.51 0.50 0.54 0.55 0.55 0.61 0.60 0.60 0.60 0.58 0.55			
NORMA Model BBPFT BBPFT_25 BBPFT_50 BBPFT_100 NILCFT100 NILCFT100_25 NILCFT100_100 NILCFT100_50 NILCFT100_50 NILCFT100_50 NILCFT100_100 NILCFT100_100 NILCW2V100_25 NILCW2V100_100 NILCFT300 NILCFT300_25 NILCFT300_50	Auto Pearson 0.56 0.58 0.57 0.59 0.53 0.51 0.51 0.51 0.51 0.51 0.45 0.46 0.46 0.46 0.46 0.46 0.46 0.46 0.46 0.50 0.50 0.50	MSE 0.52 0.50 0.51 0.50 0.55 0.56 0.56 0.56 0.56 0.56 0.56 0.56 0.56 0.56 0.56 0.56 0.57 0.58 0.57 0.57	STANDAF Model BBPFT BBPFT_25 BBPFT_50 BBPFT_100 BBPFT_150 NILCFT100_25 NILCFT100_50 NILCFT100_100 NILCFT100_150 NILCFT100_50 NILCFT100_50 NILCFT100_150 NILCV2V100_50 NILCW2V100_150 NILCW2V100_150 NILCFT300_25 NILCFT300_50	Pearson 0.56 0.58 0.57 0.58 0.57 0.58 0.53 0.53 0.53 0.53 0.45 0.46 0.46 0.47 0.52 0.52	MSE 0.52 0.50 0.51 0.50 0.54 0.55 0.55 0.61 0.60 0.60 0.60 0.58 0.56			
NORMA Model BBPFT BBPFT_25 BBPFT_50 BBPFT_100 NILCFT100_100 NILCFT100_25 NILCFT100_100 NILCFT100_25 NILCFT100_50 NILCFT100_100 NILCFT100_100 NILCFT300_25 NILCFT300_25 NILCFT300_50 NILCFT300_100	Auto Pearson 0.56 0.58 0.57 0.59 0.53 0.51 0.51 0.51 0.51 0.51 0.46 0.46 0.46 0.46 0.46 0.46 0.46 0.46 0.50 0.50 0.50 0.50	MSE 0.52 0.50 0.51 0.50 0.55 0.56 0.56 0.56 0.56 0.56 0.56 0.56 0.56 0.56 0.56 0.57 0.58 0.57 0.57	STANDAF Model BBPFT BBPFT_25 BBPFT_50 BBPFT_100 BBPFT_150 NILCFT100_100 NILCFT100_50 NILCFT100_150 NILCFT100_150 NILCFT100_150 NILCFT100_150 NILCFT100_150 NILCV2V100_150 NILCW2V100_150 NILCW2V100_150 NILCFT300 NILCFT300_50 NILCFT300_100	Pearson 0.56 0.58 0.57 0.58 0.57 0.58 0.53 0.53 0.53 0.53 0.45 0.46 0.46 0.46 0.47 0.52 0.52	MSE 0.52 0.50 0.51 0.50 0.54 0.55 0.55 0.55 0.60 0.60 0.60 0.58 0.56 0.56			
NORMA Model BBPFT BBPFT_25 BBPFT_50 BBPFT_100 NILCFT100_100 NILCFT100_50 NILCFT100_100 NILCFT100_50 NILCFT100_50 NILCFT100_100 NILCFT100_50 NILCFT300_25 NILCFT300_25 NILCFT300_50 NILCFT300_100	Auto Pearson 0.56 0.58 0.57 0.59 0.53 0.51 0.51 0.51 0.51 0.45 0.46 0.46 0.46 0.46 0.46 0.46 0.46 0.46 0.50 0.50 0.50	MSE 0.52 0.50 0.51 0.50 0.55 0.56 0.56 0.56 0.56 0.56 0.56 0.56 0.56 0.57 0.57 0.57	STANDAF Model BBPFT BBPFT_25 BBPFT_50 BBPFT_100 BBPFT_150 NILCFT100_25 NILCFT100_50 NILCFT100_100 NILCFT100_150 NILCFT100_50 NILCFT100_150 NILCFT100_150 NILCV2V100_150 NILCW2V100_50 NILCW2V100_150 NILCFT300_25 NILCFT300_50 NILCFT300_100 NILCFT300_100 NILCFT300_100	Pearson 0.56 0.58 0.57 0.58 0.53 0.53 0.53 0.53 0.45 0.46 0.46 0.46 0.46 0.52 0.52 0.52 0.52 0.52 0.52 0.52 0.52	MSE 0.52 0.50 0.51 0.50 0.50 0.50 0.50 0.50 0.55 0.55 0.55 0.61 0.60 0.60 0.60 0.58 0.56 0.56 0.56 0.56 0.56 0.56			

Table G.1 – The complete results for the Brazilian Portuguese ASSIN track.

Model	Dearson	MSE	Model	MSE			
RRPET	0.59	0.79	RRPFT	0.59	0.79		
BBPET 25	0.50	0.75	BBPET 25	0.55	0.73		
BBPET 50	0.59	0.75	BBPET 50	0.55	0.70		
BBPFT 100	0.55	0.75	BBPFT 100	0.00	0.73		
	0.55	0.75	BBPET 150	0.50	0.70		
	0.52	0.88	NIL CET100	0.53	0.75		
NIL CET100 25	0.52	0.00	NILCET100 25	0.53	0.00		
NIL CET100_50	0.52	0.00	NIL CET100_50	0.50	0.00		
NIL CET100_00	0.52	0.88	NIL CET100_100	0.54	0.85		
	0.52	0.00	NIL CET100_150	0.54	0.00		
NIL CW2V100	0.47	0.93	NIL CW2V100	0.30	0.00		
NIL CW2V100 25	0.47	0.00	NIL CW2V100 25	0.48	0.00		
NIL CW2V100_20	0.46	0.00	NIL CW2V100_20	0.10	0.00		
NIL CW2V100_50	0.40	0.94	NIL CW2V100_00	0.40	0.00		
	0.17	0.01	NIL CW2V100_150	0.10	0.02		
NILCET300	0.50	0.90	NIL CET300	0.50	0.90		
NIL CET300_25	0.51	0.00	NIL CET300 25	0.51	0.00		
NIL CET300_50	0.51	0.00	NIL CET300_50	0.51	0.00		
NIL CET300_100	0.51	0.00	NIL CET300_100	0.51	0.00		
	0.01	0.00	NIL CET300_150	0.51	0.00		
	_			0.01	0.00		
Auto-encoded Models							
NORMA	Auto	o-enco	ded Models STANDAF	RDIZED			
NORMA	Auto LIZED Pearson	o-encoo MSE	ded Models STANDAF Model	RDIZED Pearson	MSE		
NORMA Model BBPFT	Auto LIZED Pearson 0.59	MSE	ded Models STANDAF Model BBPFT	RDIZED Pearson 0.59	MSE 0.79		
NORMA Model BBPFT BBPFT 25	Auto LIZED Pearson 0.59 0.56	MSE 0.79 0.81	ded Models STANDAF Model BBPFT BBPFT 25	DIZED Pearson 0.59 0.60	MSE 0.79 0.76		
NORMA Model BBPFT BBPFT_25 BBPFT_50	Auto LIZED Pearson 0.59 0.56 0.57	MSE 0.79 0.81 0.80	ded Models STANDAF Model BBPFT BBPFT_25 BBPFT 50	Pearson 0.59 0.60	MSE 0.79 0.76 0.77		
NORMA Model BBPFT BBPFT_25 BBPFT_50 BBPFT_100	Auto LIZED Pearson 0.59 0.56 0.57 0.58	MSE 0.79 0.81 0.80 0.79	ded Models STANDAF Model BBPFT BBPFT_25 BBPFT_50 BBPFT_100	Pearson 0.59 0.60 0.60 0.60	MSE 0.79 0.76 0.77 0.77		
NORMA Model BBPFT_25 BBPFT_50 BBPFT_100	Auto LIZED Pearson 0.59 0.56 0.57 0.58	MSE 0.79 0.81 0.80 0.79	ded Models STANDAF Model BBPFT BBPFT_25 BBPFT_50 BBPFT_100 BBPFT_150	Pearson 0.59 0.60 0.60 0.60 0.60 0.60	MSE 0.79 0.76 0.77 0.77 0.77		
NORMA Model BBPFT BBPFT_25 BBPFT_50 BBPFT_100 NILCFT100	Auto LIZED Pearson 0.59 0.56 0.57 0.58 0.52	 MSE 0.79 0.81 0.80 0.79 0.88 	ded Models STANDAF Model BBPFT BBPFT_25 BBPFT_50 BBPFT_100 BBPFT_150 NILCFT100	Pearson 0.59 0.60 0.60 0.60 0.60 0.60 0.53	MSE 0.79 0.76 0.77 0.77 0.77 0.86		
NORMA Model BBPFT BBPFT_25 BBPFT_50 BBPFT_100 NILCFT100 NILCFT100 25	Auto LIZED Pearson 0.59 0.56 0.57 0.58 0.52 0.52	MSE 0.79 0.81 0.80 0.79	ded Models STANDAF Model BBPFT BBPFT_25 BBPFT_50 BBPFT_100 BBPFT_150 NILCFT100 NILCFT100 25	Pearson 0.59 0.60 0.60 0.60 0.60 0.53 0.55	MSE 0.79 0.76 0.77 0.77 0.77 0.86 0.85		
NORMA Model BBPFT_25 BBPFT_50 BBPFT_100 NILCFT100_25 NILCFT100_50	Auto LIZED Pearson 0.59 0.56 0.57 0.58 0.52 0.52 0.52	MSE 0.79 0.81 0.80 0.79 0.81 0.80 0.79	ded Models STANDAF Model BBPFT BBPFT_25 BBPFT_50 BBPFT_100 BBPFT_150 NILCFT100 NILCFT100_25 NILCFT100_50	Pearson 0.59 0.60 0.60 0.60 0.53 0.55 0.53	MSE 0.79 0.76 0.77 0.77 0.77 0.86 0.85 0.86		
NORMA Model BBPFT BBPFT_25 BBPFT_50 BBPFT_100 NILCFT100 NILCFT100_25 NILCFT100_50 NILCFT100_100	Auto LIZED Pearson 0.59 0.56 0.57 0.58 0.52 0.52 0.52 0.52 0.52	MSE 0.79 0.81 0.80 0.79 0.81 0.88 0.88 0.88 0.88 0.88	ded Models STANDAF Model BBPFT_25 BBPFT_50 BBPFT_100 BBPFT_150 NILCFT100_25 NILCFT100_50 NILCFT100_100	Pearson 0.59 0.60 0.60 0.60 0.53 0.55 0.53 0.53 0.54	MSE 0.79 0.76 0.77 0.77 0.77 0.86 0.85 0.85 0.85		
NORMA Model BBPFT BBPFT_25 BBPFT_50 BBPFT_100 NILCFT100 NILCFT100_25 NILCFT100_50 NILCFT100_100	Auto LIZED Pearson 0.59 0.56 0.57 0.58 0.52 0.52 0.52 0.52 0.52	MSE 0.79 0.81 0.80 0.79 0.81 0.88 0.88 0.88 0.88 0.88	ded Models STANDAF Model BBPFT BBPFT_25 BBPFT_50 BBPFT_100 BBPFT_150 NILCFT100 NILCFT100_25 NILCFT100_50 NILCFT100_100 NILCFT100_150	Pearson 0.59 0.60 0.60 0.60 0.53 0.53 0.53 0.54	MSE 0.79 0.76 0.77 0.77 0.77 0.86 0.85 0.85 0.85		
NORMA Model BBPFT BBPFT_25 BBPFT_50 BBPFT_100 NILCFT100_25 NILCFT100_50 NILCFT100_100	Auto LIZED Pearson 0.59 0.56 0.57 0.58 0.52 0.52 0.52 0.52 0.52 0.51 0.47	 MSE 0.79 0.81 0.80 0.79 0.88 0.88 0.88 0.88 0.88 0.88 0.88 0.93 	ded Models STANDAF Model BBPFT BBPFT_25 BBPFT_50 BBPFT_100 BBPFT_150 NILCFT100_25 NILCFT100_25 NILCFT100_100 NILCFT100_150 NILCFT100_150 NILCFT100_150 NILCFT100_150	Pearson 0.59 0.60 0.60 0.60 0.53 0.53 0.54 0.54 0.47	MSE 0.79 0.77 0.77 0.77 0.86 0.85 0.85 0.85 0.85 0.86		
NORMA Model BBPFT BBPFT_25 BBPFT_50 BBPFT_100 NILCFT100_25 NILCFT100_50 NILCFT100_100 NILCFT100_100 NILCW2V100_25	Auto LIZED Pearson 0.59 0.56 0.57 0.58 0.52 0.52 0.52 0.52 0.51 0.47 0.47	 Anse of the second secon	Standar Model BBPFT BBPFT_25 BBPFT_50 BBPFT_100 BBPFT_150 NILCFT100_25 NILCFT100_50 NILCFT100_100 NILCFT100_150 NILCFT100_25 NILCFT100_25	Pearson 0.59 0.60 0.60 0.60 0.53 0.55 0.53 0.54 0.54 0.47 0.49	MSE 0.79 0.76 0.77 0.77 0.86 0.85 0.85 0.85 0.86 0.85 0.85 0.85		
NORMA Model BBPFT BBPFT_25 BBPFT_50 BBPFT_100 NILCFT100 NILCFT100_25 NILCFT100_50 NILCFT100_100 NILCFT100_25 NILCFT100_50 NILCFT100_50 NILCFT100_50 NILCFT100_50 NILCFT100_50	Auto LIZED Pearson 0.59 0.56 0.57 0.58 0.52 0.52 0.52 0.52 0.52 0.52 0.52 0.52 0.52 0.52 0.52 0.52 0.52 0.52 0.52 0.52 0.52 0.52 0.52 0.54 0.52 0.52 0.54 0.52 0.52 0.52 0.54 0.52 0.52 0.52 0.54 0.52 0.52 0.54 0.52 0.52 0.54 0.52 0.54 0.52 0.52 0.54 0.52 0.54 0.52 0.54 0.52 0.52 0.54 0.52 0.54 0.52 0.52 0.54 0.54 0.54 0.54 0.54 0.54 0.54 0.54 0.54 0.55 0.54 0.	 Anse of the second secon	Standar Model BBPFT BBPFT_25 BBPFT_50 BBPFT_100 BBPFT_150 NILCFT100_25 NILCFT100_50 NILCFT100_100 NILCFT100_150 NILCFT100_25 NILCFT100_25 NILCFT100_50 NILCFT100_50 NILCFT100_50 NILCFT100_50 NILCFT100_50 NILCFT100_50 NILCFT100_50	Pearson 0.59 0.60 0.60 0.60 0.53 0.53 0.54 0.54 0.47 0.49	MSE 0.79 0.76 0.77 0.77 0.86 0.85 0.86 0.93 0.91 0.91		
NORMA Model BBPFT BBPFT_25 BBPFT_50 BBPFT_100 NILCFT100 NILCFT100_25 NILCFT100_100 NILCFT100_25 NILCFT100_25 NILCW2V100_25 NILCW2V100_50 NILCW2V100_100	Auto Pearson 0.59 0.56 0.57 0.58 0.52 0.52 0.52 0.52 0.51 0.47 0.47 0.48 0.47	 Anse of the second secon	Standar Model BBPFT BBPFT_25 BBPFT_50 BBPFT_100 BBPFT_150 NILCFT100_25 NILCFT100_50 NILCFT100_100 NILCFT100_150 NILCFT100_25 NILCFT100_50 NILCFT100_50 NILCFT100_50 NILCFT100_50 NILCFT100_150 NILCW2V100_50 NILCW2V100_50 NILCW2V100_100	Pearson 0.59 0.60 0.60 0.60 0.53 0.53 0.54 0.54 0.49 0.49 0.49	MSE 0.79 0.76 0.77 0.77 0.85 0.85 0.86 0.93 0.91 0.91 0.91		
NORMA Model BBPFT BBPFT_25 BBPFT_50 BBPFT_100 NILCFT100_25 NILCFT100_50 NILCFT100_100 NILCFT100_50 NILCFT100_50 NILCFT100_50 NILCV2V100_50 NILCW2V100_25 NILCW2V100_100	Auto Pearson 0.59 0.56 0.57 0.58 0.52 0.52 0.52 0.52 0.51 0.47 0.47 0.48 0.47	 MSE 0.79 0.81 0.80 0.79 0.88 0.88 0.88 0.88 0.88 0.93 0.92 0.93 	Standar Models Model BBPFT BBPFT_25 BBPFT_50 BBPFT_100 BBPFT_150 NILCFT100 NILCFT100_25 NILCFT100_100 NILCFT100_150 NILCFT100_25 NILCFT100_50 NILCFT100_150 NILCV2V100_150 NILCW2V100_50 NILCW2V100_100 NILCW2V100_100 NILCW2V100_100	Pearson 0.59 0.60 0.60 0.60 0.53 0.53 0.54 0.54 0.47 0.49 0.49 0.49 0.49	MSE 0.79 0.76 0.77 0.77 0.85 0.85 0.86 0.93 0.91 0.91 0.91 0.91 0.91		
NORMA Model BBPFT BBPFT_25 BBPFT_50 BBPFT_100 NILCFT100 NILCFT100_25 NILCFT100_50 NILCFT100_25 NILCFT100_50 NILCFT100_50 NILCFT100_100 NILCW2V100_25 NILCW2V100_50 NILCW2V100_100	Auto Pearson 0.59 0.56 0.57 0.58 0.52 0.55 0.5	 Anse of the second system of the secon	Standar Model BBPFT BBPFT_25 BBPFT_50 BBPFT_100 BBPFT_150 NILCFT100_25 NILCFT100_50 NILCFT100_100 NILCFT100_150 NILCFT100_50 NILCFT100_50 NILCFT100_50 NILCFT100_150 NILCV2V100_50 NILCW2V100_50 NILCW2V100_100 NILCW2V100_150 NILCW2V100_150 NILCFT300	Pearson 0.59 0.60 0.60 0.60 0.53 0.53 0.54 0.54 0.49 0.49 0.49 0.49 0.50	 MSE 0.79 0.76 0.77 0.77 0.86 0.85 0.86 0.85 0.86 0.93 0.91 0.90 		
NORMA Model BBPFT BBPFT_25 BBPFT_50 BBPFT_100 NILCFT100 NILCFT100_25 NILCFT100_100 NILCFT100_25 NILCFT100_50 NILCFT100_50 NILCFT100_100 NILCW2V100_25 NILCW2V100_50 NILCW2V100_100 NILCFT300 NILCFT300 25	Auto Pearson 0.59 0.56 0.57 0.58 0.52 0.52 0.52 0.52 0.52 0.51 0.47 0.47 0.47 0.47 0.47 0.47 0.47 0.50 0.50	 -encod MSE 0.79 0.81 0.80 0.79 0.88 0.88 0.88 0.88 0.88 0.88 0.93 0.93 0.92 0.93 	Standar Model BBPFT BBPFT_25 BBPFT_50 BBPFT_100 BBPFT_150 NILCFT100_25 NILCFT100_50 NILCFT100_100 NILCFT100_150 NILCFT100_50 NILCFT100_50 NILCFT100_150 NILCFT100_150 NILCW2V100_25 NILCW2V100_100 NILCW2V100_100 NILCFT300 NILCFT300	Pearson 0.59 0.60 0.60 0.60 0.53 0.53 0.54 0.54 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49	MSE 0.79 0.76 0.77 0.77 0.77 0.86 0.85 0.86 0.93 0.931 0.911 0.911 0.911 0.911 0.911 0.911 0.911 0.911 0.911 0.911 0.911 0.911		
NORMA Model BBPFT BBPFT_25 BBPFT_50 BBPFT_100 NILCFT100_100 NILCFT100_50 NILCFT100_100 NILCFT100_50 NILCFT100_50 NILCFT100_100 NILCFT100_100 NILCFT100_25 NILCFT100_100 NILCFT300_25 NILCFT300_25 NILCFT300_50	Auto Pearson 0.59 0.56 0.57 0.58 0.52 0.52 0.52 0.52 0.51 0.47 0.47 0.48 0.47 0.48 0.47 0.48 0.47 0.50 0.50 0.50 0.50 0.49	 encod MSE 0.79 0.81 0.80 0.79 0.88 0.88 0.88 0.88 0.88 0.93 0.93 0.92 0.93 0.92 0.93 0.92 0.90 0.90 0.90 0.90 	Standar Model BBPFT BBPFT_25 BBPFT_50 BBPFT_100 BBPFT_150 NILCFT100_25 NILCFT100_50 NILCFT100_100 NILCFT100_150 NILCFT100_150 NILCFT100_150 NILCFT100_150 NILCFT100_150 NILCFT100_150 NILCW2V100_150 NILCW2V100_100 NILCFT300_25 NILCFT300_50	Pearson 0.59 0.60 0.60 0.60 0.53 0.53 0.54 0.54 0.49 0.49 0.49 0.49 0.49 0.49 0.50 0.52	MSE 0.79 0.77 0.77 0.77 0.85 0.85 0.86 0.93 0.91 0.91 0.91 0.91 0.91 0.92 0.93 0.91 0.92 0.93 0.91 0.91 0.92 0.93 0.94 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95		
NORMA Model BBPFT BBPFT_25 BBPFT_50 BBPFT_100 NILCFT100_25 NILCFT100_50 NILCFT100_25 NILCFT100_50 NILCFT100_50 NILCFT100_50 NILCFT100_50 NILCFT100_100 NILCFT300_25 NILCFT300_25 NILCFT300_50 NILCFT300_100	Auto Pearson 0.59 0.56 0.57 0.58 0.52 0.54 0.52 0.50 0.5	 Pencolo MSE 0.79 0.81 0.80 0.79 0.88 0.88 0.88 0.88 0.88 0.93 0.93 0.92 0.93 0.90 0.90 0.91 	Standar Models BBPFT BBPFT_25 BBPFT_50 BBPFT_100 BBPFT_150 NILCFT100_25 NILCFT100_50 NILCFT100_100 NILCFT100_150 NILCFT100_50 NILCFT100_50 NILCFT100_50 NILCFT100_150 NILCFT100_150 NILCW2V100_150 NILCW2V100_150 NILCFT300_25 NILCFT300_50 NILCFT300_100	Pearson 0.59 0.60 0.60 0.60 0.53 0.53 0.54 0.54 0.49 0.49 0.49 0.49 0.50 0.52 0.52 0.52 0.50	MSE 0.79 0.77 0.77 0.77 0.86 0.85 0.86 0.93 0.91 0.91 0.91 0.91 0.91 0.91 0.93 0.94 0.95 0.91 0.91 0.91 0.91 0.91 0.93 0.94 0.95 0.95 0.96 0.97		

Table G.2 – The complete results for the European Portuguese ASSIN track.

APPENDIX H – NER FULL RESULTS

Table H.1 – The results of the BBP300 and NILCFT100 concatenated models of the Selective HAREM Track.

		Conca	atenated	Models	s - HAREM SELECTIVE				
	NORMA	LIZED				STANDA	RDIZED		
Model	Category	Precision	Recall	F1	Model	Category	Precision	Recall	F 1
	LOC	0.717	0.704	0.711		LOC	0.714	0.703	0.709
	ORG	0.617	0.573	0.594		ORG	0.626	0.570	0.597
DDDCT000	PER	0.754	0.634	0.688	DDDCT000	PER	0.762	0.635	0.693
BBPF1300	TMP	0.866	0.856	0.861	BBPF1300	TMP	0.868	0.853	0.860
	VAL	0.783	0.718	0.749		VAL	0.755	0.736	0.745
	Total	0.733	0.679	0.705		Total	0.734	0.680	0.706
	LOC	0.701	0.692	0.697		LOC	0.709	0.669	0.688
	ORG	0.608	0.559	0.583		ORG	0.632	0.549	0.587
DDDET 25	PER	0.773	0.630	0.694	PPDET 25	PER	0.766	0.619	0.685
DDFF1_23	TMP	0.889	0.856	0.872	DDFF1_20	TMP	0.862	0.845	0.853
	VAL	0.780	0.730	0.754		VAL	0.778	0.742	0.760
	Total	0.734	0.673	0.702		Total	0.738	0.661	0.697
	LOC	0.711	0.707	0.709		LOC	0.708	0.684	0.696
	ORG	0.630	0.563	0.595		ORG	0.635	0.538	0.583
BRDET 50	PER	0.777	0.631	0.696	BBDET 50	PER	0.765	0.634	0.693
00111_00	TMP	0.874	0.859	0.866		TMP	0.860	0.848	0.854
	VAL	0.783	0.718	0.749		VAL	0.785	0.739	0.762
	Total	0.741	0.677	0.708		Total	0.738	0.668	0.701
	LOC	0.708	0.698	0.703		LOC	0.706	0.660	0.682
	ORG	0.636	0.582	0.608		ORG	0.623	0.540	0.578
BEDET 100	PER	0.774	0.641	0.701	BEDET 100	PER	0.752	0.596	0.665
DDFI 1_100	TMP	0.853	0.856	0.855	DDFI1_100	TMP	0.888	0.853	0.870
	VAL	0.777	0.715	0.744		VAL	0.779	0.736	0.757
	Total	0.737	0.681	0.708		Total	0.735	0.651	0.690
						LOC	0.714	0.679	0.696
						ORG	0.629	0.517	0.567
					REDET 150	PER	0.749	0.600	0.667
					DDFF1_100	TMP	0.892	0.859	0.875
						VAL	0.770	0.727	0.748
						Total	0.738	0.653	0.693
	LOC	0.720	0.692	0.706		LOC	0.702	0.734	0.718
	ORG	0.632	0.566	0.597		ORG	0.612	0.570	0.590
NIL CET100	PER	0.786	0.650	0.711	NILCET100	PER	0.767	0.669	0.715
	TMP	0.841	0.836	0.839		TMP	0.825	0.836	0.830
	VAL	0.725	0.672	0.698		VAL	0.692	0.690	0.691
	Total	0.737	0.671	0.702		Total	0.716	0.691	0.703
	LOC	0.722	0.679	0.700		LOC	0.717	0.710	0.714
	ORG	0.618	0.545	0.579		ORG	0.632	0.552	0.590
NII CET100 25	PER	0.780	0.630	0.697	NII CET100 25	PER	0.761	0.637	0.694
	TMP	0.806	0.797	0.801		TMP	0.841	0.839	0.840
	VAL	0.715	0.653	0.683		VAL	0.771	0.745	0.758
	Total	0.727	0.651	0.687		Total	0.735	0.679	0.706
	LOC	0.715	0.663	0.688		LOC	0.724	0.684	0.703
	ORG	0.624	0.538	0.578		ORG	0.592	0.534	0.562
NILCET100 50	PER	0.776	0.621	0.690	NILCET100 50	PER	0.756	0.637	0.692
	IMP	0.816	0.816	0.816			0.858	0.856	0.857
	VAL	0.747	0.669	0.706		VAL	0.761	0.752	0.756
	lotal	0.731	0.646	0.686		lotal	0.729	0.670	0.698
	LOC	0.718	0.681	0.699		LOC	0.704	0.691	0.697
	ORG	0.637	0.545	0.588		ORG	0.580	0.492	0.532
NILCET100 100	PER	0.761	0.615	0.680	NILCET100 100	PER	0.759	0.632	0.690
	TMP	0.831	0.819	0.825		TMP	0.865	0.853	0.859
	VAL	0.758	0.699	0.727		VAL	0.734	0.736	0.735
	Total	0.733	0.655	0.692		Total	0.720	0.661	0.689
						LOC	0.719	0.691	0.705
						ORG	0.607	0.520	0.560
					NILCET100 150	PER	0.777	0.647	0.706
					0	TMP	0.838	0.833	0.836
						VAL	0.748	0.736	0.742
						Iotal	0.733	0.668	0.699

Concatenated Models - HAREM SELECTIVE									
	NORMAL	IZED				STANDAR	DIZED		
Model	Category	Precision	Recall	F1	Model	Category	Precision	Recall	F1
	LOC	0.709	0.701	0.705		LOC	0.715	0.713	0.714
	ORG	0.661	0.543	0.596		ORG	0.610	0.571	0.590
	PER	0.746	0.605	0.669		PER	0.769	0.668	0.715
NILCW2V100	TMP	0.831	0.831	0.831	NILCW2V100	TMP	0.826	0.842	0.834
	VAL	0.798	0.703	0.747		VAL	0.748	0.730	0.739
	Total	0.736	0.659	0.696		Total	0.727	0.690	0.708
	100	0.722	0.683	0.702		100	0.740	0.702	0.720
	OBG	0.670	0.559	0.610		ORG	0.628	0.545	0.584
	PFR	0.755	0.607	0.673		PFR	0.760	0.663	0.708
NILCW2V100_25	TMP	0.826	0.816	0.821	NILCW2V100_25	TMP	0.863	0.850	0.856
	VAI	0.770	0.678	0.721		VAI	0 784	0 767	0 775
	Total	0.740	0.653	0.694		Total	0.746	0.686	0.715
		0.719	0.688	0.703			0.725	0 703	0 714
	OBG	0.628	0.515	0.566		OBG	0.636	0.568	0.600
	PFR	0.020	0.590	0.654		PFR	0.000	0.665	0.000
NILCW2V100_50	TMP	0.700	0.825	0.820	NILCW2V100_50	TMP	0.836	0.836	0.836
		0.010	0.020	0.020			0.000	0.000	0.000
	Total	0.770	0.645	0.684		Total	0.760	0.684	0.712
		0.712	0.675	0.693			0.721	0.665	0.692
	OBG	0.712	0.073	0.033		OBG	0.721	0.003	0.032
		0.017	0.517	0.502			0.303	0.437	0.550
NILCW2V100_100		0.749	0.011	0.073	NILCW2V100_100		0.730	0.004	0.007
		0.033	0.660	0.037			0.044	0.042	0.043
		0.734	0.009	0.709		Total	0.707	0.730	0.751
	IULAI	0.720	0.043	0.003			0.720	0.000	0.007
							0.708	0.007	0.097
							0.307	0.499	0.540
					NILCW2V100_150		0.766	0.041	0.099
							0.039	0.020	0.032
						VAL	0.750	0.709	0.729
		0.700	0.710	0 710			0.724	0.007	0.000
		0.720	0.710	0.710			0.720	0.710	0.719
		0.639	0.000	0.594			0.028	0.000	0.589
NILCFT300		0.767	0.645	0.700	NILCFT300		0.754	0.003	0.705
		0.841	0.819	0.830			0.872	0.845	0.858
	VAL	0.760	0.730	0.748			0.776	0.767	0.772
		0.739	0.078	0.707			0.740	0.690	0.714
		0.719	0.700	0.709			0.710	0.692	0.705
		0.020	0.002	0.567			0.019	0.554	0.365
NILCFT300_25		0.758	0.010	0.679	NILCFT300_25		0.762	0.670	0.713
		0.004	0.042	0.000			0.070	0.000	0.007
	VAL	0.790	0.727	0.757			0.779	0.755	0.700
		0.738	0.008	0.701			0.739	0.000	0.710
		0.725	0.703	0./14			0.729	0.703	0.710
		0.020	0.570	0.097			0.030	0.570	0.090
NILCFT300_50		0.770	0.010	0.665	NILCFT300_50		0.755	0.004	0.707
_		0.867	0.850	0.859			0.875	0.850	0.863
	VAL	0.767	0.710	0.742			0.777	0.701	0.769
		0.740	0.073	0.705			0.741	0.700	0.715
		0.722	0.083	0.702			0.731	0.700	0.715
		0.618	0.549	0.581			0.619	0.554	0.585
NILCFT300 100		0.763	0.628	0.689	NILCFT300 100		0.750	0.652	0.698
		0.872	0.831	0.851			0.855	0.853	0.854
	VAL	0.775	0.730	0.752			0.799	0.779	0.789
	Iotal	0.738	0.664	0.699		Iotal	0.739	0.685	0.711
							0./1/	0.683	0.700
							0.616	0.549	0.580
					NILCFT300 150	PEK	0.754	0.646	0.696
							0.852	0.845	0.848
						VAL	0.787	0.782	0.785
						Iotal	0.734	0.677	0.704

Table H.2 – The results of the NILCW2V100 and NILCFT300 concatenated models of the Selective HAREM Track.

Auto-encoded - HAREM SELECTIVE									
	NORMA	LIZED				STANDA	RDIZED		
Model	Category	Precision	Recall	F 1	Model	Category	Precision	Recall	F 1
		0.717	0.704	0.711			0.714	0.703	0.709
	OBG	0.617	0.573	0.594		OBG	0.626	0.570	0.597
	PER	0.017	0.634	0.688		PER	0.020	0.635	0.007
BBPFT300		0.754	0.004	0.000	BBPFT300		0.702	0.000	0.000
		0.000	0.000	0.001			0.000	0.000	0.000
		0.703	0.710	0.749			0.733	0.730	0.745
		0.733	0.679	0.705		Total	0.734	0.660	0.706
	LOC	0.713	0.695	0.704		LOC	0.716	0.690	0.703
	ORG	0.624	0.561	0.591		ORG	0.605	0.559	0.581
BBPFT 25	PER	0.757	0.558	0.642	BBPFT_25 726	PER	0.753	0.554	0.638
00111_00	TMP	0.903	0.870	0.886		TMP	0.852	0.859	0.855
	VAL	0.761	0.693	0.726		VAL	0.772	0.748	0.760
	Total	0.737	0.651	0.691		Total	0.728	0.653	0.688
	LOC	0.701	0.694	0.697		LOC	0.698	0.688	0.693
	ORG	0.655	0.536	0.590		ORG	0.608	0.536	0.570
DDDET 50	PER	0.772	0.561	0.650	DDDET 50	PER	0.764	0.582	0.661
BBPF1_50	TMP	0.867	0.864	0.866	BBPFI_50	TMP	0.870	0.853	0.862
	VAL	0.809	0.727	0.766		VAL	0.766	0.733	0.749
Total	Total	0.745	0.650	0.694		Total	0 727	0.654	0.688
		0.710	0.000	0.001			0.727	0.684	0.000
		0.703	0.700	0.702			0.700	0.004	0.030
		0.019	0.550	0.575			0.031	0.520	0.074
BBPFT 100		0.738	0.532	0.010	BBPFT 100		0.729	0.543	0.622
_	TMP	0.863	0.839	0.851	_	TMP	0.854	0.859	0.856
	VAL	0.783	0.730	0.756		VAL	0.775	0.752	0.763
	Total	0.727	0.641	0.681		Total	0.728	0.642	0.682
						LOC	0.715	0.671	0.692
						ORG	0.592	0.534	0.562
					DDDET 150	PER	0.745	0.574	0.648
					DDFF1_100	TMP	0.849	0.856	0.852
						VAL	0.755	0.748	0.752
						Total	0.722	0.648	0.683
	LOC	0.720	0.692	0.706		LOC	0.702	0.734	0.718
	ORG	0.632	0.566	0.597		ORG	0.612	0.570	0.590
	PFR	0.786	0.650	0.711		PFR	0.767	0.669	0.715
NILCFT100	TMP	0.700	0.836	0.839	NILCFT100	TMP	0.825	0.836	0.830
		0.011	0.672	0.000	•		0.620	0.000	0.000
	Total	0.723	0.671	0.000		Total	0.002	0.000	0.001
		0.737	0.071	0.702			0.710	0.091	0.703
		0.725	0.670	0.090			0.701	0.710	0.709
		0.650	0.515	0.575			0.610	0.552	0.560
NILCFT100 25	PER	0.803	0.624	0.702	NILCFT100 25	PER	0.791	0.667	0.723
_	IMP	0.831	0.819	0.825	_	ТМР	0.852	0.864	0.858
	VAL	0.759	0.684	0./19		VAL	0.738	0.742	0.740
	lotal	0.750	0.647	0.694		Iotal	0.731	0.691	0.710
	LOC	0.713	0.683	0.698		LOC	0.699	0.718	0.709
	ORG	0.619	0.510	0.559		ORG	0.620	0.564	0.591
	PER	0.789	0.640	0.706		PER	0.797	0.663	0.724
NILOF1100_50	TMP	0.839	0.842	0.841		TMP	0.814	0.831	0.822
	VAL	0.766	0.681	0.721		VAL	0.746	0.730	0.738
	Total	0.739	0.656	0.695	-	Total	0.729	0.688	0.708
	LOC	0.721	0.665	0.692		LOC	0.692	0.714	0.703
	ORG	0.642	0.482	0.550		ORG	0.611	0.534	0.570
	PFR	0.01	0.618	0.694		PER	0.776	0.640	0.701
NILCFT100_100	TMP	0.701	0.811	0.817	NILCFT100_100	TMP	0.832	0.825	0.828
		0.022	0.660	0.602			0.002	0.020	0.020
	Total	0.729	0.000	0.092		Total	0.720	0.090	0.700
	Iotal	0.741	0.033	0.003			0.720	0.009	0.094
							0.690	0./14	0.702
						ORG	0.617	0.536	0.574
					NILCFT100 150	PER	0.783	0.642	0.706
						TMP	0.817	0.848	0.832
						VAL	0.742	0.724	0.733
						Total	0.723	0.676	0.699

Table H.3 – The results of the BBP300 and NILCFT100 auto-encoded models of the Selective HAREM Track.

Table H.4 – The results of the NILCW2V100 and NILCFT300 auto-encoded models of the Selective HAREM Track.

Auto-encoded - HAREM SELECTIVE									
	NORMAL		<u> </u>			STANDAR			
Model	Category	Precision	Recall	F1	Model	Category	Precision	Recall	F1
	LOC	0.709	0.701	0.705		LOC	0.715	0.713	0.714
	ORG	0.661	0.543	0.596		ORG	0.610	0.571	0.590
NIII CW2V100	PER	0.746	0.605	0.669		PER	0.769	0.668	0.715
	TMP	0.831	0.831	0.831		TMP	0.826	0.842	0.834
	VAL	0.798	0.703	0.747		VAL	0.748	0.730	0.739
	Total	0.736	0.659	0.696		Total	0.727	0.690	0.708
	LOC	0.746	0.683	0.713		LOC	0.722	0.698	0.710
	ORG	0.654	0.503	0.568		ORG	0.606	0.543	0.573
	PER	0.760	0.611	0.678		PER	0.773	0.662	0.713
NILCVV2V100_25	TMP	0.883	0.831	0.856	NILGW2V100_25	TMP	0.833	0.833	0.833
	VAL	0.774	0.724	0.748		VAL	0.744	0.730	0.737
	Total	0.755	0.650	0.699		Total	0.731	0.678	0.703
	LOC	0.718	0.696	0.707		LOC	0.702	0.726	0.714
	ORG	0.637	0.499	0.560		ORG	0.596	0.547	0.570
	PER	0.765	0.624	0.687		PER	0.794	0.688	0.737
NILCW2V100_50	TMP	0.848	0.833	0.841	NILCW2V100_50	TMP	0.864	0.842	0.853
	VAL	0.784	0.690	0.734		VAL	0.763	0.748	0.755
	Total	0.741	0.653	0.695		Total	0.733	0.697	0.714
	LOC	0.723	0.679	0,701		LOC	0.711	0.703	0.707
	ORG	0.628	0.494	0.553		ORG	0.614	0.564	0.588
	PER	0.783	0.620	0.692		PER	0.772	0.663	0.713
NILCW2V100_100	TMP	0.874	0.825	0.849	NILCW2V100_100	TMP	0.851	0.842	0.847
	VAI	0.762	0.727	0.744		VAI	0.756	0.733	0.745
	Total	0.746	0.650	0.695		Total	0.731	0.685	0 707
	Total	0.1 10	0.000	0.000			0.721	0.713	0.717
						OBG	0.613	0.536	0.572
						PFR	0.010	0.658	0.716
					NILCW2V100_150	TMP	0.845	0.816	0.831
						VAI	0.745	0.733	0.739
						Total	0.736	0.678	0.706
		0 726	0 710	0 718			0.728	0.710	0.719
	OBG	0.639	0.556	0.594		OBG	0.628	0.556	0.589
	PFR	0.000	0.550	0.004		PER	0.020	0.000	0.305
NILCFT300	TMP	0.707	0.040	0.700	NILCFT300	TMP	0.734	0.000	0.703
		0.760	0.010	0.000			0.072	0.010	0.000
	Total	0.700	0.730	0.740			0.740	0.707	0.772
		0.703	0.662	0.693			0.719	0.687	0.702
	OBG	0.720	0.536	0.000		OBG	0.713	0.007	0.702
	PER	0.040	0.500	0.500		PER	0.330	0.517	0.554
NILCFT300_25		0.702	0.001	0.845	NILCFT300_25		10.70 10.70	0.332	0.857
		0.005	0.022	0.040			0.000	0.042	0.034
	Total	0.700	0.640	0.730		Total	0.732	0.750	0.686
		0.749	0.040	0.030			0.723	0.001	0.000
	OBG	0.755	0.049	0.097		OBG	0.710	0.007	0.701
	PER	0.003	0.492	0.000		PER	0.012	0.004	0.601
NILCFT300_50		0.000	0.007	0.000	NILCFT300_50		0.705	0.010	0.851
		0.001	0.020	0.043			0.003	0.009	0.001
	Total	0.773	0.712	0.696		Total	0.747	0.770	0.730
		0.709	0.000	0.090			0.737	0.000	0.099
		0.714	0.001	0.09/			0.712	0.090	0.701
		0.008	0.400	0.002			0.007	0.017	0.000
NILCFT300 100		0.791	0.542	0.043	NILCFT300 100		0.770	0.026	0.691
		0.850	0.848	0.849			0.849	0.845	0.84/
	VAL	0.773	0.712	0.741		VAL	0.755	0.773	0.764
	ιοται	0.751	0.627	0.683		IOTAI	0.731	0.666	0.697
							0./19	0.703	0./11
						UKG	0.607	0.54/	0.5/5
					NILCFT300 150	PEK	0.773	0.625	0.691
							0.837	0.828	0.832
						VAL	0.751	0.748	0.750
						Iotal	0.730	0.671	0.699

	NORM		Icateriat			STAND			
Model	Category	Precision	Recall	F1	Model	Category	Precision	Recall	F1
Woden		0.285	0 188	0.226	Wodel		0.286	0 193	0 230
	ACO	0.205	0.100	0.220		ACO	0.200	0.130	0.200
	COL	0.220	0.100	0.200			0.102	0.140	0.140
		0.000	0.100	0.100			0.400	0.210	0.204
	OBB	0.700	0.000	0.000		OBB	0.700	0.700	0.760
BBPET300		0.612	0.100	0.100	BBPET300	OBG	0.000	0.112	0.104
00111000	OTR	0.012	0.073	0.000	00111300	OTB	0.010	0.000	0.001
	PER	0.000	0.000	0.000		PER	0.000	0.000	0.000
		0.757	0.000	0.001			0.700	0.850	0.710
		0.001	0.000	0.004			0.754	0.000	0.040
	Total	0.679	0.585	0.628		Total	0.685	0.602	0.641
	ABS	0.296	0.000	0.020		ABS	0.000	0.002	0.041
		0.200	0.100	0.207			0.242	0.107	0.131
		0.200	0.120	0.100			0.150	0.120	0.130
		0.002	0.100	0.104			0.002	0.104	0.217
	OBB	0.000	0.000	0.000		OBB	0.000	0.000	0.000
BBPET 25	OBG	0.200	0.122	0.170	BBPET 25	OBG	0.623	0.564	0.110
	OTB	0.020	0.000	0.000	BBI 1 1_20	OTB	0.000	0.000	0.000
	PFR	0.000	0.648	0.607		PFR	0.000	0.651	0.695
	TMP	0.734	0.848	0.858		TMP	0.843	0.862	0.852
	VAI	0.070	0.040	0.000		VAI	0.040	0.755	0.002
	Total	0.685	0.587	0.632		Total	0.675	0.586	0.627
	ABS	0.310	0.223	0.002		ABS	0.267	0.000	0.213
	ACO	0.010	0.220	0.200		ACO	0.105	0.080	0.091
	COL	0.207	0.100	0.200			0.100	0.000	0.001
		0.000	0.700	0.100			0.698	0.100	0.100
	OBB	0.333	0.138	0.196		OBB	0.000	0.075	0.000
BBPET 50	OBG	0.000	0.100	0.100	BBPET 50	OBG	0.200	0.000	0.120
	OTR	0.027	0.000	0.000		OTB	0.000	0.040	0.000
	PFR	0.000	0.654	0.000		PFR	0.000	0.645	0.689
	TMP	0.850	0.848	0.849		TMP	0.849	0.856	0.852
	VAI	0 766	0.715	0 740		VAI	0.752	0.736	0 744
	Total	0.694	0.597	0.642		Total	0.670	0.575	0.619
	ABS	0.292	0.007	0.221		ABS	0.242	0.162	0.195
	ACO	0.233	0 140	0 175		ACO	0.118	0.080	0.095
	COL	0.465	0.124	0.195		COL	0.359	0.142	0.204
	LOC	0.705	0.710	0.708		LOC	0.705	0.687	0.696
	OBR	0.380	0.186	0.250		OBR	0.259	0.080	0.122
BBPFT 100	ORG	0.633	0.571	0.601	BBPFT 100	ORG	0.618	0.550	0.582
	OTR	0.000	0.000	0.000		OTR	0.000	0.000	0.000
	PER	0.744	0.639	0.687		PER	0.758	0.648	0.699
	TMP	0.840	0.845	0.842		TMP	0.840	0.845	0.842
	VAL	0.757	0.715	0.735		VAL	0.759	0.755	0.757
	Total	0.688	0.589	0.635		Total	0.680	0.580	0.626
						ABS	0.275	0.183	0.220
						ACO	0.217	0.200	0.208
						COI	0.438	0.130	0.200
						LOC	0.701	0.689	0.695
						OBR	0.216	0.058	0.092
					BBPFT_150	ORG	0.605	0.550	0.576
						OTR	0.000	0.000	0.000
						PER	0.746	0.642	0.690
						TMP	0.835	0.842	0.838
						VAL	0.747	0.752	0.749
						Total	0.677	0.579	0.624

Table H.5 – The results of the BBP300 concatenated model for the Total HAREM Track. Concatenated Models - HAREM TOTAL

	NORMA	LIZED			STANDARDIZED				
Model	Category	Precision	Recall	F1	Model	Category	Precision	Recall	F1
	ABS	0.272	0.127	0.173		ABS	0.214	0.152	0.178
	ACO	0.391	0.180	0.247		ACO	0.324	0.220	0.262
	COI	0.487	0.117	0.189		COI	0.448	0.161	0.236
	LOC	0.708	0.690	0.699		LOC	0.710	0.725	0.717
	OBR	0.241	0.069	0.107		OBR	0.203	0.069	0.103
NILCFT100	ORG	0.627	0.573	0.599	NILCFT100	ORG	0.617	0.587	0.602
	OTR	0.000	0.000	0.000		OTR	0.000	0.000	0.000
	PER	0.759	0.641	0.695		PER	0.770	0.685	0.725
	TMP	0.806	0.811	0.809		TMP	0.846	0.853	0.850
	VAL	0.694	0.641	0.667		VAL	0.718	0.718	0.718
	Total	0.688	0.566	0.621		Total	0.682	0.602	0.640
	ABS	0.287	0.168	0.212		ABS	0.197	0.147	0.169
	ACO	0.208	0.100	0.135		ACO	0.300	0.180	0.225
	COI	0.578	0.161	0.251		COI	0.460	0.142	0.217
	LOC	0.703	0.675	0.689		LOC	0.730	0.710	0.720
	OBR	0.241	0.069	0.107		OBR	0.273	0.080	0.124
NILCFT100_25	ORG	0.596	0.557	0.576	NILCFT100_25	ORG	0.607	0.570	0.588
	OTR	0.000	0.000	0.000		OTR	0.000	0.000	0.000
	PER	0.763	0.665	0.711		PER	0.760	0.673	0.714
	TMP	0.857	0.831	0.844		TMP	0.813	0.825	0.819
	VAL	0.737	0.696	0.716		VAL	0.766	0.773	0.770
	Total	0.688	0.576	0.627		Total	0.686	0.594	0.637
	ABS	0.301	0.188	0.231		ABS	0.204	0.147	0.171
	ACO	0.185	0.100	0.130		ACO	0.194	0.120	0.148
	COI	0.485	0.099	0.164		COI	0.489	0.142	0.220
-	LOC	0.716	0.702	0.709		LOC	0.712	0.718	0.715
	OBR	0.373	0.117	0.178	NILCFT100_50	OBR	0.244	0.058	0.094
NILCFT100_50	ORG	0.609	0.557	0.582		ORG	0.598	0.540	0.567
	OTR	0.000	0.000	0.000		OTR	0.000	0.000	0.000
	PER	0.766	0.662	0.710		PER	0.764	0.674	0.716
	TMP	0.835	0.814	0.824		TMP	0.864	0.859	0.861
	VAL	0.725	0.687	0.706		VAL	0.733	0.742	0.738
	Total	0.691	0.580	0.631		Total	0.685	0.590	0.634
	ABS	0.221	0.147	0.177		ABS	0.263	0.183	0.216
	ACO	0.273	0.120	0.167		ACO	0.276	0.160	0.203
	COI	0.500	0.111	0.182		COI	0.489	0.142	0.220
	LOC	0.730	0.675	0.701		LOC	0.703	0.696	0.699
	OBR	0.351	0.106	0.163		OBR	0.255	0.064	0.102
NILCF1100_100	ORG	0.560	0.580	0.570	NILCF1100_100	ORG	0.605	0.513	0.555
		0.250	0.071	0.111			0.000	0.000	0.000
	PER	0.754	0.629	0.686		PER	0.745	0.654	0.697
		0.861	0.822	0.841			0.867	0.864	0.866
	VAL	0.733	0.706	0.719		VAL	0.725	0.752	0.738
	Total	0.660	0.570	0.620		IOLAI	0.004	0.301	0.020
						ABS	0.248	0.178	0.207
						ACO	0.412	0.140	0.209
							0.340	0.111	0.100
							0.709	0.091	0.700
							0.213	0.003	0.000
					MLCF1100_150		0.573	0.003	0.030
						PER	0.000	0.000	0.000
							0.743	0.001	0.094
							0.039	0.042	0.041
						Total	0.734	0.743	0.740
						Iotal	0.075	0.571	0.019

 Table H.6 – The results of the NILCFT100 concatenated model for the Total HAREM Track.

 Concatenated Models - HAREM TOTAL

ModelCategoryPrecisionFeaFiModelCategoryPrecisionRecalFiABS0.2800.2800.2800.2800.2800.2700.1700.297		NORMAL	IZED			STANDARDIZED					
ABS 0.287 0.168 0.212 ABS 0.216 0.172 0.107 0.107 0.107 0.107 0.107 0.127 0.107 0.128 ACC 0.173 0.714 0.715 0.715 0.715 0.714 0.705 0.725 0.725 0.725 0.725 0.725 0.725 0.725 0.725 0.725 0.725 0.725 0.735 0.736 0.736 0.737	Model	Category	Precision	Recall	F 1	Model	Category	Precision	Recall	F1	
ACC 0.294 0.200 0.238 ACC 0.142 0.197 CO 0.715 0.716 0.716 0.716 0.716 0.717 0.237 0.720 0.725 0.718 OBR 0.333 0.071 0.716 0.728		ABS	0.287	0.168	0.212		ABS	0.216	0.152	0.179	
COI 0.465 0.124 0.195 COI 0.349 0.179 0.237 DBR 0.397 0.122 0.187 DBR 0.225 0.078 D285 0.587 0.582 DBR 0.225 0.078 D115 OTR 0.333 0.071 0.116 DBR 0.225 0.078 0.587 0.582 VAL 0.732 0.637 0.637 0.637 0.637 0.638 0.637 0.784 0.788 0.789 0.788<		ACO	0.294	0.200	0.238		ACO	0.172	0.100	0.127	
LCC 0.715 0.713 0.714 LCC 0.730 0.721 0.725 NILCW2V100 ORG 0.609 0.557 0.582 NILCW2V100 ORG 0.059 0.582 0.780 0.781 0.825 0.825 0.780 0.782 0.825 0.781 0.782 0.781 0.782 0.781 0.782 0.781 0.782 0.781 0.782 0.781 0.782 0.781 0.782 0.781 0.782 0.781 0.782 0.781 0.782 0.781 0.782 0.781 0.782 0.781 0.782 0.781 0.782 0.780 0.782 0.781 0.782 0.781 0		COI	0.465	0.124	0.195		COI	0.349	0.179	0.237	
DBR 0.397 0.122 0.187 OBR 0.285 0.057 0.587 0.582 NILCW2V100 OBR 0.2857 0.587 0.582 VIL 0.333 0.637 0.518 0.524 OTR 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.026 OTR 0.030 0.030 0.026 VAL 0.726 0.730 0.102 0.115 0.026 VAL 0.0726 0.730 0.102 0.102 0.102 0.102 0.102 0.102 0.102 0.102 0.102 0.102 0.102 0.026		LOC	0.715	0.713	0.714		LOC	0.730	0.721	0.725	
NILCW2V100 OFG 0.609 0.557 0.582 NILCW2V100 OFG 0.592 0.573 0.582 PFR 0.746 0.637 0.687 PFR 0.000 0		OBR	0.397	0.122	0.187		OBR	0.255	0.075	0.115	
OTR 0.333 0.071 0.118 OTR 0.000 0.000 0.000 FPER 0.746 0.637 0.687 0.761 0.782 0.781 VAL 0.732 0.787 0.782 0.781 0.782 0.783 0.781 Total 0.667 0.579 0.628 0.67 0.780 0.780 0.785 0.785 0.781 0.781 0.783 0.781 0.781 0.781 0.785 0.781	NILCW2V100	ORG	0.609	0.557	0.582	NILCW2V100	ORG	0.592	0.573	0.582	
PER 0.746 0.687 0.687 PER 0.749 0.672 0.708 VAL 0.732 0.676 0.704 VAL 0.726 0.730 0.728 VAL 0.732 0.676 0.704 VAL 0.726 0.730 0.728 ABS 0.216 0.137 0.168 0.671 0.739 0.227 0.160 0.164 ACC 0.228 0.161 0.164 ACC 0.237 0.165 0.164 ACC 0.237 0.166 0.164 ACC 0.238 0.266 0.797 NILCW2V100_25 ORG 0.587 0.566 0.576 NILCW2V102_25 ORG 0.662 0.584 0.544 VAL 0.762 0.569 0.616 0.289 0.635 0.584 0.540 0.744 0.687 0.584 0.540 0.744 0.735 0.724 0.730 0.724 0.730 0.728 0.744 0.730 0.724 0.730 0.734 0.730 0.734 <td></td> <td>OTR</td> <td>0.333</td> <td>0.071</td> <td>0.118</td> <td></td> <td>OTR</td> <td>0.000</td> <td>0.000</td> <td>0.000</td>		OTR	0.333	0.071	0.118		OTR	0.000	0.000	0.000	
TMP 0.822 0.819 0.824 TMP 0.846 0.839 0.848 VAL 0.732 0.678 0.704 VAL 0.726 0.730 0.726 ABS 0.216 0.137 0.169 0.879 0.828 ABS 0.260 0.173 0.206 COI 0.378 0.155 0.166 ACC 0.186 0.444 0.161 0.236 COI 0.378 0.155 0.166 0.569 0.769 0.783 0.783 ORG 0.587 0.568 0.569 0.783 0.714 0.000 0.001		PER	0.746	0.637	0.687		PER	0.749	0.672	0.708	
VAL 0.732 0.678 0.704 VAL 0.726 0.730 0.728 ABS 0.216 0.137 0.168 0.673 0.599 0.683 ACO 0.222 0.160 0.186 0.683 0.207 0.207 0.207 0.207 0.208 0.207 0.207 0.208 0.207 0.208 0.207 0.208 0.207 0.208 0.207 0.208 0.207 0.208 0.207 0.208 0.207 0.208 0.208 0.207 0.208 0.207 0.208		TMP	0.829	0.819	0.824		TMP	0.846	0.839	0.843	
Initial0.6670.5790.6280.6160.66750.5950.639ABS0.2160.2170.1610.207ACO0.2270.1600.164ACO0.2220.1600.168ACO0.1730.207COI0.3780.1050.1640.2050.7280.6600.769OBR0.3510.1380.1990.000		VAL	0.732	0.678	0.704		VAL	0.726	0.730	0.728	
ABS 0.216 0.137 0.168 ABS 0.260 0.173 0.207 NILCW2V100_25 0.0378 0.105 0.164 0.681 0.693 0.0161 0.238 0.105 0.164 0.068 0.738 0.105 0.164 0.068 0.738 0.105 0.164 0.068 0.738 0.105 0.068 0.738 0.105 0.068 0.738 0.105 0.060 0.000 <		Total	0.687	0.579	0.628		Total	0.675	0.595	0.633	
ACO 0.222 0.1960 0.1960 ACO 0.1980 0.140 0.161 0.236 NILCW2V100_25 ORG 0.0371 0.138 0.199 OLOC 0.707 0.681 0.693 OLOC 0.707 0.681 0.693 OLOC 0.773 0.101 0.153 0.170 OLOC 0.773 0.100 0.000 ODR 0.771 0.011 0.153 0.778 0.026 0.676 ORG 0.665 0.544 0.544 0.543 0.778 0.020 0.778 0.778 0.020 0.778 0.780 0.780 0.779 0.780 0.780 0.712 0.760 0.781 0.785 0.781 0.782 0.782 0.782 0.782 0.782		ABS	0.216	0.137	0.168		ABS	0.260	0.173	0.207	
COI 0.378 0.105 0.164 COI 0.448 0.161 0.238 NILCW2V100_25 CRG 0.351 0.136 0.193 COR 0.317 0.101 0.158 ORG 0.351 0.136 0.190 COR 0.317 0.101 0.158 ORG 0.587 0.566 0.576 0.070 ORR 0.317 0.100 0.000		ACO	0.222	0.160	0.186		ACO	0.189	0.140	0.161	
NILCW2V100_25 CC 0.707 0.681 0.639 0.138 0.139		COI	0.378	0.105	0.164		COI	0.448	0.161	0.236	
NILCW2V100_25 CBR 0.351 0.138 0.139 NILCW2V100_25 ORG 0.587 0.566 0.576 TMP 0.840 0.816 0.828 VAL 0.762 0.696 0.728 TMP 0.840 0.816 0.828 VAL 0.762 0.696 0.728 Total 0.672 0.599 0.616 Total 0.672 0.599 0.616 CCC 0.235 0.142 0.177 ACO 0.235 0.142 0.173 ACO 0.237 0.180 0.205 COC 0.733 0.099 0.155 LOC 0.745 0.685 0.689 ORG 0.593 0.570 0.685 TMP 0.833 0.805 0.819 TMP 0.833 0.805 0.819 VAL 0.747 0.679 0.681 VAL 0.747 0.679 0.799		LOC	0.707	0.681	0.693		LOC	0.723	0.696	0.709	
NILCW2V100_25 ORG 0.587 0.586 0.576 NILCW2V100_25 ORG 0.654 0.594 0.594 OTR 0.000 0.000 0.000 0.000 PER 0.738 0.626 0.678 0.774 0.000 0.000 PER 0.731 0.662 0.704 0.730 0.626 0.728 VAL 0.752 0.569 0.616 VAL 0.752 0.569 0.616 VAL 0.752 0.750 0.851 VAL 0.750 0.851 0.850 0.071 0.111 0.662 0.761 0.151 0.062 0.765 0.657 0.161 0.567 0.164 0.659 0.567 0.071 0.111 0.762 0.762 0.752 0.752 0.752 0.752 0.752 0.752		OBR	0.351	0.138	0.199		OBR	0.317	0.101	0.153	
OTR 0.000 0.000 0.000 PER 0.738 0.626 0.678 TMP 0.840 0.816 0.828 TMP 0.850 0.628 VAL 0.762 0.696 0.728 TMP 0.850 0.859 VAL 0.762 0.696 0.728 VAL 0.735 0.724 0.730 CO 0.237 0.180 0.205 ABS 0.266 0.704 CO 0.333 0.099 0.152 CO 0.333 0.099 0.152 LOC 0.705 0.685 0.685 0.685 0.685 0.686 0.101 0.114 PER 0.745 0.634 0.685 0.685 0.685 0.685 0.685 0.685 0.685 0.685 0.685 0.685 0.685 0.685 0.685 0.685 0.685 0.685 0.685 0.74 0.592 0.552 0.552 0.552 0.552 0.552 0.552 0.552 0.552	NILCW2V100 25	ORG	0.587	0.566	0.576	NILCW2V100 25	ORG	0.605	0.584	0.594	
PER 0.738 0.626 0.676 TMP 0.840 0.816 0.829 VAL 0.762 0.569 0.616 Total 0.672 0.569 0.616 ABS 0.237 0.180 0.205 ACO 0.237 0.180 0.205 COI 0.333 0.099 0.152 LOC 0.705 0.685 0.685 OBR 0.358 0.128 0.180 OBR 0.353 0.128 0.180 VAL 0.747 0.665 OBR 0.358 0.128 VAL 0.747 0.650 VAL 0.747 0.660 VAL 0.747 0.660 VAL 0.747 0.650 VAL 0.747 0.660 VAL 0.747 0.660 VAL 0.747 0.650 VAL 0.747 0.670 VAL 0.747 0.670 <t< td=""><td>_</td><td>OTR</td><td>0.000</td><td>0.000</td><td>0.000</td><td></td><td>OTR</td><td>0.000</td><td>0.000</td><td>0.000</td></t<>	_	OTR	0.000	0.000	0.000		OTR	0.000	0.000	0.000	
TMP0.8400.8160.828TMP0.8670.8500.859VAL0.7620.5690.616Total0.6680.5920.635ABS0.2230.1420.177ABS0.2640.1730.209ACO0.2370.1800.205ACO0.3330.0990.152ACO0.3360.1420.1730.209COI0.3330.0990.152ACO0.3360.1410.1410.1450.227LOC0.7550.6850.6950.6950.6950.6960.3650.1010.1580.1420.7120.7020.702NILCW2V10_50ORG0.5530.5710.1110.6820.5810.1110.6820.5840.5500.567TTMP0.8330.8050.8190.1110.8360.8160.1120.1140.8680.5920.7520.7520.7520.752TMP0.8330.8050.8190.1110.8350.2120.1580.1140.8680.5920.7520.7520.7520.7520.7520.7520.7520.7520.7520.7520.7520.7520.7520.7520.7520.7530.7510.830.920.7530.7510.8630.920.7530.7510.8630.920.7530.7510.8630.920.7530.7510.7510.7510.7510.7510.7510.7510.7510.7510.7510.751 <td></td> <td>PER</td> <td>0.738</td> <td>0.626</td> <td>0.678</td> <td></td> <td>PER</td> <td>0.751</td> <td>0.662</td> <td>0.704</td>		PER	0.738	0.626	0.678		PER	0.751	0.662	0.704	
VAL 0.762 0.696 0.728 VAL 0.735 0.724 0.730 Total 0.672 0.699 0.616 Total 0.686 0.692 0.633 ABS 0.235 0.142 0.177 ABS 0.264 0.173 0.209 ACO 0.237 0.180 0.205 ACO 0.333 0.099 0.152 LOC 0.705 0.685 0.695 0.696 0.794 0.705 0.581 OER 0.593 0.570 0.581 NILCW2V100_50 OER 0.584 0.550 0.567 OTR 0.250 0.071 0.111 PER 0.745 0.634 0.685 0.692 0.567 TMP 0.833 0.607 0.571 0.111 PER 0.747 0.680 0.712 VAL 0.747 0.672 0.708 0.617 0.111 PER 0.752 0.752 0.752 0.752 0.752 0.752 0.752 0.752 </td <td></td> <td>TMP</td> <td>0.840</td> <td>0.816</td> <td>0.828</td> <td>•</td> <td>TMP</td> <td>0.867</td> <td>0.850</td> <td>0.859</td>		TMP	0.840	0.816	0.828	•	TMP	0.867	0.850	0.859	
Total 0.672 0.569 0.616 Total 0.686 0.592 0.635 ABS 0.233 0.142 0.177 ABS 0.264 0.173 0.209 COI 0.333 0.099 0.152 ACO 0.365 0.141 0.201 LOC 0.705 0.685 0.695 COI 0.431 0.152 COI 0.431 0.154 0.227 LOC 0.705 0.685 0.695 0.695 0.010 0.158 0.169 0.695 0.010 0.159 DBR 0.358 0.593 0.570 0.581 NILCW2V100_50 OBR 0.592 0.771 0.111 PER 0.745 0.685 0.617 TMP 0.833 0.805 0.772 TMP 0.836 0.812 0.752 0.752 0.752 0.752 0.752 0.752 0.752 0.752 0.752 0.752 0.752 0.752 0.752 0.752 0.752 0.752 0.635		VAL	0.762	0.696	0.728	•	VAL	0.735	0.724	0.730	
ABS 0.235 0.142 0.177 ACO 0.237 0.180 0.205 ACO 0.333 0.099 0.152 LOC 0.705 0.685 0.695 DBR 0.338 0.120 0.180 DCC 0.705 0.685 0.695 DBR 0.338 0.120 0.180 MILCW2V100_50 ORG 0.593 0.570 0.581 TMP 0.830 0.805 0.819 VAL 0.747 0.672 0.708 TMP 0.830 0.805 0.819 VAL 0.747 0.672 0.709 Total 0.674 0.569 0.617 TMP 0.830 0.848 0.848 OCO 0.137 0.144 0.747 OCO 0.747 0.675 0.709 ORG 0.548 0.550 0.567 TMP 0.831 0.551 0.666 DCO 0.747 </td <td></td> <td>Total</td> <td>0.672</td> <td>0.569</td> <td>0.616</td> <td></td> <td>Total</td> <td>0.686</td> <td>0.592</td> <td>0.635</td>		Total	0.672	0.569	0.616		Total	0.686	0.592	0.635	
ACO 0.237 0.180 0.205 COI 0.333 0.099 0.152 COI 0.358 0.128 0.186 COI 0.431 0.154 0.227 OBR 0.358 0.128 0.188 COI 0.719 0.692 0.705 OBR 0.358 0.128 0.188 OBR 0.365 0.101 0.158 OBR 0.250 0.071 0.111 0.674 0.684 0.686 0.684 0.550 0.567 OTR 0.250 0.071 0.111 PER 0.747 0.680 0.712 TMP 0.833 0.805 0.817 TMP 0.836 0.848 0.842 VAL 0.747 0.672 0.708 0.712 TMP 0.836 0.120 0.146 COI 0.340 0.099 0.153 COI 0.340 0.098 0.152 COI 0.340 0.590 0.513 0.551 0.551 0.551<		ABS	0.235	0.142	0.177		ABS	0.264	0.173	0.209	
COI 0.333 0.099 0.152 LOC 0.705 0.685 0.695 OBR 0.358 0.128 0.186 ORG 0.593 0.570 0.581 OTR 0.250 0.071 0.111 PER 0.745 0.634 0.685 TMP 0.830 0.805 0.819 VAL 0.747 0.672 0.708 VAL 0.747 0.672 0.708 ABS 0.205 0.137 0.164 ACO 0.125 0.080 0.099 COI 0.340 0.099 0.153 LOC 0.747 0.675 0.709 OBR 0.319 0.080 0.99 OBR 0.319 0.080 0.99 OBR 0.319 0.080 0.98 OCO 0.426 0.616 0.223 LOC 0.747 0.675 0.709 OBR 0.319 0.080 <		ACO	0.237	0.180	0.205		ACO	0.350	0.140	0.200	
NILCW2V100_50 LOC 0.705 0.685 0.695 0.188 0.188 0.188 0.188 0.111 PER 0.745 0.634 0.685 0.670 0.711 0.780 0.570 0.711 0.780 0.711 0.783 0.771 0.111 PER 0.745 0.634 0.685 0.772 0.772 0.772 0.772 0.772 0.772 0.772 0.772 0.772 0.772 0.772 0.772 0.772 0.772 0.772 0.772 0.772 0.772 0.757 0.650 0.692 0		COI	0.333	0.099	0.152		COI	0.431	0.154	0.227	
OBR 0.358 0.128 0.188 0.186 0.365 0.101 0.158 ORG 0.593 0.570 0.581 ORG 0.584 0.550 0.567 OTR 0.250 0.071 0.111 PER 0.745 0.634 0.685 TMP 0.833 0.605 0.819 OTR 0.250 0.712 TMP 0.833 0.805 0.819 TMP 0.836 0.848 0.842 VAL 0.747 0.672 0.708 Total 0.655 0.557 ABS 0.205 0.137 0.164 ABS 0.212 0.153 0.551 LOC 0.747 0.675 0.709 COI 0.426 0.161 0.239 LOC 0.747 0.675 0.709 COI 0.426 0.161 0.239 NILCW2V100_100 ORG 0.594 0.513 0.551 NILCW2V100_100 ORG 0.611 0.549 0.576 TMP		LOC	0.705	0.685	0.695		LOC	0.719	0.692	0.705	
NILCW2V100_50 ORG 0.593 0.570 0.581 NILCW2V100_50 ORG 0.584 0.550 0.567 OTR 0.250 0.071 0.111 PER 0.745 0.634 0.685 0.671 OTR 0.250 0.071 0.111 PER 0.747 0.634 0.685 0.819 VAL 0.747 0.684 0.848 0.842 VAL 0.752 0.753 0.733 0.733 </td <td rowspan="2">NILCW2V100 50</td> <td>OBR</td> <td>0.358</td> <td>0.128</td> <td>0.188</td> <td rowspan="4">NILCW2V100_50</td> <td>OBR</td> <td>0.365</td> <td>0.101</td> <td>0.158</td>	NILCW2V100 50	OBR	0.358	0.128	0.188	NILCW2V100_50	OBR	0.365	0.101	0.158	
OTR 0.250 0.071 0.111 PER 0.745 0.634 0.685 TMP 0.833 0.805 0.819 VAL 0.747 0.672 0.708 Total 0.674 0.569 0.617 Total 0.674 0.569 0.617 ABS 0.205 0.137 0.164 ACO 0.125 0.030 0.981 COI 0.340 0.099 0.153 LOC 0.747 0.675 0.709 OBR 0.319 0.060 0.125 OTR 0.000 0.000 0.000 PER 0.732 0.626 0.675 TMP 0.861 0.625 0.839 VAL 0.767 0.660 0.699 TMP 0.861 0.625 0.826 VAL 0.767 0.660 0.641 VAL 0.767 0.660 0.641 VAL 0.760 0.641		ORG	0.593	0.570	0.581		ORG	0.584	0.550	0.567	
PER 0.745 0.634 0.685 PER 0.747 0.680 0.712 TMP 0.833 0.805 0.819 TMP 0.836 0.848 0.842 VAL 0.774 0.672 0.708 VAL 0.752 0.752 0.752 0.752 0.752 0.752 0.752 0.752 0.752 0.752 0.635 ABS 0.205 0.137 0.164 ABS 0.685 0.592 0.635 ACO 0.125 0.080 0.098 COI 0.340 0.099 0.133 COI 0.340 0.099 0.133 0.655 0.676 OCI 0.426 0.161 0.233 OBR 0.319 0.800 0.128 OCI 0.466 0.675 OBR 0.212 0.058 0.092 OTR 0.000 0.000 0.000 OCI OTR 0.000 0.000 PER 0.752 0.828 0.831 0.281 0.841	_	OTR	0.250	0.071	0.111		OTR	0.250	0.071	0.111	
TMP 0.833 0.805 0.819 TMP 0.836 0.848 0.842 VAL 0.747 0.672 0.708 VAL 0.752 0.763 0.753		PER	0.745	0.634	0.685		PER	0.747	0.680	0.712	
VAL 0.747 0.672 0.708 Total 0.674 0.569 0.617 ABS 0.205 0.137 0.164 ABS 0.212 0.157 0.181 ACO 0.125 0.000 0.009 0.153 ABS 0.212 0.157 0.181 ACO 0.125 0.000 0.099 0.153 ABS 0.212 0.157 0.181 ACO 0.319 0.080 0.128 ABS 0.212 0.058 0.092 DBR 0.319 0.080 0.128 NILCW2V100_100 ORG 0.611 0.538 0.092 OTR 0.000		TMP	0.833	0.805	0.819	•	TMP	0.836	0.848	0.842	
Total 0.674 0.569 0.617 Total 0.685 0.592 0.635 ABS 0.205 0.137 0.164 ABS 0.212 0.157 0.181 ACO 0.125 0.080 0.098 ACO 0.126 0.010 0.098 0.212 0.153 0.161 ACO 0.146 0.020 0.747 0.675 0.709 0.715 DCC 0.747 0.675 0.709 0.715 DBR 0.021 0.009 0.715 DBR 0.021 0.009 0.716 DBR 0.212 0.058 0.922 OBR 0.319 0.000 0.000 0.000 DCC 0.771 0.709 0.718 0.000 0.000 DCR 0.777 0.630 0.699 TMP 0.831 0.825 0.838 0.611 0.669 0.610 VAL 0.737 0.733 0.733 0.733 0.733 0.733 0.733 0.733 0.733 0.733 0.733 0.733 <		VAL	0.747	0.672	0.708		VAL	0.752	0.752	0.752	
ABS 0.205 0.137 0.164 ACO 0.125 0.080 0.098 COI 0.340 0.099 0.153 LOC 0.747 0.675 0.709 OBR 0.319 0.080 0.128 ORG 0.594 0.513 0.551 OTR 0.000 0.000 0.000 PER 0.732 0.626 0.675 TMP 0.851 0.825 0.838 VAL 0.760 0.641 0.696 Total 0.684 0.550 0.610 NILCW2V100_100 0.684 0.550 0.610 VAL 0.760 0.641 0.696 Total 0.684 0.550 0.610 NILCW2V100_150 NILCW2V100_150 NILCW2V100_150 Res 0.248 0.183 0.211 ACO 0.220 0.180 0.198 COI 0.339 0.130 0.138 COI 0.339		Total	0.674	0.569	0.617		Total	0.685	0.592	0.635	
ACO 0.125 0.080 0.098 ACO 0.188 0.120 0.146 COI 0.340 0.099 0.153 COI 0.426 0.161 0.233 LOC 0.747 0.675 0.709 0.715 0.080 0.212 0.058 0.092 OBR 0.519 0.513 0.551 0.000 ORG 0.611 0.549 0.573 OTR 0.000 0.000 0.000 ORG 0.611 0.549 0.578 TMP 0.851 0.825 0.838 OTR 0.000 0.000 VAL 0.760 0.641 0.696 TMP 0.832 0.850 0.841 VAL 0.760 0.641 0.696 TMP 0.832 0.828 0.628 Total 0.684 0.550 0.610 Total 0.680 0.583 0.228 VAL 0.760 0.641 0.696 0.610 0.339 0.130 0.198 CO		ABS	0.205	0.137	0.164		ABS	0.212	0.157	0.181	
COI 0.340 0.099 0.153 LOC 0.747 0.675 0.709 OBR 0.319 0.080 0.128 NILCW2V100_100 ORG 0.594 0.513 0.551 OTR 0.000 0.000 0.000 PER 0.732 0.626 0.675 TMP 0.851 0.825 0.838 OTR 0.000 0.000 VAL 0.760 0.641 0.696 Total 0.684 0.550 0.610 0.737 0.730 0.738 VAL 0.760 0.641 0.696 Total 0.680 0.583 0.628 VAL 0.760 0.611 0.696 Total 0.680 0.583 0.628 VAL 0.760 0.611 0.696 Total 0.680 0.583 0.628 VAL 0.760 0.611 0.696 0.680 0.583 0.628 VAL 0.760 0.611 0.696 0.680 0.583		ACO	0.125	0.080	0.098		ACO	0.188	0.120	0.146	
LOC 0.747 0.675 0.709 OBR 0.319 0.080 0.128 ORG 0.594 0.513 0.551 OTR 0.000 0.000 0.000 PER 0.732 0.626 0.675 TMP 0.851 0.825 0.838 VAL 0.760 0.641 0.696 Total 0.684 0.550 0.610 NILCW2V100_100 0.684 0.696 0.610 VAL 0.760 0.641 0.696 Total 0.684 0.550 0.610 NILCW2V100_100 0.680 0.583 0.628 VAL 0.760 0.610 0.610 0.610 VAL 0.768 0.628 0.628 VAL 0.684 0.550 0.610 VAL 0.768 0.610 0.583 VAL 0.684 0.550 0.610 VAL 0.684 0.513 0.211 ACO		COI	0.340	0.099	0.153		COI	0.426	0.161	0.233	
OBR 0.319 0.080 0.128 NILCW2V100_100 ORG 0.594 0.513 0.551 OTR 0.000 0.000 0.000 PER 0.732 0.626 0.675 TMP 0.851 0.825 0.838 VAL 0.760 0.641 0.696 Total 0.684 0.550 0.610 VAL 0.760 0.611 0.696 Total 0.684 0.550 0.610 VAL 0.760 0.611 0.696 VAL 0.760 0.611 0.696 VAL 0.760 0.611 0.696 VAL 0.760 0.611 0.696 VAL 0.762 0.611 0.696 VAL 0.760 0.611 0.696 VAL 0.763 0.611 0.633 VAL 0.764 0.680 0.583 VAL 0.684 0.550 0.618 VAL 0.67		LOC	0.747	0.675	0.709		LOC	0.721	0.709	0.715	
NILCW2V100_100 ORG 0.594 0.513 0.551 NILCW2V100_100 ORG 0.611 0.549 0.578 OTR 0.000 0.000 0.000 0.000 PER 0.732 0.626 0.675 TMP 0.851 0.825 0.838 TMP 0.832 0.830 VAL 0.760 0.641 0.696 Total 0.680 0.573 Total 0.684 0.550 0.610 Total 0.680 0.583 0.628 VAL 0.760 0.641 0.696 Total 0.680 0.583 0.628 VAL 0.760 0.641 0.696 Total 0.680 0.583 0.628 VAL 0.760 0.641 0.696 Total 0.680 0.583 0.628 VAL 0.763 0.610 0.133 0.133 0.133 0.211 ACO 0.220 0.180 0.198 COI 0.339 0.130 0.188 L		OBR	0.319	0.080	0.128	•	OBR	0.212	0.058	0.092	
OTR 0.000 0.000 0.000 PER 0.732 0.626 0.675 TMP 0.851 0.825 0.838 TMP 0.684 0.696 VAL 0.760 0.641 0.696 TMP 0.832 0.830 0.733 Total 0.684 0.550 0.610 Total 0.680 0.583 0.628 VAL 0.760 0.610 Mass 0.620 0.733 0.730 0.733 Total 0.684 0.550 0.610 Total 0.680 0.583 0.628 VAL 0.733 0.730 0.733 0.733 0.733 0.733 Total 0.684 0.550 0.610 Mass 0.211 ACO 0.220 0.180 0.198 COI 0.339 0.130 0.188 LOC 0.708 0.689 0.698 ORG 0.602 0.570 0.585 OTR 0.000 0.000 PER 0.741	NILCW2V100_100	ORG	0.594	0.513	0.551	NILCW2V100_100	ORG	0.611	0.549	0.578	
PER 0.732 0.626 0.675 TMP 0.851 0.825 0.838 VAL 0.760 0.641 0.696 Total 0.684 0.550 0.610 Total 0.684 0.550 Total 0.684 0.550 0.610 NILCW2V100_150 ORG 0.602 0.570 0.583 ORG 0.602 0.570 0.585 OTR 0.000 0.000 0.600 PER 0.741 0.645 0.689		OTR	0.000	0.000	0.000		OTR	0.000	0.000	0.000	
TMP 0.851 0.825 0.838 VAL 0.760 0.641 0.696 Total 0.684 0.550 0.610 Total 0.684 0.550 0.610 VAL 0.737 0.733 0.733 Total 0.684 0.550 0.610 VAL 0.737 0.730 0.733 Total 0.684 0.550 0.610 VAL 0.737 0.730 0.733 Total 0.684 0.550 0.610 VAL 0.684 0.550 0.610 VAL 0.737 0.730 0.733 VAL 0.684 0.183 0.211 ACO 0.220 0.180 0.198 COI 0.339 0.130 0.188 LOC 0.708 0.689 0.698 OBR 0.296 0.000 0.000 PER 0.741 0.645 0.689 TMP 0.868 0.856 </td <td></td> <td>PER</td> <td>0.732</td> <td>0.626</td> <td>0.675</td> <td></td> <td>PER</td> <td>0.757</td> <td>0.650</td> <td>0.699</td>		PER	0.732	0.626	0.675		PER	0.757	0.650	0.699	
VAL 0.760 0.641 0.696 Total 0.684 0.550 0.610 Total 0.680 0.583 0.628 ABS 0.248 0.183 0.211 ACO 0.220 0.180 0.198 COI 0.339 0.130 0.188 LOC 0.708 0.689 0.698 OBR 0.296 0.085 0.132 ORG 0.602 0.570 0.585 OTR 0.000 0.000 0.000 PER 0.741 0.645 0.689 TMP 0.868 0.856 0.750 Total 0.675 0.586		TMP	0.851	0.825	0.838		TMP	0.832	0.850	0.841	
Total 0.684 0.550 0.610 Total 0.680 0.583 0.628 ABS 0.248 0.183 0.211 ACO 0.220 0.180 0.198 COI 0.339 0.130 0.188 LOC 0.708 0.689 0.698 OBR 0.296 0.085 0.132 0.610 008R 0.296 0.085 0.132 ORG 0.602 0.570 0.585 07R 0.000 0.000 PER 0.741 0.645 0.689 0.892 174 VAL 0.745 0.755 0.750 0.585		VAL	0.760	0.641	0.696		VAL	0.737	0.730	0.733	
ABS 0.248 0.183 0.211 ACO 0.220 0.180 0.198 COI 0.339 0.130 0.188 LOC 0.708 0.689 0.698 OBR 0.296 0.085 0.132 ORG 0.602 0.570 0.585 OTR 0.000 0.000 PER 0.741 0.645 0.689 TMP 0.868 0.856 0.862 VAL 0.745 0.755 0.750 Total 0.675 0.586 0.628		Total	0.684	0.550	0.610		Total	0.680	0.583	0.628	
NILCW2V100_150 ORG 0.602 0.708 0.689 0.698 OBR 0.296 0.085 0.132 ORG 0.602 0.570 0.585 OTR 0.000 0.000 PER 0.741 0.645 0.689 TMP 0.868 0.856 0.862 VAL 0.745 0.755 0.750 Total 0.675 0.586 0.628							ABS	0.248	0.183	0.211	
NILCW2V100_150 ORG 0.602 0.570 0.585 OTR 0.000 0.000 0.000 PER 0.741 0.645 0.689 TMP 0.868 0.856 0.862 VAL 0.745 0.755 0.750 Total 0.675 0.586 0.628							ACO	0.220	0.180	0.198	
NILCW2V100_150 PER 0.741 0.645 0.689 ORG 0.602 0.570 0.585 OTR 0.000 0.000 PER 0.741 0.645 0.689 TMP 0.868 0.856 0.862 VAL 0.745 0.755 0.750 Total 0.675 0.586 0.628							COI	0.339	0.130	0.188	
NILCW2V100_150 OBR 0.296 0.085 0.132 ORG 0.602 0.570 0.585 OTR 0.000 0.000 0.000 PER 0.741 0.645 0.689 TMP 0.868 0.856 0.862 VAL 0.745 0.755 0.750 Total 0.675 0.586 0.628							LOC	0.708	0.689	0.698	
NILCW2V100_150 ORG 0.602 0.570 0.585 OTR 0.000 0.000 0.000 PER 0.741 0.645 0.689 TMP 0.868 0.856 0.862 VAL 0.745 0.755 0.750 Total 0.675 0.586 0.628							OBR	0.296	0.085	0.132	
OTR 0.000 0.000 PER 0.741 0.645 0.689 TMP 0.868 0.856 0.862 VAL 0.745 0.755 0.750 Total 0.675 0.586 0.628						NILCW2V100_150	ORG	0.602	0.570	0.585	
PER 0.741 0.645 0.689 TMP 0.868 0.856 0.862 VAL 0.745 0.755 0.750 Total 0.675 0.586 0.628							OTR	0.000	0.000	0.000	
TMP 0.868 0.856 0.862 VAL 0.745 0.755 0.750 Total 0.675 0.586 0.628							PER	0.741	0.645	0.689	
VAL 0.745 0.755 0.750 Total 0.675 0.586 0.628							TMP	0.868	0.856	0.862	
Total 0.675 0.586 0.628							VAL	0.745	0.755	0.750	
							Total	0.675	0.586	0.628	

 Table H.7 – The results of the NILCW2V100 concatenated model for the Total HAREM Track.

 Concatenated Models - HAREM TOTAL

	NORMA	LIZED			STANDARDIZED				
Model	Category	Precision	Recall	F1	Model	Category	Precision	Recall	F1
	ABS	0.241	0.193	0.214		ABS	0.235	0.198	0.215
	ACO	0.282	0.220	0.247		ACO	0.180	0.180	0.180
	COI	0.418	0.142	0.212		COI	0.333	0.161	0.217
	LOC	0.717	0.734	0.725		LOC	0.723	0.721	0.722
	OBR	0.333	0.117	0.173		OBR	0.238	0.080	0.120
NILCFT300	ORG	0.616	0.579	0.597	NILCFT300	ORG	0.597	0.577	0.587
	OTR	0.200	0.071	0.105		OTR	0.000	0.000	0.000
	PER	0.761	0.651	0.702		PER	0.748	0.663	0.703
	TMP	0.858	0.833	0.845		TMP	0.832	0.842	0.837
	VAL	0.745	0.745	0.745		VAL	0.746	0.748	0.747
	Total	0.684	0.600	0.639		Total	0.667	0.599	0.631
	ABS	0.245	0.173	0.202		ABS	0.263	0.203	0.229
	ACO	0.313	0.200	0.244		ACO	0.220	0.180	0.198
	COI	0.358	0.148	0.210		COI	0.354	0.173	0.232
	LOC	0.711	0.723	0.717		LOC	0.727	0.718	0.723
	OBR	0.232	0.069	0.107		OBR	0.258	0.090	0.134
NILCFT300 25	ORG	0.621	0.566	0.592	NILCFT300 25	ORG	0.607	0.579	0.593
	OTR	0.333	0.071	0.118		OTR	0.333	0.143	0.200
	PER	0.753	0.647	0.696		PER	0.747	0.675	0.709
	TMP	0.883	0.853	0.868		TMP	0.844	0.853	0.848
	VAL	0.752	0.733	0.742		VAL	0.771	0.764	0.767
	Total	0.686	0.592	0.636		Total	0.680	0.606	0.641
	ABS	0.219	0.162	0.187		ABS	0.284	0.223	0.250
	ACO	0.317	0.260	0.286		ACO	0.303	0.200	0.241
	COI	0.323	0.130	0.185		COI	0.288	0.142	0.190
-	LOC	0.726	0.691	0.708		LOC	0.709	0.697	0.703
	OBR	0.242	0.080	0.120	NILCFT300_50	OBR	0.253	0.101	0.145
NILCFT300_50	ORG	0.605	0.573	0.589		ORG	0.597	0.568	0.582
	OTR	0.250	0.071	0.111		OTR	0.286	0.143	0.191
	PER	0.754	0.651	0.699		PER	0.747	0.662	0.702
	TMP	0.867	0.845	0.856		TMP	0.860	0.864	0.862
	VAL	0.741	0.727	0.734		VAL	0.733	0.718	0.726
	Total	0.679	0.585	0.629		Total	0.670	0.594	0.630
	ABS	0.248	0.168	0.200		ABS	0.226	0.183	0.202
	ACO	0.290	0.180	0.222		ACO	0.167	0.140	0.152
	COI	0.422	0.117	0.184		COI	0.338	0.154	0.212
	LOC	0.712	0.703	0.708		LOC	0.722	0.722	0.722
	OBR	0.260	0.101	0.146		OBR	0.226	0.075	0.112
NILCFT300_100	ORG	0.608	0.564	0.586	NILCFT300_100	ORG	0.590	0.543	0.566
	OTR	0.167	0.071	0.100		OTR	0.000	0.000	0.000
	PER	0.757	0.630	0.688		PER	0.748	0.667	0.705
	TMP	0.868	0.856	0.862		TMP	0.861	0.842	0.851
	VAL	0.757	0.736	0.747		VAL	0.748	0.739	0.744
	Total	0.686	0.583	0.630		Total	0.671	0.592	0.629
						ABS	0.240	0.178	0.204
						ACO	0.244	0.220	0.232
						COI	0.300	0.130	0.181
						LOC	0.716	0.715	0.715
						OBR	0.139	0.053	0.077
					NILCFT300_150	ORG	0.611	0.557	0.583
						OTR	0.111	0.071	0.087
						PER	0.742	0.661	0.699
						TMP	0.856	0.856	0.856
						VAL	0.721	0.715	0.718
						Total	0.667	0.589	0.626

 Table H.8 – The results of the NILCFT300 concatenated model for the Total HAREM Track.

 Concatenated Models - HAREM TOTAL

	NOB					STAND	ARDIZED		
Model	Category	Precision	Recall	F1	Model	Category	Precision	Recall	F1
Woden		0.285	0 188	0.226	Wodel		0.286	0 193	0 230
	ACO	0.205	0.100	0.220		ACO	0.200	0.130	0.200
	COL	0.220	0.100	0.200		COL	0.102	0.140	0.140
		0.000	0.100	0.100			0.400	0.210	0.204
	OBB	0.700	0.000	0.000		OBB	0.700	0.700	0.760
BBPET300		0.612	0.100	0.100	BBPET300	OBG	0.000	0.112	0.104
00111000	OTB	0.012	0.073	0.000	00111300	OTR	0.010	0.000	0.001
	PER	0.000	0.000	0.000		PFR	0.000	0.000	0.000
		0.757	0.000	0.854			0.700	0.850	0.710
		0.001	0.000	0.004			0.041	0.000	0.040
	Total	0.679	0.585	0.628		Total	0.685	0.602	0.641
	ABS	0.295	0.208	0.020		ABS	0.232	0.183	0.205
	ACO	0.345	0.200	0.244		ACO	0.202	0.160	0.200
	COL	0.040	0.200	0.200		COL	0.392	0.100	0.107
		0.400	0.687	0.689			0.690	0.124	0.100
	OBB	0.002	0.007	0.000		OBB	0.000	0.070	0.002
BBPET 25	OBG	0.599	0.556	0.576	BBPET 25	OBG	0.600	0.550	0.574
	OTB	0.000	0.000	0.000		OTB	0.000	0.000	0.000
	PFR	0.000	0.572	0.600		PFR	0.000	0.581	0.656
	TMP	0.899	0.853	0.875		TMP	0.762	0.859	0.861
	VAI	0.000	0.696	0.070		VAI	0.004	0.000	0.001
	Total	0.678	0.567	0.617		Total	0.668	0.562	0.611
	ABS	0.300	0.198	0.239		ABS	0.000	0.002	0.216
	ACO	0.000	0.160	0.203		ACO	0.200	0.100	0.210
	COL	0.270	0.100	0.200		COL	0.240	0.100	0.207
		0.710	0.000	0.740			0.040	0.124	0.102
	OBB	0.710	0.186	0.700		OBB	0.700	0.073	0.000
BBPET 50	OBG	0.613	0.100	0.243	BBPET 50	OBG	0.589	0.112	0.100
	OTR	0.010	0.047	0.070		OTR	0.000	0.000	0.072
	PFR	0.000	0.583	0.656		PFR	0.000	0.580	0.648
	TMP	0.853	0.850	0.852		TMP	0.849	0.856	0.852
	VAI	0.787	0.724	0.754		VAI	0 746	0.200	0.733
	Total	0.689	0.573	0.626		Total	0.669	0.565	0.612
	ABS	0.329	0.228	0.270		ABS	0.285	0.198	0.234
	ACO	0.333	0 160	0.216		ACO	0.233	0.200	0.215
	COL	0.317	0.080	0.128		COL	0.408	0.124	0.190
	LOC	0.701	0.695	0.698		LOC	0.687	0.682	0.684
	OBR	0.414	0.191	0.262		OBR	0.319	0.122	0.177
BBPFT 100	ORG	0.584	0.568	0.576	BBPFT 100	ORG	0.608	0.561	0.584
	OTR	0.000	0.000	0.000		OTR	0.000	0.000	0.000
	PER	0.748	0.569	0.646		PER	0.763	0.583	0.661
	TMP	0.849	0.845	0.847		TMP	0.849	0.859	0.854
	VAL	0.739	0.693	0.715		VAL	0.771	0.742	0.756
	Total	0.675	0.568	0.617		Total	0.678	0.571	0.619
						ABS	0.275	0.208	0.237
						ACO	0.191	0.180	0.186
						COI	0.385	0.124	0.187
						LOC	0.719	0.683	0.700
						OBR	0.200	0.075	0.109
					BBPFT_150	ORG	0.598	0.536	0.566
						OTR	0.000	0.000	0.000
						PER	0.733	0.578	0.647
						TMP	0.883	0.870	0.876
						VAL	0.748	0.745	0.747
						Total	0.674	0.565	0.615

Table H.9 – The results of the BBP300 auto-encoded model for the Total HAREM Track. Auto-encoded Models - HAREM TOTAL

	NORMA	LIZED			STANDARDIZED				
Model	Category	Precision	Recall	F1	Model	Category	Precision	Recall	F 1
	ABS	0.272	0.127	0.173		ABS	0.214	0.152	0.178
	ACO	0.391	0.180	0.247		ACO	0.324	0.220	0.262
	COI	0.487	0.117	0.189		COI	0.448	0.161	0.236
	LOC	0.708	0.690	0.699		LOC	0.710	0.725	0.717
	OBR	0.241	0.069	0.107		OBR	0.203	0.069	0.103
NILCFT100	ORG	0.627	0.573	0.599	NILCFT100	ORG	0.617	0.587	0.602
	OTR	0.000	0.000	0.000		OTR	0.000	0.000	0.000
	PER	0.759	0.641	0.695		PER	0.770	0.685	0.725
	TMP	0.806	0.811	0.809		TMP	0.846	0.853	0.850
	VAL	0.694	0.641	0.667		VAL	0.718	0.718	0.718
	Total	0.688	0.566	0.621		Total	0.682	0.602	0.640
	ABS	0 299	0 147	0 197		ABS	0.227	0 173	0 196
	ACO	0.429	0 180	0.254		ACO	0.270	0.200	0.230
		0.706	0.100	0.201			0.510	0.154	0.237
		0.729	0.689	0.708		100	0.010	0.722	0.207
	OBB	0.432	0.000	0.260		OBB	0.245	0.064	0 101
NIL CET100 25	OBG	0.624	0.520	0.567	NII CET100 25	OBG	0.607	0.566	0.586
	OTB	0.00	0.000	0.000		OTB	0.007	0.000	0.000
	PFR	0.000	0.000	0.000		PFR	0.140	0.670	0.000
		0.750	0.000	0.700			0.707	0.842	0.710
		0.000	0.000	0.040			0.007	0.042	0.000
	Total	0.730	0.000	0.724		Total	0.734	0.743	0.740
		0.299	0.373	0.004			0.002	0.337	0.007
	ACO	0.299	0.147	0.137			0.200	0.175	0.207
		0.403	0.100	0.230			0.233	0.100	0.131
-		0.019	0.000	0.142			0.030	0.154	0.250
		0.711	0.001	0.095			0.000	0.715	0.700
		0.404	0.112	0.175	NILCFT100_50		0.200	0.090	0.130
NILCFI 100_50		0.009	0.520	0.556			0.001	0.0071	0.576
		0.333	0.071	0.110			0.230	0.071	0.111
		0.765	0.001	0.717			0.775	0.003	0.715
		0.000	0.019	0.014			0.043	0.000	0.047
	VAL	0.755	0.699	0.720		VAL	0.755	0.755	0.755
		0.701	0.369	0.020			0.000	0.595	0.037
	ADS ACO	0.300	0.107	0.157		ADS ACO	0.270	0.100	0.222
	ACO	0.242	0.160	0.193		ACO	0.167	0.100	0.173
		0.632	0.074	0.133			0.571	0.124	0.203
		0.703	0.001	0.692	-		0.705	0.721	0.713
	OBR	0.341	0.080	0.129		OBR	0.333	0.080	0.129
NILCFI 100_100	ORG	0.610	0.520	0.561	NILCF1100_100	ORG	0.598	0.550	0.5/3
		0.500	0.071	0.125			0.167	0.071	0.100
		0.789	0.640	0.706			0.766	0.663	0.711
		0.863	0.822	0.842			0.857	0.845	0.851
	VAL	0.743	0.709	0.725		VAL	0.726	0.724	0.725
	Iotal	0.709	0.560	0.626		Iotal	0.683	0.591	0.634
						ABS	0.228	0.157	0.186
						ACO	0.346	0.180	0.237
							0.537	0.136	0.21/
						LOC	0.712	0.704	0.708
						ORK	0.327	0.085	0.135
					NILCF 1100_150	ORG	0.617	0.573	0.594
						OIR	0.250	0.071	0.111
						PER	0.770	0.678	0.721
							0.863	0.853	0.858
						VAL	0.713	0.724	0.718
						Total	0.693	0.594	0.639

 Table H.10 – The results of the NILCFT100 auto-encoded model for the Total HAREM Track.

 Auto-encoded Models - HAREM TOTAL

Norma Vertains Recail Fertains Recail Fertains ABS 0.287 0.168 0.212 ABS 0.287 0.168 0.212 ACO 0.294 0.108 0.212 ACO 0.214 0.172 0.100 0.172 0.100 0.172 0.100 0.172 0.100 0.172 0.103 0.212 0.202 0.238 0.212 0.212 0.225 0.272 0.27			Aut	o-encod	ed Mod	iodels - HAREM TOTAL					
Model Category Precision Feat Fit Model Category Precision Recal Fit ABS 0.229 0.209 0.209 0.209 0.209 0.209 0.209 0.209 0.209 0.209 0.209 0.209 0.209 0.201 0.101 0.101 0.101 0.201		NORMAL	IZED				STANDAR	DIZED			
AES 0.287 0.168 0.212 AES 0.216 0.172 0.100 0.173 0.114 0.073 0.783 0.114 0.073 0.783 0.7	Model	Category	Precision	Recall	F1	Model	Category	Precision	Recall	F1	
NILCW2V100 CO 0.294 0.290 0.293 CO 0.124 0.193 CO 0.134 0.171 0.213 0.233 NILCW2V100 ORG 0.690 0.557 0.582 0.116 0.026 0.075 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.176 0.07		ABS	0.287	0.168	0.212		ABS	0.216	0.152	0.179	
COI 0.465 0.124 0.176 COI 0.349 0.172 0.237 NILCW2V100 ORG 0.397 0.122 0.187 ORG 0.059 0.557 0.552 ORG 0.059 0.573 0.552 OTR 0.333 0.071 0.116 OTR 0.000		ACO	0.294	0.200	0.238		ACO	0.172	0.100	0.127	
LOC 0.715 0.713 0.714 LOC 0.730 0.721 0.725 NILCW2V100 ORG 0.609 0.557 0.552 ORG 0.652 0.573 0.552 OR 0.330 0.071 0.113 0.677 0.678 0.667 TM 0.825 0.616 0.677 0.678 0.749 0.672 0.730 0.721 0.730 0.721 0.552 0.552 0.552 0.730 0.552 0.730 0.721 0.552 0.730 0.721 0.730 0.721 0.730 0.721 0.730 0.721 0.730 0.721 0.730 0.721 0.730 0.721 0.730 0.721 0.730 0.721 0.730 0.721 0.730 0.721 0.730 0.721 0.733 0.721 0.733 0.721 0.733 0.721 0.733 0.721 0.733 0.701 0.733 0.701 0.733 0.701 0.733 0.701 0.733 0.721 0.733 <		COI	0.465	0.124	0.195		COI	0.349	0.179	0.237	
OBR 0.397 0.122 0.187 OBR 0.255 0.578 0.552 0.557 0.552 0.557 0.552 0.557 0.552 0.557 0.552 0.557 0.552 0.557 0.552 0.578 0.528 VIL 0.732 0.678 0.687 0.794 0.794 0.794 0.794 0.794 0.794 0.794 0.794 0.794 0.794 0.794 0.794 0.794 0.794 0.798 0.793 0.783 0.783 0.793 0.783 0.793 0.783 0.793 0.783 0.793 0.783 0.783 0.793 0.783 0.783 0.783 0.766 0.566 0.200 0.205 0.666 0.561 0.566 0.200 0.205 0.666 0.666 0.115 0.567 0.578 0.521 0.566 0.221 0.666 0.770 0.513 0.566 0.722 0.771 0.716 0.718 0.718 0.718 0.718 0.718 0.718 0.718 <td></td> <td>LOC</td> <td>0.715</td> <td>0.713</td> <td>0.714</td> <td></td> <td>LOC</td> <td>0.730</td> <td>0.721</td> <td>0.725</td>		LOC	0.715	0.713	0.714		LOC	0.730	0.721	0.725	
NILCW2/100 ORG 0.609 0.557 0.582 NILCW2/100 ORG 0.592 0.573 0.582 FER 0.746 0.637 0.687 0.788 0.728 0.730 0.728 0.770 0.680 0.778 0.780 0.778 0.780 0.778 0.778 0.781 0.778 0.781 0.778 0.781 0.778 0.781 0.781 0.781 0.781 0.778 0.781 0.781 <td< td=""><td></td><td>OBR</td><td>0.397</td><td>0.122</td><td>0.187</td><td></td><td>OBR</td><td>0.255</td><td>0.075</td><td>0.115</td></td<>		OBR	0.397	0.122	0.187		OBR	0.255	0.075	0.115	
OTR 0.333 0.071 0.118 OTR 0.000 0.0	NILCW2V100	ORG	0.609	0.557	0.582	NILCW2V100	ORG	0.592	0.573	0.582	
PER 0.746 0.637 0.687 PER 0.746 0.672 0.703 VAL 0.732 0.678 0.704 VAL 0.726 0.730 0.728 NILCW2V100_25 0.855 0.228 0.166 0.193 0.667 0.740 0.716 0.730 0.728 0.730 0.728 NILCW2V100_25 0.670 0.373 0.704 0.718 0.729 0.714 0.718 0.718 0.709 0.820 0.821 0.821 0.821 0.821 0.845 0.831 0.831 0.831 0.831 0.831 0.831 0.831 0.831 0.831 0.841 0.842 0.845 0.843 0.722 TMF 0.741 0.741 0.741 0.741 0.741 0.741		OTR	0.333	0.071	0.118		OTR	0.000	0.000	0.000	
TMP 0.829 0.819 0.824 TMP 0.846 0.839 0.438 VAL 0.732 0.678 0.728 0.739 0.728 AGC 0.344 0.200 0.283 0.449 0.112 0.128 ACC 0.345 0.200 0.253 0.409 0.144 0.218 0.262 0.200 0.265 0.200 0.225 0.200 0.225 0.200 0.225 0.200 0.225 0.200 0.225 0.200 0.225 0.200 0.225 0.200 0.225 0.200 0.225 0.200 0.225 0.200 0.226 0.200 0.205 0.200 0.205 0.205 0.206 0.233 0.201 0.201 0.233 0.201 0.201 0.333 0.201 0.226 0.449 0.424 0.424 0.424 0.424 0.424 0.424 0.424 0.424 0.424 0.424 0.425 0.440 0.444 0.424 0.425 0.440 0.444 <t< td=""><td></td><td>PER</td><td>0.746</td><td>0.637</td><td>0.687</td><td></td><td>PER</td><td>0.749</td><td>0.672</td><td>0.708</td></t<>		PER	0.746	0.637	0.687		PER	0.749	0.672	0.708	
VAL 0.732 0.767 0.704 VAL 0.726 0.730 0.728 Total 0.667 0.579 0.628 0.633 0.648 0.675 0.595 0.633 ARS 0.236 0.148 0.230 0.255 0.260 0.225 COI 0.375 0.933 0.149 0.114 0.126 0.260 0.225 ORG 0.030 0.149 0.114 0.126 0.076 0.030 0.010 0.000 0.010 0.010 0.016 0.017 0.118 0.118 0.114 0.128 0.017 0.118 0.114 0.128 0.017 0.118 0.114 0.128 0.017 0.133 0.70 0.621 0.133 0.70 0.621 0.133 0.703 0.728 0.753 0.728 0.753 0.753 0.753 0.753 0.753 0.753 0.753 0.753 0.753 0.753 0.753 0.753 0.753 0.753 0.754 0.754 0.75		TMP	0.829	0.819	0.824		TMP	0.846	0.839	0.843	
Total 0.667 0.579 0.628 Total 0.675 0.585 0.539 ACO 0.345 0.200 0.253 ABS 0.149 0.112 0.128 ACO 0.375 0.090 0.144 0.217 COI 0.368 0.217 LOC 0.733 0.704 0.718 COI 0.368 0.517 CBR 0.409 0.144 0.213 COI 0.368 0.570 CTR 0.000 0.000 0.000 COI 0.686 0.720 TMP 0.865 0.838 0.851 0.770 0.680 0.720 TMP 0.865 0.836 0.851 0.771 0.718 0.718 VAL 0.733 0.899 0.716 COI 0.838 0.752 TMP 0.865 0.839 0.762 720 0.800 0.753 COI 0.333 0.071 0.726 0.730 0.707 0.806 0.737 <t< td=""><td></td><td>VAL</td><td>0.732</td><td>0.678</td><td>0.704</td><td></td><td>VAL</td><td>0.726</td><td>0.730</td><td>0.728</td></t<>		VAL	0.732	0.678	0.704		VAL	0.726	0.730	0.728	
 ABS 0.228 0.168 0.193 0.485 0.200 0.253 COI 0.375 0.030 0.149 0.140 0.140 0.140 0.141 0.141 0.142 0.255 0.000 0.00		Total	0.687	0.579	0.628		Total	0.675	0.595	0.633	
ACO 0.345 0.200 0.253 0.490 0.149 IOC 0.733 0.704 0.716 0.726 0.716 0.726 0.716 </td <td></td> <td>ABS</td> <td>0.228</td> <td>0.168</td> <td>0.193</td> <td></td> <td>ABS</td> <td>0.149</td> <td>0.112</td> <td>0.128</td>		ABS	0.228	0.168	0.193		ABS	0.149	0.112	0.128	
COI 0.375 0.093 0.149 Cor NILCW2V100_25 ORG 0.409 0.144 0.213 ORG 0.606 0.513 0.556 0.667 0.678 0.164 0.217 ORG 0.606 0.513 0.556 0.681 0.686 0.570 0.576 PER 0.748 0.628 0.683 0.571 0.777 0.784 0.782 VAL 0.733 0.699 0.716 0.718 0.718 0.718 0.718 0.718 0.718 0.718 0.718 0.718 0.718 0.571 0.573 0.		ACO	0.345	0.200	0.253		ACO	0.256	0.200	0.225	
LCC 0.733 0.704 0.718 0		COI	0.375	0.093	0.149		COI	0.368	0.154	0.217	
OBR 0.409 0.144 0.213 OBR 0.241 0.069 0.107 NILCW2V100_25 OTR 0.000 0.000 0.000 OTR 0.000 0.001 OTR 0.005 0.072 OTR 0.003 0.071 0.138 TMP 0.865 0.836 0.851 0.849 0.842 0.842 0.842 0.842 0.842 0.842 0.842 0.842 0.845 0.856 0.551 0.576 0.576 0.576 0.576 0.576 0.576 0.576 0.576 0.576 0.576 0.576 0.576 0.576 0.576 0.576 0.576 0.577 0.562 0.147 0.149 0.149 0.149 0.149 0.149 0.149 0.149 0.147 0.163 LOC 0.702 0.720 0.711 0.530 0.551 0.557 0.561 0.577 0.563 0.571 0.561 0.577 0.563 0.571 0.562 0.681 0.571 0.562		LOC	0.733	0.704	0.718		LOC	0.717	0.718	0.718	
NILCW2V100_25 OTR O.GG 0.566 0.571 0.556 0.81CW2V100_25 ORG 0.586 0.570 0.578 TMP 0.085 0.683 0.681 0.771 0.060 0.070 0.782 0.778 0.684 0.722 VAL 0.733 0.699 0.716 0.783 0.770 0.784 0.783 0.783 VAL 0.733 0.699 0.716 0.784 0.783 0.783 ABS 0.226 0.193 0.824 0.483 0.783 0.783 CO 0.307 0.200 0.260 0.624 0.684 0.187 0.634 CO 0.702 0.721 0.781 0.333 0.772 0.761 0.147 0.164 0.187 CO 0.786 0.333 0.071 0.116 0.772 0.764 0.722 0.733 0.764 0.784 0.784 0.784 0.784 0.784 0.784 0.784 0.784 0.784 0.784 0.7		OBR	0.409	0.144	0.213		OBR	0.241	0.069	0.107	
OTR 0.000 0.000 0.000 PER 0.748 0.628 0.628 TMP 0.665 0.636 0.651 TMP 0.644 0.628 Total 0.690 0.570 0.624 TMP 0.644 0.642 0.643 ABS 0.206 0.193 0.206 ABS 0.171 0.133 0.147 0.168 COI 0.333 0.039 0.145 0.200 0.260 0.460 0.571 0.634 0.147 0.169 COI 0.333 0.039 0.145 0.200 0.201 0.201 0.201 0.201 0.201 0.201 0.201 0.201 0.201 0.201 0.201 0.201 0.201 0.201 0.201 0.201 0.201	NILCW2V100_25	ORG	0.606	0.513	0.556	NILCW2V100_25	ORG	0.586	0.570	0.578	
PER 0.748 0.628 0.683 PER 0.770 0.680 0.722 TMP 0.665 0.836 0.851 TMP 0.642 0.642 0.753 Val. 0.733 0.699 0.716 Total 0.676 0.597 0.634 ABS 0.226 0.193 0.200 0.660 ACC 0.553 0.634 LOC 0.730 0.200 0.260 ACC 0.553 0.147 0.168 COI 0.333 0.093 0.145 0.667 0.597 0.634 COI 0.333 0.093 0.145 0.667 0.770 0.768 0.770 OBR 0.380 0.166 0.250 0.711 0.760 0.763 0.770 0.667 0.770 0.781 0.780 0.770 0.684 0.791 0.760 0.761 0.701 0.133 0.771 0.763 0.761 0.721 0.784 0.753 0.626 0.681 0.684 0.58		OTR	0.000	0.000	0.000		OTR	1.000	0.071	0.133	
TMP 0.865 0.836 0.851 TMP 0.849 0.842 0.842 0.842 0.842 0.842 0.842 0.842 0.843 0.842 0.843 0.758 0.758 0.758 0.758 0.758 0.758 0.758 0.758 0.758 0.758 0.758 0.758 0.759 0.634 ABS 0.200 0.201 0.157 0.201 0.157 0.201 0.157 0.201 0.152 0.171 0.700 0.750 0.654 0.661 0.339 0.842 0.841 <td></td> <td>PER</td> <td>0.748</td> <td>0.628</td> <td>0.683</td> <td></td> <td>PER</td> <td>0.770</td> <td>0.680</td> <td>0.722</td>		PER	0.748	0.628	0.683		PER	0.770	0.680	0.722	
VAL 0.733 0.699 0.716 VAL 0.748 0.758 0.758 Total 0.690 0.570 0.624 Total 0.676 0.597 0.634 ABS 0.226 0.193 0.200 0.260 ABS 0.199 0.147 0.169 ACO 0.370 0.200 0.270 0.711 CO 0.133 0.093 0.145 LOC 0.702 0.710 0.186 0.220 0.711 LOC 0.154 0.237 DCR 0.380 0.186 0.250 0.1140 0.180 0.237 DCR 0.383 0.071 0.183 0.840 0.778 0.654 0.588 DTR 0.333 0.696 0.712 0.741 0.730 0.736 Total 0.677 0.585 0.688 0.718 0.651 0.688 0.621 MLCW2V100_00 OTR 0.103 0.726 0.726 0.721 0.730 0.726		TMP	0.865	0.836	0.851		TMP	0.849	0.842	0.845	
Total 0.630 0.570 0.624 Total 0.676 0.597 0.634 ABS 0.226 0.193 0.200 .260 ABS 0.199 0.147 0.169 CO 0.333 0.093 0.145 .200 0.260 .0201 0.205 0.140 0.180 0.225 CO 0.333 0.093 0.145 .0207 0.0702 0.711 0.050 0.154 0.237 DBR 0.380 0.186 0.250 0.140 0.180 0.200 0.207 0.709 0.707 0.709 0.707 DBR 0.380 0.186 0.571 0.603 NILCW2V100_50 ORG 0.631 0.564 0.589 PER 0.750 0.652 0.611 0.630 0.712 0.736 0.654 0.699 0.736 TMP 0.850 0.831 0.842 0.712 0.736 0.736 0.736 0.736 0.736 0.736 0.736 0.736		VAL	0.733	0.699	0.716		VAL	0.748	0.758	0.753	
ABS 0.226 0.193 0.206 ACO 0.199 0.147 0.169 ACO 0.370 0.200 0.260 ACO 0.250 0.140 0.180 COI 0.333 0.093 0.145 Image: COI 0.0313 0.093 0.145 LOC 0.702 0.711 0.080 0.163 0.564 0.588 OTR 0.638 0.571 0.603 0.663 0.564 0.589 OTR 0.333 0.071 0.118 0.670 0.661 0.564 0.589 VAL 0.728 0.696 0.712 0.707 0.580 0.628 0TR 0.700 0.730 0.730 0.730 0.730 0.730 0.730 0.730 0.730 0.738 0.738 0.839 0.845 0.639 TMP 0.850 0.631 0.554 0.699 TMP 0.850 0.611 0.516 0.512 0.77 ACO 0.235 0.628 0.612 ABS		Total	0.690	0.570	0.624		Total	0.676	0.597	0.634	
ACO 0.370 0.200 0.260 COI 0.333 0.093 0.145 COI 0.5720 0.711 OBR 0.380 0.186 0.250 0.711 COI 0.0720 0.713 0.707 OBR 0.380 0.186 0.250 ORG 0.633 0.571 0.603 PER 0.750 0.621 0.680 ORG 0.613 0.564 0.588 TMP 0.850 0.831 0.840 ORG 0.613 0.669 TMP 0.850 0.621 0.680 ORG 0.613 0.689 TMP 0.850 0.631 0.670 0.628 0.680 0.845 VAL 0.728 0.629 0.680 0.710 1.333 0.700 0.736 COI 0.421 0.049 0.888 0.210 0.161 0.234 LOC 0.728 0.652 0.688 0.616 0.577 COI 0.434 0.122 <td></td> <td>ABS</td> <td>0.226</td> <td>0.193</td> <td>0.208</td> <td></td> <td>ABS</td> <td>0.199</td> <td>0.147</td> <td>0.169</td>		ABS	0.226	0.193	0.208		ABS	0.199	0.147	0.169	
COI 0.333 0.093 0.145 LOC 0.702 0.711 0.702 0.711 OBR 0.380 0.186 0.250 0.070 0.702 0.711 OBR 0.333 0.071 0.160 0.663 0.671 0.663 OTR 0.333 0.071 0.118 0.279 0.090 0.137 TMP 0.850 0.831 0.840 0.840 0.750 0.664 0.699 VAL 0.728 0.696 0.712 Total 0.677 0.588 0.628 VAL 0.728 0.696 0.712 ACO 0.152 0.172 ACO 0.235 0.160 0.191 COI 0.421 0.730 0.736 COI 0.421 0.042 0.088 0.620 1.682 0.613 0.616 0.152 0.177 ACO 0.235 0.160 0.191 0.180 0.186 0.161 0.180 0.186 0.161		ACO	0.370	0.200	0.260		ACO	0.250	0.140	0.180	
LOC 0.702 0.720 0.711 OR 0.330 0.186 0.250 ORG 0.633 0.571 0.603 0.770 0.603 0.777 0.603 0.777 0.603 0.777 0.603 0.777 0.603 0.771 0.777 0.671 0.673 0.671 0.673 0.671 0.777 0.786 0.613 0.564 0.588 OTR 0.750 0.621 0.680 0.712 0.786 0.613 0.633 0.831 0.845 VAL 0.728 0.696 0.712 VAL 0.736 0		COI	0.333	0.093	0.145	-	COI	0.510	0.154	0.237	
OBR 0.380 0.186 0.250 ORG 0.638 0.571 0.603 OTR 0.333 0.071 0.118 PER 0.750 0.621 0.680 TMP 0.850 0.831 0.840 VAL 0.728 0.696 0.712 Total 0.677 0.585 0.628 ABS 0.156 0.076 0.191 COI 0.421 0.049 0.881 LOC 0.235 0.160 0.191 COI 0.421 0.049 0.881 LOC 0.728 0.662 0.681 LOC 0.728 0.652 0.661 ORG 0.615 0.485 0.542 LOC 0.728 0.620 0.681 LOC 0.728 0.620 0.671 ORG 0.615 0.485 0.542 DR 0.433 0.122 0.133 VAL 0.756 0.620 <	-	LOC	0.702	0.720	0.711		LOC	0.702	0.713	0.707	
NILCW2V100_50 OTR ORG 0.638 0.333 0.071 0.603 0.118 NILCW2V100_50 ORG 0.613 0.564 0.588 OTR 0.333 0.071 0.118 PER 0.750 0.621 0.680 TMP 0.850 0.831 0.840 TMP 0.851 0.839 0.845 VAL 0.728 0.696 0.712 Total 0.677 0.585 0.628 ABS 0.156 0.076 0.102 ABS 0.210 0.152 0.177 ACO 0.235 0.160 0.191 ABS 0.210 0.152 0.177 COI 0.421 0.049 0.088 0.220 0.102 ABS 0.210 0.152 0.177 COI 0.421 0.049 0.088 0.620 0.688 COI 0.433 0.161 0.234 LOC 0.728 0.652 0.682 0.682 0.705 OBR 0.250 0.71 0.113 PER		OBR	0.380	0.186	0.250	NILCW2V100 50	OBR	0.279	0.090	0.137	
OTR 0.333 0.071 0.118 PER 0.750 0.621 0.680 TMP 0.850 0.831 0.840 VAL 0.728 0.666 0.712 Total 0.677 0.585 0.628 ABS 0.156 0.076 0.191 COI 0.421 0.049 0.088 LOC 0.728 0.662 0.688 COI 0.421 0.049 0.088 LOC 0.728 0.652 0.688 COI 0.421 0.049 0.088 LOC 0.728 0.652 0.688 DBR 0.434 0.122 0.191 COI 0.421 0.494 0.820 DR 0.433 0.542 0.682 OTR 0.500 0.71 0.125 PER 0.756 0.620 0.682 VAL 0.722 0.733 VAL 0.722 0.733 <t< td=""><td>NILCW2V100_50</td><td>ORG</td><td>0.638</td><td>0.571</td><td>0.603</td><td>ORG</td><td>0.613</td><td>0.564</td><td>0.588</td></t<>	NILCW2V100_50	ORG	0.638	0.571	0.603		ORG	0.613	0.564	0.588	
PER 0.750 0.621 0.680 TMP 0.850 0.831 0.840 VAL 0.728 0.696 0.712 Total 0.677 0.585 0.628 ABS 0.156 0.076 0.102 ACO 0.235 0.160 0.191 COI 0.421 0.049 0.088 COC 0.728 0.652 0.688 OBR 0.434 0.122 0.191 COC 0.728 0.652 0.688 OBR 0.434 0.122 0.191 OTR 0.500 0.671 0.162 OTR 0.500 0.671 0.125 TMP 0.870 0.831 0.850 VAL 0.751 0.703 0.726 TMP 0.870 0.831 0.850 VAL 0.722 0.733 0.728 TMP 0.870 0.824 0.627 VAL 0.722 0.733		OTR	0.333	0.071	0.118		OTR	1.000	0.071	0.133	
TMP 0.850 0.831 0.840 VAL 0.728 0.696 0.712 Total 0.677 0.585 0.628 ABS 0.156 0.076 0.102 ACO 0.235 0.160 0.191 COI 0.421 0.049 0.088 LOC 0.728 0.652 0.688 COI 0.421 0.049 0.088 LOC 0.728 0.652 0.688 DGR 0.434 0.122 0.191 OTR 0.500 0.071 0.125 PER 0.756 0.662 0.682 TMP 0.870 0.831 0.850 VAL 0.751 0.703 0.726 TMP 0.870 0.831 0.850 VAL 0.751 0.703 0.726 TMP 0.870 0.831 0.852 VAL 0.722 0.733 0.728 TMP 0.860 0.627		PER	0.750	0.621	0.680		PER	0.750	0.654	0.699	
VAL 0.728 0.696 0.712 Total 0.677 0.585 0.628 Total 0.679 0.588 0.631 ABS 0.156 0.076 0.102 ABS 0.210 0.152 0.177 ACO 0.235 0.160 0.191 ABS 0.210 0.152 0.177 ACO 0.235 0.160 0.191 ABS 0.210 0.152 0.177 ACO 0.211 0.049 0.088 0.601 0.434 0.122 0.191 OIC 0.421 0.049 0.088 0.652 0.688 0.0161 0.234 DOR 0.434 0.122 0.191 0.021 0.702 0.705 0.705 0.701 0.152 0.771 0.702 0.705 OTR 0.705 0.620 0.682 0.682 0.682 0.881 0.877 VAL 0.751 0.703 0.726 0.726 0.720 0.733 0.728		TMP	0.850	0.831	0.840		TMP	0.851	0.839	0.845	
Total 0.677 0.585 0.628 Total 0.679 0.588 0.631 ABS 0.156 0.076 0.102 ABS 0.150 0.177 ACO 0.235 0.160 0.191 ACO 0.152 0.177 ACO 0.235 0.160 0.191 ACO 0.191 0.180 0.186 COI 0.421 0.049 0.88 ACO 0.433 0.161 0.234 LOC 0.728 0.652 0.688 LOC 0.709 0.702 0.702 OBR 0.434 0.122 0.191 0.068 0.662 0.688 0.662 0.688 0.662 0.688 0.670 0.702 0.702 0.702 0.702 0.702 0.702 0.702 0.702 0.702 0.702 0.702 0.701 0.111 PER 0.750 0.620 0.682 0.682 0.831 0.502 VAL 0.722 0.733 0.728 VAL		VAL	0.728	0.696	0.712	-	VAL	0.741	0.730	0.736	
ABS 0.156 0.076 0.102 ACO 0.235 0.160 0.191 COI 0.421 0.049 0.088 LOC 0.728 0.652 0.688 LOC 0.728 0.652 0.688 DBR 0.434 0.122 0.191 ORG 0.615 0.485 0.542 OTR 0.500 0.071 0.125 PER 0.756 0.620 0.682 TMP 0.870 0.831 0.850 VAL 0.702 0.733 0.726 Total 0.702 0.543 0.612 NILCW2V100_100 ORG 0.627 0.733 VAL 0.751 0.703 0.726 Total 0.702 0.543 0.612 VAL 0.722 0.733 0.728 COI 0.415 0.132 0.155 ACO 0.297 0.220 0.253 COI 0.416 0.15		Total	0.677	0.585	0.628		Total	0.679	0.588	0.631	
ACO 0.235 0.160 0.191 COI 0.421 0.049 0.088 LOC 0.728 0.652 0.688 OBR 0.434 0.122 0.191 ORG 0.615 0.485 0.542 OTR 0.500 0.071 0.125 PER 0.756 0.620 0.682 TMP 0.870 0.831 0.850 VAL 0.751 0.703 0.726 Total 0.702 0.543 0.612 NILCW2V100_100 ORG 0.592 0.627 OTR 0.756 0.620 0.682 TMP 0.870 0.831 0.850 VAL 0.751 0.703 0.726 Total 0.667 0.592 0.627 ACO 0.297 0.220 0.235 COI 0.415 0.136 0.205 LOC 0.711 0.728 0.720 OBR 0.419 0.09		ABS	0.156	0.076	0.102		ABS	0.210	0.152	0.177	
COI 0.421 0.049 0.088 LOC 0.728 0.652 0.688 OBR 0.434 0.122 0.191 ORG 0.615 0.485 0.542 OTR 0.500 0.071 0.125 PER 0.756 0.620 0.682 TMP 0.870 0.831 0.850 VAL 0.751 0.703 0.726 VAL 0.702 0.543 0.612 VAL 0.722 0.203 COI 0.415 0.136 0.662 0.627 ACO 0.297 <t< td=""><td></td><td>ACO</td><td>0.235</td><td>0.160</td><td>0.191</td><td>-</td><td>ACO</td><td>0.191</td><td>0.180</td><td>0.186</td></t<>		ACO	0.235	0.160	0.191	-	ACO	0.191	0.180	0.186	
LOC 0.728 0.652 0.688 OBR 0.434 0.122 0.191 ORG 0.615 0.485 0.542 OTR 0.500 0.071 0.125 PER 0.756 0.620 0.682 TMP 0.870 0.831 0.850 VAL 0.702 0.543 0.612 Total 0.702 0.543 0.612 NILCW2V100_100 OTR 0.250 0.071 0.111 PER 0.756 0.620 0.682 OTR 0.702 0.733 VAL 0.751 0.703 0.726 Total 0.667 0.592 0.627 Total 0.702 0.543 0.612 Total 0.667 0.592 0.627 NILCW2V100_101 OBR 0.132 0.135 0.726 0.205 1.001 0.415 0.132 0.155 ACO 0.297 0.220 0.253 COI 0.419 0.906 0.156		COI	0.421	0.049	0.088		COI	0.433	0.161	0.234	
NILCW2V100_100 OBR 0.434 0.122 0.191 NILCW2V100_100 ORG 0.615 0.485 0.542 OTR 0.500 0.071 0.125 PER 0.756 0.620 0.682 TMP 0.870 0.831 0.850 VAL 0.751 0.703 0.726 Total 0.702 0.543 0.612 NILCW2V100_100 OBR 0.667 0.592 VAL 0.751 0.703 0.726 Total 0.702 0.543 0.612 VAL 0.712 0.733 0.728 RASS 0.187 0.132 0.155 ACO 0.297 0.220 0.253 COI 0.415 0.136 0.205 LOC 0.711 0.728 0.720 DBR 0.419 0.000 0.000 DOBR 0.419 0.096 0.156 OCI 0.711 0.724 0.724		LOC	0.728	0.652	0.688		LOC	0.709	0.702	0.705	
NILCW2V100_100 ORG 0.615 0.485 0.542 NILCW2V100_100 ORG 0.594 0.561 0.577 OTR 0.500 0.071 0.125 OTR 0.250 0.071 0.111 PER 0.756 0.620 0.682 TMP 0.831 0.850 VAL 0.751 0.703 0.726 Total 0.667 0.592 0.627 Total 0.702 0.543 0.612 Total 0.667 0.592 0.627 VAL 0.702 0.543 0.612 Total 0.667 0.592 0.627 VAL 0.702 0.543 0.612 Total 0.667 0.592 0.627 VAL 0.702 0.543 0.612 Total 0.667 0.290 0.253 COI 0.415 0.136 0.205 I.0C 0.711 0.728 0.720 DBR 0.419 0.096 0.156 OTR 0.000 0.000 0.600		OBR	0.434	0.122	0.191		OBR	0.261	0.064	0.103	
OTR 0.500 0.071 0.125 PER 0.756 0.620 0.682 TMP 0.870 0.831 0.850 VAL 0.751 0.703 0.726 Total 0.702 0.543 0.612 VAL 0.702 0.205 0.205 LOC 0.711 0.728 0.720 OBR 0.419 0.096 0.156 OTR 0.000 0.000 0.627 VAL 0.724 0.724	NILCW2V100_100	ORG	0.615	0.485	0.542	NILCW2V100_100	ORG	0.594	0.561	0.577	
PER 0.756 0.620 0.682 TMP 0.870 0.831 0.850 VAL 0.751 0.703 0.726 Total 0.702 0.543 0.612 NILCW2V100_101 0.885 0.187 0.132 0.155 ACO 0.297 0.220 0.253 0.205 COI 0.415 0.136 0.205 0.205 COI 0.415 0.136 0.205 0.205 COI 0.415 0.136 0.205 0.205 LOC 0.711 0.728 0.720 0.253 COI 0.415 0.136 0.205 LOC 0.711 0.728 0.720 OBR 0.419 0.096 0.156 ORG 0.595 0.534 0.563 OTR 0.000 0.000 0.000 PER 0.765 0.662 0.710 TMP 0.844 0.842 0.843 VAL <t< td=""><td></td><td>OTR</td><td>0.500</td><td>0.071</td><td>0.125</td><td></td><td>OTR</td><td>0.250</td><td>0.071</td><td>0.111</td></t<>		OTR	0.500	0.071	0.125		OTR	0.250	0.071	0.111	
TMP 0.870 0.831 0.850 TMP 0.816 0.825 0.820 VAL 0.751 0.703 0.726 VAL 0.722 0.733 0.728 Total 0.702 0.543 0.612 Total 0.667 0.592 0.627 ABS 0.187 0.132 0.155 ACO 0.297 0.220 0.253 COI 0.415 0.136 0.205 LOC 0.711 0.728 0.720 NILCW2V100_150 ORG 0.595 0.534 0.563 OTR 0.000 0.000 0.000 0.000 PER 0.765 0.662 0.710 TMP 0.844 0.842 0.843 VAL 0.724 0.724 0.724		PER	0.756	0.620	0.682		PER	0.740	0.690	0.714	
VAL 0.751 0.703 0.726 Total 0.702 0.543 0.612 Total 0.667 0.592 0.627 ABS 0.187 0.132 0.155 ACO 0.297 0.220 0.253 COI 0.415 0.136 0.205 LOC 0.711 0.728 0.720 NILCW2V100_150 ORG 0.595 0.534 0.563 OTR 0.000 0.000 0.000 0.000 PER 0.765 0.662 0.710 TMP 0.844 0.842 0.843 VAL 0.724 0.724 0.724		TMP	0.870	0.831	0.850		TMP	0.816	0.825	0.820	
Total 0.702 0.543 0.612 Total 0.667 0.592 0.627 ABS 0.187 0.132 0.155 ACO 0.297 0.220 0.253 COI 0.415 0.136 0.205 COI 0.415 0.136 0.205 LOC 0.711 0.728 0.720 0.827 0.920 0.253 OBR 0.415 0.136 0.205 LOC 0.711 0.728 0.720 OBR 0.419 0.096 0.156 ORG 0.595 0.534 0.563 OTR 0.000 0.000 0.000 0.000 0.000 0.000 PER 0.765 0.662 0.710 TMP 0.844 0.842 0.843 VAL 0.724 0.724 0.724 0.724 0.724		VAL	0.751	0.703	0.726		VAL	0.722	0.733	0.728	
ABS 0.187 0.132 0.155 ACO 0.297 0.220 0.253 COI 0.415 0.136 0.205 LOC 0.711 0.728 0.720 OBR 0.419 0.096 0.156 ORG 0.595 0.534 0.563 OTR 0.000 0.000 0.000 PER 0.765 0.662 0.710 TMP 0.844 0.842 0.843 VAL 0.724 0.724 0.724 Total 0.682 0.588 0.631		Total	0.702	0.543	0.612		Total	0.667	0.592	0.627	
ACO 0.297 0.220 0.253 COI 0.415 0.136 0.205 LOC 0.711 0.728 0.720 OBR 0.419 0.096 0.156 ORG 0.595 0.534 0.563 OTR 0.000 0.000 0.000 PER 0.765 0.662 0.710 TMP 0.844 0.842 0.843 VAL 0.724 0.724 0.724 Total 0.682 0.588 0.631		L.					ABS	0.187	0.132	0.155	
COI 0.415 0.136 0.205 LOC 0.711 0.728 0.720 OBR 0.419 0.096 0.156 ORG 0.595 0.534 0.563 OTR 0.000 0.000 0.000 PER 0.765 0.662 0.710 TMP 0.844 0.842 0.843 VAL 0.724 0.724 0.724 Total 0.682 0.588 0.631							ACO	0.297	0.220	0.253	
LOC 0.711 0.728 0.720 OBR 0.419 0.096 0.156 ORG 0.595 0.534 0.563 OTR 0.000 0.000 0.000 PER 0.765 0.662 0.710 TMP 0.844 0.842 0.843 VAL 0.724 0.724 0.724 Total 0.682 0.588 0.631							COI	0.415	0.136	0.205	
NILCW2V100_150 OBR 0.419 0.096 0.156 ORG 0.595 0.534 0.563 OTR 0.000 0.000 0.000 PER 0.765 0.662 0.710 TMP 0.844 0.842 0.843 VAL 0.724 0.724 0.724 Total 0.682 0.588 0.631							LOC	0.711	0.728	0.720	
NILCW2V100_150 ORG 0.595 0.534 0.563 OTR 0.000 0.000 0.000 PER 0.765 0.662 0.710 TMP 0.844 0.842 0.843 VAL 0.724 0.724 0.724 Total 0.682 0.588 0.631							OBR	0.419	0.096	0.156	
OTR 0.000 0.000 PER 0.765 0.662 0.710 TMP 0.844 0.842 0.843 VAL 0.724 0.724 0.724 Total 0.682 0.588 0.631						NILCW2V100_150	ORG	0.595	0.534	0.563	
PER 0.765 0.662 0.710 TMP 0.844 0.842 0.843 VAL 0.724 0.724 0.724 Total 0.682 0.588 0.631							OTR	0.000	0.000	0.000	
TMP 0.844 0.842 0.843 VAL 0.724 0.724 0.724 Total 0.682 0.588 0.631							PER	0.765	0.662	0.710	
VAL 0.724 0.724 0.724 Total 0.682 0.588 0.631							TMP	0.844	0.842	0.843	
Total 0.682 0.588 0.631							VAL	0.724	0.724	0.724	
						Total	0.682	0.588	0.631		

Table H.11 – The results of the NILCW2V100 auto-encoded model for the Total HAREM Track.

	NORMA	LIZED			STANDARDIZED				
Model	Category	Precision	Recall	F1	Model	Category	Precision	Recall	F1
	ABS	0.241	0.193	0.214		ABS	0.235	0.198	0.215
	ACO	0.282	0.220	0.247		ACO	0.180	0.180	0.180
	COI	0.418	0.142	0.212		COI	0.333	0.161	0.217
	LOC	0.717	0.734	0.725		LOC	0.723	0.721	0.722
	OBR	0.333	0.117	0.173		OBR	0.238	0.080	0.120
NILCFT300	ORG	0.616	0.579	0.597	NILCFT300	ORG	0.597	0.577	0.587
	OTR	0.200	0.071	0.105		OTR	0.000	0.000	0.000
	PER	0.761	0.651	0.702		PER	0.748	0.663	0.703
	ТМР	0.858	0.833	0.845		TMP	0.832	0.842	0.837
	VAL	0.745	0.745	0.745		VAL	0.746	0.748	0.747
	Total	0.684	0.600	0.639		Total	0.667	0.599	0.631
	ABS	0.218	0.208	0.213		ABS	0.265	0.198	0.227
	ACO	0.306	0.220	0.256		ACO	0.321	0.180	0.231
	COI	0.486	0.105	0.173		COI	0.333	0.142	0.199
	LOC	0.730	0.698	0.714		LOC	0.720	0.702	0.711
	OBR	0.388	0.165	0.231		OBR	0.349	0.122	0.181
NILCFT300_25	ORG	0.625	0.543	0.581	NILCFT300_25	ORG	0.584	0.529	0.555
	OTR	0.333	0.071	0.118	_	OTR	0.250	0.071	0.111
	PER	0.757	0.609	0.675		PER	0.727	0.619	0.668
	TMP	0.860	0.831	0.845		TMP	0.881	0.853	0.867
	VAL	0.758	0.712	0.734		VAL	0.734	0.727	0.730
	Total	0.686	0.575	0.625		Total	0.674	0.577	0.622
	ABS	0.263	0.178	0.212		ABS	0.206	0.173	0.188
	ACO	0.212	0.140	0.169		ACO	0.182	0.160	0.170
	COI	0.552	0.099	0.168		COI	0.316	0.111	0.164
	LOC	0.744	0.671	0.706		LOC	0.728	0.710	0.719
	OBR	0.420	0.154	0.226	NILCFT300_50	OBR	0.280	0.075	0.118
NILCFT300_50	ORG	0.638	0.515	0.570		ORG	0.597	0.552	0.574
	OTR	0.500	0.071	0.125		OTR	0.500	0.071	0.125
	PER	0.772	0.667	0.715		PER	0.766	0.629	0.690
	TMP	0.869	0.825	0.846		TMP	0.852	0.845	0.848
	VAL	0.758	0.758	0.758		VAL	0.739	0.755	0.747
	Total	0.712	0.577	0.637		Total	0.678	0.581	0.626
	ABS	0.285	0.168	0.211		ABS	0.264	0.218	0.239
	ACO	0.302	0.260	0.280		ACO	0.250	0.180	0.209
	COI	0.517	0.093	0.157		COI	0.371	0.142	0.205
	LOC	0.726	0.673	0.699		LOC	0.727	0.704	0.715
	OBR	0.255	0.069	0.109		OBR	0.323	0.112	0.166
NILCFT300_100	ORG	0.622	0.526	0.570	NILCFT300_100	ORG	0.633	0.545	0.586
	OTR	0.333	0.071	0.118		OTR	0.200	0.071	0.105
	PER	0.770	0.594	0.671		PER	0.761	0.648	0.700
	TMP	0.902	0.828	0.863		TMP	0.875	0.853	0.864
	VAL	0.756	0.712	0.733		VAL	0.737	0.758	0.747
	Total	0.706	0.555	0.621		Total	0.690	0.591	0.637
						ABS	0.240	0.188	0.211
						ACO	0.238	0.200	0.217
						COI	0.347	0.105	0.161
						LOC	0.733	0.709	0.721
						OBR	0.288	0.101	0.150
					NILCE 1300_150	ORG	0.611	0.550	0.579
							0.000	0.000	0.000
						PER	0.757	0.641	0.694
							0.851	0.839	0.845
						VAL	0.749	0.752	0.750
						lotal	0.684	0.585	0.631

 Table H.12 – The results of the NILCFT300 auto-encoded model for the Total HAREM Track.

 Auto-encoded Models - HAREM TOTAL

Mode Category Precision Recal Image: Control Georgia Colorigono Delacia Formation Status Nation PetroVecF1 Control Georgia Colorigono Delacia				Co	ncatena	nated Models						
ModelCategoryPerelsionRecallFiModelCategoryPrecisionRecallFitbacialsedimentare0.781		NORMALIZED					STANDARDIZED					
baciaSedimentar 0.730 0.732 0.742 0.744 0.745 0.742 0.744 0.745 0.742 0.744 0.745 0.742 0.744 0.746 0.742 0.744 0.746	Model	Category	Precision	Recall	F1	Model	Category	Precision	Recall	F1		
PetroVecFT ContextoCselogicoDeBacia 0.742 0.744 0.742 0.741 repoca contextoCselogicoDeBacia 0.769 0.832 0.724 0.741 0.722 0.741 regarmaticas 0.768 0.830 0.776 0.876 0.722 0.741 periodo 0.831 0.676 0.825 0.811 0.876 0.825 0.817 0.876 0.826 0.870 0.772 0.818 0.837 0.876 0.826 0.847 0.826 0.847 0.826 0.847 0.826 0.847 0.826 0.847 0.826 0.847 0.846 0.826 0.847 0.846 0.846 0.846 0.847 0.846 0.847 0.846 0.847 0.846 0.847 0.847 0.846 0.847 0.846 0.847 0.846 0.847 0.846 0.847 0.847 0.847 0.846 0.847 0.847 0.847 0.847 0.847 0.847 0.847 0.847 0.847 0.847 0.84		baciaSedimentar	0.738	0.730	0.733		baciaSedimentar	0.816	0.835	0.824		
PetroVecFT_50 period 0.832 0.724 0.747 0.775 PetroVecFT_10 magmalicas 0.780 0.776 0.775 0.781 medamorificas 0.881 0.730 0.776 0.781 magmalicas 0.882 0.883 0.786 0.786 0.786 0.786 0.786 0.786 0.786 0.786 0.786 0.786 0.786 0.786 0.786 0.786 0.786		contextoGeologicoDeBacia	0.742	0.754	0.747		contextoGeologicoDeBacia	0.796	0.825	0.810		
Idade 0.814 0.700 0.753 magmalicas 0.764 0.726 0.776 magmalicas 0.821 0.780 0.776 0.780 0.823 0.824 0.823 0.824 0.823 0.824 0.823 0.824 0.826		epoca	0.832	0.724	0.774		epoca	0.870	0.772	0.818		
PetroVecFT magmaticas 0.783 0.874 0.827 magmaticas 0.839 0.837 0.827 0.827 periodo 0.811 0.667 0.729 PetroVecFT periodo 0.810 0.824 0.828 0.847 0.839 0.847 0.839 0.847 0.839 0.847 0.839 0.847 0.880 0.846 0.847 0.846 0.846 0.846 0.846 0.846 0.846 0.846 0.846 0.846 0.846 0.846 0.846 0.846 0.846 0.846 0.846 0.847 0.846 0.841 0.866 0.746 0.746 0.746 0.746 0.746 0.746 0.746 0.		idade	0.814	0.700	0.753		idade	0.764	0.722	0.741		
PetroVecFT metamoricas periodo 0.821 0.729 0.776 PetroVecFT metamoricas periodo 0.823 0.824 0.823 0.824 0.823 0.824 0.820 0.820 0.820 0.820 0.820 0.820 0.847 0.840 0.841 0.843 0.840 0.840 0.841 0.843 0.840 0.840 0.843 0.840 0.843 0.841 0.843 0.841 0.843 0.841 0.843 0.841 0.843 0.841 0.843 0.841 0.843 0.841 0.843 0.841 0.843 0.740 770 770 770 770 770 770 770 770 770 770 770 770 770 770 770 770		magmaticas	0.768	0.805	0.786		magmaticas	0.839	0.817	0.827		
period 0.813 0.667 0.732 period 0.870 0.740 0.870 0.740 0.870 0.740 0.870 0.740 0.870 0.870 0.870 0.870 0.870 0.870 0.870 0.870 0.870 0.870 0.840 0.845 0.846 0.876 0.780 <	PetroVecFT	metamorficas	0.821	0.739	0.776	PetroVecFT	metamorficas	0.823	0.824	0.823		
sedimentaresCarbonalicas 0.74 0.835 0.814 sedimentaresCarbonalicas 0.826 0.836 0.837 0.836 sedimentaresSilicidaticas 0.826 0.876 0.775 0.780 0.770 0.781 0.770 0.781 0.770 0.781 0.770 0.781 0.770 0.781 0.780 0.777 0.781 0.780 0.777 0.781 0.780 0.777 0.781 0.780		periodo	0.813	0.667	0.732		periodo	0.870	0.740	0.799		
sedimentaresSilicidasticas 0.647 0.838 sedimentaresSilicidasticas 0.648 0.847 0.848 baciaSedimentar 0.776 0.778 0.778 0.778 0.778 0.778 0.778 0.778 0.778 0.778 0.778 0.774 0.783 0.774 0.783 0.774 0.780 0.774 0.780 0.774 0.780 0.776 0.776 0.776 0.776 0.776 0.776 0.783 0.776 0.776 0.780 0.786 0.776 0.780 0.786 0.776 0.776 0.781 0.781 0.771 <		sedimentaresCarbonaticas	0.794	0.835	0.814		sedimentaresCarbonaticas	0.820	0.896	0.856		
unidadeEstratigrafica 0.772 0.780 0.770 0.780 0.770 0.780 0.770 0.780 0.770 0.780 0.770 0.780 0.770 0.780 0.770 0.780 0.770 0.780 0.770 0.780 0.776 0.780 0.780 0.780 0.780 0.780 0.780 0.780 0.780 0.780 0.780 0.780 0.780 0.780 0.780 0.780 0.780 0.776 0.780 0.776 0.780 0.776 0.780 0.780 0.776 0.780 0.776 0.780 0.776 0.777 0.780<		sedimentaresSiliciclasticas	0.829	0.847	0.838		sedimentaresSiliciclasticas	0.845	0.847	0.846		
balai 0.782 0.782 0.774 0.784 0.780 balai 0.828 0.811 0.813 0.812 0.803 0.812 0.803 0.812 0.803 0.812 0.803 0.812 0.803 0.814 0.868 0.786 <th< td=""><td></td><td>unidadeEstratigrafica</td><td>0.767</td><td>0.795</td><td>0.780</td><td></td><td>unidadeEstratigrafica</td><td>0.817</td><td>0.870</td><td>0.843</td></th<>		unidadeEstratigrafica	0.767	0.795	0.780		unidadeEstratigrafica	0.817	0.870	0.843		
baciaSedimentar 0.770 0.774 0.780 0.780 contextoGeologicoDeBacia 0.810 0.850 0.780 contextoGeologicoDeBacia 0.814 0.859 0.780 contextoGeologicoDeBacia 0.849 0.785 0.780 0		total	0.792	0.763	0.777		total	0.827	0.811	0.818		
PetroVecFT_20 ContextoGeologicoDeBacia 0.810 0.599 0.682 0.730 0.682 0.730 0.689 0.780 0.869 0.780		baciaSedimentar	0.770	0.794	0.780		baciaSedimentar	0.803	0.812	0.807		
PetroVecFT_50 metamorficas 0.790 0.682 0.730 0.68 0.736 0.736 0.736 metamorficas 0.827 0.683 0.75 0.81 0.81 0.81 0.83 0.73 0.75 0.81 0.81 0.81 0.83 0.74 0.75 0.81 0.81 0.81 0.83 0.74 0.75 0.81 0.81 0.81 0.82 0.83 0.74 0.75 0.81 0.81 0.81 0.75 0.81 0.81 0.81 0.81 0.82 0.75 0.83 0.75 0.83 0.75 0.83 0.75 0.83 0.75 0.83 0.75 0.83 0.75 0.83 0.75 0.83 0.76 0.83 0.76 0.83 0.76 0.83 0.76 0.83 0.76 0.83 0.76 0.83 0.76 0.83 0.76 0.83 0.83 0.76 0.83 0.83 0.76 0.83 0.83 0.76 0.83 0.83 0.76 0.83		contextoGeologicoDeBacia	0.810	0.599	0.664		contextoGeologicoDeBacia	0.804	0.785	0.790		
Idade 0.812 0.812 0.839 0.710 magmalicas 0.844 0.736 0.779 metamoricas 0.892 0.683 0.771 magmalicas 0.817 0.813 0.816 0.817 0.813 0.816 0.817 0.813 0.816 0.816 0.816 0.816 0.816 0.816 0.817 0.813 0.816 0.817 0.813 0.816 0.817 0.813 0.816 0.817 0.813 0.816 0.817 0.813 0.806 0.816 0.817 0.813 0.806 0.816 0.817 0.813 0.806 0.816 0.817 0.833 0.816 0.817 0.833 0.816 0.817 0.833 0.816 0.817 0.833 0.816 0.817 0.833 0.817 0.816 0.817 0.833 0.817 0.816 0.817 0.833 0.807 0.807 0.807 0.807 0.807 0.807 0.807 0.807 0.807 0.807 0.807 0.807 0.807		epoca	0.790	0.682	0.732		epoca	0.869	0.726	0.784		
PetroVecFT_50 metamoricas 0.814 0.685 0.761 PetroVecFT_50 metamoricas 0.819 0.817 0.813 sedimentaresCarbonaticas 0.727 0.763 0.776 0.780 0.		idade	0.812	0.639	0.710		idade	0.834	0.736	0.779		
PetroVecFT_26 metamorficas 0.892 0.771 PetroVecFT_26 metamorficas 0.843 0.788 0.803 sedimentares 0.771 0.780 0.776 0.787 0.786 0.787 0.786 0.787 0.863 0.776 0.786 0.787 0.863 0.776 0.863 0.776 0.863 0.776 0.863 0.776 0.863 0.776 0.863 0.872 0.887 0.885 0.882 0.887 0.883 0.876 0.789 0.883 0.876 0.789 0.885 0.886 0.881 0.848 0.865 0.838 0.865 0.838 0.865 0.838 0.865		magmaticas	0.814	0.685	0.736		magmaticas	0.819	0.817	0.813		
PetroVecFT_50 periodo 0.827 0.683 0.736 periodo 0.843 0.745 0.780 sedimentaresCarbonaticas 0.731 0.780 0.780 sedimentaresCarbonaticas 0.803 0.818 0.819 total 0.805 0.713 0.780 0.780 0.780 0.780 0.813 0.818 0.827 0.811 0.818 0.827 0.811 0.818 0.826 0.8	PetroVecFT_25	metamorficas	0.892	0.693	0.771	PetroVecFT_25	metamorficas	0.843	0.788	0.808		
PetroVecFT_50 sedimentaresCarbonaticas sedimentaresSilio(clasticas 0.822 0.773 0.781 0.705 0.816 0.818 0.816 sedimentaresSilio(clasticas 0.826 0.826 0.841 0.806 0.811 0.818 0.817 baciaSedimentar contextoGeologicoDeBacia 0.833 0.784 0.780 0.780 0.780 0.818 0.826 0.826 0.826 0.826 0.826 0.826 0.826 0.831 0.818 0.818 0.818 0.818 0.826 0.820 0.818 0.817 0.833 0.784 0.704 0.837 0.833 0.784 0.701 0.757 0.837 0.816 0.876 0.839 0.876 0.839 0.766 0.782 metamorficas 0.839 0.778 0.807 PetroVecFT_50 metamorficas 0.826 0.833 0.837 sedimentaresCarbonaticas 0.789 0.819 0.774 0.807 PetroVecFT_50 metamorficas 0.826 0.838 0.807 sedimentaresCarbonaticas 0.824 0.833 0.744 0.752 metamorficas 0.864 0.857 <		periodo	0.827	0.663	0.736		periodo	0.843	0.745	0.789		
sedimentaresSiliciclasticas 0.827 0.811 0.780 sedimentaresSiliciclasticas 0.826 0.846 0.817 0.810 0.780 baciaSedimentar 0.780 0.793 0.794 total 0.805 0.817 0.808 0.807 0.808 0.807 0.808 0.807 0.808 0.807 0.808 0.807 0.808 0.807 0.808 0.807 0.808 0.807 0.808 0.808 0.808 0.807 0.808		sedimentaresCarbonaticas	0.773	0.705	0.727		sedimentaresCarbonaticas	0.803	0.818	0.809		
unidadeEstratigrafica 0.781 0.780 unidadeEstratigrafica 0.820 0.818 0.817 0.830 0.887 0.887 0.887 0.887 0.887 0.887 0.887 0.887 0.887 0.887 0.887 0.887 0.887 0.887 0.887 0.887 0.887 0.833 0.724 0.730 0.794 0.833 0.724 0.733 0.794 0.733 0.794 0.733 0.794 0.833 0.817 0.833 0.726 0.837 0.775 0.807 0.837 0.775 0.807 0.833 0.766 0.782 0.807 magmaticas 0.855 0.825 0.837 0.837 0.807 magmaticas 0.825 0.877 0.849 0.862 0.877 0.849 0.842 0.835 0.838 0.836 0.786 0.852 0.839 0.837 0.841 0.842 0.835 0.838 0.836 0.836 0.836 0.836 0.836 0.836 0.836 0.836 0.836 0.837 0.8		sedimentaresSiliciclasticas	0.827	0.811	0.818		sedimentaresSiliciclasticas	0.826	0.856	0.841		
Iotal 0.805 0.773 0.774 Iotal 0.825 0.790 0.807 baciaSedimentar 0.796 0.793 0.774 0.775 baciaSedimentar 0.851 0.817 0.837 0.773 0.774 0.775 baciaSedimentar 0.816 0.817 0.817 0.817 0.816 0.816 0.816 0.816 0.816 0.816 0.816 0.816 0.816 0.816 0.816 0.817 0.837 0.876 0.789 magmaticas 0.815 0.756 0.780 0.777 idade 0.838 0.786 0.827 0.837 0.837 0.837 0.837 0.837 0.837 0.837 0.838 0.780 0.838 0.874 0.837 0.838 0.878 0.838 0.874 0.838 0.838 0.838 0.874 0.807 0.848 0.829 0.766 0.829 0.766 0.828 0.838 0.838 0.838 0.874 0.838 0.838 0.838 0.838 0.848		unidadeEstratigrafica	0.781	0.780	0.780		unidadeEstratigrafica	0.820	0.818	0.817		
PetroVecFT_50 DeciaSedimentar 0.796 0.793 0.794 recritextoGeologicoDeBacia 0.837 0.724 0.775 contextoGeologicoDeBacia 0.816 0.810 0.813 PetroVecFT_50 magmaticas 0.815 0.756 0.786 0.787 0.807 0.786 0.786 0.786 0.786 0.786 0.786 0.827 0.816 0.810 0.817 0.807 0.817 0.807 0.816 0.810 0.818 0.826 0.828 0.828 0.828 0.828 0.828 0.828 0.828 0.828 0.828 0.828 0.828 0.828 0.828 0.828 0.828 0.829 0.828 0.828 0.828 0.828 0.828 0.829 0.828 0.829 0.828 0.829 0.766 0.829 0.828 0.829 0.874 0.766 0.829 0.838 0.874 0.766 0.826 0.838 0.874 0.879 0.771 0.806 0.789 0.770 0.751 magmaticas		total	0.805	0.713	0.754		total	0.825	0.790	0.807		
PetroVecFT_50 contextoGeologicoDeBacia 0.807 0.750 contextoGeologicoDeBacia 0.816 0.817 0.817 idade 0.831 0.663 0.736 0.782 idade 0.838 0.766 0.782 magmaticas 0.839 0.776 0.876 0.872 0.835 0.723 0.838 0.766 0.782 periodo 0.839 0.776 0.877 0.807 magmaticas 0.822 0.838 0.826 0.836 0.827 0.836 0.827 0.836 0.837 <td< td=""><td></td><td>baciaSedimentar</td><td>0.796</td><td>0.793</td><td>0.794</td><td></td><td>baciaSedimentar</td><td>0.851</td><td>0.817</td><td>0.833</td></td<>		baciaSedimentar	0.796	0.793	0.794		baciaSedimentar	0.851	0.817	0.833		
PetroVecFT_50 epoca 0.837 0.724 0.775 magmaticas 0.815 0.736 0.736 metamorficas 0.839 0.778 0.807 periodo 0.839 0.778 0.807 sedimentaresCarbonaticas 0.839 0.778 0.807 sedimentaresSiliciclasticas 0.842 0.833 0.837 unidadeEstratigrafica 0.791 0.807 0.807 unidadeEstratigrafica 0.791 0.807 0.838 0.828 total 0.822 0.788 0.789 0.837 0.838 0.837 unidadeEstratigrafica 0.791 0.802 0.786 0.839 0.776 0.848 0.824 0.833 0.838 0.807 0.838 0.861 0.839 0.766 0.828 0.807 0.838 0.801 0.838 0.801 0.833 0.861 0.857 0.838 0.801 0.834 0.824 0.824 0.824 0.824 0.824 0.824 0.824 0.824		contextoGeologicoDeBacia	0.805	0.703	0.750		contextoGeologicoDeBacia	0.816	0.810	0.813		
idade 0.831 0.663 0.736 0.736 magmalicas 0.838 0.766 0.789 metamorificas 0.839 0.778 0.807 netamorificas 0.832 0.817 0.839 periodo 0.844 0.701 0.777 0.807 netamorificas 0.823 0.817 sedimentaresCarbonaticas 0.782 0.839 0.837 0.839 0.837 unidadeEstratigrafica 0.791 0.805 0.798 netamorificas 0.822 0.817 unidadeEstratigrafica 0.764 0.783 0.778 0.879 0.838 0.861 0.838 0.861 0.838 0.861 0.838 0.861 0.838 0.861 0.838 0.861 0.838 0.861 0.838 0.861 0.838 0.861 0.838 0.861 0.838 0.861 0.838 0.861 0.838 0.861 0.838 0.861 0.838 0.861 0.838 0.861 0.838 0.861 0.838 0.861 0.838 <t< td=""><td></td><td>epoca</td><td>0.837</td><td>0.724</td><td>0.775</td><td></td><td>epoca</td><td>0.913</td><td>0.807</td><td>0.857</td></t<>		epoca	0.837	0.724	0.775		epoca	0.913	0.807	0.857		
PetroVecFT_50 magmaticas 0.815 0.756 0.782 periodo 0.834 0.778 0.807 sedimentaresCarbonaticas 0.795 0.813 0.837 sedimentaresSliliciclasticas 0.795 0.813 0.837 unidadeEstratigrafica 0.791 0.778 0.807 unidadeEstratigrafica 0.791 0.778 0.838 unidadeEstratigrafica 0.793 0.805 0.798 total 0.822 0.783 0.778 0.813 contextoGeologicoDeBacia 0.824 0.829 0.781 0.838 0.874 iade 0.799 0.710 0.775 0.805 0.789 0.776 0.813 0.848 0.824 0.823 0.837 epoca 0.824 0.620 0.752 idade 0.835 0.729 0.778 magmaticas 0.784 0.770 0.771 0.825 0.816 0.866 0.827 0.836 idade 0.837 0.825 0.816		idade	0.831	0.663	0.736		idade	0.838	0.766	0.799		
PetroVecFT_50 metamorficas 0.839 0.778 0.807 PetroVecFT_50 metamorficas 0.823 0.877 0.849 sedimentaresCarbonaticas 0.776 0.701 0.777 sedimentaresCarbonaticas 0.786 0.822 0.877 0.849 sedimentaresCarbonaticas 0.791 0.803 0.837 unidadeEstratigrafica 0.788 0.824 0.833 0.837 total 0.822 0.778 0.789 0.789 0.844 0.838 0.807 baciaSedimentar 0.764 0.783 0.774 0.789 total 0.843 0.824 0.833 contextoGeologicoDeBacia 0.813 0.774 0.775 contextoGeologicoDeBacia 0.861 0.771 magmaticas 0.784 0.760 0.771 0.765 contextoGeologicoDeBacia 0.861 0.827 0.824 0.824 0.824 0.824 0.824 0.824 0.824 0.824 0.824 0.824 0.824 0.824 0.824 0.824 0.827 0.866 <td></td> <td>magmaticas</td> <td>0.815</td> <td>0.756</td> <td>0.782</td> <td></td> <td>magmaticas</td> <td>0.855</td> <td>0.823</td> <td>0.838</td>		magmaticas	0.815	0.756	0.782		magmaticas	0.855	0.823	0.838		
periodo 0.874 0.701 0.777 periodo 0.899 0.766 0.826 sedimentaresCarbonaticas 0.795 0.830 0.837 sedimentaresSiliciclasticas 0.838 0.837 unidadeEstratigrafica 0.791 0.805 0.798 total 0.842 0.833 baciaSedimentar 0.764 0.783 0.774 sedimentaresSiliciclasticas 0.844 0.824 0.833 idade 0.824 0.692 0.752 contextoGeologicoDeBacia 0.813 0.744 0.775 idade 0.798 0.766 0.798 total 0.844 0.824 0.833 idade 0.798 0.774 sedimentaresCarbonaticas 0.857 0.789 periodo 0.816 0.766 0.771 reados contextoGeologicoDeBacia 0.861 0.857 magmaticas 0.784 0.760 0.771 magmaticas 0.824 0.823 sedimentaresCarbonaticas 0.815 0.825 0.818 0.827 magmaticas <td>PetroVecFT 50</td> <td>metamorficas</td> <td>0.839</td> <td>0.778</td> <td>0.807</td> <td>PetroVecFT 50</td> <td>metamorficas</td> <td>0.823</td> <td>0.877</td> <td>0.849</td>	PetroVecFT 50	metamorficas	0.839	0.778	0.807	PetroVecFT 50	metamorficas	0.823	0.877	0.849		
sedimentaresCarbonaticas 0.795 0.819 0.807 sedimentaresSiliciclasticas 0.842 0.833 0.837 unidadeEstratigrafica 0.798 0.798 0.807 total 0.822 0.758 0.798 baciaSedimentar 0.764 0.783 0.779 contextoGeologicoDeBacia 0.813 0.744 0.775 epoca 0.824 0.692 0.752 idade 0.799 0.710 0.751 idade 0.799 0.710 0.752 idade 0.784 0.764 0.783 periodo 0.816 0.656 0.723 periodo 0.816 0.656 0.723 sedimentaresCarbonaticas 0.841 0.824 0.824 indadeEstratigrafica 0.777 0.765 0.771 indadeEstratigrafica 0.845 0.837 0.886 indadeEstratigrafica 0.845 0.837 0.882 indadeEstratigrafica 0.846 0.881 0.868 <td>_</td> <td>periodo</td> <td>0.874</td> <td>0.701</td> <td>0.777</td> <td>7</td> <td>periodo</td> <td>0.899</td> <td>0.766</td> <td>0.826</td>	_	periodo	0.874	0.701	0.777	7	periodo	0.899	0.766	0.826		
sedimentaresSiliciclasticas 0.842 0.833 0.837 unidadeEstratigrafica 0.791 0.805 0.798 unidadeEstratigrafica 0.783 0.838 0.837 baciaSedimentar 0.764 0.788 0.778 0.789 total 0.843 0.824 0.833 0.837 contextoGeologicoDeBacia 0.813 0.774 0.775 percea 0.844 0.824 0.839 0.877 idade 0.789 0.776 ontextoGeologicoDeBacia 0.861 0.857 0.859 epoca 0.824 0.682 0.751 magmaticas 0.826 0.731 metamorficas 0.829 0.681 0.737 magmaticas 0.824 0.823 periodo 0.816 0.656 0.723 magmaticas 0.824 0.824 0.822 sedimentaresCarbonaticas 0.816 0.825 0.818 0.871 magmaticas 0.834 0.868 0.824 0.822 sedimentaresSiliciclasticas 0.845 0.810 0		sedimentaresCarbonaticas	0.795	0.819	0.807		sedimentaresCarbonaticas	0.788	0.852	0.819		
unidadeEstratigrafica 0.791 0.805 0.798 total 0.822 0.778 0.783 0.813 0.824 0.833 baciaSedimentar 0.764 0.7783 0.774 0.775 0.778 contextoGeologicoDeBacia 0.813 0.774 0.775 0.783 0.774 epoca 0.824 0.692 0.751 contextoGeologicoDeBacia 0.861 0.877 magmaticas 0.799 0.710 0.751 magmaticas 0.824 0.823 period 0.816 0.670 0.771 0.755 magmaticas 0.824 0.825 0.816 0.817 0.816 0.816 0.827 0.824 0.828 0.824 0.826 0.821		sedimentaresSiliciclasticas	0.842	0.833	0.837		sedimentaresSiliciclasticas	0.861	0.889	0.874		
total 0.822 0.758 0.789 total 0.843 0.824 0.833 baciaSedimentar 0.764 0.783 0.774 0.783 0.774 0.813 0.813 0.813 0.814 0.824 0.833 epoca 0.824 0.622 0.752 idade 0.816 0.857 0.859 idade 0.799 0.710 0.751 magmaticas 0.824 0.823 0.778 magmaticas 0.816 0.656 0.723 idade 0.837 0.782 0.836 periodo 0.816 0.656 0.723 metamorficas 0.901 0.872 0.886 sedimentaresCarbonaticas 0.815 0.825 0.818 0.776 metamorficas 0.837 0.824 0.823 0.821 0.825 0.818 0.806 0.723 sedimentaresCarbonaticas 0.836 0.826 0.821 0.826 0.821 0.821 0.822 0.836 0.825 0.821 0.826 0.826 0.826		unidadeEstratigrafica	0.791	0.805	0.798		unidadeEstratigrafica	0.783	0.838	0.807		
baciaSedimentar 0.764 0.783 0.774 contextoGeologicoDeBacia 0.813 0.774 0.775 epoca 0.824 0.692 0.752 idade 0.799 0.710 0.771 magmaticas 0.784 0.760 0.771 metamorficas 0.829 0.681 0.737 periodo 0.816 0.656 0.723 sedimentaresCarbonaticas 0.815 0.825 0.818 sedimentaresCarbonaticas 0.815 0.825 0.818 unidadeEstratigrafica 0.777 0.765 0.771 total 0.806 0.748 0.776 votal 0.806 0.748 0.776 votal 0.806 0.748 0.765 votal 0.806 0.748 0.765 votal 0.806 0.748 0.765 votal 0.806 0.748 0.871 votal 0.806 0.748 0.765 votal 0.806		total	0.822	0.758	0.789		total	0.843	0.824	0.833		
contextoGeologicoDeBacia 0.813 0.744 0.775 epoca 0.824 0.692 0.752 idade 0.799 0.710 0.751 magmaticas 0.784 0.760 0.771 metamorficas 0.829 0.681 0.737 periodo 0.816 0.765 0.723 sedimentaresCarbonaticas 0.845 0.827 0.887 sedimentaresSiliciclasticas 0.845 0.837 0.841 unidadeEstratigrafica 0.777 0.765 0.771 total 0.806 0.748 0.766 veriodo 0.816 0.656 0.723 sedimentaresSiliciclasticas 0.845 0.837 unidadeEstratigrafica 0.777 0.765 0.771 unidadeEstratigrafica 0.806 0.748 0.766 total 0.806 0.748 0.776 verido 0.818 0.861 0.863 sedimentaresSiliciclasticas 0.846 0.881 otal		baciaSedimentar	0.764	0.783	0.774		baciaSedimentar	0.848	0.854	0.851		
PetroVecFT_100 epoca 0.824 0.692 0.752 idade 0.799 0.710 0.751 magmaticas 0.784 0.760 0.771 metamorficas 0.829 0.681 0.773 periodo 0.816 0.723 metamorficas 0.824 0.823 0.821 sedimentaresCarbonaticas 0.815 0.825 0.818 0.816 0.837 0.816 0.835 0.828 0.828 0.816 0.835 0.828 0.816 0.838 0.818 0.816 0.835 0.848 0.816 0.838 0.818 0.816 0.838		contextoGeologicoDeBacia	0.813	0.744	0.775	ŕ	contextoGeologicoDeBacia	0.861	0.857	0.859		
idade 0.799 0.710 0.751 magmaticas 0.784 0.760 0.771 metamorficas 0.829 0.681 0.723 periodo 0.816 0.656 0.723 sedimentaresCarbonaticas 0.815 0.825 0.818 sedimentaresSiliciclasticas 0.845 0.837 0.841 unidadeEstratigrafica 0.777 0.765 0.771 total 0.806 0.778 total 0.861 0.863 voltadeEstratigrafica 0.777 0.765 0.771 total 0.861 0.883 0.881 voltadeEstratigrafica 0.777 0.765 0.771 total 0.861 0.883 0.881 voltadeEstratigrafica 0.806 0.778 voltade 0.806 0.811 0.803 0.841 0.803 0.843 voltadeEstratigrafica 0.777 0.765 0.771 voltadeEstratigrafica 0.806 0.818 0.803 0.843 0.806 0.831 0.822 <tr< td=""><td></td><td>epoca</td><td>0.824</td><td>0.692</td><td>0.752</td><td></td><td>epoca</td><td>0.887</td><td>0.792</td><td>0.836</td></tr<>		epoca	0.824	0.692	0.752		epoca	0.887	0.792	0.836		
magmaticas 0.784 0.760 0.771 PetroVecFT_100 metamorficas 0.829 0.681 0.737 periodo 0.816 0.656 0.723 metamorficas 0.901 0.872 0.886 sedimentaresCarbonaticas 0.815 0.825 0.818 0.824 0.824 0.823 unidadeEstratigrafica 0.815 0.825 0.818 0.821 0.816 0.825 0.818 total 0.806 0.771 0.765 0.771 0.765 0.771 total 0.806 0.748 0.776 0.776 0.776 0.806 0.881 0.883 0.883 periodo 0.806 0.748 0.776 0.776 0.776 0.776 0.776 total 0.806 0.748 0.776 0.776 0.765 0.771 perioVecFT_150 periodo 0.801 0.833 0.831 0.822 0.831 0.823 periodo 0.800 0.748 0.776 0.763		idade	0.799	0.710	0.751		idade	0.835	0.729	0.778		
PetroVecFT_100 metamorficas 0.829 0.681 0.737 PetroVecFT_100 metamorficas 0.901 0.872 0.886 sedimentaresCarbonaticas 0.815 0.825 0.818 0.825 0.818 sedimentaresCarbonaticas 0.845 0.837 0.841 sedimentaresCarbonaticas 0.845 0.837 0.841 sedimentaresCarbonaticas 0.886 0.888 0.887 unidadeEstratigrafica 0.777 0.765 0.771 unidadeEstratigrafica 0.806 0.748 0.776 total 0.802 0.888 0.887 0.838 0.887 0.838 0.887 0.836 0.887 0.836 0.888 0.887 0.836 0.886 0.888 0.887 0.838 0.888 0.887 0.838 0.888 0.887 0.838 0.888 0.888 0.887 0.838 0.838 0.838 0.838 0.838 0.838 0.838 0.838 0.838 0.838 0.838 0.838 0.837 0.879 0.841 0.852 sedimentaresCarbonaticas 0.846		magmaticas	0.784	0.760	0.771		magmaticas	0.824	0.824	0.823		
periodo 0.816 0.656 0.723 sedimentaresCarbonaticas 0.815 0.825 0.818 sedimentaresSiliciclasticas 0.845 0.837 0.841 unidadeEstratigrafica 0.777 0.765 0.771 total 0.806 0.748 0.776 votal 0.806 0.748 0.776 periodo 0.810 0.887 0.881 otal 0.806 0.748 0.776 votal 0.806 0.748 0.776 votal 0.806 0.748 0.776 votal 0.806 0.748 0.776 votal 0.806 0.748 0.776 PetroVecFT_150 baciaSedimentar 0.802 0.838 magmaticas 0.879 0.841 0.852 idade 0.795 0.763 0.779 magmaticas 0.879 0.841 0.852 sedimentaresCarbonaticas 0.833 0.883 0.873 idade 0.795	PetroVecFT_100	metamorficas	0.829	0.681	0.737	PetroVecFT_100	metamorficas	0.901	0.872	0.886		
sedimentaresCarbonaticas 0.815 0.825 0.818 sedimentaresCarbonaticas 0.834 0.868 0.851 sedimentaresSiliciclasticas 0.845 0.837 0.841 sedimentaresSiliciclasticas 0.887 0.888 0.887 unidadeEstratigrafica 0.777 0.765 0.771 unidadeEstratigrafica 0.846 0.881 0.863 total 0.806 0.748 0.776 total 0.802 0.838 0.848 otal 0.806 0.748 0.776 total 0.802 0.838 0.848 octal 0.806 0.748 0.776 total 0.802 0.838 0.848 octal 0.806 0.748 0.776 total 0.802 0.838 0.848 octal 0.9026 0.867 0.803 0.818 contextoGeologicoDeBacia 0.822 0.831 0.826 epoca 0.9026 0.867 0.873 0.873 0.873 0.874 periodo 0.895 idade		periodo	0.816	0.656	0.723		periodo	0.867	0.783	0.822		
sedimentaresSiliciclasticas 0.845 0.837 0.841 unidadeEstratigrafica 0.777 0.765 0.771 total 0.806 0.748 0.776 total 0.806 0.748 0.776 votal 0.806 0.818 0.838 contextoGelogicoDeBacia 0.826 0.836 epoca 0.9926 0.867 0.836 idade 0.795 0.763 0.779 magmaticas 0.846 0.832 0.838 periodo 0.896 0.814 0.852 sedimentaresSiliciclasticas 0.877 0.874 <t< td=""><td></td><td>sedimentaresCarbonaticas</td><td>0.815</td><td>0.825</td><td>0.818</td><td></td><td>sedimentaresCarbonaticas</td><td>0.834</td><td>0.868</td><td>0.851</td></t<>		sedimentaresCarbonaticas	0.815	0.825	0.818		sedimentaresCarbonaticas	0.834	0.868	0.851		
unidadeEstratigrafica 0.777 0.765 0.771 unidadeEstratigrafica 0.846 0.881 0.863 total 0.806 0.748 0.776 total 0.816 0.835 0.848 baciaSedimentar 0.802 0.838 0.818 contextoGeologicoDeBacia 0.826 0.826 0.826 0.826 0.879 0.826 0.879 0.826 0.879 0.838 0.818 0.826 epoca 0.926 0.877 0.879 0.841 0.859 0.879 0.841 0.859 idade 0.795 0.763 0.779 magmaticas 0.846 0.832 0.838 periodo 0.896 0.814 0.852 sedimentaresCarbonaticas 0.837 0.873 0.874 unidadeEstratigrafica 0.867 0.874 0.874 0.874 0.874 unidadeEstratigrafica 0.860 0.814 0.857 sedimentaresSiliciclasticas 0.877 0.874		sedimentaresSiliciclasticas	0.845	0.837	0.841		sedimentaresSiliciclasticas	0.887	0.888	0.887		
total 0.806 0.748 0.776 total 0.861 0.835 0.848 baciaSedimentar 0.802 0.838 0.818 0.802 0.831 0.826 contextoGeologicoDeBacia 0.926 0.926 0.795 0.763 0.795 idade 0.795 0.763 0.795 0.763 0.795 magmaticas 0.846 0.832 0.831 0.859 idade 0.795 0.763 0.799 magmaticas 0.846 0.832 0.838 periodo 0.846 0.832 0.838 sedimentaresCarbonaticas 0.833 0.874 unidadeEstratigrafica 0.877 0.874 0.874 unidade 0.860 0.844 0.850		unidadeEstratigrafica	0.777	0.765	0.771		unidadeEstratigrafica	0.846	0.881	0.863		
baciaSedimentar 0.802 0.838 0.818 contextoGeologicoDeBacia 0.823 0.831 0.826 epoca 0.926 0.867 0.895 idade 0.795 0.763 0.779 magmaticas 0.876 0.832 0.831 0.825 periodo 0.879 0.841 0.852 sedimentaresCarbonaticas 0.846 0.832 0.838 periodo 0.896 0.814 0.852 sedimentaresCarbonaticas 0.833 0.883 0.874 unidadeEstratigrafica 0.867 0.874 0.874 unidade Estratigrafica 0.860 0.841 0.850		total	0.806	0.748	0.776		total	0.861	0.835	0.848		
contextoGeologicoDeBacia 0.823 0.831 0.826 epoca 0.926 0.895 0.895 idade 0.795 0.763 0.779 magmaticas 0.879 0.841 0.859 metamorficas 0.846 0.832 0.831 periodo 0.846 0.832 0.838 periodo 0.846 0.832 0.838 sedimentaresCarbonaticas 0.833 0.852 sedimentaresSiliciclasticas 0.877 0.871 unidadeEstratigrafica 0.887 0.873 0.879 total							baciaSedimentar	0.802	0.838	0.818		
epoca 0.926 0.867 0.895 idade 0.795 0.763 0.779 magmaticas 0.879 0.841 0.859 metamorficas 0.846 0.832 0.838 periodo 0.896 0.814 0.852 sedimentaresCarbonaticas 0.833 0.833 0.852 sedimentaresSiliciclasticas 0.837 0.874 0.874 unidadeEstratigrafica 0.887 0.873 0.879 total							contextoGeologicoDeBacia	0.823	0.831	0.826		
idade 0.795 0.763 0.779 magmaticas 0.879 0.841 0.859 metamorficas 0.846 0.832 0.838 periodo 0.896 0.814 0.852 sedimentaresCarbonaticas 0.833 0.883 0.857 sedimentaresSiliciclasticas 0.877 0.874 0.874 unidadeEstratigrafica 0.887 0.874 0.874 total							epoca	0.926	0.867	0.895		
magmaticas 0.879 0.841 0.859 PetroVecFT_150 metamorficas 0.846 0.832 0.838 periodo 0.896 0.814 0.852 sedimentaresCarbonaticas 0.833 0.883 0.857 sedimentaresSiliciclasticas 0.877 0.874 0.874 unidadeEstratigrafica 0.860 0.841 0.850							idade	0.795	0.763	0.779		
PetroVecFT_150 metamorficas 0.846 0.832 0.838 periodo 0.896 0.814 0.852 sedimentaresCarbonaticas 0.833 0.883 0.874 unidadeEstratigrafica 0.860 0.874 0.874 total							magmaticas	0.879	0.841	0.859		
periodo 0.896 0.814 0.852 sedimentaresCarbonaticas 0.833 0.883 0.857 sedimentaresSiliciclasticas 0.877 0.871 0.874 unidadeEstratigrafica 0.887 0.873 0.879 total 0.860 0.841 0.850						PetroVecFT_150	metamorficas	0.846	0.832	0.838		
sedimentaresCarbonaticas 0.833 0.883 0.857 sedimentaresSiliciclasticas 0.877 0.871 0.874 unidadeEstratigrafica 0.887 0.873 0.879 total 0.860 0.841 0.850							periodo	0.896	0.814	0.852		
sedimentaresSiliciclasticas 0.877 0.874 unidadeEstratigrafica 0.887 0.873 0.879 total 0.860 0.841 0.850							sedimentaresCarbonaticas	0.833	0.883	0.857		
unidadeEstratigrafica 0.887 0.873 0.879 total 0.860 0.841 0.850							sedimentaresSiliciclasticas	0.877	0.871	0.874		
total0.860 0.841 0.850							unidadeEstratigrafica	0.887	0.873	0.879		
							total	0.860	0.841	0.850		

Table H.13 – The results of the PetroVecFT concatenated model for the GeoCorpus task.

			Co	ncatena	nated Models						
	NORMALIZED					STANDARDIZED					
Model	Category	Precision	Recall	F1	Model	Category	Precision	Recall	F1		
	baciaSedimentar	0.728	0.749	0.738		baciaSedimentar	0.806	0.804	0.804		
	contextoGeologicoDeBacia	0.787	0.651	0.712		contextoGeologicoDeBacia	0.760	0.817	0.786		
	epoca	0.789	0.708	0.745		epoca	0.893	0.870	0.881		
	idade	0.807	0.718	0.758		idade	0.766	0.750	0.757		
	magmaticas	0.749	0.751	0.750		magmaticas	0.859	0.839	0.848		
PetroVecHybridF I	metamorficas	0.801	0.650	0./16	Petro VecHybridF I	metamorficas	0.783	0.807	0.794		
	periodo	0.797	0.698	0.744		periodo	0.905	0.812	0.855		
	sedimentaresCarbonaticas	0.778	0.773	0.775		sedimentaresCarbonaticas	0.740	0.818	0.777		
	sedimentaresSiliciciasticas	0.802	0.829	0.815		sedimentaresSiliciciasticas	0.862	0.850	0.856		
	unidadeEstratigrafica	0.780	0.750	0.764		unidadeEstratigrafica	0.821	0.862	0.841		
	total	0.783	0.735	0.758		total	0.827	0.826	0.827		
	baciaSedimentar	0.736	0.741	0.738		baciaSedimentar	0.825	0.806	0.815		
	contextoGeologicoDeBacia	0.778	0.643	0.685		contextoGeologicoDeBacia	0.780	0.851	0.811		
	epoca	0.804	0.610	0.679		epoca	0.864	0.760	0.808		
	Idade	0.775	0.677	0.721		Idade	0.824	0.731	0.774		
	magmaticas	0.768	0.672	0.712		magmaticas	0.848	0.834	0.840		
PetrovecHybridF1-25	metamonicas	0.730	0.621	0.670	PetrovecHybridF1_25	metamonicas	0.855	0.864	0.859		
		0.729	0.621	0.670			0.833	0.730	0.778		
	sedimentaresCarbonaticas	0.680	0.711	0.694		sedimentaresCarbonaticas	0.824	0.855	0.839		
	sedimentaresSiliciciasticas	0.795	0.815	0.805		sedimentaresSiliciciasticas	0.867	0.882	0.874		
		0.760	0.772	0.775			0.045	0.007	0.000		
	lotal	0.778	0.099	0.734		lola	0.030	0.019	0.020		
		0.727	0.729	0.720		DaciaSedimental	0.032	0.040	0.040		
	contextoGeologicoDebacia	0.795	0.700	0.740		contextoGeologicoDebacia	0.027	0.035	0.001		
	idada	0.820	0.700	0.759		epoca	0.002	0.795	0.030		
	magmations	0.024	0.707	0.700		magmations	0.009	0.730	0.700		
Potro)/ooUvbridET_50	maginalicas	0.010	0.747	0.760	Potrol/ooUvbridET_50	matamorfioso	0.000	0.023	0.020		
FellovecHybridF1_50	netamonicas	0.790	0.052	0.710		noriodo	0.000	0.870	0.002		
	sodimentaresCarbonaticas	0.027	0.703	0.730		sodimentaresCarbonaticas	0.803	0.749	0.809		
	sedimentaresSiliciclasticas	0.730	0.702	0.703		sedimentaresSiliciclasticas	0.010	0.070	0.041		
	unidadoEstratigrafica	0.000	0.002	0.020		unidadeEstratigrafica	0.037	0.034	0.035		
	total	0.704	0.732	0.700		total	0.858	0.827	0.842		
	baciaSodimontar	0.000	0.744	0.765		baciaSodimentar	0.000	0.605	0.683		
	contextoGeologicoDeBacia	0.772	0.700	0.703		contextoGeologicoDeBacia	0.071	0.033	0.003		
	enoca	0.869	0.001	0.004		enoca	0.024	0.326	0.308		
	idade	0.000	0.740	0.001		idade	0.733	0.020	0.000		
	magmaticas	0.000	0.795	0.770		magmaticas	0.369	0.240	0.200		
PetroVecHybridET 100	metamorficas	0.875	0.801	0.835	PetroVecHybridET 100	metamorficas	0.000	0.321	0.355		
	periodo	0.855	0.718	0.779		periodo	0.638	0.432	0.503		
	sedimentaresCarbonaticas	0.814	0.847	0.830		sedimentaresCarbonaticas	0.212	0.224	0.218		
	sedimentaresSiliciclasticas	0.873	0.873	0.873		sedimentaresSiliciclasticas	0.746	0.522	0.586		
	unidadeEstratigrafica	0.822	0.861	0.840		unidadeEstratigrafica	0.783	0.487	0.565		
	total	0.836	0.795	0.815		total	0.692	0.392	0.469		
	lotal	0.000	0.700	0.010		baciaSedimentar	0.798	0.796	0.797		
						contextoGeologicoDeBacia	0.801	0.824	0.812		
						epoca	0.894	0.794	0.841		
						idade	0.842	0.736	0.784		
						magmaticas	0.841	0.838	0.839		
					PetroVecHybridFT 150	metamorficas	0.851	0.849	0.849		
						periodo	0.884	0.798	0.838		
						sedimentaresCarbonaticas	0.859	0.858	0.858		
						sedimentaresSiliciclasticas	0.877	0.883	0.880		
						unidadeEstratigrafica	0.859	0.875	0.867		
						total	0.852	0.827	0.839		
L											

Table H.14 -	The results	of the Petro	VecHybridFT	concatenated	model f	for the (GeoCorpus
task.							

	NORMALIZED		Co	tea models					
Madal		Dragician	Pecell	E1	Madal	STANDARDIZED	Dragician	Beeell	E1
wodei		Precision	A ZO1		wodei	Category	Precision	A TTI	FI
	baciaSedimentar	0.750	0.761	0.755		baciaSedimentar	0.774	0.771	0.773
	contextoGeologicoDeBacia	0.785	0.768	0.776		contextoGeologicoDeBacia	0.748	0.827	0.785
	epoca	0.792	0.663	0.721		epoca	0.867	0.749	0.804
	Idade	0.744	0.694	0.716		idade	0.832	0.723	0.773
	magmaticas	0.810	0.773	0.791	B	magmaticas	0.808	0.841	0.824
PetroVecW2V	metamorficas	0.850	0.779	0.813	PetroVecW2V	metamorficas	0.830	0.837	0.832
	periodo	0.839	0.666	0.741		periodo	0.843	0.751	0.794
	sedimentaresCarbonaticas	0.847	0.846	0.846		sedimentaresCarbonaticas	0.796	0.846	0.820
	sedimentaresSiliciclasticas	0.841	0.842	0.842		sedimentaresSiliciclasticas	0.852	0.869	0.860
	unidadeEstratigrafica	0.792	0.856	0.823		unidadeEstratigrafica	0.813	0.866	0.839
	total	0.803	0.766	0.784		total	0.817	0.810	0.813
	baciaSedimentar	0.812	0.862	0.836		baciaSedimentar	0.647	0.689	0.667
	contextoGeologicoDeBacia	0.781	0.765	0.770		contextoGeologicoDeBacia	0.643	0.389	0.418
	epoca	0.887	0.825	0.854		epoca	0.579	0.261	0.300
	idade	0.803	0.731	0.763		idade	0.338	0.304	0.320
	magmaticas	0.919	0.767	0.835		magmaticas	0.386	0.335	0.358
PetroVecW2V_25	metamorficas	0.747	0.824	0.783	PetroVecW2V_25	metamorficas	0.381	0.334	0.354
	periodo	0.858	0.772	0.809		periodo	0.562	0.463	0.504
	sedimentaresCarbonaticas	0.799	0.829	0.814		sedimentaresCarbonaticas	0.393	0.357	0.374
	sedimentaresSiliciclasticas	0.831	0.831	0.830		sedimentaresSiliciclasticas	0.725	0.553	0.609
	unidadeEstratigrafica	0.849	0.780	0.813		unidadeEstratigrafica	0.636	0.671	0.649
	total	0.831	0.796	0.813		total	0.635	0.451	0.508
	baciaSedimentar	0.824	0.808	0.815		baciaSedimentar	0.790	0.768	0.778
	contextoGeologicoDeBacia	0.806	0.734	0.768		contextoGeologicoDeBacia	0.789	0.774	0.781
	epoca	0.805	0.645	0.715		epoca	0.799	0.703	0.747
	idade	0.753	0.625	0.682		idade	0.799	0.648	0.714
	magmaticas	0.789	0.733	0.759		magmaticas	0.845	0.755	0.797
PetroVecW2V 50	metamorficas	0.771	0.774	0.771	PetroVecW2V_50	metamorficas	0.788	0.727	0.754
_	periodo	0.879	0.664	0.756		periodo	0.849	0.682	0.756
	sedimentaresCarbonaticas	0.811	0.778	0.793		sedimentaresCarbonaticas	0.832	0.845	0.837
	sedimentaresSiliciclasticas	0.845	0.808	0.826		sedimentaresSiliciclasticas	0.871	0.845	0.858
	unidadeEstratigrafica	0.810	0.827	0.818		unidadeEstratigrafica	0.843	0.817	0.829
	total	0.812	0.739	0.774		total	0.824	0.759	0.790
	baciaSedimentar	0.771	0.770	0.770		baciaSedimentar	0.803	0.843	0.822
	contextoGeologicoDeBacia	0.793	0.822	0.806		contextoGeologicoDeBacia	0.785	0.739	0.761
	epoca	0.745	0.678	0.707		epoca	0.846	0.703	0.766
	idade	0.756	0.702	0.727		idade	0.801	0.640	0.709
	magmaticas	0.818	0.747	0.779		magmaticas	0.773	0.775	0.770
PetroVecW2V 100	metamorficas	0.858	0.782	0.817	PetroVecW2V 100	metamorficas	0.786	0.757	0.767
	periodo	0.862	0.646	0.738		periodo	0.888	0.715	0.792
	sedimentaresCarbonaticas	0.844	0.817	0.830		sedimentaresCarbonaticas	0.801	0.826	0.813
	sedimentaresSiliciclasticas	0.847	0.850	0.848		sedimentaresSiliciclasticas	0.844	0.848	0.846
	unidadeEstratigrafica	0.818	0.830	0.824		unidadeEstratigrafica	0.818	0.810	0.813
	total	0.806	0.767	0.786		total	0.816	0.767	0.790
		0.000	007	500		baciaSedimentar	0.782	0.802	0 791
						contextoGeologicoDeBacia	0 793	0.787	0.789
						epoca	0 903	0.751	0.819
						idade	0.303	0.720	0.764
						magmaticas	0.857	0.720	0.25
					Petro\/ec\//2\/_150	maginalicas	0.037	0.730	0.023
					100000020_100	periodo	0.037	0.020	0.027
						edimentareeCarbonations	0.000	0.724	0.707
						sedimentaresCalDullatiCas	0.029	0.000	0.004
						unidadeEstrationafica	0.000	0.070	0.075
							0.041	0.000	0.030
						iotal	0.041	0.799	0.019

Table H.15 – The results of the PetroVecW2V concatenated model for the GeoCorpus task.

		ncatena	ated Models						
	NORMALIZED					STANDARDIZED			
Model	Category	Precision	Recall	F1	Model	Category	Precision	Recall	F1
	baciaSedimentar	0.760	0.789	0.774		baciaSedimentar	0.756	0.755	0.755
	contextoGeologicoDeBacia	0.800	0.749	0.774	_	contextoGeologicoDeBacia	0.768	0.827	0.796
	epoca	0.794	0.660	0.720		epoca	0.852	0.771	0.809
	Idade	0.741	0.703	0.721		Idade	0.806	0.744	0.773
	magmaticas	0.776	0.755	0.764		magmaticas	0.788	0.846	0.815
PetrovecHybridW2V100	metamorricas	0.818	0.758	0.786	PetrovecHybridvv2v100	metamorricas	0.781	0.784	0.782
	periodo	0.863	0.641	0.735	_	periodo	0.853	0.735	0.790
	sedimentaresCarbonaticas	0.806	0.776	0.791		sedimentaresCarbonaticas	0.847	0.840	0.843
	sedimentaresSiliciclasticas	0.829	0.834	0.832		sedimentaresSiliciciasticas	0.839	0.871	0.855
	unidadeEstratigrafica	0.790	0.834	0.812		unidadeEstratigrafica	0.840	0.867	0.854
	total	0.795	0.753	0.773		total	0.814	0.808	0.811
	baciaSedimentar	0.672	0./14	0.692		baciaSedimentar	0.850	0.858	0.854
	contextoGeologicoDeBacia	0.677	0.676	0.668		contextoGeologicoDeBacia	0.827	0.838	0.832
	epoca	0.763	0.515	0.606	PetroVecHybridW2V_25	epoca	0.888	0.775	0.827
	Idade	0.713	0.583	0.596		Idade	0.821	0.739	0.778
	magmaticas	0.789	0.644	0.699		magmaticas	0.823	0.834	0.828
PetrovecHybridvv2v_25	metamonicas	0.828	0.680	0.735		metamorricas	0.859	0.876	0.867
		0.851	0.564	0.677			0.881	0.716	0.790
	sedimentaresCarbonaticas	0.783	0.665	0.706		sedimentaresCarbonaticas	0.848	0.875	0.861
	sedimentaresSiliciclasticas	0.821	0.793	0.805		sedimentaresSiliciciasticas	0.897	0.896	0.897
		0.664	0.725	0.691			0.812	0.845	0.828
	total	0.740	0.662	0.694		total	0.852	0.822	0.837
	baciaSedimentar	0.807	0.843	0.824		baciaSedimentar	0.815	0.811	0.813
	contextoGeologicoDeBacia	0.775	0.778	0.776		contextoGeologicoDeBacia	0.799	0.830	0.814
	epoca	0.836	0.697	0.760		epoca	0.892	0.774	0.829
	lade	0.816	0.673	0.737			0.827	0.723	0.771
Detro)(act hybrid)((2)/ E0	magmaticas	0.836	0.788	0.811	Detro)(collubrid)((2)/ E0	magmaticas	0.792	0.822	0.806
Petrovechybridwzv_50	netamonicas	0.762	0.601	0.776	Petrovechybridvv2v_50	netamonicas	0.010	0.603	0.009
		0.091	0.702	0.765			0.879	0.774	0.023
	sedimentaresCarbonalicas	0.804	0.029	0.015		sedimentaresCarbonaticas	0.845	0.001	0.040
	unidadoEstratigrafica	0.827	0.846	0.820		unidadoEstratigrafica	0.805	0.870	0.870
	total	0.803	0.840	0.024		total	0.031	0.000	0.826
	basiaSodimontar	0.017	0.770	0.730		basiaSadimontar	0.030	0.013	0.020
	contexteGoologicoDoBacia	0.802	0.020	0.014		contoxtoGoologicoDoBacia	0.017	0.845	0.810
	contextodeologicoDebacia	0.011	0.011	0.010		opoca	0.011	0.045	0.027
	idade	0.815	0.712	0.773		idade	0.320	0.700	0.047
	magmaticas	0.013	0.723	0.702		magmaticas	0.004	0.724	0.775
PetroVecHybridW2V_100	metamorficas	0.042	0.847	0.010	PetroVecHybridW2V 100	metamorficas	0.822	0.023	0.013
	periodo	0.001	0.047	0.000		periodo	0.022	0.780	0.824
	sedimentaresCarbonaticas	0.829	0.851	0.835		sedimentaresCarbonaticas	0.844	0.856	0.850
	sedimentaresSiliciclasticas	0.866	0.863	0.864		sedimentaresSiliciclasticas	0.877	0.886	0.881
		0.000	0.842	0.814			0.844	0.856	0.850
	total	0.837	0.796	0.815		total	0.847	0.819	0.833
	lotal	0.007	0.700	0.010		baciaSedimentar	0.828	0.818	0.823
						contextoGeologicoDeBacia	0.020	0.835	0.818
						enoca	0.900	0.000	0.837
						idade	0.829	0.748	0.786
						magmaticas	0.835	0.828	0.831
					PetroVecHybridW2V 150	metamorficas	0.809	0.816	0.812
					100	periodo	0.879	0.769	0.820
						sedimentaresCarbonaticas	0.845	0.844	0.844
						sedimentaresSiliciclasticas	0.883	0.896	0.889
						unidadeEstratiorafica	0.866	0.884	0.875
						total	0.851	0.827	0.838
							0.001	0.027	2.000

Table H.16 – The results of the PetroVecHybridW2V concatenated model for the GeoCorpus task.

			Aut	o-encod	ded Models				
	NORMALIZED					STANDARDIZED			
Model	Category	Precision	Recall	F1	Model	Category	Precision	Recall	F1
	baciaSedimentar	0.738	0.730	0.733		baciaSedimentar	0.816	0.835	0.824
	contextoGeologicoDeBacia	0.742	0.754	0.747		contextoGeologicoDeBacia	0.796	0.825	0.810
	epoca	0.832	0.724	0.774		epoca	0.870	0.772	0.818
	idade	0.814	0.700	0.753		idade	0.764	0.722	0.741
	magmaticas	0.768	0.805	0.786		magmaticas	0.839	0.817	0.827
PetroVecFT	metamorficas	0.821	0.739	0.776	PetroVecFT	metamorficas	0.823	0.824	0.823
	periodo	0.813	0.667	0.732		periodo	0.870	0.740	0.799
	sedimentaresCarbonaticas	0.794	0.835	0.814		sedimentaresCarbonaticas	0.820	0.896	0.856
	sedimentaresSiliciclasticas	0.829	0.847	0.838		sedimentaresSiliciclasticas	0.845	0.847	0.846
	unidadeEstratigrafica	0.767	0.795	0.780		unidadeEstratigrafica	0.817	0.870	0.843
	total	0.792	0.763	0.777		total	0.827	0.811	0.818
	baciaSedimentar	0.742	0.765	0.753		baciaSedimentar	0.810	0.810	0.810
	contextoGeologicoDeBacia	0.762	0.716	0.737		contextoGeologicoDeBacia	0.762	0.869	0.812
	epoca	0.848	0.738	0.788		epoca	0.881	0.739	0.803
	idade	0.826	0.718	0.767		idade	0.817	0.719	0.764
	magmaticas	0.769	0.840	0.802		magmaticas	0.795	0.831	0.813
PetroVecFT_25	metamorficas	0.843	0.783	0.810	PetroVecFT_25	metamorficas	0.812	0.853	0.832
	periodo	0.848	0.721	0.779		periodo	0.829	0.754	0.789
	sedimentaresCarbonaticas	0.759	0.837	0.796		sedimentaresCarbonaticas	0.786	0.875	0.828
	sedimentaresSiliciclasticas	0.819	0.839	0.828		sedimentaresSiliciclasticas	0.879	0.881	0.880
	unidadeEstratigrafica	0.728	0.794	0.760		unidadeEstratigrafica	0.815	0.865	0.839
	total	0.791	0.775	0.783		total	0.822	0.819	0.820
	baciaSedimentar	0.796	0.843	0.819		baciaSedimentar	0.832	0.839	0.835
	contextoGeologicoDeBacia	0.810	0.736	0.771		contextoGeologicoDeBacia	0.771	0.840	0.804
	epoca	0.840	0.720	0.775		epoca	0.874	0.776	0.822
	idade	0.767	0.751	0.757		idade	0.780	0.753	0.766
D	magmaticas	0.783	0.820	0.801		magmaticas	0.810	0.848	0.828
PetroVecFI_50	metamorficas	0.878	0.835	0.855	PetroVecFI_50	metamorficas	0.815	0.889	0.850
	periodo	0.824	0.679	0.744		periodo	0.844	0.784	0.812
	sedimentaresCarbonaticas	0.765	0.824	0.793		sedimentaresCarbonaticas	0.787	0.858	0.821
	sedimentaresSiliciclasticas	0.827	0.846	0.836		sedimentaresSiliciclasticas	0.859	0.858	0.858
	unidadeEstratigrafica	0.806	0.792	0.798		unidadeEstratigrafica	0.807	0.882	0.843
	total	0.808	0.780	0.794		total	0.820	0.830	0.825
	baciaSedimentar	0.771	0.817	0.793		baciaSedimentar	0.807	0.841	0.823
	contextoGeologicoDeBacia	0.783	0.725	0.753		contextoGeologicoDeBacia	0.792	0.846	0.817
	epoca	0.828	0.717	0.768		epoca	0.876	0.751	0.808
	nade	0.742	0.738	0.739		nade	0.783	0.749	0.765
PotroV/coET 100	motomorficas	0.772	0.707	0.779	PotroVocET 100	maginalicas	0.033	0.033	0.033
FellovecF1_100	neriada	0.034	0.797	0.024	Fellovecr1_100	neriada	0.001	0.052	0.025
	sodimentaresCarbonations	0.041	0.009	0.730		sodimentaresCarbonations	0.017	0.747	0.700
	sedimentaresSalbollaticas	0.000	0.021	0.014		sedimentaresSilicielasticas	0.791	0.070	0.052
	unidadeEstratigrafica	0.032	0.040	0.000		unidadeEstrationafica	0.830	0.007	0.801
	total	0.752	0.772	0.000		total	0.027	0.000	0.040
	lotai	0.001	0.773	0.707		bagiaSodimontar	0.022	0.020	0.021
						contextoGeologicoDeBacia	0.017	0.850	0.830
						contextoGeologicoDebacia	0.793	0.030	0.021
						idade	0.004	0.770	0.020
						magmaticas	0.724	0.743	0.701
					PetroVecET 150	metamorficas	0.009	0.862	0.010
					10000011_100	periodo	0.834	0.302	0.782
						sedimentaresCarbonaticas	0.832	0.904	0.867
						sedimentaresSiliciclasticas	0.869	0.865	0.867
							0.005	0.802	0.853
						total	0.010	0.826	0.824
						ioiai	0.022	0.020	0.024

Table H.17 – The results of the PetroVecFT auto-encoded model for the GeoCorpus task.

			to-encod	oded Models						
	NORMALIZED					STANDARDIZED				
Model	Category	Precision	Recall	F1	Model	Category	Precision	Recall	F1	
	baciaSedimentar	0.728	0.749	0.738		baciaSedimentar	0.806	0.804	0.804	
	contextoGeologicoDeBacia	0.787	0.651	0.712		contextoGeologicoDeBacia	0.760	0.817	0.786	
	epoca	0.789	0.708	0.745		epoca	0.893	0.870	0.881	
	idade	0.807	0.718	0.758		idade	0.766	0.750	0.757	
	magmaticas	0.749	0.751	0.750		magmaticas	0.859	0.839	0.848	
PetroVecHybridF1	metamorficas	0.801	0.650	0.716	PetroVecHybridF I	metamorficas	0.783	0.807	0.794	
	periodo	0.797	0.698	0.744		periodo	0.905	0.812	0.855	
	sedimentaresCarbonaticas	0.778	0.773	0.775		sedimentaresCarbonaticas	0.740	0.818	0.777	
	sedimentaresSiliciclasticas	0.802	0.829	0.815		sedimentaresSiliciclasticas	0.862	0.850	0.856	
	unidadeEstratigrafica	0.780	0.750	0.764		unidadeEstratigrafica	0.821	0.862	0.841	
	total	0.783	0.735	0.758		total	0.827	0.826	0.827	
	baciaSedimentar	0.775	0.770	0.772		baciaSedimentar	0.809	0.819	0.814	
	contextoGeologicoDeBacia	0.738	0.730	0.734		contextoGeologicoDeBacia	0.754	0.853	0.800	
	epoca	0.825	0.783	0.802		epoca	0.883	0.829	0.855	
	Idade	0.761	0.704	0.730		ldade	0.809	0.746	0.775	
	magmaticas	0.729	0.746	0.737	PetroVecHybridFT_25	magmaticas	0.814	0.849	0.831	
PetrovechybridF1-25	metamonicas	0.778	0.717	0.746		metamonicas	0.808	0.831	0.819	
		0.843	0.710	0.770			0.875	0.811	0.841	
	sedimentaresCarbonaticas	0.680	0.779	0.726		sedimentaresCarbonaticas	0.780	0.868	0.822	
	sedimentaresSiliciclasticas	0.816	0.815	0.816		sedimentaresSiliciciasticas	0.858	0.883	0.870	
	unidadeEstratigrafica	0.755	0.804	0.778			0.806	0.862	0.833	
	total	0.776	0.760	0.768		total	0.822	0.836	0.829	
	baciaSedimentar	0.771	0.771	0.771		baciaSedimentar	0.814	0.801	0.808	
	contextoGeologicoDeBacia	0.795	0.763	0.778		contextoGeologicoDeBacia	0.767	0.851	0.806	
	epoca	0.817	0.756	0.785		epoca	0.889	0.854	0.8/1	
	nuaue	0.765	0.793	0.700		luade	0.774	0.760	0.700	
Detro)/eelly/bridET_E0	maginalicas	0.766	0.000	0.000	Potro)/oollybridET_E0	maginalicas	0.030	0.037	0.000	
FellovechybridF1_50	netamonicas	0.047	0.794	0.019	FellovechybridF1_50	netamonicas	0.000	0.000	0.037	
	periodo	0.037	0.095	0.767		periodo	0.091	0.002	0.043	
	sedimentaresCarbonaticas	0.722	0.763	0.751		sedimentaresCarbonaticas	0.720	0.014	0.704	
	unidadaEstratigrafiaa	0.017	0.000	0.030		unidadaEstratigrafiaa	0.800	0.004	0.002	
	total	0.753	0.010	0.703		total	0.805	0.871	0.837	
	basiaSodimontar	0.732	0.751	0.732		bagiaSodimontar	0.021	0.000	0.027	
	contextoGoologicoDoBacia	0.729	0.734	0.741		contextoGoologicoDoBacia	0.764	0.760	0.762	
	epoca	0.733	0.743	0.731	-	epoca	0.734	0.003	0.000	
	idado	0.004	0.720	0.772		idada	0.004	0.017	0.043	
	magmaticae	0.011	0.030	0.745		magmaticas	0.003	0.700	0.707	
PetroVecHybridET 100	metamorficas	0.731	0.004	0.703	PetroVecHybridET 100	metamorficas	0.002	0.827	0.030	
	periodo	0.003	0.001	0.744		periodo	0.070	0.027	0.040	
	sedimentaresCarbonaticas	0.001	0.723	0.700		sedimentaresCarbonaticas	0.001	0.705	0.020	
	sedimentaresSiliciclasticas	0.702	0.863	0.733		sedimentaresSiliciclasticas	0.707	0.040	0.859	
		0.020	0.000	0.767			0.821	0.882	0.850	
	total	0.784	0.764	0.774		total	0.823	0.833	0.828	
		0.701	0.701	0.774		baciaSedimentar	0.775	0.000	0.020	
						contextoGeologicoDeBacia	0.770	0.849	0.783	
						enoca	0.927	0.823	0.859	
						idade	0.790	0.747	0.767	
						magmaticas	0.815	0.842	0.828	
					PetroVecHybridFT 150	metamorficas	0.836	0.825	0.830	
						periodo	0.866	0.809	0.836	
						sedimentaresCarbonaticas	0.808	0.850	0.829	
						sedimentaresSiliciclasticas	0.851	0.876	0.863	
						unidadeEstratigrafica	0.816	0.871	0.843	
						total	0.818	0.829	0.823	
L									-	

Table H.18 –	The results	of the Petro	VecHybridFT	auto-encoded	model for	r the Geo	Corpus
task.			-				-

Model Distantial calculation Precision Recall F1 Model Calculation Recall F1 bacids Calculation 0.750 0.750 0.750 0.750 0.750 0.750 0.750 0.750 0.771 0.771 0.771 0.771 0.774 0.775 0.775 0.781 0.842 0.775 0.781 0.842 0.775 0.781 0.842 0.781 0.842 0.781 0.842 0.781 0.842 0.781 0.842 0.781 0.843 0.841		NORMALIZED		AUI	o-enco	Jea Models	STANDARDIZED			
Node Context/Geologic/O.Beloi O.785 O.786 O.78	Madal		Dragician	Pecell	E1	Madal	STANDARDIZED	Dragician	Beeell	E1
PetroVecW2V Declarational control of a 1780 0.780 0.781 0.782 0.775 0.781 0.771 0.781 0.771 0.781 0.771 0.781 0.771 0.781 0.771 0.781 0.771 0.781 0.781 0.781 0.781 0.781 0.781 0.781 0.781 0.781 0.781	Woder		0.750		0.755	Woder	basiaSadimenter			FI 0.772
Objective Use of the			0.750	0.761	0.755		Dacia Seuli ne nia	0.774	0.771	0.775
PetroVecW2V Contract Conditional Control Control Conditional Control Control Control Control Conditional Control Control Conditational		ContextoGeologicoDeBacia	0.765	0.700	0.770		ContextoGeologicoDeBacia	0.740	0.027	0.765
Bade 0.43 0.74 0.75 0.73 0.74 <th< td=""><td></td><td>epoca</td><td>0.792</td><td>0.663</td><td>0.721</td><td></td><td>epoca</td><td>0.867</td><td>0.749</td><td>0.804</td></th<>		epoca	0.792	0.663	0.721		epoca	0.867	0.749	0.804
Petrovecw27 magmanicas periodo 0.810 0.773 0.791 Petrovecw27 magmanicas periodo 0.820 0.841 0.827 sadimentaresCarbonalicas 0.841 0.841 0.841 0.841 0.841 0.841 0.841 0.841 0.781 0.832 0.846 0.781 0.832 0.846 0.781 0.832 0.846 0.781 0.832 0.846 0.781 0.861 0.781 0.861 0.781 0.861 0.781 0.861 0.781 0.861 0.781 0.871 0.781		laade	0.744	0.694	0.716		laade	0.832	0.723	0.773
Petrovec/W2/ periodic Indianonicas odermeniaresCarbonaticas 0 434 0.835 0.837 0.837 0.838 0.837 0.838 0.837 0.838		magmaticas	0.810	0.773	0.791		magmaticas	0.808	0.841	0.824
periodo 0.033 0.066 0.74 periodo 0.043 0.74 0.75 0.74 0.74 0.75 0.74 0.74 0.75 0.74 0.75 0.74 0.75 0.74 0.75 0.74 0.75 0.74 0.75 0.74 0.75 0.74 0.75 0.74 0.75 0.74	Petrovecw2v	metamorficas	0.850	0.779	0.813	Petrovecw2v	metamorficas	0.830	0.837	0.832
Bedimentares/airOnalicas 0.944 0.846 0.8		periodo	0.839	0.666	0.741		periodo	0.843	0.751	0.794
BedimentaresSilicidasticas 0.044 0.042 0.043 0.044 0.043 0.043 0.043 0.043 0.043 0.041 0.042 0.041 0.045 0.043 0		sedimentaresCarbonaticas	0.847	0.846	0.846		sedimentaresCarbonaticas	0.796	0.846	0.820
Indiade 0.792 0.885 0.823 Indiade 0.817 0.810 0.810 0.813 0.813 0.814 0.813 0.814 0.813 0.813 0.810 0.813 0.810 0.813 0.810 0.813 0.810 0.813 0.773 0.783 0.775 0.783 0.775 0.783 0.775 0.783 0.775 0.783 0.775 0.783 0.775 0.783 0.775 0.783 0.775 0.783 0.775 0.783 0.775 0.783 0.775 0.783 0.775 0.783 0.775 0.783 0.775 0.783 0.775 0.784 0.775 0.784 0.783 0.783 0.783 0.783 0.783 0.783 0.783 0.783 0.783 0.784 0.833 0.864 0.864 0.864 0.864 0.864 0.864 0.864 0.864 0.863 0.783 0.774 0.784 0.774 0.784 0.784 0.784 0.784 0.784 0.784 0.784		sedimentaresSiliciclasticas	0.841	0.842	0.842		sedimentaresSiliciclasticas	0.852	0.869	0.860
Iotal 0.803 0.764 0.774 Iotal 0.817 0.818 0.784 0.885 epoca 0.810 0.784 0.784 0.784 0.784 0.885 0.784 0.885 0.784 0.785 0.784 0.785 0.787 0.786 0.786 0.780 0.781 0.831 0.776 0.7		unidadeEstratigrafica	0.792	0.856	0.823		unidadeEstratigrafica	0.813	0.866	0.839
bacaSedimentar 0.78 0.77 0.78 0.772 0.78 0.772 0.78 0.777 0.78 0.777 0.78 0.777 0.78 0.777 0.78 0.777 0.78 0.777 0.78 0.777 0.78 0.777 0.78 0.777 0.78 0.777 0.78 0.777 0.78 0.777 0.78 0.777 0.78 0.777 0.78 0.777 0.78 0.777 0.78 0.777 0.78 0.777 0.78 0.775 0.78 0.780 0.775 0.780 0.780 0.780 0.780 0.780 0.780 0.780 0.780 0.781 0.831 0.781 0.831 0.781 0.831 0.781 0.831 0.781 0.831 0.781 0.831 0.781 0.831 0.781 0.831 0.781 0.831 0.781 0.831 0.781 0.831 0.781 0.831 0.781 0.831 0.781 0.831 0.781 0.831 0.781 0.831 0.781		total	0.803	0.766	0.784		total	0.817	0.810	0.813
PetroVecW2V_26 contextoGeologicoDeBacia 0.757 0.782 0.783 PetroVecW2V_26 magmaticas 0.777 0.782 0.783 0.783 PetroVecW2V_26 metamorficas 0.777 0.782 0.783 0.783 PetroVecW2V_26 metamorficas 0.771 0.782 0.783 0.783 SedimentaresSilicicalisticas 0.844 0.843 0.833 0.833 edimentaresCarbonaticas 0.816 0.853 0.833 edimentaresCarbonaticas 0.816 0.825 0.817 0.823 0.817 0.823 0.817 0.823 0.817 0.823 0.817 0.823 0.824 0.824 0.824 0.824 0.824 0.824 0.824 <		baciaSedimentar	0.781	0.764	0.772		baciaSedimentar	0.818	0.794	0.805
PetroVecW2V_26 epoca idade		contextoGeologicoDeBacia	0.794	0.773	0.782		contextoGeologicoDeBacia	0.757	0.847	0.799
PetroVecW2V_20 idade 0.748 0.768 0.776 0.782 0.782 magmalicas 0.775 0.782 magmalicas 0.844 0.845 0.847 0.836 0.846 0.846 0.846 0.846 0.845 0.8		epoca	0.810	0.644	0.717	PetroVecW2V_25	epoca	0.839	0.753	0.793
PetroVecW2 v magmaticas 0.771 0.781 0.779 PetroVecW2 v magmaticas 0.844 0.844 0.845 0.828 periodo 0.850 0.686 0.759 metamorilcas 0.811 0.728 0.728 periodo 0.851 0.829 0.829 periodo 0.851 0.829 0.831 scienteriaresCarbonalicas 0.814 0.820 0.831 scienteriaresCarbonalicas 0.814 0.821 0.831 scienteriaresCarbonalicas 0.814 0.824 0.831 scienteriaresCarbonalicas 0.816 0.831 scienteriaresCarbonalicas 0.816 0.831 0.83		idade	0.748	0.661	0.701		idade	0.815	0.755	0.782
PetroVecW2V_25 metamorficas 0.771 0.782 0.775 PetroVecW2V_25 metamorficas 0.810 0.826 0.786 sedimentaresCarbonaticas 0.811 0.850 0.830 0.830 0.881 0.883 0.785 0.883 0.785 0.883 0.785 0.883 0.785 0.883 0.785 0.786 0.786 0.786 0.786 0.786 0.786 0.786 0.786 0.786 0.786 0.786 0.786 0.786 0.786 0.786 0.786 0.846 0.827 0.847 0.830 0.838 0.846 0.837 0.846 0.836 0.848 <t< td=""><td rowspan="3">PetroVecW2V_25</td><td>magmaticas</td><td>0.777</td><td>0.781</td><td>0.779</td><td>magmaticas</td><td>0.844</td><td>0.844</td><td>0.844</td></t<>	PetroVecW2V_25	magmaticas	0.777	0.781	0.779		magmaticas	0.844	0.844	0.844
periodo 0.686 0.759 periodo 0.6351 0.728 0.736 0.735 0.736 0.735 0.736 0.735 0.736 0.735 0.736 0.735 0.736 0.735 0.736 0.735 0.736 0.735 0.736 0.735 0.736 0.735 0.736 0.735 0.736 0.737 0.737 0.737 0.737 0.737 0.737 0.737 0.737 0.737 0.737 0.737 0.737		metamorficas	0.771	0.782	0.775		metamorficas	0.810	0.850	0.829
sedimentaresSiiciciasiticas 0.811 0.850 0.830 sedimentaresSiiciciasiticas 0.444 0.820 0.833 indadeEstratigrafica 0.744 0.851 0.816 unidadeEstratigrafica 0.814 0.825 0.825 baciaSedimentar 0.793 0.803 0.797 total 0.825 0.817 0.825 0.817 0.825 0.817 0.825 0.817 0.825 0.817 0.825 0.817 0.825 0.817 0.825 0.817 0.825 0.817 0.825 0.817 0.825 0.817 0.825 0.817 0.825 0.817 0.825 0.817 0.825 0.817 0.825 0.817 0.825 0.817 0.825 0.817 0.825 0.817 0.826 0.817 0.826 0.817 0.826 0.817 0.826 0.817 0.826 0.817 0.826 0.817 0.826 0.817 0.826 0.817 0.827 0.841 0.828 0.816 0.826 0.816 0.826		periodo	0.850	0.686	0.759		periodo	0.851	0.728	0.784
sedimentaresSilicidasticas 0.844 0.823 0.823 0.816 sedimentaresSilicidasticas 0.776 0.891 0.803 0.791 total 0.800 0.760 0.760 0.760 101a 0.802 0.791 0.803 0.791 0.803 0.791 0.803 0.791 0.801 0.791 0.801 0.791 0.801 0.791 0.802 0.781 baciaSedimentar 0.791 0.803 0.791 0.803 0.791 0.801 0.791 0.801 0.791 0.801 0.791 0.801 0.791 0.801 0.791 0.801 0.791 0.801 0.781 0.841 0.744 0.805 0.785 magmaticas 0.791 0.845 0.873 magmaticas 0.791 0.845 0.873 magmaticas 0.817 0.841 0.744 0.805 0.873 magmaticas 0.816 0.873 0.871 0.841 0.874 0.813 0.873 0.871 0.845 0.873 0.871 0.816 0.810 0		sedimentaresCarbonaticas	0.811	0.850	0.830		sedimentaresCarbonaticas	0.814	0.861	0.837
unidadeEstratigrafica 0.784 0.851 0.816 unidadeEstratigrafica 0.845 0.829 0.820 0.820 0.817 0.821 0.817 0.821 0.817 0.821 0.817 0.821 0.817 0.825 0.891 0.817 0.821 0.817 0.821 0.817 0.821 0.817 0.821 0.817 0.825 0.891 0.816 0.892 0.817 0.821 0.817 0.821 0.817 0.821 0.817 0.821 0.817 0.821 0.816 0.735 0.774 0.802 0.785 0.816 0.735 0.774 0.803 0.833 0.837 0.836 0.837 0.826 0.826 0.836 0.837 0.836 0.837 0.836 0.837 0.836 0.837 0.836 0.837 0.836 0.837 0.836 0.837 0.836 0.837 0.836 0.837 0.836 0.837 0.836 0.837 0.836 0.837 0.837 0.837 0.837 0.837 0.837		sedimentaresSiliciclasticas	0.844	0.823	0.833		sedimentaresSiliciclasticas	0.876	0.891	0.883
Iotal 0.800 0.760 0.760 0.760 0.801 0.825 0.817 0.821 baciaSedimentar 0.791 0.625 0.678 contextoGeologicoDeBacia 0.771 0.786 0.788 epoca 0.817 0.821 0.788 idade 0.729 0.668 0.986 0.986 epoca 0.812 0.744 0.757 magmaticas 0.770 0.765 0.769 0.765 0.769 negamiticas 0.731 0.840 0.830 0.830 0.835 periodo 0.826 0.681 0.733 0.847 0.830 0.830 0.837 0.826 0.841 0.830 0.830 0.837 0.826 0.847 0.837 0.847 0.836 0.847 0.847 0.837 0.841 0.846 0.847 0.837 0.846 0.847 0.847 0.847 0.847 0.847 0.841 0.846 0.847 0.841 0.846 0.847 0.841 0.846 0.847 0.841		unidadeEstratigrafica	0.784	0.851	0.816		unidadeEstratigrafica	0.814	0.845	0.829
baciaSedimentar 0.793 0.803 0.797 baciaSedimentar 0.791 0.803 0.797 ContextoGeologicoDeBacia 0.782 0.786 0.686 0.696 0.781 0.625 0.696 magmaticas 0.770 0.775 0.764 0.812 0.744 0.755 periodo 0.826 0.696 0.763 magmaticas 0.747 0.804 0.812 0.744 0.755 periodo 0.826 0.686 0.696 0.733 sedimentaresCarbonaticas 0.809 0.845 0.827 magmaticas 0.747 0.846 0.816 0.816 0.816 0.816 0.816 0.816 0.816 0.816 0.816 0.816 0.816 0.816 0.816 0.816 0.817 0.845 0.866 0.828 ordiade 0.717 0.646 0.679 0.766 0.776 0.776 0.776 0.776 0.776 0.776 0.784 0.866 0.785 0.866 0.785 0.866 0.875 0.786		total	0.800	0.760	0.780		total	0.825	0.817	0.821
PetroVecW2V_100 ContextoGeologicoDeBacia 0.781 0.786 0.786 0.781 0.786 0.781 0.781 0.786 magmaticas 0.770 0.757 0.764 0.873 0.771 0.841 0.786 magmaticas 0.770 0.755 0.766 0.786 0.786 0.786 0.786 0.781 0.744 0.771 0.841 0.748 magmaticas 0.770 0.755 0.766 0.786 0.786 0.786 0.786 0.838 0.844 0.838 0.841 0.838		baciaSedimentar	0.793	0.803	0.797		baciaSedimentar	0.791	0.800	0.795
PetroVecW2V_50 epoca		contextoGeologicoDeBacia	0.782	0.756	0.768		contextoGeologicoDeBacia	0.751	0.831	0.788
PetroVecW2V_50 Idade 0.729 0.668 0.696 0.696 Idade 0.012 0.744 0.757 metamorficas 0.765 0.769 0.765 0.769 0.765 0.769 0.765 0.766 0.755 0.766 0.756 0.775 0.766 0.756 0.756 0.756 0.756 0.756 0.756 0.756 0.766 0.766 0.766 0.766 0.766 0.766 0.766 0.766 0.766 0.766 0.776 baciaSedimentar 0.817 0.832 0.824 0.808 0.823 0.824 0.808 0.824 0.808 0.824 0.802 0.666 0.776 magmaticas 0.867 0.363 0.827 0.824 0.824 0.802 0.824		epoca	0.791	0.625	0.698		epoca	0.873	0.747	0.805
PetroVecW2V_50 metamorficas magmaticas 0.770 0.757 0.764 periodo 0.826 0.765 0.769 0.766 0.769 0.761 0.847 0.830 0.838 0.847 0.830 0.838 0.847 0.830 0.838 0.841 0.830 0.838 0.841 0.830 0.838 0.841 0.836 0.845 0.841 0.846 0.845 0.841 0.846 0.845 0.841 0.846 0.845 0.826 0.826 0.826 0.826 0.827 unidadeEstratigrafica 0.816 0.878 0.873 unidadeEstratigrafica 0.816 0.873 0.873 0.871 0.816 0.817 0.838 0.816 0.817 0.838 0.816 0.817 0.833 0.838 0.816 0.817 0.813 0.818 0.816 0.817 0.817 0.814 0.817 0.817 0.817 0.816 0.817 0.816 0.817 0.816 0.817 0.818 0.816 0.817 0.816 0.817		idade	0.729	0.668	0.696		idade	0.812	0.744	0.775
PetroVecW2V_50 periodo metamorficas 0.765 0.769 0.765 PetroVecW2V_50 periodo metamorficas 0.847 0.830 0.838 sedimentaresCarbonaticas 0.857 0.826 0.845 0.827 sedimentaresCarbonaticas 0.816 0.733 0.771 sedimentaresSiliciclasticas 0.857 0.826 0.841 0.876 0.845 0.827 baciaSedimentaresSiliciclasticas 0.790 0.800 0.823 unidadeEstratigrafica 0.811 0.817 0.845 epoca 0.808 0.804 0.806 0.826 0.806 0.827 contextoGeologicoDeBacia 0.778 0.824 0.806 0.827 magmaticas 0.767 0.776 0.776 0.806 0.620 1dade 0.813 0.783 0.824 genca 0.808 0.660 0.660 magmaticas 0.826 0.826 periodo 0.818 0.827 0.824 0.802 1dade 0.813 0.783 0.827 periodo 0.836 0.61		magmaticas	0.770	0.757	0.764		magmaticas	0.791	0.840	0.815
Periodo 0.826 0.652 0.733 periodo 0.816 0.733 periodo 0.816 0.733 0.771 sedimentaresCarbonaticas 0.809 0.845 0.827 sedimentaresCarbonaticas 0.816 0.876 0.876 0.876 0.876 0.876 0.876 0.876 0.878 0.873 0.873 0.873 0.873 0.878 0.878 0.878 0.878 0.878 0.878 0.878 0.878 0.873 0.878 0.873 0.878 0.829 0.824 0.824	PetroVecW2V_50	metamorficas	0.765	0 769	0.765	PetroVecW2V_50	metamorficas	0.847	0.830	0.838
sedimentaresCarbonaticas 0.800 0.845 0.827 sedimentaresSiliciclasticas 0.857 0.826 0.841 unidadeEstratigrafica 0.790 0.860 0.823 total 0.796 0.756 0.775 baciaSedimentar 0.808 0.823 contextoGeologicoDeBacia 0.782 0.776 otad 0.776 0.776 idade 0.717 0.660 idade 0.777 0.776 magmaticas 0.767 0.776 periodo 0.836 0.610 periodo 0.836 0.610 sedimentaresSiliciclasticas 0.825 unidadeEstratigrafica 0.776 unidadeEstratigrafica 0.780 unidadeEstratigrafica 0.776 magmaticas 0.825 sedimentaresSiliciclasticas 0.871 sedimentaresSiliciclasticas 0.874 unidadeEstratigrafica 0.780 unidadeEstratigrafica 0.780 unidadeEstratigrafica 0.780<		periodo	0.826	0.658	0.733		periodo	0.816	0.733	0 771
sedimentaresSiliciclasticas 0.857 0.826 0.841 unidadeEstratigrafica 0.790 0.860 0.823 unidadeEstratigrafica 0.811 0.873 0.841 baciaSedimentar 0.808 0.804 0.806 0.823 unidadeEstratigrafica 0.811 0.818 0.816 0.817 baciaSedimentar 0.808 0.804 0.806 0.823 0.824 0.806 0.823 0.824 0.806 0.823 0.824 0.816 0.817 0.832 0.824 0.806 0.825 0.835 0.835 0.835 0.835 0.835 0.778 0.660 0.679 0.776 0.771 0.646 0.679 0.786 0.825 0.845 0.835 0.825 0.845 0.835 0.825 0.845 0.835 0.825 0.845 0.825 0.845 0.827 0.747 0.806 0.825 unidadeEstratigrafica 0.876 0.827 0.747 0.804 0.825 unidadeEstratigrafica 0.875 0.827 0.827 0.82		sedimentaresCarbonaticas	0.809	0.845	0.827		sedimentaresCarbonaticas	0.816	0.876	0.845
InidadeEstratigrafica 0.790 0.860 0.823 InidadeEstratigrafica 0.811 0.873 0.841 total 0.796 0.756 0.775 InidadeEstratigrafica 0.811 0.818 0.816 0.811 baciaSedimentar 0.808 0.804 0.806 0.756 0.775 Data 0.818 0.812 0.823 0.824 contextoGeologicoDeBacia 0.782 0.748 0.766 0.771 0.832 0.748 0.831 0.738 0.825 0.869 0.745 0.832 0.845 0.831 0.738 0.738 0.760 0.761 0.776 0.771 magmaticas 0.825 0.845 0.831 0.738 0.845 0.836 0.845 0.838 0.738 0.845 0.825 magmaticas 0.816 0.901 0.856 period 0.827 0.747 0.844 0.827 0.820 0.824 0.808 0.825 unidadeEstratigrafica 0.797 0.863 0.827 0.827 0.820 0.824		sedimentaresSiliciclasticas	0.857	0.826	0.841		sedimentaresSiliciclasticas	0.869	0.878	0.873
total 0.796 0.796 0.775 total 0.818 0.816 0.817 baciaSedimentar 0.808 0.804 0.806 0.748 0.748 0.748 0.748 0.748 0.748 0.817 0.818 0.817 0.812 0.816 0.817 0.812 0.818 0.822 0.824 0.748 0.748 0.748 0.748 0.748 0.748 0.801 0.748 0.817 0.832 0.824 0.816 0.817 0.832 0.823 0.825 0.802 0.869 0.745 0.802 0.826 0.831 0.738 0.772 magmaticas 0.767 0.771 0.646 0.797 magmaticas 0.825 0.836 0.816 0.816 0.816 0.816 0.825 period 0.836 0.610 0.705 0.763 0.763 0.872 0.845 0.872 0.845 0.827 0.804 0.826 0.827 0.804 0.826 0.827 0.820 0.824 0.826		unidadeEstratigrafica	0 790	0.860	0.823		unidadeEstratigrafica	0.811	0.873	0.841
baciaSedimentar 0.806 0.804 0.806 0.806 baciaSedimentar 0.817 0.832 0.824 contextoGeologicoDeBacia 0.782 0.748 0.764 0.670 0.768 0.831 0.798 epoca 0.808 0.562 0.660 0.600 0.806 0.807 0.771 magmaticas 0.767 0.776 0.771 0.644 0.679 0.764 0.832 0.825 0.845 0.806 0.772 metamorficas 0.760 0.766 0.779 0.765 0.776 0.771 magmaticas 0.816 0.901 0.856 periodo 0.836 0.610 0.797 sedimentaresCarbonaticas 0.806 0.797 sedimentaresCarbonaticas 0.806 0.827 unidadeEstratigrafica 0.806 0.827 unidadeEstratigrafica 0.786 0.847 0.815 unidadeEstratigrafica 0.827 0.824 total 0.792 0.783 0.785 unidadeEstratigrafica 0.772 0.820 0.824		total	0 796	0.756	0.775		total	0.818	0.816	0.817
PetroVecW2V_100 ContextoGeologicoDeBacia 0.782 0.783 0.772 0.783 0.772 0.863 0.771 0.864 0.777 magmaticas 0.825 0.845 0.835 0.835 0.845 0.835 0.845 0.835 0.845 0.835 0.845 0.835 0.845 0.835 0.845 0.827 0.863 0.827 0.863 0.827 0.863 0.827 0.863 0.827 0.863 0.826 0.826 0.827 0.863 0.826 0.826 0.826 0.827 0.863 0.826 0.826 0.827 0.863 0.826 0.827 0.817		baciaSedimentar	0.808	0.804	0.806		baciaSedimentar	0.817	0.832	0.824
PetroVecW2V_100 Control		contextoGeologicoDeBacia	0.000	0.001	0.000		contextoGeologicoDeBacia	0.768	0.002	0.021
PetroVecW2V_100 Discis 0.707 0.776 0.776 0.776 0.776 0.776 0.776 0.776 0.772 magmaticas 0.760 0.769 0.764 0.769 0.764 0.772 magmaticas 0.805 0.738 0.805 0.835 periodo 0.836 0.610 0.709 0.764 0.772 magmaticas 0.816 0.901 0.856 periodo 0.836 0.610 0.705 sedimentaresCarbonaticas 0.806 0.797 sedimentaresCarbonaticas 0.827 0.827 0.806 0.827 sedimentaresCarbonaticas 0.820 0.827 sedimentaresCarbonaticas 0.827 0.827 0.827 0.827 0.827 0.827 0.827 0.827 0.827 0.827 0.827 0.827 0.820 0.827 0.827 0.827 0.827 0.827 0.820 0.827 0.827 0.827 0.827 0.828 0.820 0.827 0.827 0.827 0.828 0.820 0.827 0.824 <		enoca	0.808	0.562	0.660	-	enoca	0.869	0.001	0.802
Indde 0.0.717 0.0.706 0.0.771 magmaticas 0.0.715 0.0.717 0.0.05 0.		idade	0.000	0.502	0.000		idade	0.003	0.738	0.002
PetroVecW2V_100 Inaginatodas 0.707 0.776 0.777 0.800 0.827 0.800 0.827 sedimentaresCarbonaticas 0.806 0.827 sedimentaresCarbonaticas 0.801 0.827 sedimentaresCarbonaticas 0.802 0.827 0.820 0.827 0.830 0.827 0.830 0.827 0.830 0.827 0.830 0.827 0.830 0.827 0.830 0.827 0.830 0.827 0.830 0.827 0.830 0.827 0.830 0.827 0.830 0.827 0.830 0.827 0.830		magmaticas	0.717	0.040	0.073		magmaticas	0.010	0.700	0.835
relidvedW2V_100 Intelantomicals 0.700 0.705 0.707 0.804 0.827 0.804 0.827 0.804 0.829 0.820 0.824 0.820 0.824 0.820 0.824 0.820 0.824 0.820 0.824 0.820 0.824 0.805 0.813 0.705 0.711 magmaticas 0.795 0.816 0.715 0.771 magmaticas 0.796 0.841	Petro\/ec\\/2\/ 100	maginaticas	0.760	0.770	0.771	Petro\/ec\//2\/_100	maginalicas	0.025	0.040	0.000
belloco 0.830 0.703 0.703 sedimentaresCarbonaticas 0.830 0.797 sedimentaresSiliciclasticas 0.842 0.809 0.825 sedimentaresSiliciclasticas 0.811 0.802 0.803 0.827 unidadeEstratigrafica 0.786 0.847 0.815 unidadeEstratigrafica 0.797 0.863 0.829 total 0.802 0.828 0.800 0.827 sedimentaresSiliciclasticas 0.811 0.820 0.829 voital 0.792 0.737 0.763 0.763 total 0.827 0.820 0.829 voital 0.827 0.800 0.827 0.820 0.824 0.820 0.824 baciaSedimentar 0.828 0.820 0.824 0.827 0.826 0.827 0.830 0.812 0.783 epoca 0.876 0.724 0.792 idade 0.816 0.797 0.828 0.827 0.794 magmaticas 0.797 0.828 0.827 0.794 0.795	1 6110 060 02 0_100	noriodo	0.700	0.703	0.704	1 6110 460 442 4 100	poriodo	0.010	0.301	0.000
Sedimentaresolationational 0.703 0.003 0.773 0.825 unidadeEstratigrafica 0.792 0.847 0.815 sedimentaresolationational 0.827 0.803 0.827 total 0.792 0.737 0.763 0.763 0.773 0.763 total 0.792 0.737 0.763 0.763 0.827 0.820 0.828 baciaSedimentaresolationational 0.827 0.800 0.773 0.763 0.783 0.827 0.820 0.824 octal 0.792 0.737 0.763 0.763 0.815 0.773 0.815 0.773 idade 0.816 0.724 0.792 idade 0.876 0.719 0.783 epoca 0.876 0.770 0.815 0.774 0.792 idade 0.816 0.792 0.792 idade 0.816 0.719 0.816 0.818 0.808 magmaticas 0.796 0.841 0.840 sedimentaresCarbonaticas 0.816			0.030	0.010	0.703		sedimentaresCarbonaticas	0.872	0.747	0.804
Securine naresolinicidasticas 0.842 0.842 0.843 0.823 unidadeEstratigrafica 0.786 0.847 0.815 unidadeEstratigrafica 0.797 0.863 0.829 total 0.792 0.737 0.763 total 0.827 0.820 0.824 operation 0.792 0.737 0.763 total 0.827 0.820 0.824 operation 0.792 0.737 0.763 operation 0.793 0.815 0.783 epoca 0.804 0.715 0.716 0.716 0.716 0.716 PetroVecW2V_150 metamorficas 0.779 0.863 0.829 0.824 operation 0.815 0.783 0.815 0.783 0.815 0.783 epoca 0.804 0.814 0.818 0.804 0.814 0.804 0.814 0.804 0.814 0.804 0.840 0.840 0.840 0.840 0.841 0.846 0.865 0.865 0.865 0.865		sedimentaresCarbonaticas	0.703	0.000	0.757		sedimentaresCarbonaticas	0.000	0.000	0.027
UnitadeEstratignatica 0.790 0.847 0.813 UnitadeEstratignatica 0.797 0.820 0.824 total 0.792 0.737 0.763 total 0.827 0.820 0.824 baciaSedimentar 0.826 0.818 0.808 0.818 0.808 0.818 0.808 0.818 0.808 0.818 0.808 0.818 0.808 0.814 0.8184 0.840 sedimentar		unidadoEstratigrafica	0.042	0.009	0.025		unidadoEstratigrafica	0.071	0.000	0.075
bacia Sedimentar 0.827 0.828 0.820 0.824 bacia Sedimentar 0.828 0.820 0.824 contexto Geologico DeBacia 0.737 0.815 0.782 epoca 0.840 0.715 0.715 idade 0.840 0.715 0.771 magmaticas 0.798 0.818 0.808 metamorficas 0.770 0.820 0.794 periodo 0.857 0.744 0.796 sedimentaresCarbonaticas 0.801 0.840 0.840 unidadeEstratigrafica 0.796 0.841 0.818 total 0.820 0.803 0.811		total	0.780	0.047	0.015		total	0.797	0.003	0.029
PetroVecW2V_150 Database of metrical 0.826 0.826 0.826 0.826 0.826 0.826 0.826 0.826 0.826 0.826 0.826 0.826 0.826 0.826 0.826 0.826 0.826 0.826 0.826 0.815 0.838 epoca 0.840 0.715 0.711 idade 0.840 0.715 0.771 magmaticas 0.798 0.818 0.808 metamorficas 0.770 0.820 0.794 periodo 0.857 0.744 0.796 sedimentaresCarbonaticas 0.801 0.840 sedimentaresSiliciclasticas 0.857 0.841 0.840 sedimentaresSiliciclasticas 0.857 0.861 unidadeEstratigrafica 0.796 0.841 0.818		lotal	0.792	0.737	0.765		lulai	0.027	0.020	0.024
PetroVecW2V_150 contextoceologicoDeBacia 0.753 0.815 0.783 magmaticas 0.876 0.724 0.792 idade 0.806 0.715 0.714 magmaticas 0.798 0.816 0.808 metamorficas 0.770 0.820 0.794 periodo 0.857 0.744 0.796 sedimentaresCarbonaticas 0.801 0.840 0.840 sedimentaresSiliciclasticas 0.857 0.865 0.861 unidadeEstratigrafica 0.796 0.841 0.813							DaciaSedimentar	0.828	0.020	0.824
PetroVecW2V_150 idade 0.876 0.724 0.732 magmaticas 0.876 0.876 0.715 0.771 magmaticas 0.798 0.818 0.808 0.794 0.974 period 0.857 0.744 0.796 0.840 0.840 0.840 sedimentaresCarbonaticas 0.801 0.884 0.840 0.840 0.841 0.840 sedimentaresSiliciclasticas 0.796 0.841 0.814 0.814 unidadeEstratigrafica 0.796 0.841 0.811							contextoGeologicoDeBacia	0.753	0.815	0.783
Idade 0.840 0.715 0.711 magmaticas 0.798 0.818 0.808 metamorficas 0.770 0.820 0.794 periodo 0.857 0.744 0.796 sedimentaresCarbonaticas 0.801 0.865 0.861 unidadeEstratigrafica 0.796 0.818 0.808 total 0.820 0.794							epoca	0.876	0.724	0.792
magmaticas 0.798 0.818 0.808 PetroVecW2V_150 metamorficas 0.770 0.820 0.794 periodo 0.857 0.744 0.796 sedimentaresCarbonaticas 0.807 0.884 0.840 sedimentaresSiliciclasticas 0.857 0.865 0.861 unidadeEstratigrafica 0.796 0.818 0.814 total 0.820 0.891 0.818								0.840	0./15	0.//1
PetroVecW2V_150 metamorficas 0.770 0.820 0.794 periodo 0.857 0.744 0.796 sedimentaresCarbonaticas 0.801 0.884 0.840 sedimentaresSiliciclasticas 0.877 0.826 0.861 unidadeEstratigrafica 0.796 0.841 0.818 total 0.820 0.803 0.811						D	magmaticas	0.798	0.818	0.808
periodo 0.857 0.744 0.796 sedimentaresCarbonaticas 0.801 0.884 0.840 sedimentaresSiliciclasticas 0.857 0.865 0.861 unidadeEstratigrafica 0.796 0.841 0.814 total 0.820 0.803 0.811						PetroVecW2V_150	metamorficas	0.770	0.820	0.794
sedimentaresCarbonaticas 0.801 0.884 0.840 sedimentaresSiliciclasticas 0.857 0.865 0.861 unidadeEstratigrafica 0.796 0.811 0.818 total 0.820 0.803 0.811							periodo	0.857	0.744	0.796
sedimentaresSiliciclasticas 0.857 0.865 0.861 unidadeEstratigrafica 0.796 0.841 0.818 total 0.820 0.803 0.811							sedimentaresCarbonaticas	0.801	0.884	0.840
unidadeEstratigrafica 0.796 0.841 0.818 total 0.820 0.803 0.811							sedimentaresSiliciclasticas	0.857	0.865	0.861
total 0.820 0.803 0.811							unidadeEstratigrafica	0.796	0.841	0.818
							total	0.820	0.803	0.811

Table H.19 – The results of the PetroVecW2V auto-encoded model for the GeoCorpus task.

NORMALIZEDSTANDARDIZEDModelCategoryPrecisionRecallF1ModelCategoryPrecisionbaciaSedimentar0.7600.7890.774DecisionCategoryPrecision0.768contextoGeologicoDeBacia0.8000.7490.774DecisionDecisionDecision0.768epoca0.7940.6600.720DecisionDecisionDecisionDecisionDecisionDecisionmagmaticas0.7760.7550.764PetroVecHybridW2VPetroVecHybridW2VDecisionDecisionDecisionDecisionperiodo0.8630.6410.7350.764DecisionDecisionDecisionDecisionsedimentaresCarbonaticas0.8060.7760.791SedimentaresCarbonaticasD.844DecisionDecisionsedimentaresSiliciclasticas0.8290.8340.812DecisionDecisionDecisionDecisionunidadeEstratigrafica0.7760.7530.773DecisionDecisionDecisionDecisionDecisionperiodo0.8630.7750.7730.786DecisionDecisionDecisionDecisionDecisionperiodo0.7510.7680.7750.760DecisionDecisionDecisionDecisionDecisionperiodo0.7760.6680.7160.7750.760DecisionDecisionDecisionDecisionDecisionperiodo0.7760.6680.761	Recall 0.755 0.827 0.771 0.744 0.846 0.735 0.840 0.871 0.867 0.808 0.821 0.849 0.822 0.746 0.833 0.765	F1 0.755 0.796 0.809 0.773 0.815 0.782 0.790 0.843 0.855 0.854 0.854 0.855 0.854 0.811 0.803 0.825 0.815 0.823 0.745 0.823
ModelCategoryPrecisionRecalF1ModelCategoryPrecisionbaciaSedimentar0.7600.7780.774baciaSedimentar0.7560.776contextoGeologicoDeBacia0.8000.7490.774contextoGeologicoDeBacia0.768epoca0.7740.6600.720epoca0.852idade0.806idade0.7740.7030.721idade0.8060.786epoca0.8630.776magmaticas0.7760.7580.764epoca0.812idade0.8130.786periodo0.8630.6410.7350.764epicado0.8530.8140.786sedimentaresCarbonaticas0.8060.7760.791sedimentaresCarbonaticas0.847sedimentaresCarbonaticas0.847sedimentaresSiliciclastica0.7990.8340.822unidadeEstratigrafica0.840unidadeEstratigrafica0.840unidadeEstratigrafica0.7760.7750.7760.786contextoGeologicoDeBacia0.786epoca0.7760.7770.786contextoGeologicoDeBacia0.781epoca0.831idade0.7510.6680.718idade0.747magmaticas0.806epoca0.7760.6680.781idade0.747magmaticas0.806epoca0.7760.6680.781idade0.747magmaticas0.806epoca0.7760.6680.781idade0.747 <th>Recall 0.755 0.827 0.771 0.744 0.846 0.735 0.846 0.735 0.840 0.871 0.867 0.868 0.821 0.849 0.822 0.746 0.833 0.765</th> <th>F1 0.755 0.796 0.809 0.773 0.815 0.782 0.790 0.843 0.855 0.855 0.855 0.855 0.855 0.811 0.803 0.825 0.815 0.745 0.823 0.923</th>	Recall 0.755 0.827 0.771 0.744 0.846 0.735 0.846 0.735 0.840 0.871 0.867 0.868 0.821 0.849 0.822 0.746 0.833 0.765	F1 0.755 0.796 0.809 0.773 0.815 0.782 0.790 0.843 0.855 0.855 0.855 0.855 0.855 0.811 0.803 0.825 0.815 0.745 0.823 0.923
baciaSedimentar0.7600.7890.774baciaSedimentar0.756contextoGeologicoDeBacia0.8000.7490.774contextoGeologicoDeBacia0.768epoca0.7940.6600.720epoca0.802idade0.806idade0.7760.7550.764epoca0.8080.788metamorficas0.8180.7750.764periodo0.853idade0.788periodo0.8630.6410.735epriodo0.853isedimentaresCarbonaticas0.8040.802sedimentaresSiliciclasticas0.8290.8340.832indadeEstratigrafica0.8440.813unidadeEstratigrafica0.7900.7560.776itola0.786baciaSedimentar0.7960.7590.776itola0.844ocntextoGeologicoDeBacia0.7760.7560.776itola0.814periodo0.8340.832itola0.8140.756itola0.814periodo0.7560.7760.7680.776itola0.8140.814periodo0.7560.7600.7560.761epoca0.803idade0.766periodo0.7560.7610.7680.761idade0.747idade0.747magmaticas0.7680.7550.761idade0.747idade0.747periodo0.8640.7550.761idadeidade0.747idade0.7760.6680.78	0.755 0.827 0.771 0.774 0.846 0.784 0.784 0.840 0.871 0.867 0.867 0.808 0.821 0.849 0.802 0.746 0.841 0.833 0.765 0.890	0.755 0.796 0.809 0.773 0.815 0.782 0.790 0.843 0.855 0.855 0.855 0.855 0.855 0.811 0.803 0.825 0.815 0.745 0.823 0.923
PetroVecHybridW2V contextoGeologicoDeBacia 0.800 0.749 0.774 contextoGeologicoDeBacia 0.768 PetroVecHybridW2V iade 0.741 0.600 0.720 iade 0.808 0.806 0.806 iade 0.806 0.806 iade 0.806 0.806 0.806 iade 0.806 0.806 0.788 iade 0.808 0.788 iade 0.788 iade 0.808 0.818 0.786 iade iade 0.808 0.818 0.829 iade 0.818 0.829 iade iade 0.831 iade 0.818 0.814 0.832 iade 0.847 iade 0.833 iade 0.847 iade 0.847 iade iade 0.841 iade 0.841 iade iade 0.847 iade iade iade 0.841	0.827 0.771 0.744 0.846 0.784 0.735 0.840 0.871 0.867 0.868 0.821 0.849 0.802 0.746 0.843 0.843 0.843 0.765 0.890	0.796 0.809 0.773 0.815 0.782 0.790 0.843 0.855 0.854 0.854 0.854 0.811 0.803 0.825 0.815 0.815 0.745 0.820
epoca 0.794 0.660 0.720 epoca 0.852 idade 0.714 0.703 0.721 idade 0.862 idade 0.862 idade 0.862 idade 0.863 0.861 0.721 idade 0.806 0.788 magmaticas 0.786 magmaticas 0.781 periodo 0.853 sedimentaresCarbonaticas 0.847 0.834 0.832 sedimentaresCarbonaticas 0.847 sedimentaresCarbonaticas 0.847 0.834 0.812 unidadeEstratigrafica 0.840 0.841 0.842 0.841 0.842 0.841 0.844 0.841 0.844 0.841 0.844 0.841 0.844 0.841 0.844	0.771 0.744 0.846 0.784 0.735 0.840 0.871 0.867 0.808 0.821 0.849 0.802 0.746 0.843 0.843 0.765 0.890	0.809 0.773 0.815 0.782 0.790 0.843 0.855 0.854 0.854 0.811 0.803 0.825 0.815 0.815 0.745 0.823 0.920
idade 0.741 0.703 0.721 idade 0.806 0.806 PetroVecHybridW2V magmaticas 0.776 0.758 0.766 magmaticas 0.781 periodo 0.808 0.641 0.735 0.766 periodo 0.863 0.641 0.735 sedimentaresCarbonaticas 0.806 0.776 0.779 sedimentaresCarbonaticas 0.804 0.832 unidadeEstratigrafica 0.790 0.834 0.832 unidadeEstratigrafica 0.840 total 0.795 0.776 0.778 0.778 unidadeEstratigrafica 0.840 contextoGeologicoDeBacia 0.795 0.773 0.786 total 0.814 0.812 periodo 0.775 0.759 0.766 0.779 0.786 contextoGeologicoDeBacia 0.786 epoca 0.776 0.759 0.766 0.718 total 0.8031 idade 0.8031 idade 0.8031 idade 0.806 magmaticas 0.806 0.804 0.806 <td>0.744 0.846 0.784 0.735 0.840 0.871 0.867 0.808 0.821 0.849 0.822 0.746 0.841 0.833 0.765 0.890</td> <td>0.773 0.815 0.782 0.790 0.843 0.855 0.854 0.854 0.811 0.803 0.825 0.815 0.815 0.745 0.820</td>	0.744 0.846 0.784 0.735 0.840 0.871 0.867 0.808 0.821 0.849 0.822 0.746 0.841 0.833 0.765 0.890	0.773 0.815 0.782 0.790 0.843 0.855 0.854 0.854 0.811 0.803 0.825 0.815 0.815 0.745 0.820
PetroVecHybridW2V magmaticas 0.776 0.755 0.764 PetroVecHybridW2V magmaticas 0.788 periodo 0.818 0.756 0.764 PetroVecHybridW2V metamorficas 0.781 sedimentaresCarbonaticas 0.806 0.776 0.791 sedimentaresCarbonaticas 0.804 0.832 unidadeEstratigrafica 0.790 0.834 0.832 sedimentaresCarbonaticas 0.840 total 0.795 0.776 0.778 total 0.814 periodo 0.863 0.832 0.832 unidadeEstratigrafica 0.840 total 0.790 0.783 0.773 total 0.814 periodo 0.875 0.764 0.778 0.778 idade 0.776 0.768 0.778 contextoGeologicoDeBacia 0.766 epoca 0.776 0.688 0.788 epoca 0.808 idade 0.776 0.688 0.788 epoca 0.806 idade 0.776 0.688	0.846 0.784 0.735 0.840 0.871 0.867 0.808 0.821 0.849 0.802 0.746 0.841 0.833 0.765 0.890	0.815 0.782 0.790 0.843 0.855 0.854 0.854 0.811 0.803 0.825 0.815 0.745 0.823 0.820
PetroVecHybridW2V metamorficas 0.818 0.758 0.786 PetroVecHybridW2V metamorficas 0.781 periodo 0.863 0.641 0.735 periodo 0.863 0.641 0.735 sedimentaresCarbonaticas 0.806 0.676 0.791 sedimentaresCarbonaticas 0.804 0.832 unidadeEstratigrafica 0.790 0.834 0.832 unidadeEstratigrafica 0.834 0.832 total 0.795 0.773 0.778 total 0.814 0.814 contextoGeologicoDeBacia 0.796 0.777 0.786 contextoGeologicoDeBacia 0.803 epoca 0.776 0.668 0.716 0.761 epoca 0.831 idade 0.751 0.638 0.689 idade 0.747 metamorficas 0.803 magmaticas 0.761 0.768 0.755 0.761 epoca 0.831 idade idade 0.747 metamorficas 0.711 0.765 0.761 orte metam	0.784 0.735 0.840 0.871 0.867 0.808 0.821 0.849 0.802 0.746 0.841 0.833 0.765 0.890	0.782 0.790 0.843 0.855 0.854 0.811 0.803 0.825 0.815 0.745 0.823 0.820
periodo 0.863 0.641 0.735 periodo 0.853 sedimentaresCarbonaticas 0.806 0.776 0.791 sedimentaresCarbonaticas 0.847 sedimentaresCarbonaticas 0.847 sedimentaresCarbonaticas 0.863 0.812 sedimentaresCarbonaticas 0.849 sedimentaresCarbonaticas 0.840 sedimentaresCarbonaticas 0.841 0.841 0.841 0.841 0.841 0.841 0.841 </td <td>0.735 0.840 0.871 0.867 0.808 0.821 0.849 0.802 0.746 0.841 0.833 0.765 0.890</td> <td>0.790 0.843 0.855 0.854 0.811 0.803 0.825 0.815 0.745 0.823 0.820</td>	0.735 0.840 0.871 0.867 0.808 0.821 0.849 0.802 0.746 0.841 0.833 0.765 0.890	0.790 0.843 0.855 0.854 0.811 0.803 0.825 0.815 0.745 0.823 0.820
sedimentaresCarbonaticas0.8060.7760.791sedimentaresCarbonaticas0.847sedimentaresSiliciclasticas0.8290.8340.832sedimentaresSiliciclasticas0.839unidadeEstratigrafica0.7900.8340.812unidadeEstratigrafica0.840total0.7950.7730.773total0.814baciaSedimentar0.7960.7770.786contextoGeologicoDeBacia0.762epoca0.7760.6680.718idade0.747idade0.7760.6680.781idade0.747magmaticas0.7640.7550.761metamorficas0.846periodo0.8490.6910.762periodo0.867sedimentaresCarbonaticas0.7760.7850.781sedimentaresCarbonaticas0.866	0.840 0.871 0.867 0.808 0.821 0.849 0.802 0.746 0.841 0.833 0.765 0.890	0.843 0.855 0.854 0.803 0.825 0.815 0.745 0.823 0.820
sedimentaresSiliciclasticas 0.829 0.834 0.832 sedimentaresSiliciclasticas 0.839 unidadeEstratigrafica 0.790 0.834 0.812 unidadeEstratigrafica 0.840 0.840 total 0.795 0.773 0.786 total 0.814 0.814 baciaSedimentar 0.796 0.777 0.786 contextoGeologicoDeBacia 0.759 0.760 epoca 0.776 0.668 0.718 epoca 0.834 0.891 idade 0.775 0.766 0.776 0.668 0.718 epoca 0.801 epoca 0.801 idade 0.747 magmaticas 0.802 epoca 0.803 epoca 0.801 idade 0.747 magmaticas 0.806 idade 0.747 magmaticas 0.806 idade 0.806 idade 0.806 idade 0.806 idade 0.806 idade 0.806 idade 0.826 iperiodo 0.867 sedimentaresCarbonaticas 0.866 idade 0.806	0.871 0.867 0.808 0.821 0.849 0.802 0.746 0.841 0.833 0.765 0.890	0.855 0.854 0.811 0.803 0.825 0.815 0.745 0.823 0.823
unidadeEstratigrafica 0.790 0.834 0.812 unidadeEstratigrafica 0.840 total 0.795 0.773 0.773 total 0.814 0.814 baciaSedimentar 0.796 0.777 0.786 contextoGeologicoDeBacia 0.786 0.786 epoca 0.775 0.668 0.718 epoca 0.766 0.786 idade 0.775 0.668 0.718 epoca 0.803 epoca	0.867 0.808 0.821 0.849 0.802 0.746 0.841 0.833 0.765 0.890	0.854 0.811 0.803 0.825 0.815 0.745 0.823 0.823
total 0.795 0.773 0.773 total 0.814 baciaSedimentar 0.796 0.770 0.786 0.831 idade 0.831 0.836 magmaticas 0.768 0.755 0.761 0.716 0.716 0.716 periodo 0.826 periodo 0.826 periodo 0.826 0.826 0.826 0.826 0.826 0.826 <td>0.808 0.821 0.849 0.802 0.746 0.841 0.833 0.765 0.890</td> <td>0.811 0.803 0.825 0.815 0.745 0.823 0.823</td>	0.808 0.821 0.849 0.802 0.746 0.841 0.833 0.765 0.890	0.811 0.803 0.825 0.815 0.745 0.823 0.823
baciaSedimentar 0.796 0.777 0.786 baciaSedimentar 0.786 contextoGeologicoDeBacia 0.762 0.769 0.766 contextoGeologicoDeBacia 0.803 0.803 epoca 0.776 0.668 0.718 epoca 0.831 0.831 idade 0.765 0.668 0.765 0.761 idade 0.747 magmaticas 0.768 0.755 0.761 metamorficas 0.804 0.806 periodo 0.849 0.689 0.691 0.762 periodo 0.867 sedimentaresCarbonaticas 0.776 0.785 0.781 ortextoGeologicoDeBacia 0.806	0.821 0.849 0.802 0.746 0.841 0.833 0.765 0.890	0.803 0.825 0.815 0.745 0.823 0.820
ContextoGeologicoDeBacia 0.762 0.759 0.760 epoca 0.776 0.668 0.718 idade 0.751 0.668 0.718 magmaticas 0.768 0.755 0.761 metamorficas 0.771 0.760 0.725 periodo 0.834 0.691 0.762 sedimentaresCarbonaticas 0.776 0.785 0.781	0.849 0.802 0.746 0.841 0.833 0.765 0.890	0.825 0.815 0.745 0.823 0.823
epoca 0.776 0.668 0.718 idade 0.751 0.638 0.689 magmaticas 0.768 0.716 0.716 metamorficas 0.711 0.716 0.712 periodo 0.849 0.691 0.762 sedimentaresCarbonaticas 0.776 0.785 0.781	0.802 0.746 0.841 0.833 0.765 0.890	0.815 0.745 0.823
PetroVecHybridW2V_25 idade 0.751 0.638 0.689 magmaticas 0.766 0.755 0.761 magmaticas 0.806 periodo 0.849 0.691 0.712 metamorficas 0.806 periodo 0.849 0.691 0.762 periodo 0.867 sedimentaresCarbonaticas 0.776 0.785 0.781 sedimentaresCarbonaticas 0.866	0.746 0.841 0.833 0.765 0.890	0.745
PetroVecHybridW2V_25 magmaticas 0.768 0.755 0.761 magmaticas 0.806 petroVecHybridW2V_25 metamorficas 0.711 0.716 0.712 petroVecHybridW2V_25 metamorficas 0.806 sedimentaresCarbonaticas 0.776 0.785 0.781 0.781 periodo 0.867	0.841 0.833 0.765 0.890	0.823
PetroVecHybridW2V_25 metamorficas 0.711 0.716 0.712 PetroVecHybridW2V_25 metamorficas 0.826 periodo 0.849 0.691 0.762 periodo 0.867 periodo 0.868 0.866 periodo 0.866 0.866 periodo 0.866 0.866 periodo periodo </td <td>0.833 0.765 0.890</td> <td>0 830</td>	0.833 0.765 0.890	0 830
periodo0.8490.6910.762periodo0.867sedimentaresCarbonaticas0.7760.7850.781sedimentaresCarbonaticas0.866	0.765	0.000
sedimentaresCarbonaticas 0.776 0.785 0.781 sedimentaresCarbonaticas 0.866	0.890	0.812
	0.007	0.878
sedimentaresSiliciclasticas 0.790 0.788 0.789 sedimentaresSiliciclasticas 0.849	0.866	0.857
unidadeEstratigrafica 0.754 0.842 0.796 unidadeEstratigrafica 0.807	0.890	0.847
total 0.775 0.744 0.759 total 0.818	0.829	0.823
baciaSedimentar 0.781	0.775	0.778
contextoGeologicoDeBacia 0.774	0.856	0.812
epoca 0.873	0.789	0.829
idade 0.806	0.773	0.788
magmaticas 0.799	0.841	0.819
PetroVecHybridW2V_50 metamorficas 0.787	0.847	0.816
periodo 0.867	0.744	0.800
sedimentaresCarbonaticas 0.801	0.814	0.808
sedimentaresSiliciclasticas 0.867	0.877	0.872
unidadeEstratigrafica 0.807	0.875	0.839
total 0.820	0.821	0.820
baciaSedimentar 0.786 0.801 0.793 baciaSedimentar 0.784	0.774	0.779
contextoGeologicoDeBacia 0.756 0.776 0.766 contextoGeologicoDeBacia 0.753	0.842	0.795
epoca 0.786 0.710 0.745 epoca 0.847	0.794	0.819
idade 0.746 0.681 0.712 idade 0.786	0.769	0.776
magmaticas 0.758 0.793 0.774 magmaticas 0.797	0.872	0.833
PetroVecHybridW2V_100 metamorficas 0.773 0.780 0.776 PetroVecHybridW2V_100 metamorficas 0.813	0.859	0.835
periodo 0.817 0.711 0.760 periodo 0.857	0.768	0.809
sedimentaresCarbonaticas 0.810 0.829 0.819 sedimentaresCarbonaticas 0.825	0.857	0.841
sedimentaresSiliciclasticas 0.820 0.810 0.815 sedimentaresSiliciclasticas 0.839	0.859	0.849
unidadeEstratigrafica 0.753 0.848 0.798 unidadeEstratigrafica 0.829	0.879	0.853
total 0.780 0.772 0.776 total 0.813	0.826	0.819
baciaSedimentar 0.781	0.782	0.782
contextoGeologicoDeBacia 0.733	0.807	0.768
epoca 0.830	0.804	0.816
idade 0.805	0.731	0.766
magmaticas 0.781	0.851	0.814
PetroVecHybridW2V_150 metamorficas 0.797	0.852	0.822
periodo 0.862	0.766	0.811
sedimentaresCarbonaticas 0.817	0.852	0.834
sedimentaresSiliciclasticas 0.853	0.849	0.851
unidadeEstratigrafica 0.786	0.876	0.828
total 0.806	0.815	0.811

Table H.20 – The results of the PetroVecHybridW2V auto-encoded model for the GeoCorpus task.

Pontifícia Universidade Católica do Rio Grande do Sul Pró-Reitoria de Graduação Av. Ipiranga, 6681 - Prédio 1 - 3º. andar Porto Alegre - RS - Brasil Fone: (51) 3320-3500 - Fax: (51) 3339-1564 E-mail: prograd@pucrs.br Site: www.pucrs.br